

1.1

Criterion 1 – Curricular Aspects

Key Indicator Metric Curriculum Design and Development

1.1.2 Percentage of Programmes where syllabus revision was carried out during 2023-24

Department of Computer Science and Applications

S. No	Programme Code	Programme Name	Year of Introduction	Year of revision (if any)	Percentage of Syllabus content added or replaced
1	453	Master of Computer Applications	1994	2023	92.85%

S.No.	Contents
1	Minutes of Board of Studies
2	Extracts of minutes of the Academic Council Meeting
3	Curriculum and Syllabus of the programme – Before Revision
4	Curriculum and Syllabus of the programme – After Revision

LegendHighlighted Color - Red–Indicates courses which are removed from
syllabus before revisionHighlighted Color - Green–Indicates courses which are removed from
syllabus after revision

1. Minutes of Board of Studies for MCA held on 15.06.2023

Department of Computer Science and Applications Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Email: headmea@pmu.edu Web_www.pmu.edu

Faculty of Computing Sciences and Engineering

Department of Computer Science and Applications

BOARD OF STUDIES MEETING

Minutes of Meeting

Date: 15.06.2023

Time: 2:30 PM

Venue: CSA Dept.

Meeting Link: https://meet.google.com/bqu-pngt-qfp

Agenda:

- M.Sc. Data Science Regulation 2023 syllabi and curriculum
- MCA Regulation 2023 syllabi and curriculum
- B.Sc. Data Science Regulation 2022 R1
- BCA Regulation 2021- R2
- Discussion on PEO, PO, and PSO of M.Sc. Data Science
- Discussion on Value-Added Courses
- Discussion on Course Outcomes

Members present:

The BoS members and the snaps of meeting are listed in Table, table I and Fig.1 and 2.

S.No	Name of the Member	Designation and Address	Signature
1.	Dr.J.Jeyachidra	Professor and Dean FCSE, Faculty of Computing Sciences and Engineering, Periyar Maniammai Institute of Science & Technology, Vallam.	d-y-
2.	Dr.D.Ruby BoS Chairman	Associate Professor and Head, Department of Computer Science and Applications, Periyar Maniammai Institute of Science & Technology, Vallam.	J.C.

3.	Dr.S.Nickolas	Professor.	
	(Academic Expert)	Department of Computer Applications. NIT, Tiruchirappalli. <u>nickolas @ nitt.edu</u> , <u>nickolasnitt @ gmail.</u> <u>com</u> . 94435 61989,94860 01131	\$ - Job and
4.	Mr.J.Sengathir (Industry Expert)	Manager Enterprise Resource Planning.BHEL Trichy – 620 014 <u>Sengathir @ bhel.in</u> 9489051236	58=
5.	Dr.V.Adithya Pothan Raj (Industry Expert) Online Mode	Associate Operations Manager .CTS. Chennai. <u>apr1991@rediffmail.com</u> 9444408814	<u>https:_meet.google.</u> com/bqu-pngt-qfp
6.	Dr.A.Muthamizh Selvan BoS Member Internal	Asso.Prof./CSA Periyar Maniammai Institute of Science & Technology, Vallam.	_3. QL
7.	Dr.S.Arumugam BoS Member Internal	Asso.Prof./CSA Periyar Maniammai Institute of Science & Technology, Vallam.	South
8.	Dr.V.Srithar BoS Member Internal	Asst.Prof./CSA Periyar Maniammai Institute of Science & Technology, Vallam.	V. M. the
9.	Dr.S.Bhuvaneswari BoS Member Internal	Asso.Prof./ Head Department of Mathematics Periyar Maniammai Institute of Science(& Technology, Vallam.	S. mus
10.	Dr. D. Thayalnayaki BoS Member Internal	Asso.Prof./ Head Department of Civil Engineering Periyar Maniammai Institute of Science & Technology, Vallam.	g./Lun
11.	Dr. V. Saranya BoS Member Internal	Asso.Prof./ Head Department of Languages, Periyar Maniammai Institute of Science & Technology, Vallam.	Bringne.
12.	Ms. K. Biruntha	II MCA, Periyar Maniammai Institute of Science & Technology, Vallam.	K. Binth
13.	Mr. R. Muruganandham	Alumni, MCA Batch: 2019-2021 Machine learning engineer Changepond Technologies, Sipcot IT park, Siruseri, Chennai-103	https://meet.google. com/bqu-pngt-qfp

A. FEEDBACK ON CURICULLAR ASPECTS

The feedbacks were collected and analyzed during 2019-20 ,2020-21 and 2021-2022 from the following stake holders

- 1. Teachers
- 2. Employers
- 3. Alumni students
- 4. Students

In addition, the feedback from Academic Expert, Industry Expert, Teachers, Alumni and students who participated in Department Advisory Committee Meeting (DAC) were presented. The action taken for the feedbacks are given as "Remarks".

B. CURICULLUM INTERVENTION BASED ON CO ATTAINMENT

The CO attainment and PO attainment for the courses were presented to the members. The below and above target values of Cos attainment were discussed. Syllabus were modified for those courses and documented in the Table II.

C. PRESENTATION OF CURICULLUM AND SYLLABUS

All the courses which are framed by the department of Computer Science and Applications are presented individually. The details of deletion, addition and introduction of new courses are tabulated for all courses in the following table, Table II.

S.No	Semeste r	Course Code	Course Name	Course content	Remarks	Action Taken
				Deletion/ Addition New		
1	I	YCA101	Database Management Systems	5		
2	I	YCA102	Computer Networks	Removed	Course is removed based on BoS members recommendation	d Feedback given by students and Teachers
3	I	YCA103	Object Oriented Programming, Analysis and Design	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
4	I	YCA104	Management Support Systems	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
5	I	YCA105	Mathematical Foundation for Computer Applications			
6	Ι	YCA106	Database Management Systems Lab			
7	I	YCA107	Mathematical Foundation for Computer Applications Lab using Java	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
8	2	YCA201	Advanced Operating System Concepts	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
9	2	YCA202	Software Engineering			
10	2	YCA203	Advanced Data Structures			
11	2	YCA205	Advanced Operating System Concepts Lab	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
12	2	YCA206	Case Tools Lab	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers

Table II: Discussions on courses with actions as remarks

13	3	YCA301	Artificial Intelligence and Machine Learning			
14	3	YCA302	Graphics and Multimedia			
15	3	YCA303	Optimization Techniques	Removed	Course is removed and added as One of the Electives.	
16	3	YCA304	Artificial Intelligence and Machine Learning Lab using Python			
17	3	YCA305	Optimization Techniques Lab	Removed		
18	3	YCA306	Industrial Lectures			
19	3	YCA307	Mini Project			
20	4	YCA401	Research Methodology(Paper Publications)			
21	4	YCA402	Project			
22	3	YCABM1	Managerial Economics	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
23	3	YCABM2	Corporate Planning			
24	2	YCABM3	Foundations of Decision Processes	-		
25	2	YCABM4	Investment Technology	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
26	3	YCABM5	Business Finance	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
27	3	YCABM6	Taxation Practices	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
28	3	YCABM7	MIS Frameworks and Implementation	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
29	2	YCABM8	Management of Software Projects			1
30	2	ҮСАВМ9	Blockchain Technology	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers

31	1	YCAEE1	Data Mining and Data Warehousing	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
32	3	YCAEE10	Bigdata Analytics		Course is removed as elective and changed as Core Subject	Feedback given by students and Teachers
33	1	YCAEE2	High Performance Computing	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
34	3	YCAEE3	Compiler Design	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
35	3	YCAEE4	Cloud Computing			
36	3	YCAEE5	Distributed Database Management	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
37	3	YCAEE6	Image Processing			
38	3	YCAEE7	Parallel Programming	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
39	1	YCAEE8	System Analysis and Simulation	Removed	Course is removed based on BoS members recommendation	Feedback given by students and Teachers
40	1	YCAEE9	Cryptography and Information Security		Course is removed as elective and changed as Core Subject	Feedback given by students and Teachers

D. LIST OF NEWLY INTRODUCED COURSES IN REGULATION 2023

S.No	Course Code	Course Title	Semester
1	YCA103	Python Programming	I
2	YCA107	Python Programming Laboratory	I
3	YCA108	Soft Skill Development	I
4	YCA204	Object Oriented Programming Language	П
5	YCA206	Big Data Analytics Laboratory	II
6	YCA207	Object Oriented Programming Language Laboratory	П

7	YCA208	Data Visualisation Lab	II
8	YCA308	Computer Graphics and Multimedia Laboratory	III
9	YCAME2B	Automata Theory	II
10	YCAME2C	Numerical Methods	II
11	YCAME2D	Combinatorics	11
12	YCABE5D	Enterprise Resource Planning	11
13	YCACE3B	Human-Computer Interface	III
14	YCACE3D	Natural Language Processing	III
15	YCAEE4A	Deep Learning	IV
16	YCAEE4B	Exploratory Learning	IV
17	YCAEE4C	Business Intelligence	IV
18	YCAEE4D	Predictive Analysis	IV

E. LIST OF COURSES REMOVED

Table III Table of courses removed in MCA Curriculum 2020

S.No	Course Code	Course Title
1	YCA102	Computer Networks
2	YCA103	Object Oriented Programming, Analysis and Design
3	YCA104	Management Support Systems
4	YCA107	Mathematical Foundation for Computer Applications Lab using Java
5	YCA201	Advanced Operating System Concepts
6	YCA205	Advanced Operating System Concepts Lab
7	YCA206	Case Tools Lab
8	YCA305	Optimization Techniques Lab
9	YCAEE1	Data Mining and Data Warehousing
10	YCAEE2	High Performance Computing
11	YCAEE3	Compiler Design
12	YCAEE8	System Analysis and Simulation
13	YCAEE5	Distributed Database Management
14	YCAEE7	Parallel Programming
15	YCABM4	Investment Technology
16	YCABM9	Blockchain Technology
17	YCABM1	Managerial Economics
18	YCABM5	Business Finance
19	YCABM6	Taxation Practices
20	YCABM7	MIS Frameworks and Implementation

F. PERCENTAGE CHANGE IN THE SYLLABUS

Number of new courses added = 1Number of courses removed = 2% change = (2)

= 18 = 20 = (20/40 + 18/42) x 100 = 92.85%

G. COURSES ON EMPLOYABILITY/ENTREPRENEURSHIP/SKILL DEVELOPMENT

The curriculum focuses of including 71% of courses with employability, 13% with entrepreneurship and 16% with skill development. The courses are given below

Table V Categorization of courses

Course Code	Course Title	Category
YCA101	Database Management Systems	Employability
YCA102	Cryptography and Network Security	Employability
YCA103	Python Programming	Employability
YCA104	Mathematical Foundation for Computer Applications	Skill Development
YCA105	Software Engineering	Employability
YCA106	Database Management Systems Laboratory	Employability
YCA107	Python Programming Laboratory	Employability
YCA108	Soft Skill Development	Employability
YCA201	Big Data Analytics	Employability
YCA203	Advanced Data Structures	Employability
YCA204	Object Oriented Programming Language	Employability
YCA206	Advanced Data Structures Laboratory	Employability
YCA207	Object Oriented Programming Language Laboratory	Employability
YCA208	Data Visualisation Laboratory	Employability
YCA301	Artificial Intelligence and Machine Learning	Employability
YCA302	Computer Graphics and Multimedia	Employability
YCA305	Mini Projects	Employability
YCA306	Industrial Lecturers	Entrepreneurship
YCA307	Artificial Intelligence and Machine Learning Laboratory using Python	Employability

YCA308	Computer Graphics and Multimedia Laboratory	Employability
YCA401	Review of Literature	Skill Development
YCA402	Main Project	Employability
YCAME2A	Optimization Techniques	Skill Development
YCAME2B	Automata Theory	Skill Development
YCAME2C	Numerical Methods Using Python	Skill Development
YCAME2D	Combinatorics	Skill Development
YCAME2A	Foundations of Decision Processes	Entrepreneurship
YCAME2B	Corporate Planning	Entrepreneurship
YCAME2C	Management of Software Projects	Entrepreneurship
YCAME2D	Enterprise Resource Planning	Entrepreneurship
YCACE3A	Cloud Computing	Employability
YCACE3B	Human-Computer Interface	Employability
YCACE3C	Digital Image Processing	Employability
YCACE3D	Natural Language Processing	Employability
YCACE4A	Deep Learning	Employability
YCACE4B	Exploratory Learning	Employability
YCACE4C	Business Intelligence	Employability
YCACE4D	Predictive Analysis	Employability

H. DISCUSSION ON PROGRAMME ARTICULATION MATRIX (PO COVERAGE BY ALL COS)

The existing POs and PSO was presented. The members agreed that there need not be any changes in the PSO and PO.

I. VALUE ADDED COURSES PROVIDED Value added courses with more than 30 hours are given to the students by the department. The value-added courses are given in Table VI. The syllabus of the same is given in Appendix A.

S.No.	Course Name	Remarks	
1.	VA-XCA-01 – Python Programming	Old	
2.	VA-XCA-02 - Cloud Computing	Old	
3.	VA-XCA-03 – Big Data Analytics	Old	
4.	VA-XCA-04 – R Programming	Old	
5.	VA-XCA-05 – IoT	Old	
6	VA-XCA-06 – DevOps	New	
7.	VA-XCA-07 – AWS	New	
8.	VA-XCA-08 – Google Cloud	New	

Table VI Value-added courses

9.	VA-XCA-09 – Go Programming	New	
10.	VA-XCA-10 - Google Cloud	New	

The BoS members recommended to submit the outcome of this meeting in the forthcoming Academic Council meeting for approval.

HoD/CSA

(Dr.D.Ruby)

Dean (FCSE)

(Dr.J.Jeyachidra)

Dr.J.JEYACHIDRA Dean Faculty of Computing Sciences and Engineering Periyar Maniammal Institute of Sciences and Technology Periyar Nagar, Vallam-613 403. Email: deanscse@pmu.edu

Dr. D. RUBY M.C.A., M.Phil., Ph.D Associate Professor Department of Computer Science and Applications Periyar Maniammai Institute of Science and Technology Vallam, Thanjavur - 613 403.

2. Extracts of Minutes of the Academic Council Meeting of MCA conducted on 08.07.2023

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91 - 4362 - 264660
Email: centification adv. Web: searce percented Email: registrar@pmu.edu

Web: www.pmu.edu

MINUTES OF FORTY SECOND MEETING OF THE ACADEMIC COUNCIL.

Date : 08.07.2023 Time : 10.30 A.M

Venue: Richard Dawkins Hall Place : PMIST, Vallam - Thanjavur

The Forty Second Meeting of the Academic Council of the Periyar Maniammai Institute of Science & Technology (PMIST), Vallam, Thanjavur held on 08.07.2023 at 10.30 a.m.

Prof.S.Velusami, Hon'ble Vice-Chancellor, chaired the meeting.

The following Academic Council Members were present

1.	Dr.D.Aarthi Saravanan	Member
2.	Dr.A.Anand Jerard Sebastine	Member
3.	Dr.S.Arumugam	Member
4.	Dr.A.P.Aruna	Member
5.	Dr.P.Aruna	Member
6.	Dr.S.Asokan	Member
7.	Dr.P.Balakumar	Member
8.	Dr.S.Buvaneswari	Member
9.	Dr.P.Guru	Member
10.	Dr.K.Geetha	Member
11.	Dr.A.George	Member
12.	Dr.A.Manohar (Represented for Dr.S.Gomathi)	Member
13.	Dr.V.Hamsadhwani	Member
14.	Dr.R.Jayanthi	Member
15.	Dr.N.Jayanthi	Member
16.	Dr.J.Jeyachidra	Member
17.	Dr.D.Jeyasimman	Member
18.	Mr.I.Karthic Subramaniayan	Member
19.	Dr.R.Kathiravan	Member

1.

TO CONSIDER AND APPROVE increasing intake for MCA programme from 120 to 180 from the academic year 2023-2024.

Notes:

Due to the increased demand in admission the Department of Computer Science and Applications proposed to increase the intake of MCA programme from 120 to 180 from the academic year 2023-2024 onwards.

The matter is placed before the Academic Council for Approval.

Resolution

RESOLVED TO APPROVE increasing intake for MCA programme from 120 to 180 from the academic year 2023-2024.

FCSE MCA, M.Sc.-DS 42.4.5 TO CONSIDER AND APPROVE the Curriculum and Syllabi from I to IV semester of MCA programme under Full Time (Regulation 2023) and M.Sc Data Science programme Under Full Time (Regulation 2023) along with the introduction of Value Added Courses in MCA Programme Under Full Time (Regulation 2023 and) M.Sc Programme Under Full Time (Regulation 2023). The Value Added Courses are:

- DevOps
- AWS
- Google Cloud
- GO Programming
- Data Visualization

Notes:

The Board of Studies of the Department of Computer Science and Applications recommended the introduction of Value Added Courses and

curriculum and syllabi from I to IV Semesters of MCA Programme under full time Regulation 2023 and M.Sc.-Data Science Programme under Full-Time Regulation 2023.

The matter is placed before the Academic Council for Approval.

Resolution

RESOLVED TO APPROVE the Curriculum and Syllabi from I to IV semester of MCA programme under Full-Time (Regulation 2023) and M.Sc Data Science programme Under Full Time (Regulation 2023) along with the introduction of Value Added Courses in MCA Programme Under Full-Time (Regulation 2023 and) M.Sc Programme Under Full-Time (Regulation 2023).

3. Curriculum and Syllabus of the MCA programme – Before Revision

MASTER OF COMPUTER APPLICATIONS (MCA)

REGULATIONS 2020

CURRICULUM

SEMESTER – I

Course	Course Title	L	Т	P	Н	С
Code						
YCA101	Database Management Systems	4	1	0	5	4
YCA102	Computer Networks	4	1	0	5	4
YCA103	Object Oriented Programming, Analysis and Design		0	0	4	4
YCA104	Management Support Systems	3	0	0	3	3
YCA105	5 Mathematical Foundation for Computer Applications		1	0	5	5
YCA106	Database Management Systems Lab	0	0	4	4	2
YCA107	Mathematical Foundation for Computer Applications Lab using Java	0	0	4	4	2
	Total	19	03	08	30	24

SEMESTER – II

Course	Course Title	L	Т	Р	Н	С
Code						
YCA201	Advanced Operating System Concepts	4	1	0	5	4
YCA202	Software Engineering	4	1	0	5	4
YCAIT*	IT Elective I	4	0	0	4	4
YCA203	Advanced Data Structures	4	0	0	4	3
YCABM*	BM* BM Elective I		0	0	3	3
YCA205	Advanced Operating System Concepts Lab	0	0	4	4	2
YCA206	Case Tools Lab	0	0	4	4	2
	Total	19	02	08	29	22

SEMESTER – III Course Title Т Р Course L Η С Code Artificial Intelligence and Machine Learning YCA301 Graphics and Multimedia YCA302 YCAIT* IT Elective II YCABM* BM Elective II YCA303 **Optimization Techniques** Artificial Intelligence and Machine Learning YCA304 Lab using Python **Optimization Techniques Lab** YCA305 YCA306 Industrial Lectures Mini Project YCA307 Total

SEMESTER - IV

Course	Course Title	L	Т	Р	Н	С
Code						
YCA401	Research Methodology(Paper Publications)	3*(SS)	0	-	3	3
YCA402	Project	0	0	6	6	12
	Total	3*(SS)	0	06	09	15

INFORMATION TECHNOLOGY ELECTIVES

IT Elective I

Course	Course Title	L	Т	Р	Η	С
Code						
YCAEE1	Data Mining and Data Warehousing	4	0	0	4	4
YCAEE2	High Performance Computing	4	0	0	4	4
YCAEE3	Compiler Design	4	0	0	4	4
YCAEE8	System Analysis and Simulation	4	0	0	4	4
YCAEE9	Cryptography and Information Security	4	0	0	4	4

IT Elective II

Course	Course Title	L	Т	Р	Н	С
Code						
YCAEE4	Cloud Computing	3	0	0	3	3
YCAEE5	Distributed Database Management	3	0	0	3	3
YCAEE6	Image Processing	3	0	0	3	3
YCAEE7	Parallel Programming	3	0	0	3	3
YCAEE10	Bigdata Analytics	3	0	0	3	3

BUSINESS MANAGEMENT ELECTIVES

BM Elective I

Course	Course Title		Т	Р	Н	С
Code						
YCABM3	Foundations of Decision Processes	3	0	0	3	3
YCABM4	Investment Technology	3	0	0	3	3
YCABM8	Management of Software Projects	3	0	0	3	3
YCABM9	Blockchain Technology	3	0	0	3	3

BM Elective II

Course	Course Title	L	Т	Р	Η	С
Code						
YCABM1	Managerial Economics	3	0	0	3	3
YCABM2	Corporate Planning	3	0	0	3	3
YCABM5	Business Finance	3	0	0	3	3
YCABM6	Taxation Practices	3	0	0	3	3
YCABM7	MIS Frameworks and Implementation	3	0	0	3	3

YCA101- DATABASE MANAGEMENT SYSTEMS

database

CO1	С	Knowledge	<i>Describe</i> the database architecture and its application						
CO2	С	Understand	Describe about the relational model and algebra						
CO3	С	Understand	Explain the data model and accessing of data.						
CO4	С	Knowledge	Describe the normalization concept for a table of data						
CO5	С	Understand	Illustrate the query technical processing in						
			management						

Course Code	Course Name	L	Т	Р	C				
YCA101	Data Base Management Systems	4	1	0	4				
C:P:A = 4:0:0		L	Т	Р	H				
		4	1	0	5				
UNIT-I: Intro	duction to database Management System		<u>.</u>		15				
Basic concepts-I	Database & Database Users-Characteristics of the	Data	base-l	Datał	base				
Systems-Concepts	s & Architecture-Date Models. Schemas & Instances-Dl	BMS A	Archit	ectur	e &				
Data Independen	ce-Data Base languages & Interfaces-Data Modeling	g usir	ng the	Ent	tity-				
Relationship App	roach								
UNIT- II : Relati	onal Model Concept				15				
Relational Model	- Languages &Systems - Relational-Data Model &	Rela	tional	-Al	gebra				
Relational Mode	l Concepts-Relational Model Constraints-Relational	Alge	bra-S	QL ·	– A				
Relational Databa	ase Language-Date Definition in SQL-View & Querio	es in	SQL-S	Speci	ifying				
Constraints & Ind	exes in SQL-Specifying Constraints & Indexes in SQL	a Rela	ationa	l Dat	abase				
Management Syst	ems-ORACLE/INGRES								
UNIT- III : Data	model				15				
Conventional Dat	a Models & Systems Network-Data Model & IDMS S	ystem	s Mer	nber	ship				
types & options i	n a set DML for the network model-Navigation within	a netv	vork d	latab	ase-				
Hierarchical Data	Model & IMS System-Hierarchical Database structure	- HSA	M - F	HISA	M -				
HDAM & HIDAN	A organization-DML for hierarchical model-Overview o	f IMS							
UNIT- IV: Relat	ional Data Base Design				15				
Relational Data	Base Design-Function Dependencies & Normalization	on for	r Rela	ation	al -				
Databases - Funct	tional Dependencies-Normal forms based on primary keep	eys (I	NF, 21	NF, 3	3NF				
& BCNF)-Lossles	& BCNF)-Lossless join & Dependency preserving decomposition								
UNIT- V: Concu	rrency Control & Recovery Techniques				15				
Concurrency Con	ntrol & Recovery Techniques-Concurrency Control	Techn	iques-	Loci	cing				
Techniques-Time stamp ordering-Granularity of Data items-Recovery Techniques-Recovery									
concepts-Database	concepts-Database backup and recovery from catastrophic failures - Concepts of Object								

oriented data base management systems			
	LECTURE	TUTORIAL	TOTAL
	60	15	75
TEXT			•

- 1. Abraham Silberschatz, Henry Korth, S.Sudarshan, Database Systems Concepts, Sixth Edition, McGraw Hill, 2010.
- 2. Raghu Ramakrishnan and Johannes Gehrke, Database management systems, Third Edition,2002

REFERENCES

- 1. Date, C.J., "An Introduction to Database Systems", Narosa Publishing House, NewDelhi.
- 2. Desai, B'., "An Introduction to Database Concepts", Galgotia Publications, New Delhi.
- 3. Elmsari and Navathe, "Fundamentals of Database Systems", Addison Wesley, New York.
- 4. Ullman, J.D., "Principles of Database Systems", Galgotia Publications, New Delhi

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	3	3	3	3	2	2	3	3
CO 2	3	3	3	2	2	2	2	2	3	3
CO 3	3	2	2	2	2	2	2	2	3	3
CO 4	2	3	2	2	2	2	2	2	2	2
CO 5	3	2	2	2	2	2	2	2	2	2
Total	14	13	12	11	11	11	10	10	13	13
Course	3	3	3	3	3	3	1	1	3	3

YCA102 COMPUTER NETWORKS

Course Outcomes:

CO1	С	Understand	Define various methods of topology
CO2	С	Understand	Understand and apply layer protocol
CO 3	С	Understand	<i>Illustrate</i> various counting and inclusion theory
CO4	С	Understand	Describe LAN concepts
CO5	С	Understand	<i>Explain</i> TCP/IP

Course Code	Course Name	L	Τ	Р	C	
YCA102	Computer Networks	4	1	0	4	
C:P:A = 4:0:0		L	Τ	Р	Η	
		4	1	0	5	
UNIT- I. Introduction to computer network						

Advantages of networks - structure of the communications network - point-to-point and multi drop circuits - data flow and physical circuits - network topologies - topologies and design goals - Hierarchical topology - horizontal topology (Bus) - star topology - ring topology mesh topology - The telephone network - switched and non-switched options - fundamentals of communications theory - channel speed and bit rate - voice communications and analog waveforms - bandwidth and the frequency spectrum - connecting the analog and digital worlds - digital worlds - digital signals - the modem - asynchronous and synchronous transmission -Wide area and local networks - connection oriented and connectionless networks, classification of communications protocols - time division multiple access (TDMA) - time division multiplexing (TDM) - carrier sense (Collision) systems - token passing - peer-to-peer priority systems - priority slot - carrier sense (collision free) systems - token passing (priority) systems.

