



## **Criterion1 – Curricular Aspects**

| Key Indicator | 1.1   | Curriculum Design and Development                                                               |
|---------------|-------|-------------------------------------------------------------------------------------------------|
| Metric        | 1.1.2 | Percentage of Programmes where syllabus revision was carried<br>out during academic year2022-23 |

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

| Sl.<br>No. | Programme<br>Code | Programme name                                   | Year of<br>Introduction | Year of<br>revision | Percentage of<br>Syllabus<br>content added<br>or replaced |
|------------|-------------------|--------------------------------------------------|-------------------------|---------------------|-----------------------------------------------------------|
| 01.        | 015               | M.TECH- Wireless<br>Communications<br>(Fulltime) | 2010 -11                | 2022-23             | 26%                                                       |

| S.No | Contents                                                 |  |
|------|----------------------------------------------------------|--|
| 1    | Minutes of Board of Studies                              |  |
| 2    | Extracts of minutes of the Academic Council Meeting      |  |
| 3    | Curriculum and Syllabus of the programme –Before Revisio |  |
| 4    | Curriculum and Syllabus of the programme–After Revision  |  |

\_

Legend : Highlighted Color - Red

Indicates courses which are removed from syllabus before revision Indicates courses which are removed from

Highlighted Color - Green – Indicates courses whi syllabus after revision

# 1. a. Minutes of the Board of Studies for M.TECH - Wireless Communication (FullTime) held on07.07.2022



#### **M.Tech Wireless Communication**

#### **Board of Studies Meeting**

Date: 07.07.2022

Time: 11:00 AM

Venue: MarieCurie Hall

#### Agenda

- 1. Implementation of Actions on curricular aspects from stake holders for Regulation 2022.
- 2. Presentation of PEOs, Pos, PSOs for M.Tech in Wireless Communications.
- Presentation of Curriculum for M.Tech in Wireless Communications PG Degree Programme for Regulation 2022.
- 4. Presentation of Syllabi from I to IV semester for wireless communications PG Degree Programme for Regulation 2022.
- 5. Discuss on Programme articulation matrix ( PO coverage by all Cos).

HOD / ECE

Department of Electronics and Communication Engineering Periyar Nagar, Vallam, Thanjayur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: headece@pmu.eduWeb: www.pmu.edu





## **BOARD OF STUDIES MEETING**

#### M.Tech FULL TIME PROGRAMME

#### **Minutes of Meeting**

#### Date: 07.07.2022Time: 11:00 AMVenue: TBI - Marie Curie Hall, PMIST

The Board of Studies meeting was held on 07.07.2022 for framing the M.Tech Wireless Communications- FT Curriculum and Syllabi of I to IV semester for Regulation 2022.

#### Agenda:

- 1. Implementation of actions on curricular aspects from stake holders for Regulation 2022
- 2. Presentation of PEOs, POs, PSOs for M.Tech in Wireless Communications
- Presentation of Curriculum for Wireless CommunicationsPG degree programme for Regulation 2022
- Presentation of syllabi from I to IV semesters for Wireless CommunicationsPG Degree programme of Regulation 2022
- 5. Discuss on programme articulation matrix (PO coverage by all COs)

#### Members present:

| SI.No. | Name                           | Designation                                                                                                                                       | Representing         | Signature   |
|--------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|
| 1.     | Dr.C.Narmadha                  | HoD/ECE                                                                                                                                           | Chairperson          | dens 7/1/21 |
| 2.     | Dr.S.Senthamailkumar,          | Dean(FET)                                                                                                                                         | Special<br>Invitee   | Site        |
| 2.     | Dr.<br>P.Muthuchidambaranathan | Professor,<br>Department of<br>Electronics and<br>Communication<br>Engineering,<br>National Institute of<br>Technology<br>Tiruchirappalli -620015 | Member -<br>Academic | ÆSm         |
| 3.     | Mr.A.KaliaperumalM.Tech        | Junior Telecom Officer,<br>BSNL, Thanjavur                                                                                                        | Member –<br>Industry | Ne          |
| 4,     | Dr.SPK.Babu                    | Prof/ECE                                                                                                                                          | Member               | Jun         |
| 5.     | Dr.V.VioletJuli                | Asso,Prof/ECE                                                                                                                                     | Member               | V. Minyn    |

a state of the state of the state of the

| 6.  | Dr.S.Janani          | Asso. Prof/ECE | Member            | 62       |
|-----|----------------------|----------------|-------------------|----------|
| 6.  | Ms.C.Rajanandhini    | AP/ECE         | Member            | The star |
| 7.  | Mr. U .Saravanakumar | AP/ECE         | Member            | Dante    |
| 8.  | Mr. R. Rokesia       | APIECE         | Member            | 180      |
| 9.  | M. Praveena          | M.Tech/ECE     | Student<br>Member | thank    |
| 10. | B. Schilkhan         | M-Tech/ECE     |                   | REAT     |
| 11, | R: Tamilmozhi        | M. Tech/ECE    |                   | TO DAR!  |
| 12. | K. Vishali           | M. Tech/ECE    |                   | k L- i   |
| 13. |                      | 1              |                   | - nort   |

#### A. Presentation of PEOs and POs

Four PEOs and seven POs were presented to the members. The following changes were recommended

#### Program Educational Objectives (PEOs)

Graduates from M.Tech Wireless Communication Systems will be able to

- Demonstrate their knowledge, skills and proficiency in usage of modern tools in analysis and design of wireless communication systems.
- Will be able to involve in innovation, optimization, design and development of present and future wireless communication systems according to international standards as an individual or as a group.
- Will be able to carry out research and development and pursue higher education in field of wireless and mobile communication.
- Design Electronic components for present and future wireless communication taking sustainability and environment issues.

#### Programme Outcomes (POs)

#### A graduate at the end of the programme will be able to

- Demonstrate in depth knowledge in field of wireless communications with upto date information on latest technologies and global trends.
- Analyze complex wireless communication systems and *formulate* solutions as an individual or group through skills, tools, techniques, methods or literature survey.
- Create, select, learn and apply appropriate techniques, resources, and modern engineering and IT tools to complex wireless communication problems with an understanding of the limitations
- 4. Demonstrate knowledge and understanding of engineering and management principles and apply the same to one's own work, as a member and leader in a team. manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economic and financial factors.
- 5. Communicate with the engineering community, and with society at large, regarding complex engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions.
- Recognize the need for, and have the preparation and ability to engage in life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.
- Demonstrate professional and intellectual integrity, professional code of conduct, ethics of
  research and scholarship, consideration of the impact of research outcomes on professional
  practices and understand the responsibility to contribute to the community for sustainable
  development of society.

BoS MinutesM.Tech Wireless Communications- FT 2022 Regulation

7. Richards, Sheer and Holm (eds), "Principles of modern radar, basic principles", 2010

Year 2

 Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press.

2. Business Analytics by James Evans, persons Education.

Year 3 - Nil Lab equipment to be purchased Year 1 - Nil Year 2 - HFSS software Year 3 - Nil Specialized Staff to be augmented Year 1 - RF Year 2 - Nil

Year 3 - Nil

Teaching Aids needed

Year 1 - Nil

Year 2 - Nil

Year 3 - Nil

The BoS members recommended to submit the outcome of this meeting in the forthcoming Academic council meeting for approval.

Or . P. MUTHU CHIDAM BARA NATHAN) NIT - TRICHY.

A.KA HA PERUMAL (JTO-BSNL-THANJAVUR)

Head / ECE

Dean/FETDean Academic



The developed POs was presented. The members agreed that there need not be any changes in the PO.

Figure I PO coverage by various courses

It is found that PO3 which is modern tool and technique usage by few courses. Other than that, the curriculum covers all POs with small deviations.

- a. The BoS member Dr. P.Muthuchidambaranathan recommended to introduce various software tools if available in courses. He also asked to add assessment tools to assess the skill.
- b. Dr.V.VioleUuli explained that "Real Time Project" part of the assessment template can be used effectively to assess such skills.

Similarly Dr.C.Narmadha pointed out that PO 4 has to be addressed where team work and project management are key skills.

#### K. Teaching Aids/Books/Infra/Lab Requirement

#### Books to be purchased

Year 1

- Theodore S. Rappaport, Robert W. Heath, Robert C. Daniels and James N. Murdock, "Millimeter Wave Wireless Communications", 1st edition, 2014, Pearson
- Hemadeh, K. Satyanarayana, M. El-Hajjar and L. Hanzo, "Millimeter-Wave Communications: Physical Channel Models, Design Considerations, Antenna Constructions, and Link-Budget," in IEEE Communications Surveys & Tutorials, vol. 20, no. 2, pp. 870-913
- Chong, Chia-Chin & Hamaguchi, Kiyoshi & Smulders, Peter & Yong, Su. (2007). Millimeter-Wave Wireless Communication Systems: Theory and Applications. EURASIP J. Wireless Comm. and Networking. 2007. 10.1155/2007/72831.
- Manuel Garcia Sanchez (Ed.), "Millimeter-Wave (mmWave) Communications" 2020 MDPI Books, ISBN 978-3-03928-431-3 (PDF)
- Bassem R. Mahafza, "Radar Systems Analysis and Design Using MATLAB, CRC Press, Boca Raton, FL, United States, 2000

8

6. Sullivan, "Radar foundations for imaging and advanced concepts", 2004

| 7.   | Research Methodology and IPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 8.   | English for Research Paper Writing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | entrepreneurship / skill<br>entrepreneurship / skill                               |
| 9.   | Wireless Networks Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | skill                                                                              |
| 10   | and current communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | employability                                                                      |
| 11   | The second of assive and Active Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | employability /                                                                    |
| 12   | AdvancedRadiationSystems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | employability /                                                                    |
| 13.  | Elective-III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | employability/ entrepreneurship / skill                                            |
| 14.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | employability/ entrepreneurship / skill                                            |
| 15.  | is a substantial and a state of the state of | skill                                                                              |
| 16.  | MiniProject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | employability /entrepreneurship / skill                                            |
| 17.  | Constitution of India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | supressed and set renearship / skill                                               |
| 18.  | Dissertation Phase - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | employability / antrono Line ( )                                                   |
| 19.  | Elective -V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | employability / entrepreneurship / skil<br>employability / entrepreneurship / skil |
| 20.  | 1. Business Analytics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | employability / entrepreneurship / skill                                           |
|      | 2. Industrial Safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | employability / entrepreneurship / skill                                           |
|      | 3. Operations Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |
| -    | 4. Cost Management of Engineering Projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                    |
| 21.  | Dissertation Phase – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | employability / entrepreneurship / skill                                           |
| 22,  | Modern Radar communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | employability / entrepreneurship / skill                                           |
| 23.  | Mobile Satellite Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | employability / entrepreneurship / skill                                           |
| 24.  | AdvancedDigitalSignalProcessing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | employability / entrepreneurship / skill                                           |
| 25.  | Free space optics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |
| 26.  | Mathematics for Communication Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | employability / entrepreneurship / skill                                           |
| 27.  | RF MEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | employability / entrepreneurship / skill                                           |
| 28.  | Antenna Systems for Wireless Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | employability / entrepreneurship / skill                                           |
| 29.  | Detection and Estimation Theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | employability / entrepreneurship / skill                                           |
| 30.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | employability / entrepreneurship / skill                                           |
| 2221 | Wireless Network Security                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | employability / entrepreneurship / skill                                           |
| 31.  | Adhoe Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | employability / entrepreneurship / skill                                           |
|      | MIMO Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i i i i i i i i i i i i i i i i i i i                                              |
| 32.  | High Performance Computing Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | employability / entrepreneurship / skill                                           |
| 33.  | Internet of Things                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | employability / entrepreneurship / skill                                           |
| 34.  | Soft Computing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |
| 35.  | Multimedia Compression Techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | employability / entrepreneurship / skill                                           |
|      | Millimeter Wave Wireless Communications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | employability / entrepreneurship / skill                                           |
| 36.  | Software Defined Radio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | employability / and                                                                |
| 37.  | Fundamentals of 5G Mobile and Wireless Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | employability / entrepreneurship / skill                                           |
| 8.   | Quality of Service in Wireless Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | employability / entrepreneurship / skill                                           |
| 9.   | Telecom Network Planning and Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | employability / entrepreneurship / skill                                           |
| 10.  | Regulation and Policy in the T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | employability / entrepreneurship / skill                                           |
|      | Regulation and Policy in the Telecommunications<br>Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | employability / entrepreneurship / skill                                           |

## J. DISCUSSION ON PROGRAMME ARTICULATION MATRIX (PO COVERAGE BY ALL COS)

7

b. The courses which are mandatory and as Open Electives in the AICTE curriculum are present in the designed curriculum.

b. IEEE Wireless Communication Engineering Technologies Certification learning syllabus, outcomes and books are taken into consideration. Important aspects pertaining to international needssuch as Emerging New Paradigms and Servicesare taken into account.

#### H. NOTES ON CREDIT DISTRIBUTION AND COMPARISION WITH AICTE GUIDELINES

#### Table IV: Credit distribution

| Course Type                       | Symbol               | Credits · | Total | AICTE<br>recommendation | Deviation |
|-----------------------------------|----------------------|-----------|-------|-------------------------|-----------|
| Professional Core<br>Course       | PCC                  | 19        | 19    | 12                      | 7         |
| Professional Elective<br>Course   | PEC                  | 15        | 15    | 15                      | 0         |
| Open Elective Course              | OEC                  | 3         | 6     | 8                       | -2        |
| Professional Core<br>Course - Lab | PCC-L                | 6         | 28    | 28                      | 0         |
| Project                           | Proj                 | 28        | 3     | 3                       | 0         |
| AICTE Course - Audit              | ACIET –<br>Audit     | 0         | ٥     | 0                       | 0         |
| AICTE Course -<br>Mandatory       | ACIET –<br>Mandatory | 2         | Ø     | 0                       | 0         |
|                                   |                      |           | 73    | 68                      |           |

It is found that there is deviation in core courses from the curriculum structure proposed by AICTE and the one presented. The members approved the deviation.

#### I. COURSES ON EMPLOYABILITY/ENTREPRENEURSHIP/SKILL DEVELOPMENT

The curriculum focus of including 96.07% of courses with either/and employability/entrepreneurship/skill development. The courses are given below:

| S.No | COURSE TITLE                                                         |                                          |
|------|----------------------------------------------------------------------|------------------------------------------|
| 1.   | ModernDigitalCommunication<br>Fundamentals of wireless communication | employability                            |
| 2.   | WirelessCommunication<br>Advanced Digital Communication              | employability                            |
| 3.   | Wireless Networks                                                    | employability /                          |
| 4.   | Elective I                                                           | employability / entrepreneurship / skill |
| 5.   | Elective-II                                                          | employability / entrepreneurship / skill |
| 6.   | Digital Communication Lab                                            | skill                                    |

BoS MinutesM.Tech Wireless Communications- FT 2022 Regulation

| Soft Computing                                                                  |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multimedia Compression Techniques<br>Millimeter Wave Wireless<br>Communications | New course                                                                                                                                                                                                                                                                                                                     | Feedback by<br>Teachers                                                                                                                                                                                                                                                                                                                                  |
| Software Defined Radio                                                          |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                          |
| Fundamentals of 5G Mobile and Wireless<br>Technology                            |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                          |
| Quality of Service in Wireless                                                  |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                          |
| Telecom Network Planning and<br>Management                                      |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                          |
| Regulation and Policy in the<br>Telecommunications Industry                     |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                 | Multimedia Compression Techniques         Millimeter Wave Wireless         Communications         Software Defined Radio         Fundamentals of 5G Mobile and Wireless         Technology         Quality of Service in Wireless         Telecom Network Planning and         Management         Regulation and Policy in the | Multimedia Compression Techniques       New course         Millimeter Wave Wireless       New course         Communications       Software Defined Radio         Fundamentals of 5G Mobile and Wireless       Fechnology         Quality of Service in Wireless       Telecom Network Planning and         Management       Regulation and Policy in the |

#### D. LIST OF NEWLY INTRODUCED COURSES IN REGULATION 2022

- a. MIMO Communication
- b. Millimeter Wave Wireless Communications
- c. Modern Radar communication
- d. Advanced Technologies in Wireless Networks

## E. LIST OF COURSES REMOVED

#### Table III Table of courses removed with remarks

| S.No | Course Code and Name                 | Remarks                                                                                                               |  |
|------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| 1    | Adhoc Networks                       | The contents are covered in wireless networks                                                                         |  |
| 2    | Multimedia Compression<br>Techniques | Courses in signal processing areas covers these topics                                                                |  |
| 3    | Radar Communication                  | New radar technologies which have emerged for<br>civilian use is added. Therefore new course<br>syllabus is presented |  |
| 4    | High Performance computing           |                                                                                                                       |  |

#### F. PERCENTAGE CHANGE IN THE SYLLABUS

Number of new or 50% change courses added = 6 core + 2 Electives=25 credits Number of courses removed = 4 = 03 credits % change = (18/68) x 100 = 26 %

## G. NOTES ON BENCHMARKING WITHUGC/AICTE/CoA/NCTE/World Top Universities MODEL CURRICULUM

a. It is found that AICTE has not given any model syllabus for Wireless Communication. The AICTE model curriculum related to Electronics was presented in the BoS. The members compared the credit distribution of the designed curriculum and discussed the following

a. The credits of the both the curriculum was found to be same.

BoS MinutesM. Tech Wireless Communications- FT 2022 Regulation

|     | Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                             |         |                            |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------|---------|----------------------------|
| 4.  | Elective 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    | a second have                                               |         |                            |
| 5.  | Elective-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Section Section                    |                                                             | 1001    |                            |
| 6.  | Digital Communication Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | PSD, CTO,<br>CFO added                                      | 50%     | 1.57                       |
| 7.  | Research Methodology and IPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                                                             |         |                            |
| 8.  | English for Research Paper Writing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                                             |         |                            |
| 9.  | Wireless Networks Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                                             |         |                            |
| 10. | The reserves of the second s |                                    |                                                             | 2007    | Feedback                   |
| 11. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                                                             | 50%     | by staff                   |
| 12. | AdvancedRadiationSystems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                             | 50%     |                            |
| 13. | Elective-III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                                                             |         |                            |
| 14  | Elective IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                                             |         |                            |
| 15. | Radio Frequency Systems lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Basic<br>Experiment<br>s removed   | More<br>antennas<br>experiment<br>added                     | 80%     | Feedback<br>by<br>students |
| 16. | MiniProject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                                             |         |                            |
| 17. | Constitution of India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                                             |         |                            |
| 18. | Dissertation Phase - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                                             |         |                            |
| 19  | Elective -V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                                             |         |                            |
| 20. | <ol> <li>Business Analytics</li> <li>Industrial Safety</li> <li>Operations Research</li> <li>Cost Management of Engineering<br/>Projects</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                                                             |         |                            |
| 21  | Dissertation Phase - II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                                             |         |                            |
|     | Modern Radar communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Basics and<br>redundant<br>removed | Civilian<br>application<br>and new<br>technologies<br>added | 80%     | Feedback by<br>Teachers    |
| 23. | Mobile Satellite Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                                                             |         |                            |
|     | AdvancedDigitalSignalProcessing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                                                             |         |                            |
|     | Free space optics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | Constant of the                                             |         |                            |
|     | Mathematics for Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10000                              | -                                                           |         |                            |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                                                             |         |                            |
|     | RF MEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The second                         |                                                             | 1       | -                          |
|     | Antenna Systems for Wireless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                                                             | 1 1 100 |                            |
|     | Detection and Estimation Theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the second                     | 1                                                           | 1       |                            |
| 30. | Wireless Network Security                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                                                             |         |                            |
| 31. | Adhee-Networks<br>MIMO Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | Detailed<br>MIMO<br>syllabus                                | 60%     |                            |
| 32  | High Performance Computing Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                                                             |         | () less                    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                                                             |         |                            |

7. Richards, Sheer and Holm (eds), "Principles of modern radar, basic principles", 2010

Year 2

 Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press.
 Business Analytics by James Evans, persons Education.

- Nil Year 3 Lab equipment to be purchased Year I - Nil Year 2 - HFSS software Year 3 - Nil Specialized Staff to be augmented Year 1 - RF Year 2 - Nil Year 3 - Nil **Teaching Aids needed** Year 1 - Nil Year 2 - Nil Year 3 - Nil

The BoS members recommended to submit the outcome of this meeting in the forthcoming Academic council meeting for approval.

s e

(Dr. P. MUTHU CHIDAM BARA NATHON) NIT - TRICHY.

A KA LA PERUMAL (JTO-BSNL-THANJAVUR)

9

Head / ECE

## 2.a.Extracts of the Minutes of 40<sup>th</sup>ACM Meeting for M.Tech held on 27.08.2022

au Pourto

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660 Email: registrar@pmu.edu Web: www.pmu.edu



#### MINUTES OF FORTIETH MEETING OF THE ACADEMIC COUNCIL

Date : 27.08.2022 Time : 10.30 A.M

and and setting

1000

Venue: Richard Dawkins Hall Place : PMIST, Vallam – Thanjavur

The Fortieth Meeting of the Academic Council of the Periyar Maniammai Institute of Science & Technology (PMIST), Vallam, Thanjavur held on 27.08.2022 at 10.30 a.m.

Prof.S.Velusami, Hon'ble Vice-Chancellor, chaired the meeting.

#### The following Academic Council Members were present

| 1.  | Dr.D.Aarthi Saravanan       | Member |
|-----|-----------------------------|--------|
| 2.  | Dr.A.Anand Jerard Sebastine | Member |
| З.  | Dr.S.Arumugam               | Member |
| 4.  | Dr.P.Aruna                  | Member |
| 5.  | Dr.S.Asokan                 | Member |
| 6.  | Dr.S.Buvaneswari            | Member |
| 7.  | Dr.A.George                 | Member |
| 8.  | Dr.S.Gomathi                | Member |
| 9.  | Dr.P.Guru                   | Member |
| 10. | Dr.V.Hamsadhwani            | Member |
| 11. | Dr.R.Jayanthi               | Member |
| 12. | Dr.N.Jayanthi               | Member |
| 13. | Dr.J.Jeyachidra             | Member |
| 14. | Mr.I.Karthic Subramaniayan  | Member |
| 15. | Dr.T.Kavitha                | Member |
| 16. | Dr.K.Kesavan                | Member |
| 17. | Dr.R.Krishnamurthi          | Member |
| 18. | Dr.S.P.Kulanthaivel Babu    | Member |
|     |                             |        |

#### POST GRADUATE PROGRAMMES (FULL-TIME)

| SI.No. | Programme                              | Duration | Intake |
|--------|----------------------------------------|----------|--------|
| 1      | M. Arch.                               | 2 Years  | 20     |
| 2      | M.TechEnvironmental Engineering        | 2 Years  | 18     |
| 3      | M.TechNano Technology                  | 2 Years  | 18     |
| 4      | M.TechRenewable Energy                 | 2 Years  | 18     |
| 5      | M.TechWireless Communications          | 2 Years  | 18     |
| 6      | M.TechPower Electronics and Drives     | 2 Years  | 18     |
| 7      | M.B.A. (Dual Specialization)           |          |        |
|        | Finance                                |          |        |
|        | <ul> <li>Human Resource</li> </ul>     | 2 Years  | 120    |
|        | <ul> <li>Marketing</li> </ul>          | 2 10013  | 120    |
|        | Operations                             |          |        |
|        | <ul> <li>Business Analytics</li> </ul> |          | _      |
| 8      | M.S.W.                                 | 2 Years  | 20     |
| 9      | M.ScChemistry                          | 2 Years  | 20     |
| 10     | M.ScMathematics                        | 2 Years  | 20     |
| 11     | M.ScPhysics                            | 2 Years  | 20     |
| 12     | M.Sc - Computer Science                | 2 Years  | 20     |
| 13     | M.AEnglish                             | 2 Years  | 20     |
| 14     | M.APolitical Science                   | 2 Years  | 20     |
| 15     | M.APeriyar Thought                     | 2 Years  | 20     |
| 16     | M.AHistory                             | 2 Years  | 20     |
| 17     | M.ATamil                               | 2 Years  | 20     |
| 18     | M.C.A.                                 | 2 Years  | 120    |
| 19     | M.Com.                                 | 2 Years  | 20     |

## Ph.D Programmes (Full-Time & Part-Time)

| Architec | ture                                    |
|----------|-----------------------------------------|
| SI. No   | Programme                               |
| 1        | Architecture                            |
| Engine   | ering & Technology                      |
| 1        | Biotechnology                           |
| 2        | Civil Engineering                       |
| 3        | Electrical & Electronics Engineering    |
| 4        | Electronics & Communication Engineering |
| 5        | Mechanical Engineering                  |
| 6        | Nano Technology                         |
| Humani   | ties, Sciences and Management           |
| 1        | Chemistry                               |
| 2        | Commerce                                |
| 3        | English                                 |
| 4        | Management Studies                      |
| 5        | Mathematics                             |
| 6        | Periyar Thought                         |
| 7        | Physics                                 |
| 8        | Social Work                             |
| 9        | Political Science                       |
| Comput   | ing Sciences and Engineering            |
| 1        | Computer Science and Applications       |

 Lateral Entry 10% of sanctioned Intake of each of the B.Tech First Year Programmes and Lapsed Seats in the respective First Year Programmes.

7

The matter is placed before the Academic Council for approval.

## 3. a.Curriculum and Syllabus of the programme–M.Tech Before Revision 2022

|       | CODE    | COURSE TITLE                       | L | Т | Р | С | Η |
|-------|---------|------------------------------------|---|---|---|---|---|
|       | NO.     |                                    |   |   |   |   |   |
| PCC   | YWC101  | Applied Mathematics for            | 3 | 0 | 3 | 3 | 3 |
|       |         | Communication Systems              |   |   |   |   |   |
| PCC   | YWC102  | Wireless Communication             | 3 | 0 | 0 | 3 | 3 |
| PCC   | YWC103  | Modern Digital Communication       | 3 | 0 | 0 | 3 | 3 |
|       |         |                                    |   |   |   |   |   |
| PEC   | YWC104* | Elective I                         | 3 | 0 | 0 | 3 | 3 |
| PEC   | YWC105* | Elective-II                        | 3 | 0 | 0 | 3 | 3 |
|       |         |                                    |   |   |   |   |   |
| PCC-L | YWC106  | Wireless Networks Lab              | 0 | 0 | 1 | 1 | 2 |
|       |         |                                    |   |   |   |   |   |
| PCC-L | YWC 107 | Digital Communication Lab          | 0 | 0 | 1 | 1 | 2 |
| MC    | 108     | Research Methodology and IPR       | 2 | 0 | 0 | 0 | 2 |
| MC -  | 109     | English for Research Paper Writing | 2 | 0 | 0 | 0 | 2 |
| Audit |         |                                    |   |   |   |   |   |

## SEMESTER I

## **Total Hours:23**

## **Total Credits: 17**

## **SEMESTER II**

|           | CODE<br>NO. | COURSE TITLE                            | L | Т | Р | C | Н |
|-----------|-------------|-----------------------------------------|---|---|---|---|---|
| PCC       | YWC201      | Multi Carrier Communication             | 3 | 0 | 0 | 3 | 3 |
| PCC       | YWC202      | Microwave Passive and Active<br>Systems | 3 | 0 | 0 | 3 | 3 |
| PCC       | YWC203      | Advanced Radiation Systems              | 3 | 0 | 0 | 3 | 3 |
| PEC       | YWC204*     | Elective-III                            | 3 | 0 | 0 | 3 | 3 |
| PEC       | YWC205*     | Elective IV                             | 3 | 0 | 0 | 3 | 3 |
| PCC-L     | YWC206      | Radio Frequency Systems lab             | 0 | 0 | 1 | 1 | 2 |
| PCC-L     | YWC207      | MiniProject                             | 0 | 0 | 1 | 2 | 4 |
| MC- Audit | 208         | Constitution of India                   | 2 | 0 | 0 | 0 | 2 |

**Total Hours: 21** 

**Total Credits: 18** 

#### SEMESTER III

|     | CODE NO.                       | COURSE TITLE                                                                                                                                        | L | Т | Р  | С  | Н  |
|-----|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|----|----|
| PCC | YWC301                         | Dissertation Phase – I                                                                                                                              | 0 | 0 | 10 | 10 | 20 |
| PEC | YWC302*+                       | Elective -V                                                                                                                                         | 0 | 0 | 0  | 3  | 3  |
| OEC | Open<br>Elective* <sup>+</sup> | <ol> <li>Business Analytics</li> <li>Industrial Safety</li> <li>Operations Research</li> <li>Cost Management of Engineering<br/>Projects</li> </ol> | 3 | 0 | 0  | 3  | 3  |

\*+ Directed study - Only SA.

## **Total Hours: 26**

## **Total Credits: 16**

## SEMESTER IV

|     | CODE<br>NO. | COURSE TITLE            | L | Т | Р  | С  | Н  |
|-----|-------------|-------------------------|---|---|----|----|----|
| PCC | YWC401      | Dissertation Phase – II | 0 | 0 | 16 | 16 | 32 |

#### **Total Hours: 32**

## **Total Credits: 16**

**Overall Credits:68** 

## Legend

PCC – Professional Core Course PEC- Professional Elective Course OEC – Open Elective Course PCC-L – Professional Core Course - Lab

## LIST OF ELECTIVES

| Sl.No | CodeNo     | CourseTitle                               | L  | Т | Р  | С |  |  |
|-------|------------|-------------------------------------------|----|---|----|---|--|--|
|       | ELECTIVE-I |                                           |    |   |    |   |  |  |
| 1     | YWC106A    | Radar communication                       | 3  | 0 | 0  | 3 |  |  |
| 2     | YWC106B    | Mobile Satellite Communication            | 3  | 0 | 0  | 3 |  |  |
| 3     | YWC106C    | AdvancedDigitalSignalProcessing           | 3  | 0 | 0  | 3 |  |  |
| 4     | YWC106D    | Free space optics                         | 3  | 0 | 0  | 3 |  |  |
|       | 1          | ELECTIVE-II                               | I. |   | II |   |  |  |
| 1     | YWC205A    | Wireless Networks                         | 3  | 0 | 0  | 3 |  |  |
| 2     | YWC205B    | RF MEMS                                   | 3  | 0 | 0  | 3 |  |  |
| 3     | YWC205C    | Antenna Systems for Wireless Applications | 3  | 0 | 0  | 3 |  |  |
| 4     | YWC205D    | Detection and Estimation Theory           | 3  | 0 | 0  | 3 |  |  |
|       |            | ELECTIVE-III                              | I  |   |    |   |  |  |

| 1 | YWC206A  | Wireless Network Security                                   | 3 | 0 | 0   | 3 |
|---|----------|-------------------------------------------------------------|---|---|-----|---|
| 2 | YWC206B  | Adhoc Networks                                              | 3 | 0 | 0   | 3 |
| 3 | YWC 206C | High Performance Computing Networks                         | 3 | 0 | 0   | 3 |
| 4 | YWC206D  | Internet of Things                                          | 3 | 0 | 0   | 3 |
|   |          | ELECTIVE-IV                                                 |   |   | 1 1 |   |
| 1 | YWC207A  | Soft Computing                                              | 3 | 0 | 0   | 3 |
| 2 | YWC207B  | Multimedia Compression Techniques                           | 3 | 0 | 0   | 3 |
| 3 | YWC 207C | Software Defined Radio                                      | 3 | 0 | 0   | 3 |
| 4 | YWC207D  | Fundamentals of 5G Mobile and Wireless<br>Technology        | 3 | 0 | 0   | 3 |
|   |          | ELECTIVE-V                                                  | U |   |     |   |
| 1 | YWC2302A | Quality of Service in Wireless Communication                | 3 | 0 | 0   | 3 |
| 2 | YWC302B  | Telecom Network Planning and Management                     | 3 | 0 | 0   | 3 |
| 3 | YWC 302C | Regulation and Policy in the Telecommunications<br>Industry | 3 | 0 | 0   | 3 |

| SUBCODE                                                                                                                                                                                                                                              | SUB NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                       |                                                                                                                                                        |                                                                                                             |                                                                                                      |                                                                                      | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т                                                                               | P                                                                          | C                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|
| YWC101                                                                                                                                                                                                                                               | APPLIEDMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THEMATI                                                                                                                                                               | <b>ICS FOR</b>                                                                                                                                         | 2                                                                                                           |                                                                                                      |                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                               | 0                                                                          | 4                                                        |
|                                                                                                                                                                                                                                                      | COMMUNIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATION SYS                                                                                                                                                             | STEMS                                                                                                                                                  |                                                                                                             |                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                                            |                                                          |
| UNITI                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                        |                                                                                                             |                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                                            | 9                                                        |
| Nullilty dimen                                                                                                                                                                                                                                       | ES<br>ibspaces, Linearly<br>on theorem, Ir<br>process, Diagonali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ner produc                                                                                                                                                            |                                                                                                                                                        | <b>.</b>                                                                                                    |                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bases<br>Gram                                                                   |                                                                            |                                                          |
| Sets-Relationsan                                                                                                                                                                                                                                     | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                              | D C' '.'                                                                                                                                               | i a ma a ma al                                                                                              | alaman                                                                                               | tory                                                                                 | nrone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rting 1                                                                         | ubar                                                                       |                                                          |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · .                                                                                                                                                                   |                                                                                                                                                        |                                                                                                             |                                                                                                      | •                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | 0                                                                          |                                                          |
| abelian groups-L<br>statements, prop                                                                                                                                                                                                                 | granges theorem-prize ties. Matrix Theo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | properties; Fi<br><b>ry</b> –Some im                                                                                                                                  | Field-Finit                                                                                                                                            | tefields-e<br>natrix fa                                                                                     | element<br>ctorizat                                                                                  | ary pr<br>ions–                                                                      | operti<br>The C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ies-sul                                                                         | ofield                                                                     |                                                          |
| abelian groups-L<br>statements, prop                                                                                                                                                                                                                 | granges theorem-p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | properties; Fi<br><b>ry</b> –Some im                                                                                                                                  | Field-Finit                                                                                                                                            | tefields-e<br>natrix fa                                                                                     | element<br>ctorizat                                                                                  | ary pr<br>ions–                                                                      | operti<br>The C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ies-sul                                                                         | ofield                                                                     |                                                          |
| abelian groups-L<br>statements, prop                                                                                                                                                                                                                 | granges theorem-prize ties. Matrix Theo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | properties; Fi<br><b>ry</b> –Some im                                                                                                                                  | Field-Finit                                                                                                                                            | tefields-e<br>natrix fa                                                                                     | element<br>ctorizat                                                                                  | ary pr<br>ions–                                                                      | operti<br>The C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ies-sul                                                                         | ofield                                                                     |                                                          |
| abelian groups-L<br>statements, prop<br>composition–QF<br>UNIT III                                                                                                                                                                                   | granges theorem-prize ties. Matrix Theo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | properties; Fr<br><b>ry</b> –Some im<br>t squares me                                                                                                                  | Field-Finit<br>portant r<br>ethod–ing                                                                                                                  | tefields-e<br>natrix fa<br>gular valu                                                                       | element<br>ctorizat                                                                                  | ary pr<br>ions–                                                                      | operti<br>The C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ies-sul                                                                         | ofield                                                                     | s-                                                       |
| abelian groups-L<br>statements, prop<br>composition–QF<br>UNIT III<br>RANDOM VAF<br>Random variable                                                                                                                                                  | granges theorem-presented by the sector of t | roperties; Fr<br>ry–Some im<br>t squares me<br>EIR DISTR<br>ction – Mon                                                                                               | Field-Finit<br>aportant r<br>ethod–ing<br>RIBUTIO<br>nents – N                                                                                         | tefields-e<br>natrix fa<br>gular valu<br><b>DNS</b><br>Moment                                               | element<br>ctorizat<br>ue deco<br>Generat                                                            | ary pr<br>ions–<br>mposi                                                             | The Cation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | es-sul<br>Choles<br>on, Ch                                                      | ofields<br>kyde<br>aracte                                                  | s-<br>9<br>eristi                                        |
| abelian groups-L<br>statements, prop<br>composition–QF<br>UNIT III<br>RANDOM VAF<br>Random variable<br>Function, Binor                                                                                                                               | granges theorem-p<br>rties. <b>Matrix Theo</b><br>factorization–Leas<br><b>ABLES AND TH</b><br>- Probability func-<br>ial Distribution,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oroperties; Fr<br>ry–Some im<br>t squares me<br>EIR DISTR<br>ction – Mon<br>Negative Bi                                                                               | Field-Finit<br>aportant r<br>ethod-ing<br><b>RIBUTIO</b><br>ments – M<br>sinomial                                                                      | tefields-e<br>natrix fa<br>gular valu<br>DNS<br>Moment (<br>Distribu                                        | element<br>ctorizat<br>ue deco<br>Generat<br>tion, H                                                 | ary pr<br>ions–<br>mposi<br>ion Fu                                                   | The Cation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | es-sul<br>Choles<br>on, Ch<br>tric d                                            | ofields<br>kyde<br>aracte                                                  | s-<br>9<br>eristi                                        |
| abelian groups-L<br>statements, prop<br>composition–QF<br>UNIT III<br>RANDOM VAF<br>Random variable<br>Function, Binor<br>Multinomial, Poi                                                                                                           | granges theorem-p<br>rties. <b>Matrix Theo</b><br>factorization–Leas<br><b>ABLES AND TH</b><br>- Probability func-<br>ial Distribution,<br>son Distributions a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ry–Some im<br>t squares me<br>EIR DISTR<br>ction – Mon<br>Negative Bi<br>nd Relations                                                                                 | Field-Finit<br>aportant r<br>ethod-ing<br><b>RIBUTIO</b><br>nents – M<br>Finomial<br>ship betwo                                                        | tefields-e<br>natrix fa<br>gular valu<br>DNS<br>Moment<br>Distribu<br>een vario                             | element<br>ctorizat<br>ue deco<br>Generat<br>tion, H<br>ous Disc                                     | ary pr<br>ions–<br>mposi<br>ion Fu<br>lyperg<br>rete-T                               | unctice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es-sul<br>Choles<br>on, Ch<br>tric d<br>listribu                                | ofields<br>kyde<br>aracte<br>istribu                                       | s-<br>9<br>eristi<br>utior                               |
| abelian groups-L<br>statements, prop<br>composition–QF<br>UNIT III<br>RANDOM VAF<br>Random variable<br>Function, Binor<br>Multinomial, Poi<br>Normal, Log - N                                                                                        | granges theorem-prices. Matrix Theo<br>factorization–Leas<br>ABLES AND TH<br>- Probability func-<br>ial Distribution,<br>son Distributions a<br>ormal, Multivariat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eroperties; Firy–Some im<br>t squares me<br>EIR DISTR<br>etion – Mon<br>Negative Bi<br>nd Relations<br>e Normal, C                                                    | Field-Finit<br>aportant r<br>ethod-ing<br><b>RIBUTIO</b><br>ments – N<br>sinomial<br>ship betwo<br>Gamma, 1                                            | tefields-e<br>matrix fa-<br>gular valu<br>DNS<br>Moment<br>Distribu<br>een varic<br>Exponent                | element<br>ctorizat<br>ue deco<br>Generat<br>tion, H<br>ous Disc                                     | ary pr<br>ions–<br>mposi<br>ion Fu<br>lyperg<br>rete-T                               | unctice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es-sul<br>Choles<br>on, Ch<br>tric d<br>listribu                                | ofields<br>kyde<br>aracte<br>istribu                                       | s-<br>9<br>eristi<br>utior                               |
| abelian groups-L<br>statements, prop<br>composition–QF<br>UNIT III<br>RANDOM VAF<br>Random variable<br>Function, Binor<br>Multinomial, Poi<br>Normal, Log - I<br>distributions. Ref                                                                  | granges theorem-p<br>rties. <b>Matrix Theo</b><br>factorization–Leas<br><b>ABLES AND TH</b><br>- Probability func-<br>ial Distribution,<br>son Distributions a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eroperties; Firy–Some im<br>t squares me<br>EIR DISTR<br>etion – Mon<br>Negative Bi<br>nd Relations<br>e Normal, C                                                    | Field-Finit<br>aportant r<br>ethod-ing<br><b>RIBUTIO</b><br>ments – N<br>sinomial<br>ship betwo<br>Gamma, 1                                            | tefields-e<br>matrix fa-<br>gular valu<br>DNS<br>Moment<br>Distribu<br>een varic<br>Exponent                | element<br>ctorizat<br>ue deco<br>Generat<br>tion, H<br>ous Disc                                     | ary pr<br>ions–<br>mposi<br>ion Fu<br>lyperg<br>rete-T                               | unctice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es-sul<br>Choles<br>on, Ch<br>tric d<br>listribu                                | ofields<br>kyde<br>aracte<br>istribu                                       | s- <sup>1</sup><br>9<br>xisti<br>utior<br>yleig          |
| abelian groups-L<br>statements, prop<br>composition–QF<br>UNIT III<br>RANDOM VAF<br>Random variable<br>Function, Binor<br>Multinomial, Poi<br>Normal, Log - I<br>distributions. Ref<br>UNIT IV                                                       | granges theorem-p<br>rties. <b>Matrix Theo</b><br>factorization–Leas<br><b>ABLES AND TH</b><br>- Probability func-<br>ial Distribution,<br>son Distributions a<br>ormal, Multivariat<br>tionship between c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eroperties; Firy–Some im<br>t squares me<br>EIR DISTR<br>etion – Mon<br>Negative Bi<br>nd Relations<br>e Normal, C                                                    | Field-Finit<br>aportant r<br>ethod-ing<br><b>RIBUTIO</b><br>ments – N<br>sinomial<br>ship betwo<br>Gamma, 1                                            | tefields-e<br>matrix fa-<br>gular valu<br>DNS<br>Moment<br>Distribu<br>een varic<br>Exponent                | element<br>ctorizat<br>ue deco<br>Generat<br>tion, H<br>ous Disc                                     | ary pr<br>ions–<br>mposi<br>ion Fu<br>lyperg<br>rete-T                               | unctice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es-sul<br>Choles<br>on, Ch<br>tric d<br>listribu                                | ofields<br>kyde<br>aracte<br>istribu                                       | s-<br>9<br>eristi                                        |
| abelian groups-L<br>statements, prop<br>composition–QF<br>UNIT III<br>RANDOM VAF<br>Random variable<br>Function, Binor<br>Multinomial, Poi<br>Normal, Log - I<br>distributions. Ref<br>UNIT IV<br>STOCHASTIC                                         | granges theorem-prizes. Matrix Theo<br>factorization–Leas<br>ABLES AND TH<br>- Probability func-<br>ial Distribution,<br>son Distributions a<br>ormal, Multivariat<br>tionship between c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oroperties; Fi<br>ry–Some im<br>t squares me<br>EIR DISTR<br>etion – Mon<br>Negative Bi<br>nd Relations<br>e Normal, C<br>ontinuous di                                | Field-Finit<br>aportant r<br>ethod-ing<br><b>RIBUTIO</b><br>ments – N<br>sinomial<br>ship betwo<br>Gamma, 1<br>istribution                             | tefields-e<br>matrix fa-<br>gular valu<br>DNS<br>Moment<br>Distribu-<br>een varic<br>Exponent<br>ns.        | element<br>ctorizat<br>ue deco<br>Generat<br>tion, H<br>ous Disc<br>tial, Ch                         | ary pr<br>ions–<br>mposi<br>ion Fu<br>(yperg<br>vrete-T<br>i-squa                    | in the Carlor of | es-sul<br>Choles<br>on, Ch<br>tric d<br>istribu<br>Zeibull                      | ofields<br>kyde<br>aracte<br>istribu<br>itions<br>, Ray                    | s-<br>9<br>eristi<br>ution<br>rleig<br>9                 |
| abelian groups-L<br>statements, prop<br>composition–QF<br>UNIT III<br>RANDOM VAF<br>Random variable<br>Function, Binor<br>Multinomial, Poi<br>Normal, Log - I<br>distributions. Rel<br>UNIT IV<br>STOCHASTIC<br>Introduction- Cl                     | granges theorem-preties. Matrix Theo<br>factorization–Leas<br>ABLES AND TH<br>- Probability func-<br>ial Distribution,<br>son Distributions a<br>ormal, Multivariat<br>tionship between c<br>PROCESSES<br>ssification of stoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | broperties; Fr<br>ry–Some im<br>t squares me<br>EIR DISTR<br>ction – Mon<br>Negative Bi<br>nd Relations<br>e Normal, C<br>ontinuous di<br>hastic proce                | Field-Finit<br>aportant r<br>ethod-ing<br><b>RIBUTIO</b><br>nents – N<br>Finomial<br>ship betwo<br>Gamma, I<br>istribution                             | tefields-e<br>matrix fa-<br>gular valu<br>DNS<br>Moment o<br>Distribur<br>een varic<br>Exponent<br>ns.      | element<br>ctorizat<br>ue deco<br>Generat<br>tion, H<br>bus Disc<br>tial, Ch                         | ary pr<br>ions–<br>mposi<br>ion Fu<br>lyperg<br>irete-T<br>i-squa                    | unctice<br>The Cation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ies-sul<br>Choles<br>on, Ch<br>tric d<br>istribu<br>Veibull                     | ofields<br>kyde<br>aracte<br>istribu<br>itions<br>, Ray                    | s-<br>9<br>eristi<br>ution<br>deig<br>9<br>nary          |
| abelian groups-L<br>statements, prop<br>composition–QF<br>UNIT III<br>RANDOM VAF<br>Random variable<br>Function, Binor<br>Multinomial, Poi<br>Normal, Log - I<br>distributions. Rel<br>UNIT IV<br>STOCHASTIC<br>Introduction- Cl<br>process, Ergodia | granges theorem-prizes. Matrix Theo<br>factorization–Leas<br>ABLES AND TH<br>- Probability func-<br>ial Distribution,<br>son Distributions a<br>ormal, Multivariat<br>tionship between c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | properties; Fi<br>ry–Some im<br>t squares me<br>EIR DISTR<br>ction – Mon<br>Negative Bi<br>nd Relations<br>e Normal, C<br>ontinuous di<br>hastic proce<br>dent increm | Field-Finit<br>aportant r<br>ethod-ing<br><b>RIBUTIO</b><br>nents – M<br>Sinomial<br>ship betw<br>Gamma, 1<br>istribution<br>ess, Station<br>nent Proc | tefields-e<br>matrix fa<br>gular valu<br><b>DNS</b><br>Moment (<br>Distribu<br>een varic<br>Exponent<br>ns. | element<br>ctorizat<br>ue deco<br>Generat<br>tion, H<br>bus Disc<br>tial, Ch<br>rocess ()<br>urkov P | ary pr<br>ions–<br>mposi<br>ion Fu<br>lyperg<br>rete-T<br>i-squa<br>SSS a<br>Process | unctic<br>eomet<br>ype d<br>ure, W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es-sul<br>Choles<br>on, Ch<br>tric d<br>listribu<br>/eibull<br>/SS) S<br>unting | ofields<br>kyde<br>aracte<br>istribu<br>ttions<br>, Ray<br>Station<br>Proc | s-<br>9<br>eristi<br>ution<br>vleig<br>9<br>nary<br>cess |

| UNIT    | V                                               |                     |                    | 9            |
|---------|-------------------------------------------------|---------------------|--------------------|--------------|
| QUEU    | JEING MODELS                                    |                     |                    |              |
| Poisso  | n Process – Markovian queues – Single and Mu    | ulti-server Models  | s – Little's Formu | la – Machin  |
| Interfe | rence Model – Steady State analysis – Self Serv | rice queue.         |                    |              |
|         |                                                 | LECTURE             | TUTORIAL           | TOTAL        |
|         |                                                 | 45                  | 15                 | 60           |
| REFE    | RENCES                                          |                     |                    |              |
| 1.      | Grewal B.S., "Numerical methods in Engineer     | ring and Science"   | , 40th edition,    |              |
|         | Khanna Publishers, 2007. [unit I]               |                     |                    |              |
| 2.      | Moon, T.K., Sterling, W.C., "Mathematical m     | ethods and algori   | thms for signal p  | rocessing",  |
|         | Pearson Education, 2000.                        |                     |                    |              |
| 3.      | Richard Johnson, Miller & Freund, "Probabil     | ity and Statistics  | for Engineers", 7t | h Edition,   |
|         | Prentice – Hall of India, Private Ltd., New De  | lhi (2007).[unit II | [I &IV]            |              |
| 4.      | Michel K. Ochi, "Applied Probability and Sto    | chastic Processes   | s," John Wiley &   | Sons .ISSN   |
|         | 0271- 6356, 2008.                               |                     |                    |              |
| 5.      | Kenneth Hoffman, "Linear Algebra", Prentice     | Hall of India Pri   | vate Limited, New  | v Delhi.[uni |
|         | II]                                             |                     |                    |              |
|         |                                                 | 27.1 1.7 171        | D 11'1 (           |              |

6. Grewal, B.S., Higher Engineering Mathematics, 37th edition, Khanna Publishers, 2003. [unit I]

| SUBCODE | SUB NAME              | L | Т | P | С |
|---------|-----------------------|---|---|---|---|
| YWC102  | WIRELESSCOMMUNICATION | 3 | 1 | 0 | 4 |
| UNIT I  |                       |   |   |   | 9 |

#### WIRELESS CHANNEL

Introduction to wireless systems, Transmitter-Receiver Architecture-Wireless Standards.Physical modeling for the wireless channel-Free space, fixed transmit and receive antennas; Free space, moving antenna; Reflecting wall, fixed antenna reflecting wall; moving antenna Reflection from a ground plane; Power decay with distance and shadowing; Moving antenna, multiple reflectors; Input /output model of the wireless channel - The wireless channel as a linear time-varying system; Baseband equivalent model; A discrete-time baseband model; Additive white noise; Time and frequency coherence ; Doppler spread and coherence time; Delay spread and coherence bandwidth ,Statistical channel models- Rayleigh and Rician fading.

9

#### UNIT II

#### POINT TO POINT COMMUNICATION, DETECTION, DIVERSITY

Non-coherent detection, Coherent detection from BPSK to QPSK: exploiting the degrees of freedom Diversity, Time diversity Repetition coding, Time diversity code design criterion, Time diversity in GSM. Antenna diversity- Receive diversity Transmit diversity, space-time codes MIMO, MIMO schemes Frequency diversity-Basic concept Single-carrier with ISI equalization Direct-sequence spread-spectrum, Orthogonal frequency division multiplexing Communication over frequencyselective channels. Impact of channel uncertainty -Non-coherent detection for DS spread-spectrum, Channel estimation, other diversity scenarios 9

#### UNIT III

#### **CELLULAR SYSTEMS AND CHANNEL CAPACITY**

Multiple access and interference management, Narrowband and wideband systems, Capacity of wireless channels -AWGN channel capacity, Resources of the AWGN channel, Linear time-invariant Gaussian channels, Capacity of fading channels, Multiuser capacity-uplink AWGN channel, Downlink AWGN channel, uplink fading channel, downlink fading channel 9 UNIT IV

#### MIMOI: SPATIAL MULTIPLEXING AND CHANNEL MODELING

Multiplexing capability of deterministic MIMO channels- Capacity via singular value decomposition - Physical modeling of MIMO channels- Modeling of MIMO fading channels- capacity and multiplexing architectures -The V-BLAST architecture, Fast fading MIMO channel- Receiver architectures

#### UNIT V

## **MIMOII: MULTIUSER COMMUNICATION**

Uplink with multiple receive antennas -MIMO uplink- Downlink with multipletransmit antennas. MIMO downlink-Multiple antennas in cellular networks: a system view

| LECTURE | TUTORIAL | TOTAL |   |
|---------|----------|-------|---|
| 45      | 15       | 60    |   |
|         |          |       | 2 |

9

- 1. 1.David Tse and Pramod Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 2005.
- 2. T.S.Rappaport "Wireless Communication" Pearson Education, 2002
- 3. E.A.Lee and D.G.Messerschmitt "Digital Communication" 2nd Ed., AlliedPub, 1994.
- 4. John .G.Proakis "Digital Communications" 4th Ed. Mc Graw Hill Int. Ed.,2000.
- 5. Rappaport T.S., "Wireless Communications; Principles and Practice", Prentice Hall, NJ, 1996.
- 6. Lee W.C.Y., "Mobile Communications Engineering: Theory and Applications", Second Edition, McGraw-Hill, New York, 1998.
- 7. Schiller, "Mobile Communications", Pearson Education Asia Ltd., 2000
- 8. Andrea Goldsmith, Wireless Communications, Cambridge University Press, 2005

| SUBCODE                                                                                                                             | SUB NAME                                                                                                                                                                                                                                                                              | L                    | Т             | P                          | С                              |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|----------------------------|--------------------------------|
| YWC103                                                                                                                              | MODERNDIGITALCOMMUNICATION                                                                                                                                                                                                                                                            | 3                    | 0             | 1                          | 4                              |
| UNIT I                                                                                                                              |                                                                                                                                                                                                                                                                                       |                      |               |                            | 8                              |
| Review of Autoc                                                                                                                     | <b>TRUM AND COMMUNICATIONOVERMEMORYLES</b><br>orrelation and Spectral density, PSD of a synchronous data<br>Continuous phase modulation – Scalar and vector communic<br>ion criteria.                                                                                                 | pulse st             | ream;         | •                          |                                |
| UNIT II                                                                                                                             |                                                                                                                                                                                                                                                                                       |                      |               |                            | 12                             |
| Architecture and                                                                                                                    | berformance – Binary block codes: Orthogonal: Biortho                                                                                                                                                                                                                                 | ogonal: '            | Tran o        | rthogo                     | onal:                          |
| Linear block cod<br>CONVOLUTIC<br>Representation of<br>Decoding techn                                                               | l performance – Binary block codes; Orthogonal; Biortho<br>es; Hamming; Golay; Cyclic; BCH; Reed – Solomon codes.<br><b>NALCODEDDIGITALCOMMUNICATION</b><br>of codes using Polynomial, State diagram, Tree diagram<br>iques using Maximum likelihood, Viterbi algorithm, Se<br>Coding | , and T              | rellis        | diagra                     | m –                            |
| Linear block cod<br>CONVOLUTIC<br>Representation                                                                                    | es; Hamming; Golay; Cyclic; BCH; Reed – Solomon codes.<br><b>DALCODEDDIGITALCOMMUNICATION</b><br>of codes using Polynomial, State diagram, Tree diagram<br>iques using Maximum likelihood, Viterbi algorithm, Se                                                                      | , and T              | rellis        | diagra                     | m –                            |
| Linear block cod<br>CONVOLUTIC<br>Representation of<br>Decoding techn<br>methods, Turbo<br>UNIT III<br>OPTIMUMRE<br>Shannon's chann | es; Hamming; Golay; Cyclic; BCH; Reed – Solomon codes.<br><b>NALCODEDDIGITALCOMMUNICATION</b><br>of codes using Polynomial, State diagram, Tree diagram<br>iques using Maximum likelihood, Viterbi algorithm, Se<br>Coding                                                            | , and T<br>equential | rellis<br>and | diagra<br>Thres<br>odulate | m –<br>hold<br><b>8</b><br>or, |

#### COHERENTANDNON-COHERENTCOMMUNICATION

Coded BPSK and DPSK demodulators Detections of Signals in Gaussian Noise: Decision Regionscorrelation receivers- coherent detection- detection of PSK and multiple PSK-BER analysis-sampled matched filter-coherent detection of FSK - BER analysis. Non coherent Detection: Detection of DPSK, FSK-BER analysis- Performance of Non Coherent detection in Random phase, Rayleigh and Rician channels.

