

(54) Title of the invention : QUADRUPED CLIMBING ROBOT WITH TRIPLE SPIKES AT EACH LEG AS END EFFECTOR

(51) International classification	:B62D0057032000, B62D0057024000, B62D0057020000, G05D0001000000, B25J0009140000	(71)Name of Applicant : 1)Periyar Maniammai Institute of Science & Technology Address of Applicant :Periyar Nagar, Vallam, Thanjavur- 613403, Tamil Nadu, India ----- Name of Applicant : NA
(86) International Application No Filing Date	:NA :NA	(72)Name of Inventor : 1)Dr. R. Rakesh Address of Applicant :Assistant Professor (SG), Department of Electronics and Communication Engineering, Periyar Maniammai Institute of Science & Technology, Periyar Nagar, Vallam, Thanjavur, Tamil Nadu – 613403 ----- 2)Mr. N. Shivakumar Address of Applicant :Assistant Professor (SS), Department of Mechanical Engineering, Periyar Maniammai Institute of Science & Technology, Periyar Nagar, Vallam, Thanjavur, Tamil Nadu – 613403 ----- --
(87) International Publication No	:NA	3)Dr. V. Hamsadhwani Address of Applicant :Associate Professor, Department of Electrical and Electronics Engineering, Periyar Maniammai Institute of Science & Technology, Periyar Nagar, Vallam, Thanjavur, Tamil Nadu – 613403 -----
(61) Patent of Addition to Application Number Filing Date	:NA :NA	4)Dr. C. Rajanandhini Address of Applicant :Associate Professor, Department of Electronics and Communication Engineering, Periyar Maniammai Institute of Science & Technology, Periyar Nagar, Vallam, Thanjavur, Tamil Nadu – 613403 ----- 5)Mr. R. K. Muthuraman Address of Applicant :Assistant Professor (SS), Department of Aerospace Engineering, Periyar Maniammai Institute of Science & Technology, Periyar Nagar, Vallam, Thanjavur, Tamil Nadu – 613403 ----- --
(62) Divisional to Application Number Filing Date	:NA :NA	6)Dr. Arunangesh. K Address of Applicant :Assistant Professor (SG), Department of Electrical and Electronics Engineering, Periyar Maniammai Institute of Science & Technology, Periyar Nagar, Vallam, Thanjavur, Tamil Nadu – 613403 ----- 7)Mr. U. Saravanan Kumar Address of Applicant :Assistant Professor (SS), Department of Electronics and Communication Engineering, Periyar Maniammai Institute of Science & Technology, Periyar Nagar, Vallam, Thanjavur, Tamil Nadu – 613403 ----- 8)Mr. N. Dharmaraj Address of Applicant :Assistant Professor, Department of CCE, Rajalakshmi Institute of Technology, Chennai, Tamil Nadu ----- 9)Mr. R. Darshan Address of Applicant :Department of Electronics and Communication Engineering, Periyar Maniammai Institute of Science & Technology, Periyar Nagar, Vallam, Thanjavur, Tamil Nadu – 613403 ----- --
		10)Mr. S. Kabilan Address of Applicant :Department of Electronics and Communication Engineering, Periyar Maniammai Institute of Science & Technology, Periyar Nagar, Vallam, Thanjavur, Tamil Nadu – 613403 ----- --
		11)Mr. S. Soundara Pandian Address of Applicant :Department of Electronics and Communication Engineering, Periyar Maniammai Institute of Science & Technology, Periyar Nagar, Vallam, Thanjavur, Tamil Nadu – 613403 ----- --

(57) Abstract :

The present invention relates to the field of bioinspired climbing robots, specifically quadruped robots equipped with triple spikes at each leg to enable mechanical hooking for vertical and inverted surface locomotion. This invention is designed for applications in extraterrestrial planetary exploration, high-altitude terrain analysis, and industrial inspections on irregular or soft surfaces such as thermocool walls. [02] BACKGROUND OF THE INVENTION Existing climbing robots face limitations in navigating discontinuous or soft surfaces (e.g., thermocool, rocky terrain) due to reliance on suction, magnetic adhesion, or grippers. Traditional mechanisms fail to maintain grip on porous or irregular substrates. Additionally, lightweight, compact designs for space or high-altitude missions remain underdeveloped. Prior art includes quadruped robots with servo-driven legs but lacks adaptive mechanical hooking systems. Current adhesion methods struggle with energy efficiency and surface adaptability. This invention addresses these gaps through a triple-spike end effector and optimized gait control, enabling stable climbing on challenging surfaces without fixed infrastructure. [03] SUMMARY OF THE PRESENT INVENTION The invention introduces a quadruped robot with four legs, each controlled by three servo motors (12 motors total) divided into four channels (A, B, C, D). Key innovations include: 1. Triple-spike mechanical hooking system: Three sharp needles at each leg's end effector penetrate surfaces like thermocool or rocky cracks, replacing conventional adhesion. 2. Dynamic gait control: Sequential activation of servo channels (A0–D2) enables adaptive movement patterns for stability on vertical surfaces. 3. Lightweight, modular design: Optimized for extraterrestrial missions and industrial inspections. 4. Arduino-based control system: Manages servo sequences, surface adaptation, and obstacle avoidance. 5. Applications span planetary exploration (e.g., Mars rock crevices), high-altitude rescue missions, and industrial maintenance on soft or uneven structures. BRIEF DESCRIPTION OF THE DRAWINGS • Fig. 1: Quadruped robot climbing a vertical thermocool wall. • Fig. 2: Block diagram of Arduino control system. • Fig. 3: Flowchart of gait sequence and servo channel activation. • Fig. 4: 3D model of leg assembly with triple spikes. • Fig. 5: System architecture showing collaboration with PMIST Robotics Lab, Bosch Rexroth, and IIT Bombay. DETAILED DESCRIPTION OF THE INVENTION Design Overview: Leg Mechanism: Each leg operates via three servo motors (hip, knee, ankle), enabling 3DoF movement. Spikes are retractable to minimize drag during non-climbing phases. Control Channels: Channel A: Motors A0 (hip), A1 (knee), A2 (ankle) Channels B, C, D follow analogous configurations. Gait Algorithm: Channels activate sequentially (A→B→C→D) to mimic insect-like climbing, with real-time adjustments based on surface feedback. Mechanical Hooking System: The triple spikes (stainless steel needles) penetrate soft substrates at 30°–45° angles, distributing weight evenly. Penetration depth is controlled via servo torque calibration. Control System: An Arduino Mega processes input from IR proximity sensors and inertial measurement units (IMUs) to adjust gait and spike engagement. Remote operation is enabled via Bluetooth/Wi-Fi. Collaborative Development: Prototyped at PMIST Robotics Lab in partnership with Bosch Rexroth, IIT Bombay, and Prag Robotics, integrating industrial-grade actuators and AI-driven path planning.

No. of Pages : 14 No. of Claims : 6