UNIT-II: La	avered Prot	ocols and	the OS	I mode
-------------	-------------	-----------	--------	--------

15

Goals of Layered Protocols - network design problems - communication between layers - introduction to standard organizations and the OSI model - standards organizations - Layers of OSI - OSI status - Polling/Selection Protocols : Character and bit protocols - binary synchronous control (BSC) HDLC - HOLC options - HDLC frame format - code transparency and synchronization - HDLC transmission process - HDLC subsets - SDLC - Protocol conversion.

UNIT- III: Local Area Networks

15

Way LANs - Primary attributes of a LAN - Broadband and baseband and base LANs - IEEE LAN standards - elationship of the 802 standards to the ISO/CCITT model - connection options with LANs - LLC and MAC protocol data units - LAN topologies and protocols -CSMA/CO and IEEE 802.3 - token ring (Priority) - token bus and IEEE 802.4 - metropolitan area networks (MANs) - ANSI fiber distributed data interface - Switching and Routing in Networks: Message switching - packet switching - when and when not to use packet switching - packet routing - packet switching support to circuit switching networks. UNIT- IV: The X.25 Network and Supporting Protocols

UNIT- IV. The A.25 Network and Supporting Frotocols									1	3								
Feature	es of	X.25	5 -	Lay	yers	of 2	X.25	and	the	Physical	layer	- X.25	and	the	data	link	layer	-
	•		1	1 .		7.05	c			6 37 95	TT OF		1		C	-		1

companion standards to X.25 - features of X.25 - X.25 channel options - flow control principles - other packet types - X.25 logical channel states - packet formats - Internet working - connectionless mode networks - the frame relay and X.25 stacks.

UNIT	• V:	TCP/IP	and	Personal	Computer	Networks
------	------	--------	-----	----------	----------	----------

TCP/IP and internetworking - example of TCP/IP operations - related protocols ports and sockets - The IP address structure - major features of IP - IP datagram - Major IP services - IP source routing - value of the transport layer - TCP - Major features of TCP - passive and active operation - the transmission control block (TCP) - route discovery protocols - examples of route discovery protocols - application layer protocols

Personal computer communications: Characteristics - error handling - using the personal computer as a server - linking the personal computer to mainframe computers - tilt: transfer on personal computers - personal computers and local area networks - network operating systems (NOSs) - common IBM PC LAN protocol stacks.

	LECTURE	TUTORIAL	TOTAL
	60	15	75
TEXTROOK			

- 1. Andrew S. Tanenbaum, Computer Networks, Fourth Edition, Prentice Hall PTR; 4th edition. 2002
- 2. Computer Networking: A Top-Down Approach, by J. F. Kurose and K. W. Ross, Addison Wesley, 5th Edition, March 2009, ISBN-13: 978-0136079675. (Chapters 1-6)

REFERENCE

1. Black, V., "Computer Networks. Protocols, Standards and Interfaces", Prentice Hall of India, 1996

2. Stallings, W., "Computer Communication Networks", (4th edition). Prentice Hall of India.1993.Tanneabaum, A.S.. "Computer Networks", Prentice Hall of India, 19'81.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	2	2	2	1	2	2	3	3
CO 2	3	3	2	2	2	1	2	2	3	3
CO 3	3	2	2	2	2	1	2	2	3	3
CO 4	2	3	2	2	2	1	2	2	2	2
CO 5	3	2	2	2	2	1	2	2	2	2
Total	14	13	10	10	10	5	10	10	13	13
Course	3	3	2	2	2	1	1	1	3	3

YCA103 - OBJECT ORIENTED PROGRAMMING, ANALYSIS AND DESIGN

Course Outcomes

CO1 C Knowledge Describe various methods to define ob	object modelling
--	------------------

CO2	С	Understand	Understand and construct modeling concepts
CO3	С	Knowledge	Describe and Discuss the concepts of operations
CO4	С	Knowledge	Describe and apply the concepts of designs
CO5	С	Knowledge	Describe the concepts of implementation of an application

Course Code	Course Name	L	T	P	С
YCA103	Object Oriented Programming, Analysis and	4	0	0	4
	Design				
C:P:A = 4:0:0		L	Т	Р	Н
		4	0	0	4
UNIT-I: Objec	t modeling		4	ار <u>۔۔۔۔</u> ا	12

Object modelling: Objects and classes - Links and associations - Generalization and inheritance.

UNIT-II: Grouping constructs

Grouping constructs - Aggregation - Generalization as extension and restriction -Multiple inheritance - Meta data - candidate keys - Dynamic modelling: Events and states Nesting – Concurrency

12

12

12

UNIT – III: Functional modeling

Functional modelling: Data flow diagrams - Specifying operations - Analysis: Object modelling - Dynamic modelling - functional modelling - Adding operations - Iteration.

UNIT- IV: System design and object design

System design: Subsystems - Concurrency - Allocation to processors and tasks - Management of data stores - Control implementation -. Boundary condition - Architectural frameworks - Object design: Optimization - implementation of control - Adjustment of inheritance - Design of associations - Documentation - Comparison of methodologies.

UNIT -V : Implementation12Implementation: Using a programming language - a database system - Programming styles -
reusability - extensibility - robustness - Programming-in-the-large - case study.12

	•		
LECTURE	TUTORIAL	TOTAL	
60	0	60	
			1

TEXT

- 1. Craig Larman,"Applying UML and Patterns: An Introduction to object-oriented Analysis and Design and iterative development", Third Edition, Pearson Education, 2005
- Alan Dennis, Barbara H. Wixom, and David Tegarden, Systems Analysis And Design with UML Version 2.0—An Object-Oriented Approach, 3nd edition, John Wiley & Sons, Inc., 2009 (required)
- 3. T5. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley.
- 4. OBJECT-ORIENTED ANALYSIS AND DESIGN With applications SECOND

EDITION Grady Booch Rational Santa Clara, California

REFERENCES

- 1. Booch, G., "Object Oriented Analysis and Design". 2nd edition, Benjamin/Cummins Publishing Co.. Redwood City, CA, U.S.A., 1994.
- 2. Rebecca Wirfs-Brock, et. al, Designing Object Oriented Software", Prentice Hall of India.1996.
- 3. Rumbaugh, J., Et al "Object Oriented Modelling and Design". Prentice Hall of India, New Delhi, 1991

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	2	2	2	1	1	1	2	2
CO 2	3	3	2	2	2	1	1	1	2	2
CO 3	3	3	2	2	2	1	1	1	2	2
CO 4	3	2	2	2	2	1	1	1	2	2
CO 5	2	2	2	2	2	1	1	1	2	2
Total	14	13	10	10	10	5	5	5	10	10
Course	3	3	2	2	2	1	1	1	2	2

YCA104-MANAGEMENT SUPPORT SYSTEMS

Course Outcomes

CO 1	С	Knowledge	Discuss about DSS concept and components
CO2	С	Understand	Describe the data and model management for DSS
CO3	С	Knowledge	Describe about various DSS functionality
CO4	С	Understand	Understand the concept of DSS Interface and Group discussion
CO5	С	Understand	Describe Expert System

Course Code	Course Name			L	Τ	Р	C	
YCA104	Management Support Systems			3	0	0	3	
C:P:A = 3:0:0				L	Τ	Р	H	
				3	0	0	3	
UNIT-I: Intro	oduction			<u></u>		•	09	
Introduction to the concept of Decision Support System - Components of DSS - Dialogue								
Management								
UNIT –II: Decision Support System								
Data Manageme	nt and Model Management for DS	SS - Examples	of differ	rent t	ype o	of DS	S -	
Systems Analysis and Design for DSS								
UNIT – III: DS	S functionality						09	
Models in the c	ontext of DSS - Algorithms and H	Heuristics - DS	S Applic	cation	is in (diffe	rent	
functions								
UNIT- IV: Inter	rface and Group Discussion						09	
Design of interfa	aces in DSS - An overview of DS	S generators -	Group D	ecisio	on in	Sup	port	
Systems (GDSS)) and Decision Conferencing.							
UNIT -V :Intro	duction of Expert Systems						09	
Introduction of	Expert Systems - Expert Systems	in Manageme	nt - Case	e Stu	dy or	ı Exj	pert	
System - Introduction to GIS - MSS based on GIS - Case Studies; Executive Information								
Systems (EIS).								
		LECTURE	TUTO	RIAI	_ T	OTA	L	
		45	0			45		

TEXT

- 1. 1.Lucas, H.C., "Information system concepts for management", 5th edition, McGraw Hill,New York. 1994.
- 2. W S Jawadekar , A O'Brien ., "Management Information Systems"
- 3. Laaudon and Ludon, "Management Information Systems".

REFERENCES

- Bhatnagar, S.C. and Ramani K. V., "Computers and Information Management", Prentice Hall of India. New Delhi, 1992.
- 2. Issue dedicated of GDSS & Expert Systems, JMIS, 10, 3, 1993-94.
- Kroenke, D., "Management information systems", 2nd edition, Mitchell McGraw Hill, New York. 1992.
- Maryam Alvi, "Group Decision support Systems, Info. Sys. Mgt (ISM)", Vol. 8. No.3 Summer 91.
- 5. Sprauge, R.H., and McNurlin, B.C., "Information Systems Management in Practice", 3rd ed.
- 6. Prentice Hall international. New Jersey, 1993.
- Sprague. R.H. and Carlson, E.D. . ."Building Effective Decision Support Systems", Prentice Hall. New Jersey, 1982.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	1	1	1	1	1	1	1	1	1
CO 2	2	1	1	1	1	1	1	1	1	1
CO 3	2	2	1	1	1	1	1	1	1	1
CO 4	2	2	1	1	1	1	1	1	1	1
CO 5	1	2	1	1	1	1	1	1	1	1
Total	09	08	05	05	05	05	05	05	05	05
Course	03	02	01	01	01	01	01	01	01	01

YCA105 - MATHEMATICAL FOUNDATION FOR COMPUTER APPLICATIONS

Course Outcomes:

CO1	С	Knowledge	Discuss the basic fundamentals of statistics and measures
CO2	С	Understand	<i>Identify</i> the concept of sampling technique
CO3	С	Knowledge	Describe about the charts and analysis
CO4	С	Understand	Discuss about the statistics analysis
CO5	С	Understand	Describe the various implementation

Course Code	Course Name	L	Т	Р	C
YCA105	Mathematical foundation for Computer	4	1	0	5
	Applications				
C:P:A = 5:0:0		L	Т	Р	Η
		4	1	0	5
UNIT-I: Introduction	1	l			15
Basic Statistics: Measure	ures of central tendencies - Measures of	dispersion	- F	reque	ency
distributions - Moments	- Correlation coefficient - Regression.				
UNIT- II: Sampling s	statistical computing				15
Sampling: Theory of s	ampling - population and sample - Survey	nethods a	nd e	stima	tion
Statistical inference - Te	esting of hypothesis and inference				
UNIT- III: Statistics F	or Business				15
Computing frequency cl	harts - Regression analysis.				
UNIT- IV: Data Analy	rsis				15
Time series and forecas	ting				
UNIT- V: Implementa	tion				15
Implementation: Using	a programming language - a database system	- Progran	nming	g styl	es -
reusability - extensibilit	y - robustness - Programming-in-the-large - ca	ise study.			
	LECTURE T	UTORIA	L I	OTA	L
	60	15		75	
TEXT			<u> </u>		
1. Tanner, M. A," To	ols for Statistical Inference:Methods for the I	Exploratio	n of I	Poste	rior
Distribution" Sprin	ger Verlag: New York.,third Eition.,1996				
REFERENCES					
1. Affi, A.A., "Statistic	cal Anal);sis: A Computer Oriented Approach	'. Academ	ic Pr	ess, N	Jew
York, 1979. Hogg.	R. vEt. Al., "Introduction to Mathematica	al Statistic	cs", A	Ameri	can
Duhlishing New Vo	-l- 1090				

Publishing, New York. 1980.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PSO
									1	2
CO 1	3	2	2	1	2	2	2	2	2	2
CO 2	3	2	2	2	2	2	2	2	2	2
CO 3	2	2	2	2	2	2	2	2	2	2
CO 4	2	2	2	1	2	2	2	2	2	2
CO 5	2	2	2	2	2	2	2	2	2	2
Total	12	10	10	8	10	10	10	10	10	10
Course	3	2	2	1	2	2	2	2	2	2

YCA106 -DATABASE MANAGEMENT SYSTEMS LAB

Course Outcomes:

CO1	Р	Guided	<i>Build</i> the concept of DBMS programming and its fundamental
		response	
CO2	Р	Guided	Build an application program using concepts
		response	
CO3	Р	Apply	<i>Develop</i> an application program using a data model
		Guided	<i>Develop</i> the query technical processing in database
		Response	managements
CO4	Р	Guided	<i>Explain</i> and <i>implement</i> the normalization concept for a table of
		response	data
CO5	А	Apply	Apply the query technical processing in database managements

Course Code	Course Name	L	T	P	С
YCA106	Database Management Systems Lab	0	0	4	2
C:P:A = 0:1.5:0.5		L	Т	Р	Η
		0	0	4	4
		I	I		60`

1. Create table in SQL using Accounting for a shop database

2. Develop a Database design in E-R model and Normalization using Database manager for a magazine agency or newspaper agency

3. Implement the Nested Queries using Ticket booking for performances

4. Create views for a particular table using Preparing greeting and birth day cards Personal accounts - insurance, loans, mortgage payments etc.

5. Implement Join operations in SQL using Doctor's diary, billing

6. create a program to implement JDBC connectivity using Personal bank account

7. create a program to implement ODBC connectivity using Class marks management

8. Create a webpage for Video tape library using JDBC Connectivity

9. How to update a data by using JDBC connectivity with Personal library.

10. Create a webpage for Class marks management library using JDBC Connectivity.

11. Write PL/SQL procedure for an application using Hostel accounting

12. Write PL/SQL procedure for an application using History of cricket scores

13.Write PL/SQL procedure for an application using Cable transmission program manager

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PSO
									1	2
CO 1	2	1	1	1	1	1	1	1	2	2
CO 2	2	1	1	1	1	1	1	1	2	2
CO 3	2	1	2	1	1	2	2	1	2	2
CO 4	2	2	1	1	2	1	1	2	2	2
CO 5	1	1	1	1	1	1	1	1	2	2
Total	09	06	06	05	06	06	06	06	10	10
Course	3	2	2	1	2	2	2	2	3	3
0-	No relation	on 3-Hi	ighly rela	ation	2- Medium relation 1- Low relation					

YCA107 - MATHEMATICAL FOUNDATION FOR COMPUTER APPLICATIONS LAB USING JAVA

Course Outcomes:

CO 1	Р	Guided	Practice the basic Computer generation of random numbers
		Response	
CO2	Α	Apply	Understand and apply set theory and Relations
CO3	Р	Guided	Describe various counting and inclusion theory
		Response	
CO 4	Α	Apply	Apply frequency charts for large data sets
CO5	A	Apply	<i>Apply</i> statistical package to perform factor analysis and tests of significance

Course Code	Course Name	L	Т	Р	С
YCA107	Mathematical Foundation for Computer Applications Lab using Java	0	0	4	2
C:P:A = 0:1:1		L	Т	Р	H
		0	0	4	4
	4				60

1. Computer generation of random numbers with different distributions.

2. Writing a questionnaire analysis program for data from surveys.

3. Analysis of significance of the results of survey.

4. Curve fitting to experimental data.

5. Programs to obtain frequency charts for large data sets and fitting a distribution.

6. Use of a statistical package to perform factor analysis and tests of significance.

7. Calculating and displaying regression statistics.

8. Real Statistics Using Excel

9. Calculating and displaying correlation statistics

					LE	LECTURE PRACTICAL			L T(TOTAL	
						0 60				60	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2	
CO 1	2	1	1	1	1	1	1	1	2	2	
CO 2	2	1	1	1	1	1	1	1	2	2	
CO 3	2	1	2	1	1	2	2	1	2	2	
CO 4	2	2	1	1	2	1	1	2	2	2	
CO 5	1	1	1	1	1	1	1	1	2	2	
Total	09	06	06	05	06	06	06	06	10	10	
Course	3	2	2	1	2	2	2	2	3	3	

YCA201 ADVANCED OPERATING SYSTEMS CONCEPTS

Course Outcomes:

l_____

CO 1	С	Understand	<i>Explain</i> the operating system functions						
CO2	С	Understand	<i>Implement</i> the process and various process scheduling						
			algorithms						
CO3	С	Knowledge	Outline process cooperation and inter process communication						
CO4	С	Understand	Describe various memory management concepts						
CO5	С	Understand	<i>Implement</i> and <i>understand</i> the file organization						

COURSE CODE	COURSE NAME			L	Т	P	С		
YCA201	ADVANCED OPI	ERATING SYST	TEMS	4	1	0	4		
	CONCEPTS								
C:P:A = 4:0:0									
				L	Т	P	H		
PREREQUISITE	C++ concepts, Win	dows Programm	ing	4	1	0	5		
UNIT I OVERVIEW OF OPERATING SYSTEMS									
Functionalities and obj	ectives of operatin	ng Systems- pr	rocessor re	egister	:- in	struc	tion		
execution- interrupts- type	es of interrupts.								
UNIT II PROCESS MA	NAGEMENT						15		
Process concepts: proce	ess states- process c	control block- p	rocess and	threa	ds- p	proce	ssor		
scheduling- scheduling algorithms.									
UNIT III PRINCIPLES OF CONCURRENCY1									
Critical Sections - Mutua	1 Exclusion - Proces	s Cooperation-	Inter Proces	ss Co	mmu	nicat	ion-		
Deadlock Prevention- Det	Deadlock Prevention- Detection- Avoidance- Semaphores- Monitors-Message Passing.								
UNIT IV MEMORY MA	ANAGEMENT						15		
Virtual Memory Concept	ts- Paging and Segr	mentation- Addr	ess Mappin	ig- V	irtual	Stor	age		
Management- Page Repla	cement Strategies.								
UNIT V FILE ORGANI	ZATION						15		
Blocking and buffering,	file descriptor- file	e and directory	structures-	I/O	devic	ces- (disk		
scheduling.									
	LECTURE	TUTORIAL	PRACTI	CALS	5 T	OTA	L		
	60	15	-			75			
TEXT									
1. William Stallings, Ope	erating Systems , Pre	ntice Hall of Ind	ia (P) Ltd, 7	7 th edi	tion-	2012			
2. Abraham Silberschatz	2. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Operating System Concepts, Sixth								
edition. Addison-Wesley (2003).									
REFERENCES									

- 1. Andrew Tanenbaum, "Modern Operating Systems", Pearson, 2008.
- 2. Silberschatz and P. B. Galvin, "Operating System Concepts", 7th Edition, Addison Wesley Publication.

E REFERENCES

- 1. http://www.nptel.ac.in/courses/106108101/
- 2. http://nptel.ac.in/courses/Webcourse-contents/IISc-BANG/Operating%20Systems/New_index1.html
- 3. http://www.nptel.ac.in/downloads/106108101/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO 2
CO 1	3	3	2	2	2	1	2	2	3	3
CO 2	3	3	2	2	2	1	2	2	3	3
CO 3	3	2	2	2	2	1	2	2	3	3
CO 4	2	3	2	2	2	1	2	2	2	2
CO 5	3	2	2	2	2	1	2	2	2	2
Total	14	13	10	10	10	5	10	10	13	13
Course	3	3	2	2	2	1	1	1	3	3

YCA202 - SOFTWARE ENGINEERING

CO1	С	Knowledge	Describe various methods to define lifecycle models.						
CO2	С	Understand	Understand and analyse the software inspections						
CO3	С	Knowledge	Describe and apply various software tools						
CO4	С	Understand	<i>Describe</i> and	<i>solve</i> issu	ies in mo	odern (GUI		
CO5	С	Understand	Understand	CASE	tools	and	Software	configuration	
			management.						

Course Code	Course Name	L	Т	Р	С						
YCA202	Software Engineering	4	1	0	4						
C:P:A = 4:0:0					ĺ						
		4	1	0	5						
UNIT- I: Softw	vare life cycle				15						
Models: Waterfall, Spiral - Prototyping Fourth generation techniques - SW Process -											
Software requirements specification (SRS)Fact-Finding Techniques - Characteristics of											
good SRS: Unan	biguous. Complete - Verifiable - Consistent - Modifia	ible -	Trace	able	and						
usable during the	operation and Maintenance phase - Prototype outline for	r SRS	•								
UNIT- II: Software Inspection											
Communication	Skills for the System Analyst - Review/Inspection Pro-	ocedu	re: Do	ocum	ent.						
Composition of the inspection team - check list - reading by the inspectors - Recording of the											
defects and action recommended - Students should practice inspecting small requirement											
specifications for	good characteristics.										
UNIT- III: Syste	em Analysis and SW Design				15						
SA tools & Techr	niques - DFD - Entity Relationship Diagrams - Project D	viction	ary -	E							
System Design T	ools and Techniques - Prototyping - Structured Program	ming.									
UNIT- IV: User	Interface Design and User Manual				15						
Elements of good	design - Design issues - Features of a modern GUI -	Menu	1s - sc	rollii	ng -						
windows - Icons	- Panels - Error messages, etc.										
User Profile - Co	ontents of an User Manual: Student is urged to install	and u	ise a	softw	vare						
using its user mar	nual and report the strengths and weaknesses of that user	manu	al.								
UNIT- V: Softwa	are Configuration Management and CASE				15						
Software Config	uration Management			B							
Base Line - SCM process - Version Control - Change Management.											
Computer Aided Software Engineering											
CASE - Tools for Project management Support - Analysis & design - Programming -											
Prototyping - Ma	intenance - Future of CASE.										