8

#### UNIT V

#### COMMUNICATIONS LINK ANALYSIS

Channel and sources of signal loss, Received Signal Power and Noise Power, Link Budget Analysis, Noise Figure, Noise Temperature, and System Temperature, Sample Link Analysis, Satellite Repeaters

| LECTURE | PRACTICAL | TOTAL |  |
|---------|-----------|-------|--|
| 45      | 30        | 75    |  |

- 1. M.K.Simon, S.M.Hinedi and W.C.Lindsey, Digital communication techniques; Signalling and detection, Prentice Hall India, New Delhi. 1995.
- 2. Simon Haykin, Digital communications, John Wiley and sons, 2007
- 3. Bernard Sklar, "Digital Communications Fundamentals and Applications", 2<sup>nd</sup>Edition, Prentice Hall PTR, Upper Sadle River, New Jersey, 2002.
- 4. B.P.Lathi Modern digital and analog communication systems, 3<sup>rd</sup> Edition, Oxford University press 1998.
- 5. Haykins, "Communication Systems", 5th ed., John Wiley, 2008. [Unit-I, III, V].
- 6. M. K. Simon and M. S. Alouini," Digital Communication over Fading Channels", Wiley-Interscience, 2nd Edition 2005.
- 7. R. G. Gallager, "Principles of Digital Communication", Cambridge University Press, 2008.

| SUBCODE                            | SUB NAME                                               |                | L    | Т      | Р      | C    |
|------------------------------------|--------------------------------------------------------|----------------|------|--------|--------|------|
| YWC106                             | WIRELESS NETWORKS LAB                                  |                | 0    | 0      | 1      | 1    |
|                                    | LIST OF EXPERIMENTS                                    |                |      |        |        |      |
| 1. Analysis                        | of wireless network with Wireshark.                    |                |      |        |        |      |
| 2. TCL scr                         | pts and Xgraph.                                        |                |      |        |        |      |
| 3. Compari                         | son of DSDV,DSR and AODV Routing protocols.            |                |      |        |        |      |
|                                    | ntation of MAC algorithm for wireless network.         |                |      |        |        |      |
| 5. Program                         | to implement energy models for wireless nodes.         |                |      |        |        |      |
| 6. Impleme                         | ntation of symmetric key encryption using Ns2.         |                |      |        |        |      |
| •                                  | ntation of Gray hole and wormhole attack in Ns2.       |                |      |        |        |      |
|                                    | to calculate packet delivery ratio, packet loss, throu | ghput,end to e | nd d | elay a | nd rou | ıtin |
|                                    | for Wireless Networks.                                 |                |      | 5      |        |      |
| 9. Impleme                         | ntation of congestion control algorithms.              |                |      |        |        |      |
| -                                  | a wireless Personal Area Networks.                     |                |      |        |        |      |
| 11. Measure                        | ment on the effect of RTS/CTS on a wireless link.      |                |      |        |        |      |
| 12. Performa                       | nce comparison of GSM and CDMA networks                |                |      |        |        |      |
| REFERENCE                          | <u>^</u>                                               |                |      |        |        |      |
| 1. Advanced                        | Network Technologies Virtual Lab @ www.virtua          | 1-             |      |        |        |      |
|                                    |                                                        | _              |      |        |        |      |
| 2. www.winlat                      | .rutgers.edu/zhibinwu/pdf/tr_ns802_11.pdf              |                |      |        |        |      |
| 3. www.ittc.ku                     | edu/jpgs/courses//lecture-lab-intro2ns3-               |                |      |        |        |      |
|                                    |                                                        |                |      |        |        |      |
| <u>print.pdf</u>                   |                                                        |                |      |        |        |      |
| <u>print.pdf</u><br>4. www.isi.edu | /nsnam/ns/                                             |                |      |        |        |      |

| SUBCODE              | SUB NAME                                                           | L          | Т | P | С |
|----------------------|--------------------------------------------------------------------|------------|---|---|---|
| YWC107               | DIGITAL COMMUNICATION LAB                                          | 0          | 0 | 1 | 1 |
|                      | LIST OF EXPERIMENTS                                                |            |   |   |   |
| 1. Demonstr<br>MATLA | rate the theoretical and simulated BER for M-ary PSK u<br>B.       | sing       |   |   |   |
|                      | ration of theoretical and simulated BER for M- QAM in using MATLAB |            |   |   |   |
| 3. Rayleigh          | fading channel simulation                                          |            |   |   |   |
| 4. BER for           | BPSK/QPSK/QAM under Rayleigh channel                               |            |   |   |   |
| 5. Single pa         | rity: Encoding and Decoding                                        |            |   |   |   |
| 6. Hamming           | g code: Encoding and Decoding                                      |            |   |   |   |
| 7. Equalizer         | `S                                                                 |            |   |   |   |
| 8. Direct Se         | quence Spread Spectrum                                             |            |   |   |   |
| 9. Simulation        | on of OFDM IN MATLAB                                               |            |   |   |   |
| 10. BER perf         | formance of BPSK using convolutional code under AWG                | GN channel |   |   |   |
| REFERENCE            | S:                                                                 |            |   |   |   |
| http://www.vlab.o    | co.in/                                                             |            |   |   |   |
| http://203.110.24    | 0.139/                                                             |            |   |   |   |
| http://iitg.vlab.co  | <u>.in/?sub=59&amp;brch=163</u>                                    |            |   |   |   |
| http://solve.nitk.a  | <u>c.in/</u>                                                       |            |   |   |   |
|                      |                                                                    |            |   |   |   |

| SUBCODE                              | SUB NAME                                                                                                                                                            |                        | L       | Τ      | P      | С            |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|--------|--------|--------------|
|                                      | RESEARCH METHODOLOGY                                                                                                                                                | AND IPR                | 3       | 1      | 0      | 4            |
| UNIT I                               |                                                                                                                                                                     |                        |         |        |        | 9            |
| research problem<br>Approaches of in | earch problem, Sources of research<br>b, Errors in selecting a research problem<br>vestigation of solutions for research pro-<br>tation, Necessary instrumentations | m, Scope and objective |         |        |        |              |
| UNIT II                              |                                                                                                                                                                     |                        |         |        |        | 9            |
| UNIT III                             | assessment by a review committee.                                                                                                                                   |                        |         |        |        | 9            |
| Nature of Intell<br>Development: to  | ectual Property: Patents, Designs, Tra<br>chnological research, innovation ,pate<br>peration on Intellectual Property. Proc                                         | enting, development.   | Interna | tional | Scen   | and<br>ario: |
| UNIT IV                              |                                                                                                                                                                     |                        |         |        |        |              |
|                                      |                                                                                                                                                                     |                        |         |        |        | 9            |
|                                      | cope of Patent Rights. Licensing and the aphical Indications.                                                                                                       | ransfer of technology. | Patent  | inform | nation | -            |

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

|  | LECTURE | TUTORIAL | TOTAL |
|--|---------|----------|-------|
|  | 45      | 15       | 60    |

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students""
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

| SUBCODE                                | SUB NAME                                                                                                                      | L       | Т     | P      | С     |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------|-------|--------|-------|
| YWC201                                 | MULTICARRIERCOMMUNICATION                                                                                                     | 3       | 1     | 0      | 4     |
| UNIT I                                 |                                                                                                                               |         |       |        | 9     |
|                                        | SOFOFDM/OFDMASYSTEMS                                                                                                          |         |       |        | _     |
|                                        | odeling- Parameters of wireless channels, Categorizatio                                                                       |         |       |        |       |
|                                        | ods for channel fading mitigation-Time-selective fading                                                                       |         |       |        |       |
|                                        | tems- System architecture, Discrete-time model of an OF<br>s and drawbacks of OFDM. OFDM-based multiple access so             |         |       | i, Spe | ctral |
| UNIT II                                |                                                                                                                               |         |       |        | 9     |
| SYSTEMIMPERF                           |                                                                                                                               |         |       |        |       |
|                                        | y Synchronizations-Sensitivity to timing and frequency er                                                                     |         |       |        |       |
|                                        | nission, Synchronizations for uplink transmissions. Peak-to                                                                   |         |       |        |       |
|                                        | Statistical properties of PAPR, PAPR reduction technique                                                                      | es. Cha | annel | estima | tion  |
| and equalization tec                   | nmques.                                                                                                                       |         |       |        | 9     |
| OFDMPERFORM                            | IANCE                                                                                                                         |         |       |        | 7     |
|                                        | Formance over AWGN Channels-Clipping Amplification, BI                                                                        | ER Per  | forma | nce U  | sing  |
|                                        | s, Signal Spectrum with Clipping amplifier. Analogue-                                                                         |         |       |        |       |
|                                        | cts of phase noise, White Phase Noise Model, coloured                                                                         |         |       |        |       |
| transmission over v                    | videband channel-channel model, Effects of Time Dispersive                                                                    |         |       |        |       |
|                                        | e over dispersive channel.                                                                                                    |         |       |        | ~     |
| UNIT IV                                |                                                                                                                               |         |       |        | 9     |
|                                        |                                                                                                                               |         |       |        |       |
| MCCDMA                                 |                                                                                                                               |         |       |        |       |
| OFDM versus MC-                        | CDMA, CDMA- MC-CDMA, MC-DS-CDMA, MT- CDMA                                                                                     | -       |       |        |       |
| OFDM versus MC-<br>System. Basic sprea | CDMA, CDMA- MC-CDMA, MC-DS-CDMA, MT- CDMA<br>ding sequences, MC-CDMA System Performance in Synchr<br>or reduction techniques. | -       |       |        |       |

#### APPLICATIONSOF OFDMANDMC-CDMA

Digital Broadcasting- Digital Audio Broadcasting, Terrestrial Digital Video Broadcasting, Terrestrial Integrated Services Digital Broadcasting, GHz-Band Wireless LANs- IEEE 802.11g, IEEE 802.11h, IEEE 802.16a.

| LECTURE | TUTORIAL | TOTAL |  |
|---------|----------|-------|--|
| 45      | 15       | 60    |  |
|         |          |       |  |

- 1. Man-On Pun Michele Morelli C-C Jay Kuo, "Multi-Carrier Techniques For Broadband Wireless Communications A Signal Processing Perspective" 2007 by Imperial College Press
- 2. Hara, Shinsuke. Multicarrier techniques for 4G mobile communications Artech House Universal personal communications series 2003
- 3. OFDM and MC-CDMA A Primer L. Hanzo, T. Keller 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
- 4. Liu, Hui, OFDM-based broadband wireless networks: design and optimization 2005 by John Wiley & Sons
- 5. Lie Liang Yang, "Multicarrier Communications", John Wiley & Sons Ltd, 2009
- 6. Andreas F. Molisch, "Wireless Communications", Wiley IEEE, 2011.
- 7. James B. Y. Tsui, "Special Design Topics in Digital Wideband Receivers", Artech House Radar Library, 2009.

| SUBCODE                                                                                                                                                                   | SUB NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                 | Т                             | Р                    | С       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------|----------------------|---------|
| YWC202                                                                                                                                                                    | MICROWAVE PASSIVE AND ACTIVE SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                 | 0                             | 1                    | 4       |
| UNIT I                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                               |                      | 9       |
| MICROWAVE                                                                                                                                                                 | CIDCUITS                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                               | <u>l</u>             | ,       |
| line, Strip and co<br>Single and dou                                                                                                                                      | ciprocal networks, Lossless networks, Planar transmission L<br>oplanar lines. Impedance matching: Matching with lumped ele<br>ble stub using Smith chart solutions, Quarter wave trans<br>r, triangular taper.                                                                                                                                                                                                                                          | ements                                            | , Stuł                        | o ma                 | tching- |
| UNIT II                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                               |                      | 9       |
|                                                                                                                                                                           | CUIT DESIGN wave guide based Directional coupler, E &                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                               |                      |         |
|                                                                                                                                                                           | , circulator, slotted line section, Frequency meter, Attenuator,                                                                                                                                                                                                                                                                                                                                                                                        | microv                                            | vave                          | Ante                 | nna     |
| UNIT III9                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                               |                      |         |
| MICDOWAVE                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                               |                      | ••••••  |
|                                                                                                                                                                           | INTEGRATED PASSIVE CIRCUITS                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |                               |                      |         |
| Power divider co                                                                                                                                                          | oupler Wilkinson power divider90 degreeHybrid Coupler,180                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                               |                      |         |
| Power divider co<br>design: Periodic                                                                                                                                      | oupler Wilkinson power divider90 degreeHybrid Coupler,180 structures, Insertion loss method, maximally flat low pass fil                                                                                                                                                                                                                                                                                                                                |                                                   |                               |                      |         |
| Power divider co<br>design: Periodic                                                                                                                                      | oupler Wilkinson power divider90 degreeHybrid Coupler,180                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                               |                      |         |
| Power divider co<br>design: Periodic                                                                                                                                      | oupler Wilkinson power divider90 degreeHybrid Coupler,180 structures, Insertion loss method, maximally flat low pass fil                                                                                                                                                                                                                                                                                                                                |                                                   |                               |                      |         |
| Power divider co<br>design: Periodic<br>low pass filter, fi<br><b>UNIT IV9</b>                                                                                            | oupler Wilkinson power divider90 degreeHybrid Coupler,180 structures, Insertion loss method, maximally flat low pass fil lter transformation, filter implementation.                                                                                                                                                                                                                                                                                    | ter, ste                                          | epped                         |                      |         |
| Power divider co<br>design: Periodic<br>low pass filter, fi<br>UNIT IV9<br>MICROWAVE                                                                                      | oupler Wilkinson power divider90 degreeHybrid Coupler,180 structures, Insertion loss method, maximally flat low pass fil                                                                                                                                                                                                                                                                                                                                | ter, ste                                          | epped                         |                      |         |
| Power divider co<br>design: Periodic<br>low pass filter, fi<br>UNIT IV9<br>MICROWAVE<br>Communication                                                                     | bupler Wilkinson power divider90 degreeHybrid Coupler,180<br>structures, Insertion loss method, maximally flat low pass fil<br>lter transformation, filter implementation.<br>SYSTEMS RF transceiver, Microwave standards, Satellite lir                                                                                                                                                                                                                | ter, ste                                          | epped                         |                      |         |
| Power divider co<br>design: Periodic<br>low pass filter, fi<br>UNIT IV9<br>MICROWAVE<br>Communication<br>UNIT V9                                                          | oupler Wilkinson power divider90 degreeHybrid Coupler,180<br>structures, Insertion loss method, maximally flat low pass fil<br>lter transformation, filter implementation.<br><b>SYSTEMS</b> RF transceiver, Microwave standards, Satellite lir<br>system, Radar systems                                                                                                                                                                                | ter, ste                                          | epped                         |                      |         |
| Power divider co<br>design: Periodic<br>low pass filter, fi<br>UNIT IV9<br>MICROWAVE<br>Communication<br>UNIT V9<br>ACTIVE MICE                                           | oupler Wilkinson power divider90 degreeHybrid Coupler,180<br>structures, Insertion loss method, maximally flat low pass fil<br>lter transformation, filter implementation.<br><b>SYSTEMS</b> RF transceiver, Microwave standards, Satellite lin<br>system, Radar systems<br><b>COWAVE CIRCUIT DESIGN</b>                                                                                                                                                | ter, ste                                          | epped<br>lular                | imp                  | edanco  |
| Power divider cd<br>design: Periodic<br>low pass filter, fi<br>UNIT IV9<br>MICROWAVE<br>Communication<br>UNIT V9<br>ACTIVE MICE<br>Characteristics of                     | <ul> <li>bupler Wilkinson power divider90 degreeHybrid Coupler,180 structures, Insertion loss method, maximally flat low pass fil lter transformation, filter implementation.</li> <li>SYSTEMS RF transceiver, Microwave standards, Satellite lir system, Radar systems</li> <li>ROWAVE CIRCUIT DESIGN</li> <li>of microwave diodes and transistors. Linear and nonlinear</li> </ul>                                                                    | ter, ste<br>nk, Cel<br>behav                      | epped<br>lular                | imp<br>nd r          | nodels  |
| Power divider co<br>design: Periodic<br>low pass filter, fi<br>UNIT IV9<br>MICROWAVE<br>Communication<br>UNIT V9<br>ACTIVE MICE<br>Characteristics of<br>Amplifier design | <ul> <li>bupler Wilkinson power divider90 degreeHybrid Coupler,180 structures, Insertion loss method, maximally flat low pass fil lter transformation, filter implementation.</li> <li>SYSTEMS RF transceiver, Microwave standards, Satellite lir system, Radar systems</li> <li>ROWAVE CIRCUIT DESIGN</li> <li>of microwave diodes and transistors. Linear and nonlinear a, gain and stability, design for noise figure- Noise in microwave</li> </ul> | ter, ste<br>nk, Cel<br>behav<br>wave c            | lular<br>ior a                | imp<br>nd r          | nodels  |
| Power divider co<br>design: Periodic<br>low pass filter, fi<br>UNIT IV9<br>MICROWAVE<br>Communication<br>UNIT V9<br>ACTIVE MICE<br>Characteristics of<br>Amplifier design | <ul> <li>bupler Wilkinson power divider90 degreeHybrid Coupler,180 structures, Insertion loss method, maximally flat low pass fil lter transformation, filter implementation.</li> <li>SYSTEMS RF transceiver, Microwave standards, Satellite lir system, Radar systems</li> <li>ROWAVE CIRCUIT DESIGN</li> <li>of microwave diodes and transistors. Linear and nonlinear</li> </ul>                                                                    | ter, ste<br>nk, Cel<br>behav<br>wave c            | lular<br>ior a                | imp<br>nd r          | edance  |
| Power divider co<br>design: Periodic<br>low pass filter, fi<br>UNIT IV9<br>MICROWAVE<br>Communication<br>UNIT V9<br>ACTIVE MICE<br>Characteristics of<br>Amplifier design | <ul> <li>bupler Wilkinson power divider90 degreeHybrid Coupler,180 structures, Insertion loss method, maximally flat low pass fil lter transformation, filter implementation.</li> <li>SYSTEMS RF transceiver, Microwave standards, Satellite lir system, Radar systems</li> <li>ROWAVE CIRCUIT DESIGN</li> <li>of microwave diodes and transistors. Linear and nonlinear a, gain and stability, design for noise figure- Noise in microwave</li> </ul> | ter, ste<br>nk, Cel<br>behav<br>wave o<br>siderat | lular<br>ior a<br>circuitions | imp<br>nd r<br>ts; d | edance  |

| Refere | nce Books                           |                 |                    |                     |
|--------|-------------------------------------|-----------------|--------------------|---------------------|
| 1.     | David M. Pozar," Microwave Enginee  | ering," John W  | iley & Sons, 1998. |                     |
| 2.     | David M. Pozar," Microwave & RF D   | Design of Wirel | ess Systems," John | Wiley & Sons, 1998. |
| 3.     | R.E.Collin," Foundations of Microwa | ve Engineering  | g," Tata McGraw H  | ill, 1995.          |
| 4.     | www.agilent.com                     | 0 0             |                    |                     |

| SUBCODE                                                                                                                                                                                                                                                                                               | SUB NAME c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c 7                                          | Γ                 | P                           | C        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------|-----------------------------|----------|
| YWC204                                                                                                                                                                                                                                                                                                | ADVANCED RADIATION SYSTEMS 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 0                                          | )                 | 0                           | 3        |
| UNITI                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                   |                             | 9        |
| BASICCONCE                                                                                                                                                                                                                                                                                            | PTSOFRADIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                   |                             |          |
|                                                                                                                                                                                                                                                                                                       | surface current and current line current distribution, Basic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | -                 |                             |          |
|                                                                                                                                                                                                                                                                                                       | anism-Current distribution of an Antennas, Impedance c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | concept                                      | -Ba               | lance                       | t        |
| Unbalanced trans                                                                                                                                                                                                                                                                                      | former.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                   | ^                           |          |
| UNITII                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                   | 9                           |          |
|                                                                                                                                                                                                                                                                                                       | ROMAPERTURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                   |                             |          |
|                                                                                                                                                                                                                                                                                                       | e principle, Rectangular and circular apertures, Uniform distrib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                   |                             |          |
|                                                                                                                                                                                                                                                                                                       | berture fields of Horn antenna-Babinets principle, Geometrical th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | heory of                                     | of di             | ffract                      | 101      |
| UNITIII                                                                                                                                                                                                                                                                                               | as, and Design considerations - Slot antennas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                   | 9                           |          |
|                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                   | ,                           |          |
|                                                                                                                                                                                                                                                                                                       | ARRAYANTENNAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , <b>.</b> . ,                               |                   | с л                         |          |
| Types of linear                                                                                                                                                                                                                                                                                       | arrays, current distribution in linear arrays, Phased arrays,Opt ous aperture sources, Antenna synthesis techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | timizat                                      | ion               | OI A                        | rray     |
| UNITIV                                                                                                                                                                                                                                                                                                | ous aperture sources, Antenna synthesis techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                   | 9                           |          |
|                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                   | 7                           |          |
| impedance of pat                                                                                                                                                                                                                                                                                      | ANTENNAS<br>anisms, Feeding structure, Retangular patch, Circular patch,<br>ch antenna, Microstrip dipole, Microstrip arrays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ringar                                       | nten              |                             | npu      |
| Radiation mecha<br>impedance of pat                                                                                                                                                                                                                                                                   | unisms, Feeding structure, Retangular patch, Circular patch, I ch antenna, Microstrip dipole, Microstrip arrays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ringar                                       | nteni             | na. In<br>9                 | npu      |
| Radiation mecha<br>impedance of pat<br>UNITV<br>EMIS/EMC/AN<br>Log periodic, Bi-<br>measurement and                                                                                                                                                                                                   | nisms, Feeding structure, Retangular patch, Circular patch,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eantenr                                      | na, A             | 9<br>Anteni                 | na       |
| Radiation mecha<br>impedance of pat<br>UNITV<br>EMIS/EMC/AN<br>Log periodic, Bi-<br>measurement and                                                                                                                                                                                                   | TENNAMEASUREMENTS<br>conical, Log spiral ridge Guide, Multi turn loop, Travelling Wave<br>l instrumentation ,Amplitude and Phase measurement, Gain, Direc<br>measurement, Antenna range, Design and Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eantenr                                      | na, A<br>Imp      | 9<br>Anteni                 | na<br>ce |
| Radiation mecha<br>impedance of pat<br>UNITV<br>EMIS/EMC/AN<br>Log periodic, Bi-<br>measurement and                                                                                                                                                                                                   | unisms, Feeding structure, Retangular patch, Circular patch, I         ch antenna, Microstrip dipole, Microstrip arrays <b>TENNAMEASUREMENTS</b> conical, Log spiral ridge Guide, Multi turn loop, Travelling Wave         l instrumentation ,Amplitude and Phase measurement, Gain, Direct         measurement, Antenna range, Design and Evaluation         LECTURE       TUTC                                                                                                                                                                                                                                                                                                                                                                              | eantenr<br>ctivity.                          | na, A<br>Imp<br>L | 9<br>Anteni<br>pedan<br>TOT | na<br>ce |
| Radiation mecha<br>impedance of pat<br>UNITV<br>EMIS/EMC/AN<br>Log periodic, Bi-<br>measurement and<br>and polarization                                                                                                                                                                               | unisms, Feeding structure, Retangular patch, Circular patch, I         ch antenna, Microstrip dipole, Microstrip arrays <b>TENNAMEASUREMENTS</b> conical, Log spiral ridge Guide, Multi turn loop, Travelling Wave         l instrumentation ,Amplitude and Phase measurement, Gain, Direct         measurement, Antenna range, Design and Evaluation         LECTURE       TUTC         45       0                                                                                                                                                                                                                                                                                                                                                           | eantenr<br>ctivity.                          | na, A<br>Imp<br>L | 9<br>Anteni<br>pedan        | na<br>ce |
| Radiation mecha<br>impedance of pat<br>UNITV<br>EMIS/EMC/AN<br>Log periodic, Bi-<br>measurement and<br>and polarization                                                                                                                                                                               | unisms, Feeding structure, Retangular patch, Circular patch, I         ch antenna, Microstrip dipole, Microstrip arrays <b>TENNAMEASUREMENTS</b> conical, Log spiral ridge Guide, Multi turn loop, Travelling Wave         l instrumentation ,Amplitude and Phase measurement, Gain, Direct         measurement, Antenna range, Design and Evaluation         LECTURE       TUTC         45       0         CS:                                                                                                                                                                                                                                                                                                                                               | eantenr<br>ctivity.                          | na, A<br>Imp<br>L | 9<br>Anteni<br>pedan<br>TOT | na<br>ce |
| Radiation mecha<br>impedance of pat<br>UNITV<br>EMIS/EMC/AN<br>Log periodic, Bi-<br>measurement and<br>and polarization<br>REFERENCE<br>1.Kraus.J.D.,"/                                                                                                                                               | unisms, Feeding structure, Retangular patch, Circular patch, I         ch antenna, Microstrip dipole, Microstrip arrays <b>TENNAMEASUREMENTS</b> conical, Log spiral ridge Guide, Multi turn loop, Travelling Wave         l instrumentation ,Amplitude and Phase measurement, Gain, Direct         measurement, Antenna range, Design and Evaluation         LECTURE       TUTC         45       0                                                                                                                                                                                                                                                                                                                                                           | eantenr<br>ctivity.                          | na, A<br>Imr<br>L | 9<br>Anteni<br>pedan<br>TOT | na<br>ce |
| Radiation mecha<br>impedance of pat<br>UNITV<br>EMIS/EMC/AN<br>Log periodic, Bi-<br>measurement and<br>and polarization<br>REFERENCE<br>1.Kraus.J.D.,"A<br>2.Balanis.A,"A                                                                                                                             | unisms, Feeding structure, Retangular patch, Circular patch, I         ch antenna, Microstrip dipole, Microstrip arrays         TENNAMEASUREMENTS         conical, Log spiral ridge Guide, Multi turn loop, Travelling Wave         l instrumentation ,Amplitude and Phase measurement, Gain, Direct         measurement, Antenna range, Design and Evaluation         LECTURE         45       0         CS:         Antennas"IIEdition,JohnwileyandSons,1997                                                                                                                                                                                                                                                                                                | eantenr<br>ctivity.<br><b>ORIA</b><br>k,1982 | na, A<br>Imr<br>L | 9<br>Anteni<br>pedan<br>TOT | na<br>ce |
| Radiation mecha<br>impedance of pat<br>UNITV<br>EMIS/EMC/AN<br>Log periodic, Bi-<br>measurement and<br>and polarization<br>REFERENCE<br>1.Kraus.J.D.,"/<br>2.Balanis.A,"A<br>3.Collin.R.E.an                                                                                                          | nisms, Feeding structure, Retangular patch, Circular patch, I<br>ch antenna, Microstrip dipole, Microstrip arrays<br><b>TENNAMEASUREMENTS</b><br>conical, Log spiral ridge Guide, Multi turn loop, Travelling Wave<br>l instrumentation ,Amplitude and Phase measurement, Gain, Direct<br>measurement, Antenna range, Design and Evaluation<br><b>LECTURE TUTC</b><br><b>45 0</b><br><b>CS:</b><br>Antennas"IIEdition,JohnwileyandSons,1997<br>.ntennaTheoryAnalysisandDesign",JohnWileyandSons,NewYork                                                                                                                                                                                                                                                       | eantenr<br>ctivity.<br><b>ORIA</b><br>k,1982 | na, A<br>Imr<br>L | 9<br>Anteni<br>pedan<br>TOT | na<br>ce |
| Radiation mecha<br>impedance of pat<br>UNITV<br>EMIS/EMC/AN<br>Log periodic, Bi-<br>measurement and<br>and polarization<br>REFERENCE<br>1.Kraus.J.D.,"/<br>2.Balanis.A,"A<br>3.Collin.R.E.an<br>4.QizhengGu,"<br>,Springer,20                                                                         | nisms, Feeding structure, Retangular patch, Circular patch, I<br>ch antenna, Microstrip dipole, Microstrip arrays<br><b>TENNAMEASUREMENTS</b><br>conical, Log spiral ridge Guide, Multi turn loop, Travelling Wave<br>I instrumentation ,Amplitude and Phase measurement, Gain, Direct<br>measurement, Antenna range, Design and Evaluation<br><b>LECTURE TUTC</b><br><b>45 0</b><br><b>2S:</b><br>Antennas"IIEdition,JohnwileyandSons,1997<br>.ntennaTheoryAnalysisandDesign",JohnWileyandSons,NewYork<br>adZucker.F.,"AntennaTheory"PartI,McGrawHill,NewYork,1969<br>RFSystemDesignofTransceiversforWirelessCommunications"<br>10.                                                                                                                          | eantenr<br>ctivity.<br><b>ORIA</b><br>k,1982 | na, A<br>Imr<br>L | 9<br>Anteni<br>pedan<br>TOT | na<br>ce |
| Radiation mecha<br>impedance of pat<br>UNITV<br>EMIS/EMC/AN<br>Log periodic, Bi-<br>measurement and<br>and polarization<br>REFERENCH<br>1.Kraus.J.D.,"/<br>2.Balanis.A,"A<br>3.Collin.R.E.an<br>4.QizhengGu,'<br>,Springer,20<br>5.MichaelB.Std                                                       | nisms, Feeding structure, Retangular patch, Circular patch, I<br>ch antenna, Microstrip dipole, Microstrip arrays<br><b>TENNAMEASUREMENTS</b><br>conical, Log spiral ridge Guide, Multi turn loop, Travelling Wave<br>l instrumentation ,Amplitude and Phase measurement, Gain, Direct<br>measurement, Antenna range, Design and Evaluation<br><b>LECTURE TUTC</b><br><b>45 0</b><br><b>2S:</b><br>Antennas"IIEdition,JohnwileyandSons,1997<br>.ntennaTheoryAnalysisandDesign",JohnWileyandSons,NewYork<br>adZucker.F.,"AntennaTheory"PartI,McGrawHill,NewYork,1969<br>RFSystemDesignofTransceiversforWirelessCommunications"<br>10.<br>eer,"MicrowaveandRFDesign:ASystemsApproach",SciTech                                                                   | eantenr<br>ctivity.<br><b>ORIA</b><br>k,1982 | na, A<br>Imr<br>L | 9<br>Anteni<br>pedan<br>TOT | na<br>ce |
| Radiation mecha<br>impedance of pat<br>UNITV<br>EMIS/EMC/AN<br>Log periodic, Bi-<br>measurement and<br>and polarization<br>REFERENCE<br>1.Kraus.J.D.,"//<br>2.Balanis.A,"A<br>3.Collin.R.E.an<br>4.QizhengGu,'<br>"Springer,20<br>5.MichaelB.Sto<br>Publishing,/                                      | nisms, Feeding structure, Retangular patch, Circular patch, I<br>ch antenna, Microstrip dipole, Microstrip arrays<br><b>TENNAMEASUREMENTS</b><br>conical, Log spiral ridge Guide, Multi turn loop, Travelling Wave<br>l instrumentation ,Amplitude and Phase measurement, Gain, Direct<br>measurement, Antenna range, Design and Evaluation<br><b>LECTURE TUTO</b><br><b>45 0</b><br><b>CS:</b><br>Antennas"IIEdition,JohnwileyandSons,1997<br>.ntennaTheoryAnalysisandDesign",JohnWileyandSons,NewYork<br>adZucker.F.,"AntennaTheory"PartI,McGrawHill,NewYork,1969<br>RFS ystemDesignofTransceiversforWirelessCommunications"<br>10.<br>eer,"MicrowaveandRFDesign:ASystemsApproach",SciTech<br>2009.                                                         | eantenr<br>ctivity.<br>ORIAI                 | na, A<br>Imr<br>L | 9<br>Anteni<br>pedan<br>TOT | na<br>ce |
| Radiation mecha<br>impedance of pat<br>UNITV<br>EMIS/EMC/AN<br>Log periodic, Bi-<br>measurement and<br>and polarization<br>REFERENCE<br>1.Kraus.J.D.,"A<br>2.Balanis.A,"A<br>3.Collin.R.E.an<br>4.QizhengGu,"<br>,Springer,20<br>5.MichaelB.Sta<br>Publishing,<br>6.KenKuang,F                        | nisms, Feeding structure, Retangular patch, Circular patch, I<br>ch antenna, Microstrip dipole, Microstrip arrays<br><b>TENNAMEASUREMENTS</b><br>conical, Log spiral ridge Guide, Multi turn loop, Travelling Wave<br>I instrumentation ,Amplitude and Phase measurement, Gain, Direct<br>measurement, Antenna range, Design and Evaluation<br><b>LECTURE TUTC</b><br>45 0<br><b>CS:</b><br>Antennas"IIEdition,JohnwileyandSons,1997<br>.ntennaTheoryAnalysisandDesign",JohnWileyandSons,NewYork<br>ndZucker.F.,"AntennaTheory"PartI,McGrawHill,NewYork,1969<br>RFS ystemDesignofTransceiversforWirelessCommunications"<br>10.<br>ber, "MicrowaveandRFDesign:ASystemsApproach",SciTech<br>2009.<br>ranklinKimandSeanS.Cahill, "RFandMicrowaveMicroelectronics | eantenr<br>ctivity.<br>ORIAI                 | na, A<br>Imr<br>L | 9<br>Anteni<br>pedan<br>TOT | na<br>ce |
| Radiation mecha<br>impedance of pat<br>UNITV<br>EMIS/EMC/AN<br>Log periodic, Bi-<br>measurement and<br>and polarization<br>and polarization<br>I.Kraus.J.D.,"/<br>2.Balanis.A,"A<br>3.Collin.R.E.an<br>4.QizhengGu,"<br>,Springer,20<br>5.MichaelB.Sto<br>Publishing,"<br>6.KenKuang,F<br>Packaging", | nisms, Feeding structure, Retangular patch, Circular patch, I<br>ch antenna, Microstrip dipole, Microstrip arrays<br><b>TENNAMEASUREMENTS</b><br>conical, Log spiral ridge Guide, Multi turn loop, Travelling Wave<br>l instrumentation ,Amplitude and Phase measurement, Gain, Direct<br>measurement, Antenna range, Design and Evaluation<br><b>LECTURE TUTO</b><br><b>45 0</b><br><b>CS:</b><br>Antennas"IIEdition,JohnwileyandSons,1997<br>.ntennaTheoryAnalysisandDesign",JohnWileyandSons,NewYork<br>adZucker.F.,"AntennaTheory"PartI,McGrawHill,NewYork,1969<br>RFS ystemDesignofTransceiversforWirelessCommunications"<br>10.<br>eer,"MicrowaveandRFDesign:ASystemsApproach",SciTech<br>2009.                                                         | eantenr<br>ctivity.<br>ORIA<br>k,1982        | na, A<br>Imr<br>L | 9<br>Anteni<br>pedan<br>TOT | na<br>ce |

| SUBCODE                      | SUB NAME                                                | L    | Т | P | C |
|------------------------------|---------------------------------------------------------|------|---|---|---|
| YWC206                       | RADIO FREQUENCY SYSTEMS LAB                             | 0    | 0 | 1 | 1 |
|                              | LIST OF EXPERIMENTS                                     |      |   |   |   |
| EM simulator                 |                                                         |      |   |   |   |
| 1. Experimentat              | ion with:                                               |      |   |   |   |
| •                            | nal coupler                                             |      |   |   |   |
| <ul> <li>Circulat</li> </ul> | *                                                       |      |   |   |   |
| Isolator                     |                                                         |      |   |   |   |
| • Attenua                    | tor                                                     |      |   |   |   |
| • Slotted                    | line bench                                              |      |   |   |   |
| Microw                       | ave horn antenna                                        |      |   |   |   |
| 2.Directional Sin            | mulation of Planar Transmission Lines and matching netw | work |   |   |   |
| 3. Simulation of             | Microwave Filters                                       |      |   |   |   |
| 4. Couplers and              | Power dividers                                          |      |   |   |   |
| 5. Patch antenna             |                                                         |      |   |   |   |
|                              |                                                         |      |   |   |   |
| REFERENCI                    | ES:                                                     |      |   |   |   |
|                              |                                                         |      |   |   |   |

#### **ELECTIVES LIST**

| SUBCODE            | SUB NAME                                                  | L           | Т       | Р        | С    |
|--------------------|-----------------------------------------------------------|-------------|---------|----------|------|
| YWC106A            | RADAR COMMUNICATION                                       | 3           | 0       | 0        | 3    |
| UNIT I             |                                                           |             |         |          | 9    |
| INTRODUCTIO        | NTORADAR                                                  |             |         |          |      |
|                    | simple form of the Radar Equation-Radar Block Diag        |             |         |          |      |
| plications of Rada | ar-The Origins of Radar, The Radar Equation.Introduction  | 1-Detection | on of S | lignals  | s in |
| Noise – Receiver 1 | Noise and the Signal-to-Noise Ratio-Probability Density F | unctions-   | -Probal | oilities | s of |
|                    | se Alarm-Integration of Radar Pulses-Radar Cross Section  |             |         |          |      |
|                    | ons-Transmitter Power-Pulse Repetition Frequency-Anter    | nna Para    | meters  | -Syst    | em   |
| losses-Other Rada  | ar Equation Considerations.                               |             |         |          |      |
| UNIT II            |                                                           |             |         | 9        |      |
| MTIANDPULSE        | DOPPLERRADAR                                              |             |         |          |      |
| Introduction to I  | Doppler and MTI Radar- Delay–Line Cancelers-Stagg         | gered F     | Pulse I | Repeti   | tion |
| Frequencies-Dopr   | oler Filter Banks- Digital MTI Processing- Moving Targ    | et Detect   | tor-Lin | nitatio  | nsto |
| MTI Performance    | -MTI from a Moving Platform(AMIT)-Pulse Doppler Ra        | dar-Othe    | r Dopp  | oler R   | adar |
| Topics-tracking    | with Radar–MonopulseTracking–ConicalS                     | canandSe    | equenti | alLob    | ing- |
| LimitationstoTrac  | kingAccuracy-Low-AngleTracking-TrackinginRange-Othe       | er Tra      | acking  | R        | adar |
| Topics-Compariso   | on of Trackers-Automatic Tracking with Surveillance Rada  | rs(ADT).    | •       |          |      |
| UNIT III           |                                                           |             |         | 9        |      |
| TRANSMITTER        | RANDRECEIVERS                                             |             |         |          |      |
| RadarTransmitters  | s-Introduction–LinearBeamPowerTubes-SolidStateRFPower     | erSources   | s-Magr  | etron    | -    |
| CrossedFieldAmp    | lifiers-OtherRFPowerSources-OtheraspectsofRadarTransn     | itter.Rad   | larRece | eivers-  |      |
| TheRadarReceiver   | r-ReceivernoiseFigure-SuperheterodyneReceiver-            |             |         |          |      |
| DuplexersandRece   | aiverProtectors Pader Displays                            |             |         |          |      |
|                    | erverriotectors-Radar Displays.                           |             |         |          |      |

#### DIRECTIONFINDINGANDRANGEMEASUREMENTS

Introduction –Four methodsofNavigation.RadioDirectionFinding-TheLoopAntenna-LoopInputCircuits – An Aural Null Direction Finder-TheGoniometer-Errorsin DirectionFinding-Adcock Direction Finders-Direction Findingat VeryHighFrequencies-AutomaticDirectionFinders-TheCommutatedAerialDirectionFinder-RangeandAccuracyofDirectionFinders,RadioRanges-TheLF/MFFourcourseRadioRange-VHFOmniDirectionalRange(VOR)-VORReceivingEquipment-RangeandAccuracyofVOR-RecentDevelopments. **UNIT V 9** 

#### DISTANCE MEASURING, LANDING SYSTEMSAND DOPPLER NAVIGATION

DME and TACAN –Distance Measuring Equipment –Operation of DME-TACAN-TACAN Equipment Aids to Approach and Landing- Instrument Landing System-GroundControlledApproachSystem-MicrowaveLandingSystem(MLS)DopplerNavigation-TheDopplerEffect-BeamConfigurations-DopplerFrequencyEquations-TrackStabilization-

DopplerSpectrum-Component so f the DopplerNavigationSystem-DopplerrangeEquation-AccuracyofDopplerNavigationSystems. Inertial Navigation –Principles of Operation-Navigation Over the Earth-Component sofan Inertial NavigationSystem-EarthCoordinateMechanization-Strapped-DownSystems-AccuracyofInertialNavigationSystems. Satellite Navigation System-The Transit System-Navstar Global Positioning System(GPS)

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 0        | 45    |

- $1. MerrillI.Skolnik, "Introduction to Radar Systems", Tata McGraw-Hill (3 {}^{rd} Edition) 2003$
- 2. PeytonZ.Peebles:, "RadarPrinciples", Johnwiley, 2004
- 3. J.CToomay,"PrinciplesofRadar",2<sup>nd</sup>Edition-PHI,2004

| SUBCODE                                                                                                         | SUB NAME                                                                                                                                                                                 |                                                                         | L                                         | Т                 | P            | C          |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------|-------------------|--------------|------------|
| YWC106B                                                                                                         | MOBILESATELLITECOMMUNI                                                                                                                                                                   | CATION                                                                  | 3                                         | 0                 | 0            | 3          |
| UNIT I                                                                                                          |                                                                                                                                                                                          |                                                                         |                                           |                   |              | 9          |
| INTRODUCT                                                                                                       | IONTOSATELLITECOMMUNICATI                                                                                                                                                                | ON:                                                                     |                                           |                   |              | .1         |
| SatelliteOrbits-                                                                                                | SatelliteConstellations-OrbitalMechanics                                                                                                                                                 | -Equationoforbi                                                         | t–Orbital                                 | Eleme             | ents-        |            |
| Lookangledete                                                                                                   | mination-orbitalperturbation-Satellitecov                                                                                                                                                | erage-Spaceenv                                                          | vironmen                                  | t–Eclij           | pse–         |            |
| SunTransitouta                                                                                                  | ge-Limitsofvisibility-subsatellitepoint-lau                                                                                                                                              | inchingprocedur                                                         | esandLau                                  | ınchV             | ehicle       | s.         |
|                                                                                                                 |                                                                                                                                                                                          |                                                                         |                                           |                   |              |            |
| UNIT II                                                                                                         |                                                                                                                                                                                          |                                                                         |                                           |                   |              | 9          |
|                                                                                                                 |                                                                                                                                                                                          |                                                                         |                                           |                   |              |            |
| RADIOLINK                                                                                                       | NDSATELLITEACCESS:Spectrumissu                                                                                                                                                           | ies–                                                                    |                                           |                   |              | . <u>.</u> |
|                                                                                                                 | <b>NDSATELLITEACCESS</b> :Spectrumissu<br>tracteristicsandfrequencyconsiderations–R                                                                                                      |                                                                         | –Modula                                   | ation–            |              |            |
| Propagationch                                                                                                   | <b>A</b>                                                                                                                                                                                 | adiolinkanalysis                                                        |                                           | ation-            |              |            |
| Propagationch                                                                                                   | racteristicsandfrequencyconsiderations-R                                                                                                                                                 | adiolinkanalysis                                                        |                                           | ation–            |              | 9          |
| Propagationch<br>codingandmul<br>UNIT III                                                                       | racteristicsandfrequencyconsiderations-R                                                                                                                                                 | adiolinkanalysis<br>leaccessscheme                                      | s.                                        |                   | <u>ζ</u> s—  | 9          |
| Propagationch<br>codingandmul<br>UNIT III<br>SPACECRAF                                                          | racteristicsandfrequencyconsiderations–R<br>ipleaccessschemesandcomparisonofmultip                                                                                                       | adiolinkanalysis<br>leaccessscheme<br>atelliteforMSS,I                  | s.<br>ntersatel                           | litelink          | (S—          | 9          |
| Propagationch<br>codingandmul<br>UNIT III<br>SPACECRAF                                                          | racteristicsandfrequencyconsiderations–R<br>ipleaccessschemesandcomparisonofmultip<br><b>TTECHNOLOGY</b> :Satellitesubsystems–Sa<br>nologies–LaunchingSatelliteconstellation-            | adiolinkanalysis<br>leaccessscheme<br>atelliteforMSS,I                  | s.<br>ntersatel                           | litelink          | <u>ζ</u> S—  | 9          |
| Propagationch<br>codingandmul<br>UNIT III<br>SPACECRAF<br>EmergingTech                                          | racteristicsandfrequencyconsiderations–R<br>ipleaccessschemesandcomparisonofmultip<br><b>TTECHNOLOGY</b> :Satellitesubsystems–Sa<br>nologies–LaunchingSatelliteconstellation-            | adiolinkanalysis<br>leaccessscheme<br>atelliteforMSS,I                  | s.<br>ntersatel                           | litelink          | < <u>\$</u>  | 9          |
| Propagationch<br>codingandmul<br>UNIT III<br>SPACECRAF<br>EmergingTech<br>Environmental<br>UNIT IV              | racteristicsandfrequencyconsiderations–R<br>ipleaccessschemesandcomparisonofmultip<br><b>TTECHNOLOGY</b> :Satellitesubsystems–Sa<br>nologies–LaunchingSatelliteconstellation-            | adiolinkanalysis<br>leaccessscheme<br>atelliteforMSS,I<br>Gateways–Mobi | s.<br>ntersatel<br>ileTermin              | litelink<br>nals– | ζ <b>S</b> – |            |
| Propagationch<br>codingandmult<br>UNIT III<br>SPACECRAF<br>EmergingTech<br>Environmental<br>UNIT IV<br>SYSTEMAR | racteristicsandfrequencyconsiderations–R<br>ipleaccessschemesandcomparisonofmultip<br><b>TTECHNOLOGY</b> :Satellitesubsystems–Sa<br>nologies–LaunchingSatelliteconstellation-<br>issues. | adiolinkanalysis<br>leaccessscheme<br>atelliteforMSS,I<br>Gateways–Mobi | s.<br>ntersatel<br>ileTermin<br>el–Invest | litelink<br>nals– | <u>(</u> S–  |            |

UNIT V

**SATELLITESYSTEM&SERVICES:**RepresentativeMSSsystem–DistressandSafetySystemsnavigationsystems–DirectSatellitebroadcast–DirectTVBroadcastsystem–

9

VerySmallApertureTerminalsystems-TerrestrialCellularsystem–FutureTrends–Broadbandsystems–ATMoverSatellite–RoleofSatelliteinFeatureNetworks.

|                                                                          | LECTURE             | TUTORIAL         | TOTAL        |
|--------------------------------------------------------------------------|---------------------|------------------|--------------|
|                                                                          | 45                  | 0                | 45           |
| REFERENCES                                                               |                     |                  |              |
| 1. M.Richharia, "MobileSatelliteCommu                                    | nications-          |                  |              |
| Principles&Trends",PearsonEducatio                                       | n,2003              |                  |              |
| 2.T.PrattandBostian,"SatelliteCommunic                                   | ations",JohnWiley,2 | 2001.            |              |
| 3.W.L.PrichandandA.Sciulli,"SatelliteCo                                  | ommunicationsystem  | sEngineering",Pi | rentice      |
| Hall,1986                                                                |                     |                  |              |
| 4.T.Ha, "DigitalSatelliteCommunicationS                                  | SystemsEngineering' | ,McGrawHill,19   | 98           |
| 5.GerardMaral,MichelBousquetandZhili<br>niquesandTechnology",Wiley,2010. | "SatelliteCommunic  | ationsSystems:S  | ystems,Tech  |
| 6.AnilK.MainiandVarshaAgrawal"Satelli                                    | teTechnology:Princi | plesandApplicati | ions",Wiley, |
|                                                                          | • .•                | 111 0            |              |
| 7.BruceR.Elbert"IntroductiontoSatelliteC Applications)",2008.            | communication(Artee | chHouseSpace     |              |

| SUBCODE         | SUB NAME                                                                                  | L         | Τ       | P       | С     |
|-----------------|-------------------------------------------------------------------------------------------|-----------|---------|---------|-------|
| YWC106C         | ADVANCEDDIGITALSIGNALPROCESSING                                                           | 3         | 1       | 0       | 4     |
| UNIT I          |                                                                                           |           |         |         | 10    |
|                 | ANDOMSIGNALPROCESSING                                                                     |           |         |         |       |
|                 | lom Processes-Ensemble averages, stationary processes, A                                  |           |         |         |       |
|                 | atrices. Parseval's Theorem, Wiener-Khintchine Relation-                                  |           |         |         |       |
|                 | Spectral Factorization, Filtering random processes. Low Pass                              | Filtering | g of W  | hite N  | oise. |
| Parameter esti  | mation: Bias and consistencyMultirate signal Processing                                   |           |         |         |       |
| UNIT II         |                                                                                           |           |         |         | 8     |
| SPECTRUM        | ESTIMATION                                                                                |           |         |         |       |
| Estimation of s | pectra from finite duration signals, Non-Parametric Metho                                 | ods-Corr  | elatior | n Meth  | nod,  |
| Periodogram Es  | stimator, Performance Analysis of Estimators -Unbiased                                    | , Consis  | stent ] | Estima  | tors- |
| Modified period | ogram, Bartlett and Welch methods, Blackman - Tukey me                                    | thod. Par | rametr  | ic Met  | thods |
| - AR, MA, an    | d ARMA model based spectral estimation. Parameter                                         | Estimatio | on -Y   | ule-W   | alker |
|                 | ons using Durbin's algorithm                                                              |           |         |         | •     |
| UNIT III        |                                                                                           |           |         |         | 9     |
|                 | IMATIONANDPREDICTION                                                                      |           |         |         |       |
|                 | n- Forward and backward predictions, Solutions of the Norm                                |           |         |         |       |
|                 | ns. Least mean squared error criterion -Wiener filter for filter<br>d Wiener IIR filters. | ring and  | predict | tion, F | ÎR    |
| UNIT IV         |                                                                                           |           |         |         | 9     |
| ADAPTIVEF       | ILTERS                                                                                    |           |         |         | 4     |
| FIR adaptive f  | ilters -adaptive filter based on steepest descent method-Widr                             | ow-Hoff   | LMS     | adapti  | ve    |
| algorithm, Nor  | malized LMS. Adaptive channel equalization-Adaptive echo                                  | cancella  | ation-A | Adapti  | ve    |
| noise cancellat | tion- Adaptive recursive filters (IIR). RLS- adaptive filters-E                           | xponenti  | ally w  | eighte  | d     |
| RLS-sliding w   | indow DI S                                                                                |           |         |         |       |
|                 | Indow KLS.                                                                                |           |         |         |       |

#### FILTERBANKANDWAVELETS

Quadrature Mirror Filter- Paraunitary Filter Banks- Biorthogonal Linear Phase Filter banks – Uniform M Channel Filter banks – Tree Structured Filter Banks- Wavelet Transform- Filter Banks and Wavelet – Properties of Wavelets – Scaling Function – Construction of wavelets- Examples of Wavelet Systems- Applications of Wavelets

|                 | LECTURE | TUTORIAL | TOTAL |
|-----------------|---------|----------|-------|
|                 | 45      | 15       | 60    |
| <b>NERRENAL</b> |         |          |       |

#### **REFERENCES:**

- 1. John G.Proakis, Dimitris G.Manolakis, Digital Signal Processing Pearson Education, 2009.
- 2. John G.Proakiset.al., 'Algorithms for Statistical Signal Processing', Pearson Education, 2002.
- 3. Dimitris G.Manolakiset.al., 'Statistical and adaptive signal Processing', McGraw Hill, Newyork, 2000.
- 4. N.J.Fliege, "Multirate Signal Processing'PHI, 1995
- 5. C.Sidney Burrus, Ramesh A Gopinath and Haitao Guo," Introduction to Wavelets and Wavelet Transforms A Primer" Prentice Hall International, editions, 1998.
- 6. Rabiner and Crochier, "Multirate Signal Processing" PHI, 1987.
- 7. Raghuveer M Rao, "Introduction to Wavelet Transform", New Age International, 2000.
- 8. Monson H.Hayes, Statistical Digital Signal Processing and Modeling, John Wiley and Sons, Inc., Singapore, 2002.
- 9. Rafael C. Gonzalez, Richard E.Woods, 'Digital Image Processing', Pearson Education, Inc., Second Edition, 2004.(For Wavelet Transform Topic)
- 10. Richard G. Lyons "Understanding Digital Signal Processing", Prentice Hall, 3rd Edition, 2010
- 11. Alan V. Oppenheim and Ronald W. Schafer "Discrete-Time Signal Processing" 3<sup>rd</sup> Edition, Prentice Hall, 2009.

| SUBCODE          | CT    | DNAME         |               |           |            | т       | Т     | ъ      | C    |
|------------------|-------|---------------|---------------|-----------|------------|---------|-------|--------|------|
| SUBCODE          | JU    | <b>B NAME</b> |               |           |            |         |       | r      | U    |
| YWC106D          | FR    | EESPACEOI     | PTICS         |           |            | 3       | 0     | 0      | 3    |
| UNIT I           |       |               |               |           |            |         |       |        | 9    |
| <b>FUNDAMENT</b> | ALS   |               |               |           |            |         |       |        |      |
| Fundamentals of  | f FSO | Technology:   | Introduction- | Maxwell's | Equations- | Electro | omagn | etic v | wave |

propagation in free space-alternatebandwidthtechnologies–FiberVsFSO-FiberAccess–Overview of FSO Optical Transmitters–Receivers–Subsystems–Pointing,AcquisitionandTracking–Lineofsightanalysis.

#### UNIT II

## FSONETWORKS

The Role of FSO in the network–factor affecting FSO–line of sight(LOS)–Selecting transmission wave integration of FSO in Optical networks–installation of FSO systems–moving toward sedge–and residential areas.

## UNIT III

## LONGDISTANCEFSOCOMMUNICATION

The FSO model-Applications-System descriptions and design-Introduction to Laser Satellite Communications-Characteristics, ModulationTechniquesandRadiationeffects-LaserSources.

## UNIT IV

9

#### PLANE EM WAVES IN ISOTROPIC MEDIA OPTICAL COMPONENTS FOR FSO

Optical wave guides–Optical Filters, Couplers, Amplifiers, Switches, Antennas ,Interconnecting Equipment's, etc.–Optical integrated circuits–semiconductor integrated optic devices.

#### OPTICALSIGNALPROCESSING

AnalogandDiscretesystems–NoiseandStochasticprocesses–Filters–PowerSpectraestimation–Ambiguityfunction,Wignerdistributionfunctionandtriplecorrelations

|            | LECTURE | TUTORIAL | TOTAL |  |
|------------|---------|----------|-------|--|
|            | 45      | 0        | 45    |  |
| REFERENCES |         |          | -     |  |

- 1. Heinz, Phd. Willebrand, "FreeSpaceOptics", Sams, FirstEdi. 2001
- 2. MorrisKatzman, "LaserSatelliteCommunication", PrenticeHallInc., NewYork, 1991.
- 3. HiroshiNishihara, "OpticalIntegratedCircuits", McGrawHill, NewYork, 1992.
- 4. PankajK.Das, "OpticalSignalProcessing", NarosaPub.House, 1993.
- 5. RajivRamaswami,KumarSivarajanandGalenSasaki"OpticalNetworks:APractical Perspective",MorganKaufmann,3rdEdition,2009.

| SUBCODE | SUB NAME          | L | Т | P | С |
|---------|-------------------|---|---|---|---|
| YWC205A | WIRELESS NETWORKS | 3 | 0 | 1 | 4 |
| UNIT I  |                   |   |   |   | 9 |

#### PHYSICAL AND WIRELESS MAC LAYER ALTERNATIVES

Wired transmission techniques: design of wireless modems, power efficiency, out of band radiation, applied wireless transmission techniques, short distance base band transmission, VWB pulse transmission, broad Modems for higher speeds, diversity and smart receiving techniques, random access for data oriented networks, integration of voice and data traffic..

## UNIT II 9

#### WIRELESS NETWORK PLANNING AND OPERATION

Wireless networks topologies, cellular topology, cell fundamentals signal to interference ratio calculation, capacity expansion techniques, cell splitting, use of directional antennas for cell sectoring, micro cell method, overload cells, channels allocation techniques and capacity expansion FCA, channel borrowing techniques, DCA, mobility management, radio resources and power management securities in wireless networks.

9

#### UNIT III

#### WIRELESS WAN

Mechanism to support a mobile environment, communication in the infrastructure, IS-95 CDMA forward channel, IS - 95 CDMA reverse channel, pallert and frame formats in IS - 95, IMT - 2000; forward channel in W-CDMA and CDMA 2000, reverse channels in W-CDMA and CDMA-2000, GPRS and higher data rates, short messaging service in GPRS mobile application protocols.

| UNIT IV | 9 |
|---------|---|
|         |   |

#### WIRELESS LAN

Historical overviews of the LAN industry, evolution of the WLAN industry, wireless home networking, IEEE 802.11. The PHY Layer, MAC Layer, wireless ATM, HYPER LAN, HYPER LAN -2.

9

#### UNIT V

#### WPAN AND GEOLOCATION SYSTEMS

IEEE 802.15 WPAN, Home RF, Bluetooth, interface between Bluetooth and 802.11, wireless geolocation technologies for wireless geolocation, geolocation standards for E.911 service.

|            | LECTURE | PRACTICAL                               | TOTAL |  |
|------------|---------|-----------------------------------------|-------|--|
|            | 45      | 30                                      | 75    |  |
| REFERENCES |         | ••••••••••••••••••••••••••••••••••••••• |       |  |

1. Kaveh Pahlavan, Prashant Krishnamoorthy, Principles of Wireless Networks, - A united approach - Pearson Education, 2002.

- 2. Jochen Schiller, Mobile Communications, Person Education 2003, 2<sup>nd</sup>Edn.
- 3. X.Wang and H.V.Poor, Wireless Communication Systems, Pearson education, 2004.
- 4. M.Mallick, Mobile and Wireless design essentials, Wiley Publishing Inc. 2003.
- 5. P.Nicopolitidis, M.S.Obaidat, G.I. papadimitria, A.S. Pomportsis, Wireless Networks, John Wiley & Sons, 2003.

| SUBCODE                                                                                                                                           | SUB NAME L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Т                                      | Р                          | (                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|----------------------------|
| YWC205B                                                                                                                                           | RFMEMS 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                      | 0                          | 3                          |
| UNIT I                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                            | 9                          |
| ceplatform, wire                                                                                                                                  | YSTEMS<br>heresofwirelessactivities,thehomeandoffice,thegroundfixed/mobilepla<br>elessstandards,systemsandarchitectures,conceptualwirelesssystems,wi<br>iancesenableubiquitousconnectivity.                                                                                                                                                                                                                                                                                                                    |                                        | -                          |                            |
| UNIT II                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                            | 9                          |
| Physical aspec<br>sonancefrequenc                                                                                                                 | <b>RFCIRCUITDESIGN</b><br>s of RF circuit design, skineffect,transmissionlinesonthins<br>y,qualityfactorpackaging,practicalaspectsofRFcircuitdesign,DCbiasin                                                                                                                                                                                                                                                                                                                                                   |                                        |                            |                            |
| Physical aspec<br>sonancefrequenc<br>mismatcheffectsi                                                                                             | s of RF circuit design, skineffect, transmissionlines on thins y, quality factor packaging, practical as pects of RF circuit design, DC bias in                                                                                                                                                                                                                                                                                                                                                                |                                        |                            |                            |
| Physical aspec<br>sonancefrequenc<br>mismatcheffectsi<br>UNIT III<br>RFMEMS<br>RFMEMS, ena<br>micromachined<br>owvoltagehing<br>series witch , re | ss of RF circuit design, skineffect,transmissionlinesonthins<br>y,qualityfactorpackaging,practicalaspectsofRFcircuitdesign,DCbiasin<br>nRFMEMS.<br>bled circuit elements and models ,RF/microwave substrate properties<br>l,enhancedelements,capacitors,inductors,varactors,MEMswitch,shunt<br>edMEMswitchapproaches,push-pull series switch, folded-beam sprin<br>esonators-transmission line plana resonators, cavity resonators, micro<br>h bulk acoustics wave resonators, MEMS modeling –mechanical model | g,imp<br>s,<br>MEM<br>gs sus<br>co mec | edanco<br>switch<br>pensio | e<br>9<br>n,1<br>on<br>cal |

| MEMS switch, capacitors, induct<br>switcharrays,reconfigurablecircuits,double,studtuner,N<br>system,<br>parallelswitchableRFfrontends,truedelaydigitalphasesl<br>antennas,tunablemicrostrippatch-arrayantenna. |                                                   | eCPWresonator,<br>filters, reson | MSmicro-<br>atortuning<br>massively |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|-------------------------------------|
| UNIT V                                                                                                                                                                                                         |                                                   |                                  | 9                                   |
| bulkacousticwavefilters,FBARfilterfundamentals,FBA<br>AKa-bandmillimeterwaveMicromachinedtunablefilter                                                                                                         |                                                   | olications,RFME                  | MSfilters,                          |
| Q8MHzMEMresonatorsfilter,RFMEMSOscillators-fu<br>Bandmicromachinedcavityoscillator,a2.4GHzMEMSt<br>L.                                                                                                          | indamentals,a14G<br>basedvoltagecontro            | olledoscillator,de               | esignofPL                           |
| Q8MHzMEMresonatorsfilter,RFMEMSOscillators-fu<br>Bandmicromachinedcavityoscillator,a2.4GHzMEMSt                                                                                                                | undamentals,a14G<br>basedvoltagecontro<br>LECTURE | olledoscillator,de               | esignofPL<br>TOTAL                  |
| Q8MHzMEMresonatorsfilter,RFMEMSOscillators-fu<br>Bandmicromachinedcavityoscillator,a2.4GHzMEMSt                                                                                                                | indamentals,a14G<br>basedvoltagecontro            | olledoscillator,de               | esignofPL                           |

| SUBCODE                                                                                                         |                                                     | SU                                     | J <b>B N</b>             | AMI          | E                              |                             |                   |           |                     |       |      |       |       |       | L      | Т            |      | P     | С               |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|--------------------------|--------------|--------------------------------|-----------------------------|-------------------|-----------|---------------------|-------|------|-------|-------|-------|--------|--------------|------|-------|-----------------|
| YWC 205C                                                                                                        | WC 205C ANTENNASYSTEMS FOR WIRELESS<br>APPLICATIONS | SS                                     |                          |              |                                | 3                           | 0                 | 0         | 0                   | 3     |      |       |       |       |        |              |      |       |                 |
|                                                                                                                 |                                                     | <b>A</b> ]                             | PPLI                     | <b>CA</b>    | <b>FION</b>                    | S                           |                   |           |                     |       |      |       |       |       |        |              |      |       |                 |
| UNIT I                                                                                                          |                                                     | .1                                     |                          |              |                                |                             |                   |           |                     |       |      |       |       |       |        | I            | i    | L     | 9               |
| HANDSET AN                                                                                                      | NTE                                                 | NN                                     | AS                       |              |                                |                             |                   |           |                     |       |      |       |       |       |        |              |      |       | ••••••          |
| Introduction-Per                                                                                                | erfori                                              | man                                    | ce rec                   | quire        | ments                          | -Elec                       | trica             | ally s    | small               | Ante  | enna | s-cla | asses | of H  | Hands  | et An        | iter | nnas- | The             |
| quest for Efficie                                                                                               |                                                     |                                        |                          |              |                                |                             |                   |           |                     |       |      |       |       |       |        |              |      |       |                 |
| optimization-RF                                                                                                 | •                                                   |                                        |                          |              |                                |                             |                   |           |                     |       |      |       | Poin  |       |        | - <u>B</u> - |      |       |                 |
| op                                                                                                              | - poi                                               |                                        |                          |              | .) prou                        |                             |                   |           |                     |       |      |       |       |       |        |              |      |       |                 |
|                                                                                                                 |                                                     |                                        |                          |              |                                |                             |                   |           |                     |       |      |       |       |       |        |              |      |       |                 |
| UNIT II                                                                                                         |                                                     |                                        |                          |              |                                |                             |                   |           |                     |       |      |       |       |       |        |              |      |       | 9               |
| UNIT II<br>RFID TAG AN                                                                                          | NTE                                                 | NN                                     | AS                       |              |                                |                             |                   |           |                     |       |      |       |       |       |        |              |      |       | 9               |
| <b>RFID TAG AN</b>                                                                                              |                                                     |                                        |                          | 1 COI        | nsider                         | ation                       | s foi             | or RF     | FID                 | Тая   | Ant  | enn   | as F  | ffec  | t of   | Envir        | •on  | nmen  | -               |
| <b>RFID TAG AN</b><br>RFID fundamen                                                                             | entals                                              | s, E                                   |                          | n coi        | nsider                         | ation                       | s foi             | or RF     | FID                 | Tag   | Ant  | enna  | as, E | Effec | t of   | Envir        | ron  | imen  | -               |
| <b>RFID TAG AN</b>                                                                                              | entals                                              | s, E                                   |                          | n coi        | nsider                         | ation                       | s foi             | or RF     | FID                 | Tag   | Ante | enna  | as, E | Effec | t of   | Envir        | on   | imen  | -               |
| <b>RFID TAG AN</b><br>RFID fundamen<br>RFID Tag Anten                                                           | entals                                              | s, E                                   |                          | n coi        | nsider                         | ation                       | s foi             | or RF     | FID                 | Tag   | Anto | enna  | as, E | Effec | t of   | Envir        | ron  | imen  | t o             |
| RFID TAG AN<br>RFID fundamen<br>RFID Tag Anten<br>UNIT III                                                      | entals                                              | s, E<br>s                              | Design                   |              |                                |                             |                   |           |                     | Tag   | Ante | enna  | as, E | Effec | t of   | Envir        | ron  | ımen  | -               |
| RFID TAG AN<br>RFID fundamen<br>RFID Tag Anten<br>UNIT III<br>LAPTOP ANT                                        | entals<br>ennas                                     | s, E<br>s<br>NA                        | Design                   | IGN          | AND                            | EVA                         | LUA               | ATI       | ION                 |       |      |       |       |       |        |              |      |       | t o<br>9        |
| RFID TAG AN<br>RFID fundamen<br>RFID Tag Anten<br>UNIT III<br>LAPTOP ANT<br>Laptop related A                    | entals<br>ennas<br>FENI<br>Ante                     | s, E<br>s<br><b>NA</b><br>enna         | Design<br>DESI<br>1 Issu | IGN<br>ues-A | <b>AND</b><br>Antenn           | <b>EVA</b><br>na De         | <b>LU</b><br>sign | ATI<br>Me | <b>ION</b><br>ethod | lolog | y-PC | C Ca  | ard A | Ante  | enna I | Perfo        | rma  | ance  | t o<br>9<br>an  |
| RFID TAG AN<br>RFID fundamen<br>RFID Tag Anten<br>UNIT III<br>LAPTOP ANT<br>Laptop related A<br>Evaluation-Link | entals<br>ennas<br>FENI<br>Ante<br>ik Bi            | s, E<br>s<br><b>NA</b><br>enna<br>udgo | Design<br>DESI<br>1 Issu | IGN<br>ues-A | <b>AND</b><br>Antenn<br>-Dualt | <b>EVA</b><br>na De<br>band | <b>LU</b><br>sign | ATI<br>Me | <b>ION</b><br>ethod | lolog | y-PC | C Ca  | ard A | Ante  | enna I | Perfo        | rma  | ance  | t o<br>9<br>and |
| RFID TAG AN<br>RFID fundamen<br>RFID Tag Anten<br>UNIT III<br>LAPTOP ANT<br>Laptop related A                    | entals<br>ennas<br>FENI<br>Ante<br>ik Bi            | s, E<br>s<br><b>NA</b><br>enna<br>udgo | Design<br>DESI<br>1 Issu | IGN<br>ues-A | <b>AND</b><br>Antenn<br>-Dualt | <b>EVA</b><br>na De<br>band | <b>LU</b><br>sign | ATI<br>Me | <b>ION</b><br>ethod | lolog | y-PC | C Ca  | ard A | Ante  | enna I | Perfo        | rma  | ance  | t o<br>9<br>and |

#### ANTENNA ISSUES IN MICROWAVE THERMAL THERAPIES

Microwave thermal therapies-Interstitial Microwave Hyperthermia-clinical trials

## UNIT V

#### ANTENNAS FOR WEARABLE DEVICES AND UWB APPLICATIONS

Antenna design requirements for wireless Body Area Network/PAN-modelling and characterization of wearable Antennas-WBAN Radio channel characterization and effect of Wearable Antennas-case study-UWB wireless systems-challenges in UWB Antenna Design-state of the art solutions-case study.

| LECTURE | TUTORIAL | TOTAL |  |
|---------|----------|-------|--|
| 45      | 0        | 45    |  |
|         |          |       |  |

- 1. Zhi Ning Chen "Antennas for Portable devices" Wiley, 2007.
- 2. Constatine A. Balanis "Modern Antenna Handbook" Wiley august 2008
- 3. Nemai Chandra Karmakar "Handbook of Smart Antennas for RFID Systems" Wiley
- 4. Mehmet R.Yuce, JamilY.Khan "Wireless body Area Networks: Technology, Implementation and Applications" CRC Press.

| SUBCODE | SUB NAME                     | L | Т | Р | C |
|---------|------------------------------|---|---|---|---|
| YWC205D | DETECTIONANDESTIMATIONTHEORY | 3 | 1 | 0 | 4 |
| UNIT I  |                              |   |   |   | 8 |

### BACKGROUNDANDSTATISTICALDECISIONTHEORY:

Review of Gaussian variables and processes; problem formulation and objective of signal detection and signal parameter restimationindiscrete-timedomain.Bayesian,minimax,andNeyman-Pearsondecisionrules,likelihoodratio,receiveroperatingcharacteristics,compositehypothesistesting,loc allyoptimumtests,detectorcomparisontechniques,asymptoticrelativeefficiency.

## UNIT II

12

9

9

#### DETECTIONOFDETERMINISTICSIGNALSANDRANDOMSIGNALS:

Matched filterde tectorandits performance; generalizedmatched filter; detection of sinusoid wit unknown amplitude, phase, frequency and arrivaltime, linearmodel. Estimator- correlator, linear mode general ussiandetection, detection of Gaussian random signal with unknown parameters, weak signal detection

## UNIT III

#### NONPARAMETRICDETECTION:

Detection the absence of complete statistical description of observations, signdetector, Wilcoxon detector, detectors based on quantized observations, robustness of detectors.

#### UNIT IV

#### **ESTIMATIONOFSIGNALPARAMETERS:**

Minimum varianceunbiase destimation, Fisher information matrix, Cramer-Raobound, sufficientstatistics, minimum statistics, completestatistics; linearmodels; best linearunbiase destimation; maximum like lihoo destimation, in variance principle; estimation efficiency; riskfunctions. Bayesianestimation:philosophy, nuisanceparameters, minimummean squareerrorestimation, maximum posterioriestimation.

#### UNIT V

SIGNALESTIMATIONINDISCRETE-TIME:Linear Bayesianestimation, Weinerfiltering, Kalman filtering.

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 0        | 45    |

#### REFERENCES

1. H.L.VanTrees, "Detection, Estimation and Modulation Theory: PartI, II, and III", John Wiley, NY, 196

2. H.V.Poor,"AnIntroductiontoSignalDetectionandEstimation",Springer,2/e,1998.

- 3. S.M.Kay, "FundamentalsofStatisticalSignalProcessing:EstimationTheory", Prentice 4. HallPTR,1993.
- 5. S.M.Kay, "FundamentalsofStatisticalSignalProcessing:DetectionTheory", PrenticeHallPTR, 1998
- 6. http://nptel.iitm.ac.in/courses.php?disciplineId=117
- 7. R.G.Gallager, "Principles of Digital Communication", Cambridge University Press, 2008.
- 8. Lapidoth,"AFoundationinDigitalCommunication", Cambridge, 2009.
- 9. WeeksMichael, "DigitalSignalProcessingUsingMATLABandWavelets", FirewallMedia, 2011.

| SUBCODE | SUB NAME                  | L | Т | P | С |
|---------|---------------------------|---|---|---|---|
| YWC206A | WIRELESS NETWORK SECURITY | 3 | 1 | 0 | 4 |
| UNIT I  |                           |   |   | 9 |   |

## WIRELESS INFORMATION WARFARE

Protecting privacy and means of communication, taxonomies of wireless communication based on network architecture mobility, model for cost effective risk management, cryptographic attacks, key management, securing wireless LANS, Electromagnetic capture threats, wireless threat analysis, securing wireless LAN countermeasures.

#### UNIT -II

## WIRELESS LAN TRANSMISSION MEDIA

WAP security architecture, BLUETOOTH, wireless access to internet. Cryptographic Security: Classical crypt analysis, digital cryptography, DES modern cipher breaking, non-keyed message digest, public key cryptography, Diffie - Hellman and Elliptic curve cryptography, comparison of public key crypto systems. 9

#### UNIT –III

**NETWORK SECURITY COMPONENTS** Network security model, network intrusion protection and detection, Host based security, virtual private networking, event correlation, wireless security components, secure configuration, secure authentication, encryption, wireless device placement.

UNIT -IV

9

9

#### INTEGRATING WIRELESS ACCESS INTO THE NETWORK SECURITY PROCESS

Logging wireless events, policy issues, accessing wireless network security, change control and device administration, wireless security models, Cisco implementation with LEAP,, WLAN authentication and key management with radius, wireless access with IP security, secure wireless public access, secure wireless point to point connectivity.

## UNIT –V 9 HARDWARE PERSPECTIVE FOR END TO END SECURITY IN WIRELESS APPLICATION

Taxonomy of communication systems, protocol sensitive communication security, evolution towards wireless, hardware and software avenues, encryptor structures in wireless- interception and vulnerability of wireless systems, communication ESMs and interception receivers, SAW technology.

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 15       | 60    |

#### **REFERENCE BOOKS**

- 1. Randall K. Nichols, Panos C. Lekkas, "Wireless Security Models, Threats and solutions". McGrawHill, 2005.
- 2. Brian Carter, Russel Shumway, "Wireless Security End to End", CISSPI, 2005.
- 3. Merrit Maxim, David Pollino, "Wireless Security", RSA Press, 2005.
- 4. Cyrus Peikari, Seth Fogie, , "Maximum Wireless Security ", SAMS, 2005.

| SUBCODE                                                                                                             | SUB NAME                                                                                                                   |                                                                                                                        |                                                                                      | L                                                 | Т                                    | P                        | C                            |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------|--------------------------|------------------------------|
| YWC206B                                                                                                             | ADHOCNETW                                                                                                                  | ORKS                                                                                                                   |                                                                                      | 3                                                 | 0                                    | 0                        | 3                            |
| UNIT I                                                                                                              |                                                                                                                            |                                                                                                                        |                                                                                      |                                                   |                                      |                          | 9                            |
| WIRELESSL                                                                                                           | AN,PAN,WANAND                                                                                                              | MAN                                                                                                                    |                                                                                      |                                                   |                                      |                          |                              |
|                                                                                                                     | adhoc networks-def                                                                                                         |                                                                                                                        | stics features, a                                                                    | pplications.                                      | Charao                               | cterist                  | ics of                       |
|                                                                                                                     | , Fundamentals of                                                                                                          |                                                                                                                        |                                                                                      |                                                   |                                      |                          |                              |
|                                                                                                                     | tion cellula rsystems                                                                                                      |                                                                                                                        |                                                                                      |                                                   |                                      |                          |                              |
| AdHoc Wireless                                                                                                      | Internet.                                                                                                                  |                                                                                                                        |                                                                                      |                                                   |                                      |                          |                              |
| UNIT II                                                                                                             |                                                                                                                            |                                                                                                                        |                                                                                      |                                                   |                                      |                          | 9                            |
| MAC DOUTIN                                                                                                          | G AND MULTICA                                                                                                              |                                                                                                                        |                                                                                      |                                                   |                                      |                          |                              |
| MAC Protoc                                                                                                          | <b>U</b>                                                                                                                   | ssues, goals                                                                                                           |                                                                                      | fication,                                         |                                      |                          |                              |
| protocolswithres                                                                                                    | rvationandscheduling                                                                                                       | gmechanisms,Prot                                                                                                       | ocolsusingdirection                                                                  | onalantenna                                       | s.Routi                              | ngpro                    | tocols                       |
| :Designissuesand                                                                                                    | classification,Table-c                                                                                                     | lriven,On-demand                                                                                                       | and Hybrid                                                                           | routing                                           | protoc                               | ols,R                    | outing                       |
| protocolswitheffi                                                                                                   | cientfloodinmechanis                                                                                                       | sms,Hierarchicalar                                                                                                     | dpower-aware                                                                         | routing pro                                       | otocols                              | .Mı                      | ilticast                     |
| Routing Protoco                                                                                                     |                                                                                                                            |                                                                                                                        |                                                                                      | 1 1                                               | laccifi                              | cation                   |                              |
| Routing 1101000                                                                                                     | ls: Design issues a                                                                                                        | nd operation, Ar                                                                                                       | chitecture referen                                                                   | nce model,                                        | classifi                             | cation                   | ,Tree-                       |
| •                                                                                                                   |                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                  |                                                                                      | nce model,                                        | c1455111                             | cation                   | ,Tree-                       |
| •                                                                                                                   | ls: Design issues a                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                  |                                                                                      | nce model,                                        |                                      |                          | ,Tree-<br>9                  |
| basedandMesh-b<br>UNIT III                                                                                          | ls: Design issues a                                                                                                        | efficientmulticast                                                                                                     | ing.                                                                                 | nce model,                                        |                                      |                          |                              |
| basedandMesh-b<br>UNIT III<br>TRANSPORT I                                                                           | ls: Design issues a asedprotocols,Energy                                                                                   | efficientmulticast                                                                                                     | ing.<br>DLS                                                                          |                                                   |                                      |                          | 9                            |
| basedandMesh-b<br>UNIT III<br>TRANSPORT I<br>Transport layer                                                        | ls: Design issues a<br>asedprotocols,Energy                                                                                | efficientmulticast                                                                                                     | ing.<br>DLS<br>l classification,                                                     | TCP aver                                          | AdHo                                 | oc wi                    | 9<br>reless                  |
| basedandMesh-b<br>UNIT III<br>TRANSPORT I<br>Transport layer<br>Networks,Securit                                    | ls: Design issues a<br>asedprotocols,Energy<br>AYER AND SECU<br>Protocol: Design                                           | efficientmulticast<br><b>RITY PROTOCO</b><br>issues, goals and<br>nts,Issuesandchalle                                  | ing.<br>DLS<br>1 classification,<br>engesinsecuritypro                               | TCP aver                                          | AdHo                                 | oc wi                    | 9<br>reless<br>curity        |
| basedandMesh-b<br>UNIT III<br>TRANSPORT I<br>Transport layer<br>Networks,Securit<br>attacks, Securit                | ls: Design issues a<br>asedprotocols,Energy<br>AYER AND SECU<br>Protocol: Design<br>y,Securityrequiremer                   | refficientmulticast<br><b>RITY PROTOCO</b><br>issues, goals and<br>its,Issuesandchalle<br>. Quality                    | ing.<br>DLS<br>d classification,<br>engesinsecuritypro<br>of Set                     | TCP aver<br>ovisioning,N<br>rvice:                | AdHo<br>letwork<br>Issues            | oc wi<br>s se            | 9<br>reless<br>curity<br>and |
| basedandMesh-b<br>UNIT III<br>TRANSPORT I<br>Transport layer<br>Networks,Securit<br>attacks, So<br>challengesinprov | ls: Design issues a<br>asedprotocols,Energy<br>AYER AND SECU<br>Protocol: Design<br>y,Securityrequiremer<br>curity routing | efficientmulticast<br><b>RITY PROTOCO</b><br>issues, goals and<br>its,Issuesandchalle<br>. Quality<br>onofQoSsolutions | ing.<br>DLS<br>I classification,<br>engesinsecuritypro<br>of Set<br>,MAClayersolutio | TCP aver<br>ovisioning,N<br>rvice:<br>ons,Network | AdHo<br>letwork<br>Issues<br>layerso | oc wi<br>s se<br>olution | 9<br>reless<br>curity<br>and |

| UNIT IV                                                                                                         |                                       |                       | 9                               |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|---------------------------------|
| ENERGYMANAGEMENTANDWIREL                                                                                        | ESSSENSORNETWORI                      | KS                    |                                 |
| Need, classification of battery managements che                                                                 | mes, Transmission powerma             | anagementscheme       | s,Systempowe                    |
| rmanagementschemes.WirelessSensorNetwor                                                                         | rks:Architecture,Datadisser           | nination,Dategath     | hering,MACpro                   |
| tocols,locationdiscovery,Qualityofasensornet                                                                    | work.                                 |                       |                                 |
| UNIT V                                                                                                          |                                       |                       | 9                               |
| PERFORMANCEANALYSIS                                                                                             | Route-discovery time,                 | End-to-end delay      |                                 |
| <b>PERFORMANCEANALYSIS</b><br>ABR beaconing, Performance parameters,<br>Communicationthroughputperformance,Pack | · · · · · · · · · · · · · · · · · · · | •                     | y performance                   |
| <b>PERFORMANCEANALYSIS</b><br>ABR beaconing, Performance parameters,<br>Communicationthroughputperformance,Pack | · · · · · · · · · · · · · · · · · · · | •                     | y performance                   |
| <b>PERFORMANCEANALYSIS</b><br>ABR beaconing, Performance parameters,<br>Communicationthroughputperformance,Pack | etlossperformance,Routere             | configuration/repart  | y performance<br>airtime,TCP/IF |
|                                                                                                                 | etlossperformance,Routere             | configuration/reparts | y performance<br>airtime,TCP/IF |

C. Siva Ram Murthy and B.S. Manoj, Ad Hoc Wireless Networks: Architectures and protocols, Prentice Hall PTR, 2004

- 2.C.-K.Toh, AdHocMobileWirelessNetworks:ProtocolsandSystems,PrenticeHallPTR,2001
- 3. MohammadIlyas, The Handbook of AdHoc Wireless Networks, CRC press, 2002 Charles E. Perkins, AdHo cNetworking, Addison–Wesley, 2000
- $\label{eq:stefanoBasagni,MarcoConti,SilviaGiordanoandIvanStojmenovic,MobileAdHocNetworking,Wiley-IEEE press,2004$

| SUBCODE                                                                                                                                        | SUB NAME                                                                                                                                                                                                   | L                 | Т                 | P       | С          |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------|------------|
| YWC206C                                                                                                                                        | HIGHPERFORMANCECOMPUTINGNETWORK<br>S                                                                                                                                                                       | 3                 | 0                 | 0       | 3          |
| UNITI                                                                                                                                          |                                                                                                                                                                                                            |                   | <b>i</b>          |         | 9          |
| BASICSOFNE'                                                                                                                                    | TWORKS                                                                                                                                                                                                     |                   |                   |         |            |
| Telephone,comp                                                                                                                                 | outer, Cable television and Wireless network, networking princi                                                                                                                                            | ples,I            | Digital           | izatior | nSer       |
| vice and layered                                                                                                                               | architecture, traffic characterization and QOS, networks servi                                                                                                                                             | ices n            | etwork            |         |            |
| elementsand net                                                                                                                                | work mechanisms.                                                                                                                                                                                           |                   |                   |         |            |
| UNITII                                                                                                                                         |                                                                                                                                                                                                            |                   |                   |         | 9          |
|                                                                                                                                                |                                                                                                                                                                                                            |                   |                   |         |            |
| PACKETSWIT                                                                                                                                     | CHEDNETWORKS                                                                                                                                                                                               |                   |                   |         |            |
|                                                                                                                                                |                                                                                                                                                                                                            | frame             | relay.S           | MDS     | ,Inte      |
| OSI and IP mode                                                                                                                                | els Ethernet(IEEE802.3);tokenring(IEEE802.5),FDDI,DQDB,f                                                                                                                                                   | frame             | relay,S           | SMDS    | ,Inte      |
| OSI and IP mode<br>rnetworkingwith                                                                                                             | els Ethernet(IEEE802.3);tokenring(IEEE802.5),FDDI,DQDB,f                                                                                                                                                   | frame             | relay,S           |         |            |
| OSI and IP mode<br>rnetworkingwith<br>UNIT –III                                                                                                | els Ethernet(IEEE802.3);tokenring(IEEE802.5),FDDI,DQDB,f<br>nSMDS.                                                                                                                                         | frame             | relay,S           |         | ,Inte<br>9 |
| OSI and IP mode<br>rnetworkingwith<br>UNIT –III<br>INTERNETAN                                                                                  | els Ethernet(IEEE802.3);tokenring(IEEE802.5),FDDI,DQDB,f<br>SMDS.                                                                                                                                          |                   | -                 |         |            |
| OSI and IP mode<br>rnetworkingwith<br>UNIT –III<br>INTERNETAN<br>Overview,intern                                                               | els Ethernet(IEEE802.3);tokenring(IEEE802.5),FDDI,DQDB,f<br>hSMDS.<br>IDTCP/IPNETWORKS<br>et protocol,TCP and VDP,Performance of TCP/IP networks ci                                                        |                   | -                 |         |            |
| OSI and IP mode<br>rnetworkingwith<br>UNIT –III<br>INTERNETAN<br>Overview,intern                                                               | els Ethernet(IEEE802.3);tokenring(IEEE802.5),FDDI,DQDB,f<br>SMDS.                                                                                                                                          |                   | -                 |         |            |
| OSI and IP mode<br>rnetworkingwith<br>UNIT –III<br>INTERNETAN<br>Overview,intern                                                               | els Ethernet(IEEE802.3);tokenring(IEEE802.5),FDDI,DQDB,f<br>hSMDS.<br>IDTCP/IPNETWORKS<br>et protocol,TCP and VDP,Performance of TCP/IP networks ci                                                        |                   | -                 | hed     |            |
| OSI and IP mode<br>rnetworkingwith<br>UNIT –III<br>INTERNETAN<br>Overview,intern<br>networks SONE<br>UNIT –IV                                  | els Ethernet(IEEE802.3);tokenring(IEEE802.5),FDDI,DQDB,f<br>hSMDS.<br>IDTCP/IPNETWORKS<br>et protocol,TCP and VDP,Performance of TCP/IP networks ci                                                        |                   | -                 | hed     | 9          |
| OSI and IP mode<br>rnetworkingwith<br>UNIT –III<br>INTERNETAN<br>Overview,intern<br>networks SONE<br>UNIT –IV<br>ATMANDWIR                     | els Ethernet(IEEE802.3);tokenring(IEEE802.5),FDDI,DQDB,f<br>hSMDS.<br>IDTCP/IPNETWORKS<br>et protocol,TCP and VDP,Performance of TCP/IP networks ci<br>T DWDM,Fiber to home,DSL,Intelligent networks,CATV. | ircuits           | s switc           | hed     | 9<br>9     |
| OSI and IP mode<br>rnetworkingwith<br>UNIT –III<br>INTERNETAN<br>Overview,intern<br>networks SONE<br>UNIT –IV<br>ATMANDWIR<br>Main features ac | els Ethernet(IEEE802.3);tokenring(IEEE802.5),FDDI,DQDB,f<br>hSMDS.<br>IDTCP/IPNETWORKS<br>et protocol,TCP and VDP,Performance of TCP/IP networks ci<br>T DWDM,Fiber to home,DSL,Intelligent networks,CATV. | ircuits<br>on lay | s switc<br>er,man | hed     | 9<br>9     |

#### UNIT -IV 9 **OPTICALNETWORKSANDSWITCHING** Opticallinks-WDMsystems, crossconnectsopticalLAN'sopticalpathsandnetworksTDSandSDSmodularswitchdesigns-Packetswitching, shared, input and output buffers. **LECTURE** TUTORIAL TOTAL 45 45 0 **REFERENCES:** 1. JeanwarlandandPravinVaraiya,"HighPerformanceCommunicationNetworks",2ndEdition,Harcour tandMorganKanffman,London,2000 2.LeonGracia, Widjaja, "Communicationnetworks", TataMcGrawHill, NewDelhi, 20003.LumitKase ra, Pankaj Sethi, "ATMNetworks", TataMcGrawHill, NewDelhi, 2000 4.Behrouz.a.Forouzan, "DataCommunicationandNetworking", TataMcGrawHill, NewDelhi, 2004. 5. Itamar Elhananyand Mounir Hamdi, "HighperformancePacketSwitchingArchitectures",SpringerPublications,2011. 6.J.F.Kurose&K.W.Ross,"ComputerNetworking-Atopdownapproachfeaturingtheinternet", Pearsoneducation, fifthedition. 7.NaderF.Mir,ComputerandCommunicationNetworks,firstedition,2006. 8. Walrand, J. Varatya, Highperformancecommunicationnetwork, MarganKanffmanHarcourtAsiaPv

t. Ltd. 2nd Edition, 2000.

9. LEOM-

GarCIA, WIDJAJA, "Communicationnetworks", TMH seventhreprint 2002.10. Aunuragkumar, D.M Anjunath, Joykuri, "CommunicationNetworking", Morgan

| COURSE CODE                                                                                                                                                                                                                                           | COURSE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                                                                                    | Т                                           | Р                                            | С                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|------------------------------------------------------------------|
| YEC206D                                                                                                                                                                                                                                               | INTERNET OF THINGS                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                    | 0                                           | 0                                            | 3                                                                |
| UNIT I INTRODUC                                                                                                                                                                                                                                       | TION AND ENABLING TECHNOLOGIES I                                                                                                                                                                                                                                                                                                                                                                                                                    | N IOT                                                                                |                                             |                                              | 9                                                                |
| IoT, Machine to Mach                                                                                                                                                                                                                                  | nine, Web of Things, Definition- Major compon                                                                                                                                                                                                                                                                                                                                                                                                       | ents if Io                                                                           | T dev                                       | ices-C                                       | Control                                                          |
|                                                                                                                                                                                                                                                       | ication Modules-Power Sources Vision- C                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                      |                                             |                                              | •                                                                |
|                                                                                                                                                                                                                                                       | e IoT Functional View-IoT related Internet Te                                                                                                                                                                                                                                                                                                                                                                                                       | •••                                                                                  |                                             | -                                            | •                                                                |
|                                                                                                                                                                                                                                                       | ications related to IoT-Processes related to IoT-I                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                      |                                             | nt rela                                      | ated to                                                          |
|                                                                                                                                                                                                                                                       | d Trust-Devices level energy issues-Standards rela                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                      |                                             |                                              |                                                                  |
| UNIT II RESOU                                                                                                                                                                                                                                         | JRCE MANAGEMENT IN THE INTERNET (                                                                                                                                                                                                                                                                                                                                                                                                                   | OF THIN                                                                              | GS                                          |                                              | 9                                                                |
| Clustering - Software A                                                                                                                                                                                                                               | gents - Data Synchronization - Clustering Princip                                                                                                                                                                                                                                                                                                                                                                                                   | oles in an                                                                           | Intern                                      | at of '                                      | Things                                                           |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                    | mem                                         |                                              | rinngs                                                           |
|                                                                                                                                                                                                                                                       | le of Context - Design Guidelines -Software                                                                                                                                                                                                                                                                                                                                                                                                         | Agents f                                                                             | or Ob                                       | ject -                                       | - Data                                                           |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Agents f                                                                             | or Ob                                       | ject -                                       | - Data                                                           |
| Synchronization- Types<br>Enabling Autonomy and                                                                                                                                                                                                       | le of Context - Design Guidelines -Software<br>of Network Architectures - Fundamental Concept<br>Agility by the Internet of Things-Technical Req                                                                                                                                                                                                                                                                                                    | Agents f<br>ts of Agili<br>juirements                                                | or Ob<br>ity and<br>s for S                 | ject -<br>l Auto<br>atisfyi                  | - Data<br>nomy-<br>ing the                                       |
| Synchronization- Types<br>Enabling Autonomy and<br>New Demands in Produc                                                                                                                                                                              | le of Context - Design Guidelines -Software<br>of Network Architectures - Fundamental Concept<br>Agility by the Internet of Things-Technical Req<br>ction - The Evolution from the RFID-based EPC                                                                                                                                                                                                                                                   | Agents f<br>ts of Agili<br>juirements                                                | or Ob<br>ity and<br>s for S                 | ject -<br>l Auto<br>atisfyi                  | - Data<br>nomy-<br>ing the                                       |
| Synchronization- Types<br>Enabling Autonomy and<br>New Demands in Produc                                                                                                                                                                              | le of Context - Design Guidelines -Software<br>of Network Architectures - Fundamental Concept<br>Agility by the Internet of Things-Technical Req                                                                                                                                                                                                                                                                                                    | Agents f<br>ts of Agili<br>juirements                                                | or Ob<br>ity and<br>s for S                 | ject -<br>l Auto<br>atisfyi                  | - Data<br>nomy-<br>ing the                                       |
| Synchronization- Types<br>Enabling Autonomy and<br>New Demands in Produc                                                                                                                                                                              | le of Context - Design Guidelines -Software<br>of Network Architectures - Fundamental Concept<br>Agility by the Internet of Things-Technical Req<br>ction - The Evolution from the RFID-based EPC                                                                                                                                                                                                                                                   | Agents f<br>ts of Agili<br>juirements                                                | or Ob<br>ity and<br>s for S                 | ject -<br>l Auto<br>atisfyi                  | - Data<br>nomy-<br>ing the                                       |
| Synchronization- Types<br>Enabling Autonomy and<br>New Demands in Produc<br>Internet of Things- Agen                                                                                                                                                  | le of Context - Design Guidelines -Software<br>of Network Architectures - Fundamental Concept<br>Agility by the Internet of Things-Technical Req<br>ction - The Evolution from the RFID-based EPC                                                                                                                                                                                                                                                   | Agents f<br>ts of Agili<br>juirements                                                | or Ob<br>ity and<br>s for S                 | ject -<br>l Auto<br>atisfyi                  | - Data<br>nomy-<br>ing the                                       |
| Synchronization- Types<br>Enabling Autonomy and<br>New Demands in Produc<br>Internet of Things- Agen                                                                                                                                                  | le of Context - Design Guidelines -Software<br>of Network Architectures - Fundamental Concept<br>Agility by the Internet of Things-Technical Req<br>ction - The Evolution from the RFID-based EPC<br>the Behaviour of Objects                                                                                                                                                                                                                       | Agents f<br>ts of Agili<br>juirements<br>Network                                     | or Ob<br>ity and<br>s for S<br>to an        | ject -<br>l Auto<br>atisfyi<br>Agent         | - Data<br>nomy-<br>ing the<br>based                              |
| Synchronization- Types<br>Enabling Autonomy and<br>New Demands in Produc<br>Internet of Things- Agen<br>UNIT IIITHE ARCHI<br>The Layering concepts                                                                                                    | le of Context - Design Guidelines -Software<br>of Network Architectures - Fundamental Concept<br>1 Agility by the Internet of Things-Technical Req<br>ction - The Evolution from the RFID-based EPC<br>its for the Behaviour of Objects                                                                                                                                                                                                             | Agents f<br>ts of Agili<br>juirements<br>Network<br>chitecture                       | or Ob<br>ity and<br>s for S<br>to an        | ject -<br>l Auto<br>atisfyi<br>Agent         | - Data<br>nomy-<br>ing the<br>based                              |
| Synchronization- Types<br>Enabling Autonomy and<br>New Demands in Produc<br>Internet of Things- Agen<br>UNIT IIITHE ARCHI<br>The Layering concepts<br>Platforms - IBM watson-                                                                         | le of Context - Design Guidelines -Software<br>of Network Architectures - Fundamental Concept<br>l Agility by the Internet of Things-Technical Req<br>ction - The Evolution from the RFID-based EPC<br>nts for the Behaviour of Objects<br><b>TECTURE, PLATFORMS, SERVICES</b><br>, IoT Communication Pattern, IoT protocol Arc                                                                                                                     | Agents f<br>ts of Agili<br>juirements<br>Network<br>chitecture                       | or Ob<br>ity and<br>s for S<br>to an        | ject -<br>l Auto<br>atisfyi<br>Agent         | - Data<br>nomy-<br>ing the<br>based                              |
| Synchronization- Types<br>Enabling Autonomy and<br>New Demands in Produc<br>Internet of Things- Agen<br>UNIT IIITHE ARCHI<br>The Layering concepts<br>Platforms - IBM watson-<br>UNIT IV SCALABLE                                                     | le of Context - Design Guidelines -Software<br>of Network Architectures - Fundamental Concept<br>l Agility by the Internet of Things-Technical Req<br>ction - The Evolution from the RFID-based EPC<br>nts for the Behaviour of Objects<br><b>TECTURE, PLATFORMS, SERVICES</b><br>, IoT Communication Pattern, IoT protocol Arc<br>-Intel Platform- Carriot Platform- Webnms-device                                                                 | Agents f<br>ts of Agili<br>juirements<br>Network<br>chitecture<br>e WISE             | or Ob<br>ity and<br>for S<br>to an<br>, The | ject -<br>l Auto<br>atisfyi<br>Agent<br>6LoW | - Data<br>nomy-<br>ing the<br>based<br>9<br>/PAN,<br>9           |
| Synchronization- Types<br>Enabling Autonomy and<br>New Demands in Produc<br>Internet of Things- Agen<br>UNIT IIITHE ARCHI<br>The Layering concepts<br>Platforms - IBM watson-<br>UNIT IV SCALABLE<br>Introduction- IPV6 Pot                           | le of Context - Design Guidelines -Software<br>of Network Architectures - Fundamental Concept<br>1 Agility by the Internet of Things-Technical Req<br>ction - The Evolution from the RFID-based EPC<br>nts for the Behaviour of Objects<br>TECTURE, PLATFORMS, SERVICES<br>, IoT Communication Pattern, IoT protocol Ara<br>-Intel Platform- Carriot Platform- Webnms-device<br>INTEGRATION FRAMEWORK                                               | Agents f<br>ts of Agili<br>juirements<br>Network<br>chitecture<br>e WISE<br>to IoT 1 | or Ob<br>ity and<br>for S<br>to an<br>, The | ject -<br>l Auto<br>atisfyi<br>Agent<br>6LoW | - Data<br>nomy-<br>ing the<br>based<br>9<br>VPAN,<br>9<br>- IoT6 |
| Synchronization- Types<br>Enabling Autonomy and<br>New Demands in Produc<br>Internet of Things- Agen<br>UNIT IIITHE ARCHI<br>The Layering concepts<br>Platforms - IBM watson-<br>UNIT IV SCALABLE<br>Introduction- IPV6 Pot<br>architecture - DigCove | le of Context - Design Guidelines -Software<br>of Network Architectures - Fundamental Concept<br>l Agility by the Internet of Things-Technical Req<br>ction - The Evolution from the RFID-based EPC<br>nts for the Behaviour of Objects<br>TECTURE, PLATFORMS, SERVICES<br>, IoT Communication Pattern, IoT protocol Arc<br>-Intel Platform- Carriot Platform- Webnms-device<br>INTEGRATION FRAMEWORK<br>tential- IoT6- IPV6 for IoT- Adapting IPV6 | Agents f<br>ts of Agili<br>juirements<br>Network<br>chitecture<br>e WISE<br>to IoT 1 | or Ob<br>ity and<br>for S<br>to an<br>, The | ject -<br>l Auto<br>atisfyi<br>Agent<br>6LoW | - Data<br>nomy-<br>ing the<br>based<br>9<br>VPAN,<br>9<br>- IoT6 |

|                         | nd Smart Space creation<br>Smart Environment Mo |                   |                     |             |
|-------------------------|-------------------------------------------------|-------------------|---------------------|-------------|
| Transport and mobility  | -IoT Smart X applications                       | f                 |                     |             |
|                         | LECTURE                                         | TUTORIAL          | PRACTICAL           | TOTAL       |
| HOURS                   | 45                                              | 0                 | 0                   | 45          |
| REFERENCES              |                                                 |                   |                     |             |
| Ovidiu Vermesan, Pete   | r Friess, "Internet of Thin                     | gs- From Research | and Innovation to m | arket       |
| Deployment", River P    |                                                 | e                 |                     |             |
| 1 2                     | Madisetti Internet of Thir                      | ngs: A Hands-On A | pproach Hardcover - | - Madisetti |
| Publishers, 2014        |                                                 |                   |                     |             |
| Samuel Greengard. "Th   | ne Internet of Things", MI                      | T Press, 2015.    |                     |             |
|                         | e ,                                             | ,                 |                     |             |
| http://postscapes.com/i | nternet_ot_things_resource                      |                   |                     |             |

| SUBCODE   | SUB NAME      | L | Т  | P | C |
|-----------|---------------|---|----|---|---|
| YWC207A   | SOFTCOMPUTING | 3 | 0  | 0 | 3 |
| UNIT I    |               |   | 10 |   |   |
| FUZZYSETT | THEORY        |   |    |   |   |

Introduction to Neuro–Fuzzy and Soft Computing–Fuzzy Sets–Basic Definition and Terminology–Settheoretic Operations– Member Function Formulation and Parameterization–Fuzzy Rules and Fuzzy Reasoning–Extension Principle and Fuzzy Relations–Fuzzy If-Then Rules–Fuzzy Reasoning–Fuzzy Inference Systems–Mamdani Fuzzy Models–Sugeno Fuzzy Models–Tsukamoto Fuzzy Models–Input Space Partitioning and Fuzzy Modeling."

| UNIT II 8    |  |
|--------------|--|
| OPTIMIZATION |  |

Derivative-based Optimization – Descent Methods – The Method of Steepest Descent – Classical Newton's Method – Step Size Determination – Derivative – free Optimization – Genetic Algorithms – Simulated Annealing – Random Search – Downhill Simplex Search."

10

| UNIT | III       |  |  |
|------|-----------|--|--|
|      | ALNERWORK |  |  |

## NEURALNETWORKS

Supervised Learning Neural Networks–Perceptrons-Adaline–Backpropagation Mutilayer Perceptrons– Radial Basis Function Networks–Unsupervised Learning Neural Networks–Competitive Learning Networks–Kohonen Self-Organizing Networks–Learning Vector Quantization–Hebbian Learning."

| UNIT IV 9                                                                                                                                               |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| NEUROFUZZYMODELING                                                                                                                                      |  |  |  |
| AdaptiveNeuro–FuzzyInferenceSystems–Architecture–HybridLearningAlgorithm–<br>LearningMethodsthatCross–fertilizeANFISandRBFN–CoactiveNeuroFuzzyModeling– |  |  |  |
| FrameworkNeuronFunctionsforAdaptiveNetworks–NeuroFuzzySpectrum.                                                                                         |  |  |  |

| - (e |        |   |   |  |
|------|--------|---|---|--|
|      | UNIT V |   | 8 |  |
|      |        | 1 |   |  |
#### APPLICATIONSOFCOMPUTATIONALINTELLIGENCE

Printed Character Recognition–Inverse Kinematics Problems–Automobile Fuel Efficiency Prediction– Soft Computing for Color Recipe Prediction".

|            | LECTURE | TUTORIAL | TOTAL |
|------------|---------|----------|-------|
|            | 45      | 0        | 45    |
| REFERENCES |         |          |       |

#### 1. TimothyJ.Ross, "FuzzyLogicwithEngineeringApplications", McGraw-Hill, 1997.

- 2. DavisE.Goldberg, "GeneticAlgorithms:Search,OptimizationandMachine Learning", AddisonWesley, N.Y., 1989.
- 3. S.RajasekaranandG.A.V.Pai, "NeuralNetworks, FuzzyLogicandGeneticAlgorithms", PHI, 2003.
- 4. R.Eberhart, P.Simpsonand R.Dobbins, "Computational Intelligence-PCTools", APProfessional, Boston, 1996.
- 5. Jyh-ShingRogerJang, Chuen-TsaiSun, Eiji Mizutani, "Neuro-FuzzyandSoftComputing", Prentice-HallofIndia, 2003.
- 6. GeorgeJ.KlirandBoYuan, "FuzzySetsandFuzzyLogic-TheoryandApplications", PrenticeHall, 1995.
- 7. James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Pearson Edn., 2003.
- 8. MitchellMelanie, "AnIntroductiontoGeneticAlgorithm", PrenticeHall, 1998.
- 9. DavidE.Goldberg, "GeneticAlgorithmsinSearch, Optimization and Machine Learning", AddisonWesley, 1997.
- 10. S.N.Sivanandam, S.Sumathiand S.N.Deepa, "Introduction to Fuzzy Logicusing MATLAB", Springer ,2007.
- 11. J.S.R.Jang, C.T.SunandE.Mizutani, "Neuro-FuzzyandSoftComputing", PHI, 2004, PearsonEducation2004.

| SUBCODE                                                   | SUB NAME                                                                                                                                                                                                                                                    | L                | Т        | P        | С                        |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------|--------------------------|
| YWC207B                                                   | MULTIMEDIACOMPRESSIONTECHNIQUES                                                                                                                                                                                                                             | 3                | 0        | 0        | 3                        |
| UNIT I                                                    |                                                                                                                                                                                                                                                             | i                | <u>i</u> | i        | 9                        |
| INTRODUCTI                                                | ONSpecial features of Multimedia – Graphics and Image I                                                                                                                                                                                                     | Data R           | eprese   | ntatio   | ns –                     |
| Fundamental C                                             | oncepts in Video and Digital Audio – Storage require                                                                                                                                                                                                        | ments            | for n    | nultim   | edia                     |
| applications - N                                          | eed for Compression - Taxonomy of compression techniques                                                                                                                                                                                                    | s - Ov           | erview   | of so    | urce                     |
| coding, source n                                          | odels, scalar and vector quantization theory – Evaluation tech                                                                                                                                                                                              | niques           | – Erre   | or ana   | lysis                    |
| and methodolog                                            | es"                                                                                                                                                                                                                                                         |                  |          |          |                          |
| UNIT II                                                   |                                                                                                                                                                                                                                                             |                  |          |          | 9                        |
| TEXTCOMPR                                                 | ESSION                                                                                                                                                                                                                                                      |                  |          |          |                          |
| Compaction tech                                           | niques – Huffman Arithmetic coding – Shannon-Fano coding                                                                                                                                                                                                    | algorit          | hms. c   | oding    | _                        |
| A date of the Court                                       |                                                                                                                                                                                                                                                             |                  |          |          |                          |
| Adaptive Huffm                                            | an Coding – Dictionary techniques – LZW family"                                                                                                                                                                                                             | 0                |          |          |                          |
| UNIT III                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                       |                  |          |          | 9                        |
| •                                                         | an Coding – Dictionary techniques – LZW family"                                                                                                                                                                                                             |                  |          |          |                          |
| UNIT III<br>AUDIOCOMP                                     | an Coding – Dictionary techniques – LZW family"                                                                                                                                                                                                             |                  | n and    | filterii | 9                        |
| UNIT III<br>AUDIOCOMP<br>Audio compress                   | an Coding – Dictionary techniques – LZW family" RESSION                                                                                                                                                                                                     | domai            |          |          | <b>9</b><br>ng –         |
| UNIT III<br>AUDIOCOMP<br>Audio compress<br>Basic sub-band | an Coding – Dictionary techniques – LZW family"<br><b>RESSION</b><br>ion techniques - μ-Law and A-Law companding. Frequency                                                                                                                                 | domai<br>tion to | audio    | codir    | <b>9</b><br>ng –<br>ng – |
| UNIT III<br>AUDIOCOMP<br>Audio compress<br>Basic sub-band | an Coding – Dictionary techniques – LZW family"<br><b>RESSION</b><br>ion techniques - μ-Law and A-Law companding. Frequency<br>coding – Application to speech coding – G.722 – Application<br>ogressive encoding for audio – Silence compression, speech of | domai<br>tion to | audio    | codir    | <b>9</b><br>ng –<br>ng – |

#### **IMAGECOMPRESSION**

Predictive techniques – DM, PCM, and DPCM: Optimal Predictors and Optimal Quantization – contour based compression – Transform Coding – JPEG Standard – Sub-band coding algorithms: Design of Filter banks – Wavelet based compression: Implementation using filters – EZW, SPIHT coders – JPEG 2000 standards - JBIG, JBIG2 standards"

#### UNIT V

#### VIDEOCOMPRESSION

Video compression techniques and standards – MPEG Video Coding: MPEG – 1 and 2 – MPEG Video Coding II: MPEG – 4 and 7 – Motion estimation and compensation techniques – H.261 Standard – DVI technology – PLV performance – DVI real time compression – Packet Video"

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 0        | 60    |
| •       |          |       |

9

#### REFERENCES

- 1. KhalidSayood:IntroductiontoDataCompression,MorganKauffmanHarcourtIndia,2<sup>nd</sup>
- 2. Edition,2000.
- 3 . DavidSalomon:DataCompression-
  - TheCompleteReference,SpringerVerlagNewYorkInc.,2<sup>nd</sup>Edition,2001.
- 4 . YunQ.Shi,HuifangSun:ImageandVideoCompressionforMultimediaEngineering-
- 5. Fundamentals, Algorithms & Standards, CRC press, 2003.
- 6. PeterSymes:DigitalVideoCompression,McGrawHillPub.,2004.5.MarkNelson:
- 7. Datacompression, BPBPublishers, NewDelhi, 1998.
- 8. MarkS.Drew,Ze-NianLi:FundamentalsofMultimedia,PHI,1Edition,2009
- 9. Watkinson, J: Compression in Video and Audio, Focal press, London. 1995.
- 10. JanVozer:VideoCompressionforMultimedia,APProfes,NewYork,1995
- 11. AndyBeach,"RealWorldVideoCompression",PearsonEducation,2010.
- 12. IrinaBocharova, "CompressionforMultimedia", CambridgeUniversityPress, 2010.
- $13. \quad Arjuna Marzuki, Ahmad Ismat Bin Abdul Rahim and Mourad Loulou, ``Advances in$
- 14. MonolithicMicrowaveIntegratedCircuits:ModelingandDesignTechnologies",(PremierRefer encesource),2011.

| SUBCODE              | SUB NAME                                                  | L         | Т       | Р      | С  |
|----------------------|-----------------------------------------------------------|-----------|---------|--------|----|
| YWC207C              | SOFTWAREDEFINEDRADIO                                      | 3         | 0       | 0      | 3  |
| UNITISOFTWAR         | EBASEDRADIO                                               |           |         | 9      |    |
| Software defined ra  | dio and Software Radio Concepts - Realization of Software | ware Ba   | ased R  | adio · | -  |
| Front end Technolo   | gy: Radio Frequency Translation and Software Defined I    | Radio R   | lequire | ments  | 5  |
| and Specifications   | - Receiver Design Considerations - Transmitter Desig      | n Con     | siderat | ions · | -  |
| Candidate Architect  | ures for SDR - Radio frequency front end Implementat      | ions fo   | r Mult  | imode  | )  |
| SDRS: Evolution of   | RF Front Ends - Super heterodyne Architecture - The AS    | 52/6 Pro  | oduct F | Family | 7  |
| - Dual Band, Six M   | ode – Alternative RF Front End Architectures."            |           |         |        |    |
| <b>UNITII DATACO</b> | NVERSIONINSOFTWAREDEFINEDRADIOS:                          |           |         | 9      |    |
| The Importance of    | Data Converters in Software Defined Radios - Converters   | erter A   | rchitec | tures  | _  |
| Converter Performa   | nce Impact on SDR - Superconductor Microelectro           | nics: A   | A Digi  | tal R  | F  |
| Technology for So    | tware Radios: Introduction - Rapid Single Flux Quan       | tum Di    | gital I | Logic  | _  |
| Cryogenic Aspects -  | Superconductor SDR for Commercial Applications & M        | ilitary A | Applica | ations | _  |
| The Digital Front Er | d: Bridge Between RF and Baseband Processing: The dig     | ital froi | ntend - | Digit  | al |
| up and down conver   | sions - Channel Filtering - Sample Rate Conversion."      |           |         |        |    |
|                      |                                                           |           |         |        |    |

#### **UNITHI BASEBANDTECHNOLOGY:**

Baseband Processing for SDR - The Role of Baseband Architectures - Baseband Component Technologies - Design Tools and Methodologies - System design and maintenance - Parameterization - A Technique for SDR Implementation - Definitions - Adaptability - Parameterization of Standards - Signal Processing Issues - Adaptive Computing IC Technology for 3G Software - Software defined Radio – A Solution for Mobile Devices – The Mobile Application Space and the need for Processing Power - SDRB as eband processing - Hardware with Software Programmability - The Computational Power Efficiency Required by 3G Algorithms - Example Case Studies."

#### UNITIV SOFTWARETECHNOLOGY

Software Engineering for Software Radios - Overview of Vanu Systems - The Importance of software in software Radio - Software Portability - Commodity PC hardware - Signal Processing' software - Control - Software - Performance - Future Directions - Software Download for Mobile Terminals - Downloading Technologies for SDR - Standards for downloading - Seamless Upgrading 'on the FLY' security of download - software Architectures for Download - Future Applications of SDR Downloading."

#### **UNITVRECONFIGURATIONANDWAVEFORMDESCRIPTION**

9

9

Protocols and Network Aspects of SDR - Protocol stacks: SAPS vs. Configurability - Approaches to protocol stack reconfiguration – Reconfiguration Management and control – Network support for software radios Conclusions - The Waveform Description Language: The specification problem -WDL overview - FM3TR example - Refinement to an implication - WDL details - A practical WDL support environment".

| LECTURE | TUTORIAL | TOTAL |  |
|---------|----------|-------|--|
| 45      | 0        | 45    |  |

#### REFERENCES

- 1.
  - WalterTuttlebee, "SoftwareDefinedRadio:EnablingTechnologies", WileyPublication s.2002.
- 2.PaulBurns, "SoftwareDefinedRadiofor3G", ArtechHouse, 2002
- 3. Markus Dillinger, "Software Defined Radio: Architectures, Systems and Functions", 2003.

| SUBCODE | SUB NAME                      | L | Т | P | C |
|---------|-------------------------------|---|---|---|---|
| YWC207D | FUNDAMENTALS OF 5G MOBILE AND | 3 | 0 | 0 | 3 |
|         | WIRELESS TECHNOLOGY           |   |   |   |   |
| UNIT I  |                               |   |   |   | 9 |

## UNIT I

#### **INTRODUCTION**

Rationale of 5G: high data volume, twenty-five billion connected devices and wide requirements - 10 pillars of 5G-Requirements and key performance indicators 5G system concept Concept overview Extreme mobile broadband Massive machine-type communication Ultra-reliable machine-type communication - Dynamic radio access network 3- Lean system control plane - Localized contents and traffic flows -Spectrum toolbox -The 5G architecture -High-level requirements for the 5G architecture 9

#### **UNIT II**

#### **MACHINE-TYPE COMMUNICATIONS**

Introduction - Use cases and categorization of MTC - MTC requirements -Fundamental techniques for MTC - Data and control for short packets -Non-orthogonal access protocols - Massive MTC -Design principles -Technology components - Summary of mMTC features - Ultra-reliable low-latency MTC -Design principles - Technology components

#### UNIT III

#### SMALL CELLS FOR 5G MOBILE NETWORKS

Introduction- What are Small Cells? - WiFi and Femtocells as Candidate Small-Cell Technologies - WiFi and Femto Performance – Indoors vs Outdoors -Capacity Limits and Achievable Gains with Densification - Gains with Multi-Antenna Techniques -Gains with Small Cells - Mobile Data Demand - Approach and Methodology - Demand vs Capacity - Small-Cell Challenges

#### UNIT IV

#### THE 5G RADIO-ACCESS TECHNOLOGIES

Access design principles for multi-user communications-Orthogonal multiple-access systems- Spread spectrum multiple-access systems -Capacity limits of multiple-access methods - Multi-carrier with filtering: a new waveform - Filter-bank based multi-carrier - Universal filtered OFDM - Non-orthogonal schemes for efficient multiple access - Non-orthogonal multiple access (NOMA) -Sparse code multiple access (SCMA) - Interleave division multiple access (IDMA) - Radio access for dense deployments - OFDM numerology for small-cell deployments - Small-cell sub-frame structure - Radio access for V2X communication -Medium access control for nodes on the move - Radio access for massive machine-type communication - The massive access problem -Extending access reservation 198-Direct random access

#### UNIT V

#### **SECURITY FOR 5G COMMUNICATIONS**

Overview of a Potential 5G Communications

System Architecture -Security Issues and Challenges in 5G CommunicationsSystems - User Equipment - Access Networks -Mobile Operator's Core Network - External IP Networks

SON Evolution for 5G Mobile Networks -SON in UMTS and LTE -The Need for SON in 5G - Evolution towards Small-Cell Dominant HetNets -Towards a New SON Architecture for 5G -

|            | LECTURE | TUTORIAL | TOTAL |
|------------|---------|----------|-------|
|            | 45      | 0        | 45    |
| DEFEDENCES | -       |          |       |

#### REFERENCES

1. Jonathan Rodriguez" Fundamentals of 5G Mobile Networks", John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

2. AfifOsseiran, Jose F. Monserrat and Patrick Marsch, "5G Mobile and Wireless Communications Technology" Cambridge University Press, 2016

| SUBCODE                                                | SUB NAME                                                                                                                                                                                                                                | L                | Т                 | Р             | С               |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|---------------|-----------------|
| YWC302A                                                | QUALITYOFSERVICEINWIRELESSCOMMUNI<br>CATION                                                                                                                                                                                             | 3                | 0                 | 0             | 3               |
| UNIT I                                                 |                                                                                                                                                                                                                                         |                  |                   |               | 9               |
| QoS of real-tim<br>correction codin<br>- end-to-end de | <b>KETNETWORKS-ANINTRODUCTION</b><br>e services - delay - frame delay - packetization delay - int<br>g delay - jitter buffer delay - packet queuing delay - propagatio<br>ay objectives - delay variation or "jitter" - source of delay | n dela<br>variat | y - eff<br>tion - | ect of packet | delay<br>t loss |
|                                                        | vjective testing — mean opinion score (mos) - the "emodel" -<br>ility - "trunked channel" systems — offered traffic - load - uni<br>"                                                                                                   |                  | -                 |               |                 |
| UNIT II                                                |                                                                                                                                                                                                                                         |                  |                   |               | 9               |
| QOSINCELLU                                             | LARSYSTEMS-PARTI                                                                                                                                                                                                                        |                  |                   |               |                 |
| OoS Definition                                         | - Need for OoS Differentiation - OoS Standardization - Data                                                                                                                                                                             | Servic           | es Cla            | esific        | ation           |

QoS Definition - Need for QoS Differentiation - QoS Standardization - Data Services Classification IP-Based QoS Motivation of IP QoS Mechanisms QoS Paradigm sip - QoS Management in UMTS Networks Traffic Handling Mechanisms . Motivation for QoS in Cellular systems - Service

9

9

Experience - Radio Network Performance - Network Capacity - Network Design - Application Design - Service - Enhancing Technology"

#### UNIT III

#### **QOSINCELLULARSYSTEMS-PARTII**

QoS Architecture in 3GPP and 3GPP 2 End-to-End QoS Introduction Evolution of QoS in 3GPP Releases IP Multimedia Subsystem (IMS) - 3GPP versus 3GPP2 in QoS End-User Performance Analysis - Characterization of End-User Performance - Data Link Effects - Transport and Application Layer Effects - Impact of Network Dimensioning in the Service Performance".

#### UNIT IV

# 9

9

9

# **QUALITYOFSERVICEINADHOCNETWORKS** Challenges behind QOS Provisioning in Ad hoc networks - Routing in mobile ad hoc networks - Routing with quality of service constraints - Quality of service routing in ad hoc networks"

#### UNIT V

#### QOSINWIRELESSSENSORNETWORKS

WSN challenges - Difficulties of QOS provisioning in WSN - QOS Performance metrics in WSN - Mechanisms to Achieve QOS in WSN – Resource Constraints - Platform Heterogeneity - Dynamic Network Topology - Mixed Traffic - Power, bandwidth, memory size constraints - Application-specific QoS, Network QoS, QoS Aware Communication Protocols - QoS-Aware Power Management"

|           | LECTURE | TUTORIAL | TOTAL |
|-----------|---------|----------|-------|
|           | 45      | 0        | 45    |
| DEPENDING |         |          |       |

#### REFERENCES

1. KunI.Park, Ph.D. "QosInPacketNetworks" 2005 SpringerscienceBoston

2. AmitabhMishra"SecurityAndQualityOfServiceInAdHocWireless

Networks"CambridgeUniversityPress2008

- 3. G.GómezandR.Sánchez"End-to-
- EndQuality of Service over Cellular Networks" 2005 John Wiley & Sons Ltden Strategy Service over Cellular Networks Service over Service ove
- 4. Hwee-XianTan"Qualityofserviceinwirelesssensornetworks".

| SUBCODE | SUB NAME                           | L | Т | P | C |
|---------|------------------------------------|---|---|---|---|
| YWC302B | <b>TELECOM NETWORK PLANING AND</b> | 3 | 0 | 0 | 3 |
|         | MANEGEMENT                         |   |   |   |   |
| UNIT I  |                                    |   | • |   | 9 |

#### OVERVIEW OF NETWORK PLANNING

Evolution of the Telecom context -Requirements to the planners- Typical network planning tasks-Network planning processes-Overall plans per network layer and technology- Solution mapping per scenario-Relation among technical, business and operational plans-Planning issues and trends when reaching NGN

#### UNIT II

9

#### SERVICE DEFINITION AND FORECASTING AND TRAFFIC CHARACTERIZATION

Customer segments - Services definition and characterization. Categories - Services mapping to customer segment - Service forecasting per segment - Service bundling - Service security Traffic units for service characterization - Reference periods for dimensioning - Traffic aggregation process - Origin/destination of the traffic flows in Local, Metropolitan, Regional, National, Continental and Intercontinental networks - Traffic models."