	LECTURE	TUTORIAL	TOTAL					
	60	15	75					
TEXT	I	I	J					
1. Rajib Mall, Fundamentals of Software Engine	ering, PHI Public	ation.						
2. K. K. Aggarwal and Yogesh Singh, Soft	ware Engineerin	g, New Age I	nternational					
Publishers.								
3. Carlo Ghezzi, M. Jarayeri, D. Manodrioli, Fun	damentals of Sof	tware Engineeri	ng, PHI					
Publication.								
4. Ian Sommerville, Software Engineering, Addison Wesley.								
5. Kassem Saleh,"Software Engineering", Cengage Learning.								
6. Pfleeger, Software Engineering, Macmillan Publication								
REFERENCES								
1.Beizer, B., "Software Testing Techniques", Se	econd Edition. Va	an Nostrand Rei	nhold. New					
York. 1990.								
2.IEEE Guide to Software Requirements Specif	fications, Std 830	-1984. In" IEE	E Standards					
Collection. 1993. Available from IEEE Standar	rds Board, 445 H	Ioes Lane, P.O.	Box 1331,					
Piscataway, NJ 08855-1331. NJ, USA.								
3.IEEE Standard for Software User Documentati	on, Std 1063-198	7.						
4. Pressman, R.S., "Software engineering" A	Practitioner's	Approach", Thi	rd Edition,					
McGraw Hill. International Edition, 1992.								
5. Whitten, Bentley and Barlow, "System Analy	ysis anc' Design	Methods", Seco	ond Edition,					
Galgotia Publications 1996								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	3	2	2	1	1	1	2	2
CO 2	3	3	3	2	2	1	1	1	2	2
CO 3	3	3	3	2	2	1	1	1	2	2
CO 4	3	3	3	2	2	1	1	1	2	2
CO 5	2	2	2	2	2	1	1	1	2	2
Total	14	14	14	10	10	5	5	5	10	10
Course	3	3	3	2	2	1	1	1	2	2

YCA203 ADVANCED DATA STRUCTURES

CO1	С	Understand	<i>Illustrate</i> the classification of Linear Data Structures.
CO2	С	Understand	Explain the functions of Non Linear Data Structures
CO3	С	Understand	Describe the operations of Advanced Data Structures
CO4	С	Knowledge	Explain the various algorithms of Data Structures
CO5	С	Understand	Describe the concepts and procedures sorting.

COURSE CODE	L	Т	P	C		
YCA203	Advanced Data Structures	4	0	0	4	
C:P:A = 4:0:0						
		L	Т	Р	H	
PREREQUISITE	C Programming	0	0	4		
UNIT-I: LINEAR	DATA STRUCTURES			12		
Linear data Structures	s – Arrays, Records, Linked Lists – Singly, Doubly, Cir	cular	linke	d lists	; -	
Stack: Definition and	examples, Representing Stacks - Queues: Definition ar	ıd exa	mples	8,		
priority queue, Deque	eue, IRD, ORD – Applications of Stack, Queue and Lin	ked L	ists- I	Hashi	ng	
UNIT –II: NON-LIN	NEAR DATA STRUCTURES				12	
Non-Linear data Strue	ctures - Binary Trees – Binary Tree Representations – r	ode r	eprese	entati	on,	
internal and external	nodes, implicit array representation - Operations on bin	ary tre	ees – E	Binar	·у	
tree Traversals – Bina	ary search trees- insertion, deletion, find. Graphs – Repr	resenta	ation	_		
Linked representation	of Graphs – Graph Traversals.					
UNIT- III: ADVAN	CED CONCEPTS				12	
Advanced data struct	ures -Data structures for disjoint sets- AVL trees - Red-	-black	trees	_		
insertion and deletion	-B-trees - Definition, insertion, deletion - Splay tree,	Binor	mial ł	neaps	-	
operations.						
UNIT- IV: ALGOR	ITHMS`				12	
Single source shorte	st path algorithms – Bellman-Ford algorithm and D	Dijkstr	a's al	goritl	ım-	
Transitive closure -To	opological sort – Trie Structures.					
UNIT- V: SORTING TECHNIQUES						
Basic sorting techniq	ues - selection sort, bubble sort, insertion sort - Mergin	ng and	d mer	ge so	rt –	
Basic Search Techni	iques – linear search and binary search – recursive	and	non-i	recurs	sive	
algorithms.						
		TATS	Т		T	

	LECTURE	TUTORIAL	PRACTICALS	TOTAL
	60	0	0	60
TEXT				

- 1. A.K. Sharma, "Data Structures using C", Pearson Education, 2013
- 2. Robert L. Kruse" Data Structures and Program Design in C, Pearson Education, 2013
- T.H. Cormen, C.E. Leiserson, R.L. Rivest and C.Stein, "Introduction to Algorithms", 3rd Edition, MIT Press, 2009.
- 4. S. Lipschutz and G.A.V. Pai, "Data Structures", Tata McGraw-Hill, 2010.

REFERENCES

- 1. Robert L Kruse: Data Structures and program designing using C, 2013.
- 2. Kamthane: Introduction to Data Structures in C, Pearson Education, 2005
- M.A.Weiss, "Data Structures and Problem Solving using Java", 4th Edition, Addison Wesley, 2009.
- 4. D. Samanta, "Classic Data Structures", 2nd Edition, PHI, 2009.
- 5. P. Brass, "Advanced Data Structures", Cambridge University Press, 2008

E REFERENCES

- 1. NPTEL, Data structures and algorithm ,Prof. Hema A Murthy,IITMadras,Prof. Shankar Balachandran,IITMadras,Dr. N S. Narayanaswamy,IIT Madras
- 2. NPTEL, Data structures and algorithm ,Prof. Naveen Garg,IIT Delhi

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 8	PSO 9
CO 1	3	3	2	2	2	1	2	2	3	3
CO 2	3	3	2	2	2	1	2	2	3	3
CO 3	3	2	2	2	2	1	2	2	3	3
CO 4	3	3	2	2	2	1	2	2	3	2
CO 5	3	2	2	2	2	1	2	2	3	2
Total	15	13	10	10	10	5	10	10	15	13
Course	3	3	2	2	2	1	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA205 – ADVANCED OPERATING SYSTEM CONCEPTS LAB

CO1 CO2 CO3 CO4 CO5	P A P A A	Guideo Apply Guideo Apply Apply	l Response l Response	<i>Practice the basic</i> scheduling algorithms <i>Understand</i> and apply algorithms to avoid de <i>Practice the</i> various page replacement algorithms for optimal page replace <i>Apply</i> the algorithms for optimal page replace <i>Apply</i> the linear, non-linear and sorting algorithms	ead locl thms ement rithms	¢		
Cours	se C	ode	Course Name		L	Т	Р	C
YCA	205		Advanced Op	erating System Concepts Lab	0	0	4	2
C:P: <i>A</i>	\ = ():1:1			L	Т	Р	Η

									0	0	4	4
								I				6
 Simulat 	te the FCFS te the SJF - te the Prior te the Rour te MVT an te Bankers te FIFO Pa te LRU Pa te Optimal tent linear an te searching	S - CPU - CPU So ity - CPU nd Robin d MFT algorithinge Repla ge Repla Page Re and nonl g and sor	Scheduling Cheduling J Schedu - CPU S m for De acement A placeme inear dat ting tech	ing Algo g Algorit Jling Alg Schedulin adlock A Algorithm Algorithm nt Algori a structu niques o	rithms hms. gorithms. ng Algor Avoidanc ms ns ithms ires to so f data str	ithms e lve real-t	time pro o differe	blems ent applic	cation c	lomai	ns	
						LEC	FURE	PRACI	FICAL	T	OTA	L
					0			60			60	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	Р	SO 2	
CO 1	PO1 2	PO2	PO3	PO4 1	PO5	PO6 1	PO7 1	PO8 1	PSO 1 2	P	SO 2 2	-
CO 1 CO 2	PO1 2 2 2	PO2 1 1	PO3 1 1	PO4 1 1	PO5 1 1	PO6 1 1	PO7 1 1	PO8 1 1	PSO 1 2 2	P	SO 2 2 2 2	-
CO 1 CO 2 CO 3	PO1 2 2 2 2 2	PO2 1 1 1 1	PO3 1 1 2	PO4 1 1 1 1	PO5 1 1 1 1	PO6 1 1 2	PO7 1 1 2	PO8 1 1 1 1	PSO 1 2 2 2	P	SO 2 2 2 2 2 2 2 2 2	-
CO 1 CO 2 CO 3 CO 4	PO1 2 2 2 2 2 2 2 2	PO2 1 1 1 2	PO3 1 1 2 1	PO4 1 1 1 1 1 1	PO5 1 1 1 2	PO6 1 1 2 1	PO7 1 1 2 1	PO8 1 1 1 2	PSO 1 2 2 2 2 2	P	SO 2 2 2 2 2 2 2 2 2	-
CO 1 CO 2 CO 3 CO 4 CO 5	PO1 2 2 2 2 2 1	PO2 1 1 1 2 1 1	PO3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO4 1 1 1 1 1 1 1 1 1 1	PO5 1 1 1 2 1 1	PO6 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO7 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO8 1 1 1 2 1 1	PSO 1 2 2 2 2 2 2 2 2 2	P	SO 2 2 2 2 2 2 2 2 2 2 2	-
CO 1 CO 2 CO 3 CO 4 CO 5 Total	PO1 2 2 2 2 2 1 09	PO2 1 1 1 2 1 06	PO3 1 1 2 1 1 1 06	PO4 1 1 1 1 1 1 05	PO5 1 1 1 2 1 06	PO6 1 1 2 1 1 1 1 06	PO7 1 1 2 1 1 1 06	PO8 1 1 1 2 1 06	PSO 1 2 2 2 2 2 2 2 10		SO 2 2 2 2 2 2 2 2 2 10	-

YCA206- CASE TOOLS LAB

CO1	Р	Guided	Manipulate various methods to define CASE tools
		Response	
CO2	Р	Set	Developing Relational databases
CO3	Р	Guided	Describe and implement various Application development tools
		Response	
CO 4	Р	Set	Describe and solve problems in developing application software
CO5	Р	Guided	Developing Management tools
		Response	

Course Code	Course Name	L	Т	Р	C							
YCA206	Case Tools Lab	0	0	4	2							
C:P:A = 0:2:0					••••••							
		L	Т	Р	H							
									0	0	4	4
--	------------------------------------	---	--	--------------------	--------------------------------------	---	---	--	-----------------------------	-----------	--------------------------	--
												60
The lab s	essions	will hav	ve experi	ments o	n the fol	lowing:						
1. Use of	of diagra	amming	tools for	r systen	n analys	is, such a	as Turb	o analyst,	for pro	epar	ing I	Data
Flow	diagran	ns and E	E-R diagr	ams.								
2. Use c	of tools t	for relat	ional data	abase de	esign suc	ch as rela	tional E	Designer.				
3. Ident	ify Use	Cases a	nd develo	op the U	Ise Case	model.						
4. Ident	ify the c	onceptu	al classe	s and de	evelop a	domain r	nodel w	vith UML	Class (diag	ram	
5. Drav	v releva	nt state	charts an		ty diagra	ims.		1 •	1 • ,•			
6. Use c	of toots s	such as	Power Bi	uilder, L	Jelphi, N	Aagic etc	. in dev	eloping aj	pplicati	on		
software including interactive data-entry screens,												
7. Trans	rt Conor	rationa	ng									
 Kepu O Hee 	of tools	for me	onaging t	he proc	ress of	oftware	develo	oment su	ch as s	Sour	ce C	'ode
Cont	rol Syste	em (SCC	TS)	ine proc		soltware	ueveloj	June ne su		Jour		ouc
10. Revis	sion Cor	ntrol Sv	stem (RC	S). Mal	ce etc.							
Reference	ces		(~,,								
Products	manual	s from c	concerned	l vendo	rs							
Kemingh	ЪU											
	ian, B. W	/., Pike,	R., '6'fbe	e Unix F	Program	ming Env	vironme	nt", Prent	ice Hal	l of	India	a,
New Del	ian, B.w hi, 1984	/., Pike,	R., '6'fbe	e Unix H	Programi	ming Env	vironme	nt", Prent	ice Hal	l of	India	ì,
New Del	ian, B.w hi, 1984	/., Pike,	R., '6'fbe	e Unix I	Program	ming Env	vironme TURE	nt", Prent PRACT	ice Hal ICAL	1 of	India OT A	a, AL
New Del	ian, B.W hi, 1984	7., Pike,	R., '6'fbe	e Unix F	Program	ming Env	vironme T URE	nt", Prent PRACT 60	ice Hal ICAL	1 of 1	India OTA	a, AL
New Del	ian, B.W	/., Pike,	R., '6'fbe	e Unix F	Program	ming Env	vironme T URE	nt", Prent PRACT 60	ice Hal ICAL	l of	India OT /	a, AL
New Del	ian, B.w hi, 1984	7., Pike, PO2	R., '6'fbe PO3	e Unix F	Program	LECT	vironme TURE PO7	nt", Prent PRACT 60 PO8	ice Hal ICAL PSO	1 of 1	India OTA	a, AL O 2
New Del	PO1 3	7., Pike, PO2 3	R., '6'fbe PO3 2	PO4	Program	PO6	Vironme TURE PO7 1	nt", Prent PRACT 60 PO8 1	ice Hal ICAL PSO 2	1 of 1	India OTA 60 PS	AL O 2 2
New Del CO 1 CO 2	PO1 3 3	 7., Pike, PO2 3 3 	R., '6'fbe PO3 2 2	PO4 2 2	Programs PO5 2 2	ming Env LECT 0 PO6 1 1	Vironme TURE PO7 1 1	nt", Prent PRACT 60 PO8 1 1 1	ice Hal	1 of 1	India OTA 60	AL O 2 2
New Del CO 1 CO 2 CO 3	PO1 3 3	 7., Pike, PO2 3 3 3 	R., '6'fbe PO3 2 2 2	PO4 2 2 2	Programme PO5 2 2 2 2	PO6 1 1 1	PO7 1 1 1	nt", Prent PRACT 60 PO8 1 1 1 1 1	ice Hal	1 of 1	India OTA 60 PS	AL 0 2 2 2
New Del CO 1 CO 2 CO 3 CO 4	PO1 3 3 3 3	 7., Pike, PO2 3 3 3 2 	R., '6'fbe PO3 2 2 2 2 2	PO4 2 2 2 2 2 2	PO5 2 2 2 2 2 2 2	ming Env LECT 0 PO6 1 1 1 1 1	Vironme CURE PO7 1 1 1 1 1	nt", Prent PRACT 60 PO8 1 1 1 1 1 1 1	ice Hal	1 of 1	India OTA 60	AL O 2 2 2 2 2
New Del CO 1 CO 2 CO 3 CO 4 CO 5	PO1 3 3 3 3 2	 7., Pike, PO2 3 3 3 2 2 2 	R., '6'fbe PO3 2 2 2 2 2 2 2	PO4 2 2 2 2 2 2 2	PO5 2 2 2 2 2 2 2 2 2	ming Env LECT 0 PO6 1 1 1 1 1 1 1	PO7 1 1 1 1 1 1 1 1 1 1	nt", Prent PRACT 60 PO8 1 1 1 1 1 1 1 1	ice Hal	1 of 1	India OTA 60 PS	AL 0 2 2 2 2 2 2 2 2
New Del CO 1 CO 2 CO 3 CO 4 CO 5 Total	PO1 3 3 3 3 2 14	 7., Pike, PO2 3 3 3 2 2 13 	R., '6'fbe PO3 2 2 2 2 2 2 2 10	PO4 2 2 2 2 2 10	PO5 2 2 2 2 2 10	ming Env LECT 0 PO6 1 1 1 1 1 1 5	PO7 1 1 1 1 1 5	nt", Prent PRACT 60 PO8 1 1 1 1 1 1 1 5	ice Hal	1 of 1	India OTA 60 PS	AL O 2 2 2 2 2 2 2 0

YCA301-ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

CO1	С	Knowledge	Describe various methods to define AI techniques
CO2	С	Understand	Understand and apply set theory and Relations
CO3	С	Knowledge	Describe and apply various counting and Predicate Logic
CO4	С	Understand	Describe and solve problems in Probabilistic reasoning
CO5	С	Understand	Understand Concept of learning the expert systems

	COCKELIGINE		L	L	1	C
YCA301	Artificial Intelligence and Learning	d Machine	4	0	0	4
C:P:A = 4:0:0						
			L	Т	Р	H
			4	0	0	4
UNIT –I: AI Technique	bS					12
AI techniques-search know	owledge, abstraction- natural	l language pr	ocessing- vis	ion an	d spe	ech
processing- Games-theor	em proving- robotics - exper	t systems.				
UNIT -II : State Space	Search					12
State space search: Produ	action systems- Search space	control: Dep	oth first, bread	lth fir	st sea	rch,
heuristic search - Hill cli	mbing - best first search - br	anch and bou	nd.			
UNIT- III: Predicate L	ogic					12
Minimax search: Alpha-	Beta cut offs- Predicate Log	gic : Skolem	izing queries	- Un	ificat	ion.
Modus pone - Resolution	- dependency directed backt	tracking				
UNIT- IV: Backtrackin	g					12
Rule Based Systems-For	ward reasoning-Conflict reso	lution-Backv	ard reasonin	g-		
Use of no backtrack-Str	uctured Knowledge Represe	ntations- Ser	nantic Net-sl	ots, ez	xcepti	ions
and defaults Frames- Pro	babilistic reasoning-Use of c	ertainty facto	rs-Fuzzy logi	c.		
UNIT- V: Expert System	ms					12
Concept of learning-lea	rning automation-genetic a	llgorithm- le	arning by in	ductio	on-ne	ural
netsback propagation-Ne	ed and justification for expe	ert systems- H	Knowledge ad	quisit	ion-C	Case
studies: MYCIN, RI.						
]	LECTURE	TUTORIA	LT	OTA	L
	(60	0	6	0	
TEXT	<u> </u>		<u>I</u>	I		
1. Stuart J.Russell and I	Peter Norvig., "Artificial Intel	lligence- A M	Iodern Appro	ach",	Pears	son-
3 rd edition, 2010.						

REFERENCES

- 1. Nilsson, N.J., "Principles of AP', Narosa Publishing House, 1990.
- 2. Patterson, D. W., "Introduction to AI and Expert Systems", Prentice Hall of India, 1992.
- 3. Peter Jackson, "Introduction to Expert Systems", Addison Wesley Publishing Company, M.A., 1992
- 4. Rich, E., and Knight, K., "Artificial Intelligence", Tata McGraw Hill (2nd Edition), 1992.
- Schalk off, R.J., "Artificial Intelligence An Engineering Approach", McGraw Hill 5. International Edition, Singapore, 1992.
- 6. Sasikumar, M., Ramani, S., "Rule Based Expert System", Narosa Publishing House, 1994.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	2	2	2	1	2	2	3	3
	5					_				5
CO 2	3	3	2	2	2	1	2	2	3	3
CO 3	3	2	2	2	2	1	2	2	3	3
CO 4	2	3	2	2	2	1	2	2	2	2
CO 5	3	2	2	2	2	1	2	2	2	2
Total	14	13	10	10	10	5	10	10	13	13
Course	3	3	2	2	2	1	1	1	3	3

YCA302-GRAPHICS AND MULTIMEDIA

Course Outcomes:

CO1	С	Knowledge	Describe various methods to define line-drawing algorithms
CO2	С	Understand	Understand and apply 2d and 3d transformations
CO3	С	Knowledge	Describe and apply various types multimedia applications
CO4	С	Understand	Describe and solve problems in development tools
CO5	С	Understand	Understand hypermedia

COURSE CODE	COURSE NAME			Т	P	C
YCA302	Graphics and Multime	edia	3	0	0	3
C:P:A = 3:0:0						
			L	Т	Р	H
			3	0	0	3
UNIT -I: OUTPUT P	RIMITIVES		<u> </u>			09
Points and lines – Line-	drawing algorithms – DD	A algorithm –	Bresenham's	s line	algo	rithm –
Attributes of output pri	mitives: Line attributes –	Area-fill attri	butes – Chai	acter	attri	butes –
Bundled attributes						
UNIT- II: 2D AND 3D	TRANSFORMATIONS					09
Two-dimensional Geom	etric transformations: Bas	sic transformation	tions – Matri	ix rep	reser	itations
– Composite transfor	mations – Three-Dime	nsional objec	t representa	tions	_	Three-
Dimensional geometric	and modeling transformat	ions – Three-E	Dimensional v	viewin	1g –	Hidden
surface elimination – Co	olor models – Virtual reali	ty – Animatior	1		-	
UNIT- III: MUTLIME	DIA					09
Multimedia basics – M	ultimedia applications –	Multimedia sy	stem archite	cture	– Ev	volving
technologies for multin	nedia – Defining objects	for multimedi	a systems –	Mult	imed	ia data
interface standards – M	ultimedia databases					
UNIT- IV: MULTIME	DIA					09
Technology: Developm	ent Tools – Image – Audi	o – Video- Co	mpression ar	nd dec	comp	ression
– Data and file format	standards – Multimedia I/	O technologie	s – Digital v	voice	and a	udio –
Video image and anima	tion – Full motion video –	Storage and re	etrieval techn	ologi	es	
UNIT- V: HYPERME	DIA					09
Multimedia authoring a	and user interface – Hyp	ermedia mess	aging – Mol	bile n	nessa	ging –
Hypermedia message c	omponent – Creating hy	permedia mes	sage – Integ	rated	mult	timedia
message standards – Int	egrated document manage	ment – Distrib	outed multime	edia s	ysten	ns
-	-	LECTURE	TUTORIA	LT	OTA	\L
		45	0		4	15
TEXT			-			

- 1. Donald Hearn and M.Pauline Baker, Computer Graphics in C Version, Fifth Edition, Pearson Education, 2015.
- 2. Andleigh, P. K and Kiran Thakrar, Multimedia Systems and Design, PHI, 2003.
- 3. Judith Jeffcoate, Multimedia in Practice: Technology and Practice., Pearson Education, 2014

REFERENCES

1. William M. Neuman, Robert R. Sprout, Principles of interactive Computer Graphics, McGraw Hill International Edition.

2. Buford J. F Koegel, Multimedia Systems, Twelfth Indian Reprint, Pearson Education

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	3	3	3	1	2	2	3	3
CO 2	3	3	2	2	2	1	2	2	3	3
CO 3	3	3	2	2	2	1	2	2	3	3
CO 4	3	3	2	2	2	1	2	2	2	2
CO 5	3	2	2	2	2	1	2	2	2	2
Total	15	14	11	11	11	5	10	10	13	13
Course	3	3	3	3	3	1	1	1	3	3

YCA303- OPTIMIZATION TECHNIQUES

CO1	С	Knowledge	Describe	e various	methods	to defin	ne simplex	method
				<u> </u>				

- CO2 C Understand *Understand* and apply branch and bound method.
- CO3 C Knowledge *Describe* and *apply* various queuing theory
- CO4 C Understand *Describe* and *solve* problems in inventory theory
- CO5 C Understand Understand PERT and CPM path.