UNIT III

#### ECONOMICAL MODELLING AND BUSINESS PLANS

Business planning - Economic modelling for planning- Economic concepts and terms- Economic modelling for services- Cycle life amortization versus modernization -

9

9

#### UNIT IV

#### NETWORK DESIGN, DIMENSIONING AND OPTIMIZATION

Core Network -Access Network -Basic optimisation methods - Specific Issues of Radio Network Planning-Special issues for rural network

#### UNIT V

#### DATA GATHERING

Geographical information for the studied area -Demand of services in relative penetration per customer category -Demand of traffic, usually expressed as traffic matrices-Information for the existing network and infrastructure-Telecommunication equipment characteristics and capabilities-QOS requirements-Economical and Operational data

|            | LECTURE | TUTORIAL | TOTAL |
|------------|---------|----------|-------|
|            | 45      | 0        | 45    |
| REFERENCES |         |          |       |

#### 1. ITU Telecom Network Planning Reference Manual - Draft version 4.1 January 2007

- 2. Anandalingam, G., Raghavan, S. (Eds.), "Telecommunications Network Design and Management" Springer US, 2003.
- 3. Thomas G. Robertazzi, "Planning Telecommunication Networks", John Wiley & Sons, Inc., 1998

| SUBCODE                                                                                     | SUB N                                                                                   | AME                                                                                                      |                                                          |                                 |                                                      | L                                | Т                      | Р               | C                                |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------|------------------------------------------------------|----------------------------------|------------------------|-----------------|----------------------------------|
| YWC302C                                                                                     | REGU                                                                                    | LATION AND                                                                                               | POLICY IN                                                | THE                             |                                                      | 3                                | 0                      | 0               | 3                                |
|                                                                                             | TELE                                                                                    | COMMUNICAT                                                                                               | <b>FIONS IND</b>                                         | USTRY                           |                                                      |                                  |                        |                 |                                  |
| UNIT I                                                                                      |                                                                                         |                                                                                                          |                                                          |                                 |                                                      |                                  |                        |                 | 9                                |
| THE BIG PIC                                                                                 | TURE: IN                                                                                | <b>FRODUCTION</b>                                                                                        | TO TELE                                                  | COMMUN                          | NICATION                                             | NS R                             | EGUI                   | <b>ATI</b>      | DN -                             |
| Introduction - '                                                                            | Technology                                                                              | in Context V                                                                                             | Why Regula                                               | te?-Regulat                     | ory Organ                                            | izatio                           | ns- In                 | ternat          | ional                            |
|                                                                                             |                                                                                         | d - A LEVEL P                                                                                            |                                                          |                                 |                                                      |                                  |                        |                 |                                  |
| COMPETITIO                                                                                  | <b>N-</b> Competi                                                                       | tive Markets -S                                                                                          | Sector Regu                                              | lation and                      | Competitio                                           | on La                            | w -C                   | ompet           | titior                           |
| Analysis - Contr                                                                            |                                                                                         |                                                                                                          |                                                          |                                 | •                                                    |                                  |                        | •               |                                  |
| UNIT II                                                                                     |                                                                                         | •••••••                                                                                                  |                                                          |                                 |                                                      |                                  |                        |                 | 9                                |
|                                                                                             |                                                                                         |                                                                                                          |                                                          |                                 |                                                      | ~ ~ ~                            |                        |                 | L                                |
|                                                                                             |                                                                                         | T: LICENSING                                                                                             |                                                          |                                 |                                                      |                                  |                        |                 |                                  |
|                                                                                             |                                                                                         | horization - Lic                                                                                         | 0 0                                                      |                                 | • •                                                  | -                                | •                      |                 | ises                             |
| Authorization P                                                                             | minainlag and                                                                           | D                                                                                                        |                                                          |                                 |                                                      |                                  |                        |                 |                                  |
| Global Standar                                                                              | ·                                                                                       |                                                                                                          | cial Authoriz                                            | zation-Situa                    | tions- Lice                                          | nsing                            | for Co                 | onverg          | gence                            |
|                                                                                             | rds Making a                                                                            | nd Compliance-                                                                                           |                                                          |                                 |                                                      | Ū                                |                        | U U             |                                  |
|                                                                                             | rds Making a                                                                            |                                                                                                          |                                                          |                                 |                                                      | Ū                                |                        | U U             |                                  |
| GOING MOB                                                                                   | rds Making a<br>BILE: MAN                                                               | nd Compliance-                                                                                           | SPECTRU                                                  | M Introduc                      | ction - Cł                                           | angir                            | ig De                  | mands           | s for                            |
| GOING MOE<br>Spectrum-Plann                                                                 | rds Making a<br>BILE: MAN<br>ing and Tec                                                | nd Compliance-<br>IAGING THE                                                                             | <b>SPECTRU</b><br>s -Mechanis                            | M Introduc                      | ction - Cł                                           | angir                            | ig De                  | mands           | s for                            |
| GOING MOE<br>Spectrum-Plann                                                                 | rds Making a<br>BILE: MAN<br>ing and Tec                                                | nd Compliance-<br>IAGING THE<br>chnical Standard                                                         | <b>SPECTRU</b><br>s -Mechanis                            | M Introduc                      | ction - Cł                                           | angir                            | ig De                  | mands           | s for                            |
| GOING MOE<br>Spectrum-Plann<br>Monitoring Spec<br>UNIT III                                  | rds Making a<br>BILE: MAN<br>ing and Tec<br>ctrum- Flexib                               | nd Compliance-<br>IAGING THE<br>chnical Standard                                                         | SPECTRU<br>s -Mechanis                                   | M Introduc<br>sms for As        | ction - Ch<br>ssigning ar                            | angir<br>nd Pri                  | ng De                  | mands<br>Spectr | s for<br>um<br>9                 |
| GOING MOE<br>Spectrum-Plann<br>Monitoring Spec<br>UNIT III<br>FROM CAPAC                    | rds Making a<br>BILE: MAN<br>ing and Tec<br>ctrum- Flexit                               | nd Compliance-<br>AGING THE<br>chnical Standard<br>bility in Spectrum                                    | SPECTRU<br>s -Mechanis                                   | M Introduc<br>sms for As        | ction - Ch<br>ssigning ar                            | angir<br>nd Pri                  | ng De<br>icing         | mands<br>Spectr | s for<br>rum<br>9<br>TION        |
| GOING MOE<br>Spectrum-Plann<br>Monitoring Spec<br>UNIT III<br>FROM CAPAC<br>Introduction-Ac | rds Making a<br>BILE: MAN<br>ing and Tec<br>ctrum- Flexit<br>CITY TO CO<br>cess and Int | nd Compliance-<br>AGING THE<br>chnical Standard<br>bility in Spectrum<br>DNNECTIVITY<br>terconnection -F | SPECTRU<br>s -Mechanis<br>n<br>7: NETWOI<br>forms of Int | M Introduces for As<br>RK ACCES | ction - Ch<br>ssigning ar<br>SS AND IN<br>on-Setting | angir<br>nd Pri<br>TER<br>Interc | ng De<br>icing<br>CONI | mands<br>Spectr | s for<br>rum<br>9<br><b>TION</b> |
| GOING MOE<br>Spectrum-Plann<br>Monitoring Spec<br>UNIT III<br>FROM CAPAC<br>Introduction-Ac | rds Making a<br>BILE: MAN<br>ing and Tec<br>ctrum- Flexit<br>CITY TO CO<br>cess and Int | nd Compliance-<br>AGING THE<br>chnical Standard<br>bility in Spectrum                                    | SPECTRU<br>s -Mechanis<br>n<br>7: NETWOI<br>forms of Int | M Introduces for As<br>RK ACCES | ction - Ch<br>ssigning ar<br>SS AND IN<br>on-Setting | angir<br>nd Pri<br>TER<br>Interc | ng De<br>icing<br>CONI | mands<br>Spectr | s for<br>rum<br>9<br><b>TION</b> |
| GOING MOE<br>Spectrum-Plann<br>Monitoring Spec<br>UNIT III<br>FROM CAPAC<br>Introduction-Ac | rds Making a<br>BILE: MAN<br>ing and Tec<br>ctrum- Flexit<br>CITY TO CO<br>cess and Int | nd Compliance-<br>AGING THE<br>chnical Standard<br>bility in Spectrum<br>DNNECTIVITY<br>terconnection -F | SPECTRU<br>s -Mechanis<br>n<br>7: NETWOI<br>forms of Int | M Introduces for As<br>RK ACCES | ction - Ch<br>ssigning ar<br>SS AND IN<br>on-Setting | angir<br>nd Pri<br>TER<br>Interc | ng De<br>icing<br>CONI | mands<br>Spectr | s for<br>rum<br>9<br><b>TION</b> |

**FROM AVAILABILITY TO USE: UNIVERSAL ACCESS AND SERVICE** -Trends and Approaches-Policy Rationale-Types of Universal Service Regimes-Reforming Universal Access - Strategies for Developing Economies -Digital Literacy and e-Inclusion -

# UNIT V 9 A DIGITAL FUTURE: REGULATORY CHALLENGES IN A BRAVE NEW WORLD Convergence, Ubiquity, and Web 2.0 - Regulating Digital Content- Balancing Intellectual Property Rights-. Neutrality of Access- Protecting Privacy- Cybersecurity Concerns - Green ICT-Regulation in a Global Era

|            | LECTURE | TUTORIAL | TOTAL |
|------------|---------|----------|-------|
|            | 45      | 0        | 45    |
| REFERENCES | -       |          |       |

1. Colin Blackman and Lara Srivastava,"Telecommunications Regulation Handbook, Tenth Anniversary Edition, The International Bank for Reconstruction and Development / The World Bank, InfoDev, and The International Telecommunication Union, 2011

#### 4. Curriculum and Syllabusof the programme after revision–M.Tech

|                              | CODE<br>NO. | COURSE TITLE                                  | L | Т | Р | C | Η |
|------------------------------|-------------|-----------------------------------------------|---|---|---|---|---|
| PCC                          | YWC101      | Fundamentals of wireless communication        | 3 | 0 | 0 | 3 | 3 |
| PCC                          | YWC102      | Advanced Digital Communication                | 3 | 1 | 0 | 4 | 4 |
| PCC                          | YWC103      | Advanced Technologies In Wireless<br>Networks | 3 | 0 | 0 | 3 | 3 |
| PEC                          | YWC104*     | Elective I                                    | 3 | 0 | 0 | 3 | 3 |
| PEC                          | YWC105*     | Elective-II                                   | 3 | 0 | 0 | 3 | 3 |
| PCC-L                        | YWC106      | Digital Communication Lab                     | 0 | 0 | 2 | 2 | 4 |
| AICTE<br>Mandatory<br>Course | YRM107      | Research Methodology and IPR                  | 2 | 0 | 0 | 2 | 2 |
| AICTE -<br>Audit             | YEGOE1      | English for Research Paper Writing            | 2 | 0 | 0 | 0 | 2 |
| PCC-L                        | YWC 109     | Wireless Networks Lab                         | 0 | 0 | 2 | 2 | 4 |

#### SEMESTER I

#### **Total Hours:23**

#### **Total Credits: 22**

#### SEMESTER II

|     | CODE<br>NO. | COURSE TITLE                           | L | Т | Р | С | Н |
|-----|-------------|----------------------------------------|---|---|---|---|---|
| PCC | YWC201      | MultiCarrierCommunication              | 3 | 0 | 0 | 3 | 3 |
| PCC | YWC202      | MicrowavePassive and Active<br>Systems | 3 | 0 | 0 | 3 | 3 |
| PCC | YWC203      | AdvancedRadiationSystems               | 3 | 0 | 0 | 3 | 3 |

| PEC     | YWC204* | Elective-III                | 3 | 0 | 0 | 3 | 3 |
|---------|---------|-----------------------------|---|---|---|---|---|
| PEC     | YWC205* | Elective IV                 | 3 | 0 | 0 | 3 | 3 |
| PCC-L   | YWC206  | Radio Frequency Systems lab | 0 | 0 | 2 | 2 | 4 |
| Proj    | YWC207  | MiniProject                 | 0 | 0 | 2 | 2 | 4 |
| AICTE - | YPSOE1  | Constitution of India       | 2 | 0 | 0 | 0 | 2 |
| Audit   |         |                             |   |   |   |   |   |

#### **Total Hours: 21**

#### **Total Credits: 19**

|      | CODE             | COURSE TITLE                                                                                                                                        | L | Т | Р  | С  | Н  |
|------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|----|----|
|      | NO.              |                                                                                                                                                     |   |   |    |    |    |
| Proj | YWC301           | Dissertation Phase – I                                                                                                                              | 0 | 0 | 10 | 10 | 20 |
| PEC  | YWC302           | Elective -V                                                                                                                                         | 0 | 0 | 0  | 3  | 3  |
| OEC  | Open<br>Elective | <ol> <li>Business Analytics</li> <li>Industrial Safety</li> <li>Operations Research</li> <li>Cost Management of<br/>Engineering Projects</li> </ol> | 3 | 0 | 0  | 3  | 3  |

#### **Total Hours: 26**

#### **Total Credits: 16**

#### **SEMESTER IV**

|      | CODE<br>NO. | COURSE TITLE            | L | Т | Р  | С  | Н  |
|------|-------------|-------------------------|---|---|----|----|----|
| Proj | YWC401      | Dissertation Phase – II | 0 | 0 | 16 | 16 | 32 |

#### **Total Hours: 32**

#### **Total Credits: 16**

#### **Overall Credits:73**

Legend PCC – Professional Core Course PEC- Professional Elective Course OEC – Open Elective Course PCC-L – Professional Core Course - Lab

| S.No | Course Type                    | Symbol            | Credits |
|------|--------------------------------|-------------------|---------|
| 1    | Professional Core Course       | PCC               | 19      |
| 2    | Professional Elective Course   | PEC               | 15      |
| 3    | Open Elective Course           | OEC               | 3       |
| 4    | Professional Core Course - Lab | PCC-L             | 6       |
| 5    | Project                        | Proj              | 28      |
| 5    | AICTE Course - Audit           | ACIET –Audit      | 0       |
| 6    | AICTE Course - Mandatory       | ACIET – Mandatory | 2       |
|      | Total                          |                   | 73      |

#### Table 3 Distribution of credits and course types

#### LIST OF ELECTIVES

| Sl.No | CodeNo     | CourseTitle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L | Т | Р | С |  |  |  |  |  |  |
|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|--|--|--|--|--|--|
|       | ELECTIVE-I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |   |  |  |  |  |  |  |
| 1     | YWC104A    | ELECTIVE-Idern Radar communication300bile Satellite Communication300vancedDigitalSignalProcessing300e space optics300ELECTIVE-IIthematics for Communication Systems30MEMS300ection and Estimation Theory30ection and Estimation Theory30ection and Estimation Theory30method Communication30MO Communication30MO Communication30teless Network Security30MO Communication30the Performance Wireless Networks30the Computing300the Computing300the Computing300the Computing300the Defined Radio300the Defined Radio300the Of Service in Wireless Communication30the Of Service in Wireless Communication30teleCTIVE-V1300ecom Network Planning and Management30o00 |   |   | 3 |   |  |  |  |  |  |  |
| 2     | YWC104B    | Mobile Satellite Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 | 0 | 0 | 3 |  |  |  |  |  |  |
| 3     | YWC104C    | AdvancedDigitalSignalProcessing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 | 0 | 0 | 3 |  |  |  |  |  |  |
| 4     | YWC104D    | Free space optics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 0 | 0 | 3 |  |  |  |  |  |  |
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | · |   |   |  |  |  |  |  |  |
| 1     | YWC105A    | Mathematics for Communication Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |   | 3 |  |  |  |  |  |  |
| 2     | YWC105B    | RF MEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ | 0 | 0 | 3 |  |  |  |  |  |  |
| 3     | YWC105C    | Antenna Systems for Wireless Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 | 0 | 0 | 3 |  |  |  |  |  |  |
| 4     | YWC105D    | Detection and Estimation Theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 | 0 | 0 | 3 |  |  |  |  |  |  |
|       | 1          | ELECTIVE-III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |   |   |  |  |  |  |  |  |
| 1     | YWC204A    | Wireless Network Security                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 | 0 | 0 | 3 |  |  |  |  |  |  |
| 2     | YWC204B    | MIMO Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 | 0 | 0 | 3 |  |  |  |  |  |  |
| 3     | YWC 204C   | High Performance Wireless Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 | 0 | 0 | 3 |  |  |  |  |  |  |
| 4     | YWC204D    | Internet of Things                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 | 0 | 0 | 3 |  |  |  |  |  |  |
|       |            | ELECTIVE-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |   |  |  |  |  |  |  |
| 1     | YWC205A    | Soft Computing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 0 |   | 3 |  |  |  |  |  |  |
| 2     | YWC205B    | Millimeter Wave Wireless Communications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 | 0 | 0 | 3 |  |  |  |  |  |  |
| 3     | YWC 205C   | Software Defined Radio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 | 0 | 0 | 3 |  |  |  |  |  |  |
| 4     | YWC205D    | Fundamentals of 5G Mobile and Wireless<br>Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 | 0 | 0 | 3 |  |  |  |  |  |  |
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |   |  |  |  |  |  |  |
| 1     | YWC302A    | Quality of Service in Wireless Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 | 0 | 0 | 3 |  |  |  |  |  |  |
| 2     | YWC302B    | Telecom Network Planning and Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 0 | 0 | 3 |  |  |  |  |  |  |
| 3     | YWC 302C   | Regulation and Policy in the Telecommunications<br>Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 | 0 | 0 | 3 |  |  |  |  |  |  |

#### **SEMESTER-I**

| COURSE CODE |     |          | COURSE NAME                                                                            |                         | L             | Т      | Р             | С      |  |  |  |
|-------------|-----|----------|----------------------------------------------------------------------------------------|-------------------------|---------------|--------|---------------|--------|--|--|--|
| YWC         | 101 |          | FUNDAMENTALS OF WIRELESS<br>COMMUNICATION                                              |                         |               |        | 0 3<br>T P    |        |  |  |  |
| С           | Р   | Α        |                                                                                        |                         |               | Т      | Р             | Η      |  |  |  |
| 2.75        | 0   | 0.25     |                                                                                        |                         | 3             | 0      | 0             | 3      |  |  |  |
|             |     |          | f the course, a student will be able to                                                | DOMAIN                  | TE            | VEL    |               |        |  |  |  |
| C01         |     |          | various wireless communication application                                             | Cognitive               | Understanding |        |               |        |  |  |  |
|             | a   | nd infer | mathematical concepts in the modelling of sion of radio waves.                         | Cognitive               | Understanding |        |               |        |  |  |  |
| CO2         | С   |          | he statistical modelling of channels and<br>various parameters associated with channel | Cognitive               | Un            | dersta | anding        | r<br>> |  |  |  |
| CO3         |     |          | nd compare capacities of various channel ncountered in wireless communication          |                         |               |        | Understanding |        |  |  |  |
| CO4         | C   | lassify  | various diversity schemes                                                              | rsity schemes Cognitive |               | dersta | anding        | ,      |  |  |  |
| CO5         | E   | xplain a | and compare various multiuser systems                                                  | Cognitive               | Understanding |        |               | ;      |  |  |  |

#### UNIT I

#### INTRODUCTION AND RADIO WAVE PROPAGATION

History of Wireless Communications - Wireless Vision - Technical Issues - Current Wireless Systems - Cellular Telephone Systems - Cordless Phones- Wireless LANs - Wide Area Wireless Data Services- Broadband Wireless Access -Paging Systems - Satellite Networks Low-Cost Low-Power Radios: Bluetooth and Zigbee -Ultrawideband Radios- The Wireless Spectrum - Methods for Spectrum Allocation -Spectrum Allocations for Existing System. Path Loss and Shadowing Radio Wave Propagation -Transmit and Receive Signal Models -Free-Space Path Loss Ray Tracing -Two-Ray Model Ten-Ray Model (Dielectric Canyon) - General Ray Tracing Local Mean Received Power-Empirical Path Loss Models -The Okumura Model -Hata Model COST 231 -Extension to Hata Model Piecewise Linear (Multi-Slope) Model Indoor Attenuation Factors Simplified Path Loss Model - Shadow Fading -Combined Path Loss and Shadowing . Outage Probability under Path Loss and Shadowing.

#### UNIT II

#### STATISTICAL MULTIPATH CHANNELS

Models Time-Varying Channel Impulse Response -Narrowband Fading -Models Autocorrelation, Cross Correlation, and Power Spectral Density -Envelope and Power Distributions Level -Crossing Rate and Average Fade Duration- Finite State Markov Channels -Wideband Fading Models Power Delay Profile Coherence Bandwidth -Doppler Power Spectrum and Channel Coherence Time Transforms for Autocorrelation and Scattering Functions -Discrete-Time Model Space-Time Channel Models

#### UNIT III

#### CAPACITY OF WIRELESS CHANNELS

Capacity in AWGN Capacity of Flat-Fading Channels Channel and System Model Channel Distribution Information (CDI) Known Channel Side Information at Receiver Channel Side Information at Transmitter and Receiver Capacity with Receiver Diversity Capacity Comparisons -Capacity of Frequency-Selective Fading Channels - Time-Invariant Channels Time-Varying Channels - (Broadcast) Channel Capacity - Channel Model Capacity in AWGN -Common Data Capacity in Fading - Capacity with Multiple Antennas Uplink (Multiple Access)- Channel Capacity Capacity in AWGN - Capacity in Fading - Capacity with Multiple Antennas -Uplink/Downlink Duality Multiuser Diversity -MIMO Multiuser Systems

#### UNIT IV

#### POINT TO POINT COMMUNICATION, DETECTION, DIVERSITY

Non-coherent detection, Coherent detection From BPSK to QPSK: exploiting the degrees of freedom Diversity, Time diversity Repetition coding,- Time diversity code design criterion, Time diversity in GSM. Antenna diversity- Receive diversity Transmit diversity, space-time codes MIMO, MIMO

9

9

9

schemes Frequency diversity-Basic concept -Single-carrier with ISI equalization -Direct-sequence spread-spectrum, Orthogonal frequency division multiplexing ,Communication over frequencyselective channels. Impact of channel uncertainty -Non-coherent detection for DS spread-spectrum, Channel estimation, other diversity scenarios

9

#### UNIT V

#### **MULTIUSER SYSTEMS**

Multiuser Channels: The Uplink and Downlink - Multiple Access - Frequency-Division Multiple Access (FDMA) -Time-Division Multiple Access (TDMA) - Code-Division Multiple Access (CDMA) - Space-Division Hybrid Techniques -Random Access - Pure ALOHA Slotted ALOHA -Carrier Sense Multiple Access -Scheduling -Power Control - Downlink

|            | LECTURE | TUTORIAL | TOTAL |
|------------|---------|----------|-------|
|            | 45      | 0        | 45    |
| REFERENCES |         |          |       |

Andrea Goldsmith, Wireless Communications, Cambridge University Press, 2005 David Tse and Pramod Viswanath, Fundamentals of WirelessCommunication, Cambridge University Press, 2005.

S.Rappaport "Wireless Communication" Pearson Education, 2002

ee W.C.Y., "Mobile Communications Engineering: Theory and Applications", Second Edition, McGraw-Hill, New York, 1998.

chiller, "Mobile Communications", Pearson Education Asia Ltd., 2000

#### **CO Vs PO Mapping**

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|--------|-----|-----|-----|-----|-----|-----|-----|
| CO1    | 3   | 3   | 3   | 1   | 1   | 1   | 1   |
| CO2    | 3   | 3   | 3   | 3   |     | 1   | 1   |
| CO3    | 3   | 3   | 3   | 3   | 2   | 1   | 1   |
| CO4    | 3   | 3   | 3   | 1   |     | 1   | 1   |
| CO5    | 3   | 3   | 3   | 1   | 2   | 1   | 1   |
|        | 15  | 15  | 15  | 9   | 5   | 5   | 5   |
| Scaled | 3   | 3   | 3   | 2   | 1   | 1   | 1   |
| Values |     |     |     |     |     |     |     |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| YWO  | C102 |      | ADVANCEDDIGITALCOMMUNICATION | 3 | 1 | 0 | 4 |
|------|------|------|------------------------------|---|---|---|---|
| С    | P    | Α    |                              | L | Т | Р | H |
| 2.75 | 0    | 0.25 |                              | 3 | 1 | 0 | 4 |

| COU |         |     |         |     |    |         |           | DOMAIN    | LEVEL         |
|-----|---------|-----|---------|-----|----|---------|-----------|-----------|---------------|
| CO1 | Define  | and | outline | PSD | of | various | modulated | Cognitive | Understanding |
|     | wavefor | ms. |         |     |    |         |           |           |               |

| Ī | CO2        | Explain and compare optimum detection in coherent      | Cognitive | Understanding |  |
|---|------------|--------------------------------------------------------|-----------|---------------|--|
|   |            | communication systems.                                 |           |               |  |
|   | CO3        | Explain and compare optimum detection in non-          | Cognitive | Understanding |  |
|   |            | coherent communication systems.                        | -         | _             |  |
|   | <b>CO4</b> | Illustrate the effects of CFO and CTO in communication | Cognitive | Understanding |  |
|   |            | systems and apply suitable solution to rectify them.   | _         |               |  |
|   | CO5        | Demonstrate the application of error control coding in | Cognitive | Understanding |  |
|   |            | detection and correction of errors.                    |           |               |  |
| l | UNIT I     |                                                        |           | 12            |  |
|   |            |                                                        |           |               |  |

#### **DIGITAL MODULATION SCHEMES**

Representation of Digitally Modulated Signals - Memoryless Modulation Methods -Pulse Amplitude Modulation (PAM) / -Phase Modulation /- Quadrature Amplitude-Modulation / -Multidimensional Signaling-Signaling Schemes with Memory -Continuous-Phase Frequency-Shift Keying-(CPFSK) / -Continuous-Phase Modulation (CPM)- Power Spectrum of Digitally Modulated Signals -Power Spectral Density of a Digitally Modulated Signal-with Memory / - Power Spectral Density of Linearly-Modulated Signals / - Power Spectral Density of Digitally Modulated Signals with Finite Memory -Power Spectral Density of Modulation Schemes with a Markov Structure - Power Spectral Densities of CPFSK and CPM Signals

#### UNIT II

#### **OPTIMUM RECEIVERS FOR AWGN CHANNELS - I**

Waveform and Vector Channel Models -Optimal Detection for a General Vector Channel - Waveform and Vector AWGN Channels -Optimal Detection for the Vector AWGN Channel / -Implementation of the Optimal Receiver for AWGN Channels / A Union Bound on the Probability of Error of Maximum Likelihood Detection -Optimal Detection and Error Probability for Band-Limited Signaling - Optimal Detection and Error Probability for ASK or PAM Signaling /- Optimal Detection and Error Probability for PSK Signaling / - Optimal Detection and Error Probability for Power-Limited Signaling - Demodulation and Detection - Optimal Detection and Error Probability for Power-Limited Signaling - Optimal Detection and Error Probability for Orthogonal Signaling / - Optimal Detection and Error Probability for Biorthogonal Signaling / - Optimal Detection and Error Probability for Simplex Signaling

#### UNIT III

#### **OPTIMUM RECEIVERS FOR AWGN CHANNELS – II**

Optimal Detection in Presence of Uncertainty: Noncoherent Detection -Noncoherent Detection of Carrier Modulated Signals / Optimal Noncoherent Detection of FSK Modulated Signals / Error Probability of Orthogonal Signaling with Noncoherent Detection / Probability of Error for Envelope Detection of Correlated Binary Signals / Differential PSK (DPSK)- A Comparison of Digital Signaling Methods - Bandwidth and Dimensionality -Lattices and Constellations Based onLattices -An Introduction to Lattices / Signal Constellations from Lattices -Detection of Signaling Schemes

12

with Memory - The Maximum Likelihood Sequence Detector - Optimum Receiver for CPM Signals -Optimum Demodulation and Detection of CPM /- -Performance of CPM Signals / - Suboptimum Demodulation and Detection of CPM Signals - Performance Analysis for Wireline and Radio Communication Systems -Regenerative Repeaters / Link Budget Analysis in Radio Communication Systems

12

12

#### UNIT IV

#### CARRIER AND SYMBOL SYNCHRONIZATION

Signal Parameter Estimation - The Likelihood Function / - Carrier Recovery andSymbol Synchronization in Signal Demodulation- Carrier Phase Estimation -- Maximum-Likelihood Carrier Phase Estimation /-The Phase-Locked Loop / -Effect of AdditiveNoise on the Phase Estimate / - Decision-Directed Loops / Non-Decision-Directed Loops- Symbol Timing Estimation --Maximum-Likelihood Timing Estimation /-Non-Decision-Directed Timing Estimation- Joint Estimation of Carrier Phase and Symbol Timing -Performance Characteristics of ML Estimators

UNIT V

#### ERROR CONTROL

Coded waveforms for fading channels. - Viterbi decoding of convolutional codes and lower boundssoft and hard decision decoding of binary block codes-low-density parity-check (LDPC), Low Complexity Parity Check (LCPC), cyclic redundancy check (CRC), Polar Codes,

|         |                                       | LECTURE                                                                | PRACTICAL           | TOTAL |  |  |  |  |  |  |  |
|---------|---------------------------------------|------------------------------------------------------------------------|---------------------|-------|--|--|--|--|--|--|--|
|         |                                       | 45                                                                     | 15                  | 60    |  |  |  |  |  |  |  |
| REFEREN | ICES                                  |                                                                        | ·····•              |       |  |  |  |  |  |  |  |
| 1.      | M.K.Simon, S.M.Hinedi and W.C.Li      | K.Simon, S.M.Hinedi and W.C.Lindsey, Digital communication techniques; |                     |       |  |  |  |  |  |  |  |
|         | Signalling and detection, Prentice Ha | ll India, New Delhi.                                                   | 1995.               |       |  |  |  |  |  |  |  |
| 2.      | S Simon Haykin, Digital communicat    | tions, John Wiley ar                                                   | nd sons, 2007       |       |  |  |  |  |  |  |  |
| 3.      | Bernard Sklar,"Digital Communication  | ons Fundamentals an                                                    | nd Applications", 2 | nd    |  |  |  |  |  |  |  |
| 4.      | Edition, Prentice Hall PTR, Upper Sa  | dle River, New Jers                                                    | ey,2002.            |       |  |  |  |  |  |  |  |
| _       |                                       |                                                                        | - rd                |       |  |  |  |  |  |  |  |

- 5. B.P.Lathi Modern digital and analog communication systems, 3<sup>rd</sup> Edition, Oxford
- 6. University press 1998.
- 7. Haykins, "Communication Systems", 5th ed., John Wiley, 2008. [Unit-I, III, V].
- 8. M. K. Simon and M. S. Alouini," Digital Communication over Fading Channels", Wiley-Interscience, 2nd Edition 2005.
- 9. R. G. Gallager, "Principles of Digital Communication", Cambridge University Press, 2008.

#### CO Vs PO Mapping

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |
|--------|-----|-----|-----|-----|-----|-----|------------|
| CO1    | 3   | 3   | 3   | 1   | 1   | 1   | 1          |
| CO2    | 3   | 3   | 3   | 1   |     | 1   | 1          |
| CO3    | 3   | 3   | 3   | 1   | 2   | 1   | 1          |
| CO4    | 3   | 3   | 3   | 1   |     | 1   | 1          |
| CO5    | 3   | 3   | 3   | 3   | 2   | 1   | 1          |
|        | 15  | 15  | 15  | 7   | 5   | 5   | 5          |
| Scaled | 3   | 3   | 3   | 2   | 1   | 1   | 1          |
| values |     |     |     |     |     |     |            |

#### $1-5 \rightarrow 1$ , $6-10 \rightarrow 2$ , $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COURS                | E CODE                    | COURSE NAME                                                                                                                                                   | COURSE NAME   |        |         |         |          |  |
|----------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|---------|---------|----------|--|
| YWC10                |                           | ADVANCED TECHNOLOGIES IN WIREI                                                                                                                                | 3             | 0      | 0       | C<br>3  |          |  |
| ~ 5                  |                           | NETWORKS                                                                                                                                                      |               | -      | -       |         |          |  |
| C P<br>2.75 (        |                           |                                                                                                                                                               |               | L      | Τ       | P       | H        |  |
| <b>i</b>             |                           | the course, a student will be able to:                                                                                                                        |               |        |         |         |          |  |
|                      | •                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                         |               |        |         |         |          |  |
|                      | SE OUTC                   |                                                                                                                                                               | DOMAIN        |        | EVEL    |         |          |  |
| <b>CO1</b>           | · ·                       | the architecture, functioning, protocols and es of wireless communication networks.                                                                           | Cognitive     | U      | ndersta | anding  | F        |  |
| CO2                  |                           | rate their understanding on the functioning of                                                                                                                | Cognitive     | U      | ndersta | anding  |          |  |
|                      | Internet P                | Protocols and Wireless security and standards.                                                                                                                | •             |        |         |         |          |  |
| CO3                  | · ·                       | he architecture, functioning and protocols of                                                                                                                 | Cognitive     | Uı     | ndersta | anding  |          |  |
| <b>CO4</b>           |                           | Sensor networks.<br>different Wideband Wireless technologies                                                                                                  | Cognitive     | U      | ndersta | anding  | ,        |  |
| 001                  | -                         | vireless communication systems.                                                                                                                               | Cogintive     | Ċ,     | licerbu | manne   |          |  |
| <b>CO5</b>           |                           | rate an ability explain wireless networks                                                                                                                     | Cognitive     | U      | ndersta | anding  |          |  |
|                      | standards                 | using related tools                                                                                                                                           |               |        |         |         |          |  |
| UNIT I               |                           | A NETWORKS                                                                                                                                                    |               |        |         |         | 9        |  |
| protocol<br>and chai | stack of II<br>llenges of | BEE and WBAN: Standard and architecture;<br>EEE 802.11 - physical layer and MAC layer me<br>WiMAX - network architecture - protocol sta<br>11 and IEEE 802.16 | chanism; Wi   | iMAX   | K: BW   | A - is  | sues     |  |
| UNIT I               | [                         |                                                                                                                                                               |               |        |         |         | 9        |  |
| WIREL                | ESS INTE                  | RNET                                                                                                                                                          |               |        |         |         | L        |  |
| IP for w             | ireless don               | nain - mobile IP - IPv6 advancements - mobility                                                                                                               | managemer     | nt fun | ctions  | - loca  | ution    |  |
| manager              | nent - regis              | stration and handoffs; TCP in wireless domain: 7                                                                                                              | CP over wir   | eless  | - type  | es - mo | obile    |  |
|                      | Ŭ                         | t of mobility; Wireless security and standards.                                                                                                               |               |        |         |         |          |  |
| UNIT I               | •                         |                                                                                                                                                               |               |        |         |         | 9        |  |
| WIREL                | ESS SENS                  | SOR NETWORK                                                                                                                                                   |               |        |         |         |          |  |
|                      |                           | llenges - characteristics and architecture of wirel                                                                                                           | ess sensor ne | etwor  | k - ele | esifics | ation    |  |
|                      | -                         |                                                                                                                                                               |               |        |         | 3511100 | uon      |  |
| - MAC I              | protocols - 1             | routing schemes - security - enabling technologie                                                                                                             | es for sensor | netwo  | Jrk.    |         |          |  |
| UNIT I               | V                         |                                                                                                                                                               |               |        |         |         | 9        |  |
|                      |                           |                                                                                                                                                               |               |        |         |         | <u>l</u> |  |

#### WIDEBAND WIRELESS TECHNOLOGIES

UWB Radio Communication: Fundamentals of UWB - major issues - operation of UWB systems -

| comparisons with other technologies - advantages and disadvantages; LTE: System architecture - |
|------------------------------------------------------------------------------------------------|
| frame structure - LTE FDD vs TDD comparison; LTE advanced: Network architecture - frame        |
| structure and its characteristics; 5G networks: Technical challenges- architecture.            |

#### UNIT V

#### INSTRUCTIONAL ACTIVITIES

Simulation of minimum of five wireless networks standards using related tools

| LECTURE | PRACTICAL | TOTAL |
|---------|-----------|-------|
| <br>45  | 0         | 45    |

9

#### REFERENCES

1. Siva Ram Murthy C and Manoj B S, "Ad-hoc Wireless Networks-Architecture and Protocols", 2nd Edition, Pearson education, 2007.

#### **CO Vs PO Mapping**

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |
|--------|-----|-----|-----|-----|-----|-----|------------|
| CO1    | 3   | 3   | 3   | 1   | 1   | 3   | 1          |
| CO2    | 3   | 3   | 3   | 1   |     | 3   | 1          |
| CO3    | 3   | 3   | 3   | 1   | 2   | 3   | 1          |
| CO4    | 3   | 3   | 3   | 1   |     | 3   | 1          |
| CO5    | 3   | 3   | 3   | 1   | 2   | 3   | 1          |
|        | 15  | 15  | 15  | 5   | 5   | 15  | 5          |
| Scaled | 3   | 3   | 3   | 2   | 1   | 3   | 1          |
| values |     |     |     |     |     |     |            |

#### $1-5 \rightarrow 1$ , $6-10 \rightarrow 2$ , $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COU   | URSE CODE COURSE NAME |               |                                                                              |           | L  | Т             | Р      | С |  |
|-------|-----------------------|---------------|------------------------------------------------------------------------------|-----------|----|---------------|--------|---|--|
| YWC   | C106                  |               | DIGITAL COMMUNICATION LAB                                                    |           | 0  | 0             | 2      | 2 |  |
| С     | P                     | Α             |                                                                              |           | L  | Р             | Η      |   |  |
| 1.5   | 0.25                  | 0.25          |                                                                              |           |    |               |        |   |  |
| LIST  | OF EX                 | <b>KPERIN</b> | IENTS                                                                        |           |    | i             |        |   |  |
| After | comple                | tion of t     | he course, a student will be able to                                         |           |    |               |        |   |  |
| CO    | URSE                  | OUTCO         | MES                                                                          | DOMAIN    | L  | EVEL          |        |   |  |
| CO    |                       |               | te the performance of various digital techniques under AWGN noise            | Cognitive | U  | ndersta       | anding |   |  |
| CO    |                       |               | te the performance of various digital techniques under AWGN noise and fading | Cognitive | U  | Understanding |        |   |  |
| CO.   |                       |               | ng channels and performance of coded schemes under Rayleigh fading           | Cognitive | U  | Understanding |        |   |  |
| CO    | 4 Sh                  | ow the r      | nulticarrier systems in Matlab                                               | Cognitive | Uı | Understanding |        |   |  |
| CO    |                       |               | te the effects of CFO, CTO and fading and or the same                        | Cognitive | Uı | Understanding |        |   |  |
| 1     | 1. PSD                | of digita     | lly modulated waveforms                                                      |           | •  |               |        |   |  |

12. Demonstrate the theoretical and simulated BER for M-ary PSK MATLAB.

- Demonstration of theoretical and simulated BER for M- QAM in AWGN usingMATLAB
- 14. Rayleigh fading channel simulation.
- 15. BER for BPSK/QPSK/QAM under Rayleigh channel
- 16. Carrier frequency and Timing Offset demonstration
- 17. Performance of coded digital modulated systems under Rayleigh fading
- 18. Demonstration of different equalizers
- 19. BER performance of BPSK using convolutional code under AWGN channel
- 20. Simulation of OFDM IN MATLAB

#### **REFERENCES:**

<u>http://www.vlab.co.in/</u> <u>http://203.110.240.139/</u> <u>http://iitg.vlab.co.in/?sub=59&brch =163</u> <u>http://solve.nitk.ac.in/</u>

#### **CO Vs PO Mapping**

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |
|--------|-----|-----|-----|-----|-----|-----|------------|
| CO1    | 3   | 3   | 3   | 1   | 1   | 1   | 1          |
| CO2    | 3   | 3   | 3   | 1   | 1   | 1   | 1          |
| CO3    | 3   | 3   | 3   | 1   | 1   | 1   | 1          |
| CO4    | 3   | 3   | 3   | 1   | 1   | 1   | 1          |
| CO5    | 3   | 3   | 3   | 1   | 1   | 1   | 1          |
|        | 15  | 15  | 15  | 5   | 5   | 5   | 5          |
| Scaled | 3   | 3   | 3   | 1   | 1   | 1   | 1          |
| values |     |     |     |     |     |     |            |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COU    | COURSE CODE COURSE NAME |      |                              |   | Т | Р | C |
|--------|-------------------------|------|------------------------------|---|---|---|---|
| YRM107 |                         |      | RESEARCH METHODOLOGY AND IPR | 2 | 0 | 0 | 2 |
| С      | Р                       | Α    |                              | L | Т | Р | Η |
| 2.75   | 0                       | 0.25 |                              | 2 | 0 | 0 | 2 |

After completion of the course, a student will be able to

| COUR   | SE OUTCOMES                                             | DOMAIN    | LEVEL         |   |
|--------|---------------------------------------------------------|-----------|---------------|---|
| CO1    | Identify andformulate a research problem, collect data, | Cognitive | Applying      |   |
|        | identify research gap for the identified problem        |           |               |   |
| CO2    | Consolidate literature survey and provide inference on  | Cognitive | Understanding |   |
|        | own words                                               |           |               |   |
| CO3    | Describe Patents, Designs, Trade and Copyright          | Cognitive | Understanding |   |
|        |                                                         |           |               |   |
| CO4    | Appraise, discuss and categorize Patent Rights          | Cognitive | Evaluating    |   |
| CO5    | Identify and describe new developments in IPR           | Cognitive | Applying      |   |
|        |                                                         |           |               |   |
| UNIT I |                                                         |           |               | 6 |

Meaning of research problem, Sources of research problem, Criteria-Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

#### UNIT II

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

6

6

6

6

#### UNIT III

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

#### UNIT IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

#### UNIT V

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 30      | 0        | 30    |
|         |          |       |

#### REFERENCES

- 10. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students""
- 11. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 12. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 13. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 14. Mayall, "Industrial Design", McGraw Hill, 1992.
- 15. Niebel, "Product Design", McGraw Hill, 1974.
- 16. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 17. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 18. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

#### CO Vs PO Mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |
|-----|-----|-----|-----|-----|-----|-----|------------|
| CO1 |     |     |     | 1   | 3   | 3   | 3          |
| CO2 |     |     |     | 1   | 3   | 3   | 3          |
| CO3 |     |     |     | 1   | 3   | 3   | 3          |
| CO4 |     |     |     | 1   | 3   | 3   | 3          |
| CO5 |     |     |     | 3   | 3   | 3   | 3          |
|     |     |     |     | 7   | 15  | 15  | 15         |

| Scaled<br>values | 2 | 3 | 3 | 3 |
|------------------|---|---|---|---|
|------------------|---|---|---|---|

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

|               | SE CODE       | COURSE NAME                                                                                                                           |                     | L      | Т                  | P         | C      |
|---------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|--------------------|-----------|--------|
| YEGO          | ······        | ENGLISH FOR RESEARCH PAPER                                                                                                            | WRITING             | 2      | 0                  | 0<br>D    | 0      |
| C I<br>2.75 ( | P A<br>0 0.25 |                                                                                                                                       |                     | L<br>2 | T<br>0             | P<br>0    | H<br>0 |
|               |               | the course, a student will be able to                                                                                                 |                     | 4      | U                  | U         | U      |
| COUI          | RSE OUTC      | OMES                                                                                                                                  | DOMAIN              |        | LE                 | VEL       |        |
| C01           |               |                                                                                                                                       |                     |        |                    |           |        |
| CO2           | Explain th    | e methodology of writing a paper                                                                                                      | Cognitive           | U      | ndersta            | anding    | 5      |
| CO3           | Adapt the     | important reviews for classification                                                                                                  | Cognitive           | C      | reating            | <u>,</u>  |        |
| <u> </u>      | Demonstr      | ata tha hay whiting abilla                                                                                                            | Cognitive           | II     | ndonati            | anding    |        |
| CO4<br>CO5    |               | ate the key writing skills<br>ne results and findings in the conclusion                                                               | Cognitive           |        | ndersta<br>ndersta |           | ·      |
| UNIT I        |               | ie results and findings in the conclusion                                                                                             |                     |        |                    |           | 6      |
|               |               | aration, Word Order, breaking up long s                                                                                               | sentences Structu   | rino   | Parao              | ranhs     |        |
|               |               | oncise and Removing Redundancy, Avoidir                                                                                               |                     | U      | U                  | ,rupiis   | un     |
| UNIT I        | -             |                                                                                                                                       |                     |        |                    |           | 6      |
| Plagiari      | sm, Sections  | d What, Highlighting Your Findings, Hedg<br>s of a Paper, Abstracts. Introduction                                                     | ging and Criticizi  | ng, ł  | Paraph             | rasing    |        |
| UNIT I        |               |                                                                                                                                       |                     |        |                    |           | 6      |
| Review        | of the Litera | ature, Methods, Results, Discussion, Conclu                                                                                           | usions, The Final ( | Chec   | k.                 |           |        |
| UNIT I        | V             |                                                                                                                                       |                     |        |                    |           | 6      |
| key skil      | ls are neede  | d when writing a Title, key skills are neede                                                                                          | ed when writing a   | n Ab   | stract,            | key s     | kill   |
| are need      | led when wr   | iting an Introduction, skills needed when w                                                                                           | riting a Review of  | f the  | Literat            | ture,     |        |
| UNIT V        | 7             |                                                                                                                                       |                     |        |                    |           | 6      |
| Skills ar     | e needed w    | hen writing the Methods, skills needed whe                                                                                            | en writing the Res  | ults,  | skills a           | are ne    | ede    |
| when w        | riting the D  | iscussion, skills are needed when writing the                                                                                         | he Conclusions. u   | seful  | phras              | es, ho    | w t    |
| ensure p      | oaper is as g | ood as it could possibly be the first- time su                                                                                        | Ibmission           |        |                    |           |        |
|               |               |                                                                                                                                       | TURE TUTO           | RIA]   |                    | ΓΟΤΑ      | L      |
|               |               | 30                                                                                                                                    | 0                   |        | 3                  | <b>30</b> |        |
| REFER         | ENCES         |                                                                                                                                       |                     |        |                    |           |        |
| 2.            | Day R (200    | (2006) Writing for Science, Yale Universit<br>6) How to Write and Publish a Scientific Pa<br>(1998), Handbook of Writing for the Math | aper, Cambridge U   | Jnive  | ersity F           |           | s)     |

4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

#### **CO Vs PO Mapping**

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |
|--------|-----|-----|-----|-----|-----|-----|------------|
| CO1    |     |     | 3   | 1   | 3   | 2   | 2          |
| CO2    |     |     | 3   | 1   | 2   | 3   | 3          |
| CO3    |     |     | 3   | 1   | 2   | 3   | 3          |
| CO4    |     |     | 3   | 1   | 3   | 3   | 3          |
| CO5    |     |     | 3   | 3   | 2   | 3   | 3          |
|        |     |     | 15  | 7   | 12  | 14  | 14         |
| Scaled |     |     | 3   | 2   | 3   | 3   | 3          |
| values |     |     |     |     |     |     |            |

#### $1-5 \rightarrow 1$ , $6-10 \rightarrow 2$ , $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COURSE CODE COURSENA<br>YWC109 WIRELESS |      | CODE | COURSENAME            | L | Т | Р | C |
|-----------------------------------------|------|------|-----------------------|---|---|---|---|
|                                         |      |      | WIRELESS NETWORKS LAB | 0 | 0 | 2 | 2 |
| С                                       | Р    | Α    |                       | L | Т | Р | Η |
| 1.5                                     | 0.25 | 0.25 |                       | 0 | 0 | 2 | 2 |
|                                         |      |      | LIST OF EXPERIMENTS   |   |   |   |   |
|                                         |      |      |                       |   |   |   |   |

| COUR | SE OUTCOMES                                              | DOMAIN    | LEVEL    |
|------|----------------------------------------------------------|-----------|----------|
| CO1  | Simulate different routing protocols.                    | Cognitive | Analysis |
| CO2  | Evaluate the MAC algorithm and energy models.            | Cognitive | Evaluate |
| CO3  | Compare security algorithms.                             | Cognitive | Analysis |
| CO4  | Simulate and compare PAN and GSM networks.               | Cognitive | Analysis |
| CO5  | Measure the performance parameters of wireless networks. | Cognitive | Evaluate |

1. Analysis of wireless network with wireshark, TCL scripts and Xgraph.

Comparison of DSDV, DSR and AODV Routing protocols.

2. Implementation of MAC algorithm for wireless network.

3. Program to implement energy models for wireless nodes.

- 4. Implementation of symmetric key encryption using Ns2.
- 5. Implementation of Gray hole and wormhole attack in Ns2.
- 6. Program to calculate packet delivery ratio, packet loss, throughput, end to end delay and routing overhead for Wireless Networks.
- 7. Implementation of congestion control algorithms.
- 8. Simulate a wireless Personal Area Networks.
- 9. Measurement on the effect of RTS/CTS on a wireless link.
- 10. Performance comparison of GSM and CDMA networks

#### **REFERENCES:**

- 1. Advanced Network Technologies Virtual Lab @ www.virtual-labs.ac.in/cse28/
- 2. www.winlab.rutgers.edu/zhibinwu/pdf/tr\_ns802\_11.pdf

3. www.ittc.ku.edu/jpgs/courses/.../lecture-lab-intro2ns3-print.pdf

4. www.isi.edu/nsnam/ns/

#### **CO Vs PO Mapping**

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |
|--------|-----|-----|-----|-----|-----|-----|------------|
| CO1    | 3   | 3   | 3   | 1   | 1   | 1   | 1          |
| CO2    | 3   | 3   | 3   | 1   | 1   | 1   | 1          |
| CO3    | 3   | 3   | 3   | 1   | 1   | 1   | 1          |
| CO4    | 3   | 3   | 3   | 1   | 1   | 1   | 1          |
| CO5    | 3   | 3   | 3   | 1   | 1   | 1   | 1          |
| Scaled | 15  | 15  | 15  | 5   | 5   | 5   | 5          |
| values |     |     |     |     |     |     |            |

#### $1-5 \rightarrow 1, \qquad 6-10 \rightarrow 2, \qquad 11-15 \rightarrow 3$

#### 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

#### SEMESTER-II

| COU                              | COURSE CODE COURSE NAME                                  |      | L | Т | P | C |   |
|----------------------------------|----------------------------------------------------------|------|---|---|---|---|---|
| YWC201 MULTICARRIERCOMMUNICATION |                                                          | 3    | 0 | 0 | 3 |   |   |
| С                                | Р                                                        | Α    |   | L | Т | Р | Η |
| 2.75                             | 0                                                        | 0.25 |   | 3 | 0 | 0 | 3 |
| Δfter                            | After completion of the course a student will be able to |      |   |   |   |   |   |

After completion of the course, a student will be able to

| COUR   | SE OUTCOMES                                            | DOMAIN    | LEVEL         |
|--------|--------------------------------------------------------|-----------|---------------|
| CO1    | Explain the fundamentals of OFDM and model the         | Cognitive | Understanding |
|        | same.                                                  |           |               |
| CO2    | Outline the system imperfections and produce solutions | Cognitive | Understanding |
|        | in MC communications.                                  |           |               |
| CO3    | Analyze the effects of various noise in OFDM           | Cognitive | Analyzing     |
|        | performance.                                           |           |               |
| CO4    | Explain and describe MC CDMA                           | Cognitive | Understanding |
| CO5    | Discuss various applications of MC communications      | Cognitive | Create        |
| UNIT I |                                                        | I         | 9             |

#### FUNDAMENTALS OF OFDM/OFDMA SYSTEMS

Mobile channel modeling- Parameters of wireless channels, Categorization of fadingchannels. Conventional methods for channel fading mitigation-Time-selective fading, Frequency-selective fading. OFDM systems- System architecture, Discrete-time model of an OFDM system, Spectral efficiency, Strengths and drawbacks of OFDM. OFDM-based multiple access schemes.

#### UNIT II

#### SYSTEM IMPERFECTIONS

Time and frequency synchronizations-Sensitivity to timing and frequency errors, Synchronizations for downlink transmission, Synchronizations for uplink transmissions. Peak-to-Average Power Ratio (PAPR)-definitions, Statistical properties of PAPR, PAPR reduction techniques. Channel estimation and equalization techniques.

UNIT III

9

#### **OFDM PERFORMANCE**

OFDM System Performance over AWGN Channels-Clipping Amplification, BER

Performance Using Clipping Amplifiers, Signal Spectrum with Clipping Amplifier. Analogue- to-Digital Conversion, Phase Noise -Effects of phase noise, White Phase Noise Model, coloured phase noise, OFDM transmission over wideband channel-channel model, Effects of Time Dispersive Channels on OFDM, system performance over dispersive channel.

9

9

#### UNIT IV

#### MC CDMA

OFDM versus MC-CDMA, CDMA- MC-CDMA, MC-DS-CDMA, MT- CDMA, MC- MC-CDMA System. Basic spreading sequences, MC-CDMA System Performance in Synchronous Environment, Advanced peak factor reduction techniques.

#### UNIT V

#### APPLICATIONS OF OFDM AND MC-CDMA

Digital Broadcasting- Digital Audio Broadcasting, Terrestrial Digital Video Broadcasting, Terrestrial Integrated Services Digital Broadcasting, GHz-Band Wireless LANs- IEEE 802.11g, IEEE 802.11h, IEEE 802.16a.

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 0        | 45    |
|         |          |       |

#### REFERENCES

- 8. Man-On Pun Michele Morelli C-C Jay Kuo, "Multi-Carrier Techniques For Broadband Wireless Communications A Signal Processing Perspective" 2007 by Imperial College Press
- 9. Hara, Shinsuke. Multicarrier techniques for 4G mobile communications Artech House Universal personal communications series 2003
- 10. OFDM and MC-CDMA A Primer L. Hanzo, T. Keller 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
- 11. Liu, Hui, OFDM-based broadband wireless networks : design and optimization 2005 by John Wiley & Sons
- 12. Lie Liang Yang, "Multicarrier Communications", John Wiley & Sons Ltd, 2009
- 13. Andreas F. Molisch, "Wireless Communications", Wiley IEEE, 2011.
- 14. James B. Y. Tsui, "Special Design Topics in Digital Wideband Receivers", Artech House Radar Library, 2009.

#### CO Vs PO Mapping

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |
|--------|-----|-----|-----|-----|-----|-----|------------|
| CO1    | 3   | 3   | 3   |     |     | 1   | 1          |
| CO2    | 3   | 3   | 3   |     |     | 1   | 1          |
| CO3    | 3   | 3   | 3   |     | 2   | 1   | 1          |
| CO4    | 3   | 3   | 3   |     | 2   | 1   | 1          |
| CO5    | 3   | 3   | 3   |     | 2   | 1   | 1          |
|        | 15  | 15  | 15  |     | 6   | 5   | 5          |
| Scaled | 3   | 3   | 3   |     | 2   | 1   | 1          |
| values |     |     |     |     |     |     |            |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 

## 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COUI                                                                                                                               | RSE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CODE                                                                                                                                       | COURSE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | L<br>3                                                           | T<br>0                                                            | P<br>0                                                   | C<br>3                                                        |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|
| YWC                                                                                                                                | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                            | MICROWAVE PASSIVE AND ACTIVE S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YSTEMS                                                                                                           | 3                                                                | •                                                                 | U                                                        | 3                                                             |
| С                                                                                                                                  | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Α                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  | L                                                                | Т                                                                 | Р                                                        | H                                                             |
| 2.75                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.25                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  | 3                                                                | 0                                                                 | 0                                                        | 3                                                             |
| After o                                                                                                                            | comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | etion of                                                                                                                                   | the course, a student will be able to .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                  |                                                                   |                                                          |                                                               |
|                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DOMAIN                                                                                                           | LE                                                               | VEL                                                               |                                                          |                                                               |
| CO1                                                                                                                                | ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tching t                                                                                                                                   | he various transmission lines and impedance echniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cognitive                                                                                                        | Unc                                                              | lerstan                                                           | ding                                                     |                                                               |
| CO2                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | plain the<br>ir S-par                                                                                                                      | e operation of passive microwave devices and ameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cognitive                                                                                                        | Unc                                                              | lerstan                                                           | ding                                                     |                                                               |
| CO3                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ustrate<br>ssive cir                                                                                                                       | the performance of microwave integrated cuits and filters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cognitive                                                                                                        | Unc                                                              | lerstan                                                           | ding                                                     |                                                               |
| CO4                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | monstra<br>ndards                                                                                                                          | te the various microwave systems and its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cognitive                                                                                                        | Unc                                                              | lerstan                                                           | ding                                                     |                                                               |
| CO5                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | plain th<br>aracteris                                                                                                                      | e various active microwave circuits and its tics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cognitive                                                                                                        | Unc                                                              | lerstan                                                           | ding                                                     |                                                               |
| UNIT                                                                                                                               | ' I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                  |                                                                   |                                                          | 9                                                             |
| MICF                                                                                                                               | nw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                  |                                                                   |                                                          | L                                                             |
| S para<br>line, S<br>Single                                                                                                        | amete<br>Strip a<br>e and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e <b>rs</b> recip<br>nd copla<br>double                                                                                                    | <b>RCUITS</b> :<br>procal networks, Lossless networks, <b>Planar tra</b><br>anar lines. <b>Impedance matching:</b> Matching with<br>stub using Smith chart solutions, Quarter                                                                                                                                                                                                                                                                                                                                                              | h lumped ele                                                                                                     | ments                                                            | , Stub                                                            | match                                                    | ing                                                           |
| S para<br>line, S<br>Single<br>Expon<br>UNIT                                                                                       | amete<br>Strip a<br>e and<br>nential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ers recip<br>nd copla<br>double<br>taper, t                                                                                                | procal networks, Lossless networks, <b>Planar tra</b><br>anar lines. <b>Impedance matching:</b> Matching wit<br>stub using Smith chart solutions, Quarter<br>riangular taper.                                                                                                                                                                                                                                                                                                                                                              | h lumped eler<br>wave transf                                                                                     | ormer                                                            | , Stub<br>, tape                                                  | match<br>red li                                          | ing<br>nes<br>9                                               |
| S para<br>line, S<br>Single<br>Expon<br>UNIT<br>PASS                                                                               | amete<br>Strip a<br>e and<br>nential<br>' –II<br>IVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ers recip<br>nd copla<br>double<br>taper, t                                                                                                | brocal networks, Lossless networks, <b>Planar tra</b><br>anar lines. <b>Impedance matching:</b> Matching with<br>stub using Smith chart solutions, Quarter<br>riangular taper.<br><b>IT DESIGN w</b> ave guide based Directional co                                                                                                                                                                                                                                                                                                        | h lumped eler<br>wave transf<br>pupler, E & I                                                                    | ments<br>ormer<br>H plan                                         | , Stub<br>, tape<br>ne Tee                                        | match<br>red li                                          | ing<br>nes<br>9                                               |
| S para<br>line, S<br>Single<br>Expon<br>UNIT<br>PASS<br>hybrid                                                                     | amete<br>Strip a<br>e and<br>nential<br>'-II<br>IVE<br>I T, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ers recip<br>nd copla<br>double<br>taper, t                                                                                                | procal networks, Lossless networks, <b>Planar tra</b><br>anar lines. <b>Impedance matching:</b> Matching wit<br>stub using Smith chart solutions, Quarter<br>riangular taper.                                                                                                                                                                                                                                                                                                                                                              | h lumped eler<br>wave transf<br>pupler, E & I                                                                    | ments<br>ormer<br>H plan                                         | , Stub<br>, tape<br>ne Tee                                        | match<br>red li                                          | ing<br>nes<br>9<br>tion                                       |
| S para<br>line, S<br>Single<br>Expon<br>UNIT<br>PASS<br>hybrid                                                                     | ameta<br>Strip a<br>e and<br>nential<br>' –II<br>IVE<br>I T, is<br>' III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ers recip<br>nd copla<br>double<br>taper, tr<br>CIRCU<br>olator, c                                                                         | brocal networks, Lossless networks, <b>Planar tra</b><br>anar lines. <b>Impedance matching:</b> Matching with<br>stub using Smith chart solutions, Quarter<br>riangular taper.<br><b>IT DESIGN w</b> ave guide based Directional con<br>irculator, slotted line section, Frequency meter, A                                                                                                                                                                                                                                                | h lumped eler<br>wave transf<br>pupler, E & I                                                                    | ments<br>ormer<br>H plan                                         | , Stub<br>, tape<br>ne Tee                                        | match<br>red li                                          | nes                                                           |
| S para<br>line, S<br>Single<br>Expon<br>UNIT<br>PASS<br>hybrid<br>UNIT<br>MICF                                                     | ameta<br>Strip a<br>e and<br>nential<br>Y –II<br>IVE<br>I T, is<br>Y III<br>ROWA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ers recip<br>nd copla<br>double<br>taper, tr<br>CIRCU<br>olator, c                                                                         | <ul> <li>brocal networks, Lossless networks, Planar transmar lines. Impedance matching: Matching with stub using Smith chart solutions, Quarter riangular taper.</li> <li>IT DESIGN wave guide based Directional control inculator, slotted line section, Frequency meter, A</li> <li>TEGRATED PASSIVE CIRCUITS</li> </ul>                                                                                                                                                                                                                 | h lumped eler<br>wave transf<br>oupler, E & I<br>Attenuator, mi                                                  | ments,<br>ormer<br>H plan<br>crowa                               | , Stub<br>, tape<br>ne Tee<br>we An                               | match<br>red li<br>e junct<br>tenna                      | nes<br>9<br>tion                                              |
| S para<br>line, S<br>Single<br>Expon<br>UNIT<br>PASS<br>hybrid<br>UNIT<br>MICF<br>Power                                            | ameta<br>Strip a<br>e and<br>nential<br><b>IVE</b><br>I T, is<br><b>III</b><br>ROW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ers recip<br>nd copla<br>double<br>taper, tr<br>CIRCU<br>olator, c<br>AVE IN<br>ler coup                                                   | <ul> <li>brocal networks, Lossless networks, Planar transmar lines. Impedance matching: Matching with stub using Smith chart solutions, Quarter riangular taper.</li> <li>IT DESIGN wave guide based Directional control inculator, slotted line section, Frequency meter, A</li> <li>TEGRATED PASSIVE CIRCUITS</li> <li>bler Wilkinson power divider90 degree Hybrid</li> </ul>                                                                                                                                                           | h lumped eler<br>wave transf<br>oupler, E & I<br>Attenuator, mi<br>Coupler,180                                   | ments,<br>ormer<br>H plan<br>crowa<br>degre                      | , Stub<br>, tape<br>ne Tee<br>we An<br>e coup                     | match<br>red li<br>e junct<br>tenna                      | ing<br>nes<br>9<br>tion<br>9                                  |
| S para<br>line, S<br>Single<br>Expon<br>UNIT<br>PASS<br>hybrid<br>UNIT<br>MICF<br>Power<br>design                                  | ameta<br>Strip a<br>e and<br>nential<br>'-II<br>IVE<br>I T, is<br>'III<br>ROW.<br>C divio<br>a: Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ers recip<br>nd copla<br>double<br>taper, tr<br>CIRCU<br>olator, c<br>AVE IN<br>der coup<br>iodic str                                      | <ul> <li>brocal networks, Lossless networks, Planar transmar lines. Impedance matching: Matching with stub using Smith chart solutions, Quarter riangular taper.</li> <li>IT DESIGN wave guide based Directional control inculator, slotted line section, Frequency meter, A</li> <li>TEGRATED PASSIVE CIRCUITS</li> <li>bler Wilkinson power divider90 degree Hybrid suctures, Insertion loss method, maximally flat</li> </ul>                                                                                                           | h lumped eler<br>wave transf<br>oupler, E & I<br>Attenuator, mi<br>Coupler,180                                   | ments,<br>ormer<br>H plan<br>crowa<br>degre                      | , Stub<br>, tape<br>ne Tee<br>we An<br>e coup                     | match<br>red li<br>e junct<br>tenna                      | ing<br>nes<br>9<br>tion<br>9                                  |
| S para<br>line, S<br>Single<br>Expon<br>UNIT<br>PASS<br>hybrid<br>UNIT<br>MICF<br>Power<br>design<br>low pa                        | ameta<br>Strip a<br>e and<br>nential<br>'-II<br>IVE<br>I T, is<br>'III<br>ROWA<br>c divid<br>n: Peri-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ers recip<br>nd copla<br>double<br>taper, tr<br>CIRCU<br>olator, c<br>AVE IN<br>der coup<br>iodic str                                      | <ul> <li>brocal networks, Lossless networks, Planar transmar lines. Impedance matching: Matching with stub using Smith chart solutions, Quarter riangular taper.</li> <li>IT DESIGN wave guide based Directional control inculator, slotted line section, Frequency meter, A</li> <li>TEGRATED PASSIVE CIRCUITS</li> <li>bler Wilkinson power divider90 degree Hybrid</li> </ul>                                                                                                                                                           | h lumped eler<br>wave transf<br>oupler, E & I<br>Attenuator, mi<br>Coupler,180                                   | ments,<br>ormer<br>H plan<br>crowa<br>degre                      | , Stub<br>, tape<br>ne Tee<br>we An<br>e coup                     | match<br>red li<br>e junct<br>tenna                      | ing<br>nes<br>9<br>tion<br>9                                  |
| S para<br>line, S<br>Single<br>Expon<br>UNIT<br>PASS<br>hybrid<br>UNIT<br>MICF<br>Power<br>design<br>low pa<br>UNIT                | ameta<br>Strip a<br>e and<br>nential<br><b>IVE</b><br>d T, is<br>d T, is<br><b>III</b><br><b>ROW</b><br>c divio<br>n: Peri-<br>ass filt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ers recip<br>nd copla<br>double<br>taper, tr<br>CIRCU<br>olator, c<br>AVE IN<br>der coup<br>iodic str<br>ter, filter                       | <ul> <li>brocal networks, Lossless networks, Planar transformation, filter implementation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                      | h lumped eler<br>wave transf<br>oupler, E & I<br>Attenuator, mi<br>Coupler,180                                   | ments,<br>ormer<br>H plan<br>crowa<br>degre                      | , Stub<br>, tape<br>ne Tee<br>we An<br>e coup                     | match<br>red li<br>e junct<br>tenna                      | ing<br>nes<br>9<br>tion<br>9                                  |
| S para<br>line, S<br>Single<br>Expon<br>UNIT<br>PASS<br>hybrid<br>UNIT<br>MICF<br>Power<br>design<br>low pa                        | ameta<br>Strip a<br>e and<br>nential<br><b>IVE</b><br>d T, is<br>d T, is<br><b>III</b><br><b>ROW</b><br>c divio<br>n: Peri-<br>ass filt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ers recip<br>nd copla<br>double<br>taper, tr<br>CIRCU<br>olator, c<br>AVE IN<br>der coup<br>iodic str<br>ter, filter                       | <ul> <li>brocal networks, Lossless networks, Planar transmar lines. Impedance matching: Matching with stub using Smith chart solutions, Quarter riangular taper.</li> <li>IT DESIGN wave guide based Directional control inculator, slotted line section, Frequency meter, A</li> <li>TEGRATED PASSIVE CIRCUITS</li> <li>bler Wilkinson power divider90 degree Hybrid uctures, Insertion loss method, maximally flat transformation, filter implementation.</li> </ul>                                                                     | h lumped eler<br>wave transf<br>oupler, E & I<br>Attenuator, mi<br>Coupler,180<br>low pass filte                 | ments,<br>ormer<br>H plan<br>crowa<br>degre<br>er, ste           | , Stub<br>, tape<br>ne Tee<br>we An<br>e coup                     | match<br>red li<br>e junct<br>tenna                      | ing<br>nes<br>9<br>tion<br>9<br>filte<br>anc                  |
| S para<br>line, S<br>Single<br>Expon<br>UNIT<br>PASS<br>hybrid<br>UNIT<br>MICF<br>Power<br>design<br>low pa<br>UNIT<br>MICF        | ameta<br>Strip a<br>e and<br>nential<br><b>IVE</b><br>IT, is<br>ITI<br>ROWA<br>c divio<br>n: Peri<br>ass filt<br><b>COWA</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ers recip<br>nd copla<br>double<br>taper, tr<br>CIRCU<br>olator, c<br>AVE IN<br>der coup<br>iodic str<br>ter, filter                       | <ul> <li>brocal networks, Lossless networks, Planar transmar lines. Impedance matching: Matching with stub using Smith chart solutions, Quarter riangular taper.</li> <li>IT DESIGN wave guide based Directional control inculator, slotted line section, Frequency meter, A</li> <li>TEGRATED PASSIVE CIRCUITS</li> <li>bler Wilkinson power divider90 degree Hybrid uctures, Insertion loss method, maximally flat transformation, filter implementation.</li> </ul>                                                                     | h lumped eler<br>wave transf<br>oupler, E & I<br>Attenuator, mi<br>Coupler,180<br>low pass filte                 | ments,<br>ormer<br>H plan<br>crowa<br>degre<br>er, ste           | , Stub<br>, tape<br>ne Tee<br>we An<br>e coup<br>pped i           | match<br>red li<br>e junct<br>tenna                      | ing<br>nes<br>9<br>tion<br>9<br>filte<br>anc                  |
| S para<br>line, S<br>Single<br>Expon<br>UNIT<br>PASS<br>hybrid<br>UNIT<br>MICF<br>Power<br>design<br>low pa<br>UNIT<br>MICF        | ameta<br>Strip a<br>e and<br>nential<br><b>-II</b><br><b>IVE</b><br>I T, is<br>I T, i | ers recip<br>nd copla<br>double<br>taper, tr<br>CIRCU<br>olator, c<br>AVE IN<br>der coup<br>iodic str<br>ter, filter                       | <ul> <li>brocal networks, Lossless networks, Planar transmar lines. Impedance matching: Matching with stub using Smith chart solutions, Quarter riangular taper.</li> <li>IT DESIGN wave guide based Directional control inculator, slotted line section, Frequency meter, A</li> <li>TEGRATED PASSIVE CIRCUITS of the Wilkinson power divider90 degree Hybrid suctures, Insertion loss method, maximally flater transformation, filter implementation.</li> <li>SYSTEMS RF transceiver, Microwave st</li> </ul>                           | h lumped eler<br>wave transf<br>oupler, E & I<br>Attenuator, mi<br>Coupler,180<br>low pass filte                 | ments,<br>ormer<br>H plan<br>crowa<br>degre<br>er, ste           | , Stub<br>, tape<br>ne Tee<br>we An<br>e coup<br>pped i           | match<br>red li<br>e junct<br>tenna                      | ing<br>nes<br>9<br>tion<br>9<br>filte<br>anc                  |
| S para<br>line, S<br>Single<br>Expon<br>UNIT<br>PASS<br>hybrid<br>UNIT<br>MICF<br>Ower<br>design<br>low pa<br>UNIT<br>MICF<br>Comm | ameta<br>Strip a<br>c and<br>nential<br><b>IVE</b><br>IT, is<br>IT<br>IVE<br>IT, is<br>IN<br>COW<br>c divio<br>ass filt<br><b>COW</b><br>ass filt<br><b>COW</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ers recip<br>nd copla<br>double<br>taper, tr<br>CIRCU<br>olator, c<br>AVE IN<br>der coup<br>iodic str<br>ter, filter<br>AVE S<br>ation sys | <ul> <li>brocal networks, Lossless networks, Planar transmar lines. Impedance matching: Matching with stub using Smith chart solutions, Quarter riangular taper.</li> <li>IT DESIGN wave guide based Directional control inculator, slotted line section, Frequency meter, A</li> <li>TEGRATED PASSIVE CIRCUITS of the Wilkinson power divider90 degree Hybrid suctures, Insertion loss method, maximally flater transformation, filter implementation.</li> <li>SYSTEMS RF transceiver, Microwave st</li> </ul>                           | h lumped eler<br>wave transf<br>oupler, E & I<br>Attenuator, mi<br>Coupler,180<br>low pass filte                 | ments,<br>ormer<br>H plan<br>crowa<br>degre<br>er, ste           | , Stub<br>, tape<br>ne Tee<br>we An<br>e coup<br>pped i           | match<br>red li<br>e junct<br>tenna                      | ing<br>nes<br>9<br>tion<br>9<br>filte<br>anc<br>9<br>lula     |
| S para<br>line, S<br>Single<br>Expon<br>UNIT<br>PASS<br>hybrid<br>UNIT<br>MICF<br>Comm<br>UNIT<br>MICF<br>Comm<br>UNIT             | ameta<br>Strip a<br>e and<br>nential<br><b>i –II</b><br><b>IVE</b><br>I T, is<br><b>i III</b><br><b>ROW</b><br>c divid<br>ass filt<br><b>COW</b><br><b>ROW</b><br><b>COW</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ers recip<br>nd copla<br>double<br>taper, tr<br>CIRCU<br>olator, c<br>AVE IN<br>der coup<br>iodic str<br>ter, filter<br>AVE S<br>ation sys | <ul> <li>brocal networks, Lossless networks, Planar transanar lines. Impedance matching: Matching with stub using Smith chart solutions, Quarter riangular taper.</li> <li>IT DESIGN wave guide based Directional control inculator, slotted line section, Frequency meter, A</li> <li>TEGRATED PASSIVE CIRCUITS</li> <li>bler Wilkinson power divider90 degree Hybrid uctures, Insertion loss method, maximally flater transformation, filter implementation.</li> <li>SYSTEMS RF transceiver, Microwave st tem, Radar systems</li> </ul> | h lumped eler<br>wave transf<br>oupler, E & I<br>Attenuator, mi<br>Coupler,180<br>low pass filte<br>andards, Sat | ments,<br>ormer<br>H plan<br>crowa<br>degre<br>er, ste<br>ellite | , Stub<br>, tape<br>ne Tee<br>,ve An<br>e coup<br>pped i<br>link, | match<br>red li<br>e junct<br>tenna<br>bler, F<br>impeda | ing<br>nes<br>9<br>tion<br>9<br>ïilte<br>anc<br>9<br>ula<br>9 |

range and noise sources, equivalent noise temperature, system noise figure considerations

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 0        | 45    |

#### REFERENCES

- 5. David M. Pozar," Microwave Engineering," John Wiley & Sons, 1998.
- 6. David M. Pozar," Microwave & RF Design of Wireless Systems," John Wiley & Sons, 1998.
- 7. R.E.Collin," Foundations of Microwave Engineering," Tata McGraw Hill, 1995.

#### **CO Vs PO Mapping**

|        | PO1 | PO2 | PO3      | PO4 | PO5 | PO6 | PO7 |
|--------|-----|-----|----------|-----|-----|-----|-----|
| CO1    | 3   | 3   | 3        |     | 2   | 1   | 1   |
| CO2    | 3   | 3   | 3        |     |     | 1   | 1   |
| CO3    | 3   | 3   | 3        |     | 2   | 1   | 1   |
| CO4    | 3   | 3   | 3        |     |     | 1   | 1   |
| CO5    | 3   | 3   | 3        |     | 2   | 1   | 1   |
|        | 15  | 15  | 15       |     | 6   | 5   | 5   |
| Scaled | 3   | 3   | 3        |     | 2   | 1   | 1   |
| values |     |     | <u> </u> |     |     |     |     |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COU    | RSE       | CODE                 | COURSE NAME                                        |                | L     | T       | P       | С     |
|--------|-----------|----------------------|----------------------------------------------------|----------------|-------|---------|---------|-------|
| YWC    | 203       |                      | ADVANCED RADIATION SYSTEMS                         |                | 3     | 0       | 0       | 3     |
| С      | Р         | Α                    |                                                    |                | L     | Т       | Р       | Η     |
| 2.75   | 0         | 0.25                 |                                                    |                | 3     | 0       | 0       | 3     |
| After  | comp      | letion of            | the course, a student will be able to .            | k              |       |         |         | .1    |
| COU    | JRSE      | E OUTCO              | OMES                                               | DOMAIN         | LE    | VEL     |         |       |
| CO1    |           | outline th           | e radiation characteristics of monopole and ennas. | Cognitive      | Un    | derstar | nding   |       |
| CO2    |           | lassify or<br>rrays. | ne dimensional and two dimensional antenna         | Cognitive      | Un    | derstar | nding   |       |
| CO3    |           | ompare               | the characteristics of different types of ntennas. | Cognitive      | Un    | derstar | nding   |       |
| CO4    | l II      | lustrate t           | he performance of Microstrip Antennas.             | Cognitive      | Un    | derstar | nding   |       |
| COS    |           | ummariz<br>arious ap | e the operation of modern antennas for plications. | Cognitive      | Un    | derstar | nding   |       |
| UNIT   | ΓI        |                      |                                                    |                |       |         |         | 9     |
| ANT    | ENN       | A FUND               | AMENTA                                             |                |       |         |         |       |
| oducti | on –      | Types of             | Antennas – Radiation Mechanism – Curren            | t distribution | on    | wire a  | ntenna  | as –  |
|        |           | • •                  | s - Antenna fundamental parameters - Radiation     |                |       |         |         |       |
|        |           | -                    | -                                                  | -              |       |         |         |       |
|        |           |                      | tributions – dipole, monopole, loop antenna; N     | -              |       |         | se stat | lion, |
| hand   | set ar    | itenna; In           | hage; Induction , reciprocity theorem, Balance to  | unbalance tr   | ansfo | rmer.   |         |       |
| UNIT   | <b>II</b> |                      |                                                    |                |       |         |         | 9     |

#### ANTENNA ARRAYS

view of One Dimensional and Two dimensional Arrays, General structure of phased array, linear array theory, variation of gain as a function of pointing direction, effects of phase quantization, frequency scanned arrays, analog beamforming matrices-Active modules, digital beam forming, MEMS technology in phased arrays-Retrodirective and self-phased arrays.

9

9

9

#### UNIT III

#### **RADIATION FROM APERTURES**

Id equivalence principle, Radiation from Rectangular and Circular apertures, Uniform aperture distribution on an infinite ground plane; Babinets principle, Slot antenna; Horn antenna; Reflector antenna, aperture blockage, and design consideration.

#### UNIT IV

#### MICROSTRIP ANTENNA

Radiation Mechanism and Excitation techniques : Microstrip dipole; Patch, Rectangular patch, Circular patch, and Ring antenna – radiation analysis from cavity model; input impedance of rectangular and circular patch antenna; Microstrip array and feed network; Reconfiguration Mechanisms; Computer Aided Design of Microstrip Antennas, Microstrip Reflectarray Antennas.

#### UNIT V

#### **MODERN ANTENNAS**

A – Vivaldi Antennas - UWB Antennas - Antennas in Medicine – Leaky Wave Antennas –Plasma Antennas – Wearable Antennas – RFID Antennas - Automotive antennas, Reconfigurable antennas -Meta materials

|           | LECTURE | TUTORIAL | TOTAL |  |
|-----------|---------|----------|-------|--|
|           | 45      | 0        | 45    |  |
| EFERENCES |         |          |       |  |

# 1. Balanis.A, —Antenna Theory Analysis and Design, 3rd Edition, John Wiley and Sons, New York, 1982.

- 2. Frank B. Gross, -Frontiers in Antennas, Mc Graw Hill, 2011.
- 3. S. Drabowitch, A. Papiernik, H.D.Griffiths, J.Encinas, B.L.Smith, —Modern 9 Antennas, II Edition, Springer Publications, 2007.
- 4. Krauss.J.D, —Antennas, II edition, John Wiley and sons, New York, 1997.
- 5. I.J. Bahl and P. Bhartia, Microstrip Antennas, Artech House, Inc., 1980
- 6. W.L.Stutzman and G.A.Thiele, —Antenna Theory and Design, 2nd edition, John Wiley& Sons Inc., 1998.
- 7. Jim R. James, P.S. Hall ,"Handbook of Microstrip Antennas" IEE Electromagnetic wave series 28, Volume 2,1989

#### CO Vs PO Mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 3   | 3   | 3   | 1   | 1   | 1   | 1   |
| CO2 | 3   | 3   | 3   | 0   |     | 1   | 1   |
| CO3 | 3   | 3   | 3   | 1   | 2   | 1   | 1   |

| CO4    | 3  | 3  | 3  | 1 |   | 1 | 1 |
|--------|----|----|----|---|---|---|---|
| CO5    | 3  | 3  | 3  | 1 | 2 | 1 | 1 |
|        | 15 | 15 | 15 | 4 | 5 | 5 | 5 |
| Scaled | 3  | 3  | 3  | 1 | 1 | 1 | 1 |
| values |    |    |    |   |   |   |   |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COU   | JRSE | CODE                 | COURSE NAME                          |          |           | L  | Т        | P        | C |
|-------|------|----------------------|--------------------------------------|----------|-----------|----|----------|----------|---|
|       |      |                      |                                      |          |           | 0  | 0        | 2        | 2 |
| YWO   | C206 |                      | <b>RADIO FREQUENCY SYST</b>          | EMS LABO | RATORY    |    |          |          |   |
| С     | Р    | Α                    | -                                    |          |           | L  | Т        | Р        | Η |
| 1.5   | 0.25 | 0.25                 |                                      |          |           | 0  | 0        | 2        | 2 |
| After | com  | letion of t          | ne course, a student will be able to | 0        |           |    | <b>i</b> | <b>i</b> |   |
| -     |      | E OUTCO              | -                                    |          | DOMAIN    | L  | EVEL     |          |   |
| CO    | 01 I | Buildmond            | pole and dipole antennas.            |          | Cognitive | Ap | oplying  | g        |   |
| CO    | 02 I | Develop th           | antenna arrays                       |          | Cognitive | Ap | oplying  | g        |   |
| CO    | 03 I | Evaluate th          | e effective height of antennas.      |          | Cognitive | Ev | aluati   | ng       |   |
| CO    |      | Experimen<br>ntennas | the performance of IFA a             | and UWB  | Cognitive | Ap | oplying  | g        |   |
| CO    | 05 ( | Construct            | vearable antennas                    |          | Cognitive | Ap | oplying  | Б        |   |

#### LIST OF EXPERIMENTS:

1. Simulation of half wave dipole antenna.

2. Simulation of quarter wave, full wave antenna and comparison of their

parameters.

3. Simulation of monopole antenna with and without ground plane.

4. Study the effect of the height of the monopole antenna on the radiation

characteristics of the antenna.

5. Simulation of a half wave dipole antenna array.

6. Simulation of IFA antenna.

7. Simulation of UWB antenna.

8. Simulation of Wearable antenna.

#### **CO Vs PO Mapping**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 3   | 3   | 3   |     | 1   | 1   | 1   |
| CO2 | 3   | 3   | 3   |     |     | 1   | 1   |
| CO3 | 3   | 3   | 3   |     | 2   | 1   | 1   |
| CO4 | 3   | 3   | 3   |     |     | 1   | 1   |
| CO5 | 3   | 3   | 3   |     | 2   | 1   | 1   |
|     | 15  | 15  | 15  |     | 5   | 5   | 5   |

| Scaled | 3 | 3 | 3 | 1 | 1 | 1 |
|--------|---|---|---|---|---|---|
| values |   |   |   |   |   |   |

## $1-5 \rightarrow 1$ , $6-10 \rightarrow 2$ , $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

|                                                                                                                   | RSE C                                                                                                                                              | ODE                                                                                                             | COURSE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                | Τ                                                                    | P                                          | C                                                                 |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------|
| YPS(                                                                                                              |                                                                                                                                                    |                                                                                                                 | CONSTITUTION OF INDIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                              | 0                                                                    | 0<br>D                                     | 0                                                                 |
| C<br>2.75                                                                                                         | P<br>0                                                                                                                                             | A<br>0.25                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L                                                              | Т                                                                    | P                                          | H                                                                 |
| UNIT                                                                                                              | 1                                                                                                                                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | L                                                                    |                                            | 6                                                                 |
| HIST                                                                                                              | ORY                                                                                                                                                | AND PI                                                                                                          | HIOLOSOPHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                                      |                                            |                                                                   |
| Histor                                                                                                            | ry of                                                                                                                                              | Making                                                                                                          | g of the Indian Constitution: History-Drafting Comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ittee, (                                                       | Comp                                                                 | ositio                                     | 1 &                                                               |
| Work                                                                                                              | ing) Ph                                                                                                                                            | nilosoph                                                                                                        | y of the Indian Constitution: Preamble-Salient Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                      |                                            |                                                                   |
| UNIT                                                                                                              | r II                                                                                                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                                                                      |                                            | 6                                                                 |
| CON                                                                                                               | TOUR                                                                                                                                               | S OF C                                                                                                          | CONSTITUTIONAL RIGHTS & DUTIES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                                                                      |                                            |                                                                   |
| Funda                                                                                                             | amental                                                                                                                                            | l Right                                                                                                         | s -Right to Equality-Right to Freedom-Right against                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Explo                                                          | oitatior                                                             | n-Righ                                     | t to                                                              |
| Freed                                                                                                             | om of                                                                                                                                              | Religio                                                                                                         | on-Cultural and Educational Rights-Right to Constitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nal Re                                                         | medies                                                               | -Dire                                      | ctive                                                             |
| Princi                                                                                                            | iples of                                                                                                                                           | State P                                                                                                         | olicy-Fundamental Duties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |                                                                      |                                            |                                                                   |
| UNIT                                                                                                              | T III                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                                                                      |                                            | 6                                                                 |
| ORG                                                                                                               | ANS C                                                                                                                                              | )F GOV                                                                                                          | /ERNANCE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |                                                                      |                                            |                                                                   |
|                                                                                                                   |                                                                                                                                                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                                                                      |                                            |                                                                   |
| Parlia                                                                                                            | iment-C                                                                                                                                            | Composi                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Func                                                           | tions-                                                               | Execu                                      | tive-                                                             |
|                                                                                                                   |                                                                                                                                                    | -                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                                                                      |                                            | tive-<br>lges,                                                    |
| Presic                                                                                                            | dent-Go                                                                                                                                            | overnor-                                                                                                        | ition-Qualifications and Disqualifications-Powers and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |                                                                      |                                            |                                                                   |
| Presic                                                                                                            | dent-Go<br>ficatior                                                                                                                                | overnor-                                                                                                        | ition-Qualifications and Disqualifications-Powers and<br>Council of Ministers-Judiciary, Appointment and                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                      |                                            |                                                                   |
| Presic<br>Quali<br>UNIT                                                                                           | dent-Go<br>ficatior<br>f <b>IV</b>                                                                                                                 | overnor-<br>ns-Powe                                                                                             | ition-Qualifications and Disqualifications-Powers and<br>Council of Ministers-Judiciary, Appointment and                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                      |                                            | lges,                                                             |
| Presic<br>Quali<br>UNII<br>LOC                                                                                    | dent-Go<br>ficatior<br>F IV<br>AL AD                                                                                                               | overnor-<br>ns-Powe                                                                                             | ition-Qualifications and Disqualifications-Powers and<br>Council of Ministers-Judiciary, Appointment and<br>ers and Functions                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trans                                                          | fer o                                                                | f Juc                                      | lges,                                                             |
| Presic<br>Quali<br>UNIT<br>LOC<br>Distri                                                                          | dent-Go<br>ficatior<br>F IV<br>AL AD<br>oct's Ad                                                                                                   | overnor-<br>ns-Powe<br>OMINIS                                                                                   | ition-Qualifications and Disqualifications-Powers and<br>Council of Ministers-Judiciary, Appointment and<br>ers and Functions                                                                                                                                                                                                                                                                                                                                                                                                                                          | Transi<br>ction, N                                             | fer o<br>Iayor a                                                     | f Juc                                      | lges,<br>6<br>le of                                               |
| Presic<br>Quali<br>UNII<br>LOC<br>Distri<br>Electe                                                                | dent-Go<br>fication<br><b>IV</b><br><b>AL AD</b><br>oct's Ac<br>ed Rep                                                                             | overnor-<br>ns-Powe<br>OMINIS<br>Iministra                                                                      | ition-Qualifications and Disqualifications-Powers and<br>Council of Ministers-Judiciary, Appointment and<br>ers and Functions<br><b>STRATION</b><br>ation head: Role and Importance, -Municipalities: Introduc                                                                                                                                                                                                                                                                                                                                                         | Transi<br>ction, M                                             | fer of<br>Aayor a<br>ction,                                          | f Juc<br>and ro<br>PRI:                    | lges,<br>6<br>le of<br>Zila                                       |
| Presic<br>Quali<br>UNIT<br>LOC<br>Distri<br>Electe<br>Pacha                                                       | dent-Go<br>ficatior<br><b>IV</b><br><b>AL AD</b><br>oct's Ad<br>ed Rep<br>nyat. E                                                                  | DMINIS<br>Iministration                                                                                         | ition-Qualifications and Disqualifications-Powers and<br>Council of Ministers-Judiciary, Appointment and<br>ers and Functions<br><b>STRATION</b><br>ation head: Role and Importance, -Municipalities: Introduc<br>tive, CEO of Municipal Corporation. Pachayati raj: I                                                                                                                                                                                                                                                                                                 | Transt<br>ction, M<br>introduc<br>and ro                       | fer o<br>fayor a<br>ction,<br>le. B1                                 | f Juc<br>and ro<br>PRI:<br>ock le          | lges,<br>6<br>le of<br>Zila<br>evel:                              |
| Presic<br>Quali<br>UNIT<br>LOC<br>Distri<br>Electo<br>Pacha<br>Organ                                              | dent-Go<br>fication<br>F <b>IV</b><br>AL AD<br>ct's Ac<br>ed Rep<br>nyat. E<br>nization                                                            | DMINIS<br>DMINIS<br>Iministra<br>presentat<br>lected of<br>nal Hier                                             | ition-Qualifications and Disqualifications-Powers and<br>Council of Ministers-Judiciary, Appointment and<br>ers and Functions<br><b>STRATION</b><br>ation head: Role and Importance, -Municipalities: Introduc<br>tive, CEO of Municipal Corporation. Pachayati raj: I<br>officials and their roles, CEO Zila Pachayat: Position                                                                                                                                                                                                                                       | Transt<br>ction, M<br>introduc<br>and ro                       | fer o<br>fayor a<br>ction,<br>le. B1                                 | f Juc<br>and ro<br>PRI:<br>ock le          | lges,<br>6<br>le of<br>Zila<br>evel:                              |
| Presic<br>Quali<br>UNIT<br>LOC<br>Distri<br>Electo<br>Pacha<br>Organ                                              | dent-Go<br>ficatior<br>F <b>IV</b><br>AL AD<br>ed Rep<br>nyat. E<br>nizatior<br>als, Imp                                                           | DMINIS<br>DMINIS<br>Iministra<br>presentat<br>lected of<br>nal Hier                                             | ition-Qualifications and Disqualifications-Powers and<br>Council of Ministers-Judiciary, Appointment and<br>ers and Functions<br><b>STRATION</b><br>ation head: Role and Importance, -Municipalities: Introduc<br>tive, CEO of Municipal Corporation. Pachayati raj: I<br>officials and their roles, CEO Zila Pachayat: Position<br>earchy (Different departments), Village level: Role of I                                                                                                                                                                           | Transt<br>ction, M<br>introduc<br>and ro                       | fer o<br>fayor a<br>ction,<br>le. B1                                 | f Juc<br>and ro<br>PRI:<br>ock le          | lges,<br>6<br>le of<br>Zila<br>evel:                              |
| Presic<br>Quali<br>UNIT<br>LOC<br>Distri<br>Electe<br>Pacha<br>Organ<br>officia                                   | dent-Go<br>fication<br>F <b>IV</b><br>AL AD<br>ed Rep<br>nyat. E<br>nization<br>als, Imp<br>F V:                                                   | DMINIS<br>DMINIS<br>Iministra<br>presentat<br>lected of<br>hal Hier<br>portance                                 | ition-Qualifications and Disqualifications-Powers and<br>Council of Ministers-Judiciary, Appointment and<br>ers and Functions<br><b>STRATION</b><br>ation head: Role and Importance, -Municipalities: Introduc<br>tive, CEO of Municipal Corporation. Pachayati raj: I<br>officials and their roles, CEO Zila Pachayat: Position<br>earchy (Different departments), Village level: Role of I                                                                                                                                                                           | Transt<br>ction, M<br>introduc<br>and ro                       | fer o<br>fayor a<br>ction,<br>le. B1                                 | f Juc<br>and ro<br>PRI:<br>ock le          | lges,<br>6<br>le of<br>Zila<br>evel:<br>nted                      |
| Presic<br>Quali<br>UNII<br>LOC<br>Distri<br>Electe<br>Pacha<br>Organ<br>officia<br>UNII<br>ELEC                   | dent-Go<br>fication<br><b>FIV</b><br><b>AL AD</b><br>ct's Ac<br>ed Rep<br>nyat. E<br>nization<br>als, Imp<br><b>FV:</b><br><b>CTION</b>            | DMINIS<br>DMINIS<br>Iministra<br>presentat<br>lected of<br>nal Hier<br>portance                                 | ition-Qualifications and Disqualifications-Powers and<br>Council of Ministers-Judiciary, Appointment and<br>ers and Functions<br><b>STRATION</b><br>ation head: Role and Importance, -Municipalities: Introduc<br>tive, CEO of Municipal Corporation. Pachayati raj: I<br>officials and their roles, CEO Zila Pachayat: Position<br>earchy (Different departments), Village level: Role of I<br>e of grass root democracy                                                                                                                                              | Transt<br>ction, M<br>introduc<br>and ro<br>Elected            | fer of<br>fayor a<br>ction,<br>le. Bl<br>and                         | f Juc<br>and ro<br>PRI:<br>ock le<br>Appoi | dges,<br>6<br>le of<br>Zila<br>evel:<br>nted                      |
| Presic<br>Quali<br>UNIT<br>LOC<br>Distri<br>Electe<br>Pacha<br>Organ<br>officia<br>UNIT<br>ELEC                   | dent-Go<br>fication<br><b>IV</b><br><b>AL AD</b><br>oct's Ad<br>ed Rep<br>nyat. E<br>nization<br>als, Imp<br><b>IV</b> :<br><b>CTION</b><br>ion Co | DMINIS<br>DMINIS<br>Iministra<br>Dresentar<br>lected of<br>hal Hier<br>portance                                 | ition-Qualifications and Disqualifications-Powers and<br>Council of Ministers-Judiciary, Appointment and<br>ers and Functions<br><b>TRATION</b><br>ation head: Role and Importance, -Municipalities: Introduce<br>tive, CEO of Municipal Corporation. Pachayati raj: I<br>officials and their roles, CEO Zila Pachayat: Position<br>earchy (Different departments), Village level: Role of I<br>e of grass root democracy<br><b>MISSION</b>                                                                                                                            | Transt<br>ction, M<br>introduc<br>and ro<br>Elected<br>issione | fer or<br>Mayor a<br>ction,<br>le. Bl<br>and<br>r and                | f Juc<br>and ro<br>PRI:<br>ock le<br>Appoi | dges,<br>6<br>le of<br>Zila<br>evel:<br>nted<br>6                 |
| Presic<br>Quali<br>UNIT<br>LOC<br>Distri<br>Electe<br>Pacha<br>Orgar<br>officia<br>UNIT<br>ELEC<br>Electi<br>Comr | dent-Go<br>fication<br><b>FIV</b><br>ALAD<br>ct's Ac<br>ed Rep<br>nyat. E<br>nization<br>als, Imp<br><b>FV:</b><br>CTION<br>ion Co<br>nission      | DMINIS<br>DMINIS<br>Iministra<br>Dresentar<br>lected of<br>hal Hier<br>portance<br>N COMI<br>Dommissioners. Sta | ition-Qualifications and Disqualifications-Powers and<br>Council of Ministers-Judiciary, Appointment and<br>ers and Functions<br><b>TRATION</b><br>ation head: Role and Importance, -Municipalities: Introduce<br>tive, CEO of Municipal Corporation. Pachayati raj: I<br>officials and their roles, CEO Zila Pachayat: Position<br>earchy (Different departments), Village level: Role of I<br>e of grass root democracy<br><b>MISSION</b><br>ion: Role and FunctioningChief Election Comm                                                                            | Transt<br>ction, M<br>introduc<br>and ro<br>Elected<br>issione | fer or<br>Mayor a<br>ction,<br>le. Bl<br>and<br>r and                | f Juc<br>and ro<br>PRI:<br>ock le<br>Appoi | lges,<br>6<br>le of<br>Zila<br>evel:<br>nted<br>6                 |
| Presic<br>Quali<br>UNIT<br>LOC<br>Distri<br>Electe<br>Pacha<br>Orgar<br>officia<br>UNIT<br>ELEC<br>Electi<br>Comr | dent-Go<br>fication<br><b>FIV</b><br>ALAD<br>ct's Ac<br>ed Rep<br>nyat. E<br>nization<br>als, Imp<br><b>FV:</b><br>CTION<br>ion Co<br>nission      | DMINIS<br>DMINIS<br>Iministra<br>Dresentar<br>lected of<br>hal Hier<br>portance<br>N COMI<br>Dommissioners. Sta | ition-Qualifications and Disqualifications-Powers and<br>Council of Ministers-Judiciary, Appointment and<br>ers and Functions<br><b>CTRATION</b><br>ation head: Role and Importance, -Municipalities: Introduc<br>tive, CEO of Municipal Corporation. Pachayati raj: I<br>officials and their roles, CEO Zila Pachayat: Position<br>earchy (Different departments), Village level: Role of I<br>e of grass root democracy<br><b>MISSION</b><br>ion: Role and FunctioningChief Election Comm<br>ate Election Commission: Role and Functioning. Institu<br>BC and women. | Transt<br>ction, M<br>introduc<br>and ro<br>Elected<br>issione | fer or<br>Mayor a<br>ction,<br>le. Bl<br>and<br>r and<br>Bodi<br>L 7 | f Juc<br>and ro<br>PRI:<br>ock le<br>Appoi | lges,<br>6<br>le of<br>Zila<br>evel:<br>nted<br>6<br>ction<br>the |

1. The Constitution of India, 1950 (Bare Act), Government Publication.

2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.

3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.

4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

#### **CO Vs PO Mapping**

|                  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|------------------|-----|-----|-----|-----|-----|-----|-----|
| CO1              |     |     |     | 3   |     | 1   | 1   |
| CO2              |     |     |     | 3   |     | 1   | 1   |
| CO3              |     |     |     | 3   |     | 1   | 1   |
| CO4              |     |     |     | 3   |     | 1   | 1   |
| CO5              |     |     |     | 3   |     | 1   | 1   |
|                  |     |     |     | 15  |     | 5   | 5   |
| Scaled<br>values |     |     |     | 3   |     | 1   | 1   |

#### $1-5 \rightarrow 1$ , $6-10 \rightarrow 2$ , $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COURSE CODE |      | E CODE | COURSE NAME  | L | Т | Р | С |
|-------------|------|--------|--------------|---|---|---|---|
| YW          | C207 | 1      | MINI PROJECT | 0 | 0 | 2 | 2 |
| С           | Р    | Α      |              | L | Т | Р | Н |
| 1           | 0.5  | 0.5    |              | 0 | 0 | 2 | 2 |

| COU | RSE OUTCOMES                                                                                  | DOMAIN    | LEVEL                   |
|-----|-----------------------------------------------------------------------------------------------|-----------|-------------------------|
| CO1 | Define and discuss an existing problem in wireless communication and summarize the solutions. | Cognitive | Understanding           |
| CO2 | Discover various tools and mathematical/engineering methods behind the solutions              | Cognitive | Remembering<br>Applying |
| CO3 | Present the problem, objectives, literature and analyze various solutions.                    | Cognitive | Analyzing               |
| CO4 | Solve the problem using existing method by proper tools and produce the results.              | Cognitive | Understanding           |
| CO5 | Conclude, compare, report and present the solution proposed and the results obtained.         | Cognitive | Analyzing               |

#### CO Vs PO Mapping

|                  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |
|------------------|-----|-----|-----|-----|-----|-----|------------|
| CO1              | 3   | 3   |     |     |     | 1   | 1          |
| CO2              |     |     | 3   | 3   |     | 1   | 1          |
| CO3              |     | 3   |     |     | 3   | 1   | 1          |
| CO4              | 3   | 3   | 3   |     |     | 1   | 1          |
| CO5              |     |     |     |     | 3   | 1   | 1          |
|                  | 6   | 9   | 6   | 3   | 6   | 5   | 5          |
| Scaled<br>values | 2   | 2   | 2   | 1   | 2   | 1   | 1          |

#### $1-5 \rightarrow 1$ , $6-10 \rightarrow 2$ , $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| CC  | OURS                                                             | E CODE                     | COURSE N.                         | AME          |           | L       | Т        | Р         | C  |
|-----|------------------------------------------------------------------|----------------------------|-----------------------------------|--------------|-----------|---------|----------|-----------|----|
| YV  | YWC401 DISSERTATION PHASE – I                                    |                            |                                   | SE – I       | 0         | 0       | 10       | 10        |    |
| С   | Р                                                                | Α                          |                                   |              |           | L       | Т        | Р         | Н  |
| 1   | 0.5                                                              | 0.5                        |                                   |              |           | 0       | 0        | 10        | 10 |
| Aft | er co                                                            | mpletion of                | the course, a stu                 | dent will be | e able to | •       |          | •         | •  |
| С   | OUR                                                              | SE OUTC                    | OMES                              |              |           | DOMA    | IN       | LEVEL     |    |
| C   | 01                                                               | Identify pro<br>solve them | oblems and con<br>efficiently.    | itemporary   | tools to  | Cogniti | ive      | Applyin   | b  |
| C   | 02                                                               |                            | ent solutions proves and methods. |              | d outline | Cogniti | ive      | Analyzing |    |
| C   | CO3 Explain the project ideas, findings and demonstrate the same |                            |                                   | findings     | Cogniti   | ive     | Understa | anding    |    |
|     |                                                                  |                            |                                   |              |           |         |          |           |    |

#### **CO Vs PO Mapping**

|                  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|------------------|-----|-----|-----|-----|-----|-----|-----|
| CO1              | 1   | 3   | 3   |     |     | 3   |     |
| CO2              | 1   | 3   |     |     |     |     |     |
| CO3              | 1   | 2   | 3   | 3   | 3   | 1   | 1   |
|                  | 3   | 8   | 6   | 3   | 3   | 4   | 1   |
| Scaled<br>values | 1   | 2   | 2   | 1   | 1   | 1   | 1   |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| CO  | DUR                            | SE CODE     | COURSE NAME                                                                                          | L       | Т        | Р        | С  |
|-----|--------------------------------|-------------|------------------------------------------------------------------------------------------------------|---------|----------|----------|----|
| YV  | YWC401DISSERTATION PHASE - II0 |             | 0                                                                                                    | 16      | 16       |          |    |
| С   | Р                              | Α           |                                                                                                      | L T     |          | Р        | Н  |
| 1   | 0.5                            | 0.5         |                                                                                                      | 0       | 0        | 16       | 16 |
|     |                                | mpletion of | the course, a student will be able to <b>OMES</b>                                                    | DOMA    | IN       | LEVEL    |    |
| C   | 201                            | and physica | Estimate, Track and cost the human<br>al resources required, and make plans<br>e necessary resources | Cogniti | ive      | Applying | 5  |
|     |                                |             | Analyzin                                                                                             | g       |          |          |    |
| · · |                                |             | Cogniti                                                                                              | ive     | Understa | nding    |    |

#### **CO Vs PO Mapping**

|     | PO1 | PO2                   | PO3   | PO4                 | PO5                 | PO6 | PO7 |
|-----|-----|-----------------------|-------|---------------------|---------------------|-----|-----|
| CO1 |     |                       |       | 3                   | 3                   | 3   |     |
| CO2 | 1   | 1                     | 1     | 3                   | 3                   | 3   | 1   |
| CO3 | 1   | 1                     | 1     | 3                   | 3                   | 3   | 1   |
|     |     | $1-5 \rightarrow 1$ , | 6 – 1 | $0 \rightarrow 2$ , | $11-15 \rightarrow$ | 3   |     |

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

#### **ELECTIVES**

| COURSE CODE COURSE NAME            |   | Т | P | C |
|------------------------------------|---|---|---|---|
| YWC104A MODERN RADAR COMMUNICATION | 3 | 0 | 0 | 3 |
| C P A                              | L | Т | Р | H |
| 2.75 0 0.25                        | 3 | 0 | 0 | 3 |

After completion of the course, a student will be able to

| COUR       | SE OUTCOMES                                                                         | DOMAIN    | LEVEL         |
|------------|-------------------------------------------------------------------------------------|-----------|---------------|
| <b>CO1</b> | Explain various principles associated with radar communication                      | Cognitive | Understanding |
| CO2        | Apply matched filter and discuss various situation where matched filter can be used | Cognitive | Applying      |
| <b>CO3</b> | Examinevarious Ambiguity Functions                                                  | Cognitive | Analyzing     |
| <b>CO4</b> | Outline FMCW radar and demonstrate various applications.                            | Cognitive | Understanding |
| CO5        | AnalyzeMoving Target Indicator (MTI) and Pulse<br>Doppler Radars                    | Cognitive | Analyzing     |
| UNIT I     |                                                                                     |           | 9             |

#### **INTRODUCTION**

Pulsed and Continuous Wave (CW) Radars, -. Range,-Range Resolution, - Doppler Frequency, -Coherence, -Decibel Arithmetic,- The Radar Range Equation, - Low PRF Radar Equation, - High PRF Radar Equation, -Surveillance Radar Equation, -Radar Equation with Jamming, - Self-Screening Jammers (SSJ), - Burn-Through Range, -Stand-Off Jammers (SOJ), - Range Reduction Factor, - Bistatic Radar Equation, - Radar Losses, -Transmit and Receive Losses, - Antenna Pattern Loss and Scan Loss, -Atmospheric Loss, - Collapsing Loss, - Processing Loss, -Noise Figure, -Continuous Wave (CW) Radars, - CW Radar Equation, - Frequency Modulation, - Linear Frequency Modulated CW Radar, - Multiple Frequency CW Radar

#### UNIT II

#### THE MATCHED FILTER RADAR RECEIVER

The Matched Filter SNR, -White Noise Case, - The Replica, -General Formula for the Output of the Matched Filter, -Stationary Target Case, - Moving Target Case, -Waveform Resolution and Ambiguity, - Range Resolution, - Doppler Resolution, -Range and Doppler Uncertainty, -Range Uncertainty, - Doppler Uncertainty, -Range-Doppler Coupling, -Range Error Estimate, -Doppler Error Estimate, - Range-Doppler Coupling in LFM Signals, - Target Parameter Estimation, - What

| Is an Estimator?, - Amplitude Estimation, -Phase Estimation, |   |
|--------------------------------------------------------------|---|
| UNIT III                                                     | 9 |
| AMBIGUITY FUNCTION                                           |   |

Examples of the Ambiguity Function, -Single Pulse Ambiguity Function, - LFM Ambiguity Function, - Coherent Pulse Train Ambiguity Function, - Pulse Train Ambiguity Function with LFM, - Stepped Frequency Waveforms, -Nonlinear FM, 1-The Concept of Stationary Phase, - Frequency Modulated Waveform Spectrum Shaping, - Ambiguity Diagram Contours, 1- Interpretation of Range-Doppler Coupling in LFM Signals, Ambiguity Function - Discrete Coded Waveforms

#### UNIT IV

9

9

FCW AND FREQUENCY MODULATED RADAR: Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar, Illustrative Problems.FM-CW Radar, Range and Doppler Measurement, Block Diagram and Characteristics (Approaching/ Receding Targets), FM-CW altimeter, Multiple Frequency CW Radar.

#### UNIT V

#### MOVING TARGET INDICATOR (MTI) AND PULSE DOPPLER RADARS

Clutter Power Spectrum Density, Concept of a Moving Target Indicator (MTI), - Single Delay Line Canceler, -Double Delay Line Canceler, -Delay Lines with Feedback (Recursive Filters), - PRF Staggering, - MTI Improvement Factor, -Two-Pulse MTI Case, - The General Case, -Subclutter Visibility (SCV), - Delay Line Cancelers with Optimal Weights, - Pulse Doppler Radars, -Pulse Doppler Radar Signal Processing, - Resolving Range Ambiguities, - Resolving Doppler Ambiguities, -Phase Noise

|            | LECTURE | PRACTICAL | TOTAL |
|------------|---------|-----------|-------|
|            | 45      | 0         | 45    |
| REFERENCES |         |           |       |

Bassem R. Mahafza, "Radar Systems Analysis and Design Using MATLAB, CRC Press, Boca Raton, FL, United States, 2000

ullivan, "Radar foundations for imaging and advanced concepts", 2004

Chards, Sheer and Holm (eds), "Principles of modern radar, basic principles", 2010 . C. Toomay and Paul J. Hannen, "Radar Principles for the Non-Specialist", by J. C. Toomay, Paul

Hannen, SciTech Publishing

#### CO Vs PO Mapping

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |
|--------|-----|-----|-----|-----|-----|-----|------------|
| CO1    | 3   | 3   |     | 2   | 2   | 1   | 1          |
| CO2    | 3   | 3   |     | 1   | 2   | 1   | 1          |
| CO3    | 3   | 3   |     |     | 2   | 1   | 1          |
| CO4    | 3   | 3   |     | 2   | 2   | 1   | 1          |
| CO5    | 3   | 3   |     | 1   | 2   | 1   | 1          |
|        | 15  | 15  |     | 6   | 10  | 5   | 5          |
| Scaled | 3   | 3   |     | 2   | 2   | 1   | 1          |
| values |     |     |     |     |     |     |            |

#### $1-5 \rightarrow 1$ , $6-10 \rightarrow 2$ , $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| YWC10<br>C P                                                                                                    | SE CODE                                                                                                             | COURSE NAME                                                                                                                                                                                                           | L                                                                              | Т                                                | P                                    | C                                               |  |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------|-------------------------------------------------|--|--|
| СР                                                                                                              |                                                                                                                     | MOBILE SATELLITE COMMUNICATION                                                                                                                                                                                        |                                                                                | 0                                                | 0                                    | 3                                               |  |  |
|                                                                                                                 |                                                                                                                     |                                                                                                                                                                                                                       |                                                                                | T                                                | P                                    | H                                               |  |  |
|                                                                                                                 | 0 0.25                                                                                                              | f the course, a student will be able to                                                                                                                                                                               | 3                                                                              | 0                                                | 0                                    | 3                                               |  |  |
|                                                                                                                 | completion c                                                                                                        | The course, a student will be able to                                                                                                                                                                                 |                                                                                |                                                  |                                      |                                                 |  |  |
| COUR                                                                                                            | RSE OUTCO                                                                                                           |                                                                                                                                                                                                                       | DOMAIN                                                                         | LEVE                                             | []                                   |                                                 |  |  |
| <b>CO1</b>                                                                                                      | of the sate                                                                                                         |                                                                                                                                                                                                                       | Cognitive                                                                      | Unders                                           | tandin                               | g                                               |  |  |
| CO2                                                                                                             |                                                                                                                     | he radio link and summarize the multiple atellite communications.                                                                                                                                                     | Cognitive                                                                      | Unders                                           | tandin                               | g                                               |  |  |
| CO3                                                                                                             | Explain the satellite subsystems and linksCognitiveEvaluating                                                       |                                                                                                                                                                                                                       |                                                                                |                                                  |                                      |                                                 |  |  |
| CO4                                                                                                             |                                                                                                                     | Appraise and explain various planning in implementing a Cognitive Understandin satellite communication                                                                                                                |                                                                                |                                                  |                                      |                                                 |  |  |
| C05                                                                                                             | Explain va                                                                                                          | rious satellite system and services                                                                                                                                                                                   | Cognitive                                                                      | Unders                                           | tandin                               | g                                               |  |  |
| UNIT I                                                                                                          |                                                                                                                     |                                                                                                                                                                                                                       |                                                                                |                                                  |                                      | 9                                               |  |  |
| INTRO                                                                                                           | DUCTION                                                                                                             | TO SATELLITE COMMUNICATION:                                                                                                                                                                                           |                                                                                |                                                  |                                      |                                                 |  |  |
|                                                                                                                 |                                                                                                                     | angle determination – orbital perturbation –<br>clipse – Sun Transit outage – Limitsof                                                                                                                                |                                                                                |                                                  |                                      |                                                 |  |  |
|                                                                                                                 | <u> </u>                                                                                                            | andLaunchVehicles.                                                                                                                                                                                                    |                                                                                | 1                                                |                                      | 0                                               |  |  |
| UNIT I                                                                                                          | [                                                                                                                   |                                                                                                                                                                                                                       | -                                                                              | -                                                |                                      | 9                                               |  |  |
| UNIT I<br>RADIO<br>frequenc                                                                                     | I<br>LINK ANI<br>vy considera                                                                                       | <b>D SATELLITE ACCESS</b> : Spectrum issues –<br>tions – Radio link analysis – Modulation – cod                                                                                                                       | Propagation of                                                                 | characteri                                       | stics a                              | and                                             |  |  |
| UNIT I<br>RADIO<br>frequenc<br>and com                                                                          | LINK ANI<br>CUNK ANI<br>by consideration<br>oparison of n                                                           | <b>D SATELLITE ACCESS</b> : Spectrum issues –                                                                                                                                                                         | Propagation of                                                                 | characteri                                       | stics a                              | and                                             |  |  |
| UNIT I<br>RADIO<br>frequenc<br>and com<br>UNITII                                                                | LINK ANI<br>cy considera<br>parison of n                                                                            | <b>D SATELLITE ACCESS</b> : Spectrum issues –<br>tions – Radio link analysis – Modulation – cod<br>nultiple access schemes.                                                                                           | Propagation of ingand multip                                                   | characteri<br>le access                          | stics a<br>schen                     | and<br>nes<br>9                                 |  |  |
| UNIT II<br>RADIO<br>frequenc<br>and com<br>UNITII<br>SPACE                                                      | LINK ANI<br>cy considera<br>parison of n<br>CRAFT T                                                                 | D SATELLITE ACCESS: Spectrum issues –<br>tions – Radio link analysis – Modulation – cod<br>nultiple access schemes.<br>ECHNOLOGY: Satellite subsystems – Satell                                                       | Propagation of ingand multip ite for MSS,                                      | characteri<br>le access<br>Intersate             | stics a<br>schen                     | and<br>nes<br>9<br>links-                       |  |  |
| UNIT II<br>RADIO<br>frequence<br>and com<br>UNITII<br>SPACE<br>Emergin                                          | LINK ANI<br>cy considera<br>parison of n<br>CRAFT T                                                                 | D SATELLITE ACCESS: Spectrum issues –<br>tions – Radio link analysis – Modulation – cod<br>nultiple access schemes.<br>ECHNOLOGY: Satellite subsystems – Satell<br>ogies – Launching Satellite constellation- G       | Propagation of ingand multip ite for MSS,                                      | characteri<br>le access<br>Intersate             | stics a<br>schen                     | and<br>nes<br>9<br>links-                       |  |  |
| UNIT II<br>RADIO<br>frequence<br>and com<br>UNITII<br>SPACE<br>Emergin                                          | LINK ANI<br>cy considera<br>parison of n<br>CRAFT T<br>ng Technolo<br>mental issue                                  | D SATELLITE ACCESS: Spectrum issues –<br>tions – Radio link analysis – Modulation – cod<br>nultiple access schemes.<br>ECHNOLOGY: Satellite subsystems – Satell<br>ogies – Launching Satellite constellation- G       | Propagation of ingand multip ite for MSS,                                      | characteri<br>le access<br>Intersate             | stics a<br>schen                     | and<br>nes<br>9<br>links-                       |  |  |
| UNIT II<br>RADIO<br>frequence<br>and com<br>UNITII<br>SPACE<br>Emergin<br>Environ<br>UNIT I                     | LINK ANI<br>cy considera<br>parison of n<br>CRAFT T<br>og Technolo<br>mental issue                                  | D SATELLITE ACCESS: Spectrum issues –<br>tions – Radio link analysis – Modulation – cod<br>nultiple access schemes.<br>ECHNOLOGY: Satellite subsystems – Satell<br>ogies – Launching Satellite constellation- G       | Propagation of<br>ingand multip<br>ite for MSS,<br>ateways – N                 | characteri<br>le access<br>Intersate<br>Mobile T | stics a<br>schen<br>ellite<br>'ermin | and<br>nes<br>9<br>links-<br>als -<br>9         |  |  |
| UNIT I<br>RADIO<br>frequence<br>and com<br>UNITII<br>SPACE<br>Emergin<br>Environ<br>UNIT I<br>SYSTE             | LINK ANI<br>cy considera<br>aparison of n<br>CRAFT T<br>ag Technolo<br>mental issue<br>V<br>MARCHIT                 | D SATELLITE ACCESS: Spectrum issues –<br>tions – Radio link analysis – Modulation – cod<br>nultiple access schemes.<br>ECHNOLOGY: Satellite subsystems – Satell<br>ogies – Launching Satellite constellation- G<br>s. | Propagation of<br>ingand multip<br>ite for MSS,<br>ateways – M<br>tion model – | characteri<br>le access<br>Intersate<br>Mobile T | stics a<br>schen<br>ellite<br>'ermin | and<br>nes<br>9<br>links-<br>als -<br>9<br>ttes |  |  |
| UNIT I<br>RADIO<br>frequence<br>and com<br>UNITII<br>SPACE<br>Emergin<br>Environ<br>UNIT I<br>SYSTE<br>– Regula | LINK ANI<br>cy considera<br>aparison of n<br>CRAFT T<br>ag Technolo<br>mental issue<br>V<br>MARCHIT<br>atory issues | D SATELLITE ACCESS: Spectrum issues –<br>tions – Radio link analysis – Modulation – cod<br>nultiple access schemes.<br>ECHNOLOGY: Satellite subsystems – Satell<br>ogies – Launching Satellite constellation- G<br>s. | Propagation of<br>ingand multip<br>ite for MSS,<br>ateways – M<br>tion model – | characteri<br>le access<br>Intersate<br>Mobile T | stics a<br>schen<br>ellite<br>'ermin | and<br>nes<br>9<br>links-<br>als -<br>9<br>ttes |  |  |

**SATELLITE SYSTEM & SERVICES:** Representative MSS system – Distress and Safety Systemsnavigation systems – Direct Satellite broadcast – Direct TV Broadcast system – Very Small Aperture Terminal systems- Terrestrial Cellular system – Future Trends –Broadband systems – ATM over Satellite – Role of Satellite in FeatureNetworks.

|    |                                                    | LECTURE         | TUTORIAL          | TOTAL          |
|----|----------------------------------------------------|-----------------|-------------------|----------------|
|    |                                                    | 45              | 0                 | 45             |
|    | REFERENCES                                         |                 |                   |                |
| 1. | M.Richharia, "Mobile Satellite Communication       | ns-Principles & | t Trends", Pea    | rson           |
|    | Education,2003                                     |                 |                   |                |
| 2. | T.PrattandBostian, "Satellite Communications", Jo  | hn Wiley,2001.  |                   |                |
| 3. | W.L.Prichand and A.Sciulli, "Satellite Comm        | unication syste | ms Engineering    | ", Prentice    |
|    | Hall,1986                                          |                 |                   |                |
| 4. | T.Ha, "Digital Satellite Communication SystemsEr   | ngineering", Mc | Graw Hill, 1998   |                |
| 5. | Gerard Maral, Michel Bousquet and Zhili, "Satellit | e Communicatio  | ons Systems: Syst | ems,           |
|    | Techniques and Technology", Wiley, 2010.           |                 |                   |                |
| 6. | Anil K. Maini and Varsha Agrawal "Satellite        | Technology: I   | Principles and A  | Applications", |
|    | Wiley,2010.                                        |                 | •                 |                |
| 7. | Bruce R. Elbert "Introduction to Satellite Co      | mmunication (   | Artech House S    | Space          |
|    | Applications)",2008.                               |                 |                   | -              |

#### **CO Vs PO Mapping**

| vs i O Mappi | 5   |     |     |     |     |     |     |
|--------------|-----|-----|-----|-----|-----|-----|-----|
|              | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
| CO1          | 3   | 3   |     | 2   | 2   | 1   | 1   |
| CO2          | 3   | 3   |     | 1   |     | 1   | 1   |
| CO3          | 3   | 3   |     |     | 1   | 1   | 1   |
| CO4          | 3   | 3   |     | 2   |     | 1   | 1   |
| CO5          | 3   | 3   |     | 1   | 3   | 1   | 1   |
|              | 15  | 15  |     | 6   | 6   | 5   | 5   |
| Scaled       | 3   | 3   |     | 2   | 2   | 1   | 1   |
| values       |     |     |     |     |     |     |     |

 $1-5 \rightarrow 1, \qquad 6-10 \rightarrow 2, \qquad 11-15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COU  | COURSE CODE COURSE NAME |      | L                                 | Т | Р | С |   |
|------|-------------------------|------|-----------------------------------|---|---|---|---|
| YWC  | C104A                   | L    | ADVANCE DIGITAL SIGNAL PROCESSING | 3 | 0 | 0 | 3 |
| С    | Р                       | Α    |                                   | L | Т | Р | H |
| 2.75 | 0                       | 0.25 |                                   | 3 | 0 | 0 | 3 |

After completion of the course, a student will be able to

| COUR       | SE OUTCOMES                                                                                                                                               | DOMAIN    | LEVEL         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| CO1        | Explain Multirate digital signal processing principles and its applications.                                                                              | Cognitive | Understanding |
| CO2        | Estimate the various spectral components present in the received signal using different spectral estimation methods such as Parametric and Nonparametric. | Cognitive | Evaluating    |
| CO3        | Design and implement an optimum adaptive filter using LMS and RLS algorithms.                                                                             | Cognitive | Creating      |
| <b>CO4</b> | Explain the concepts and mathematical representations                                                                                                     | Cognitive | Understanding |

|                                       | of Wavelet transforms.                                               |                   |              |             |             |
|---------------------------------------|----------------------------------------------------------------------|-------------------|--------------|-------------|-------------|
| CO5                                   | Design adaptive filters                                              | C                 | Cognitive    | Creating    | 5           |
| UNIT I                                | L                                                                    | I                 |              | 1           | 9           |
| FUNDA                                 | MENTALS OF SIGNAL PROCESSING                                         |                   |              |             | <u>i</u>    |
| Introduc                              | tion: Basic Elements Of Digital Signal Proces                        | sing System- ac   | lvantages o  | f digital o | ver analo   |
| signal p                              | rocessing; Classification of signals: Determin                       | nistic vs Rando   | m signals    | - Multi cl  | nannel an   |
| Multi-di                              | mensional signals; Down Sampling-decimation                          | n-up sampling- i  | interpolatio | n           |             |
| UNIT I                                | [                                                                    |                   |              |             | 9           |
| POWE                                  | R SPECTRUM ESTIMATION                                                |                   |              |             |             |
| Estimati                              | on of spectra using the DFT from finite duration                     | on signals - non- | – parametri  | c methods   | for powe    |
| spectrur                              | n estimation: Welch- Bartlett methods; Param                         | netric methods f  | for power s  | spectrum e  | estimation  |
| Yule-W                                | alker method- Burg method for the ARM parar                          | neters- sequenti  | al estimatio | on method   | s.          |
| UNIT 1                                | Ш                                                                    |                   |              |             | 9           |
| ADAPT                                 | IVE SIGNAL PROCESSING                                                |                   |              |             |             |
| FIR ada                               | aptive filters- steepest descent adaptive filte                      | er - LMS algo     | rithm - co   | onvergence  | e of LM     |
| algorith                              | ms; Applications: Noise cancellation - chan                          | nel equalization  | n; Adaptiv   | e recursiv  | ve filters  |
| recursiv                              | e least square estimation.                                           |                   |              |             |             |
| UNIT I                                | V                                                                    |                   |              |             | 9           |
| WAVE                                  | LET TRANSFORM                                                        |                   |              |             |             |
| Introduc                              | tion: Continuous Wavelet Transform - basic                           | e properties of   | wavelet tr   | ansforms    | - Discret   |
| Wavelet                               | Transform: Haar scaling functions and functions                      | nction spaces-    | nested spa   | ces - Ha    | ar wavele   |
| function                              | - orthogonality of $\phi(t)$ and $\psi(t)$ - normalizatio            | n of Haar bases   | at differen  | t scales; I | Daubechie   |
|                                       | s - support of wavelet system.                                       |                   |              |             |             |
| wavelets                              |                                                                      |                   |              |             | ·······     |
|                                       | 7                                                                    |                   |              |             | 9           |
| UNIT V                                | UCTIONAL ACTIVITIES                                                  |                   |              |             | 9           |
| UNIT V<br>INSTR                       |                                                                      | nent; Echo cano   | cellation us | ing adapt   |             |
| UNIT V<br>INSTR<br>EEG/EC             | UCTIONAL ACTIVITIES                                                  |                   | cellation us | ing adapt   |             |
| UNIT V<br>INSTR<br>EEG/EC             | UCTIONAL ACTIVITIES<br>CG signal analysis for the real time environn | related tools.    | PRACT        |             | ive filters |
| UNIT V<br>INSTR<br>EEG/EC<br>Voice re | UCTIONAL ACTIVITIES<br>CG signal analysis for the real time environn | related tools.    |              |             | ive filters |

#### Hyperlinks:

- 7. www.ece.umd.edu/class/enee630.F2012.html
- 8. 2.<u>http://ar.book.org/s/?q=DSP+PROAKIS&yearFrom=&yearTo=&language=&extension= &t=0</u>

#### **CO Vs PO Mapping**

|                  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|------------------|-----|-----|-----|-----|-----|-----|-----|
| CO1              |     | 3   |     | 2   | 2   | 1   | 1   |
| CO2              |     | 3   |     | 1   |     | 1   | 1   |
| CO3              |     | 3   |     |     | 3   | 1   | 1   |
| CO4              |     | 3   |     | 2   |     | 1   | 1   |
| CO5              |     | 3   |     | 1   | 3   | 1   | 1   |
|                  |     | 15  |     | 6   | 8   | 5   | 5   |
| Scaled<br>values |     | 3   |     | 2   | 2   | 1   | 1   |

#### $1-5 \rightarrow 1$ , $6-10 \rightarrow 2$ , $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COURSE CODECOURSE NAMEYWC104DFREE SPACE OPTIC |       | CODE | COURSE NAME       | L | Т | Р | С |
|-----------------------------------------------|-------|------|-------------------|---|---|---|---|
| YWC                                           | C104D |      | FREE SPACE OPTICS | 3 | 0 | 0 | 3 |
| С                                             | P     | Α    |                   | L | Т | P | Η |
| 2.75                                          | 0     | 0.25 |                   | 3 | 0 | 0 | 3 |

After completion of the course, a student will be able to

| COUR   | SE OUTCOMES                                                       | DOMAIN    | LEVEL         |
|--------|-------------------------------------------------------------------|-----------|---------------|
| CO1    | Outline and describe fundamentals related to Free Space<br>Optics | Cognitive | Understanding |
| CO2    | Explain FSO networks                                              | Cognitive | Understanding |
| CO3    | Discuss long distance FSO communication.                          | Cognitive | Creating      |
| CO4    | Illustrate and give Examples of FSO devices and components        | Cognitive | Understanding |
| CO5    | Discuss the optical signal processing techniques                  | Cognitive | Creating      |
| UNIT I | ·                                                                 | •         | 9             |

#### **FUNDAMENTALS**

Fundamentals of FSO Technology : Introduction – Maxwell's Equations – Electromagnetic wave propagation in free space - alternate bandwidth technologies – Fiber Vs FSO- Fiber Access – Overview of FSO Optical Transmitters – Receivers – Subsystems – Pointing, Acquisition and Tracking – Line of sightanalysis.