COURSE CODE	COURSE NAME			L	Т	Р	C	
YCA303	Optimization Techniqu	ies Linear		4	0	0	4	
	Programming							
C:P:A = 4:0:0							4	
				L	Т	Р	Η	
				4	0	0	4	
UNIT- I: Introduction to	Optimization Techniqu	es	i	<u>I</u>		I	12	
Graphical method for two	o dimensional problems	- Central prob	lem of 1	linear	prog	ramm	ning	
various definitions - state	ments of basic theorems a	nd properties -	Phase I	and I	Phase	II of	the	
simplex method - revised	simplex method - primal a	nd dual - dual	simplex	meth	od.			
UNIT- II: Integer Programming 12								
Sensitivity analysis transportation problem and its solution - assignment problem and its								
solution by Hungarian me	thod- Gomorra cutting pla	ne methods - B	Branch and	nd Bo	und n	netho	d	
UNIT- III: Queuing Theory 12								
Characteristics of queuin	g systems - steady state	e Mimi, MlMi	t/K and	I MIN	AIC o	queue	eing	
models- Replacement of	items that deteriorate -	- Replacement	of iter	ns th	at fai	l Gr	oup	
replacement and individua	l replacement.							
UNIT- IV: Inventory Th	eory						12	
Costs involved in invento	ory problems - single iter	n deterministic	c model	s-ecor	nomic	lot	size	
models without shortages	and with shortages having	production rat	e infinit	e and	finite			
UNIT- V: PERT and CP	M						12	
Arrow networks - time es	timates- earliest expected	time, latest allo	owable o	occurr	ence	time	and	
slack - critical path - p	probability of meeting so	cheduled date	of com	pletio	on of	proj	ect-	
calculations on CPM netv	vork - various floats for a	ctivities - critic	cal path	- upd	ating	proje	ct -	
operation time cost trade	off curve - project time c	ost trade off c	urve - se	electio	on of	schec	lule	
based on cost analysis.								
		LECTURE	TUTO	RIAI	L T	ОТА	L	
		60	(0		60		
TEXT		L	<u>i</u>		i			

1. Hamdy A.TAHA.,"Operations research- An Introduction", 8thedition, Pearson Education,Inc,2007.

REFERENCES

- 1. Karnbo, N.S., "Mathematical Programming Techniques", McGraw Hill, New York. 1985.
- Kanti Swarup, Gupta, P.K., and Man Mohan, "Operations Research", Sultan Chand & Sons-New Delhi. 1990.
- 3. Mital K. V., "Optimization Methods In Operations Research and System Analysis", New Age International (P) Ltd., New Delhi, 1992.
- 4. Saffer, L.R., Fitter J.B., and MeyerW.L., "The Critical Path Method". McGraw Hill. New York. 1990.
- 5. Taha, H.A., "Operations research- An Introduction", McMillan Publishing co .• New York, 1986.
- Gillet, B.E., "Introduction to Operations Research : A Computer Oriented Algorithmic Approach". Tata McGraw Hill, New York, 1990.

	DO1	DOO	DO2	DO 4	DOF	DOC	DO7	DOQ	DCO	DCO
	POI	PO2	PO3	PO4	POS	PO6	PO/	PO8	PSO	PSO
									1	2
CO 1	2	3	2	2	2	1	1	1	2	2
CO 2	3	3	2	2	2	1	1	1	2	2
CO 3	3	3	2	2	2	1	1	1	2	2
CO 4	2	2	2	2	2	1	1	1	2	2
CO 5	3	2	2	2	2	1	1	1	2	2
Total	13	13	10	10	10	5	5	5	10	10
Course	3	3	2	2	2	1	1	1	2	2

YCA304- ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING LAB

tcomes:

CO	Р	Guided	Manipulate various methods to define AI techniques
1		Response	
CO	Р	Set	Starts and apply set theory and Relations
2			
CO	Р	Guided	<i>Develop</i> and <i>implement</i> various counting and Predicate Logic
3		Response	
CO	Р	Guided	Develop and solve problems in Probabilistic reasoning
4		Response	
CO	Р	Set	Build Concept of learning the expert systems
5			

COURSE CODE	COURSE NAME	L	Т	Р	С
YCA304	Artificial Intelligence and Machine Learning	0	0	3	2
	Lab				
C:P:A = 0:2:0					
		L	Т	Р	Η
		0	0	0	3
					45
	· · · · · · · · · · · · · · · · · · ·		·		

1. Write a program to implement simple Chatbot using NLP concept of AI.

- 2. Write a program to implement Breadth first search traversal Algorithm with AI techniques.
- 3. Write a program to implement Depth first search traversal Algorithm using AI techniques.
- 4. Write a program to implement Tower of Hanoi Problem using AI techniques.
- 5. Write a program to implement Hung man game with AI techniques.
- 6. Write a program to implement Tic-Tac-Toe game with AI techniques.
- 7. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets in machine learning.
- 8. Write a program to implement K nearest Neighbour algorithm to classify the iris data set, print both correct and wrong predictions using Machine Learning Techniques.
- 9. Case Study in NLP Text classification, parts of speech tagging and stemming from sentences.
- 10. Case Study in DCNN GoogLeNet and AlexNet

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PSO
									1	2
CO 1	2	1	1	1	1	1	1	1	2	2
CO 2	2	1	1	1	1	1	1	1	2	2
CO 3	2	1	2	1	1	2	2	1	2	2
CO 4	2	2	1	1	2	1	1	2	2	2
CO 5	1	1	1	1	1	1	1	1	2	2
Total	09	06	06	05	06	06	06	06	10	10
Course	3	2	2	1	2	2	2	2	3	3
0-	No relation	on 3-Hi	ighly rela	ation	2- Med	ium rela	tion 1	- Low re	lation	

YCA305-OPTIMIZATION TECHNIQUES LAB

Course Outcomes:

CO1	Р	Guided	Manipulate various methods to define simplex method
		Response	
CO2	Р	Set	Starts and apply branch and bound method.
CO3	Р	Guided	Develop and implement various queuing theory
		Response	
CO4	Р	Guided	Develop and solve problems in inventory theory

Response

COURSE CODE	COURSE NAME	L	T	P	C
YCA305	Optimization Techniques Lab	0	0	4	2
C:P:A = 0:2:0		L	Т	P	Η
		0	0	4	4
					60

To develop computer programs for the following and to test with suitable numerical examples

- 1. Graphical method to solve two dimensional Linear Programming Problem.
- 2. Revised Simplex method to solve n-dimensional Linear Programming Problem
- 3. Dual Simplex method to solve n-dimensional Linear Programming Problem.
- 4. Solution of Transportation problem.
- 5. Gomory cutting plane methods for Integer Programming Problems
- 6. Branch and Bound method to solve Integer Programming Problem.
- 7. M/M/1/N AND M/M/C queuing problems.
- 8. Single item deterministic inventory model problems with/without shortage and finite/infinite production rate.
- 9. To draw the PERT/CPM networks.
- 10. Calculations of PERT analysis
- 11. Calculation of CPM analysis.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PSO
									1	2
CO 1	2	1	1	1	1	1	1	1	2	2
CO 2	2	1	1	1	1	1	1	1	2	2
CO 3	2	1	2	1	1	2	2	1	2	2
CO 4	2	2	1	1	2	1	1	2	2	2
CO 5	1	1	1	1	1	1	1	1	2	2
Total	09	06	06	05	06	06	06	06	10	10
Course	3	2	2	1	2	2	2	2	3	3
1-0	No relation	on 3- Hi	ghly rela	ation	2-Med	ium rela	tion 1	- Low re	lation	

COURSECODE	COURSE NAME	L	Τ	Р	С
YCA306	Industrials Lectures	0	0	2	2
C:P:A = 0:2:0					
		L	Т	Р	Η
		0	0	2	2

- CO1 P Guided Response Identifying the Recent Technologies
- CO2 P Guided Response Preparing the content/Arranging the Seminar
- CO3 P Guided Response Attending the Lectures
- CO4 P Guided Response Implementing the Lectures
- CO5 P Guided Response Answer the Question

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	2	2	2	2	2	2	2	3	3
CO 2	2	2	2	2	2	2	2	2	3	3
CO 3	2	2	2	2	2	2	2	2	3	3
CO 4	2	2	2	2	2	2	2	2	3	3
CO 5	2	2	2	2	2	2	2	2	3	3
Total	10	10	10	10	10	10	10	10	15	15
Course	3	2	2	2	2	2	2	2	3	3

COURSECODE	COURSE NAME	L	Τ	Р	С
YCA307	Mini Project	0	0	3	2
C:P:A = 0:2:0					
		L	T	Р	Η
		0	0	3	3

- CO1 P Guided Response Practice the Requirements Analysis
- CO2 P Guided Response Create the Design for their project
- CO3 P Guided Response Create the Coding
- CO4 P Guided Response Plan for Testing
- CO5 P Guided Response Solve the Conclusion

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	2	2	2	2	2	2	2	3	3
CO 2	2	2	2	2	2	2	2	2	3	3
CO 3	2	2	2	2	2	2	2	2	3	3
CO 4	2	2	2	2	2	2	2	2	3	3
CO 5	2	2	2	2	2	2	2	2	3	3
Total	10	10	10	10	10	10	10	10	15	15
Course	3	2	2	2	2	2	2	2	3	3

COURSECODE	COURSE NAME	L	Τ	P	C
YCA401	Research Methodology(Paper Publications)	0	0	3	3
C:P:A = 0:3:0					
		L	Т	Р	Η
		0	0	3	3

- CO1 P Guided Response Identifying the Topic
- CO2 P Guided Response Preparing the content/Arranging the Seminar
- CO3 P Guided Response Presenting the content
- CO4 P Guided Response Addressing the Audience
- CO5 P Guided Response Answer the Question

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	2	2	2	2	2	2	2	3	3
CO 2	2	2	2	2	2	2	2	2	3	3
CO 3	2	2	2	2	2	2	2	2	3	3
CO 4	2	2	2	2	2	2	2	2	3	3
CO 5	2	2	2	2	2	2	2	2	3	3
Total	10	10	10	10	10	10	10	10	15	15
Course	3	2	2	2	2	2	2	2	3	3

COURSECODE	COURSE NAME	L	Τ	P	C
YCA402	Project Work	0	0	6	12
C:P:A = 0:3:2					
		L	T	Р	H
		0	0	6	6

- CO1 P Guided Response Practice the Requirements Analysis
- CO2 P Guided Response Develop the Design of the project
- CO3 P Guided Response Create the Coding
- CO4 P Guided Response Plan for Testing
- CO5 P Guided Response Solve the problem and Write Conclusion

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	2	2	2	2	2	2	2	3	3
CO 2	2	2	2	2	2	2	2	2	3	3
CO 3	2	2	2	2	2	2	2	2	3	3
CO 4	2	2	2	2	2	2	2	2	3	3
CO 5	2	2	2	2	2	2	2	2	3	3
Total	10	10	10	10	10	10	10	10	15	15
Course	3	2	2	2	2	2	2	2	3	3

YCAEE1 DATA MINING AND DATA WAREHOUSING

CO1	С	Understand	<i>Explain</i> the concepts of data mining
CO2	С	Understand	<i>Describe</i> and <i>implement</i> the concept of association rule mining
CO3	С	Understand	Describe and implement the concept of classification and clustering the datasets .
CO4	С	Understand	Describe and implement various types data warehouse tools
CO5	С	Understand	<i>illustrate</i> the different types of mining concepts and its applications

YCAEE1DATA MINING AND DATA WAREHOUSING4004C:P:A = 4:0:0IIIIImage: C:P:A = 4:0:0Image: C:P:A = 4:0:0											
WAREHOUSINGIIC:P:A = 4:0:0ITPIITPIII <td< td=""></td<>											
C:P:A = 4:0:0 I T P H Image: L T P H Image: L 0 0 4 Image: L Image: L 0 0 4 Image: L Image: L 1milestrestrestrestrestrestrestrestrestrestr											
LTPHd004UNIT I FUNDAMENTALSFundamentals of Statistics – Databases – Data Mining Functionalities – Steps in Data Mining Process– Architecture of a typical Data Mining Systems – Classification of Data Mining Systems –Overview of Data Mining Techniques-Major issues in data mining.U											
4004UNIT I FUNDAMENTALSFundamentals of Statistics – Databases – Data Mining Functionalities – Steps in Data Mining Process– Architecture of a typical Data Mining Systems – Classification of Data Mining Systems –Overview of Data Mining Techniques-Major issues in data mining.12											
UNIT I FUNDAMENTALS12Fundamentals of Statistics – Databases – Data Mining Functionalities – Steps in Data Mining Process– Architecture of a typical Data Mining Systems – Classification of Data Mining Systems –Overview of Data Mining Techniques-Major issues in data mining.											
Fundamentals of Statistics – Databases – Data Mining Functionalities – Steps in Data Mining Process– Architecture of a typical Data Mining Systems – Classification of Data Mining Systems –Overview of Data Mining Techniques-Major issues in data mining.											
Process– Architecture of a typical Data Mining Systems – Classification of Data Mining Systems –Overview of Data Mining Techniques-Major issues in data mining.											
Systems –Overview of Data Mining Techniques-Major issues in data mining.											
UNIT IIDATA PREPROCESSING AND ASSOCIATION RULES 12											
Data Pre-processing: Data Cleaning– Data Integration– Data Transformation – Data											
Reduction- Concept Hierarchies - Concept Description- Data Generalization - Data											
Summarization- Data Characterization– Mining Association Rules in Large Databases.											
UNIT IIIPREDICTIVE MODELING 12											
Classification and Prediction Issues Regarding Classification and Prediction-Classification											
by Decision Tree Induction - Bayesian Classification - Other Classification Methods -											
Prediction – Clusters Analysis Types of Data in Cluster Analysis – Categorization of Major											
Clustering Methods Partitioning Methods – Hierarchical Methods											
UNIT IVDATA WAREHOUSING 12											
Data Warehousing Components – Multi Dimensional Data Model – Data											
Warehouse Architecture – Data Warehouse Implementation – Mapping the Data Warehouse											
to Multiprocessor Architecture – OLAP – Need – Categorization of OLAP Tools.											
UNIT V APPLICATIONS 12											
Applications of Data Mining – Social Impacts of Data Mining – Tools – An Introduction to											
DB Miner – Case Studies – Mining WWW – Mining Text Database – Mining Spatial											
Databases.											
LECTURE TUTORIAL PRACTICAL TOTAL											
<u> </u>											
1. Jiawei Han and Micheline Kamber, Data Mining Concepts and Techniques, Morgan											
Raumann Puolisners, 2002.											
KEFEKENCES											
1. Alex berson and Stephen J. Sinth, Data warehousing- Data Minning & OLAP, 1MH, 2011											
2011. 2 Usema M Feynad at Al Advances in Knowledge Discovery and Data Mining The											
M.I.T Press, 2009.											
3. Ralph Kimball, The Data Warehouse Life Cycle Toolkit, John Wiley & Sons Inc., 2008.											
E REFERENCES											
1. https://www.tacoma.uw.edu/sites/default/files/sections/InstituteTechnology/TCSS555_Dat											

amining.pdf

2. http://www.kdnuggets.com/data_mining_course/syllabus.html

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	0	1	0	2	0	0	1	3
CO 2	3	2	1	1	0	0	2	0	1	2
CO 3	2	2	1	2	0	0	2	0	0	2
CO 4	2	0	2	1	0	0	2	0	2	2
CO 5	2	0	2	2	0	0	0	0	2	2
Total	12	6	6	7	0	2	6	0	6	11
Course	3	2	2	2	0	1	2	0	2	3

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

YCAEE2 HIGH PERFORMANCE COMPUTING

CO1	С	Understand	<i>Explain</i> the concepts of processors and models
CO2	С	Understand	<i>Describe</i> the architecture and memory design
000	0	TT 1 . 1	
CO3	С	Understand	Describe the design issues in parallel computing.
CO4	С	Understand	Describe the limitations of parallel computing and power
			aware techniques
CO5	С	Understand	<i>illustrate</i> the different types of advanced concepts

COURSE CODE	COURSE NAME	L	Т	Р	C				
YCAEE2	HIGH PERFORMANCE COMPUTING	4	0	0	4				
C:P:A = 4:0:0									
		L	Т	Р	Η				
		4	0	0	4				
UNIT I CONCEPTS	UNIT I CONCEPTS 12								
Parallel Processing Concept :Levels of parallelism (instruction, transaction, task, thread, memory, function)- Models (SIMD, MIMD, SIMT, SPMD, Dataflow Models, Demand- driven Computation etc)- Architectures: N-wide superscalar architectures, multi-core, multi-threaded									
UNIT IIPARALLEL PROGRAMMING WITH CUDA 12									
Parallel Programming with CUDA : Processor Architecture, Interconnect, Communication,									
Memory Organization,	and Programming Models in high performance	rmanc	e co	mput	ing				
architectures: (Examples	: IBM CELL BE, Nvidia Tesla GPU, Inte	el Lar	rabee	Mic	cro-				
architecture and Intel N	ehalem micro - architecture- Memory hierarc	chy ar	nd tra	nsact	ion				
specific memory design-	Thread Organization								
UNIT IIIISSUES					12				
Fundamental Design Iss	ues in Parallel Computing : Synchronization	n- Sc	heduli	ng-	Job				
Allocation- Job Partitior	ning- Dependency Analysis- Mapping Paralle	el Alg	gorithi	ns c	onto				
Parallel Architectures- Per	rformance Analysis of Parallel Algorithms								
UNIT IVLIMITATION	S				12				
Fundamental Limitations	s Facing Parallel Computing and power a	ware	techr	nique	s :				
Bandwidth Limitations-	Latency Limitations- Latency Hiding/Tolerati	ng Te	echniq	ues	and				

their lir	nitations- Power- awar	e Processing	Techniques-Pow	ver-aware Memo	ry Design-					
Power-a	ware Interconnect Design	- Software Pov	ver Management	t.	•					
UNIT V	ADVANCED TOPIC	S			12					
Petascal	e Computing-Optics in	n Parallel C	omputing- Qua	antum Compute	rs- Recent					
develop	nents in Nanotechnology	and its impact	on HPC	,						
		LECTURE	TUTORIAL	PRACTICAL	TOTAL					
		60	-	-	60					
TEXT										
1. Geor	ge S. Almasi and Alan	Gottlieb, High	ly Parallel Com	puting, Benjamir	n Cumming					
Publishers.										
2. Kai Hwang ,Advanced Computer Architecture: Parallelism, Scalability, Programmability,										
McC	McGraw Hill 1993									
3. David Culler, Jaswinder Pal Singh, Anoop Gupta, Parallel Computer Architecture: A										
hard	ware/Software Approach,	, Morgan Kaufi	nann, 1999.							
4. K.	4. K. Hwang& Z. Xu, Scalable Parallel Computing – Technology, Architecture,									
Prog	ramming., McGraw Hill	1998.								
REFER	ENCES									
1. Will	am James Dally and H	BrianTowles, F	Principles and H	Practices on Inte	rconnection					
Netv	orks, Morgan Kauffman	2004.								
2. Hube	ert Nguyen, GPU Gems	3, Addison We	sley, 2008, (Cha	pter 29 to Chapter	r 41).					
3. Anai	thGrama, Anshul Gupta	, George Karyp	is, and Vipin Ku	umar, Introduction	n to Parallel					
Com	puting, , 2nd edition, Pea	rson, 2003.								
4. Davi	d A. Bader (Ed.), Petasc	ale Computing	g: Algorithms an	d Applications, C	Chapman &					
Hall	CRC, 2008									
•										
E REFE	RENCES									
1. https	://nptel.ac.in/courses/106	/108/10610805	5/							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	0	1	0	2	0	0	1	3
CO 2	3	2	1	1	0	0	2	0	1	2
CO 3	2	2	1	2	0	0	2	0	0	2
CO 4	2	0	2	1	0	0	2	0	2	2
CO 5	2	0	2	2	0	0	0	0	2	2
Total	12	6	6	7	0	2	6	0	6	11
Course	3	2	2	2	0	1	2	0	2	3
	0.11	4	0 771 1				a			

YCAEE3-COMPILER DESIGN

	Domain	Level	Course Outcomes
CO 1	С	Understand	Explain the concept of Compiler designing
CO2	С	Understand	Understand the concept of parser Theory
CO3	С	Understand	Understand the concept syntax analysis
CO4	С	Understand	Understand the handling techniques
CO5	С	Understand	Understand the code generation

Course Code	Course Name			L	Т	Р	С
YCAEE3	Compiler Design			4	0	0	4
C:P:A = 4:0:0							-
				L	Τ	Р	H
				4	0	0	4
UNIT-I: Intro	oduction						12
Classification of	grammars. Context free gram	nars. Determin	istic finit	te sta	ate aut	omata	(DFA)
Non-DFA.							
UNIT- II: Parsir	ng Theory- Syntax Analyzer						12
Scanners. Top do	own parsing, LL grammars. B	ottom up parsi	ing. Polis	sh ex	pressi	ons O	perator
precedence gram	nar. IR grammars. comparison	n of parsing me	ethods. E	rror 1	handli	ng.	
UNIT- III: Run	time Environment						12
Symbol table han	dling techniques. Organization	n for non-block	c and blo	ck st	ructur	ed lan	guages.
Run time storage	administration. Static and dyr	namic allocation	n.				
UNIT- IV: Synta	ax Analysis						12
Intermedia	ate forms of source program	1. Polish N-tu	ple and	synt	ax tre	es. Se	emantic
analysis and code	generation.						
UNIT- V: Code	Optimization and Code Gen	eration					12
Code opti	mization. Folding, redundant	sub-expression	evaluati	on. (Optimi	zation	within
iterative loops.							
		LECTURE	TUTO	RIA	LT	OTAI	⊿
		60	-		60)	
			-		i		
TEXT Books							
1. Murray, el.al	"The Visual C++ Handbook",	2nd edition. O	sborne N	1cGr	aw Hi	ll. Ne	W
York. 1996.							
REFERENCES							

- 1. Tremblay, et. al, "The Theory and Practice of Compiler Writing". McGraw Hill, New York,
- 2. Keith D Cooper and Linda Torczon, "Engineering a Compiler", Morgan Kaufmann Publishers Elsevier Science, 2004.
- 3. Charles N. Fischer, Richard. J. LeBlanc, "Crafting a Compiler with C", Pearson Education, 2008.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	2	2	2	1	1	1	2	2
CO 2	3	3	2	2	2	1	1	1	2	2
CO 3	3	3	2	2	2	1	1	1	2	2
CO 4	3	2	2	2	2	1	1	1	2	2
CO 5	2	2	2	2	2	1	1	1	2	2
Total	14	13	10	10	10	5	5	5	10	10
0	2	2	2		0		1	1		
Course	5	5	2	2	2	1	1	1	2	2

YCAEE8 SYSTEM ANALYSIS AND SIMULATION

- CO1 C Knowledge *Define* Role of modeling
- CO2 C Understand *Describe* Generation of Pseudo-Random Numbers
- CO3 C Knowledge *Outline the* simulating queuing systems
- CO4 C Knowledge Describe Simulation of Systems
- CO5 C Understand Understand Cases on Simulation

COURSE CODE	COURSE NAME	L	Т	Р	C			
YCAEE8	System Analysis and Simulation	4	0	0	4			
C:P:A =4:0:0								
		L	Τ	P	H			
		4	0	0	4			
UNIT- I : (Systems Analysis)								