#### UNIT II

#### FSO NETWORKS

The Role of FSO in the network – factors affecting FSO – line of sight (LOS) –Selecting transmission wave integration of FSO in Optical networks – installation of FSO systems – moving towards edge – and

residentialareas. UNITIII 9 LONG DISTANCE FSO COMMUNICATION The FSO model – Applications – System descriptions and design – Introduction to Laser Satellite Communications – Characteristics, Modulation Techniques and Radiation effects – Laser Sources. 9 UNIT IV PLANE EM WAVES IN ISOTROPIC MEDIA OPTICAL COMPONENTS FOR FSO Optical waveguides – Optical Filters, Couplers, Amplifiers, Switches, Antennas, Interconnecting Equipment, etc – Optical integrated circuits – semiconductor integrated optic devices. UNIT V 9 OPTICAL SIGNAL PROCESSING Analog and Discrete systems – Noise and Stochastic processes – Filters – Power spectraestimation– Ambiguityfunction,Wignerdistributionfunctionandtriplecorrelations **LECTURE TUTORIAL** TOTAL 45 45 0 REFERENCES 1. Heinz, Phd. Willebrand, "Free Space Optics", Sams, First Edi. -2001 2. Morris Katzman, "Laser Satellite Communication", Prentice Hall Inc., New York, 1991. 3. Hiroshi Nishihara, "Optical Integrated Circuits", McGraw Hill, New York, 1992.

- 4. Pankaj K. Das, "Optical Signal Processing", Narosa Pub. House, 1993.
- 5. Rajiv Ramaswami, Kumar Sivarajan and Galen Sasaki "Optical Networks: A Practical Perspective", Morgan Kaufmann, 3rd Edition, 2009.

#### CO Vs PO Mapping

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|--------|-----|-----|-----|-----|-----|-----|-----|
| CO1    | 3   | 3   |     | 2   |     | 1   | 1   |
| CO2    | 3   | 3   |     | 2   |     | 1   | 1   |
| CO3    | 3   | 3   |     |     |     | 1   | 1   |
| CO4    | 3   | 3   |     | 1   |     | 1   | 1   |
| CO5    | 3   | 3   |     | 2   |     | 1   | 1   |
|        | 15  | 15  |     | 7   |     | 5   | 5   |
| Scaled | 3   | 3   |     | 1   |     | 1   | 1   |
| values |     |     |     |     |     |     |     |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COU       | RS        | E CODE              | COURSE NAME                                                                                                                |           | L                  | Т      | P    | С       |      |
|-----------|-----------|---------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|--------|------|---------|------|
| YWC       | C105      | 5A                  | MATHEMATICS FOR COMMUNICATIO<br>SYSTEMS                                                                                    | N         | 3                  | 0      | 0    | 3       |      |
| С         | P         | Α                   |                                                                                                                            |           | L                  | Т      | Р    | H       |      |
| 2.75      | 0         | 0.25                |                                                                                                                            |           | 3                  | 0      | 0    | 3       |      |
| After     | con       | npletion of         | f the course, a student will be able to                                                                                    |           |                    |        |      |         |      |
| CO        | UR        | SE OUT              | COMES                                                                                                                      | DOMAI     | N                  | LEVI   | EL   |         |      |
| <b>CO</b> | 1         | construc            | Gram Schmidt orthonormalization process to<br>t an orthonormal set of vectors from the given<br>independent set of vectors | Cognitive | e                  | Apply  | ving |         |      |
| CO        | 2         | Construe<br>vectors | et a QR decomposition for a given set of                                                                                   | Cognitive | ve Applying        |        |      |         |      |
| CO.       | 3         |                     | the relationship between the continuous and distributions                                                                  | Cognitive | Cognitive Ana      |        | zing |         |      |
| CO        | 4         | Identify            | the given process is stationery or not                                                                                     | Cognitive | Cognitive Applying |        |      |         |      |
| CO        | 5         | •                   | average waiting time and queue length of a agle or multi server queue models                                               | Cognitive | e                  | Analy  | zing |         |      |
| UNII      | ΓI        |                     |                                                                                                                            |           |                    |        |      |         | 9    |
| VEC       | ТО        | R SPACI             | S                                                                                                                          |           |                    |        |      |         |      |
| Vecto     | or S      | paces, Su           | ospaces, Linearly Independence and dependence, I                                                                           | Dimension | and                | Bases, | Rank | – Nulli | ilty |
|           |           |                     | n, Inner product spaces, Orthogonality and Gran                                                                            |           |                    |        |      |         | •    |
| Diago     | onal      | ization             |                                                                                                                            |           |                    |        |      |         |      |
| UNIT      | <b>II</b> |                     |                                                                                                                            |           |                    |        |      |         | 9    |
| ALG       | ER        | RA                  |                                                                                                                            |           |                    |        |      |         |      |

Sets-Relations and functions- Definitions; Groups-Definition and elementary properties-subgroups-abelian groups-Lagranges theorem-properties; Field-Finite fields-elementary properties-subfields-statements, properties. **Matrix Theory** – Some important matrix factorizations–The Cholesky decomposition–QR factorization–Least squares method–Singular value decomposition.

9

#### UNIT III

#### RANDOM VARIABLES AND THEIR DISTRIBUTIONS

Random variables - Probability function – Moments – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distribution, Multinomial, Poisson Distributions and Relationship between various Discrete-Type distributions

Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions.

| 9 |  |
|---|--|
|   |  |
## STOCHASTIC PROCESSES

Introduction- Classification of stochastic process, Stationary process (SSS and WSS) Stationary process, Ergodic Process, Independent increment Process, Markov Process, Counting Process, Narrow- Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function.

## UNIT V

#### **QUEUEING MODELS**

Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue.

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 0        | 45    |

9

## REFERENCES

- 7. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I]
- 8. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000.
- 9. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice Hall of India, Private Ltd., New Delhi (2007).[unit III &IV]
- Michel K. Ochi, "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN 0271-6356, 2008.
- 11. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New Delhi. [unit II]

12. Grewal, B.S, Higher Engineering Mathematics, 37th edition, Khanna Publishers, 2003. [unit I]

## **CO Vs PO Mapping**

|                  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |
|------------------|-----|-----|-----|-----|-----|-----|------------|
| CO1              |     | 3   | 2   |     |     | 1   |            |
| CO2              |     | 3   | 2   |     | 2   | 1   |            |
| CO3              |     | 3   | 1   | 2   |     | 1   |            |
| CO4              |     | 3   | 2   |     | 1   | 1   |            |
| CO5              |     | 3   | 1   | 1   |     | 1   |            |
|                  |     | 15  | 8   | 3   | 3   | 5   |            |
| Scaled<br>values |     | 3   | 2   | 1   | 1   | 1   |            |

| COU                       | RSE (             | CODE                | COURSE NAME                                                                                                                                             | Ι           |           | Р        | C  |
|---------------------------|-------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|----------|----|
| YWC                       | 105B              |                     | RF MEMS                                                                                                                                                 | 3           | 0         | 0        | 3  |
| С                         | Р                 | A                   |                                                                                                                                                         | Ι           | , Т       | Р        | H  |
| 2.75                      | 0                 | 0.25                |                                                                                                                                                         | 3           | 0         | 0        | 3  |
| After                     | compl             | etion of            | the course, a student will be able to                                                                                                                   |             |           |          |    |
| CO                        | URSE              | OUTC                | OMES                                                                                                                                                    | DOMAIN      | LEV       | EL       |    |
| CO                        | -                 | Outline<br>chitectu | wireless techniques, standards and transceivers res                                                                                                     | Cognitive   | Unde      | rstandii | ng |
| CO2                       |                   |                     | and illustrate physical aspects of RF systems in MEMS                                                                                                   | Cognitive   | Evalı     | ating    |    |
| CO3                       | 3 E:              | xplain F            | RF MEMS technology and devices                                                                                                                          | Cognitive   | Unde      | rstandiı | ng |
| CO <sup>2</sup>           | <b>1</b> E:       | xplain N            | IEMS modern devices                                                                                                                                     | Cognitive   | Unde      | rstandi  | ng |
| CO                        | 5 Si              | ummariz             | ze the operation of RF MEMS based circuits                                                                                                              | Cognitive   | Unde      | rstandi  | ng |
| UNIT                      | 'I                |                     |                                                                                                                                                         |             |           |          | 9  |
| Introd<br>fixed/<br>conce | luction<br>mobile | e platfo<br>wireles | <b>EMS</b><br>res of wireless activities, the home an<br>orm, the space platform, wireless standards, s<br>s systems, wireless transceiver wireless app | systems and | archite   |          |    |
| UNIT                      | ' II              |                     |                                                                                                                                                         |             |           |          | 9  |
| ELEN                      | MENT              | 'S OF F             | RF CIRCUIT DESIGN                                                                                                                                       |             |           |          |    |
| Physic                    | cal as            | pects o             | f RF circuit design, skin effect, transmission                                                                                                          | lines on    | thin subs | strates, |    |
| self -                    | resona            | nce fre             | quency, quality factor packaging, practical asp                                                                                                         | bects of RF | circuit c | lesign,  |    |
| DC bi                     | asing,            | impeda              | nce mismatch effects in RFMEMS.                                                                                                                         |             |           |          |    |
| UNIT                      | III               |                     |                                                                                                                                                         |             |           |          | 9  |
|                           |                   |                     |                                                                                                                                                         |             |           |          |    |

#### **RF MEMS**

RF MEMS, enabled circuit elements and models, RF/microwave substrate properties, micro machined, enhanced elements, capacitors, inductors, varactors, MEM switch, shunt MEM switch, low voltage hinged MEM switch approaches, push-pull series switch, folded- beam springs suspension series switch, resonators- transmission line planar resonators, cavity resonators, micromechanical resonators, film bulk acoustics wave resonators, MEMS modeling- mechanical modeling, electromagneticmodeling.

UNIT IV

9

#### NOVEL RF MEMS

Novel RF MEMS, enabled reconfigurable MEMS circuits, circuits, the resonant switch, capacitors, inductors, tunable CPW resonator, MEMS micro-switch arrays, reconfigurable circuits, double, stud tuner, Nth-stub tuner, filters, resonator tuningsystem, massively parallel switchable RF front ends, true delay digital phase shifters, reconfigurable antennas, tunable dipole antennas, tunable microstrip patch-array antenna.

## UNIT V

## RF MEMS BASED CIRCUIT DESIGN

Phase shifters, fundamentals, X-band RF MEMS phase shifter for phased array applications, Ka-band RF MEMS phase shifter for radar systems applications, Film bulk acoustic wave filters, FBAR filter fundamentals, FBAR filter for PCS applications, RF MEMS filters, A Ka-band millimeter wave Micro machined tunable filter, a High-Q 8 MHz MEM resonators filter, RF MEMS Oscillators- fundamentals, a 14GHz MEM Oscillator, a Ka-Band micro machined cavity oscillator, a 2.4 GHz MEMS based voltage controlled oscillator, design of PLL.

| LECTURE | TUTORIAL | TOTAL |  |
|---------|----------|-------|--|
| 45      | 0        | 45    |  |

#### REFERENCES

- 1. Hector J. De, Los Santos, "RF MEMS Circuit Design for Wireless Communications", Artech House, 2002.
- 2. Vijay K. Varadan, K.J. Vinoy, K.A. Jose, "RF MEMS and their Applications", John Wiley and Sons, Ltd., 2002.
- 3. GabrielM.Rebeiz, "RFMEMSTheory, Design&Technology", WileyInter science, 2002.

## **CO Vs PO Mapping**

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |
|--------|-----|-----|-----|-----|-----|-----|------------|
| CO1    | 3   | 3   |     | 3   | 1   | 1   | 1          |
| CO2    | 3   | 3   |     |     | 1   | 1   | 1          |
| CO3    | 3   | 3   |     | 3   |     | 1   | 1          |
| CO4    | 3   | 3   |     |     | 1   | 1   | 1          |
| CO5    | 3   | 3   |     | 1   |     | 1   | 1          |
|        | 15  | 15  |     | 7   | 3   | 5   | 5          |
| Scaled | 3   | 3   |     | 2   | 1   | 1   | 1          |
| values |     |     |     |     |     |     |            |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

9

|                                                                                                                                  | RSE CO                                                                                                                                                            | DDE                                                                                                                    | COURSE NAME                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         | L                     | T                                                   | P                                   | C                                     |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------|-------------------------------------|---------------------------------------|
| YWC                                                                                                                              | 105C                                                                                                                                                              |                                                                                                                        | ANTENNA SYSTEMS FOR WIRELESS<br>APPLICATIONS                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         | 3                     | 0                                                   | 0                                   | 3                                     |
| a                                                                                                                                | D                                                                                                                                                                 |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         | T                     | m                                                   |                                     | T                                     |
| C                                                                                                                                | P                                                                                                                                                                 | A                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         | L                     | T                                                   | P                                   | H                                     |
| 2.75                                                                                                                             | 0                                                                                                                                                                 | 0.25                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         | 3                     | 0                                                   | 0                                   | 3                                     |
| After                                                                                                                            | complet                                                                                                                                                           | ion of t                                                                                                               | he course, a student will be able to                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                       |                                                     |                                     |                                       |
| COI                                                                                                                              | URSE (                                                                                                                                                            | OUTCO                                                                                                                  | DMES                                                                                                                                                                                                                                                                                                                                                                                                      | DOMAIN                                                                                                  | 1                     | LEVE                                                | L                                   |                                       |
| CO                                                                                                                               |                                                                                                                                                                   | ssify                                                                                                                  | the various handset antennas and its                                                                                                                                                                                                                                                                                                                                                                      | Cognitive                                                                                               | 1                     | Unders                                              | tanding                             | g                                     |
| CO2                                                                                                                              |                                                                                                                                                                   |                                                                                                                        | e parameters.<br>e of RFID Tag antennas and mention its                                                                                                                                                                                                                                                                                                                                                   | Cognitive                                                                                               | 1                     | Unders                                              | tandin                              | σ                                     |
|                                                                                                                                  | effects.                                                                                                                                                          |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |                       |                                                     |                                     | 0                                     |
| CO3                                                                                                                              | 3 Out                                                                                                                                                             | line the                                                                                                               | Laptop antenna and evaluate its performance.                                                                                                                                                                                                                                                                                                                                                              | Cognitive                                                                                               | ١                     | Unders                                              | tanding                             | g                                     |
| CO4                                                                                                                              | 1 Ana                                                                                                                                                             | alyze 1                                                                                                                | he various issues in microwave thermal                                                                                                                                                                                                                                                                                                                                                                    | Cognitive                                                                                               | (                     | Creatin                                             | g                                   |                                       |
| CO                                                                                                                               |                                                                                                                                                                   | apies.                                                                                                                 | l evaluate antennas for wearable devices and its                                                                                                                                                                                                                                                                                                                                                          | Cognitive                                                                                               |                       | Crostin                                             | ~                                   |                                       |
|                                                                                                                                  |                                                                                                                                                                   | •                                                                                                                      | ications.                                                                                                                                                                                                                                                                                                                                                                                                 | Cognitive                                                                                               |                       | Creatin<br>Evaluat                                  | •                                   |                                       |
| UNIT                                                                                                                             |                                                                                                                                                                   |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                       | I                     |                                                     |                                     | 9                                     |
| optim<br>UNIT                                                                                                                    | for Ef<br>ization-<br><b>II</b>                                                                                                                                   | ficiency<br>RF perf                                                                                                    | ance Requirements-Electrically small Antennas-<br>y and Extended Bandwidth-Practical design-<br>formance of typical handsets                                                                                                                                                                                                                                                                              |                                                                                                         |                       |                                                     |                                     |                                       |
| optimi<br>UNIT<br>RFID<br>RFID                                                                                                   | for Ef<br>ization-<br>I<br>TAG A<br>fundam                                                                                                                        | ficiency<br>RF perf<br>NTEN<br>mentals,                                                                                | y and Extended Bandwidth-Practical design-<br>formance of typical handsets                                                                                                                                                                                                                                                                                                                                | starting po                                                                                             | oints                 | for D                                               | esign                               | and<br>9                              |
| optimi<br>UNIT<br>RFID<br>RFID<br>Tag A                                                                                          | for Ef<br>ization-<br>II<br>TAG A<br>fundam                                                                                                                       | ficiency<br>RF perf<br>NTEN<br>mentals,                                                                                | y and Extended Bandwidth-Practical design-<br>formance of typical handsets                                                                                                                                                                                                                                                                                                                                | starting po                                                                                             | oints                 | for D                                               | esign                               | and<br>9<br>D                         |
| optimi<br>UNIT<br>RFID<br>RFID<br>Tag A<br>UNIT                                                                                  | for Ef<br>ization-1<br>TI<br>TAG A<br>fundam<br>antennas                                                                                                          | ficiency<br>RF perf                                                                                                    | y and Extended Bandwidth-Practical design-<br>formance of typical handsets<br><b>INAS</b><br>Design considerations for RFID Tag Antennas, I                                                                                                                                                                                                                                                               | starting po                                                                                             | oints                 | for D                                               | esign                               | and<br>9                              |
| optim<br>UNIT<br>RFID<br>RFID<br>Tag A<br>UNIT<br>LAPI                                                                           | for Ef<br>ization-1<br>TAG A<br>fundam<br>antennas                                                                                                                | ficiency<br>RF perf<br>NTEN<br>entals,                                                                                 | y and Extended Bandwidth-Practical design-<br>formance of typical handsets<br>INAS<br>Design considerations for RFID Tag Antennas, I<br>A DESIGN AND EVALUATION                                                                                                                                                                                                                                           | starting po                                                                                             | viron                 | for D                                               | esign                               | and<br>9<br>D                         |
| optimi<br>UNIT<br>RFID<br>RFID<br>Tag A<br>UNIT<br>LAPI<br>Lapto                                                                 | for Ef<br>ization-1<br>TAG A<br>fundam<br>ntennas<br>TIII<br>TOP AN<br>p relate                                                                                   | TENN                                                                                                                   | y and Extended Bandwidth-Practical design-<br>formance of typical handsets<br>INAS<br>Design considerations for RFID Tag Antennas, I<br>A DESIGN AND EVALUATION<br>enna Issues-Antenna Design Methodology-PC                                                                                                                                                                                              | starting po<br>Effect of En<br>Card Ante                                                                | viron<br>viron        | for D<br>mment of<br>Perform                        | on RFII                             | and<br>9<br>D<br>9<br>an              |
| optimi<br>UNIT<br>RFID<br>Tag A<br>UNIT<br>LAPI<br>Lapto<br>Evalua                                                               | for Ef<br>ization-<br>TAG A<br>fundam<br>ntennas<br>TIII<br>FOP AN<br>p relate<br>ation-Li                                                                        | TENN<br>TENN<br>ANTEN<br>ANTEN<br>ANTENN<br>ANTENN<br>ANTENN                                                           | y and Extended Bandwidth-Practical design-<br>formance of typical handsets<br>INAS<br>Design considerations for RFID Tag Antennas, I<br>A DESIGN AND EVALUATION<br>enna Issues-Antenna Design Methodology-PC<br>dget model-Dual band examples-Antennas for                                                                                                                                                | starting po<br>Effect of En<br>Card Ante                                                                | viron<br>viron        | for D<br>mment of<br>Perform                        | on RFII                             | and<br>9<br>D<br>9<br>an              |
| optimi<br>UNIT<br>RFID<br>Tag A<br>UNIT<br>LAPI<br>Lapto<br>Evalua                                                               | for Ef<br>ization-<br>TI<br>TAG A<br>fundam<br>antennas<br>TIII<br>TOP AN<br>p relate<br>ation-Li<br>cations-                                                     | TENN<br>TENN<br>ANTEN<br>ANTEN<br>ANTENN<br>ANTENN<br>ANTENN                                                           | y and Extended Bandwidth-Practical design-<br>formance of typical handsets<br>INAS<br>Design considerations for RFID Tag Antennas, I<br>A DESIGN AND EVALUATION<br>enna Issues-Antenna Design Methodology-PC                                                                                                                                                                                              | starting po<br>Effect of En<br>Card Ante                                                                | viron<br>viron        | for D<br>mment of<br>Perform                        | on RFII                             | and<br>9<br>D<br>9<br>and<br>wor      |
| optimi<br>UNIT<br>RFID<br>RFID<br>Tag A<br>UNIT<br>LAPI<br>Evalua<br>Applia                                                      | for Ef<br>ization-<br>TI<br>TAG A<br>fundam<br>antennas<br>TII<br>TOP AN<br>p relate<br>ation-Li<br>cations-                                                      | Ficiency<br>RF perf<br>NTEN<br>entals,<br>TENN<br>ed Ante<br>nk Bu<br>Ultra w                                          | y and Extended Bandwidth-Practical design-<br>formance of typical handsets<br>INAS<br>Design considerations for RFID Tag Antennas, I<br>A DESIGN AND EVALUATION<br>enna Issues-Antenna Design Methodology-PC<br>dget model-Dual band examples-Antennas for<br>ide band Antennas                                                                                                                           | starting po<br>Effect of En<br>Card Ante<br>or wireless                                                 | viron<br>viron        | for D<br>mment of<br>Perform                        | on RFII                             | and<br>9<br>D<br>9<br>and             |
| optimi<br>UNIT<br>RFID<br>RFID<br>Tag A<br>UNIT<br>Lapto<br>Evalua<br>Applia<br>UNIT<br>ANTI                                     | for Ef<br>ization-J<br>II<br>TAG A<br>fundam<br>antennas<br>III<br>TOP AN<br>p relate<br>ation-Li<br>cations-<br>IV<br>ENNA I                                     | Ficiency<br>RF perf<br>NTEN<br>entals,<br>d Ante<br>nk Bu<br>Ultra w                                                   | y and Extended Bandwidth-Practical design-<br>formance of typical handsets<br>INAS<br>Design considerations for RFID Tag Antennas, I<br>A DESIGN AND EVALUATION<br>anna Issues-Antenna Design Methodology-PC<br>dget model-Dual band examples-Antennas for<br>ide band Antennas                                                                                                                           | starting po<br>Effect of En<br>Card Ante<br>or wireless<br><b>S</b>                                     | viron<br>viron        | for D<br>mment of<br>Perform                        | on RFII                             | and<br>9<br>D<br>9<br>an<br>wor       |
| optimi<br>UNIT<br>RFID<br>RFID<br>Tag A<br>UNIT<br>Lapto<br>Evalua<br>Applia<br>UNIT<br>ANTI                                     | for Ef<br>ization-J<br>II<br>TAG A<br>fundam<br>antennas<br>III<br>TOP AN<br>p relate<br>ation-Li<br>cations-<br>IV<br>ENNA I                                     | Ficiency<br>RF perf<br>NTEN<br>entals,<br>d Ante<br>nk Bu<br>Ultra w                                                   | y and Extended Bandwidth-Practical design-<br>formance of typical handsets<br>INAS<br>Design considerations for RFID Tag Antennas, I<br>A DESIGN AND EVALUATION<br>enna Issues-Antenna Design Methodology-PC<br>dget model-Dual band examples-Antennas for<br>ide band Antennas                                                                                                                           | starting po<br>Effect of En<br>Card Ante<br>or wireless<br><b>S</b>                                     | viron<br>viron        | for D<br>mment of<br>Perform                        | on RFII                             | and<br>9<br>D<br>9<br>an<br>wor       |
| optimi<br><b>UNIT</b><br><b>RFID</b><br>Tag A<br><b>UNIT</b><br>Lapto<br>Evalua<br>Applia<br><b>UNIT</b><br><b>ANTI</b><br>Micro | for Ef<br>ization-1<br>TI<br>TAG A<br>fundam<br>antennas<br>TII<br>TOP AN<br>p relate<br>ation-Li<br>cations-<br>TV<br>ENNA I<br>wave th                          | Ficiency<br>RF perf<br>NTEN<br>entals,<br>d Ante<br>nk Bu<br>Ultra w                                                   | y and Extended Bandwidth-Practical design-<br>formance of typical handsets<br>INAS<br>Design considerations for RFID Tag Antennas, I<br>A DESIGN AND EVALUATION<br>anna Issues-Antenna Design Methodology-PC<br>dget model-Dual band examples-Antennas for<br>ide band Antennas                                                                                                                           | starting po<br>Effect of En<br>Card Ante<br>or wireless<br><b>S</b>                                     | viron<br>viron        | for D<br>mment of<br>Perform                        | on RFII                             | and<br>9<br>D<br>9<br>an<br>wor       |
| optimi<br>UNIT<br>RFID<br>RFID<br>Tag A<br>UNIT<br>Lapto<br>Evalua<br>Applia<br>UNIT<br>ANTI<br>Micro                            | for Ef<br>ization-J<br>TII<br>TAG A<br>fundam<br>antennas<br>TIII<br>TOP AN<br>p relate<br>ation-Li<br>cations-<br>TV<br>ENNA I<br>wave th                        | Ficiency<br>RF perf<br>NTEN<br>entals,<br>TENN<br>ed Ante<br>nk Bud<br>Ultra w                                         | y and Extended Bandwidth-Practical design-<br>formance of typical handsets<br>INAS<br>Design considerations for RFID Tag Antennas, I<br>A DESIGN AND EVALUATION<br>anna Issues-Antenna Design Methodology-PC<br>dget model-Dual band examples-Antennas for<br>ide band Antennas                                                                                                                           | starting po<br>Effect of En<br>Card Ante<br>or wireless<br><b>S</b><br>inical trials                    | viron<br>viron        | for D<br>mment of<br>Perform                        | on RFII                             | and<br>9<br>D<br>an<br>wor<br>9       |
| optimi<br>UNIT<br>RFID<br>RFID<br>Tag A<br>UNIT<br>Lapto<br>Evalua<br>Applic<br>UNIT<br>ANTI<br>Micro<br>UNIT                    | for Ef<br>ization-J<br>II<br>TAG A<br>fundam<br>antennas<br>TIII<br>TOP AN<br>p relate<br>ation-Li<br>cations-<br>IV<br>ENNA I<br>wave th<br>V<br>ENNAS           | Ficiency<br>RF perf<br>NTEN<br>entals,<br>d Antentals<br>d Antentals<br>Ultra w<br>SSUES<br>ermal t                    | y and Extended Bandwidth-Practical design-<br>formance of typical handsets<br>INAS<br>Design considerations for RFID Tag Antennas, I<br>A DESIGN AND EVALUATION<br>anna Issues-Antenna Design Methodology-PC<br>dget model-Dual band examples-Antennas for<br>ide band Antennas<br>S IN MICROWAVE THERMAL THERAPIE<br>herapies-Interstitial Microwave Hyperthermia-cl                                     | starting po<br>Effect of En<br>Card Ante<br>or wireless<br>S<br>inical trials<br>ATIONS                 | viron<br>wiron<br>wid | for D<br>mment of<br>Perform<br>le Area             | esign<br>on RFII<br>mance<br>a Netv | and<br>9<br>D<br>an<br>wor<br>9       |
| optimi<br>UNIT<br>RFID<br>RFID<br>Tag A<br>UNIT<br>Lapto<br>Evalua<br>Applia<br>UNIT<br>ANTI<br>Micro<br>UNIT<br>ANTI<br>ANTI    | for Ef<br>ization-1<br>II<br>TAG A<br>fundam<br>antennas<br>III<br>FOP AN<br>p relate<br>ation-Li<br>cations-<br>IV<br>ENNA I<br>wave th<br>V<br>ENNAS<br>nadesig | Ficiency<br>RF perf<br>NTEN<br>entals,<br>TENN<br>ed Ante<br>nk Bud<br>Ultra w<br>SSUES<br>ermal t<br>FOR V<br>nrequir | y and Extended Bandwidth-Practical design-<br>formance of typical handsets<br>INAS<br>Design considerations for RFID Tag Antennas, I<br>A DESIGN AND EVALUATION<br>anna Issues-Antenna Design Methodology-PC<br>dget model-Dual band examples-Antennas for<br>ide band Antennas<br>S IN MICROWAVE THERMAL THERAPIE<br>herapies-Interstitial Microwave Hyperthermia-cl<br>wearable DEVICES AND UWB APPLIC. | starting po<br>Effect of En<br>Card Ante<br>or wireless<br>S<br>inical trials<br>ATIONS<br>ellingandcha | viron<br>enna<br>wid  | for D<br>mment of<br>Perform<br>le Area<br>erizatio | esign<br>on RFII<br>mance<br>a Netv | and<br>9<br>D<br>9<br>and<br>wor<br>9 |

| LECTURE | TUTORIAL | TOTAL |  |
|---------|----------|-------|--|
| 45      | 0        | 45    |  |
|         |          |       |  |
|         |          |       |  |

# 1. Zhi Ning Chen, "Antennas for Portable devices" Wiley, 2007.

- 2. ConstatineA.Balanis, "Modern Antenna Handbook "Wiley august2008
- 3. Nemai Chandra Karmakar, "Handbook of Smart Antennas for RFIDSystems", Wiley
- 4. Mehmet R.Yuce, Jamil Y.Khan, "Wireless body Area Networks: Technology,
  - Implementation and Applications" CRCPress.

## **CO Vs PO Mapping**

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|--------|-----|-----|-----|-----|-----|-----|-----|
| CO1    | 3   | 3   |     | 3   | 1   | 1   | 1   |
| CO2    | 3   | 3   |     |     | 1   | 1   | 1   |
| CO3    | 3   | 3   |     | 3   |     | 1   | 1   |
| CO4    | 3   | 3   |     |     | 1   | 1   | 1   |
| CO5    | 3   | 3   |     | 1   |     | 1   | 1   |
|        | 15  | 15  |     | 7   | 3   | 5   | 5   |
| Scaled | 3   | 3   |     | 2   | 1   | 1   | 1   |
| values |     |     |     |     |     |     |     |

 $1 - 5 \rightarrow 1, \qquad 6 - 10 \rightarrow 2, \qquad 11 - 15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COURSE CODE |      | ODE  | COURSE NAME                     | L | Т | P | С |
|-------------|------|------|---------------------------------|---|---|---|---|
| YWC1        | 105D |      | DETECTION AND ESTIMATION THEORY | 3 | 0 | 0 | 3 |
| С           | Р    | Α    |                                 | L | Т | P | Η |
| 2.75        | 0    | 0.25 |                                 | 3 | 0 | 0 | 3 |

| COUR   | SE OUTCOMES                                                                         | DOMAIN    | LEVEL         |
|--------|-------------------------------------------------------------------------------------|-----------|---------------|
| CO1    | Outline statistical decision theory used for signal detection and estimation.       | Cognitive | Understanding |
| CO2    | Examine the detection of deterministic and random signals using statistical models. | Cognitive | Analyzing     |
| CO3    | Explain the elements and structure of non-parametric detection.                     | Cognitive | Understanding |
| CO4    | Examine the performance of signal parameters using optimal estimators.              | Cognitive | Analyzing     |
| CO5    | Analyze signal estimation in discrete-time domain using filters.                    | Cognitive | Analyzing     |
| UNIT I |                                                                                     |           | 8             |

## BACKGROUND AND STATISTICAL DECISION THEORY:

Review of Gaussian variables and processes; problem formulation and objective of signal detection and signal parameter estimation in discrete-time domain. Bayesian, minimax, and Neyman-Pearson decision rules, likelihood ratio, receiver operating characteristics, composite hypothesis testing, locally optimum tests, detector comparison techniques, asymptotic relative efficiency.

## UNIT II

12

## DETECTION OF DETERMINISTIC SIGNALS AND RANDOM SIGNALS:

Matched filter detector and its performance; generalized matched filter; detection of sinusoid with unknown amplitude, phase, frequency and arrival time, linear model. Estimator-correlator, linear model, general Gaussian detection, detection of Gaussian random signal with unknown parameters, weak signal detection.

## UNITIII

#### **NONPARAMETRIC DETECTION:**

Detection in the absence of complete statistical description of observations, sign detector, Wilcoxon detector, detectors based on quantized observations, robustness of detectors.

## UNIT IV

8

9

## ESTIMATION OF SIGNAL PARAMETERS:

Minimum variance unbiased estimation, Fisher information matrix, Cramer-Rao bound, sufficient statistics, minimum statistics, complete statistics; linear models; best linear unbiased estimation; maximum likelihood estimation, invariance principle; estimation efficiency; Bayesian estimation: philosophy, nuisance parameters, risk functions, minimum mean square error estimation, maximum a posterioriestimation.

| UNIT V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |          |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|-------|
| SIGNAL ESTIMATION IN DISCRETE-TIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1E:              |          |       |
| Linear Bayesian estimation, Weiner filtering, Ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alman filtering. |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LECTURE          | TUTORIAL | TOTAL |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45               | 0        | 45    |
| REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | <u> </u> |       |
| <ul><li>Wiley, NY,1968.</li><li>2. H.V.Poor, "AnIntroductiontoSignalDetections"</li><li>3. S.M.Kay, "FundamentalsofStatisticalSignal StatisticalSignal StatisticalSignal StatisticalSignal Statistical Statisticae Statisticae Statisticae</li></ul> |                  |          |       |

# **CO Vs PO Mapping**

|               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|---------------|-----|-----|-----|-----|-----|-----|-----|
| CO1           | 1   | 3   |     | 2   | 1   | 1   | 1   |
| CO2           | 1   | 3   |     |     | 1   | 1   | 1   |
| CO3           | 1   | 3   |     |     |     | 1   | 1   |
| CO4           | 1   | 3   |     | 2   | 1   | 1   | 1   |
| CO5           | 1   | 3   |     |     |     | 1   | 1   |
|               | 15  | 15  |     | 4   | 3   | 5   | 5   |
| Scaled values | 3   | 3   |     | 1   | 1   | 1   | 1   |

| E OUTC                                                                                  | WIRELESS NETWORK SECURITY the course, a student will be able to DMES e why Network Security is essential in wireless | <b>DOMAIN</b><br>Cognitive                                                                                               |                                                                                                                                                                                                                        | 0<br>T<br>0                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           | 3<br>H<br>3                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.25<br>pletion of<br>E OUTCO                                                           | OMES                                                                                                                 |                                                                                                                          | 3                                                                                                                                                                                                                      | 0<br>LEVI                                                                                                                                                                                                                                               | 0<br>EL                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                   |
| pletion of<br>E OUTCO                                                                   | OMES                                                                                                                 |                                                                                                                          | [ ]                                                                                                                                                                                                                    | LEVI                                                                                                                                                                                                                                                    | EL                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |
| E OUTC                                                                                  | OMES                                                                                                                 |                                                                                                                          |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                           | ·····                                                                                                                                                                                                                                                               |
|                                                                                         |                                                                                                                      |                                                                                                                          |                                                                                                                                                                                                                        | Under                                                                                                                                                                                                                                                   | standi                                                                                                                                                                                                                                                    | ng                                                                                                                                                                                                                                                                  |
| communic                                                                                | ation                                                                                                                |                                                                                                                          | ive Understanding                                                                                                                                                                                                      |                                                                                                                                                                                                                                                         | ng                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |
| Explain va                                                                              | rious types of Cryptographic Security                                                                                | Cognitive                                                                                                                | 1                                                                                                                                                                                                                      | Under                                                                                                                                                                                                                                                   | standi                                                                                                                                                                                                                                                    | ng                                                                                                                                                                                                                                                                  |
| Apply wir<br>system                                                                     | eless security model to setup a secure wireless                                                                      | Cognitive                                                                                                                | e Applying                                                                                                                                                                                                             |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |
| Analyze the integrity of the Wireless system using Cognitive A cryptographic algorithms |                                                                                                                      |                                                                                                                          |                                                                                                                                                                                                                        | Analy                                                                                                                                                                                                                                                   | zing                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |
|                                                                                         |                                                                                                                      | Cognitive                                                                                                                |                                                                                                                                                                                                                        | Apply                                                                                                                                                                                                                                                   | ing                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                     |
|                                                                                         | Apply wir<br>system<br>Analyze t<br>cryptograp<br>Apply sec                                                          | Apply wireless security model to setup a secure wireless<br>system<br>Analyze the integrity of the Wireless system using | Apply wireless security model to setup a secure wireless<br>systemCognitive<br>Cognitive<br>Cognitive<br>Cognitive<br>cryptographic algorithmsApply security in point to point and end to end in<br>CognitiveCognitive | Apply wireless security model to setup a secure wireless       Cognitive         Analyze the integrity of the Wireless system using cryptographic algorithms       Cognitive         Apply security in point to point and end to end in       Cognitive | Apply wireless security model to setup a secure wireless<br>systemCognitiveApplyAnalyze the integrity of the Wireless system using<br>cryptographic algorithmsCognitiveAnalyApply security in point to point and end to end in<br>CognitiveCognitiveApply | Apply wireless security model to setup a secure wireless<br>systemCognitiveApplyingAnalyze the integrity of the Wireless system using<br>cryptographic algorithmsCognitiveAnalyzingApply security in point to point and end to end in<br>CognitiveCognitiveApplying |

## WIRELESS INFORMATION WARFARE

Protecting privacy and means of communication, taxonomies of wireless communication based on network architecture mobility, model for cost effective risk management, cryptographic attacks, key management, securing wireless LANS, Electromagnetic capture threats, wireless threat analysis, securing wireless LAN countermeasures.

9

9

9

## UNIT -II

## WIRELESS LAN TRANSMISSION MEDIA

WAP security architecture, BLUETOOTH, wireless access to internet. **Cryptographic Security:** Classical crypt analysis, digital cryptography, DES modern cipher breaking, non-keyed message digest, public key cryptography, Diffie – Hellman and Elliptic curve cryptography, comparison of public key crypto systems.

UNIT –III

## NETWORK SECURITY COMPONENTS

Network security model, network intrusion protection and detection, Host based security, virtual private networking, event correlation, wireless security components, secure configuration, secure authentication, encryption, wireless device placement.

## UNIT –IV

## INTEGRATING WIRELESS ACCESS INTO THE NETWORK SECURITY PROCESS

Logging wireless events, policy issues, accessing wireless network security, change control and device

administration, wireless security models, Cisco implementation with LEAP, WLAN authentication and key management with radius, wireless access with IP security, secure wireless public access, secure wireless point to point connectivity.

## UNIT –V

# HARDWARE PERSPECTIVE FOR END-TO-END SECURITY IN WIRELESS APPLICATION

9

Taxonomy of communication systems, protocol sensitive communication security, evolution towards wireless, hardware and software avenues, encryptor structures in wireless- interception and vulnerability of wireless systems, communication ESMs and interception receivers, SAW technology.

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 0        | 45    |
|         |          |       |

## **REFERENCE BOOKS**

5. Randall K. Nichols, Panos C. Lekkas, "Wireless Security Models, Threats and solutions". Mc Graw Hill, 2005.

- 6. Brian Carter, Russel Shumway, "Wireless Security End to End", CISSPI, 2005.
- 7. Merrit Maxim, David Pollino, "Wireless Security", RSA Press, 2005.
- 8. Cyrus Peikari, Seth Fogie, , "Maximum Wireless Security ", SAMS, 2005.

## **C**O Vs PO Mapping

|               | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | PO7 |
|---------------|------------|-----|-----|-----|-----|------------|-----|
| CO1           | 1          | 1   |     | 2   |     | 1          | 3   |
| CO2           | 1          | 1   |     |     |     | 1          | 3   |
| CO3           | 1          | 1   |     |     |     | 1          | 3   |
| CO4           | 1          | 1   |     | 3   |     |            | 3   |
| CO5           | 1          | 1   |     | 1   |     | 1          | 3   |
|               | 5          | 5   |     | 6   |     | 4          | 15  |
| Scaled values | 1          | 1   |     | 2   |     | 1          | 3   |

| COURS                                                                                                                                                                                                   | SE CODE                                                                                                                                                                                                             | COURSE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                   | L                                                                                 | T                                                                                                                  | P                                                                                                                   | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| YWC20                                                                                                                                                                                                   |                                                                                                                                                                                                                     | MIMO COMMUNICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   | 3                                                                                 | 0                                                                                                                  | 0                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C P<br>2.75 (                                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                   |                                                                                   | T<br>0                                                                                                             | P                                                                                                                   | F<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                     | f the course, a student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                                                                                                                                                 | 3                                                                                 | U                                                                                                                  | 0                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COU                                                                                                                                                                                                     | RSE OUT(                                                                                                                                                                                                            | COMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMAIN                                                                                                                                                                            |                                                                                   | EVEL                                                                                                               |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C01                                                                                                                                                                                                     | Explain                                                                                                                                                                                                             | the various Spatial Multiplexing and Channel<br>og Techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cognitive                                                                                                                                                                         |                                                                                   | Understanding                                                                                                      |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CO2                                                                                                                                                                                                     |                                                                                                                                                                                                                     | thevarious multiplexing architectures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cognitive                                                                                                                                                                         | U                                                                                 | ndersta                                                                                                            | unding                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>CO3</b>                                                                                                                                                                                              |                                                                                                                                                                                                                     | on Diversity-Multiplexing Trade-off and inversal space-time coding scheme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cognitive                                                                                                                                                                         | Ev                                                                                | aluati                                                                                                             | ng                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>CO4</b>                                                                                                                                                                                              | Analyse                                                                                                                                                                                                             | Cognitive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A                                                                                                                                                                                 | nalyzir                                                                           | ng                                                                                                                 |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CO5                                                                                                                                                                                                     |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                   |                                                                                   |                                                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT I                                                                                                                                                                                                  | •                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                 |                                                                                   |                                                                                                                    |                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SPATIA                                                                                                                                                                                                  | AL MULT                                                                                                                                                                                                             | IPLEXING AND CHANNEL MODELLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                   |                                                                                                                    |                                                                                                                     | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SIMO o<br>Geograp                                                                                                                                                                                       | oosition -Ra<br>channel - 2<br>phically se                                                                                                                                                                          | ability of Deterministic MIMO Channels<br>ank and Condition Number- Physical Modelling<br>Line-of-Sight MISO Channel -Antenna arrays<br>parated antennas-Line-of-sight plus one reflec<br>Basic Approach -MIMO Multipath Channel -A                                                                                                                                                                                                                                                                                                                                                                                           | of MIMO Ch<br>with only a<br>ted path - 1                                                                                                                                         | anne<br>i line<br>Mode                                                            | ls -Lin<br>e-of-sig                                                                                                | e-of-S<br>ght pa<br>of MI                                                                                           | ig<br>th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SIMO of Geograp<br>Fading of Signals<br>Domain                                                                                                                                                          | oosition -Ra<br>channel -<br>phically se<br>Channels -<br>- Angular<br>-Degrees                                                                                                                                     | ank and Condition Number- Physical Modelling<br>Line-of-Sight MISO Channel -Antenna arrays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of MIMO Ch<br>with only a<br>ted path - 1<br>angular Dom<br>tatistical Moo                                                                                                        | anne<br>line<br>Mode<br>ain R<br>deling                                           | ls -Lin<br>e-of-sig<br>elling<br>Represe<br>g in th                                                                | e-of-S<br>ght pa<br>of MI<br>entatio<br>e Ang                                                                       | Sigl<br>ath<br>Mon o<br>gula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SIMO of<br>Geograp<br>Fading (<br>Signals<br>Domain<br>Dependo                                                                                                                                          | oosition -Ra<br>channel - 1<br>phically se<br>Channels -<br>- Angular<br>-Degrees<br>ency on Ar                                                                                                                     | ank and Condition Number- Physical Modelling<br>Line-of-Sight MISO Channel -Antenna arrays<br>parated antennas-Line-of-sight plus one reflec<br>Basic Approach -MIMO Multipath Channel -A<br>Domain Representation of MIMO Channels -Se<br>of Freedom and Diversity -Degrees of Freedom                                                                                                                                                                                                                                                                                                                                       | of MIMO Ch<br>with only a<br>ted path - 1<br>angular Dom<br>tatistical Moo                                                                                                        | anne<br>line<br>Mode<br>ain R<br>deling                                           | ls -Lin<br>e-of-sig<br>elling<br>Represe<br>g in th                                                                | e-of-S<br>ght pa<br>of MI<br>entatio<br>e Ang                                                                       | Sigl<br>th<br>(M)<br>on c<br>gula<br>els                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SIMO of<br>Geograp<br>Fading (<br>Signals<br>Domain<br>Dependo<br><b>UNIT I</b>                                                                                                                         | oosition -Ra<br>channel - 1<br>ohically se<br>Channels -<br>- Angular<br>- Degrees<br>ency on An<br>I                                                                                                               | ank and Condition Number- Physical Modelling<br>Line-of-Sight MISO Channel -Antenna arrays<br>parated antennas-Line-of-sight plus one reflec<br>Basic Approach -MIMO Multipath Channel -A<br>Domain Representation of MIMO Channels -Se<br>of Freedom and Diversity -Degrees of Freedom                                                                                                                                                                                                                                                                                                                                       | of MIMO Ch<br>with only a<br>ted path - 1<br>angular Dom<br>tatistical Moo                                                                                                        | anne<br>line<br>Mode<br>ain R<br>deling                                           | ls -Lin<br>e-of-sig<br>elling<br>Represe<br>g in th                                                                | e-of-S<br>ght pa<br>of MI<br>entatio<br>e Ang                                                                       | Sigh<br>th<br>Mon o<br>gula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SIMO of<br>Geograp<br>Fading of<br>Signals<br>Domain<br>Dependo<br><b>UNIT I</b><br>CAPAC                                                                                                               | oosition -Ra<br>channel - 1<br>ohically se<br>Channels -<br>- Angular<br>- Degrees<br>ency on Ar<br>I<br>CITY AND                                                                                                   | ank and Condition Number- Physical Modelling<br>Line-of-Sight MISO Channel -Antenna arrays<br>parated antennas-Line-of-sight plus one reflec<br>Basic Approach -MIMO Multipath Channel -A<br>Domain Representation of MIMO Channels -Si<br>of Freedom and Diversity -Degrees of Freedom<br>atenna Spacing - I.I.D. Rayleigh Fading Model                                                                                                                                                                                                                                                                                      | of MIMO Ch<br>with only a<br>ted path - 1<br>angular Dom<br>tatistical Moo<br>n in Clustered                                                                                      | anne<br>I line<br>Mode<br>ain R<br>deling<br>d Res                                | ls -Lin<br>e-of-sig<br>elling<br>Represe<br>g in th<br>sponse                                                      | e-of-S<br>ght pa<br>of MI<br>entatio<br>e Ang<br>Mode                                                               | Sigh<br>tth<br>(M)<br>on c<br>gula<br>els<br><b>9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SIMO of<br>Geograp<br>Fading of<br>Signals<br>Domain<br>Dependo<br><b>UNIT I</b><br><b>CAPAC</b><br>The V-                                                                                              | oosition -Ra<br>channel - 1<br>ohically se<br>Channels -<br>- Angular<br>- Degrees<br>ency on Ar<br>I<br>CITY AND<br>BLAST A                                                                                        | ank and Condition Number- Physical Modelling<br>Line-of-Sight MISO Channel -Antenna arrays<br>parated antennas-Line-of-sight plus one reflec<br>Basic Approach -MIMO Multipath Channel -A<br>Domain Representation of MIMO Channels -Si<br>of Freedom and Diversity -Degrees of Freedom<br>tenna Spacing - I.I.D. Rayleigh Fading Model                                                                                                                                                                                                                                                                                       | of MIMO Ch<br>with only a<br>ted path - 1<br>Angular Dom<br>tatistical Moo<br>n in Clustered                                                                                      | anne<br>Mode<br>ain R<br>deling<br>d Res                                          | ls -Lin<br>e-of-sig<br>elling<br>g in th<br>sponse<br>I at H                                                       | e-of-S<br>ght pa<br>of MI<br>entatio<br>e Ang<br>Mode<br>Receiv                                                     | Sighthuth<br>IMO<br>on co<br>gula<br>els<br>9<br>er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SIMO of<br>Geograp<br>Fading of<br>Signals<br>Domain<br>Dependo<br><b>UNIT I</b><br><b>CAPAC</b><br>The V-<br>Perform                                                                                   | oosition -Ra<br>channel - 1<br>phically se<br>Channels -<br>- Angular<br>- Degrees<br>ency on Ar<br>I<br>CITY AND<br>BLAST A<br>aance Gains                                                                         | ank and Condition Number- Physical Modelling<br>Line-of-Sight MISO Channel -Antenna arrays<br>parated antennas-Line-of-sight plus one reflect<br>Basic Approach -MIMO Multipath Channel -A<br>Domain Representation of MIMO Channels -St<br>of Freedom and Diversity -Degrees of Freedom<br>tenna Spacing - I.I.D. Rayleigh Fading Model<br>MULTIPLEXING ARCHITECTURES<br>rchitecture -Fast Fading MIMO Channel - C                                                                                                                                                                                                           | of MIMO Ch<br>with only a<br>ted path - 1<br>Angular Dom<br>tatistical Moo<br>n in Clustered<br>Capacity with<br>correlator -Su                                                   | anne<br>Mode<br>ain R<br>deling<br>d Res<br>n CS<br>ccess                         | ls -Lin<br>e-of-sig<br>elling<br>g in th<br>sponse<br>I at H<br>sive Ca                                            | e-of-S<br>ght pa<br>of MI<br>entatio<br>e Ang<br>Mode<br>Receiv                                                     | Sighth<br>More the second |
| SIMO of<br>Geograp<br>Fading of<br>Signals<br>Domain<br>Dependo<br><b>UNIT I</b><br><b>CAPAC</b><br>The V-<br>Perform<br>-Linear                                                                        | oosition -Ra<br>channel - 1<br>phically se<br>Channels -<br>- Angular<br>- Degrees<br>ency on An<br><b>I</b><br><b>CITY AND</b><br>BLAST A<br>ance Gains<br>MMSE Ro                                                 | ank and Condition Number- Physical Modelling<br>Line-of-Sight MISO Channel -Antenna arrays<br>parated antennas-Line-of-sight plus one reflect<br>Basic Approach -MIMO Multipath Channel -A<br>Domain Representation of MIMO Channels -St<br>of Freedom and Diversity -Degrees of Freedom<br>tenna Spacing - I.I.D. Rayleigh Fading Model<br><b>MULTIPLEXING ARCHITECTURES</b><br>rchitecture -Fast Fading MIMO Channel - C<br>s - Full CSI -Receiver Architectures - Linear Dec                                                                                                                                               | of MIMO Ch<br>with only a<br>ted path - 1<br>Angular Dom<br>tatistical Moo<br>n in Clustered<br>Capacity with<br>correlator -Su                                                   | anne<br>Mode<br>ain R<br>deling<br>d Res<br>n CS<br>ccess<br>ith C                | ls -Lin<br>e-of-sig<br>elling<br>Represe<br>g in th<br>sponse<br>I at H<br>sive Ca                                 | e-of-S<br>ght pa<br>of MI<br>entatio<br>e Ang<br>Mode<br>Receiv<br>ancella<br>Multi                                 | Sigl<br>th<br>IM(<br>on c<br>gula<br>els<br>9<br>er<br>tio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SIMO of<br>Geograp<br>Fading of<br>Signals<br>Domain<br>Dependo<br><b>UNIT I</b><br><b>CAPAC</b><br>The V-<br>Perform<br>-Linear<br>Detectio                                                            | oosition -Ra<br>channel - 1<br>phically se<br>Channels -<br>- Angular<br>- Degrees<br>ency on Ar<br>I<br>CITY AND<br>BLAST A<br>bance Gains<br>MMSE Ro<br>on and ISI                                                | ank and Condition Number- Physical Modelling<br>Line-of-Sight MISO Channel -Antenna arrays<br>parated antennas-Line-of-sight plus one reflect<br>Basic Approach -MIMO Multipath Channel -A<br>Domain Representation of MIMO Channels -St<br>of Freedom and Diversity -Degrees of Freedom<br>atenna Spacing - I.I.D. Rayleigh Fading Model<br><b>MULTIPLEXING ARCHITECTURES</b><br>rchitecture -Fast Fading MIMO Channel - C<br>s - Full CSI -Receiver Architectures - Linear Dec<br>eceiver - Information Theoretic Optimality- Co                                                                                            | of MIMO Ch<br>with only a<br>ted path - 1<br>Angular Dom<br>tatistical Moo<br>h in Clustered<br>Capacity with<br>correlator -Su<br>onnections with<br>- D-BLAST:                  | anne<br>Mode<br>ain R<br>deling<br>d Res<br>ccess<br>ith C<br>An                  | ls -Lin<br>e-of-sig<br>elling<br>g eprese<br>g in th<br>sponse<br>I at H<br>sive Ca<br>DMA<br>Outag                | e-of-S<br>ght pa<br>of MI<br>entatio<br>e Ang<br>Mode<br>Receiv<br>ancella<br>Multi                                 | Sightth<br>IMC<br>on c<br>gula<br>els<br>9<br>er<br>utio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SIMO of<br>Geograp<br>Fading of<br>Signals<br>Domain<br>Dependo<br><b>UNIT I</b><br><b>CAPAC</b><br>The V-<br>Perform<br>-Linear<br>Detection<br>Architeo                                               | oosition -Ra<br>channel - 1<br>ohically se<br>Channels -<br>- Angular<br>- Degrees<br>ency on Ar<br>I<br>CITY AND<br>BLAST A<br>bance Gains<br>MMSE Ro<br>on and ISI<br>cture - Sub-                                | ank and Condition Number- Physical Modelling<br>Line-of-Sight MISO Channel -Antenna arrays<br>parated antennas-Line-of-sight plus one reflect<br>Basic Approach -MIMO Multipath Channel -A<br>Domain Representation of MIMO Channels -Si<br>of Freedom and Diversity -Degrees of Freedom<br>atenna Spacing - I.I.D. Rayleigh Fading Model<br><b>MULTIPLEXING ARCHITECTURES</b><br>rchitecture -Fast Fading MIMO Channel - C<br>s - Full CSI -Receiver Architectures - Linear Dec<br>eceiver - Information Theoretic Optimality- Co<br>Equalization- Slow Fading MIMO Channel -                                                | of MIMO Ch<br>with only a<br>ted path - 1<br>Angular Dom<br>tatistical Moo<br>h in Clustered<br>Capacity with<br>correlator -Su<br>onnections with<br>- D-BLAST:                  | anne<br>Mode<br>ain R<br>deling<br>d Res<br>ccess<br>ith C<br>An                  | ls -Lin<br>e-of-sig<br>elling<br>g eprese<br>g in th<br>sponse<br>I at H<br>sive Ca<br>DMA<br>Outag                | e-of-S<br>ght pa<br>of MI<br>entatio<br>e Ang<br>Mode<br>Receiv<br>ancella<br>Multi                                 | Sigl<br>th<br>IMO<br>on c<br>gula<br>els<br>9<br>er<br>tio<br>uso<br>ima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SIMO of<br>Geograp<br>Fading of<br>Signals<br>Domain<br>Dependo<br>UNIT I<br>CAPAC<br>The V-<br>Perform<br>-Linear<br>Detection<br>Architec                                                             | oosition -Ra<br>channel - I<br>ohically se<br>Channels -<br>- Angular<br>- Degrees<br>ency on Ar<br>I<br>CITY AND<br>BLAST A<br>ance Gains<br>MMSE Ro<br>on and ISI<br>cture - Sub-<br>III                          | ank and Condition Number- Physical Modelling<br>Line-of-Sight MISO Channel -Antenna arrays<br>parated antennas-Line-of-sight plus one reflect<br>Basic Approach -MIMO Multipath Channel -A<br>Domain Representation of MIMO Channels -Si<br>of Freedom and Diversity -Degrees of Freedom<br>atenna Spacing - I.I.D. Rayleigh Fading Model<br><b>MULTIPLEXING ARCHITECTURES</b><br>rchitecture -Fast Fading MIMO Channel - C<br>s - Full CSI -Receiver Architectures - Linear Dec<br>eceiver - Information Theoretic Optimality- Co<br>Equalization- Slow Fading MIMO Channel -                                                | of MIMO Ch<br>with only a<br>ted path - 1<br>Angular Dom<br>tatistical Moo<br>h in Clustered<br>Capacity with<br>correlator -Su<br>onnections with<br>- D-BLAST:<br>hit Antennas: | anne<br>Mode<br>ain R<br>deling<br>d Res<br>th CS<br>ccess<br>ith C<br>An<br>D-BI | ls -Lin<br>e-of-sig<br>elling<br>g in th<br>sponse<br>I at H<br>sive Ca<br>DMA<br>Outag<br>LAST                    | e-of-S<br>ght pa<br>of MI<br>entatio<br>e Ang<br>Mode<br>Receiv<br>ancella<br>Multi<br>ge-Opt                       | Sightth<br>IMC<br>on co<br>gula<br>els<br>9<br>er<br>utio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SIMO of<br>Geograp<br>Fading of<br>Signals<br>Domain<br>Dependo<br>UNIT I<br>CAPAC<br>The V-<br>Perform<br>-Linear<br>Detection<br>Architect<br>UNIT I<br>DIVER                                         | position -Ra<br>channel - 1<br>phically se<br>Channels -<br>- Angular<br>- Degrees<br>ency on Ar<br>I<br>CITY AND<br>BLAST A<br>bance Gains<br>MMSE Ro<br>on and ISI<br>cture - Sub-<br>III                         | ank and Condition Number- Physical Modelling<br>Line-of-Sight MISO Channel -Antenna arrays<br>parated antennas-Line-of-sight plus one reflect<br>Basic Approach -MIMO Multipath Channel -A<br>Domain Representation of MIMO Channels -Si<br>of Freedom and Diversity -Degrees of Freedom<br>atenna Spacing - I.I.D. Rayleigh Fading Model<br><b>MULTIPLEXING ARCHITECTURES</b><br>rchitecture -Fast Fading MIMO Channel - C<br>s - Full CSI -Receiver Architectures - Linear Dec<br>eceiver - Information Theoretic Optimality- Co<br>Equalization- Slow Fading MIMO Channel -<br>optimality of V-BLAST -Coding Across Transm | of MIMO Ch<br>with only a<br>ted path - 1<br>Angular Dom<br>tatistical Moo<br>n in Clustered<br>Capacity with<br>correlator -Su<br>onnections with<br>- D-BLAST:<br>it Antennas:  | anne<br>Mode<br>ain R<br>deling<br>d Res<br>ccess<br>ith C<br>An<br>D-BI          | Is -Lin<br>e-of-sig<br>elling<br>g in th<br>sponse<br>I at H<br>sive Ca<br>DMA<br>Outag<br>LAST                    | e-of-S<br>ght pa<br>of MI<br>entatio<br>e Ang<br>Mode<br>Receiv<br>ancella<br>Multi<br>ge-Opt                       | Sight<br>th<br>(MC<br>on c<br>gula<br>els<br>9<br>er<br>tio<br>use<br>ima<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SIMO of<br>Geograp<br>Fading of<br>Signals<br>Domain<br>Dependo<br><b>UNIT I</b><br><b>CAPAC</b><br>The V-<br>Perform<br>-Linear<br>Detection<br>Architect<br><b>UNIT I</b><br><b>DIVER</b><br>Diversit | position -Ra<br>channel - 1<br>phically se<br>Channels -<br>- Angular<br>- Degrees<br>ency on Ar<br>I<br>CITY AND<br>BLAST A<br>ance Gains<br>MMSE Ro<br>on and ISI<br>cture - Sub-<br>III<br>SITY-MU<br>y-Multiple | ank and Condition Number- Physical Modelling<br>Line-of-Sight MISO Channel -Antenna arrays<br>parated antennas-Line-of-sight plus one reflect<br>Basic Approach -MIMO Multipath Channel -A<br>Domain Representation of MIMO Channels -Si<br>of Freedom and Diversity -Degrees of Freedom<br>atenna Spacing - I.I.D. Rayleigh Fading Model<br>MULTIPLEXING ARCHITECTURES<br>architecture -Fast Fading MIMO Channel - C<br>s - Full CSI -Receiver Architectures - Linear Dec<br>eceiver - Information Theoretic Optimality- Co<br>Equalization- Slow Fading MIMO Channel -<br>optimality of V-BLAST -Coding Across Transm       | of MIMO Ch<br>with only a<br>ted path - 1<br>Angular Dom<br>tatistical Moo<br>n in Clustered<br>Capacity with<br>correlator -Su<br>onnections wa<br>- D-BLAST:<br>at Antennas:    | anne<br>Mode<br>ain R<br>deling<br>d Res<br>th CS<br>ccess<br>ith C<br>An<br>D-BI | Is -Lin<br>e-of-sig<br>elling<br>g in th<br>sponse<br>I at I<br>sive Ca<br>DMA<br>Outag<br>LAST<br>E COI<br>yleigh | e-of-S<br>ght pa<br>of MI<br>entatio<br>e Ang<br>Mode<br>Receiv<br>ancella<br>Multi<br>ge-Opt<br><b>DES</b><br>Chan | Sight the second   |