	<i>(</i> ? •			-	*					
UNIT-II: ((Simu	lation of	of Queuir	ng Syste	ems)					12
Generation	of Ps	seudo-R	andom N	Numbers	s- and S	stochastic	Variate	es using	the con	mputer; -
Simulation of	of Que	euing Sy	stems							
UNIT -III:	(Sin	nulatio	n Langua	ages)						12
Using specia	al pur	pose lan	guages fo	or simul	ating que	euing syst	tems- G	PSS and/o	or SLAN	M-System
Dynamics										
UNIT-IV:	(Syst	em Dyr	namics w	ith Dyn	amo)					12
Simulation of	of Sys	tems wi	th Feedba	ack; usii	ng DYN.	AMO in S	System I	Dynamics	;	I
UNIT -V :(\$	Simul	ation o	n Busine	ss)						12
Cases on Sir	mulati	on in Pi	roduction	-Financ	e, Marke	ting, and	Corpora	te Planni	ng; Proj	ject Work
						LECT	URE	TUTORI	IAL 7	FOTAL
						6()	0		60
TEXT							<u></u>		I	
TEXT 1. Kamal, R	aj, En	nbedded	Systems	: Archit	ecture, P	rogramm	ing & D	esign, Ta	ta McG	raw Hill,
TEXT 1. Kamal, R 2ndEd.,2008	aj, En 8	nbedded	Systems	: Archit	ecture, P	rogramm	ing & D	esign, Ta	ta McG	raw Hill,
TEXT 1. Kamal, R. 2ndEd.,2008 2.Jerry Bank	.aj, En 8 ks, Joł	nbedded nn S. Ca	l Systems rson, Bar	: Archit ту L. No	ecture, P elson, Da	rogramm avid M. N	ing & D licol "D	esign, Ta iscrete – H	ta McG	raw Hill, ystem
TEXT 1. Kamal, R. 2ndEd.,2008 2.Jerry Bank simulation",	.aj, En 8 ks, Joł , Pears	nbedded nn S. Ca son eduo	Systems rson, Bar cation.	: Archit ту L. No	ecture, P elson, Da	rogramm avid M. N	ing & D licol "D	esign, Ta iscrete – I	ta McG Event sy	raw Hill, ystem
TEXT 1. Kamal, Ra 2ndEd.,2008 2.Jerry Bank simulation", REFEREN	aj, En 8 ks, Joh , Pears CES	nbedded nn S. Ca son eduo	Systems rson, Bar cation.	: Archit ту L. Ne	ecture, P elson, Da	rogramm avid M. N	ing & D licol "D	esign, Ta iscrete – I	ta McG Event sy	raw Hill, ystem
TEXT 1. Kamal, Ra 2ndEd.,2008 2.Jerry Bank simulation", REFEREN 1 Banks, J.,	aj, En 8 ks, Joh , Pears CES Catso	nbedded nn S. Ca son educ	l Systems rson, Bar cation. elson, B.l	: Archit ту L. Ne L., "Dise	ecture, P elson, Da crete-Eve	Programm avid M. N ent Syster	ing & D licol "D n Simul	esign, Ta iscrete – H ation", (21	ta McG Event sy nd Editi	raw Hill, ystem ion).
TEXT 1. Kamal, R 2ndEd.,2008 2.Jerry Bank simulation", REFEREN 1 Banks, J., Prentice Hal	aj, En 8 ks, Joh , Pears CES Catso Il of It	nbedded nn S. Ca son educ n, S., N ndia, N.	l Systems rson, Bar cation. elson, B.1 Delhi, 19	: Archit ry L. No L., "Disc 996.	ecture, P elson, Da crete-Eve	Programm avid M. N ent Syster	ing & D licol "D m Simul	esign, Ta iscrete – H ation", (2)	ta McG Event sy nd Editi	raw Hill, ystem ion).
TEXT 1. Kamal, R. 2ndEd.,2008 2.Jerry Bank simulation", REFEREN 1 Banks, J., Prentice Hal 2. Deo, N., "	aj, En 8 ks, Joh , Pears CES Catso Il of It	nbedded nn S. Ca son educ n, S., N ndia, N. m Simu	l Systems rson, Bar cation. elson, B.1 Delhi, 19 lation wi	: Archit Ty L. No L., "Diso 996. th Digita	ecture, P elson, Da crete-Eve al Comp	rogramm avid M. N ent Syster uters". Pr	ing & D licol "D m Simul entice H	esign, Ta iscrete – I ation", (2 fall of Ind	ta McG Event sy nd Editi ia, 1979	raw Hill, ystem ion).
TEXT 1. Kamal, R. 2ndEd.,2008 2.Jerry Bank simulation", REFEREN 1 Banks, J., Prentice Hal 2. Deo, N., " Law, A.M.,	aj, En 8 ks, Joh , Pears CES Catso Il of It "Syste and F	nbedded nn S. Ca son educ n, S., N ndia, N. m Simu Kelton, V	l Systems rson, Bar cation. elson, B.l Delhi, 19 lation wi W.D., "Si	: Archit Ty L. No L., "Diso 996. th Digita mulatio	ecture, P elson, Da crete-Eve al Comp n Model	rogramm avid M. N ent Syster uters". Pr ling and	ing & D licol "D m Simul entice H Analysi	esign, Ta iscrete – H ation", (2 fall of Ind s", (2nd E	ta McG Event sy nd Editi ia, 1979 Edition).	raw Hill, ystem ion).). . McGraw
TEXT 1. Kamal, R. 2ndEd.,2008 2.Jerry Bank simulation", REFEREN 1 Banks, J., Prentice Hal 2. Deo, N., " Law, A.M., Hill, N. Y, 1	aj, En 8 ks, Jol , Pears CES Catso Il of It "Syste and F 1991.	nbedded nn S. Ca son educ n, S., N ndia, N. m Simu Kelton, V	Systems rson, Bar cation. elson, B.I Delhi, 19 lation wi W.D., "Si	: Archit Ty L. No L., "Diso 996. th Digita mulatio	ecture, P elson, Da crete-Evo al Comp on Model	rogramm avid M. N ent Syster uters". Pr ling and	ing & D licol "D m Simul entice H Analysis	esign, Ta iscrete – H ation", (2 fall of Ind s", (2nd H	ta McG Event sy nd Editi ia, 1979 Edition).	raw Hill, ystem ion).). . McGraw
TEXT 1. Kamal, R. 2ndEd.,2008 2.Jerry Bank simulation", REFERENC 1 Banks, J., Prentice Hal 2. Deo, N., " Law, A.M., Hill, N. Y, 1	aj, En 8 ks, Jol , Pears CES Catso Il of It "Syste and F 1991.	nbedded nn S. Ca son educ n, S., N ndia, N. m Simu Kelton, V	l Systems rson, Bar cation. elson, B.I Delhi, 19 lation wi W.D., "Si	: Archit Ty L. No L., "Diso 096. th Digita mulatio	ecture, P elson, Da crete-Evo al Comp n Model	rogramm avid M. N ent Syster uters". Pr ling and	ing & D licol "D m Simul entice H Analysis	esign, Ta iscrete – H ation", (2 fall of Ind s", (2nd H	ta McG Event sy nd Editi ia, 1979 Edition).	raw Hill, ystem ion).). . McGraw
TEXT 1. Kamal, R. 2ndEd.,2008 2.Jerry Bank simulation", REFEREN 1 Banks, J., Prentice Hal 2. Deo, N., " Law, A.M., Hill, N. Y, 1	aj, En 8 ks, Jol , Pears CES Catso Il of It "Syste and F 1991.	nbedded nn S. Ca son educ n, S., N ndia, N. m Simu Kelton, V	Systems rson, Bar cation. elson, B.I Delhi, 19 lation wi W.D., "Si	: Archit Ty L. No L., "Diso 096. th Digita mulatio	ecture, P elson, Da crete-Evo al Comp on Model PO5	Programm avid M. N ent Syster uters". Pr ling and PO6	ing & D licol "D m Simul entice H Analysis	esign, Ta iscrete – H ation", (2 fall of Ind s", (2nd H	ta McG Event sy nd Editi ia, 1979 Edition).	raw Hill, ystem ion).). . McGraw

	101	102	105	101	105	100	107	100	1501	1001
CO 1	3	3	2	2	2	1	1	1	2	2
CO 2	3	3	2	2	2	1	1	1	2	2
CO 3	3	3	2	2	2	1	1	1	2	2
CO 4	3	2	2	2	2	1	1	1	2	2
CO 5	2	2	2	2	2	1	1	1	2	2
Total	14	13	10	10	10	5	5	5	10	10
Course	3	3	2	2	2	1	1	1	2	2

YCAEE9 CRYPTOGRAPHY AND INFORMATION SECURITY

CO1	U	Understand	<i>Understand</i> the overview of the cryptography basics model.
CO2	U	Understand	Describe the idea of cryptography algorithm
CO3	Κ	Knowledge	Analyze various security technology
CO4	Κ	Knowledge	Describe intrusion detection and prevention
CO5	U	Understand	Understand the implementation of security and change
			management

COURSE	COURSE NAME		Τ	P	C
CODE					
YCAEE9	CRYPTOGRAPHY AND INFORMATI	ON 4	0	0	4
	SECURITY				
C:P:A 4:0:0			_		
		L	Т	P	H
		4	0	0	4
UNIT I OVER	VIEW				12
Services, Mecl	nanisms and Attacks, The OSI Security Ar	chitecture, A Mod	el for	Netw	ork
Security. Clas	sical Encryption Techniques: Symmetry	ic Cipher Mode	l, Suł	ostitu	tion
Techniques, Tra	nsportation Techniques, Steganography				
UNIT IIALGO	RITHMS				12
Simplified DES	- Key Management, Diffe-Hellman Key Ex	change, Ellipric Cu	irve		
Arithmetic, Elli	ptic Curve Cryptography.				
UNIT IIIPLA	NNING FOR SECURITY				12
Information Sec	urity Planning and Governance-Information	Security Policy, S	tandar	ds, ar	ıd
Practices -The I	nformation Security Blueprint -Security Edu	cation, Training, a	nd Aw	arene	ess
Program -Conti	nuity Strategies.				
UNIT IVFIRE	WALLS AND VPNS				12
Access Control	-Firewalls -Firewall Processing Modes -Fire	walls Categorized	by Ger	nerati	on
-Firewalls Cates	gorized by Structure-Firewall Architectures	Selecting the Righ	t Firev	vall -	
Configuring and	Managing Firewalls-Content Filters -Protect	cting Remote Conn	ection	s -	
Remote Access	-Virtual Private Networks .				
UNIT V INTR	USION DETECTION AND PREVENTION	ON SYSTEMS			12
Introduction-Int	rusion Detection and Prevention Systems - 7	Γypes of IDPS- IDI	PS Det	ectio	n
Methods- IDPS	Response Behavior- Selecting IDPS Approa	iches and Products-	- Stren	gths	and
Limitations of I	DPSs- Deployment and Implementation of a	n IDPS-Measuring	the		
Effectiveness of	IDPSs				
	LECT	URE TUTORIA	LT	'OTA	L
	60) –		60	
TEXT					
1. Michael E.W	hitman, and Herbert J.Mattord, Principles of	f Information Secur	rity 4tł	1	
edition, Ceng	gage Learning 2012.				
2. Cryptograph	y and Network Security Third Edition Willia	ım Stallings, Pr	entice	Hall,	
2002					
REFERENCE	3				
1. Nozaki, Mic	ki Krause, Tipton, Harold F, Information S	ecurity Manageme	nt Ha	ndboo	ok -
6 th Edition C	RC Press,2012				
2. Hossein Bid	goli, Handbook of Information Security-In	formation Warfare	; Soci	al,Le	gal,

and International Issues; and Security Foundations, John Wiley& Sons Inc. 2006

E REFERENCES

1. <u>https://onlinecourses.nptel.ac.in/noc15_cs03</u>

2. https://onlinecourses.nptel.ac.in/noc16_cs01

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	0	2	1	2	1	1	3	0
CO 2	3	1	0	2	1	2	1	1	3	1
CO 3	3	2	0	2	1	1	1	1	3	1
CO 4	3	2	0	2	1	2	1	1	3	0
CO 5	3	2	0	2	1	2	1	1	3	1
Total	15	9	0	10	5	9	5	5	15	3
Course	3	2	0	2	1	2	1	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCAEE4 CLOUD COMPUTING

CO1	С	Knowledge	Characterize the concept of Cloud Computin	ng				
CO2	С	Understand	<i>Identify</i> the architecture, infrastructure and	delive	ry mo	odels	of	
cloud computingCO3 C KnowledgeClassify various Cloud servicesCO4 C UnderstandChaose the appropriate Programming Models and approach								
CO3	С	Knowledge	Classify various Cloud services					
CO4	С	Understand	Choose the appropriate Programming Model	ls and	appro	ach		
CO5 C RememberIdentifies different applications in CloudCOURSE CODECOURSE NAMELTPC								
COU	RSF	E CODE	COURSE NAME	L	Т	P	C	
YCA	EE4		CLOUD COMPUTING	3	0	0	3	
C:P:A = 3:0:0 C:D:C:D:COMPCTING C:D:C:D:COMPCTING								
				L	Т	P	H	
				3	0	0	3	
UNII	II (CLOUD COMP	UTING FOUNDATION				09	
Introc	lucti	on to Cloud Co	omputing- Move to Cloud Computing-Types o	f Clou	ıd-wo	rking	g of	
Cloud	l cor	nputing- Cloud	Computing Technology.					
UNII	II	DATA STORA	GE AND VIRTUALIZATION				09	
Data	Sto	rage-Cloud Sto	rage- Cloud Computing frameworks-Google	,EMC	,Ama	zon	and	
Salest	force	e.com. Virtualiz	zation - Basics of Virtualization - Types	of Vi	rtuali	zatio	n -	
Imple	men	tation Levels of	Virtualization - Virtualization Structures - Tool	ls and	Mech	anisr	ns -	
Virtu	aliza	tion of CPU, Me	emory, I/O Devices - Virtual Clusters and Reso	ource I	Manag	geme	nt –	
Virtua	aliza	tion for Data-ca	nter Automation.					
UNI'I	' III	CLOUD SERV	/ICES AND PROGRAMMING MODELS				09	
Softw	are	as a Service (Saa	aS), Platform as a Service (PaaS), Infrastructure	as a S	ervice	e(Iaa)	S)	
Parall	el a	and Distributed	Programming Paradigms – MapReduce, Tv	vister	and	Itera	tive	
MapF	Redu	ce – Hadoop Lit	brary from Apache					
UNI	IV	CLOUD COM	PUTING TOOLS AND TECHNOLOGIES				09	
Grid,	Clo	ud and Virtualiz	ation-Cloud Computing Application Platform -	- Tool	ls for	build	ling	
cloud	- Ma	ap Reduce Parad	ligms: Introduction, GFS Architecture, HDFS	Archit	ecture	, Hb	ase,	
Goog	le bi	ig Table, Amazo	on's (key value) pair storage and Microsoft's A	Azure	infras	truct	ure,	
Map 1	edu	ce programming	examples					

UNIT V CLOUD APPLICATIONS			09
Google Cloud Applications-Google App Engine-C	Case Study: Clo	oud as Infrastruc	cture for an
internet-Case Study-An Enterprise with Multiple D	ata Centers.		
	LECTURE	TUTORIAL	TOTAL
	45	0	45
TEXT			
1. A.Srinivasan, J. Suresh, Cloud Computing – A	Practical Appro	bach for learning	and
Implementation, , Pearson Education, 2014.			
REFERENCES			
1. Syed A.Ahson, Mohammad Ilyas, Cloud Compu	ting and Softw	are Services-The	eory and
Techniques, CRC, 2011.			
2. Anthony T. Velte Toby J. Velte, Ph.D. Robert E	lsenpeter, Clou	d Computing-A	Practical
Approach, The McGraw-Hill, 2010			
3. George Reese, "Cloud Application Architectures	s: Building App	olications and In	frastructure
in the Cloud" O'Reilly			
E REFERENCES			
1. http://track.justcloud.com/?hash=7397.			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	3	3	2	2	2	1	1	2	2
CO 2	3	3	3	2	2	2	1	1	2	2
CO 3	3	3	3	2	2	2	1	1	2	2
CO 4	3	3	3	2	2	2	1	1	2	2
CO 5	2	2	2	2	2	2	1	1	2	2
Total	14	14	14	10	10	10	5	5	10	10
Course	3	3	3	2	2	2	1	1	2	2

YCAEE5 - DISTRIBUTED DATABASE MANAGEMENT

CO1	С	Knowledge	Describe various methods to define levels of	distri	buted	datab	base
			design				
CO2	С	Understand	Understand and apply time based and quorus	m base	ed pro	tocol	S
CO3	С	Knowledge	Describe and apply various types of protocol	.8			
CO4	С	Understand	Describe and solve problems in distribu	ted d	ata di	iction	ary
			management				
CO5	С	Understand	Understand SQL server				
COU	RSE	CODE	COURSE NAME	L	Τ	Р	C

YCAEE5	Distributed Database Management	3	0	0	3
C:P:A = 3:0:0					
		L	Τ	Р	H
		3	0	0	3
UNIT- I :Distributed I	Database Design				09
Distributed DBMS fea	atures and needs - Reference architectu	re- Levels o	of dis	stribu	tion
transparency, replicatio	n- Distributed database design - fragmen	ntation, alloc	ation	crite	eria-
Storage mechanisms.					
UNIT- II:Global Quer	y Optimization				09
Translation of global qu	eries /Global query optimization- Query ex	ecution and a	ccess	plan	_
Concurrency control - 2	2 phase locks- Distributed deadlocks- Tim	e based and	quoru	ım ba	ased
protocols- Comparison					
UNIT- III: Types of Pr	rotocols				09
	ng commitment protocols Partitioned netwo	orks-Checkp	oints	and c	cold
Reliability - non-blocki	ng communent protocols-Partitioned netw	1			
Reliability - non-blocki starts-Management of di	istributed transactions - 2 phase unit protoco	ols- Architect	ural a	spect	ts.
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed	istributed transactions - 2 phase unit protocol Data Dictionary Management	ols- Architect	ural a	spect	ts. 09
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure	istributed transactions - 2 phase unit protocol Data Dictionary Management e recoveries-Distributed data dictionary	ols- Architect	ural a t- Di	spect stribu	ts. 09 uted
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure database administration	istributed transactions - 2 phase unit protocol Data Dictionary Management e recoveries-Distributed data dictionary Heterogeneous databases-federated datab	ols- Architect management base, reference	ural a t- Di e arch	spect stribu	09 Ited ure,
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure database administration loosely and tightly coup	istributed transactions - 2 phase unit protocol Data Dictionary Management e recoveries-Distributed data dictionary Heterogeneous databases-federated datab led.	ols- Architect management base, reference	ural a t- Di e arch	spect stribu nitect	ts. 09 1ted ure,
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure database administration loosely and tightly coup UNIT- V: SQL Server	istributed transactions - 2 phase unit protocol Data Dictionary Management e recoveries-Distributed data dictionary Heterogeneous databases-federated datab led.	ols- Architect management base, reference	ural a t- Di e arch	spect stribu nitect	ts. 09 1ted ure, 09
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure database administration loosely and tightly coup UNIT- V: SQL Server Alternative architecture	istributed transactions - 2 phase unit protocol Data Dictionary Management e recoveries-Distributed data dictionary Heterogeneous databases-federated datab led. es- Development tasks, Operation - globa	ols- Architect management base, reference al task mana	ural a t- Di e arch geme	spect stribu nitect nt-Cl	ts. 09 1ted ure, 09 ient
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure database administration loosely and tightly coup UNIT- V: SQL Server Alternative architecture server databases-SQL se	istributed transactions - 2 phase unit protocol Data Dictionary Management e recoveries-Distributed data dictionary Heterogeneous databases-federated datab led. es- Development tasks, Operation - globa erver, open database connectivity- Construct	ols- Architect management base, reference al task mana cting an applic	ural a t- Di e arch geme	spect stribu nitect nt-Cl	ts. 09 1ted ure, 09 ient
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure database administration loosely and tightly coup UNIT- V: SQL Server Alternative architecture server databases-SQL se	istributed transactions - 2 phase unit protocols Data Dictionary Management e recoveries-Distributed data dictionary Heterogeneous databases-federated datab led. es- Development tasks, Operation - globa erver, open database connectivity- Construc LECTURE	ols- Architect management pase, reference al task mana eting an applic TUTORIAI	ural a t- Di e arch geme cation	spect stribu nitect nt-Cl 'OTA	ts. 09 ited ure, 09 ient
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure database administration loosely and tightly coup UNIT- V: SQL Server Alternative architecture server databases-SQL se	istributed transactions - 2 phase unit protocols Data Dictionary Management e recoveries-Distributed data dictionary Heterogeneous databases-federated datab led. es- Development tasks, Operation - globa erver, open database connectivity- Construct LECTURE 45	ols- Architect management pase, reference al task mana eting an applic TUTORIAI 0	ural a t- Di e arch geme cation	spect stribu nitect nt-Cl OTA 45	ts. 09 ited ure, 09 ient L
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure database administration loosely and tightly coup UNIT- V: SQL Server Alternative architecture server databases-SQL se	istributed transactions - 2 phase unit protocols Data Dictionary Management e recoveries-Distributed data dictionary Heterogeneous databases-federated datab led. es- Development tasks, Operation - globa erver, open database connectivity- Construc LECTURE 45	ols- Architect management pase, reference al task mana eting an applic TUTORIAI 0	ural a t- Di e arch geme cation	spect stribu nitect nt-Cl 'OTA 45	ts. 09 ited ure, 09 ient L
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure database administration loosely and tightly coup UNIT- V: SQL Server Alternative architecture server databases-SQL se TEXT 1. Elim asri.navathe- "	istributed transactions - 2 phase unit protocol Data Dictionary Management e recoveries-Distributed data dictionary Heterogeneous databases-federated datab led. es- Development tasks, Operation - globa erver, open database connectivity- Construc LECTURE 45 Fundamentals of Database Management Sy	ols- Architect management pase, reference al task mana eting an applic TUTORIAI 0 stems"- 6 th ec	ural a t- Di e arch geme cation L T lition	spect stribu nitect nt-Cl OTA 45	ts. 09 1ted ure, 09 ient L
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure database administration loosely and tightly coup UNIT- V: SQL Server Alternative architecture server databases-SQL se TEXT 1. Elim asri.navathe- " ,Addison Welsey.	istributed transactions - 2 phase unit protocol Data Dictionary Management e recoveries-Distributed data dictionary Heterogeneous databases-federated datab led. es- Development tasks, Operation - globa erver, open database connectivity- Construc LECTURE 45 Fundamentals of Database Management Sy	ols- Architect management pase, reference al task mana eting an applic TUTORIAL 0 stems"- 6 th ec	ural a t- Di e arch geme cation	spect stribu nitect nt-Cl OTA 45	ts. 09 1ted ure, 09 ient
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure database administration loosely and tightly coup UNIT- V: SQL Server Alternative architecture server databases-SQL se TEXT 1. Elim asri.navathe- " ,Addison Welsey. 2. M.Tamer Ozsu,Patri	istributed transactions - 2 phase unit protocols Data Dictionary Management e recoveries-Distributed data dictionary Heterogeneous databases-federated datab led. es- Development tasks, Operation - globa erver, open database connectivity- Construct LECTURE 45 Fundamentals of Database Management Sy ack valduriez "principles of distributed data	al task mana eting an applic TUTORIAI 0 stems"- 6 th ec	ural a t- Di e arch geme cation L T lition	spect stribu nitect nt-Cl OTA 45 editic	ts. 09 1ted ure, 09 ient L
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure database administration loosely and tightly coup UNIT- V: SQL Server Alternative architecture server databases-SQL se TEXT 1. Elim asri.navathe- " ,Addison Welsey. 2. M.Tamer Ozsu,Patri ,Springer science +E	istributed transactions - 2 phase unit protocols Data Dictionary Management e recoveries-Distributed data dictionary Heterogeneous databases-federated datab led. es- Development tasks, Operation - globa erver, open database connectivity- Construc LECTURE 45 Fundamentals of Database Management Sy ack valduriez "principles of distributed data Business Media ,LLC 2011.	ols- Architect management pase, reference al task mana eting an applic TUTORIAI 0 stems"- 6 th ec	ural a t- Di e arch geme cation L T lition	spect stribu nitect nt-Cl OTA 45 editic	ts. 09 1ted ure, 09 ient L
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure database administration loosely and tightly coup UNIT- V: SQL Server Alternative architecture server databases-SQL se TEXT 1. Elim asri.navathe- " ,Addison Welsey. 2. M.Tamer Ozsu,Patri ,Springer science +E REFERENCES	istributed transactions - 2 phase unit protocol Data Dictionary Management e recoveries-Distributed data dictionary Heterogeneous databases-federated datab led. es- Development tasks, Operation - globa erver, open database connectivity- Construct <u>LECTURE</u> 45 Fundamentals of Database Management Sy ck valduriez "principles of distributed data Business Media ,LLC 2011.	al task mana eting an applic TUTORIAI 0 stems"- 6 th ec	ural a t- Di e arch geme cation L T lition	spect stribu nitect nt-Cl OTA 45 editic	ts. 09 ited ure, 09 ient L
Reliability - non-blocki starts-Management of di UNIT- IV: Distributed Node and link failure database administration loosely and tightly coup UNIT- V: SQL Server Alternative architecture server databases-SQL se TEXT 1. Elim asri.navathe- " ,Addison Welsey. 2. M.Tamer Ozsu,Patri ,Springer science +E REFERENCES 1. Ceri, S Pelagatti	istributed transactions - 2 phase unit protocol Data Dictionary Management e recoveries-Distributed data dictionary Heterogeneous databases-federated datab led. es- Development tasks, Operation - globa erver, open database connectivity- Construc <u>LECTURE</u> 45 Fundamentals of Database Management Sy ick valduriez "principles of distributed data Business Media ,LLC 2011. . G., "Distributed Databases: Principles a	al task mana eting an applic TUTORIAI 0 stems"- 6 th ec base systems	ural a t- Di e arch geme cation L T lition "-3 rd	spect stribu nitect nt-Cl OTA 45 editic	ts. 09 ited ure, 09 ient L on Hill.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	2	2	2	1	2	2	3	3

CO 2	3	3	2	2	2	1	2	2	3	3
CO 3	3	3	2	2	2	1	2	2	3	3
CO 4	3	3	2	2	2	1	2	2	2	2
CO 5	3	2	2	2	2	1	2	2	2	2
Total	15	14	10	10	10	5	10	10	13	13
Course	3	3	2	2	2	1	1	1	3	3

9

YCAEE6 – IMAGE PROCESSING

Course Outcomes:

	Domain	Level									
CO1	Cognitive	Understand	Describe the basics of digital image fundamentals.								
CO2	Cognitive	Knowledge	Understand the classifications of Image Processing								
			techniques.								
CO3	Cognitive	Knowledge	Describe and apply various types of feature extraction								
		Apply	techniques applicable for image vision.								
CO4	Cognitive	Understand	Describe and solve problems in encoding images based on								
		Apply	the concept of Fourier transforms.								
005		TZ 1 1									

CO5 Cognitive Knowledge *Define* the concept of filtering and Restorations.