Universal for Scalar Channels - Universal Code Design for Parallel Channels - Universal Code Design for MISO Channels - Universal Code Design for MIMO Channels - Universal Codes in the Downlink 9

## **UNIT IV**

## ANTENNA DIVERSITY AND SPACE-TIME CODING TECHNIQUES

Antenna Diversity -Receive Diversity -Transmit Diversity -Space-Time Coding (STC): Overview -System Model - Pairwise Error Probability -Space-Time Code Design -Space-Time Block Code (STBC) - Alamouti Space-Time Code-Generalization of Space-Time Block Coding -Decoding for Space-Time Block Codes -Space-Time Trellis Code

9

## UNIT V

## MULTIUSER COMMUNICATION

Uplink with Multiple Receive Antennas Space-Division Multiple Access SDMA Capacity Region System Implications Slow Fading - Fast Fading -Multiuser Diversity Revisited - MIMO Uplink -SDMA with Multiple Transmit Antennas - System Implications - Fast Fading - Downlink with Multiple Transmit Antennas -Degrees of Freedom in the Downlink - Uplink-Downlink Duality and Transmit Beamforming -Precoding for Interference Known at Transmitter - Precoding for the downlink -Fast Fading - MIMO Downlink - Multiple Antennas in Cellular Networks: A System View - Inter-cell Interference Management -Uplink with Multiple Receive Antennas - MIMO Uplink -Downlink with Multiple Receive Antennas -Downlink with Multiple Transmit Antennas

|                                                  | LECTURE           | PRACTICAL           | TOTAL           |
|--------------------------------------------------|-------------------|---------------------|-----------------|
|                                                  | 45                | 0                   | 45              |
| REFERENCES                                       |                   |                     |                 |
| 1. D. Tse and P. Viswanath, Fundamentals of V    | Vireless Communic | ation. Cambridge:   | Cambridge       |
| University Press, 2005.                          |                   | -                   | -               |
| 2. Yong Soo Cho, Jaekwon Kim, Won You            | ing Yang and Ch   | ung G. Kan, "M      | <b>IMO-OFDM</b> |
| Wireless Communications with MATLAB <sup>®</sup> | , 2010 John Wiley | & Sons (Asia) Pte L | _td.            |
|                                                  |                   |                     |                 |

3. Duman, Tolga M., Coding for MIMO communication systems, Hoboken, NJ : J. Wiley & Sons, c2007.

#### **O Vs PO Mapping**

|               | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |
|---------------|------------|-----|-----|-----|-----|-----|------------|
| CO1           | 1          | 1   |     | 2   |     | 1   | 3          |
| CO2           | 1          | 1   |     |     |     | 1   | 3          |
| CO3           | 1          | 1   |     |     |     | 1   | 3          |
| CO4           | 1          | 1   |     | 3   |     |     | 3          |
| CO5           | 1          | 1   |     | 1   |     | 1   | 3          |
|               | 5          | 5   |     | 6   |     | 4   | 15         |
| Scaled values | 1          | 1   |     | 2   |     | 1   | 3          |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

|                                                                                                                                                   | SE CODE                                                                                                                                  | COURSE NAME                                                                                                                                                                                                                                                                                                                                           |                                                           | L                      | Т                          | Р                      | (                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------|----------------------------|------------------------|----------------------------------------|
| YWC20                                                                                                                                             |                                                                                                                                          | HIGH PERFORMANCE WIRELESS NET                                                                                                                                                                                                                                                                                                                         | WORKS                                                     | 3                      | 0                          | 0<br>D                 | 3                                      |
| C P<br>2.75 (                                                                                                                                     | A 0.25                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                           | L<br>3                 | Т<br>0                     | P<br>0                 | F<br>3                                 |
|                                                                                                                                                   |                                                                                                                                          | f the course, a student will be able to                                                                                                                                                                                                                                                                                                               |                                                           | 3                      | U                          | U                      | •                                      |
| COUI                                                                                                                                              | RSE OUTC                                                                                                                                 | COMES                                                                                                                                                                                                                                                                                                                                                 | DOMAIN                                                    | LF                     | EVEL                       |                        |                                        |
| CO1                                                                                                                                               | Identify t                                                                                                                               | he requirements of high-speed networks such J, WPAN and WATM-                                                                                                                                                                                                                                                                                         | Cognitive                                                 |                        | dersta                     | unding                 |                                        |
| CO2                                                                                                                                               |                                                                                                                                          | he wireless LAN standards with its PHY and                                                                                                                                                                                                                                                                                                            | Cognitive                                                 | Ur                     | ndersta                    | unding                 |                                        |
| CO3                                                                                                                                               | Explain the                                                                                                                              | he performance of WLAN-                                                                                                                                                                                                                                                                                                                               | Cognitive                                                 | Un                     | unding                     |                        |                                        |
| CO4                                                                                                                                               | Apply W<br>application                                                                                                                   | ATM systems for Multimedia and Satellite                                                                                                                                                                                                                                                                                                              | Cognitive                                                 | Ap                     | plying                     | 2                      |                                        |
| CO5Compare the capabilities of ATM and WATM systemsCognitiveUnderstanding                                                                         |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                                           |                        |                            |                        |                                        |
| UNIT I                                                                                                                                            |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                                           |                        |                            |                        | 9                                      |
| WIREI                                                                                                                                             | LESS LOC                                                                                                                                 | AL AREA NETWORK                                                                                                                                                                                                                                                                                                                                       |                                                           |                        |                            |                        |                                        |
| Need fo                                                                                                                                           | r WLAN, I                                                                                                                                | ndoor Wireless Communication, Radio Spectrum                                                                                                                                                                                                                                                                                                          | n, Path loss, N                                           | Multip                 | ole Ac                     | cess,                  |                                        |
| Multipa                                                                                                                                           | th, fading.                                                                                                                              | Classification of WLAN Radio LANs, DSSS, I                                                                                                                                                                                                                                                                                                            | FHSS, Comp                                                | arisoi                 | n of D                     | SSS                    |                                        |
| 1                                                                                                                                                 |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                                           |                        |                            |                        |                                        |
| and FHS                                                                                                                                           | SS, Infrared                                                                                                                             | WLAN                                                                                                                                                                                                                                                                                                                                                  |                                                           |                        |                            |                        |                                        |
|                                                                                                                                                   |                                                                                                                                          | WLAN                                                                                                                                                                                                                                                                                                                                                  |                                                           |                        |                            |                        | 9                                      |
| UNIT I                                                                                                                                            | I                                                                                                                                        | WLAN<br>ENTATION AND STANDARDS                                                                                                                                                                                                                                                                                                                        |                                                           |                        |                            |                        | 9                                      |
| UNIT I<br>WLAN                                                                                                                                    | I<br>IMPLEMI                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                       | nsiderations,                                             | WLA                    | AN enl                     | nancer                 |                                        |
| UNIT I<br>WLAN<br>WLAN                                                                                                                            | I<br>IMPLEM<br>Component                                                                                                                 | ENTATION AND STANDARDS                                                                                                                                                                                                                                                                                                                                |                                                           |                        |                            |                        | ne                                     |
| UNIT I<br>WLAN<br>WLAN<br>techniqu                                                                                                                | I<br>IMPLEMI<br>Component<br>ies WLAN                                                                                                    | ENTATION AND STANDARDS<br>as, Architecture and Topologies, Deployment Co                                                                                                                                                                                                                                                                              | sical and MA                                              | AC la                  | yer, U                     | Inreso                 | ne<br>lve                              |
| UNIT I<br>WLAN<br>WLAN<br>techniqu<br>issues in                                                                                                   | I<br>IMPLEMI<br>Component<br>ies WLAN<br>n 802.11, C                                                                                     | ENTATION AND STANDARDS<br>as, Architecture and Topologies, Deployment Co<br>Standards IEEE 802.11 WLAN standard, Phys                                                                                                                                                                                                                                 | sical and MA                                              | AC la                  | yer, U                     | Inreso                 | nei<br>lve                             |
| UNIT I<br>WLAN<br>WLAN<br>techniqu<br>issues in<br>standard                                                                                       | I<br>IMPLEM<br>Component<br>ies WLAN<br>n 802.11, (<br>ls                                                                                | ENTATION AND STANDARDS<br>as, Architecture and Topologies, Deployment Co<br>Standards IEEE 802.11 WLAN standard, Phys                                                                                                                                                                                                                                 | sical and MA                                              | AC la                  | yer, U                     | Inreso                 | ne<br>lve<br>VA                        |
| UNIT I<br>WLAN<br>WLAN<br>techniqu<br>issues in<br>standard<br>UNIT I                                                                             | I<br>IMPLEM<br>Component<br>ies WLAN<br>n 802.11, (<br>ls<br>III                                                                         | ENTATION AND STANDARDS<br>as, Architecture and Topologies, Deployment Co<br>Standards IEEE 802.11 WLAN standard, Phys                                                                                                                                                                                                                                 | sical and MA                                              | AC la                  | yer, U                     | Inreso                 | lve                                    |
| UNIT I<br>WLAN<br>WLAN<br>techniqu<br>issues in<br>standarc<br>UNIT I<br>PERFO                                                                    | I<br>IMPLEM<br>Component<br>nes WLAN<br>n 802.11, C<br>ls<br>III<br>PRMANCE                                                              | ENTATION AND STANDARDS<br>as, Architecture and Topologies, Deployment Co<br>Standards IEEE 802.11 WLAN standard, Phys<br>Current and commercial 802.11 Deployment, H                                                                                                                                                                                  | sical and MA                                              | AC la<br>Blue          | yer, U<br>tooth            | Jnreso<br>and V        | men<br>lve<br>VA<br><b>9</b>           |
| UNIT I<br>WLAN<br>WLAN<br>techniqu<br>issues in<br>standarc<br>UNIT I<br>PERFO                                                                    | I<br>IMPLEM<br>Component<br>ies WLAN<br>n 802.11, C<br>ls<br>III<br>PRMANCE<br>ion Techniq                                               | ENTATION AND STANDARDS<br>ts, Architecture and Topologies, Deployment Co<br>Standards IEEE 802.11 WLAN standard, Phys<br>Current and commercial 802.11 Deployment, H                                                                                                                                                                                  | sical and MA                                              | AC la<br>Blue          | yer, U<br>tooth            | Jnreso<br>and V        | ner<br>lve<br>VA<br>9                  |
| UNIT I<br>WLAN<br>WLAN<br>techniqu<br>issues in<br>standarc<br>UNIT I<br>PERFO<br>Evaluati<br>UNIT I                                              | I<br>IMPLEM<br>Component<br>ies WLAN<br>n 802.11, C<br>ls<br>III<br>PRMANCE<br>ion Techniq<br>V                                          | ENTATION AND STANDARDS<br>ts, Architecture and Topologies, Deployment Co<br>Standards IEEE 802.11 WLAN standard, Phys<br>Current and commercial 802.11 Deployment, H                                                                                                                                                                                  | sical and MA                                              | AC la<br>Blue          | yer, U<br>tooth            | Jnreso<br>and V        | ner<br>lve<br>VA<br>9                  |
| UNIT I<br>WLAN<br>WLAN<br>techniqu<br>issues in<br>standarc<br>UNIT I<br>PERFO<br>Evaluati<br>UNIT I<br>WIREI                                     | I<br>IMPLEMI<br>Component<br>ies WLAN<br>n 802.11, C<br>ls<br>III<br>PRMANCE<br>ion Techniq<br>V<br>LESS ATM                             | ENTATION AND STANDARDS<br>is, Architecture and Topologies, Deployment Co<br>Standards IEEE 802.11 WLAN standard, Phys<br>Current and commercial 802.11 Deployment, H<br>EVALUATION OF WLAN<br>ues, Non 802.11 Wave point WLAN, Case studi                                                                                                             | sical and MA<br>HIPERLAN,<br>es- Motorola                 | AC la<br>Blue<br>Altai | yer, U<br>tooth<br>ar plus | Unreso<br>and V<br>WLA | ne<br>lve<br>VA<br>9<br>N              |
| UNIT I<br>WLAN<br>WLAN<br>techniqu<br>issues in<br>standard<br>UNIT I<br>PERFO<br>Evaluati<br>UNIT I<br>WIREI<br>ATM Te                           | I<br>IMPLEMI<br>Component<br>ies WLAN<br>n 802.11, C<br>ls<br>III<br>PRMANCE<br>ion Techniq<br>V<br>LESS ATM<br>echnology,               | ENTATION AND STANDARDS<br>is, Architecture and Topologies, Deployment Co<br>Standards IEEE 802.11 WLAN standard, Phys<br>Current and commercial 802.11 Deployment, H<br>E EVALUATION OF WLAN<br>ues, Non 802.11 Wave point WLAN, Case studi                                                                                                           | sical and MA<br>HIPERLAN,<br>es- Motorola                 | AC la<br>Blue<br>Altai | yer, U<br>tooth<br>ar plus | Unreso<br>and V<br>WLA | ne<br>lve<br>VA<br>9<br>N              |
| UNIT I<br>WLAN<br>WLAN<br>techniqu<br>issues in<br>standarc<br>UNIT I<br>PERFO<br>Evaluati<br>UNIT I<br>WIREI<br>ATM To<br>WATM                   | I<br>IMPLEMI<br>Component<br>ies WLAN<br>n 802.11, C<br>ls<br>III<br>PRMANCE<br>on Techniq<br>V<br>LESS ATM<br>echnology,<br>prototypes, | ENTATION AND STANDARDS<br>ts, Architecture and Topologies, Deployment Co<br>Standards IEEE 802.11 WLAN standard, Phys<br>Current and commercial 802.11 Deployment, H<br>EVALUATION OF WLAN<br>ues, Non 802.11 Wave point WLAN, Case studi<br>NETWORKS<br>Need for WATM, WATM for Wireless, Multime                                                    | sical and MA<br>HIPERLAN,<br>es- Motorola                 | AC la<br>Blue<br>Altai | yer, U<br>tooth<br>ar plus | Unreso<br>and V<br>WLA | ne<br>lve<br>VA<br>9<br>N<br>9         |
| UNIT I<br>WLAN<br>WLAN<br>techniqu<br>issues in<br>standard<br>UNIT I<br>PERFO<br>Evaluati<br>UNIT I<br>WIREI<br>ATM TO<br>WATM<br>UNIT V         | I<br>IMPLEMI<br>Component<br>ies WLAN<br>n 802.11, C<br>ls<br>III<br>PRMANCE<br>on Techniq<br>V<br>LESS ATM<br>echnology,<br>prototypes, | ENTATION AND STANDARDS<br>is, Architecture and Topologies, Deployment Co<br>Standards IEEE 802.11 WLAN standard, Phys<br>Current and commercial 802.11 Deployment, H<br>EVALUATION OF WLAN<br>ues, Non 802.11 Wave point WLAN, Case studi<br>NETWORKS<br>Need for WATM, WATM for Wireless, Multime<br>Commercial WATM systems for Local loop          | sical and MA<br>HIPERLAN,<br>es- Motorola                 | AC la<br>Blue<br>Altai | yer, U<br>tooth<br>ar plus | Unreso<br>and V<br>WLA | men<br>lve<br>VA<br>9<br>N<br>9        |
| UNIT I<br>WLAN<br>WLAN<br>techniqu<br>issues in<br>standarc<br>UNIT I<br>PERFO<br>Evaluati<br>UNIT I<br>WIREI<br>ATM To<br>WATM<br>UNIT V<br>WATM | I IMPLEMI Component ies WLAN n 802.11, 0 is III RMANCE ion Techniq V LESS ATM echnology, prototypes, 7 I STANDA                          | ENTATION AND STANDARDS<br>is, Architecture and Topologies, Deployment Co<br>Standards IEEE 802.11 WLAN standard, Phys<br>Current and commercial 802.11 Deployment, H<br>EVALUATION OF WLAN<br>ues, Non 802.11 Wave point WLAN, Case studi<br>NETWORKS<br>Need for WATM, WATM for Wireless, Multime<br>Commercial WATM systems for Local loop          | sical and MA<br>HPERLAN,<br>es- Motorola<br>edia and Sate | AC la<br>Blue<br>Altai | yer, U<br>tooth<br>ar plus | Unreso<br>and V<br>WLA | nei<br>lve<br>VA<br>9<br>N<br>9        |
| UNIT I<br>WLAN<br>WLAN<br>techniqu<br>issues in<br>standarc<br>UNIT I<br>PERFO<br>Evaluati<br>UNIT I<br>WIREI<br>ATM To<br>WATM<br>UNIT V<br>WATM | I IMPLEMI Component ies WLAN n 802.11, 0 is III RMANCE ion Techniq V LESS ATM echnology, prototypes, 7 I STANDA                          | ENTATION AND STANDARDS<br>is, Architecture and Topologies, Deployment Co<br>Standards IEEE 802.11 WLAN standard, Phys<br>Current and commercial 802.11 Deployment, H<br>E EVALUATION OF WLAN<br>ues, Non 802.11 Wave point WLAN, Case studi<br>NETWORKS<br>Need for WATM, WATM for Wireless, Multime<br>Commercial WATM systems for Local loop<br>RDS | sical and MA<br>HPERLAN,<br>es- Motorola<br>edia and Sate | AC la<br>Blue<br>Altai | yer, U<br>tooth<br>ar plus | Unreso<br>and V<br>WLA | ner<br>lve<br>VA<br>9<br>N<br>9<br>ior |

## REFERENCES

- 1. Benny Bing, "High-speed Wireless ATM and LANs Artech House Publishers, 2009.
- 2. William Stallings, —High Speed Networks and Internetl, 2nd Edition, Pearson Education, 2002.
- 3. Kaveh Pahalavan and P. Krishnamurthy. Principles of Wireless Networks- A Unified approach Pearson Education, 2009.
- 4. Larry L. Peterson and Bruce S. Davie, —Computer networks-A system Approach<sup>II</sup>, Third Edition, Mc Graw Hill, 2010.
- 5. Mani Subramanian, —Network Management: principles and practice Addision Wesley Publisher 2007.
- 6. Peter T. Davis, Craig R. McGuffin, —Wireless Local Area Networks- Technologies, issues and strategies, McGraw Hill 2003.
- 7. David E. McDysan, Darren L. Spohn, Mc Dysan," ATM Theory and applications<sup>II</sup>, McGraw Hill, 2004

## **CO Vs PO Mapping**

|               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|---------------|-----|-----|-----|-----|-----|-----|-----|
| CO1           | 3   | 3   |     | 2   | 1   | 1   | 1   |
| CO2           | 3   | 3   |     |     | 1   | 1   | 1   |
| CO3           | 3   | 3   |     | 1   |     | 1   | 1   |
| CO4           | 3   | 3   |     |     | 1   | 1   | 1   |
| CO5           | 3   | 3   |     | 2   |     | 1   | 1   |
|               | 15  | 15  |     | 5   | 3   | 5   | 5   |
| Scaled values | 3   | 3   |     | 1   | 1   | 1   | 1   |

| COURS      | SE COI       | ЭE          | COURSE NAME                            |          | L  | Т             | Р             | C  |  |
|------------|--------------|-------------|----------------------------------------|----------|----|---------------|---------------|----|--|
| YWC20      | )4D          |             | INTERNET OF THINGS                     |          | 3  | 0             | 0             | 3  |  |
| С          | Р            | A           |                                        |          | L  | Т             | Р             | H  |  |
| 2.75       | 0            | 0.25        |                                        |          | 3  | 0             | 0             | 3  |  |
| After o    | completi     | on of the   | course, a student will be able to      |          | •  |               |               |    |  |
| COU        | RSE OU       | TCOME       | 8                                      | DOMA     | IN | LEVEL         |               |    |  |
| CO1        | Outlin       | ne and exp  | lain the technologies behind IoT.      | Cognitiv | 'e | Under         | Understanding |    |  |
| CO2        | Expla        | in resource | e management in IoT                    | Cognitiv | 'e | Understanding |               | ng |  |
| CO3        | Expla<br>IoT | in various  | architecture, platform and services of | Cognitiv | ve | Analy         | zing          |    |  |
| <b>CO4</b> | Exam         | ine adapta  | tion of IPV6 to IoT and discuss IoT6   | Cognitiv | 'e | Analy         | zing          |    |  |
| CO5        | Discu        | ss applicat | ions of IoT                            | Cognitiv | 'e | Craet         | ing           |    |  |
| UNITI      | I            |             |                                        | 1        |    | I             |               | 9  |  |
|            |              | 'ION ANI    | DENABLING TECHNOLOGIES INIC            | DT       |    |               |               |    |  |

IoT, Machine to Machine, Web of Things, Definition- Major components if IoT devices- Control Units-Sensors-Communication Modules-Power Sources Vision- Characteristics - Layered Architecture- Landscape-- IoT Functional View-IoT related Internet Technology- cloud computing-Networks and Communications related to IoT-Processes related to IoT-Data Management related to IoT-Security Privacy and Trust-Devices level energy issues- Standards related to IoT

9

9

9

9

## UNITII

## **RESOURCE MANAGEMENT IN THE INTERNET OF THINGS**

Clustering - Software Agents - Data Synchronization - Clustering Principles in an Internet of Things Architecture - The Role of Context - Design Guidelines -Software Agents for Object-DataSynchronization-TypesofNetworkArchitectures-FundamentalConceptsof Agility and Autonomy-Enabling Autonomy and Agility by the Internetof Things-Technical Requirements for Satisfying the New Demands in Production-The Evolution from the RFID-based EPC Network to an Agent based Internet of Things- Agents for the Behaviour of Objects

# UNIT III THE ARCHITECTURE, PLATFORMS, SERVICES The Layering concepts, IoT Communication Pattern, IoT protocol Architecture, The 6LoWPAN, Platforms - IBM watson-Intel Platform- Carriot Platform- Webnms-device WISE UNIT IV SCALABLE INTEGRATION FRAMEWORK Introduction- IPV6 Potential- IoT6- IPV6 for IoT- Adapting IPV6 to IoTrequirement- IoT6

Integrationarchitecture-DigCovery-IoT6IntegrationwithcloudandEPICS-EnablingHeterogeneous IoT6 Smart Office use case- Scalabilityperceptive.

## UNIT V

## IOT APPLICATIONS

Smart Environments and Smart Space creation - Connected Devices illustration-Industrial

IoT-IERC application Domains-Smart Environment Monitoring- Smart Energy - Smart building-Smart Transport and mobility-IoT Smart X applications

|            | LECTURE | TUTORIAL | PRACTICAL | TOTAL |
|------------|---------|----------|-----------|-------|
|            | 45      | 0        | 0         | 45    |
| REFERENCES |         |          |           |       |

86

- 1. Ovidiu Vermesan, Peter Friess, "Internet of Things- From Research and Innovation to market Deployment", River Publishers, 2014.
- 2. ArshdeepBahga, Vijay Madisetti Internet of Things: A Hands-On ApproachHardcover – Madisetti Publishers, 2014
- 3. Samuel Greengard, "The Internet of Things", MIT Press, 2015.
- 4. http://postscapes.com/internet-of-things-resources/

## **CO Vs PO Mapping**

| СО     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|--------|-----|-----|-----|-----|-----|-----|-----|
| CO1    | 3   | 3   |     | 1   | 3   | 1   | 1   |
| CO2    | 3   | 3   |     |     |     |     | 1   |
| CO3    | 3   | 3   |     | 2   |     | 1   | 1   |
| CO4    | 3   | 3   |     |     | 1   |     | 1   |
| CO5    | 3   | 3   |     |     |     | 1   | 1   |
|        | 15  | 15  |     | 3   | 4   | 3   | 5   |
| Scaled | 3   | 3   |     | 1   | 1   | 1   | 1   |
| values |     |     |     |     |     |     |     |



| COURSE  | COURSE NAME    | L | Т | P C |
|---------|----------------|---|---|-----|
| CODE    |                | 3 | 0 | 0 3 |
| YWC205A | SOFT COMPUTING |   |   |     |
| C P     | Α              | L | Т | Р   |
| 2.75 0  | 0.25           | 3 | 0 | 0   |

After completion of the course, a student will be able to

| COUR   | SE OUTCOMES                                              | DOMAIN    | LEVEL         |
|--------|----------------------------------------------------------|-----------|---------------|
| CO1    | Outline the Soft Computing techniques and their roles in | Cognitive | Understanding |
|        | building an intelligent System-                          |           |               |
| CO2    | Apply Neural network in pattern Classification           | Cognitive | Applying      |
| CO3    | Explain fuzzy logic to handle engineering problems       | Cognitive | Understanding |
| CO4    | Apply Genetic Algorithm to Optimization Problems         | Cognitive | Applying      |
| CO5    | Explain the soft computing tools and hybrid systems      | Cognitive | Understanding |
| UNIT I |                                                          |           | 10            |

## **FUZZY SET THEORY**

Introduction to Neuro–Fuzzy and Soft Computing–Fuzzy Sets–Basic Definition and Terminology–Settheoretic Operations–ember Function Formulation and Parameterization–Fuzzy Rule sand Fuzzy Reasoning– Extension Principle and Fuzzy Relations–Fuzzy If-Then Rules–Fuzzy Reasoning–Fuzzy Inference Systems–

| Mamdani Fuzzy Models-Sugeno Fuzzy Models-Ts       | sukamoto Fuzzy Model   | s-InputS pace Part  | itioning an  |
|---------------------------------------------------|------------------------|---------------------|--------------|
| Fuzzy Modeling.                                   |                        |                     |              |
| UNIT II                                           |                        |                     |              |
| OPTIMIZATION                                      |                        |                     |              |
| Derivative-based Optimization-Descent Methods-T   | he Method of Steepes   | t Descent-Classical | Newton's     |
| Method-Step Size Determination-Derivative-free Op | timization–Genetic Alg | orithms–Simulated A | Annealing-   |
| Random Search–Downhill Simplex Search.            |                        |                     |              |
| UNIT III                                          |                        |                     | 1            |
| NEURAL NETWORKS                                   |                        |                     |              |
| Supervised Learning Neural Networks–Perceptrons-  | Adaline–Back propagati | on MutilayerPercept | trons–Radia  |
| Basis Function Networks-UnsupervisedLearningNe    | uralNetworks-Competi   | tiveLearningNetwor  | ks–Kohone    |
| Self-Organizing Networks-Learning Vector Quantiza | tion–Hebbian Learning  |                     |              |
| UNIT IV                                           |                        |                     |              |
| NEUROFUZZY MODELING                               |                        |                     |              |
| Adaptive Neuro-Fuzzy Inference Systems-Architectu | ure–Hybrid Learning A  | lgorithm–Learning M | Methods that |
| Cross-fertilize ANFIS and RBFN-Coactive Neuro     | Fuzzy Modeling-Fran    | nework Neuron Fu    | nction s fo  |
| Adaptive Networks–Neuro Fuzzy Spectrum.           |                        |                     |              |
| UNIT V                                            |                        |                     |              |
| APPLICATIONS OF COMPUTATIONAL I NTE               | LLIGENCE               |                     |              |
| Printed Character Recognition-Inverse Kinematics  | Problems–Automobile    | Fuel Efficiency Pre | diction-Sof  |
| Computing for Color Recipe Prediction.            |                        |                     |              |
|                                                   |                        |                     |              |
|                                                   | LECTURE                | TUTORIAL            | TOTAI        |
|                                                   |                        |                     |              |
|                                                   |                        |                     |              |
|                                                   | 45                     | 15                  | 60           |

- 3. Foundations of Neural Networks, Fuzzy Systems, and Knowldge Engineering, Nikola K. Kasabov, MIT Press, 1998.
- 4. Fuzzy Logic for Embedded Systems Applications, Ahmed M. Ibrahim, Elesvier Press, 2004.
- 5. Neural Networks, Fuzzy Logis and Genetic Algorithms : Synthesis, and Applications, S. Rajasekaran, and G. A. Vijayalakshmi Pai, Prentice Hall of India, 2007.
- 6. Soft Computing, D. K. Pratihar, Narosa, 2008.
- 7. Neuro-Fuzzy and soft Computing, J.-S. R. Jang, C.-T. Sun, and E. Mizutani, PHI Learning, 2009.
- 8. Neural Networks and Learning Machines, (3rd Edn.), Simon Haykin, PHI Learning, 2011.

**CO Vs PO Mapping** 

|               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|---------------|-----|-----|-----|-----|-----|-----|-----|
| CO1           |     |     | 1   | 1   | 3   | 1   | 1   |
| CO2           |     |     | 1   |     |     |     | 1   |
| CO3           |     |     | 1   | 2   |     | 1   | 1   |
| CO4           |     |     | 1   |     | 1   |     | 1   |
| CO5           |     |     | 1   |     |     | 1   | 1   |
|               |     |     | 5   | 3   | 4   | 3   | 5   |
| Scaled values |     |     | 3   | 1   | 1   | 1   | 1   |

## $1-5 \rightarrow 1$ , $6-10 \rightarrow 2$ , $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COU  | RSE ( | CODE | COURSE NAME              | L | T P |   | C   |  |   |
|------|-------|------|--------------------------|---|-----|---|-----|--|---|
| YWC  | 205B  |      | MILLIMETER WAVE WIRELESS | 3 | 0 0 |   | 3 0 |  | 3 |
|      |       |      | COMMUNICATIONS           |   |     |   |     |  |   |
| C    | P     | Α    |                          | L | Т   | P | Η   |  |   |
| 2.75 | 0     | 0.25 |                          | 3 | 0   | 0 | 3   |  |   |

| COUR       | SE OUTCOMES                                                                              | DOMAIN    | LEVEL         |
|------------|------------------------------------------------------------------------------------------|-----------|---------------|
| <b>CO1</b> | Outline the Soft Computing techniques and their roles in building an intelligent System- | Cognitive | Understanding |
| CO2        | Apply Neural network in pattern Classification                                           | Cognitive | Applying      |
| <b>CO3</b> | Explain fuzzy logic to handle engineering problems                                       | Cognitive | Understanding |
| <b>CO4</b> | Apply Genetic Algorithm to Optimization Problems                                         | Cognitive | Applying      |
| CO5        | Explain the soft computing tools and hybrid systems                                      | Cognitive | Understanding |
| UNIT I     |                                                                                          |           | 9             |

## INTRODUCTION AND RADIO WAVE PROPAGATION FOR MMWAVE

The Frontier: Millimeter Wave Wireless - A Preview of MmWave Implementation Challenges -Emerging Applications of MmWave Communications -Data Centers - Replacing Wired Interconnects on Chips - Information Showers -The Home and Office of the Future - Vehicular Applications -Cellular and Personal Mobile - Large-Scale Propagation Channel Effects - Log-Distance Path Loss Models - Atmospheric Effects - Weather Effects on MmWave Propagation -Diffraction - Reflection and Penetration - Scattering and Radar Cross Section Modeling - Influence of Surrounding Objects, Humans, and Foliage - Ray Tracing and Site-Specific Propagation Prediction - Small-Scale Channel Effects -Delay Spread Characteristics - Doppler Effects -Spatial Characterization of Multipath and Beam Combining - Beam-Combining Procedure - Beam-Combining Results -Angle Spread and Multipath Angle of Arrival - Antenna Polarization - Outdoor Channel Models - 3GPP-Style Outdoor Propagation Models - Vehicle-to-Vehicle Models-Indoor Channel Models - Ray-Tracing Models for Indoor Channels -Rayleigh, Rician, and Multiwave Fading Models 1-IEEE 802.15.3c and IEEE 802.11ad Channel Models -IEEE 802.15.3c -IEEE 802.11ad

9

9

9

9

## UNIT II

#### ANTENNAS AND ARRAYS FOR MMWAVE APPLICATIONS -

Introduction -Fundamentals of On-Chip and In-Package MmWave Antennas - Antenna Fundamentals - Fundamentals of Antenna Arrays -The On-Chip Antenna Environment - Complementary Metal Oxide Semiconductor Technology (CMOS) -In-Package Antennas - Antenna Topologies for MmWave Communications -Techniques to Improve Gain of On-Chip Antennas -Integrated Lens Antennas -Adaptive Antenna Arrays — Implementations for MmWave Communications - Beam Steering for MmWave Adaptive Antenna Arrays - Antenna Array Beamforming Algorithms -Specific Beamforming Algorithms — ESPRIT and MUSIC -Case Studies of Adaptive Arrays for MmWave Communications -Characterization of On-Chip Antenna Performance -Case Studies of MmWave On-Chip Antenna Characterization - Improving Probe Station Characterizations of On-Chip orIn-Package Antennas

## UNIT III

#### **MMWAVE RF**

Basic Concepts for MmWave Transistors and Devices - S-Parameters, Z-Parameters, Y-Parameters, and ABCD-Parameters -Simulation, Layout, and CMOS Production of MmWave Circuits -Transistors and Transistor Models - More Advanced Models for MmWave Transistors - BSIM Model - MmWave Transistor Model Evolution — EKV Model -Introduction to Transmission Lines and Passives - Transmission Lines - Differential versus Single-Ended Transmission Lines - Inductors - Parasitic Inductances from Bond Wire Packaging - Transformers - Interconnects -Basic Transistor Configurations -Conjugate Matching -Miller Capacitance -Poles and Feedback - Frequency Tuning - Sensitivity and Link Budget Analysis for MmWave Radios

#### **UNIT IV**

## ANALOG DEVICES AND CIRCUITS FOR MMWAVE

Important Metrics for Analog MmWave Devices 3-Non-Linear Intercept Points - Noise Figure and Noise Factor -Analog MmWave Components -Power Amplifiers - Low Noise Amplifiers -Mixers -Voltage-Controlled Oscillators (VCOs) -Phase-Locked Loops -Consumption Factor Theory -Numerical Example of Power-Efficiency Factor 3- Consumption Factor Definition -

#### UNIT V

## MMWAVE PHYSICAL LAYER DESIGN AND ALGORITHMS

Practical Transceivers - Signal Clipping and Quantization - Power Amplifier Non-linearity -Phase Noise - High-Throughput PHYs - Modulation, Coding, and Equalization - A Practical Comparison of

OFDM and SC-FDE - Synchronization and Channel Estimation -PHYs for Low Complexity, High Efficiency - Frequency Shift Keying (FSK) - On-Off, Amplitude Shift Keying (OOK, ASK) -Continuous Phase Modulation - Future PHY Considerations - Ultra-Low ADC Resolution - Spatial Multiplexing

| LECTURE | PRACTICAL | TOTAL |
|---------|-----------|-------|
| 45      | 0         | 45    |

## REFERENCES

- Theodore S. Rappaport, Robert W. Heath, Robert C. Daniels and James N. Murdock, 1. "Millimeter Wave Wireless Communications", 1st edition, 2014, Pearson
- 2. Hemadeh, K. Satyanarayana, M. El-Hajjar and L. Hanzo, "Millimeter-Wave Communications: Physical Channel Models, Design Considerations, Antenna Constructions, and Link-Budget," in IEEE Communications Surveys & Tutorials, vol. 20, no. 2, pp. 870-913
- 3. Chong, Chia-Chin & Hamaguchi, Kiyoshi & Smulders, Peter & Yong, Su. (2007).
- 4. Millimeter-Wave Wireless Communication Systems: Theory and Applications. EURASIP J. Wireless Comm. and Networking. 2007. 10.1155/2007/72831.
- 5. Manuel García Sanchez (Ed.), "Millimeter-Wave (mmWave) Communications" 2020 MDPI Books, ISBN 978-3-03928-431-3 (PDF)

## **CO Vs PO Manning**

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |
|--------|-----|-----|-----|-----|-----|-----|------------|
| CO1    | 3   | 3   |     | 1   | 3   |     | 1          |
| CO2    | 3   | 3   |     | 1   |     |     |            |
| CO3    | 3   | 3   |     |     | 3   |     | 1          |
| CO4    | 3   | 3   |     | 1   |     |     |            |
| CO5    | 3   | 3   |     |     | 2   |     | 1          |
|        | 15  | 15  |     | 3   | 8   |     | 3          |
| Scaled | 3   | 3   |     | 1   | 2   |     | 1          |
| values |     |     |     |     |     |     |            |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| CO   | URSE (  | CODE     | COURSE NAME                          | L | Т | P | С |
|------|---------|----------|--------------------------------------|---|---|---|---|
| YW   | C205C   |          | SOFTWARE DEFINED RADIO               | 3 | 0 | 0 | 3 |
| С    | Р       | A        |                                      | L | Т | Р | Н |
| 2.75 | 0       | 0.25     |                                      | 3 | 0 | 0 | 3 |
| Λfte | r compl | ation of | the course a student will be able to |   | • |   |   |

er completion of the course, a student will be able to

| COURS | E OUTCOMES                                                                                         | DOMAIN    | LEVEL         |
|-------|----------------------------------------------------------------------------------------------------|-----------|---------------|
| CO1   | Explain Software Defined Radio Requirements and Specifications<br>and Illustrate SDR architectures | Cognitive | Understanding |
| CO2   | Explain various data conversion techniques in SDR                                                  | Cognitive | Understanding |
| CO3   | Summarize the baseband technologies in SDR and its application in wireless communications.         | Cognitive | Understanding |

| CO5 | Software Download techniques for Mobile TerminalsOutline reconfigurability in SDR and explain Waveform | Cognitive | Understanding |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------|-----------|---------------|--|--|--|--|--|
|     | Description Language                                                                                   |           |               |  |  |  |  |  |
|     | Description Language                                                                                   |           |               |  |  |  |  |  |

## SOFTWARE BASED RADIO

Software defined radio and Software Radio Concepts – Realization of Software Based Radio - Front end Technology: Radio Frequency Translation and Software Defined Radio: Requirements and Specifications- Receiver Design Considerations- Transmitter Design Considerations- Candidate Architectures for SDR – Radio frequency front end Implementations for Multimode SDRS: Evolution of RF Front Ends – Superheterodyne Architecture- The AS 2/6 Product Family – Dual Band, Six Mode – Alternative RF Front End Architectures.

## UNIT II

## DATA CONVERSION IN SOFTWARE DEFINED RADIOS:

The Importance of Data Converters in Software Defined Radios-Converter Architectures – Converter Performance Impact on SDR-Superconductor Microelectronics: A Digital RF Technology for Software Radios: Introduction-Rapid Single Flux Quantum Digital Logic – Cryogenic Aspects- Superconductor SDR for Commercial Applications & Military Applications – The Digital Front End: Bridge Between RF and Baseband Processing: The digital front end-Digital up and down conversions-Channel Filtering-Sample RateConversion.

## UNIT III

## **BASEBAND TECHNOLOGY:**

Baseband Processing for SDR-The Role of Baseband Architectures – Base Band Component Technologies-Design Tools and Methodologies-System design and maintenance – Parameterization-A Technique for SDR Implementation – Definitions-Adaptability – Parameterization of Standards – Signal Processing Issues – Adaptive Computing IC Technology for 3G Software – Software defined Radio – A Solution for Mobile Devices – The Mobile Application Space and the need for Processing Power- SDR Baseband processing – Hardware with Software Programmability – The Computational Power Efficiency Requiredby 3 G Algorithms – Example Case Studies.

## UNIT IV

## SOFTWARE TECHNOLOGY

Software Engineering for Software Radios-Overview of Vanu Systems – The Importance of software in software Radio – Software Portability-Commodity PC hardware- Signal Processing software-Control – Software-Performance-Future Directions – Software Download for Mobile Terminals – Downloading Technologies for SDR – Standards for downloading-Seamless Upgrading 'on the FLY' security of download –software Architectures for Download-Future Applications of SDRDownloading.

#### UNIT V

9

9

9

## **RECONFIGURATION ANDWAVEFORMDESCRIPTION**

Protocols and Network Aspects of SDR-Protocol stacks: SAPS vs. Reconfigurability- Approaches to protocol stack reconfiguration – Reconfiguration Management and control – Network support for software radios Conclusions – The Waveform Description Language: The specification problem – WDL overview – FM3TR example – Refinement to an implication – WDL details – A practical WDL supportenvironment.

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 0        | 45    |

# REFERENCES

- 1. Walter Tuttlebee, "Software Defined Radio: Enabling Technologies", Wiley Publications, 2002.
- Paul Burns, "Software Defined Radio for 3G", Artech House,2002 Markus Dillinger, "Software Defined Radio: Architectures, Systems and Functions", 2003.

## CO Vs PO Mapping

|               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|---------------|-----|-----|-----|-----|-----|-----|-----|
| CO1           | 3   | 3   |     | 1   | 1   | 1   | 1   |
| CO2           | 3   | 3   |     | 1   | 2   |     | 1   |
| CO3           | 3   | 3   |     | 1   |     | 1   | 1   |
| CO4           | 3   | 3   |     |     | 2   |     | 1   |
| CO5           | 3   | 3   |     | 2   |     | 1   | 1   |
|               | 15  | 15  |     | 5   | 5   | 3   | 5   |
| Scaled values | 3   | 3   |     | 1   | 1   | 1   | 1   |

## $1-5 \rightarrow 1$ , $6-10 \rightarrow 2$ , $11-15 \rightarrow 3$

#### 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COUR       | SE COD                                                                   | £                                                            | SUBNAME                     |          |           |               |           | L     | Т     | Р     | С |
|------------|--------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|----------|-----------|---------------|-----------|-------|-------|-------|---|
| YWC2       | 05D                                                                      |                                                              | FUNDAMEN<br>WIRELESST       |          |           | BILEA         | ND        | 3     | 0     | 0     | 3 |
| С          | Р                                                                        | Α                                                            |                             |          |           |               |           | L     | Т     | Р     | Н |
| 2.75       | 0                                                                        | 0.25                                                         |                             |          |           |               |           | 3     | 0     | 0     | 3 |
|            | •                                                                        |                                                              | urse, a student             | will be  | e able to |               | DOMANY    |       |       |       |   |
| COU        | RSE OU                                                                   | <b>FCOMES</b>                                                |                             |          |           |               | DOMAIN    | LE    | VEL   | 4     |   |
| CO1        | Outline                                                                  | the 5G n                                                     | etworks and its             | s archit | ecture    |               | Cognitive | Unc   | lerst | andin | g |
| CO2        | Examin<br>commu                                                          |                                                              | techniques<br>n 5G networks | for      | machine   | type          | Cognitive | Ana   | ılyzi | ng    |   |
| CO3        | Explain the latest technology used in 5G communication         Cognitive |                                                              |                             |          |           | Understanding |           |       | g     |       |   |
| <b>CO4</b> | Classify the various 5Gradio-accesstechnologies Cognitive                |                                                              |                             |          |           | Cognitive     | Unc       | lerst | andin | g     |   |
| CO5        | Explain                                                                  | xplain the security principles in 5G communication Cognitive |                             |          |           |               | Unc       | lerst | andin | g     |   |
| UNITI      | •                                                                        |                                                              |                             |          |           |               | •         | •     |       |       | 9 |

## INTRODUCTION

Rationale of 5G: high data volume, twenty-five billion connected devices and wide requirements-10pillarsof5G-Requirements and key performance indicators 5G system concept Concept overview Extreme mobile broadband Massive machine-type communication Ultra-reliable machine-type communication - Dynamic radio access network 3- Lean system control plane - Localized contentsandtrafficflows-Spectrumtoolbox-The5Garchitecture-High-level requirements for the 5G architecture

9

9

9

9

## UNITII

## MACHINE-TYPECOMMUNICATIONS

Introduction - Use cases and categorization of MTC - MTC requirements -Fundamental techniques for MTC - Data and control for short packets -Non-orthogonal access protocols - Massive MTC -Design principles -Technology components - Summary of mMTC features - Ultra-reliable lowlatency MTC-Design principles-Technology components

## UNITIII

## SMALLCELLS FOR5GMOBILENETWORKS

Introduction- What are Small Cells? – Wi-Fi and Femtocells as Candidate Small-Cell Technologies -Wi-Fi and Femto Performance – Indoors vs Outdoors -Capacity Limits and Achievable Gains with Densification - Gains with Multi-Antenna Techniques -Gains with Small Cells - Mobile Data Demand-Approach and Methodology-Demand vs Capacity -Small-Cell Challenges.

## UNITIV

## THE5GRADIO-ACCESSTECHNOLOGIES

Access design principles for multi-user communications- Orthogonal multiple-access systems-Spread spectrum multiple-access systems-Capacity limits of multiple-access methods-Multi-carrier with filtering: a new waveform - Filter-bank based multi-carrier - Universal filtered OFDM - Nonorthogonalschemesforefficientmultipleaccess-Non-orthogonalmultipleaccess(NOMA)-

Sparsecodemultipleaccess(SCMA)-Interleave division multiple access(IDMA)-Radio access for dense deployments - OFDM numerology for small-cell deployments - Small-cell sub-frame structure -Radio access for V2X communication-Medium access control for nodes on the move-Radio access for massive machine-type communication-The massive access problem-Extending access reservation 198-Directrandomaccess

UNITV

## SECURITYFOR5GCOMMUNICATIONS

Overview of a Potential 5G Communications System Architecture -Security Issues and Challenges in 5G Communications-Systems - User Equipment - Access Networks -Mobile Operator's Core Network-External IP Networks SONEvolutionfor5GMobileNetworks -SON in UMT SandLTE-The Need for SON in 5G -Evolution towards Small-Cell Dominant Het Nets -Towards a New SON Architecture for 5G

|            | LECTURE | TUTORIAL | TOTAL |
|------------|---------|----------|-------|
|            | 45      | 0        | 45    |
| DEFEDENCES |         |          |       |

## REFERENCES

1. Jonathan Rodriguez" Fundamentals of 5G Mobile Networks", John Wiley& Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO198SQ, United Kingdom

2. AfifOsseiran, Jose F. Monserrat and Patrick Marsch, "5G Mobile and Wireless Communications Technology "Cambridge University Press, 2016

## **C** O Vs PO Mapping

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|--------|-----|-----|-----|-----|-----|-----|-----|
| CO1    | 3   | 3   |     | 1   | 3   | 3   | 1   |
| CO2    | 3   | 3   |     |     |     | 3   | 1   |
| CO3    | 3   | 3   |     | 2   |     | 3   | 1   |
| CO4    | 3   | 3   |     |     | 1   | 3   | 1   |
| CO5    | 3   | 3   |     |     |     | 3   | 1   |
|        | 15  | 15  |     | 3   | 4   | 15  | 5   |
| Scaled | 3   | 3   |     | 1   | 1   | 3   | 1   |
| values |     |     |     |     |     |     |     |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

## SEMESTER-III

| COUR | RSE ( | CODE      | COURSE NAME                                                                                                    |           | L              | Т       | Р      | C |  |
|------|-------|-----------|----------------------------------------------------------------------------------------------------------------|-----------|----------------|---------|--------|---|--|
| YWC3 | 302A  |           | QUALITY OF SERVICE IN WIRELESS<br>COMMUNICATION                                                                |           | 3 0 0<br>I T D |         |        |   |  |
| С    | P     | Α         |                                                                                                                |           | L              | Т       | Р      | Η |  |
| 2.75 | 0     | 0.25      |                                                                                                                |           | 3              | 0       | 0      | 3 |  |
| -    | •     |           | the course, a student will be able to                                                                          | DOLLAR    |                |         |        |   |  |
| COU  | RSE   | OUTC      | OMES                                                                                                           | DOMAIN    | L              | EVEL    |        |   |  |
| C01  | 0     | utlinethe | e QoS for Packet Networks                                                                                      | Cognitive | U              | ndersta | anding | , |  |
| CO2  | Μ     | lechanis  | IP-based QoS motivation in QoS ms and Design the network capacity with ation and service enhancing technology. | U         | ndersta        | anding  | 7      |   |  |
| CO3  | ar    |           | e characterization f End-User Performance<br>pare 3GPP versus 3GPP2 in QoS End-User<br>aces.                   | Cognitive | Cı             | reating |        |   |  |

| CO4 Explain the Challenges behind QOS Provisioning in Adhoc networks and Distinguish routing in mobile adhoc network. | Cognitive       | Understanding     | 5      |
|-----------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|--------|
| <b>CO5</b> List out the application of specific QoS, Network QoS and Discuss difficulties of QOS provisioning in WSN. | Cognitive       | Remembering       |        |
| UNIT I                                                                                                                | •               | 9                 |        |
| <b>QOS FOR PACKET NETWORKS -AN INTRODUCTION</b>                                                                       |                 |                   |        |
| Qos of real time services-delay-frame delay-packetization delay-i                                                     | nterleaving de  | elay-error correc | ction  |
| coding delay-jitter buffer delay-packet queuing delay-propagatio                                                      | n delay-effect  | of delay-end-to   | o-end  |
| delay objectives-delay variation or "jitter"-sourceofdela                                                             | ayvariation-pa  | cketlossprobabi   | ility- |
| subjectivetesting-mean opinion score (mos)-the "emodel"                                                               | "—codec pe      | erformance-bloc   | king   |
| probability-"trunked channel" systems-offered traffic-oad-units                                                       | s of traffic lo | ad-trunk utiliza  | ation  |
| factor                                                                                                                |                 |                   |        |
| UNIT II                                                                                                               |                 |                   | 9      |
| QOS IN CELLULAR SYSTEMS-PARTI                                                                                         |                 |                   | .1     |
| QoS Definition-Need for QoS Differentiation-QoS Standardizatio                                                        | n-Data Servic   | es Classification | n IP-  |
| Based QoS Motivation of IP QoS Mechanisms QoS Paradigms                                                               | IP-QoS Mar      | nagement in UI    | MTS    |
| Networks Traffic Handling Mechanisms. Motivation for Q                                                                | oS in cellul    | ar systems-Sei    | rvice  |
| Experience-Radio Network Performance-Network Capacity-Network                                                         | etworkDesign    | -ApplicationDes   | sign-  |
| Service-EnhancingTechnology                                                                                           |                 |                   |        |
| UNIT III                                                                                                              |                 |                   | 9      |
| QOS IN CELLULAR SYSTEMS- PARTII                                                                                       |                 |                   |        |
| QoS Architecture in 3GPP and 3GPP2 End-to-End QoS Introduc                                                            | tion Evolutio   | n of QoS in 3C    | GPP    |
| Releases IP Multimedia Subsystem(IMS)-3GPPversus 3GPP2i                                                               | n QoS End-      | User Performation | nce    |
| Analysis-Characterization of End-User Performance-Data Link E                                                         | ffects-Transpo  | ort and Applicat  | tion   |
| Layer Effects-Impact of Network Dimensioning in the Service Per                                                       | formance.       |                   |        |
| UNIT IV                                                                                                               |                 |                   | 9      |
| QUALITYOFSERVICE IN ADHOC NETWORKS                                                                                    |                 |                   |        |
| Challenges behind QOS Provisioning in Adhoc Networks-Routing                                                          | in mobile adh   | noc networks-     |        |
| Routing with quality of service constraints-Quality of service routing                                                | ng in adhoc ne  | etworks           |        |
| UNIT V                                                                                                                |                 |                   | 9      |
| QOSINWIRELESSSENSORNETWORKS                                                                                           |                 |                   |        |
| WSN challenges-Difficulties of QOS provisioning in WSN-QC                                                             | S Performan     | ce metrics in W   | VSN-   |
| Mechanisms to Achieve QOS in WSN- Resource Constraints-                                                               | Platform Hete   | erogeneity- Dyn   | amic   |
| Network Topology- Mixed Traffic-Power, bandwidth, memorysiz                                                           | ze constraints- | Application-spe   | ecific |
| 96                                                                                                                    |                 |                   |        |
|                                                                                                                       |                 |                   |        |

|    |                                               |                                                                                                                                  |                              | ]             | LECTURE                 | TUT        | ORIAL                       | TOTA                        |
|----|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------|-------------------------|------------|-----------------------------|-----------------------------|
|    |                                               |                                                                                                                                  |                              | 4             | 45                      |            | 0                           | 45                          |
|    | ERENCES                                       |                                                                                                                                  |                              |               |                         |            |                             |                             |
| 1. |                                               | -                                                                                                                                |                              |               |                         |            |                             |                             |
| 2. |                                               |                                                                                                                                  | •                            | Quality of    | Service In              | Ad Hoc     | Wireless                    | s Netwo                     |
|    | Cambridge                                     | •                                                                                                                                |                              |               |                         | ~ 41 -     |                             |                             |
| 3. | G. Gómeza                                     |                                                                                                                                  | z"End-to-E                   | nd Quality of | of Service ov           | er Cellula | r Network                   | ts" 2005 J                  |
|    | Wiley & So                                    |                                                                                                                                  | · ·                          |               |                         | 1          |                             |                             |
| 4. |                                               | L'on'' ( )uolit                                                                                                                  |                              |               |                         |            |                             |                             |
|    |                                               |                                                                                                                                  | y of service                 | in wireless   | sensor netw             | orks".     |                             |                             |
|    | CO Vs PO M                                    | lapping                                                                                                                          | -                            | •             |                         |            |                             |                             |
|    |                                               |                                                                                                                                  | PO2                          | PO3           | PO4                     | PO5        | PO6                         | PO7                         |
|    |                                               | lapping                                                                                                                          | -                            | •             |                         |            | <b>PO6</b>                  | <b>PO7</b> 3                |
|    | CO Vs PO M                                    | lapping<br>PO1                                                                                                                   | PO2                          | •             | PO4                     |            |                             |                             |
|    | CO Vs PO M<br>CO1                             | PO1     3                                                                                                                        | <b>PO2</b><br>3              | •             | PO4                     |            | 3                           | 3                           |
|    | CO Vs PO M<br>CO1<br>CO2                      | appingPO133                                                                                                                      | <b>PO2</b> 3 3               | •             | <b>PO4</b> 2            |            | 3<br>3                      | 3<br>3                      |
|    | CO Vs PO M<br>CO1<br>CO2<br>CO3               | appingPO1333                                                                                                                     | PO2<br>3<br>3<br>3           | •             | <b>PO4</b> 2            |            | 3<br>3<br>3                 | 3<br>3<br>3                 |
|    | CO Vs PO M<br>CO1<br>CO2<br>CO3<br>CO4        | apping           PO1           3           3           3           3           3           3                                     | PO2<br>3<br>3<br>3<br>3<br>3 | •             | PO4<br>2<br>3           |            | 3<br>3<br>3<br>3            | 3<br>3<br>3<br>3            |
|    | CO Vs PO M<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5 | apping           PO1           3           3           3           3           3           1           3           1           1 | PO2 3 3 3 3 3 15             | •             | PO4<br>2<br>3<br>2<br>7 |            | 3<br>3<br>3<br>3<br>3<br>15 | 3<br>3<br>3<br>3<br>3<br>15 |
|    | CO Vs PO M<br>CO1<br>CO2<br>CO3<br>CO4        | apping           PO1           3           3           3           3           3           3           3           3           3 | PO2 3 3 3 3 3 3 3            | •             | PO4<br>2<br>3<br>2      |            | 3<br>3<br>3<br>3<br>3<br>3  | 3<br>3<br>3<br>3<br>3       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RSE C                       | ODE                              | COURSE NAME                                                                                                                                                                                                              |                              | L              | Т       | P      | C    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|---------|--------|------|
| YWC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 302B                        |                                  | TELECOM NETWORK PLANNING A<br>MANAGEMENT                                                                                                                                                                                 | ND                           | 3              | 0       | 0      | 3    |
| С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Р                           | Α                                |                                                                                                                                                                                                                          |                              | L              | Т       | Р      | H    |
| 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                           | 0.25                             |                                                                                                                                                                                                                          |                              | 3              | 0       | 0      | 3    |
| COU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JRSE (                      | DUTCO                            | MES                                                                                                                                                                                                                      | DOMAIN                       | LE             | VEL     |        |      |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tecl                        |                                  | e Overall plans per network layer and<br>in network planning and solution mapping                                                                                                                                        | Cognitive                    | Un             | dersta  | nding  |      |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                  | traffic models and explain the categories of pping to customer segment.                                                                                                                                                  | Cognitive                    | Cre            | eating  |        |      |
| Services mapping to customer segment.         CO3         Compare Cycle life amortization versus modernization         Cognitive         Under the construction         Cognit         Cognitive         Cognitive |                             |                                  |                                                                                                                                                                                                                          |                              |                | dersta  | nding  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                  |                                                                                                                                                                                                                          |                              | Un             | dersta  | nding  |      |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Exp                         |                                  | network and access network in network                                                                                                                                                                                    | Cognitive                    | An             | alyzin  | g      |      |
| UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | 0                                |                                                                                                                                                                                                                          |                              |                |         |        | 9    |
| OVEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VIEW                        | V OF NE                          | TWORK PLANNING                                                                                                                                                                                                           |                              |                |         |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ng NGI                      |                                  | ong technical, business and operational plans                                                                                                                                                                            |                              |                |         |        | 9    |
| SERV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ICE D                       | EFINIT                           | ION AND FORECASTING AND TRAFFI                                                                                                                                                                                           | C CHARAC                     | TER            | [ZAT]   | ION    |      |
| custon<br>Traffic<br>proces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | her seg<br>units<br>s-Origi | ment-Ser<br>for ser<br>n/destina | Services definition and characterization.<br>vice forecasting per segment-Service bundling<br>vice characterization-Reference periods for<br>ation of the traffic flows in Local, Metropolit<br>etworks- Traffic models. | g-Service sec<br>dimensionin | urity<br>g-Tra | ffic ag | ggrega | atio |
| UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                                  |                                                                                                                                                                                                                          |                              |                |         |        | 9    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                  | DELLING AND BUSINESS PLANS                                                                                                                                                                                               |                              |                |         |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                  | Economic modelling for planning- Econom<br>- Cycle life amortization versus modernization                                                                                                                                |                              | and te         | erms-   | Econ   | omi  |
| UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IV                          |                                  |                                                                                                                                                                                                                          |                              |                |         |        |      |
| Core ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Networ                      | k -Acce                          | <b>N, DIMENSIONING AND OPTIMIZATIO</b><br>ss Network -Basic optimisation methods - S<br>es for rural network.                                                                                                            |                              | es of          | Radio   | Net    | wor  |
| UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V                           |                                  |                                                                                                                                                                                                                          |                              |                |         |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                  | ~                                                                                                                                                                                                                        |                              |                |         |        |      |

DATA GATHERING

Geographical information for the studied area -Demand of services in relative penetration per customer category -Demand of traffic, usually expressed as traffic matrices-Information for the existing network and infrastructure-Telecommunication equipment characteristics and capabilities-QOS requirements-Economical and Operational data

## REFERENCES

- 4. ITU Telecom Network Planning Reference Manual Draft version 4.1 January 2007
- 5. Anandalingam, G., Raghavan, S. (Eds.), "Telecommunications Network Design and Management" Springer US, 2003.