Course Code	Course Name	L	Т	Р	С				
YCAEE6	Image Processing	3	0	0	3				
C:P:A = 3:0:0		L	Т	Р	Η				
		3	0	0	3				
UNIT –I: Digital Image Fundamentals 9									
Image digital Representation. E	Elements of visual perception .Sampling an	d quar	ntizat	ion.					
Image processing system eleme	ents. Fourier transforms. Extension to $2 \cdot D_{1}$, OCR	, Wa	lsh,					
Hadamard transforms.									
CAEE6Image Processing3003CAEE6Image Processing3003CAEE6LTPH3003INIT -I:Digital Image Fundamentals9mage digital Representation. Elements of visual perception .Sampling and quantization.mage processing system elements. Fourier transforms. Extension to 2. D, OCR, Walsh,Idamard transforms.Image Transformation and segmentation9									

Image Transformation and segmentation UĽ

Enhancement and segmentation: Histogram modification. Smoothing, sharpening.

UNIT – III: Feature Extraction

Thresholding - Edge Detection. Segmentation. Point and region dependent techniques.

UNIT -IV : Image Encoding			9			
Image encoding: Fidelity criteria. Transform co	ompression. K	L, Fourier, D	CT. Spatial			
compression, Run length coding. Huffman and cont	our coding.					
UNIT- V: Image Restoration			9			
Restoration: Models. Inverse filtering. Least squares	s filtering. Recu	ursive filtering.				
	LECTURE TUTORIAL TO					
	45	0	45			
TEXT		I				
1. Mark Nixon, et.a l, "Feature Extraction &	& Image proces	sing for Compu	ter vision"			
3 rd Edition, 2012.						
REFERENCES						
1. Gonslaez, Richard E. Woodset.a1, "Digital I	mage Processin	ng", Addison W	esley,			
Reading, M.A., 1990.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	2	2	2	1	1	1	2	2
CO 2	3	3	2	2	2	1	1	1	2	2
CO 3	3	3	2	2	2	1	1	1	2	2
CO 4	3	2	2	2	2	1	1	1	2	2
CO 5	2	2	2	2	2	1	1	1	2	2
Total	14	13	10	10	10	5	5	5	10	10
Course	3	3	2	2	2	1	1	1	2	2

YCAEE7 – PARALLEL PROGRAMMING

	Domain	Level	
CO 1	С	Understand	Describe the basics of Parallel Programming techniques.
CO2	С	Knowledge	Understand the concept of Data dependency

	С	Knowledge	<i>Describe</i> and <i>ap</i>	<i>ply</i> various types	of Performar	nce ai	nalys	is
CO4	C	Apply	Describe and sol	he problems in P	Parallal Progra	mmi	na	
C04	C C	Understand	Understand the	Methods for A	andler Flogra	Drogr	ng amm	ina
COJ	C	Understand	parallel.	Wellous for A	apprying in i	l logi	amm	ung
Course	Code		Course Name		L	Т	P	C
YCAE	E 7		Parallel Programm	ning	3	0	0	3
					L	Т	Р	H
C:P:A	= 3:0:0				3	0	0	3
UNIT-	I: Pa	rallel Program	ming- Introduction			1		9
Process	es and p	processors. Share	ed Memory. Fork. J	oin constructs. B	asic parallel	progr	amm	ing
techniq	ues-loop	splitting, spin l	ocks, contention bar	riers and row cor	nditions.			
UNIT-	II: Dat	a dependency a	and Scheduling					9
Variatio	ons in sp	litting, self and	indirect scheduling.	Data dependenc	y-Forward ar	nd Ba	ckwa	ard.
Block s	chedulir	ıg.						
UNIT-	III: Pe	erformance Ana	alysis					9
UNIT- Linear	III: Pe	erformance Ana	alysis Backward depende	ncy. Performanc	e tuning ov	verhe:	ad v	9 vith
UNIT- Linear number	III: Pe	erformance Ana nce relations.	alysis Backward depende use of cache.	ncy. Performanc	ce tuning ov	verhea	ad v	9 vith
UNIT- Linear number UNIT-	III: Pe recurrent of proce IV: Pa	erformance Ana nce relations. esses, effective to arallel Program	alysis Backward depende use of cache. uming – Problems	ncy. Performanc	ce tuning ov	verhea	ad v	9 vith 9
UNIT- Linear number UNIT- Parallel	III: Pe recurrent of proce IV: Pa program	erformance Ana nce relations. I esses, effective r arallel Program mming example	alysis Backward depende use of cache. ming – Problems es: Average, mean s	ncy. Performanc	ce tuning ov	verhea	ad v	9 vith 9 ical
UNIT- Linear number UNIT- Parallel integrat	III: Pe recurrent of proce IV: Pa programion, tra	erformance Ana nce relations. I esses, effective u trallel Program mming example avelling salesm	alysis Backward depende use of cache. ming – Problems es: Average, mean s nan problem, Gau	ncy. Performanc equared deviation ssian eliminatio	ce tuning ov n, curve fittin on. Discrete	verhea ng, nu even	ad v imer nt ti	9 vith 9 ical
UNIT- Linear number UNIT- Parallel integrat simulat	III: Pe recurrent of proce IV: Pa programion, tra ion.	erformance Ana nce relations. I esses, effective of trallel Program mming example twelling salesm	alysis Backward depende use of cache. ming – Problems es: Average, mean s nan problem, Gau	ncy. Performanc equared deviation ssian eliminatio	e tuning ov n, curve fittin on. Discrete	verhea ng, nu even	ad v imer nt ti	9 vith 9 ical
UNIT- Linear number UNIT- Parallel integrat simulat UNIT-	III: Per recurrent of proce IV: Par program ion, tra ion. V: Par	erformance Ana nce relations. I esses, effective of trallel Program mming example twelling salesm	alysis Backward depende use of cache. ming – Problems es: Average, mean s nan problem, Gau ning Methods	ncy. Performanc equared deviation ssian eliminatio	e tuning ov n, curve fittin on. Discrete	ng, nu even	ad v imer nt ti	9 vith 9 ical ime 9
UNIT- Linear number UNIT- Parallel integrat simulat UNIT- Parallel	III: Per recurrent of proce IV: Par program ion, tra ion. V: Par Program	erformance Ana nce relations. I esses, effective of trallel Program nming example twelling salesm rallel Programm nming construct	alysis Backward depender use of cache. ming – Problems es: Average, mean s nan problem, Gau ning Methods ts in HPF, Fortran 93	ncy. Performanc equared deviation ssian eliminatio	e tuning ov n, curve fittin on. Discrete mming under	verhea ng, nu even	ad v imer nt ti	9 vith 9 ical ime 9
UNIT- Linear number UNIT- Parallel integrat simulat UNIT- Parallel	III: Per recurrent of proce IV: Par program ion, tra ion. V: Pan Program	erformance Ana nce relations. I esses, effective of trallel Program mming example twelling salesm rallel Programm mming construct	alysis Backward depender use of cache. ming – Problems es: Average, mean s nan problem, Gau ning Methods ts in HPF, Fortran 93	ncy. Performanc equared deviation ssian eliminatio 5. Parallel program	e tuning ov n, curve fittin on. Discrete mming under TUTORIA	verhea ng, nu even	ad v imer nt ti	9 vith 9 ical ime 9
UNIT- Linear number UNIT- Parallel integrat simulat UNIT- Parallel	III: Per recurrent of proce IV: Par program ion, tra ion. V: Par Program	erformance Ana nce relations. I esses, effective of trallel Program nming example twelling salesm rallel Programm nming construct	alysis Backward depender use of cache. ming – Problems es: Average, mean s nan problem, Gau ning Methods ts in HPF, Fortran 95	ncy. Performanc equared deviation ssian eliminatio 5. Parallel program LECTURE 45	e tuning ov n, curve fittin on. Discrete mming under TUTORIA 0	verhea ng, m even • Unix L]	ad v imer nt ti x. FOT	9 vith 9 ical ime 9 AL
UNIT- Linear number UNIT- Parallel integrat simulat UNIT- Parallel TEXT	III: Per recurrent of proce IV: Par program ion, tra ion. V: Par Program	erformance Ana nce relations. I esses, effective of trallel Program mming example twelling salesm rallel Programm nming construct	alysis Backward depender use of cache. ming – Problems es: Average, mean s nan problem, Gau ning Methods ts in HPF, Fortran 93	ncy. Performanc equared deviation ssian eliminatio 5. Parallel program LECTURE 45	e tuning ov n, curve fittin on. Discrete mming under TUTORIA 0	verhea ng, m even • Uniz L 1	ad v umer nt ti x. TOT	9 vith 9 ical ime 9 AL
UNIT- Linear number UNIT- Parallel integrat simulat UNIT- Parallel TEXT 1.Roos	III: Per recurrent of proce IV: Par ion, tra ion. V: Par Program	erformance Ana nce relations. 1 esses, effective of trallel Program mming example twelling salesm rallel Programm nming construct	alysis Backward depender use of cache. ming – Problems es: Average, mean s nan problem, Gau ning Methods ts in HPF, Fortran 9:	ncy. Performanc equared deviation ssian eliminatio 5. Parallel program LECTURE 45 el Algorithms", 2	e tuning ov n, curve fittin on. Discrete mming under TUTORIA 0 016.	verhea ng, nu even • Unix L 1	ad v umer nt ti x. TOT	9 vith 9 ical ime 9 AL
UNIT- Linear number UNIT- Parallel integrat simulat UNIT- Parallel TEXT 1.Roost REFEI	III: Per recurrent of proce IV: Par ion, tra ion. V: Par Program ta, Seyect	erformance Ana nce relations. I esses, effective of trallel Program mming example twelling salesm rallel Programm nming construct	alysis Backward depender use of cache. ming – Problems es: Average, mean s han problem, Gau ning Methods ts in HPF, Fortran 9: rocessing and Paralle	ncy. Performanc equared deviation ssian eliminatio 5. Parallel program LECTURE 45 el Algorithms", 2	e tuning ov n, curve fittin on. Discrete mming under TUTORIA 0 016.	verhea ng, nu even Unix L 1	ad w imer nt ti c. COT. 45	9 vith 9 ical ime 9 AL

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	3	2	2	2	1	1	2	2

CO 2	3	3	3	2	2	2	1	1	2	2
CO 3	3	3	3	2	2	2	1	1	2	2
CO 4	3	3	3	2	2	2	1	1	2	2
CO 5	2	2	2	2	2	2	1	1	2	2
Total	14	14	14	10	10	10	5	5	10	10
Course	3	3	3	2	2	2	1	1	2	2

YCAEE10 BIGDATA ANALYTICS

CO1	С	Knowledge	Understand the fundamentals of various big data analysis
			techniques
CO2	С	Understand	<i>Identify</i> the architecture, infrastructure and delivery models of
			stream computing
CO3	С	Analyse	Analyze the HADOOP and Map Reduce technologies
CO4	С	Understand	Apply efficient algorithms for mining the data from large
		Apply	volumes
CO5	С	Apply	Explore on Big Data applications Using Pig and Hive

COURSE CODE	COURSE NAME	L	Т	P	C
YCAEE10	BIGDATA ANALYTICS	3	0	0	3
C:P:A = 3:0:0					1
		L	Т	P	H
		3	0	0	3
UNIT I INTRODUCTIO	ON TO BIGDATA				09
Introduction to BigData	Platform - Challenges of Conventional Syste	ms - I	ntellig	gent o	data
analysis – Nature of Data	a - Analytic Processes and Tools - Analysis vs	Repor	ting -	Mod	lern
Data Analytic Tools - Sta	tistical Concepts: Sampling Distributions - Re-	Sampli	ng - S	tatist	ical
Inference - Prediction Err	or.				
UNIT II MINING DAT.	A STREAMS				09
Introduction to Streams C	Concepts – Stream Data Model and Architecture	- Strea	um Co	mpu	ting
- Sampling Data in a Stre	eam – Filtering Streams – Counting Distinct El	ements	in a S	Stream	m –
Estimating Moments - C	Counting Oneness in a Window – Decaying	Window	<i>v</i> - R	leal t	ime
Analytics Platform(RTA	P) Applications - Case Studies - Real Time	Sentin	nent A	Analy	/sis,
Stock Market Predictions					
UNIT III HADOOP					09
History of Hadoop- Th	e Hadoop Distributed File System - Comp	ponents	s of	Hade	oop-
Analyzing the Data with	Hadoop- Scaling Out- Hadoop Streaming- D	esign o	of HD)FS-J	ava
interfaces to HDFS- Ba	asics-Developing a Map Reduce Application	n-How	Map	Red	luce
Works-Anatomy of a Ma	p Reduce Job run-Failures-Job Scheduling-Shu	uffle ar	d Sor	t – T	` ask
execution - Map Reduce '	Types and Formats- Map Reduce Features				
UNIT IVHADOOP ENV	VIRONMENT				09

Setting up a Hadoop Cluster - Cluster specification - Cluster Setup and Installation - Hadoop Configuration-Security in Hadoop - Administering Hadoop - HDFS - Monitoring-Maintenance-Hadoop benchmarks- Hadoop in the cloud

UNIT V FRAMEWORKS			09
Applications on Big Data Using Pig and Hive –	Data processir	ng operators in	Pig – Hive
services - HiveQL - Querying Data in Hive - fund	amentals of HI	Base and ZooKe	eper - IBM
InfoSphere BigInsights and Streams. Visualizati	ions - Visual	data analysis	techniques,
interaction techniques; Systems and applications			
	LECTURE	TUTORIAL	TOTAL
	45	0	45
TEXT			
1. Michael Berthold, David J. Hand, Intelligent D	ata Analysis, S	pringer, 2007.	
2. Chris Eaton, Dirk DeRoos, Tom Deutsch, Georg	ge Lapis, Paul Z	Zikopoulos, Und	erstanding
Big Data: Analytics for Enterprise Class H	adoop and Str	reaming Data, I	McGrawHill
Publishing, 2012			
3. Anand Rajaraman and Jeffrey David Ullman, Mi	ining of Massiv	ve Datasets, Cam	ıbridge
University Press, 2012			
REFERENCES			
1. Da Ruan, Guoquing Chen, Etienne E.Kerre, Geert	t Wets, Intellige	ent Data Mining	,
Springer,2007			
2. Michael Minelli, Michele Chambers, Ambiga Dh	iraj , Big Data,	Big Analytics: 1	Emerging
Business Intelligence and Analytic Trends for To	oday's Business	es,Wiley,	
Publications,2013			
3.Zikopoulos, Paul, Chris Eaton, Understanding Bi	g Data: Analyt	ics for Enterprise	e Class
Hadoop and Streaming Data, Tata McGraw Hill	Publications, 2	011	
E REFERENCES			
http://www.edureka.co/big-data-and-ha			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	1	2	2	1	1					1
CO 2	1	2	2	1				3	1	2
CO 3	2	2	2	1	1			3	1	
CO 4	1	2	3	1				3	2	
CO 5	2	3	3	1				3	2	3
Total	7	11	12	5	2			12	6	6
Course	2	3	3	1	1			3	2	2

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCABM1 -MANAGERIAL ECONOMICS

CO1	С	Knowledge	<i>Describe</i> Nature and scope of managerial economics
CO2	С	Understand	Define and measure elasticity.
CO3	С	Knowledge	Describe Product and cost analysis
CO4	С	knowledge	Describe Production function

CO5 C Understand	Understand product and profits					
COURSE CODE	COURSE NAME		L	Т	Р	C
YCABM1	Managerial Economic	S	3	0	0	3
C:P:A = 3:0:0						
			L	Т	Р	H
			3	0	0	3
UNIT- I: (Features of n	nanagerial economics)					9
Nature and scope of mana	gerial economics. Objectives of the	firm .Manag	gerial a	and b	ehavi	oral
theories of the firm.						
UNIT- II: (Concepts of	demand forecasting)					9
Concepts of opportunity	cost- incremental - time perspectiv	ve. Principles	s of di	scour	nting	and
equimargins - Demand an	alysis - purposes and concepts - E	lasticity of d	emand	l - Me	ethod	s of
demand forecasting.						
UNIT – III: (Product an	nd cost analysis)					9
Product and cost analysis-	short run and long run average cos	t curves - La	w of s	upply	-	
Economies and diseconom	nies of scale-Law of variable propor	tions				
UNIT- IV : (Product and	l price)					9
Production function - sing	le output isoquants- Pricing: Prescu	riptive appro	ach	Price		
determination under perf	ect competition.					
UNIT -V : (Profits and)	Break-even analysis)					9
Monopoly, oligopoly and	monopolistic competition - Full cos	t pricing- pro	oduct l	ine p	ricing	5-
Pricing strategies - Profits	: Nature and. measurement policy.	Break-even a	nalysi	s.Cas	e stuč	ły.
	LECTU	RE TUT	ORIA	L I	'OTA	L
	45	()		45	
TEXT		<u>I</u>		I		
		A 4141 . TT	malav	a Pub	licatio	ons
1. Managerial Economics-	Theory and Applications, Dr. D.M	Mithani, Hi	inanay			
 Managerial Economics- Managerial Economics, 	 Theory and Applications, Dr. D.M D.N Dwivedi, 6th ed., Vikas Publi 	Mithani, Hi	liiuiuj			
 Managerial Economics- Managerial Economics, Managerial Economics, 	 Theory and Applications, Dr. D.M D.N Dwivedi, 6th ed., Vikas Publi H. L Ahuja, S. Chand, 2011 	cation.				
 Managerial Economics- Managerial Economics, Managerial Economics, Indian Economy, K P M 	 Theory and Applications, Dr. D.M D.N Dwivedi, 6th ed., Vikas Publi H. L Ahuja, S. Chand, 2011 M Sundharam and Dutt, 64th Editio 	Mithani, Hi cation. n, S Chand P	ublica	tion.		
 Managerial Economics- Managerial Economics, Managerial Economics, Indian Economy, K P M Business Environment 7 	 Theory and Applications, Dr. D.M D.N Dwivedi, 6th ed., Vikas Publi H. L Ahuja, S. Chand, 2011 M Sundharam and Dutt, 64th Editio Text and Cases by Justin Paul, 3rd I 	Mithani, Hi cation. n, S Chand P Edition, McG	ublica raw-H	tion. Iill		
 Managerial Economics- Managerial Economics, Managerial Economics, Indian Economy, K P M Business Environment 7 Companies. 	 Theory and Applications, Dr. D.M D.N Dwivedi, 6th ed., Vikas Publi H. L Ahuja, S. Chand, 2011 M Sundharam and Dutt, 64th Editio Text and Cases by Justin Paul, 3rd I 	Mithani, Hi cation. n, S Chand P Edition, McG	ublica raw-H	tion. Iill		
 Managerial Economics- Managerial Economics, Managerial Economics, Indian Economy, K P M Business Environment 7 Companies. REFERENCES 	 Theory and Applications, Dr. D.M D.N Dwivedi, 6th ed., Vikas Publi H. L Ahuja, S. Chand, 2011 M Sundharam and Dutt, 64th Editio Text and Cases by Justin Paul, 3rd I 	Mithani, Hi cation. n, S Chand P Edition, McG	ublica iraw-H	tion. [ill		
 Managerial Economics- Managerial Economics, Managerial Economics, Indian Economy, K P M Business Environment 7 Companies. REFERENCES Dean. J"Management 7 	 Theory and Applications, Dr. D.M D.N Dwivedi, 6th ed., Vikas Publi H. L Ahuja, S. Chand, 2011 M Sundharam and Dutt, 64th Editio Text and Cases by Justin Paul, 3rd I Economics".Prentice Hall of India, 	Mithani, Hi cation. n, S Chand P Edition, McG New Delhi.	ublica raw-H	tion. Iill		
 Managerial Economics- Managerial Economics, Managerial Economics, Indian Economy, K P M Business Environment T Companies. REFERENCES Dean. J"Management T Mote.V.Let al. "Management T 	 Theory and Applications, Dr. D.M D.N Dwivedi, 6th ed., Vikas Publi H. L Ahuja, S. Chand, 2011 M Sundharam and Dutt, 64th Editio Text and Cases by Justin Paul, 3rd I Economics".Prentice Hall of India, gerial Economics: Concepts and 	Mithani, Hi cation. n, S Chand P Edition, McG New Delhi. 1 Cases". Tata	ublica raw-H 1982. McG	tion. Iill	Hill.N	New

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	1	1	1	2	1	1	1	2	2
CO 2	2	1	1	1	2	1	1	1	2	2
CO 3	2	2	1	1	2	1	1	1	2	2
CO 4	2	2	1	1	2	1	1	1	2	2
CO 5	1	2	1	1	2	1	1	1	2	2
Total	09	08	05	05	10	5	5	5	10	10
Course	03	02	01	01	2	1	1	1	2	2

YCABM2- CORPORATE PLANNING

CO1	С	Knowledge	Describe various methods to define Corporate Planning and
			Budgeting
CO2	С	Understand	Understand and apply set Social Responsibilities
CO3	С	Knowledge	Describe and apply various Professionalism
CO4	С	Understand	Describe and solve problems in Mission and Purpose
CO5	С	Understand	Understand Concept of learning the Organisation Appraisal

COURSE CODE	COURSE NAME	L	Т	Р	С
YCABM2	Corporate Planning	3	0	0	3
C:P:A = 3:0:0					
		L	Т	Р	Η
		3	0	0	3
UNIT- I: Corporat	e Planning and Budgeting		.1		09
Significance of Plar	ining: Types-Needs-Requisites-Corporate	planning: syste	em apj	proac	h-Role
of the planner-Corp	orate planning and budgeting.				
UNIT- II: Social R	esponsibilities				09
Social responsibiliti	es: Scope, contents, cooperation and socie	ety, consumers,	corpo	ratior	n and
democracy, commu	nity-government.				
UNIT- III: Profess	ionalism				09
Social responsibilit	y-versus profitability-productivity-growth	n-Professionalis	m as	a me	eans of
social bahaviour.					
UNIT- IV: Mission	and Purpose				09

Mission and purpose: Business definitions - object	tives and goals	-Environment a	ppraisal:
Concepts, components-Scanning and appraising th	e environment	t.	
UNIT- V: Organisation Appraisal			09
Organization appraisal: Dynamics-capability facto	ors- Considerat	ions- Methods a	und
techniques- Structuring- Planning gaps: Gap analy	sis- Manager a	audit: Significar	ice of gaps.
	LECTURE	TUTORIAL	TOTAL
	45	0	45
TEXT			I
1.Kazni. A "Business Policy". Tata McGraw Hil	l. New Delhi,	1992.	
2. Johnson. G etal. 3rd edition. "Exploring corpor	rate Strategy",	Prentice Hall of	f India, New
2.Johnson. G etal. 3rd edition. "Exploring corpor Delhi. 1994.	rate Strategy",	Prentice Hall of	f India, New
2.Johnson. G etal. 3rd edition. "Exploring corpor Delhi. 1994.REFERENCES	rate Strategy",	Prentice Hall of	f India, New

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PSO 2
									1	
CO 1	2	2	1	1	2	1	1	1	2	2
CO 2	2	1	1	1	2	1	1	1	2	2
CO 3	2	2	1	1	2	1	1	1	2	2
CO 4	2	2	1	1	2	1	1	1	2	2
CO 5	2	1	1	1	2	1	1	1	2	2
Total	10	8	5	5	10	5	5	5	10	10
Course	2	2	1	1	2	1	1	1	2	2

YCABM3- FOUNDATIONS OF DECISION PROCESSES

Course Outcomes:

CO1	С	Knowledge	Describe various methods to define role of decision making
CO2	С	Understand	Understand and apply game theory and competitive strategies
CO3	С	Knowledge	Describe and apply various queuing and inventory models
CO4	С	Understand	Describe and solve problems in Finance.
CO5	С	Understand	Understand Systematic problem analysis

Course Code	Course Name		L	T	Р	C
YCABM3	Foundations of Decision Process	ses	3	0	0	3
C:P:A = 3:0:0						-
			L	Т	Р	H
			3	0	0	3
UNIT- I:-Decis	ion Making			<u>I</u>		9
Role of decisio	n making in management-Framew	ork-Criteria un	der condition	s of	certai	nty-
risk and uncerta	inty-Baytes theorem-Sequential dec	ision making d	ecision tree a	nalysi	s.	•
UNIT –II: Con	npetitive Strategies	U		-		9
Theory of utili	ty- Utility function curve- Com	etitive strateg	ies, game the	eorv-	Que	liing
model-Single ch	annel single phase waiting line mo	del with Poisso	on	Jory	240	B
UNIT III. Sin	aulation		/11.			0
Distributed			Care Ma	1		9
Distributed arr	ival rates and exponentially di	stributed servi	ce times-Ma	rkov	moc	iels-
Simulation: Mo	onte Carlo- Application to queui	ng and invente	ory models-A	pplic	ation	s in
functional areas	of marketing, production.					
UNIT- IV: Fina	ance					9
Finance- Behavi	ioral aspects in decision making-op	en and closed n	nodels of deci	sions	•	
UNIT -V: Syste	ematic Problem Analysis					9
Systematic prob	lem analysis and decision making-	Decision maki	ng in functior	nal ar	eas -	case
studies.						
		LECTURE	TUTORIA	L]	ΓΟΤΑ	\L
		45	0		45	;
TEXT				I		
1. Gregory, G.	"Decision analysis", Pitman, Londo	on, .1988.				
2. Johnson. R.I	D et. al. "Ouantitative Techniques	filr Business I	Decisions". Pre	entice	Hall	
N.J. 1977.						
REFERENCES	3					
1 Donald A II	loward AliE Abbas "Eoundation	of Decision A	nalusis" Door	on	0016	
	iowaiu, All E. Autas, Foundation.	S OJ Decision A	narysis . Pears	on, 2	.010.	

2. David C.skinner.,"Introduction to decision analysis", 3rd edition, Apractitioner's guide to improving decision quality, 1999.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	1	1	1	2	1	1	1	2	2
CO 2	2	1	1	1	2	1	1	1	2	2
CO 3	2	2	1	1	2	1	1	1	2	2
CO 4	2	2	1	1	2	1	1	1	2	2
CO 5	2	2	1	1	2	1	1	1	2	2
Total	10	8	5	5	10	5	5	5	10	10
Course	2	2	1	1	2	1	1	1	2	2

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCABM4- INVESTMENT TECHNOLOGY

CO 1	С	Knowledge	Describe various methods to define Source of investment
			information
CO2	С	Understand	Understand and apply set Interest Rates
CO3	С	Knowledge	Describe and apply various Shares and Valuation
CO4	С	Understand	Describe and solve problems in Portfolio Theory
CO5	С	Understand	Understand Concept of learning the Mutual Funds

COURSE CODE	COURSE NAME	L	Τ	Р	С	
YCABM4	3	0	0	3		
C:P:A = 3:0:0					•	
		L	T	Р	H	
		3	0	0	3	
UNIT- I:Investment Information-Introduction						
Source of investment in	nformation -Valuation of debt securitie	es: Debt prices a	nd inte	erest	rate	
risk-Default risk and pu	rchasing power risk.					
UNIT- II:Interest Rate	es				9	
Market interest rates -	term structure of interest rates- Valu	ation of warrant	s-conv	vertib	oles-	
Option pricing models.						
UNIT- III: Shares and Valuation						

UNIT- IV: Portfolio Theory			9
Portfolio theory- Efficient investments -	-diversification-Markowitz	graphical portfo	olio
analysis-Capital market theory- Portfolio	performance evaluation-	sharpe.	
UNIT- V: Mutual Funds			
Treynor- Jenson measures- Mutual fund	ds - kinds and evaluation-	Behaviour of sh	are prices
Treynor- Jenson measures- Mutual fund technical analysis-The efficient markets-	ds - kinds and evaluation- -Hypothesis - random wall LECTURE	Behaviour of sh and Martingale	are prices methods.
Treynor- Jenson measures- Mutual fund technical analysis-The efficient markets-	ds - kinds and evaluation- -Hypothesis - random walk LECTURE 45	Behaviour of sh and Martingale TUTORIAL 0	nare prices methods. TOTAL 45
Treynor- Jenson measures- Mutual fund technical analysis-The efficient markets- TEXT	ds - kinds and evaluation- -Hypothesis - random walk LECTURE 45	Behaviour of sh and Martingale TUTORIAL 0	are prices methods. TOTAL 45
Treynor- Jenson measures- Mutual fund technical analysis-The efficient markets- TEXT 1. Clark Net. al. "Financial Ma	ds - kinds and evaluation- -Hypothesis - random walk LECTURE 45 anagement: A Capital Mar	Behaviour of sh and Martingale TUTORIAL 0 ket Approach". H	are prices methods. TOTAL 45 Helbrook,

2. Sharpe. W.F., "Investments". Prentice Hall of India. New Delhi. 1996.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	2	2	1	2	1	1	1	2	2
CO 2	2	2	1	1	2	1	1	1	2	2
CO 3	2	2	1	1	2	1	1	1	2	2
CO 4	2	2	1	1	2	1	1	1	2	2
CO 5	2	2	1	1	2	1	1	1	2	2
Total	10	10	6	5	10	5	5	5	10	10
Course	2	2	1	1	2	1	1	1	2	2

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCABM5-BUSINESS FINANCE

CO 1	С	Knowledge	Describe various methods to define financial and economic
			development
CO2	С	Understand	Understand and apply primary and secondary capital market
CO3	С	Knowledge	Describe and apply various managerial problems
CO4	С	Understand	<i>Describe</i> and <i>solve</i> problems in non-banking financial
			institutions

CO5 C Understand	Understand Credit rat	ng information	n							
COURSE CODE	COURSE NAME		L	Т	P	С				
YCABM5	3	0	0	3						
C:P:A = 3:0:0			L	Т	Р	Η				
			3	0	0	3				
UNIT- I:Introduction to	Business Finance			<u>.</u>		9				
Financial and economic d	evelopment- Intermediation	on, role and pa	atterns- Functi	ions o	of mo	ney				
and capital markets- Intere	est rates, determination, te	rm structure.								
UNIT –II: Financial Inte	ermediaries					9				
Primary capital market: 1	new issues, growth and t	rends- Financi	al intermedia	ries:	mercl	hant				
bankers- managers, broke	ers, underwriters-Seconda	y market - or	ganization an	d fun	ction	ing-				
Trading and settlement.										
UNIT – III: Managerial	Problems					9				
Problems relating to mer	nbership- commission- n	argins- arbitra	ation and off-	-floor	trad	ing-				
Reforming the markets-	SEBI- Market for govern	nment securiti	es-the discour	nt and	l fina	ance				
house-Operation and mana	agerial problems of comm	ercial banks.								
UNIT- IV:Non-Banking	Financial Institutions					9				
Inter-bank call money ma	rket- Non-banking financ	ial institutions	: lending poli	cies,	schen	nes,				
composition and quantum	of assistance of IDBI. IF	CI. ICICI, UT	I- L1C, GIC	and s	tate le	evel				
financial corporations.										
UNIT- V: Credit Rating	Information					9				
Credit rating information	: Parameters. Role- Agen	cies- CRISIL-	· Regulatory f	frame	work	for				
financial markets and ins	stitutions: regulation vers	us deregulatio	n- Role of R	BI-B	ank 1	rate,				
open market operation pol	icies.									
		LECTURE	TUTORIA	[]	OTA	L				
		45	0		45					
TEXT			-							
1. Eddie MCLaney., "Bu	siness Finance Theory and	l practice ", 8 th	¹ edition, Pear	son E	Educa	tion				
,2009.										
REFERENCES										
1. Copeland, T.E., et.	al, "Financial Theory a	nd Corporate	Policy". Add	lison	Wes	sley,				
Reading, MA. 1988.										
2. Uppal.J.S., "Public Fir	nancial Institutions in India	a", Mac Millan	ı, New York,							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
--------	-----	-----	-----	-----	-----	-----	-----	-----	-------	-------
CO 1	2	1	2	2	2	1	1	1	2	2
CO 2	3	1	2	2	2	1	1	1	2	2
CO 3	2	2	2	2	2	1	1	1	2	2
CO 4	3	2	2	2	2	1	1	1	2	2
CO 5	3	2	2	2	2	1	1	1	2	2
Total	13	08	10	10	10	5	5	5	10	10
Course	3	02	2	2	2	1	1	1	2	2

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCABM6 TAXATION PRACTICES

Course Outcomes:					
CO1 C Knowledge	Characterize various scheme of taxation				
CO2 C Understand	Discuss the various types of assessment				
CO3 C Knowledge	Describe the modes of recovery				
CO4 C knowledge	Describe and apply the wealth and health the	ax			
CO5 C Understand	Understand the issues state sales tax				
COURSE CODE	COURSE NAME	L	T	P	C
YCABM6	Taxation Practices	3	0	0	3
C:P:A =3:0:0					
		L	Т	Р	H
		3	0	0	3
UNIT- I: Assessment	of undivided families		I		9
Assessment of undivid	ded families: Meaning-Basic conditions- Taxabl	le incon	ne- Pa	artitio	ons-
Tax planning- Assessm	nent of firms and associations: Scheme of taxatio	on- types	s- trea	tmen	t of
losses- Tax planning.					
UNIT- II: Assessmen	it of companies				9
Assessment of company	nies: Types-profits-depreciation-tax planning-Sect	tion 80-	Bonu	s issu	ues-
dividend policy-Return	n of income and assessment procedure: Types	s of ass	sessme	ent-T	ime
limits-Reassessment-C	ooperatives.				
UNIT – III: Collection	n and recovery of tax				9
Collection and recover	ery of tax: Deduction at source-rates-advance	e paym	ent-M	Iodes	of
recovery-Refund-Appe	eals and revision-Penalties.				
UNIT- IV: Wealth Ta	łX				9
Wealth Tax: Chargeab	ility-valuation-return-appeals-revisions-payment	and reco	overy,	gift	tax:

.....

chargeability-rebate-assessment-appeals-revisions-payment and recovery.

UNIT- V: Central sales tax 9 Central sales tax: Concept of sale and purchase-Inter-state trade-Inter-state export and import trade. State sale tax: Assessing authority-Single-multiple point tax-Procedure for registration and cancellation-Returns-payment-appeals and revisions.

	LECTURE	TUTORIAL	TOTAL
	45	0	45
TEXT		•	

1. "Girish Ahuja & Ravi Gupta ", Systematic Approach to Income Tax, Bharat Law House Pvt. Ltd, New Delhi.

2. "Vinod K. Sinhania & Monica Sinhania", Income Tax, Taxmann Publications Pvt. Ltd, New Delhi.

3. "Mehtrotra & Goyal", Taxation Law & Practice, Sahitya Bhavan Publication, Agra.

- 4. "Lal B.B", Direct Taxes, Konark Publishing House, New Delhi.
- 5. "VS.Datey", Indirect Taxes law and practice Taxman allied services pvt. Ltd.Books in India"

REFERENCES

1. Central and State tax acts, Singhania, VK., "Taxman Direct Taxes", Taxman, New Delhi. 1996.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	1	1	1	1	1	1	1	1	1
CO 2	2	1	1	1	1	1	1	1	1	1
CO 3	2	2	1	1	1	1	1	1	1	1
CO 4	2	2	1	1	1	1	1	1	1	1
CO 5	1	2	1	1	1	1	1	1	1	1
Total	09	08	05	05	05	05	05	05	05	05
Course	03	02	01	01	01	01	01	01	01	01

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCABM7 MIS FRAMEWORKS AND IMPLEMENTATION

		- 01-21-11			•								
Cours	se O	utcomes:											
CO 1	С	Knowledge	Describe variety of framework for idea	ntifyin	g info	orma	tion						
	technology												
CO2	С	Understand	Discuss the benefits of IT										
CO3	С	Knowledge	Describe the new strategic role of information	on syste	em								
CO4	С	knowledge	Describe the business process reengineering	5									
CO5 C Understand <i>Discuss</i> the managing IT function													
COURSE CODE COURSE NAME L T P C													
YCAE	BM7		MIS Frameworks and Implementation	3	0	0	3						
C:P:A	x =3	:0:0											
				L	T	Р	H						
3 0 0 3													
UNIT	- I:	Introduction	n to MIS				9						
This o	cour	se will discuss	a variety of frameworks for identifying inf	ormatio	on tec	chnol	ogy						
applic	atio	ns- The scope of	of IT applications would cover Management	Inform	ation	Syst	em-						
Decisi	on S	Support System-	Executive Information System and Expert Syst	em.									
UNIT	- II:	Managing Da	ata Resource				9						
Provid	le a	broad understan	ding of the types of the benefits information tec	hnolog	y app	licati	ions						
can pr	ovi	le in an organiz	ation through transaction processing- manager	ment a	nd op	eratio	onal						
contro	l-de	cision support	systems- office automation-organizational of	commu	nicati	ons	and						
group	wor	k support.											
UNIT	- II	I: IT Strategy	7				9						
Socio-	-eco	nomic environn	nent and information systems in organization	1 and	the ir	npac	t of						
inform	information systems on organizations markets- frameworks for information systems planning-												
inform	natic	on systems and c	competitive advantage-the new strategic role of	inform	ation	syste	ms:						

methodologies for evaluating investments in IT-frameworks and methodologies- should be discussed and illustrated with case studies.

9

9

UNIT -IV : Business Process Integration with IT

Design of reporting system including a discussion of principles in indicator design- managing information support activity in organization- concept of the business process re-engineering (BPR) and how IT can enable BPR

UNIT- V: Managing IT function

Critical success factor in implementing IT applications including the need for managing the process of change illustrated through case studies of successful/failed IT projects-Critical role of security in implementing IT applications should be discussed.

	LECTURE	TUTORIAL	TOTAL
	45	0	45
TEXT			

1. Kenneth C.Laudon.Jane P.Laudon, "Management information systems", Pearson, 14th edition.

REFERENCES

1. David olson, "Information system project manangement",2015.

2. Paige baltzan, Amy phillips ,"Business - Driven Information System",2015.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	2	2	2	1	1	1	2	2
CO 2	3	3	2	2	2	1	1	1	2	2
CO 3	3	3	2	2	2	1	1	1	2	2
CO 4	3	2	2	2	2	1	1	1	2	2
CO 5	2	2	2	2	2	1	1	1	2	2
Total	14	13	10	10	10	5	5	5	10	10
Course	3	3	2	2	2	1	1	1	2	2

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCABM8- MANAGEMENT OF SOFTWARE PROJECTS

CO1	С	Knowledge	<i>Describe</i> vari	Describe various methods to define Software projects								
CO2	С	Understand	Understand	and	apply	project	scheduling	and	project			
			management.									
CO3	С	Knowledge	<i>Describe</i> and	design	<i>i</i> system	life cycle	e					
CO4	С	Understand	Describe and	solve	problem	s related t	to the project					
CO5	С	Understand	Understand a	and det	ermine	skill requi	rements					

Course Code	Course Name	L	Т	Р	C
YCABM8	Management of Software Projects	3	0	0	3
C:P:A = 3:0:0					
		L	Т	Р	H
		3	0	0	3
UNIT- I:-Introd	luction		i	•	9

			~
UNIT –II: Project Scheduling and Managen	ient		9
Project Scheduling-Measurement of software	quality and produ	ctivity-ISO and	l Capabilit
Maturity Models for organizational growth-Pro	ject management ar	nd Practice.	
UNIT- III: System life cycle and Design			9
Managing the systems life cycle- requirements	s determination-log	ical design-phys	sical design
testing-implementation.			
UNIT- IV: Integration issues and Project Ma	anagement		9
System and database integration issues-metrics	for project manage	ment and system	ıs
performance evaluation-managing expectations	s- superiors-users-te	am members and	d other
related to the project.			
UNIT- V: Cost Effectiveness Analysis			9
Determining skill requirements and staffing the	e project-cost-effecti	veness analysis-	-reporting
and presentation techniques-and effective mana	agement of both beh	avioural and tec	hnical
aspects of the project.			
	IECTUDE	TUTORIAL	TOTAL
	LECIURE		
	45	0	45
TEXT	45	0	45
TEXT 1. Gilb, T., "Principles of Software Engineerin	45	0 ddison Weskey.	45 Reading.
TEXT1. Gilb, T., "Principles of Software Engineerin M.A. 1988.	45	0 ddison Weskey.	45 Reading.
 TEXT Gilb, T., "Principles of Software Engineerin M.A. 1988. Putnam. L.H . Myers. W., "Industrial Sire" 	12100000000000000000000000000000000000	0 ddison Weskey. ve Management	45 Reading. using
 TEXT Gilb, T., "Principles of Software Engineerin M.A. 1988. Putnam. L.H . Myers. W., "Industrial Sire" Measurement". IEEE C.S. Press. 1997. 	45 ng Management", A " Software - Effecti	0 ddison Weskey. ve Management	45 Reading. using

- Dr.Jeroen Arnoldus, Dr.Sieuwert Van Otterloo, Dr.Joost Schalken-Pinkster, "Software Project Management", ICT Institute
- 2. Lean Agile and Kanban, "Software Engineering Management", on Pawel Brodzinski
- 3. "Principles of Software Development Leadership: Applying Project Management Principles to Agile Software Development" by Ken Whitaker.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	2	2	2	1	2	2	3	3
CO 2	2	2	2	2	2	1	2	2	3	3
CO 3	2	1	2	2	2	1	2	2	3	3
CO 4	2	2	2	2	2	1	2	2	2	2

CO 5	2	1	2	2	2	1	2	2	2	2
Total	11	09	10	10	10	5	10	10	13	13
Course	03	02	2	2	2	1	1	1	3	3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCABM9 BLOCKCHAIN TECHNOLOGY

Course Outcomes:

CO1	С	Knowledge	Describe distributed database
CO2	С	Understand	Understand block chain network
CO3	С	Understand	Understand crypto currency and bit coin
CO4	С	Understand	Understand crypto currency regulation
CO5	С	Apply	Apply block chain applications

COURSE CODE	COURSE NAME	L	Τ	P	C			
YCABM9	BLOCKCHAIN TECHNOLOGY	3	0	0	3			
C:P:A = 3:0:0					••••••••••••••••••••••••••••••••••••••			
		L	Τ	P	H			
		3	0	0	3			
UNIT-I: INTRODUCTION TO BLOCK CHAIN 9								

Introduction, Advantage over conventional distributed database, Block chain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of Blockchain application, Soft & Hard Fork, Private and Public block chain.

UNIT-II: DISTRIBUTED CONENSUS

Distributed Consensus: Nakamoto consensus, Proof of Work, Proof of Stake, Proof of Burn, Difficulty Level, Sybil Attack, Energy utilization and alternate.

9

9

9

UNIT – III: CRYPTOCURRENCY

Cryptocurrency: History, Distributed Ledger, Bitcoin protocols - Mining strategy and rewards, Ethereum - Construction, DAO, Smart Contract, GHOST, Vulnerability, Attacks, Sidechain, Namecoin

UNIT- IV: CRYPTOCURRENCYREGULATION AND APPLICATIONS

Cryptocurrency Regulation: Stakeholders, Roots of Bitcoin, Legal Aspects - Cryptocurrency Exchange, Black Market and Global Economy- Blockchain Applications: Internet of Things, Medical Record Management System, Domain Name Service and future of Blockchain

UNIT-V: NEXT GENERATION INDUST	RY		9
Industry 4.0: The Fourth Revolution Sus	tainability Assessme	nt of Manufactu	ring Industry
Lean Production System - Smart and Con	nected Business Per	<u>spective</u> - <u>Sm</u>	art Factories -
Industry 5.0			
	LECTURE	TUTORIAL	TOTAL
	45	-	45
TEXT		1	
1. Arvind Narayanan, Joseph Bonneau,	Edward Felten,	Andrew Mille	r and Steve
1. Arvind Narayanan, Joseph Bonneau, Goldfeder,Bitcoin and Cryptocurrency	Edward Felten, Technologies: A	Andrew Mille Comprehensive	r and Steven e Introduction
 Arvind Narayanan, Joseph Bonneau, Goldfeder,Bitcoin and Cryptocurrency Princeton University Press (July 19, 2016) 	Edward Felten, Technologies: A	Andrew Mille Comprehensive	r and Steve e Introductior
 Arvind Narayanan, Joseph Bonneau, Goldfeder,Bitcoin and Cryptocurrency Princeton University Press (July 19, 2016 Blockchain for Beginners: The Complete 	Edward Felten, Technologies: A i). e Step by Step Guid	Andrew Mille Comprehensive e to Understand	r and Steve e Introductior ing Blockchai
 Arvind Narayanan, Joseph Bonneau, Goldfeder,Bitcoin and Cryptocurrency Princeton University Press (July 19, 2016 Blockchain for Beginners: The Complete Technology by Mark Watney 	Edward Felten, Technologies: A i). e Step by Step Guid	Andrew Mille Comprehensive e to Understand	r and Steve e Introductior ing Blockchai
 Arvind Narayanan, Joseph Bonneau, Goldfeder,Bitcoin and Cryptocurrency Princeton University Press (July 19, 2016 Blockchain for Beginners: The Complete Technology by Mark Watney Reference 	Edward Felten, Technologies: A D). e Step by Step Guid	Andrew Mille Comprehensive e to Understand	r and Steve e Introductior ing Blockchai

2. Blockchain Applications: A Hands-On Approach Paperback by Arshdeep Bahga

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	1	2	2	2	1	1	1	2	2
CO 2	3	1	2	2	2	1	1	1	2	2
CO 3	2	1	2	2	2	1	1	1	2	2
CO 4	2	1	2	2	2	1	1	1	2	2
CO 5	3	2	2	2	2	1	1	1	2	2
Total	13	6	10	10	10	5	5	5	10	10
Course	3	2	2	2	2	1	1	1	2	2

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

4. Curriculum and Syllabus of the MCA programme – After Revision

MCA – MASTER OF COMPUTER APPLICATIONS

REGULATION 2023

SEMESTER-I

Course Code	Course Title	L	Τ	Р	Н	C
YCA101	Database Management Systems	3	0	0	3	3
YCA102	Cryptography and Network Security	3	0	0	3	3
YCA103	Python Programming	3	1	0	4	4
YCA104	Mathematical Foundation for Computer Applications	4	1	0	5	5
YCA105	Software Engineering	3	0	0	3	3
YCA106	Database Management Systems Laboratory	0	0	4	4	2
YCA107	Python Programming Laboratory	0	0	4	4	2
YCA108	Soft Skill Development	2	0	0	2	2
	Total	18	02	8	28	24