3.Thomas G. Robertazzi, "Planning Telecommunication Networks", John Wiley & Sons, Inc., 1998

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 0        | 45    |

#### **CO Vs PO Mapping**

|               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|---------------|-----|-----|-----|-----|-----|-----|-----|
| CO1           | 3   | 3   |     | 2   |     | 3   | 3   |
| CO2           | 3   | 3   |     |     |     | 3   | 3   |
| CO3           | 3   | 3   |     | 3   |     | 3   | 3   |
| CO4           | 3   | 3   |     |     |     | 3   | 3   |
| CO5           | 3   | 3   |     | 2   |     | 3   | 3   |
|               | 15  | 15  |     | 7   |     | 15  | 15  |
| Scaled values | 3   | 3   |     | 2   |     | 3   | 3   |

| COURSI                                                                                                                                                                         | E CODE                                                                                                                                                                                           | COURSE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                         | L                                                            | Т                                                                             | Р                                                                                        |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------|
| YWC302                                                                                                                                                                         | C                                                                                                                                                                                                | <b>REGULATION AND POLICY IN THE<br/>TELECOMMUNICATIONS INDUSTRY</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                       |                                                                                         | 3                                                            | 0                                                                             | 0                                                                                        |                                                  |
| C P                                                                                                                                                                            | Α                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                         | L                                                            | Т                                                                             | Р                                                                                        |                                                  |
| 2.75 0                                                                                                                                                                         | 0.25                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                         | 3                                                            | 0                                                                             | 0                                                                                        |                                                  |
| After con                                                                                                                                                                      | pletion of th                                                                                                                                                                                    | e course, a student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                       | 1                                                                                       |                                                              |                                                                               | 1                                                                                        |                                                  |
| COURS                                                                                                                                                                          | SE OUTCO                                                                                                                                                                                         | MES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DOMAIN                                                                                                                                                                                                                | LEV                                                                                     | EI                                                           |                                                                               |                                                                                          |                                                  |
| CO1                                                                                                                                                                            | Explainnee                                                                                                                                                                                       | d for regulation in telecom and discuss effective in telecom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cognitive                                                                                                                                                                                                             |                                                                                         | derstanding                                                  |                                                                               |                                                                                          |                                                  |
| CO2                                                                                                                                                                            | <b>^</b>                                                                                                                                                                                         | ne global authorization principles in licensing and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cognitive                                                                                                                                                                                                             | Unde                                                                                    | Understanding                                                |                                                                               |                                                                                          |                                                  |
| CO3                                                                                                                                                                            | demonstrate mechanismsfor assigning and pricing spectrum.CO3Define access and interconnection in network and compare<br>setting interconnection rices and cross-border interconnection.Cognitive |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                         |                                                              |                                                                               |                                                                                          |                                                  |
| CO4                                                                                                                                                                            |                                                                                                                                                                                                  | e types of universal and service regimes and Explain iteracy and e-inclusion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cognitive                                                                                                                                                                                                             | Reme                                                                                    | eml                                                          | bering                                                                        | g                                                                                        |                                                  |
| the digital literacy and e-inclusion .CO5CO5Illustrate the ubiquity and web 2.0 and Discuss green ICT-<br>regulation in a global Era.Cognitive                                 |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                         |                                                              |                                                                               | g                                                                                        |                                                  |
| UNIT I                                                                                                                                                                         |                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                         |                                                              |                                                                               |                                                                                          | 9                                                |
| <b>LEVEL</b><br>Regulatio                                                                                                                                                      | gy in Contex<br>PLAYING I                                                                                                                                                                        | E: INTRODUCTION TO TELECOMMUNICAT<br>t Why Regulate? -Regulatory Organizations- Interna<br><b>TIELD: REGULATING FOREFFECTIVE COMPE</b><br>etition Law -Competition Analysis - Control of Mergers                                                                                                                                                                                                                                                                                                                                                                                       | tional Framewo<br>C <b>TITION-</b> Com                                                                                                                                                                                | rks- Lo<br>petitive                                                                     | oki<br>M                                                     | ing A<br>larket                                                               | head<br>s -Sec                                                                           | - A                                              |
| LEVEL<br>Regulatio<br>UNIT II<br>GROWI<br>Towards<br>and Proc<br>Complian<br>GOING                                                                                             | gy in Contex<br>PLAYING I<br>n and Compe<br>NG THE I<br>General Auth<br>edures-Speci<br>ce-<br>MOBILE: N                                                                                         | t Why Regulate? -Regulatory Organizations- Interna<br><b>TIELD: REGULATING FOREFFECTIVE COMPE</b><br>etition Law -Competition Analysis - Control of Mergers<br><b>MARKET: LICENSING AND AUTHORIZING</b><br>horization - Licensing Objectives and Types- Competin<br>al Authorization-Situations- Licensing for Converge<br><b>MANAGING THE SPECTRUM</b> Introduction - Chang                                                                                                                                                                                                           | tional Framewo<br><b>CTITION-</b> Com<br>and Acquisition<br><b>SERVICES-In</b><br>g for Licenses<br>ence - Global<br>ing Demands fo                                                                                   | rks- Lo<br>petitive<br>ns-Regu<br>ttroduct<br>Author<br>Standar                         | oki<br>M<br>lat<br>ion<br>izat<br>rds<br>um                  | ing A<br>larket<br>ing P<br>- Th<br>tion F<br>Mal                             | head<br>s -Sec<br>rices-<br>ne Tro<br>Princip<br>king a                                  | - A<br>cto<br>9<br>encole<br>ance<br>ance        |
| LEVEL<br>Regulatio<br>UNIT II<br>GROWI<br>Towards<br>and Proc<br>Complian<br>GOING<br>Technica<br>Spectrum                                                                     | gy in Contex<br>PLAYING I<br>n and Compe<br>NG THE M<br>General Auth<br>edures-Speci<br>ce-<br>MOBILE: M<br>1 Standards                                                                          | t Why Regulate? -Regulatory Organizations- Interna<br><b>TIELD: REGULATING FOREFFECTIVE COMPE</b><br>atition Law -Competition Analysis - Control of Mergers<br><b>MARKET: LICENSING AND AUTHORIZING</b><br>morization - Licensing Objectives and Types- Competing<br>al Authorization-Situations- Licensing for Convergence                                                                                                                                                                                                                                                            | tional Framewo<br><b>CTITION-</b> Com<br>and Acquisition<br><b>SERVICES-In</b><br>g for Licenses<br>ence - Global<br>ing Demands fo                                                                                   | rks- Lo<br>petitive<br>ns-Regu<br>ttroduct<br>Author<br>Standar                         | oki<br>M<br>lat<br>ion<br>izat<br>rds<br>um                  | ing A<br>larket<br>ing P<br>- Th<br>tion F<br>Mal                             | head<br>s -Sec<br>rices-<br>ne Tro<br>Princip<br>king a                                  | - A<br>cto<br>9<br>enco<br>ole<br>anco<br>anco   |
| LEVEL<br>Regulatio<br>UNIT II<br>GROWI<br>Towards<br>and Proc<br>Complian<br>GOING<br>Technica<br>Spectrum                                                                     | gy in Contex<br>PLAYING I<br>n and Compe<br>NG THE M<br>General Auth<br>edures-Speci<br>ce-<br>MOBILE: M<br>1 Standards                                                                          | t Why Regulate? -Regulatory Organizations- Interna<br><b>TIELD: REGULATING FOREFFECTIVE COMPE</b><br>etition Law -Competition Analysis - Control of Mergers<br><b>MARKET: LICENSING AND AUTHORIZING</b><br>horization - Licensing Objectives and Types- Competin<br>al Authorization-Situations- Licensing for Converge<br><b>MANAGING THE SPECTRUM</b> Introduction - Chang                                                                                                                                                                                                           | tional Framewo<br><b>CTITION-</b> Com<br>and Acquisition<br><b>SERVICES-In</b><br>g for Licenses<br>ence - Global<br>ing Demands fo                                                                                   | rks- Lo<br>petitive<br>ns-Regu<br>ttroduct<br>Author<br>Standar                         | oki<br>M<br>lat<br>ion<br>izat<br>rds<br>um                  | ing A<br>larket<br>ing P<br>- Th<br>tion F<br>Mal                             | head<br>s -Sec<br>rices-<br>ne Tro<br>Princip<br>king a                                  | - A<br>cto<br>9<br>encole<br>ance<br>ance        |
| LEVEL<br>Regulatio<br>UNIT II<br>GROWI<br>Towards<br>and Proc<br>Complian<br>GOING<br>Technica<br>Spectrum<br>UNIT II                                                          | gy in Contex<br>PLAYING I<br>n and Compe<br>NG THE M<br>General Auth<br>edures-Speci<br>ce-<br>MOBILE: M<br>l Standards                                                                          | t Why Regulate? -Regulatory Organizations- Interna<br><b>TIELD: REGULATING FOREFFECTIVE COMPE</b><br>etition Law -Competition Analysis - Control of Mergers<br><b>MARKET: LICENSING AND AUTHORIZING</b><br>horization - Licensing Objectives and Types- Competin<br>al Authorization-Situations- Licensing for Converge<br><b>MANAGING THE SPECTRUM</b> Introduction - Chang                                                                                                                                                                                                           | tional Framewo<br>CTITION- Com<br>and Acquisition<br>SERVICES-In<br>g for Licenses<br>ence - Global<br>ing Demands fo<br>Monitoring S                                                                                 | rks- Lo<br>apetitive<br>ns-Regu<br>atroduct<br>Author<br>Standar<br>orSpectr<br>pectrum | oki<br>M<br>lat<br>ion<br>izat<br>rds<br>um<br>n-            | ing A<br>larket<br>ing P<br>- Th<br>tion F<br>Mal                             | head<br>s -Sec<br>rices-<br>ne Tro<br>Princip<br>king a                                  | - A<br>etc<br>9<br>eno<br>ole<br>ano<br>i        |
| LEVEL<br>Regulatio<br>UNIT II<br>GROWI<br>Towards<br>and Proc<br>Complian<br>GOING<br>Technica<br>Spectrum<br>UNIT II<br>FROM C<br>Introduct                                   | gy in Contex<br>PLAYING I<br>n and Compe-<br>NG THE I<br>General Auth<br>edures-Speci<br>ce-<br>MOBILE: N<br>1 Standards<br>1<br>I<br>CAPACITY<br>ion-Access                                     | t Why Regulate? -Regulatory Organizations- Interna<br><b>TIELD: REGULATING FOREFFECTIVE COMPE</b><br>atition Law -Competition Analysis - Control of Mergers<br><b>MARKET: LICENSING AND AUTHORIZING</b><br>norization - Licensing Objectives and Types- Competin<br>al Authorization-Situations- Licensing for Converge<br><b>MANAGING THE SPECTRUM</b> Introduction - Chang<br>-Mechanisms for Assigning and Pricing Spectrum<br><b>TO CONNECTIVITY: NETWORK ACCESS AND</b><br>and Interconnection -Forms of Interconnection-Set                                                      | tional Framewo<br>CTITION- Com<br>and Acquisition<br>SERVICES-In<br>g for Licenses<br>ence - Global<br>ing Demands fo<br>Monitoring S                                                                                 | rks- Lo<br>apetitive<br>ns-Regu<br>atroduct<br>Author<br>Standar<br>orSpectr<br>pectrum | oki<br>Milat:<br>ion<br>izat<br>rds<br>um<br>n-              | ing A<br>larket<br>ing P<br>- Th<br>tion F<br>Mal<br>-Plar<br>Flexi           | head<br>rices-<br>ne Tro<br>Princip<br>king a<br>ning a<br>ibility                       | - A<br>etc<br>9<br>encole<br>anc<br>i:           |
| LEVEL<br>Regulatio<br>UNIT II<br>GROWI<br>Towards<br>and Proc<br>Complian<br>GOING<br>Technica<br>Spectrum<br>UNIT II<br>FROM (<br>Introduct<br>Interconr                      | gy in Contex<br>PLAYING I<br>n and Compe<br>NG THE I<br>General Auth<br>edures-Speci<br>ce-<br>MOBILE: N<br>l Standards<br>I<br>CAPACITY<br>ion-Access<br>nection-New                            | t Why Regulate? -Regulatory Organizations- Interna<br><b>TIELD: REGULATING FOREFFECTIVE COMPE</b><br>etition Law -Competition Analysis - Control of Mergers<br><b>MARKET: LICENSING AND AUTHORIZING</b><br>norization - Licensing Objectives and Types- Competin<br>al Authorization-Situations- Licensing for Converge<br><b>MANAGING THE SPECTRUM</b> Introduction - Chang<br>-Mechanisms for Assigning and Pricing Spectrum<br><b>TO CONNECTIVITY: NETWORK ACCESS AND</b>                                                                                                           | tional Framewo<br>CTITION- Com<br>and Acquisition<br>SERVICES-In<br>g for Licenses<br>ence - Global<br>ing Demands fo<br>Monitoring S                                                                                 | rks- Lo<br>apetitive<br>ns-Regu<br>atroduct<br>Author<br>Standar<br>orSpectr<br>pectrum | oki<br>Milat:<br>ion<br>izat<br>rds<br>um<br>n-              | ing A<br>larket<br>ing P<br>- Th<br>tion F<br>Mal<br>-Plar<br>Flexi           | head<br>rices-<br>ne Tro<br>Princip<br>king a<br>ning a<br>ibility                       | - A<br>etc<br>9<br>en-<br>ole<br>an-<br>i:<br>i: |
| LEVEL<br>Regulatio<br>UNIT II<br>GROWI<br>Towards<br>and Proc<br>Complian<br>GOING<br>Technica<br>Spectrum<br>UNIT II<br>FROM (<br>Introduct<br>Interconr<br>UNIT IV           | gy in Contex<br>PLAYING I<br>n and Compe<br>NG THE M<br>General Auth<br>edures-Speci<br>ce-<br>MOBILE: M<br>I Standards<br>I<br>CAPACITY<br>ion-Access<br>nection-New                            | t Why Regulate? -Regulatory Organizations- Interna<br><b>TIELD: REGULATING FOREFFECTIVE COMPE</b><br>etition Law -Competition Analysis - Control of Mergers<br><b>MARKET: LICENSING AND AUTHORIZING</b><br>norization - Licensing Objectives and Types- Competin<br>al Authorization-Situations- Licensing for Converge<br><b>MANAGING THE SPECTRUM</b> Introduction - Chang<br>-Mechanisms for Assigning and Pricing Spectrum<br><b>TO CONNECTIVITY: NETWORK ACCESS AND</b><br>and Interconnection -Forms of Interconnection-Set<br>Paradigms and New Challenges- Dispute Resolution- | tional Framewo<br><b>CTITION-</b> Com<br>and Acquisition<br><b>SERVICES-In</b><br>g for Licenses<br>ence - Global<br>ing Demands fo<br>Monitoring S<br><b>INTERCONNE</b><br>ting Interconne                           | rks- Lo<br>apetitive<br>ns-Regu<br>atroduct<br>Author<br>Standar<br>orSpectr<br>pectrum | oki<br>M<br>lat:<br>ion<br>izat<br>rds<br>um<br>n-<br>N      | ing A<br>larket<br>ing P<br>- Th<br>tion F<br>Mal<br>a-Plar<br>Flexi          | head<br>rices-<br>ne Tro<br>Princip<br>king a<br>bility                                  | - A<br>ctc<br>9<br>en<br>ole<br>an<br>i<br>i     |
| LEVEL<br>Regulatio<br>UNIT II<br>GROWI<br>Towards<br>and Proc<br>Complian<br>GOING<br>Technica<br>Spectrum<br>UNIT II<br>FROM C<br>Introduct<br>Interconr<br>UNIT IV<br>FROM C | gy in Contex<br>PLAYING I<br>n and Compe<br>NG THE I<br>General Auth<br>edures-Speci<br>ce-<br>MOBILE: N<br>l Standards<br>l<br>I<br>CAPACITY<br>ion-Access<br>lection-New                       | t Why Regulate? -Regulatory Organizations- Interna<br><b>TIELD: REGULATING FOREFFECTIVE COMPE</b><br>atition Law -Competition Analysis - Control of Mergers<br><b>MARKET: LICENSING AND AUTHORIZING</b><br>norization - Licensing Objectives and Types- Competin<br>al Authorization-Situations- Licensing for Converge<br><b>MANAGING THE SPECTRUM</b> Introduction - Chang<br>-Mechanisms for Assigning and Pricing Spectrum<br><b>TO CONNECTIVITY: NETWORK ACCESS AND</b><br>and Interconnection -Forms of Interconnection-Set                                                      | tional Framewo<br><b>CTITION-</b> Com<br>and Acquisition<br><b>SERVICES-In</b><br>g for Licenses<br>ence - Global<br>ing Demands for<br>Monitoring S<br><b>INTERCONNE</b><br>ting Interconne<br><b>RVICE -</b> Trends | and A                                                                                   | oki<br>Malati<br>ion<br>izat<br>rds<br>um<br>n-<br>N<br>rice | ing A<br>larket<br>ing P<br>- Th<br>tion F<br>Mal<br>a-Plar<br>Flexi<br>esCro | head<br>rices-<br>ne Tro<br>Princip<br>king a<br>aning a<br>ability<br>sss-bor<br>es-Pol | - A<br>etc<br>9<br>en<br>ole<br>an<br>i<br>i     |

Digital Literacy and e-Inclusion -

## UNIT V

A DIGITAL FUTURE: REGULATORY CHALLENGES IN A BRAVE NEW WORLD - Convergence, Ubiquity, and Web 2.0 - Regulating Digital Content- Balancing Intellectual Property Rights-. Neutrality of Access-Protecting Privacy- Cybersecurity Concerns - Green ICT-Regulation in a Global Era

|            | LECTURE | TUTORIAL | ТО  |
|------------|---------|----------|-----|
|            |         |          | TAL |
|            | 45      | 0        | 45  |
| DEFEDENCES |         |          |     |

#### REFERENCES

1.Colin Blackman and Lara Srivastava, "Telecommunications Regulation Handbook, Tenth Anniversary Edition, The International Bank for Reconstruction and Development / The World Bank, InfoDev, and The International Telecommunication Union, 2011

## **C** O Vs PO Mapping

|               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|---------------|-----|-----|-----|-----|-----|-----|-----|
| CO1           | 3   | 3   |     | 2   |     | 3   | 3   |
| CO2           | 3   | 3   |     |     |     | 3   | 3   |
| CO3           | 3   | 3   |     | 3   |     | 3   | 3   |
| CO4           | 3   | 3   |     |     |     | 3   | 3   |
| CO5           | 3   | 3   |     | 2   |     | 3   | 3   |
|               | 15  | 15  |     | 7   |     | 15  | 15  |
| Scaled values | 3   | 3   |     | 2   |     | 3   | 3   |

## **OPEN ELECTIVES**

| COUR                                                                                                       | SE (                                                                                      | CODE                                                                                                                      | COURSE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                       | L                                                                                            | T                                                                          | P                                                                     | C                                                                                                      |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| ~                                                                                                          | ъ                                                                                         |                                                                                                                           | BUSINESS ANALYTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                       | 3                                                                                            | 0                                                                          | 0<br>D                                                                | 3                                                                                                      |
| C<br>2.75                                                                                                  | Р<br>0                                                                                    | A<br>0.25                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                       | L<br>3                                                                                       | T<br>0                                                                     | P<br>0                                                                | H<br>3                                                                                                 |
|                                                                                                            | Ľ                                                                                         |                                                                                                                           | the course, a student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                       | 3                                                                                            | U                                                                          | U                                                                     | 3                                                                                                      |
| COL                                                                                                        |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DOMAIN                                                                                                                                                                |                                                                                              |                                                                            |                                                                       |                                                                                                        |
| COL                                                                                                        |                                                                                           | OUTC<br>emonstra                                                                                                          | Interstates analytics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>DOMAIN</b><br>Cognitive                                                                                                                                            | _                                                                                            | EVEL<br>dersta                                                             | ndino                                                                 |                                                                                                        |
|                                                                                                            |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                       |                                                                                              |                                                                            |                                                                       | ,                                                                                                      |
| CO2                                                                                                        |                                                                                           | Demonstrate the ability of think critically in making Cognitive Understanding decisions based on data and deep analytics. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                       |                                                                                              |                                                                            | Inding                                                                | ,                                                                                                      |
| CO3                                                                                                        |                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                       |                                                                                              | Idersta                                                                    | nding                                                                 | ,                                                                                                      |
| CO4                                                                                                        | D                                                                                         | emonstra                                                                                                                  | ate the ability to translate data into clear, insights.                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cognitive                                                                                                                                                             | Ur                                                                                           | Idersta                                                                    | nding                                                                 | 5                                                                                                      |
| UNIT                                                                                                       |                                                                                           |                                                                                                                           | morginor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                       |                                                                                              |                                                                            |                                                                       | 9                                                                                                      |
| Busine                                                                                                     | ss an                                                                                     | alytics:                                                                                                                  | Overview of Business analytics, Scope of Busin                                                                                                                                                                                                                                                                                                                                                                                                                                                | ness analytics                                                                                                                                                        | s, Bu                                                                                        | siness                                                                     | Anal                                                                  | ytics                                                                                                  |
| Proces                                                                                                     | s. Re                                                                                     | lationsh                                                                                                                  | p of Business Analytics Process and organiz                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ation. comp                                                                                                                                                           | etitivo                                                                                      | e adva                                                                     | intage                                                                | s of                                                                                                   |
|                                                                                                            |                                                                                           | nalytics.                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , i F                                                                                                                                                                 |                                                                                              |                                                                            |                                                                       |                                                                                                        |
|                                                                                                            |                                                                                           | •                                                                                                                         | Statistical Notation, Descriptive Statistical r                                                                                                                                                                                                                                                                                                                                                                                                                                               | nathods Pa                                                                                                                                                            | viou                                                                                         | of r                                                                       | robah                                                                 | ilita                                                                                                  |
|                                                                                                            |                                                                                           |                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                       | view                                                                                         | or F                                                                       | 10040                                                                 | mity                                                                                                   |
|                                                                                                            |                                                                                           |                                                                                                                           | modelling, sampling and estimation methods o                                                                                                                                                                                                                                                                                                                                                                                                                                                  | verview.                                                                                                                                                              |                                                                                              |                                                                            |                                                                       |                                                                                                        |
| UNIT                                                                                                       | 11                                                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                       |                                                                                              |                                                                            |                                                                       | 9                                                                                                      |
| Trendi                                                                                                     | ness                                                                                      | and Reg                                                                                                                   | ression Analysis: Modelling Relationships an                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d Trends in                                                                                                                                                           | Data                                                                                         | , simp                                                                     | ole Li                                                                | near                                                                                                   |
| Regres                                                                                                     | sion.                                                                                     | Importai                                                                                                                  | ression rinarysis. Wodening relationships an                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                              |                                                                            |                                                                       |                                                                                                        |
|                                                                                                            |                                                                                           |                                                                                                                           | at Resources, Business Analytics Personnel,                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Data and r                                                                                                                                                            | node                                                                                         | ls for                                                                     | Busi                                                                  | ness                                                                                                   |
| analyti                                                                                                    | cs, pi                                                                                    | oblem s                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                       |                                                                                              |                                                                            |                                                                       | ness                                                                                                   |
| analyti<br>UNIT                                                                                            | -                                                                                         | oblem s                                                                                                                   | at Resources, Business Analytics Personnel,                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                       |                                                                                              |                                                                            |                                                                       | ness<br>9                                                                                              |
| UNIT                                                                                                       | III                                                                                       |                                                                                                                           | at Resources, Business Analytics Personnel,                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ss Analytics 7                                                                                                                                                        | Fechn                                                                                        | ology                                                                      |                                                                       | 9                                                                                                      |
| UNIT<br>Organi                                                                                             | III<br>zatio                                                                              | n Struct                                                                                                                  | at Resources, Business Analytics Personnel,<br>olving, Visualizing and Exploring Data, Busines<br>ures of Business analytics, Team management                                                                                                                                                                                                                                                                                                                                                 | ss Analytics 7<br>t, Manageme                                                                                                                                         | Fechr<br>nt Is                                                                               | ology<br>sues,                                                             | Desig                                                                 | 9<br>ning                                                                                              |
| UNIT<br>Organi<br>Inform                                                                                   | III<br>zatio<br>ation                                                                     | n Struct<br>Policy                                                                                                        | at Resources, Business Analytics Personnel,<br>plving, Visualizing and Exploring Data, Busines<br>ures of Business analytics, Team management<br>Outsourcing, Ensuring Data Quality, Mea                                                                                                                                                                                                                                                                                                      | ss Analytics 7<br>t, Manageme<br>suring contr                                                                                                                         | fechr<br>nt Is<br>ibutio                                                                     | sues,                                                                      | Desig<br>Busi                                                         | 9<br>ning<br>ness                                                                                      |
| UNIT<br>Organi<br>Inform<br>analyti                                                                        | III<br>zatio<br>ation<br>cs, N                                                            | n Struct<br>Policy<br>Managing                                                                                            | at Resources, Business Analytics Personnel,<br>blving, Visualizing and Exploring Data, Busines<br>ures of Business analytics, Team management<br>Outsourcing, Ensuring Data Quality, Mea<br>g Changes.Descriptive Analytics, predictive                                                                                                                                                                                                                                                       | ss Analytics 7<br>t, Manageme<br>suring contr<br>analytics, pr                                                                                                        | nt Is<br>ibutio                                                                              | sues,<br>on of<br>tive N                                                   | Desig<br>Busi<br>Aodel                                                | 9<br>ning<br>ness<br>ling                                                                              |
| UNIT<br>Organi<br>Inform<br>analyti<br>Predict                                                             | III<br>zatio<br>ation<br>cs, N<br>ive a                                                   | n Struct<br>Policy<br>Managing<br>nalytics                                                                                | at Resources, Business Analytics Personnel,<br>blving, Visualizing and Exploring Data, Busines<br>ures of Business analytics, Team management<br>Outsourcing, Ensuring Data Quality, Mea<br>g Changes.Descriptive Analytics, predictive<br>analysis, Data Mining, Data Mining Methodolo                                                                                                                                                                                                       | ss Analytics 7<br>t, Manageme<br>suring contr<br>analytics, pr<br>gies, Prescrip                                                                                      | Fechn<br>nt Is<br>ibutio<br>edica                                                            | sues,<br>on of<br>tive N<br>analyt                                         | Desig<br>Busi<br>Aodel                                                | 9<br>ning<br>ness<br>ling                                                                              |
| UNIT<br>Organi<br>Inform<br>analyti<br>Predict<br>step in                                                  | III<br>zation<br>ation<br>cs, N<br>ive a<br>the b                                         | n Struct<br>Policy<br>Managing<br>nalytics                                                                                | at Resources, Business Analytics Personnel,<br>blving, Visualizing and Exploring Data, Busines<br>ures of Business analytics, Team management<br>Outsourcing, Ensuring Data Quality, Mea<br>g Changes.Descriptive Analytics, predictive                                                                                                                                                                                                                                                       | ss Analytics 7<br>t, Manageme<br>suring contr<br>analytics, pr<br>gies, Prescrip                                                                                      | Fechn<br>nt Is<br>ibutio<br>edica                                                            | sues,<br>on of<br>tive N<br>analyt                                         | Desig<br>Busi<br>Aodel                                                | 9<br>ning<br>ness<br>ling<br>d its                                                                     |
| UNIT<br>Organi<br>Inform<br>analyti<br>Predict<br>step in<br>UNIT                                          | III<br>zation<br>ation<br>cs, N<br>ive a<br>the b                                         | n Struct<br>Policy<br>Managing<br>nalytics<br>usiness                                                                     | at Resources, Business Analytics Personnel,<br>olving, Visualizing and Exploring Data, Busines<br>ures of Business analytics, Team management<br>Outsourcing, Ensuring Data Quality, Mea<br>g Changes.Descriptive Analytics, predictive<br>analysis, Data Mining, Data Mining Methodolo<br>analytics Process, Prescriptive Modelling, nonlin                                                                                                                                                  | ss Analytics 7<br>t, Manageme<br>suring contr<br>analytics, pr<br>gies, Prescrip<br>near Optimiza                                                                     | Techn<br>int Is<br>ibutio<br>edica<br>otive<br>ation.                                        | ology<br>sues,<br>on of<br>tive M<br>analyt                                | Desig<br>Busi<br>⁄Iodel<br>ics an                                     | 9<br>ning<br>ling<br>d its<br>9                                                                        |
| UNIT<br>Organi<br>Inform<br>analyti<br>Predict<br>step in<br>UNIT                                          | III<br>zation<br>ation<br>cs, N<br>ive a<br>the b                                         | n Struct<br>Policy<br>Managing<br>nalytics<br>usiness                                                                     | at Resources, Business Analytics Personnel,<br>blving, Visualizing and Exploring Data, Busines<br>ures of Business analytics, Team management<br>Outsourcing, Ensuring Data Quality, Mea<br>g Changes.Descriptive Analytics, predictive<br>analysis, Data Mining, Data Mining Methodolo                                                                                                                                                                                                       | ss Analytics 7<br>t, Manageme<br>suring contr<br>analytics, pr<br>gies, Prescrip<br>near Optimiza                                                                     | Techn<br>int Is<br>ibutio<br>edica<br>otive<br>ation.                                        | ology<br>sues,<br>on of<br>tive M<br>analyt                                | Desig<br>Busi<br>⁄Iodel<br>ics an                                     | 9<br>ning<br>ling<br>d it:                                                                             |
| UNIT<br>Organi<br>Inform<br>analyti<br>Predict<br>step in<br>UNIT<br>Foreca                                | III<br>zation<br>ation<br>cs, N<br>ive a<br>the b<br>IV<br>sting                          | n Struct<br>Policy<br>Managing<br>nalytics<br>usiness<br>Technic                                                          | at Resources, Business Analytics Personnel,<br>olving, Visualizing and Exploring Data, Busines<br>ures of Business analytics, Team management<br>Outsourcing, Ensuring Data Quality, Mea<br>g Changes.Descriptive Analytics, predictive<br>analysis, Data Mining, Data Mining Methodolo<br>analytics Process, Prescriptive Modelling, nonlin                                                                                                                                                  | ss Analytics 7<br>t, Manageme<br>suring contr<br>analytics, pr<br>ogies, Prescrip<br>near Optimiza                                                                    | fechn<br>ibutio<br>edica<br>otive<br>ation.                                                  | sues,<br>on of<br>tive N<br>analyt                                         | Desig<br>Busi<br>Aodel<br>ics an<br>g Moo                             | 9<br>ning<br>ling<br>d its<br>9<br>dels                                                                |
| UNIT<br>Organi<br>Inform<br>analyti<br>Predict<br>step in<br>UNIT<br>Foreca<br>Foreca                      | III<br>zation<br>ation<br>cs, N<br>ive a<br>the b<br>IV<br>sting<br>sting                 | n Struct<br>Policy<br>Managing<br>nalytics<br>usiness<br>Technic<br>Models                                                | at Resources, Business Analytics Personnel,<br>olving, Visualizing and Exploring Data, Busines<br>ures of Business analytics, Team management<br>Outsourcing, Ensuring Data Quality, Mea<br>g Changes.Descriptive Analytics, predictive<br>analysis, Data Mining, Data Mining Methodolo<br>analytics Process, Prescriptive Modelling, nonlin<br>ques: Qualitative and Judgmental Forecasting                                                                                                  | ss Analytics 7<br>t, Manageme<br>suring contr<br>analytics, pr<br>ogies, Prescrip<br>near Optimiza<br>t, Statistical<br>els for Time                                  | Fechn<br>ibutio<br>edica<br>otive<br>ation.<br>Fore<br>Serie                                 | sues,<br>on of<br>tive N<br>analyt<br>casting                              | Desig<br>Busi<br>Aodel<br>ics an<br>g Moo<br>a Li                     | <ul> <li>9</li> <li>ning</li> <li>ness</li> <li>d its</li> <li>9</li> <li>dels</li> <li>nea</li> </ul> |
| UNIT<br>Organi<br>Inform<br>analyti<br>Predict<br>step in<br>UNIT<br>Foreca<br>Foreca<br>Trend,            | III<br>zation<br>ation<br>cs, N<br>ive a<br>the b<br>IV<br>sting<br>sting<br>Fore         | n Struct<br>Policy<br>Managing<br>nalytics<br>usiness<br>Technic<br>Models<br>ecasting                                    | at Resources, Business Analytics Personnel,<br>olving, Visualizing and Exploring Data, Business<br>ures of Business analytics, Team management<br>Outsourcing, Ensuring Data Quality, Mea<br>g Changes.Descriptive Analytics, predictive<br>analysis, Data Mining, Data Mining Methodolo<br>analytics Process, Prescriptive Modelling, nonlin<br>ques: Qualitative and Judgmental Forecasting<br>for Stationary Time Series, Forecasting Mode                                                 | ss Analytics 7<br>t, Manageme<br>suring contr<br>analytics, pr<br>ogies, Prescrip<br>near Optimiza<br>t, Statistical<br>els for Time<br>precasting wi                 | nt Is<br>ibution<br>edica<br>otive<br>ation.<br>Fore<br>Serie<br>th C                        | sues,<br>on of<br>tive M<br>analyt<br>casting<br>s with<br>asual           | Desig<br>Busi<br>Aodel<br>ics an<br>g Moo<br>a Li<br>Varial           | 9<br>ning<br>ness<br>ling<br>d its<br>dels<br>nea<br>bles                                              |
| UNIT<br>Organi<br>Inform<br>analyti<br>Predict<br>step in<br>UNIT<br>Foreca<br>Foreca<br>Trend,<br>Selecti | III<br>zation<br>ation<br>cs, N<br>ive a<br>the b<br>IV<br>sting<br>sting<br>Fore<br>ng A | n Struct<br>Policy,<br>Managing<br>nalytics<br>usiness<br>Technic<br>Models<br>ecasting<br>ppropria                       | at Resources, Business Analytics Personnel,<br>olving, Visualizing and Exploring Data, Business<br>ures of Business analytics, Team management<br>Outsourcing, Ensuring Data Quality, Mea<br>g Changes.Descriptive Analytics, predictive<br>analysis, Data Mining, Data Mining Methodolo<br>analytics Process, Prescriptive Modelling, nonlin<br>ques: Qualitative and Judgmental Forecasting<br>for Stationary Time Series, Forecasting Mode<br>Time Series with Seasonality, Regression For | ss Analytics 7<br>t, Manageme<br>suring contr<br>analytics, pr<br>ogies, Prescrip<br>near Optimiza<br>t, Statistical<br>els for Time<br>precasting wi<br>a and Risk A | rechrining<br>nt Is<br>ibution<br>edica<br>otive<br>ation.<br>Fore<br>Serie<br>th C<br>nalys | sues,<br>on of<br>tive M<br>analyt<br>casting<br>s with<br>asual<br>is: Mo | Desig<br>Busi<br>Aodel<br>ics an<br>g Moo<br>a Li<br>Varial<br>onte C | 9<br>ning<br>ness<br>ling<br>d its<br>9<br>dels<br>near<br>bles<br>Carle                               |

Overbooking Model, Cash Budget Model.

## UNIT V

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making. Recent Trends in : Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.

| LECTURE | TUTORIAL | TOTAL |  |
|---------|----------|-------|--|
| 45      | 0        | 45    |  |
|         |          |       |  |

9

## REFERENCES

 Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, "Business analytics Principles, Concepts, and Applications ", Pearson FT Press.
 James Evans, "Business Analytics", persons Education.

## **CO Vs PO Mapping**

|               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|---------------|-----|-----|-----|-----|-----|-----|-----|
| CO1           |     | 3   | 3   | 3   |     | 1   | 1   |
| CO2           |     | 3   | 3   | 3   |     | 1   | 1   |
| CO3           |     | 3   | 3   | 3   |     | 1   | 1   |
| CO4           |     | 3   | 3   | 3   |     | 1   | 1   |
| CO5           |     | 3   | 3   | 3   |     | 1   | 1   |
|               |     | 15  | 15  | 15  |     | 5   | 5   |
| Scaled values |     | 3   | 3   | 3   |     | 1   | 1   |

|                                                                                                                           | RSE                                                                                                                                    | E CODE                                                                                                                                               | COURSE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                                                                                                                | Т                                                                                     | Р                                                                        | C                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                                                                                                           |                                                                                                                                        |                                                                                                                                                      | INDUSTRIAL SAFETY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                | 0                                                                                     | 0                                                                        | 3                                                                                  |
| C                                                                                                                         | P                                                                                                                                      | A                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                                | T                                                                                     | P                                                                        | H                                                                                  |
| <b>2.75</b><br>After                                                                                                      |                                                                                                                                        | 0.25                                                                                                                                                 | the course, a student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                | 0                                                                                     | 0                                                                        | 3                                                                                  |
|                                                                                                                           |                                                                                                                                        | •                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                       |                                                                          |                                                                                    |
| CO<br>CO                                                                                                                  |                                                                                                                                        | SE OUTC                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | LEVEL                                                                                 |                                                                          |                                                                                    |
|                                                                                                                           |                                                                                                                                        | accidents                                                                                                                                            | e the causes, effects and avoidance plans for Cogniti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ve                                                                                                               | Underst                                                                               | anding                                                                   | 5                                                                                  |
| CO                                                                                                                        | methods for planning                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                       | ng                                                                       |                                                                                    |
| CO                                                                                                                        | CO3Explain Wear and Corrosion and their preventionCognitive                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | Underst                                                                               | anding                                                                   | 5                                                                                  |
| CO                                                                                                                        | 4                                                                                                                                      | Analyse v                                                                                                                                            | arious faults and illustrate machine tool faults. Cogniti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ve                                                                                                               | Analyzi                                                                               | ng                                                                       |                                                                                    |
| CO                                                                                                                        | 5                                                                                                                                      | Explain P                                                                                                                                            | criodic and preventive maintenance Cogniti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ve I                                                                                                             | Underst                                                                               | anding                                                                   | 5                                                                                  |
| UNI                                                                                                                       | ГΙ                                                                                                                                     |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                       |                                                                          | 9                                                                                  |
| Indus                                                                                                                     | strial                                                                                                                                 | safety: A                                                                                                                                            | ccident, causes, types, results and control, mechanica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and a                                                                                                            | electrica                                                                             | al haza                                                                  | ards                                                                               |
| types                                                                                                                     | , cau                                                                                                                                  | ises and p                                                                                                                                           | eventive steps/procedure, describe salient points of fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tories a                                                                                                         | ct 1948                                                                               | for h                                                                    | ealt                                                                               |
| and s                                                                                                                     | afety                                                                                                                                  | , wash ro                                                                                                                                            | ms, drinking water layouts, light, cleanliness, fire, guard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ling, pro                                                                                                        | essure v                                                                              | essels                                                                   | eta                                                                                |
| Safet                                                                                                                     | y col                                                                                                                                  | lor codes.                                                                                                                                           | Fire prevention and firefighting, equipment and methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                       |                                                                          |                                                                                    |
|                                                                                                                           |                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                       |                                                                          |                                                                                    |
| UNI                                                                                                                       | ΓII                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                       |                                                                          | 9                                                                                  |
|                                                                                                                           |                                                                                                                                        | ntals of m                                                                                                                                           | intenance engineering: Definition and aim of maintena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | gineerin                                                                              | g, Prii                                                                  | 1                                                                                  |
| Fund                                                                                                                      | amer                                                                                                                                   |                                                                                                                                                      | intenance engineering: Definition and aim of maintenations and responsibility of maintenance department, Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nce eng                                                                                                          |                                                                                       |                                                                          | nar                                                                                |
| Fund<br>and s                                                                                                             | amer<br>econ                                                                                                                           | dary func                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nce eng<br>es of m                                                                                               | aintena                                                                               | nce, T                                                                   | nar<br>ype                                                                         |
| Fund<br>and s<br>and a                                                                                                    | amer<br>econ<br>applie                                                                                                                 | dary func                                                                                                                                            | ions and responsibility of maintenance department, Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nce eng<br>es of m                                                                                               | aintena                                                                               | nce, T                                                                   | nar<br>ype                                                                         |
| Fund<br>and s<br>and a                                                                                                    | amer<br>econ<br>applie<br>omy,                                                                                                         | idary func<br>cations of<br>Service li                                                                                                               | ions and responsibility of maintenance department, Typ<br>tools used for maintenance, Maintenance cost & its r                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nce eng<br>es of m                                                                                               | aintena                                                                               | nce, T                                                                   | nar<br>ype                                                                         |
| Funda<br>and s<br>and a<br>econo<br><b>UNI</b>                                                                            | amer<br>econ<br>applic<br>omy,<br><b>Г III</b>                                                                                         | dary func<br>cations of<br>Service li                                                                                                                | ions and responsibility of maintenance department, Typ<br>tools used for maintenance, Maintenance cost & its r                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nce eng<br>es of m<br>relation                                                                                   | aintena<br>with re                                                                    | nce, T<br>eplace                                                         | mar<br>ype<br>mer                                                                  |
| Funda<br>and s<br>and a<br>econo<br><b>UNI</b><br>Wear                                                                    | amer<br>econ<br>applio<br>omy,<br><b>F III</b>                                                                                         | dary func<br>cations of<br>Service li<br>Corrosic                                                                                                    | ions and responsibility of maintenance department, Typ<br>tools used for maintenance, Maintenance cost & its<br>te of equipment.                                                                                                                                                                                                                                                                                                                                                                                                                               | nce eng<br>es of m<br>relation<br>wear re                                                                        | aintena<br>with re<br>eduction                                                        | nce, T<br>eplacer                                                        | mar<br>ype<br>nen<br><b>9</b><br>nods                                              |
| Funda<br>and s<br>and a<br>econo<br><b>UNI</b><br>Wear<br>lubric                                                          | amer<br>econ<br>applio<br>omy,<br><b>F III</b><br>and<br>cants                                                                         | dary func<br>cations of<br>Service li<br>Corrosic<br>-types and                                                                                      | ions and responsibility of maintenance department, Typ<br>tools used for maintenance, Maintenance cost & its<br>te of equipment.<br>n and their prevention: Wear- types, causes, effects,<br>applications, Lubrication methods, general sketch, wo                                                                                                                                                                                                                                                                                                             | nce eng<br>es of m<br>relation<br>wear re<br>rking a                                                             | aintena<br>with re<br>eduction<br>nd appl                                             | nce, T<br>eplacer<br>n meth<br>ication                                   | mar<br>ype<br>men<br>9<br>nods                                                     |
| Funda<br>and s<br>and a<br>econo<br><b>UNI</b><br>Wear<br>lubric<br>Screv                                                 | amer<br>econ<br>applic<br>omy,<br><b>F III</b><br>c and<br>cants<br>w do                                                               | dary func<br>cations of<br>Service li<br>Corrosic<br>-types and<br>wn grease                                                                         | ions and responsibility of maintenance department, Typ<br>tools used for maintenance, Maintenance cost & its r<br>e of equipment.<br>n and their prevention: Wear- types, causes, effects,<br>applications, Lubrication methods, general sketch, wo<br>cup, ii. Pressure grease gun, iii. Splash lubrication, i                                                                                                                                                                                                                                                | nce eng<br>es of m<br>relation<br>wear re<br>rking a<br>v. Grav                                                  | aintena<br>with re<br>eduction<br>nd appl                                             | nce, T<br>eplacer<br>n meth<br>ication<br>ricatio                        | mar<br>ype<br>mer<br><b>9</b><br>nods<br>ns, 1                                     |
| Funda<br>and s<br>and a<br>econo<br><b>UNI</b><br>Wear<br>lubric<br>Screv<br>Wick                                         | amer<br>econ<br>applie<br>omy,<br><b>F III</b><br>and<br>cants<br>w do                                                                 | dary func<br>cations of<br>Service li<br>d Corrosic<br>-types and<br>wn grease<br>d lubricati                                                        | ions and responsibility of maintenance department, Typ<br>tools used for maintenance, Maintenance cost & its r<br>e of equipment.<br>n and their prevention: Wear- types, causes, effects,<br>applications, Lubrication methods, general sketch, wo<br>cup, ii. Pressure grease gun, iii. Splash lubrication, i<br>n vi. Side feed lubrication, vii. Ring lubrication, Defini                                                                                                                                                                                  | nce eng<br>es of m<br>relation<br>wear re<br>rking a<br>v. Grav                                                  | aintena<br>with re<br>eduction<br>nd appl                                             | nce, T<br>eplacer<br>n meth<br>ication<br>ricatio                        | mar<br>ype<br>mer<br><b>9</b><br>nods<br>ns, 1                                     |
| Funda<br>and s<br>and a<br>econo<br><b>UNI</b><br>Wear<br>lubric<br>Screv<br>Wick                                         | amer<br>econ<br>applid<br>omy,<br><b>r III</b><br>cants<br>v do<br>t feec<br>ting t                                                    | dary func<br>cations of<br>Service li<br>Corrosic<br>-types and<br>wn grease<br>l lubricati<br>the corros                                            | ions and responsibility of maintenance department, Typ<br>tools used for maintenance, Maintenance cost & its r<br>e of equipment.<br>n and their prevention: Wear- types, causes, effects,<br>applications, Lubrication methods, general sketch, wo<br>cup, ii. Pressure grease gun, iii. Splash lubrication, i                                                                                                                                                                                                                                                | nce eng<br>es of m<br>relation<br>wear re<br>rking a<br>v. Grav                                                  | aintena<br>with re<br>eduction<br>nd appl                                             | nce, T<br>eplacer<br>n meth<br>ication<br>ricatio                        | mar<br>ype<br>mer<br><b>9</b><br>nods<br>ns, 1                                     |
| Funda<br>and s<br>and a<br>econo<br>UNIT<br>Wear<br>lubric<br>Screv<br>Wick<br>affect<br>UNIT                             | amer<br>econ<br>applid<br>omy,<br><b>r III</b><br>: and<br>cants<br>w do<br>: feec<br>ting t                                           | dary func<br>cations of<br>Service li<br>Corrosic<br>-types and<br>wn grease<br>l lubricati<br>the corros                                            | ions and responsibility of maintenance department, Typ<br>tools used for maintenance, Maintenance cost & its r<br>e of equipment.<br>n and their prevention: Wear- types, causes, effects,<br>applications, Lubrication methods, general sketch, wo<br>cup, ii. Pressure grease gun, iii. Splash lubrication, i<br>on vi. Side feed lubrication, vii. Ring lubrication, Defini<br>on. Types of corrosion, corrosion prevention methods.                                                                                                                        | nce eng<br>es of m<br>relation<br>wear ro<br>rking a<br>v. Grav<br>tion, pri                                     | aintena<br>with re<br>eduction<br>nd appl<br>rity lub                                 | nce, T<br>eplacent<br>n meth<br>ication<br>rication<br>and fac           | mar<br>ype<br>men<br>9<br>nods<br>ns, i<br>n, v<br>etor<br>9                       |
| Funda<br>and s<br>and a<br>econo<br>UNI<br>Wear<br>lubric<br>Screw<br>Wick<br>affect<br>UNI<br>Fault                      | amer<br>econ<br>applid<br>omy,<br><b>F III</b><br>· and<br>cants<br>v do<br>c feec<br>ting t<br><b>F IV</b><br>trac                    | dary func<br>cations of<br>Service li<br>l Corrosic<br>-types and<br>wn grease<br>l lubricati<br>the corros                                          | ions and responsibility of maintenance department, Typ<br>tools used for maintenance, Maintenance cost & its<br>te of equipment.<br>In and their prevention: Wear- types, causes, effects,<br>applications, Lubrication methods, general sketch, wo<br>cup, ii. Pressure grease gun, iii. Splash lubrication, i<br>on vi. Side feed lubrication, vii. Ring lubrication, Defini<br>on. Types of corrosion, corrosion prevention methods.<br>tracing-concept and importance, decision tree concept                                                               | nce eng<br>es of m<br>relation<br>wear ro<br>rking a<br>v. Grav<br>tion, pri<br>t, need                          | aintena<br>with re<br>eduction<br>nd appl<br>ity lub<br>inciple a<br>and ap           | nce, T<br>eplacer<br>n meth<br>ication<br>rication<br>and fac            | mar<br>ype<br>men<br>9<br>nods<br>ns, i<br>n, v<br>etor<br>9                       |
| Funda<br>and s<br>and a<br>econo<br>UNI<br>Wear<br>lubric<br>Screv<br>Wick<br>affect<br>UNI<br>Fault<br>seque             | amer<br>econ<br>applid<br>omy,<br><b>F III</b><br>and<br>cants<br>w do<br>c feec<br>ting t<br><b>F IV</b><br>trac<br>ence              | dary func<br>cations of<br>Service li<br>Corrosic<br>-types and<br>wn grease<br>l lubricati<br>the corros                                            | ions and responsibility of maintenance department, Typ<br>tools used for maintenance, Maintenance cost & its r<br>e of equipment.<br>n and their prevention: Wear- types, causes, effects,<br>applications, Lubrication methods, general sketch, wo<br>cup, ii. Pressure grease gun, iii. Splash lubrication, i<br>on vi. Side feed lubrication, vii. Ring lubrication, Defini<br>on. Types of corrosion, corrosion prevention methods.<br>tracing-concept and importance, decision tree concept<br>ding activities, show as decision tree, draw decision tree | nce eng<br>es of m<br>relation<br>wear ro<br>rking a<br>v. Grav<br>tion, pri<br>t, need<br>e for pro             | aintena<br>with re<br>eduction<br>nd appl<br>ity lub<br>inciple a<br>and ap<br>oblems | nce, T<br>eplacer<br>n meth<br>ication<br>ricatio<br>and fac<br>oplicat  | mar<br>ype<br>mer<br>9<br>nods<br>ns, 2<br>n, v<br>etor<br><b>9</b><br>ions<br>hin |
| Funda<br>and s<br>and a<br>econo<br>UNIT<br>Wear<br>lubric<br>Screw<br>Wick<br>affect<br>UNIT<br>Fault<br>seque<br>tools, | amer<br>econ<br>applid<br>omy,<br><b>F III</b><br>• and<br>cants<br>w do<br>c feec<br>ting t<br><b>F IV</b><br>• trac<br>ence<br>, hyd | dary func<br>cations of<br>Service li<br>Corrosic<br>-types and<br>wn grease<br>l lubricati<br>the corros<br>cing: Faul<br>of fault fi<br>raulic, pn | ions and responsibility of maintenance department, Typ<br>tools used for maintenance, Maintenance cost & its<br>te of equipment.<br>In and their prevention: Wear- types, causes, effects,<br>applications, Lubrication methods, general sketch, wo<br>cup, ii. Pressure grease gun, iii. Splash lubrication, i<br>on vi. Side feed lubrication, vii. Ring lubrication, Defini<br>on. Types of corrosion, corrosion prevention methods.<br>tracing-concept and importance, decision tree concept                                                               | nce eng<br>es of m<br>relation<br>wear ro<br>rking a<br>v. Grav<br>tion, pri<br>t, need<br>e for pro<br>like, I. | aintena<br>with re<br>eduction<br>nd appl<br>ity lub<br>inciple a<br>and ap<br>oblems | nce, T<br>eplaced<br>n meth<br>ication<br>rication<br>and fac<br>oplicat | mar<br>ype<br>mer<br>9<br>nods<br>n, v<br>etor<br>9<br>ions<br>hin                 |

| UNIT V                                                                                            | 9      |
|---------------------------------------------------------------------------------------------------|--------|
| Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning   | and    |
| repairing schemes, overhauling of mechanical components, overhauling of electrical motor, com     | mon    |
| troubles and remedies of electric motor, repair complexities and its use, definition, need, steps | and    |
| advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of  | of: I. |
| Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and sche | dule   |
| of preventive maintenance of mechanical and electrical equipment, advantages of preven            | ıtive  |
| maintenance. Repair cycle concept and importance                                                  |        |

|           | LECTURE | TUTORIAL | TOTAL |
|-----------|---------|----------|-------|
|           | 45      | 0        | 45    |
| DEEDENGES |         |          |       |

#### REFERENCES

1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.

- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

## **CO Vs PO Mapping**

|               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|---------------|-----|-----|-----|-----|-----|-----|-----|
| CO1           |     |     |     |     |     | 3   | 3   |
| CO2           |     |     |     |     |     | 3   | 3   |
| CO3           |     |     |     |     |     | 3   | 3   |
| CO4           |     |     |     |     |     | 3   | 3   |
| CO5           |     |     |     |     |     | 3   | 3   |
|               |     |     |     |     |     | 15  | 15  |
| Scaled values |     |     |     |     |     | 3   | 3   |

| COU                        | RSE                             | <b>CODE</b>                            | COURSE NAME                                                                                                                                                                                                                                            |                | L          | Т         | Р          | C   |
|----------------------------|---------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|-----------|------------|-----|
|                            |                                 |                                        | OPERATIONS RESEARCH                                                                                                                                                                                                                                    |                | 3          | 0         | 0          | 3   |
| С                          | P                               | Α                                      |                                                                                                                                                                                                                                                        |                | L          | Т         | P          | H   |
| 2.75                       | 0                               | 0.25                                   |                                                                                                                                                                                                                                                        |                | 3          | 0         | 0          | 3   |
| After                      | com                             | pletion of                             | the course, a student will be able to                                                                                                                                                                                                                  |                |            |           |            |     |
| CO                         | URS                             | SE OUTO                                | COMES                                                                                                                                                                                                                                                  | DOMAIN         | LEV        | <b>EL</b> |            |     |
| CO                         |                                 |                                        | e dynamic programming to solve problems of nd continuous variables.                                                                                                                                                                                    | Cognitive      | Unde       | ersta     | nding      |     |
| CO2                        | 2                               | Apply the                              | e concept of non-linear programming                                                                                                                                                                                                                    | Cognitive      | Rem<br>App |           | ering<br>g |     |
| CO3                        | 3                               | Carry out                              | sensitivity analysis                                                                                                                                                                                                                                   | Cognitive      | Anal       | yzin      | g          |     |
| CO <sub>4</sub>            | 4                               | Model th                               | e real-world problem and simulate it.                                                                                                                                                                                                                  | Cognitive      | Und        | ersta     | nding      |     |
| UNIT                       | ΓI                              |                                        |                                                                                                                                                                                                                                                        |                |            |           |            | 9   |
| •                          |                                 |                                        | niques, Model Formulation, models, General L.R<br>vity Analysis, Inventory Control Models                                                                                                                                                              | Formulation    | , Simpl    | ex        |            |     |
| UNIT                       | <b>II</b>                       |                                        |                                                                                                                                                                                                                                                        |                |            |           |            | 9   |
| Form                       | ulati                           | on of a I                              | PP - Graphical solution revised simplex method                                                                                                                                                                                                         | od - duality t | heorv -    | dua       | ıl sim     | ple |
|                            |                                 |                                        | analysis - parametric programming                                                                                                                                                                                                                      | , a country c  |            | creat     |            | p   |
| UNIT                       | T III                           |                                        |                                                                                                                                                                                                                                                        |                |            |           |            | 9   |
| Nonli                      | near                            | program                                | ming problem - Kuhn-Tucker conditions mir                                                                                                                                                                                                              | cost flow p    | problen    | 1 -       | max 1      | lov |
| proble                     | em -                            | CPM/PE                                 | RT                                                                                                                                                                                                                                                     |                |            |           |            |     |
| UNIT                       | T IV                            |                                        |                                                                                                                                                                                                                                                        |                |            |           |            | 9   |
| Sched                      | lulin                           | g and se                               | quencing - single server and multiple server                                                                                                                                                                                                           | models - de    | termini    | stic      | inven      | tor |
| model                      | ls - I                          | -<br>Probabilis                        | tic inventory control models - Geometric Progra                                                                                                                                                                                                        | mming.         |            |           |            |     |
| UNIT                       |                                 |                                        |                                                                                                                                                                                                                                                        | C              |            |           |            | 9   |
| Comp                       | oetiti                          | ve Mod                                 | els, Single and Multi-channel Problems,                                                                                                                                                                                                                | Sequencing     | Mode       | els,      | Dyna       | mi  |
| Progra                     | amn                             | ning, Flov                             | in Networks, Elementary Graph Theory, Game                                                                                                                                                                                                             | Theory Simu    | lation     |           |            |     |
|                            |                                 |                                        | LECTUR                                                                                                                                                                                                                                                 | E TUTO         | RIAL       | I         | ОТА        | L   |
|                            |                                 |                                        | 45                                                                                                                                                                                                                                                     | 0              |            | 4         | 5          |     |
|                            |                                 | NORG                                   |                                                                                                                                                                                                                                                        |                |            |           |            |     |
| DEFT                       | LKĽ                             | INCES                                  |                                                                                                                                                                                                                                                        |                |            |           |            |     |
| 2. H.N<br>3. J.C<br>4. Hit | A. Ta<br>M. W<br>. Pai<br>ler L | Vagner, Pi<br>nt, Introdu<br>Libermann | ations Research, An Introduction, PHI, 2008<br>rinciples of Operations Research, PHI, Delhi, 199<br>action to Optimization: Operations Research, Jain<br>Operations Research: McGraw Hill Pub. 2009<br>perations Research: Prentice Hall of India 2010 |                | elhi, 20   | 08        |            |     |

# CO Vs PO Mapping

|               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|---------------|-----|-----|-----|-----|-----|-----|-----|
| CO1           |     | 1   |     | 2   |     | 1   | 1   |
| CO2           |     | 1   |     | 2   |     | 1   | 1   |
| CO3           |     | 1   |     | 2   |     | 1   | 1   |
| CO4           |     | 1   |     | 2   |     | 1   | 1   |
| CO5           |     | 1   |     | 2   |     | 1   | 1   |
|               |     | 5   |     | 10  |     | 5   | 5   |
| Scaled values |     | 1   |     | 2   |     | 1   | 1   |