SEMESTER- II

Course Code	Course Title	L	Т	Р	Н	С
YCA201	Big Data Analytics	3	1	0	4	4
YCAME2*	Elective-I	3	0	0	3	3
YCA203	Advanced Data Structures	3	1	0	4	4
YCA204	Object Oriented Programming Language	3	0	0	3	3
YCABE5*	Elective -II	3	0	0	3	3
YCA206	Big Data Analytics Laboratory	0	0	4	4	2
YCA207	Object Oriented Programming Language Laboratory	0	0	4	4	2
YCA208	Data Visualization Laboratory	0	0	2	2	2
	Total	12	2	10	25	21

SEMESTER- III

Course Code	Course Title	L	Τ	Р	Н	C
YCA301	Artificial Intelligence and Machine	3	0	0	3	3
	Learning					
YCA302	Computer Graphics and Multimedia	3	0	0	3	3
YCACE3*	Elective-III	3	0	0	3	3
YCACE4*	Elective -IV	3	0	0	3	3
YCA305	Mini Project	0	0	3	3	3
YCA306	Industrial Lecturer	0	0	2	2	2
YCA307	Artificial Intelligence and Machine	0	0	4	4	2
	Learning Laboratory using Python					
YCA308	Computer Graphics and Multimedia	0	0	4	4	2
	Laboratory					
	Total	12	0	13	25	21

SEMESTER-IV

Course Code	Course Title	L	Т	Р	Н	С
YCA401	Review of Literature	3*(SS)	0	-	3	3
YCA402	Main Project	0	0	24	24	11
	Total	3*(SS)	0	24	27	14

Elective I

Course Code	Course Title	L	Τ	P	Η	С
YCAME2A	Optimization Techniques	3	0	0	3	3
YCAME2B	Automata Theory	3	0	0	3	3
YCAME2C	Numerical Methods	3	0	0	3	3
YCAME2D	Combinatorics	3	0	0	3	3

Elective II

Course Code	Course Title	L	Т	Р	Н	C
YCABE5A	Foundations of Decision Processes	3	0	0	3	3
YCABE5B	Corporate Planning	3	0	0	3	3
YCABE5C	Management of Software Projects	3	0	0	3	3

				•	-	-
YCABE5D	Enterprise Resource Planning	3	0	0	3	3

Elective III

Course Code	Course Title	L	Т	Р	Η	C
YCACE3A	Cloud Computing	3	0	0	3	3
YCACE3B	Block Chain	3	0	0	3	3
YCACE3C	Digital Image Processing	3	0	0	3	3
YCACE3D	Natural Language Processing	3	0	0	3	3

Elective IV

Course Code	Course Title	L	Т	Р	Η	С
YCACE4A	Deep Learning	3	0	0	3	3
YCACE4B	Exploratory Learning	3	0	0	3	3
YCACE4C	Business Intelligence	3	0	0	3	3
YCACE4D	Predictive Analytics	3	0	0	3	3

YCA101 DATABASE MANAGEMENT SYSTEMS

Course Outcomes:

CO1	С	Understand	Explain the basic concepts of Database and architecture						
CO2	С	Understand	Outline the Data and ER model						
CO3	C	Understand	Explain Relational data models, algebra and relational calculus						
CO4	С	Understand	Illustrate relational data base and its design						
CO5	С	Understand	Interpret the concepts of transactions and its properties						
CO6	С	Understand	Interpret the various application fields of DBMS						

COURSE CODE	COURSE NAME	L	Т	P	C	
YCA101	DATABASE MANAGEMENT SYSTEMS	3	0	0	3	
C:P: A = 3:0:0		L	Т	Р	Η	
PREREQUISITE	Basic Computer Skill	3	0	0	3	
UNIT I : BASIC CONCL	EPTS				9	
Database & Database Use	ers. Characteristics of the Database Approach	advar	itages	of u	sing	
DBMS. Data Models, Sc	hemas & Instances. DBMS Architecture &	Data	Indep	bende	nce.	
System Architecture for D	BMS and Data Dictionary, Database Users Da	ta Bas	se lan	guage	s &	
Interfaces. Data Modeling using the Entity-Relationship Model -Entity types, Entity Sets,						
Attributes and Keys, Re	lationship, Relationship Types, Week Entity	y Ty	pes, S	Struct	ural	
Constraints, Enhanced	ER Model- Specialization Generalization	n, C	onstra	aints	on	

Specialization Generalization. **UNIT II : RELATIONAL MODEL, LANGUAGES & SYSTEMS**

Relational Data Model Concepts and Constraints. Relational Algebra - select, project, set theoretic, join operations. Overview of Relational Calculas. SQL - A Relational Database Language. Data Definition commands, View and Queries, transaction commands, Specifying Constraints & Indexes in SQL. 9

UNIT III: RELATIONAL DATA BASE DESIGN

Function Dependencies & Normalization for Relational Databases. Informal design guidelinesfor relation schemas, Functional Dependencies. Normal forms based on primary keys (INF, 2NF,3NF& BCNF). Lossless join & Dependency preserving decomposition. Multivalueddependencies, join dependencies (4NF & 5NF), Denormalization.

UNIT IV: TRANSACTIONS, CONCURRENCY CONTROL, RECOVERY TECHNIQUES

Basic concept; ACID properties; transaction state; implementation of atomicity and durability; concurrent executions; basic idea of serializability; view and conflict serializability Recovery Techniques Failure Classification, Storage Structure, Recovery and Atomicity Log Based Recovery, Shadow Paging , stable storage implementation, data access; recovery and atomicity - log based recovery, deferred database modification, immediate database modification, checkpoints.

UNIT- V: EMERGING FIELDS IN DBMS

9

9

Distributed databases-Basic idea-distributed data storage- data replication-data fragmentation horizontal, vertical and mixed fragmentation- Concepts of Multimedia databases and Object oriented data base management systems.

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT

1. Avi Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", Seventh Edition, McGraw-Hill, ISBN 9780078022159, March 2019.

2. Muhammad Sharif, "Complete book Database management systems Handbook", 3rd Edition, August 2022

REFERENCES

1. S.K.Singh, , "Database Systems, Concepts, Design and Applications", Pearson Education, 2020.

2. Raghu Ramakrishnan, Johannes Gehrke ,"Database Management Systems", McGraw Hill Publication,2018

3.Elmsari, Navathe, "Fundamentals of Database Systems" by, 5th Edition, Pearson Education ,2008.

E REFERENCES

1. Prof. Partha Pratim Das and Prof. Samiran Chattopadhyay, "Data Base Management System", IITKGP, https://onlinecourses.nptel.ac.in/noc22_cs51/preview

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA102 CRYPTOGRAPHY AND NETWORK SECURITY

Course Outcomes:

CO1	С	Understand	Understand the overview of the cryptography basics model.								
CO2	С	Understand	Infer the idea of cryptography algorithm								
CO3	С	Understand	Explain various security technology								
CO4	С	Understand	Illustrate Firewalls and its model								
CO5	С	Understand	Summarize Virtual Private Networks and its Model								
CO6	С	Understand	<i>Understand</i> the implementation of security and change management								

COURSE CODE	COURSE NAME	L	Т	P	С		
YCA102	CRYPTOGRAPHY AND NETWORK SECURITY	3	0	0	3		
C:P: A = 3:0:0		L	Т	Р	H		
PREREQUISITE	Basic Computer Skill	3	0	0	3		
UNIT I OVERVI	EW				9		
Services, Mechanis	ms and Attacks, The OSI Security Archite	cture, A M	odel for l	Netw	ork		
Security. Classica	l Encryption Techniques: Symmetric (Cipher Mo	del, Sub	stitut	ion		
Techniques, Transp	ortation Techniques, Steganography						
UNIT IIALGORI	ГНМЅ				9		
Simplified DES- Ke	ey Management, Diffe-Hellman Key Exchar	nge, Elliptic	Curve	Ξ			
Arithmetic, Elliptic	Curve Cryptography.						
UNIT IIIPLANN	ING FOR SECURITY				9		
Information Securit	y Planning and Governance-Information Sec	urity Policy	, Standard	ls, an	d		
Practices -The Info	mation Security Blueprint -Security Educati	on, Training	g, and Awa	arene	ss		
Program -Continuit	y Strategies.						
UNIT IVFIREWA	LLS AND VPNS				9		
Access Control -Fir	ewalls -Firewall Processing Modes -Firewal	ls Categoriz	ed by Ger	ierati	on		
-Firewalls Categori	zed by Structure-Firewall Architectures -Sele	ecting the R	ight Firew	all -			
Configuring and M	anaging Firewalls-Content Filters -Protecting	g Remote Co	onnections	s -			
Remote Access -Vi	rtual Private Networks.						
UNIT V INTRUSI	ON DETECTION AND PREVENTION S	SYSTEMS			9		
Introduction-Intrusi	on Detection and Prevention Systems - Type	s of IDPS-1	IDPS Dete	ection	1		
Methods- IDPS Res	sponse Behavior- Selecting IDPS Approache	s and Produ	cts- Streng	gths a	and		
Limitations of IDPSs- Deployment and Implementation of an IDPS-Measuring the							

Effectiveness of IDPSs.

	LECTURE	TUTORIA	UTORIAL PRACTICAL					
	45	0	0	45				
TEXT								
3. Michael E.Whitman, and Herbert J.Mattord, Principles of Information Security 4th								
			•					

edition, Cengage Learning 2012. 4. Cryptography and Network Security Third Edition William Stallings, Prentice Hall, 2002 **REFERENCES**

- 3. Nozaki, Micki Krause, Tipton, Harold F, Information Security Management Handbook 6th Edition CRC Press,2012
- 4. Hossein Bidgoli, Handbook of Information Security-Information Warfare; Social,Legal, and International Issues; and Security Foundations,John Wiley& Sons Inc.2006

E REFERENCES

- 3. <u>https://onlinecourses.nptel.ac.in/noc15_cs03</u>
- 4. https://onlinecourses.nptel.ac.in/noc16_cs01

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA103 PYTHON PROGRAMMING

CO1 C	Understand	Explain the programming skills in core Python.
CO2 C	Understand	Outline the functionalities of Strings and function
CO3 C	Understand	Illustrate object oriented skills in Python
CO4 C	Understand	Comprehend various Python Packages
CO5 C	Understand	Infer web applications using Django
CO6 C	Understand	Infer Query process using Django

COURSE CODE	COURSE NAME	L	Τ	P	C	
YCA103	PYTHON PROGRAMMING	3	1	0	4	
C:P:A = 4:0:0						
		L	Т	Р	H	
PREREQUISITE	Basic Computer Skill	3	1	0	4	
UNIT I : INTRODUCTION						

Introduction : Fundamental ideas of Computer Science - Strings, Assignment, and Comments - Numeric Data types and Character sets – Expressions – Loops and Selection Statements: Definite iteration: the for Loop - selection: if and if-else statements - Conditional iteration: the while Loop

LINIT II • STDINCS AND I	FUNCTIONS			12					
Strings and Taxt Files: Accessing Characters and substrings in strings. Data encryption									
Strings and Number systems. String methods Text Lists and Dictionaries: Lists									
Dictionaries – Design with	Functions: A (Dujck review - Pi	roblem Solving wit	h top-Down					
Design - Design with recursiv	ve Functions -	Managing a Progr	am's namesnace - F	ligher_Order					
Functions									
T unctions									
UNIT III: DESIGN WITH	I CLASSES			12					
Design with Classes: Gettin	ng inside Obje	ects and Classes	- Data-Modeling	Examples –					
Building a New Data Struct	ure – The Two	o – Dimensional	Grid - Structuring (Classes with					
Inheritance and Polymorphis	m - Graphical	User Interfaces - 7	The Behavior of term	minal-Based					
programs and GUI-Based pr	ograms - Codi	ng Simple GUI-E	Based programs - W	/indows and					
Window Components - Com	mand Buttons a	and responding to	events						
				10					
Working with Dython Dock	TH PYTHON	PACKAGES	Decie Operations	I2 Indexing					
Slicing and Iteration	iges: Numpy I	Library-Indarray -	- Dasic Operations	- mdexing,					
Index Objects Data Vizuali	y manipulation	1 - Panuas – The	series – The Datar	rame - The					
The Plotting Window Addi	rzation with with	the Chart Line	Chorta Par Charta	Pio oborto					
The Flotting whidow – Addi	ing Elements to	the Chart – Line	Charts – Dar Charts	- Fle charts					
UNIT- V: DJANGO				12					
Django: Installing Django –	Building an Ap	plication – Projec	t Creation – Design	ing the Data					
Schema - Creating an admini	stration site for	models - Workin	g with QuerySets ar	nd Managers					
- Retrieving Objects - Buildi	ing List and De	tail Views							
	LECTURE	TUTORIAL	PRACTICAL	TOTAL					
-	45	15		<u>60</u>					
I.		<u> </u>							
TEXT									
1. 1. K.A. Lambert, "Fundamentals of Python: first programs", Second Edition,									
Cengage Learning, 20)18								
2. Fabio Nelli, "Python	Data Analytics	s: With Pandas, N	umPy, and Matplot	lib", Second					
Edition, Kindle Edition, 2018									

3. Antonio Mele, "Django 3 By Example", Third Edition, 2020

REFERENCES

1.John Paul Mueller & Luca Massaron, Python for Data Sciences for Dummies, Kindle Edition, 2015

2.Dr.Gabriele Lanaro & Quan Nguyen, Leaning Path Advanced Python Programming, Kindle Edition, 2019

E REFERENCES

1. https://onlinecourses.nptel.ac.in/noc18_cs35

2.https://nptel.ac.in/courses/106105166/26

3.https://nptel.ac.in/courses/117106113/34

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2

CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

Course	Course Name	L		Т	P	С					
Code											
YCA104	Mathematical foundation for	4		1	0	5					
	Computer Applications										
C:P:A =		L		Т	P	H					
5:0:0											
	~ ~ ~	4	_	1	0	5					
	Course Outcomes:		Dom	ain		ype					
CO1	Discuss the basic fundamentals statistics and measures	of Cogniti	ve		Remen	nbering					
CO2Identify the concept of sampling techniqueCognitiveUnderstanding											
CO3Describe about the charts and analysisCognitiveRemembering											
CO4	Discuss about the statistics ana	ve		Unders	tanding						
CO5	Describe the various implementation	Cogniti	ve	Unders	tanding						
CO6Explain the statistical models are implemented in Programming languagesCognitiveUnderstanding											
UNIT-I: I	ntroduction					15					
Basic Statis	stics: Measures of central tend	lencies - Mea	asures	of dispers	ion - Fre	quency					
distributions	s - Moments - Correlation coeffic	ient - Regress	ion.	-							
UNIT-II:	Sampling statistical computing	5				15					
Sampling: 7	Theory of sampling - population	n and sample	- Surv	ey method	s and est	imation					
Statistical in	ference - Testing of hypothesis a	and inference		•							
UNIT-III:	Statistics For Business					15					
Computing	frequency charts - Regression and	alysis.									
UNIT-IV:	Data Analysis	•				15					
Time series	and forecasting										
UNIT- V:Ir	nplementation					15					
Implementa	tion: Using a programming lang	uage - a datab	ase sys	tem - Prog	ramming	styles -					
reusability -	reusability - extensibility - robustness - Programming-in-the-large - case study.										
	LECTURE	ΓUTORIAL	PRAC	CTICAL	TOT	AL					
	60	15		0	75						
ТЕХТ											
2. Tanner,	M. A.," Tools for Statistical Infe	erence: Metho	ds for i	the Explore	ation of \overline{P}_{0}	osterior					
Distribu	tion" Springer Verlag: New Yor	k., third Eition	.,1996								
REFEREN	CES										

 Affi, A.A., "Statistical Anal);sis: A Computer Oriented Approach". Academic Press, New York, 1979. Hogg. R. v..Et. Al., "Introduction to Mathematical Statistics", American Publishing, New York. 1980.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PSO
									1	2
CO 1	3	2	2	1	2	2	2	2	2	2
CO 2	3	2	2	2	2	2	2	2	2	2
CO 3	2	2	2	2	2	2	2	2	2	2
CO 4	2	2	2	1	2	2	2	2	2	2
CO 5	2	2	2	2	2	2	2	2	2	2
CO 6	2	2	2	2	2	2	2	2	2	2
Total	14	12	12	10	12	12	12	12	12	12
Scaled Value	3	2	2	2	2	2	2	2	2	2

YCA105 SOFTWARE ENGINEERING

Cou	rse	Course Name	Credi	Domai n		Ho W	urs eek	/	Max. Marks		
Co	de		ts	C:P: A	L	Т	Р	To t.	CI A	ES E	Tot
YCA	105	SOFTWARE ENGINEERING	3	3:0:0	3	0		5	50	50	100
Pro requi	ing, Pro	grai	nm	ing	lan	guages,					
On suc :	cessfi	Course Outcomes al completion of this course, the studen	nts will	able to		Do	mai	n		Leve	2]
CO1Understand various software process models and modeling techniques to represent software systems accurately							niti	ve	K	1 - F	K2
CO2 <i>Apply</i> various design concepts, <i>Analyze</i> user experience and <i>Evaluate</i> design choices for usability and accessibility							niti	ve	K	2 - k	Κ4

CO3	<i>Implement</i> the software quality assurance practices, <i>Enhance</i> the software reliability, and <i>Integrate</i> the security measures	Cognitive	K2 - K3
CO4	<i>Understand</i> and <i>Apply</i> various software testing procedures and techniques	Cognitive	K2 - K3
CO5	<i>Understand</i> and <i>Apply</i> theS/W reuse and analytics process and service oriented s/w engineering concepts	Cognitive	K2 - K3
CO6	<i>Understand</i> and <i>Apply</i> thesystems and real-time software engineering	Cognitive	K2 - K3

* K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

UNIT – I : Software Process and Modeling

7

7

7

Software Process - Generic Process Model - Prescriptive Process Models - Product and Process - Agile Process and its Frameworks - Prototype Construction, Evaluation and Evolution - Modelling Principles - Requirements Analysis - Scenario-based Modelling -Class-based Modelling - Functional Modelling - Behavioural Modelling.

UNIT – II :Software Design Concepts

Design Process - Design Concepts - Design Model - Software Architecture - Architectural Styles - Architectural Design - Designing Class-Based Components - Conducting Component-Level Design - User Experience Design Elements - User Experience Analysis -User Experience Design - User Interface Design - Design Evaluation - Usability and Accessibility.

UNIT – III : Software Quality and Security

Software Quality : Achieving Software Quality - Review Metrics and Their Use - Formal and Informal Reviews - Review Guidelines - Software Quality Assurance (SQA) - Elements of SQA - Tasks, Goals and Metrics of SQA – Software Reliability - ISO 9000 Standards. Software Security : Security Life Cycle Models - Secure Development Life-Cycle Activities - Security Risk Analysis - Threat Modeling, Prioritization, and Mitigation - Attack Surface - Secure Coding.

UNIT – IV : Software Testing

Software Testing : Strategic Approach - Unit Testing - White-Box Testing - Black-Box Testing - Object-Oriented Testing - Integration Testing - Mobility Testing Strategies - Web Testing Strategies - Security Testing - Performance Testing - Real-Time Testing - Testing AI Systems - Testing Virtual Environments.

UNIT – V : Software Analytics and Reuse

8

8

Software Analytics : Product Metrics - Metrics for Testing - Metrics for Maintenance

Process and Project Metrics - Metrics for Software Quality. Software Reuse : Application Frameworks - Application system reuse. Service-Oriented Software Engineering : Serviceoriented Architecture - RESTful Services - Service Engineering - Service Composition.

UNIT – VI : Systems and Real-Time Software Engineering 8
--

Systems Engineering : Sociotechnical Systems - Conceptual Design - System Procurement -System Development - System Operation and Evolution. Real-time Software Engineering : Embedded System Design - Architectural Patterns for Real-time Software - Timing Analysis - Real-time Operating Systems.

LECTURE	TUTORIAL	PRACTICA L	TOTAL
45	0	0	45

Reference Books

1. Sommerville, Ian (2016). Software Engineering. 10 th Edition, Pearson Education Limited, Boston.

2. Roger S. Pressman, and Bruce R. Maxim (2020). Software Engineering : A Practitioner's Approach, 9 th Edition, McGraw-Hill Education, New York.

3. Sommerville, Ian (2021). Engineering Software Products : An Introduction to Modern Software

Engineering. Pearson Education Ltd.

4. Aggarwal, K. K., Singh, Y. (2008). Software Engineering. India : New Age International

Web References

1. NPTEL Course : Software Engineering by Prof. Rajib Mall | IIT Kharagpur, https://onlinecourses.nptel.ac.in/noc23_cs122/preview

2. Alison Online Course : Software Engineering https://alison.com/tag/software-engineering 3. Coursera Online Course : Introduction to Software Engineering by IBM

https://www.coursera.org/learn/introduction-to-software-engineering

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA106 -DATABASE MANAGEMENT SYSTEMS LABORATORY

CO1	С	Applying	Build the concept	of DBMS programming	and its	fundar	nenta	1				
CO2	Build an application program using concepts											
CO3	С	Applying	Develop an applic	Develop an application program using a data model								
CO4	С	Applying	Develop the query	evelop the query technical processing in data base managements								
CO5	С	Applying	Explain and Impl	<i>xplain</i> and <i>Implement</i> the normalization concept for a table of								
			data		-							
CO6	С	Applying	Applythe query for	or technical processing in	databas	e mana	geme	ent				
Cours	Course Code Course Name L T P C											
YCA	106		DATABASE	MANAGEMENT	0	0	4	2				
			SYSTEMS LABO	RATORY								
C:P:A	A = 2	2:0:0			L	T	P	H				
PRER	REQ	UISITE	Basic Computer Sl	cill	0	0	4	4				
Lab I	Exer	cises			<u> </u>	.I		30				
1.	Cr	eate an Acco	unt database in SOL.					!				
2.	De	evelop a Data	base design for maga	zine agency.								
3.	Im	plement the l	Nested Oueries for Ti	cket booking.								
4.	4. Create views for a particular table using Personal accounts such as insurance, loans.											
	m	ortgage paym	ents etc.	C			,	<i>,</i>				
5.	5. Implement Join operations in SQL using Doctor's diary.											

- 6. Create a program to implement JDBC connectivity for Personal bank account
- 7. Create a program to implement ODBC connectivity for students' mark statement
- 8. Create a database and develop interface for Personal library.
- 9. Write PL/SQL procedure for an application using Hostel accounting
- 10. Write PL/SQL procedure for an application using History of cricket scores
- 11. Write PL/SQL procedure for an application using Cable transmission program.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
0	0	30	30

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

YCA107 PYTHON PROGRAMMING LABORATORY

CO1	С	Applying	Develop the program with the concept of python scripts
CO2	С	Applying	Build the programs using elementary data items
CO3	С	Applying	Create the program by using Python programs with conditionals and loops
CO4	С	Applying	Build the program by structuring Python program
CO5	С	Applying	Build the program by using Libraries in Python
CO6	С	Applying	Implement the concept of web programming with Django

Course Code	Course Na	ne		L	Т	P	С				
YCA107	PYTHON	PI	ROGRAMMIN	G 0	0	4	2				
	LABORAT	ORY									
C:P:A = 2:0:0				L	Т	P	H				
PREREQUISITE	Basic Com	puter Skill		0	0	4	4				
Lab Exercises	<u>[</u>			İ	<u> </u>		<u>30</u>				
1. Program using elementary data items, lists, dictionaries and tuples											
2. Program using conditional branches, loops											
3. Program using f	unctions										
4. Program using c	lasses and ob	ojects									
5. Program using i	nheritance										
6. Program using p	olymorphism	1									
7. Program using N	Numpy										
8. Program using F	Pandas										
9. Program using N	Matplotlib										
10. Program for cre	ating dynami	ic and interact	ive web pages u	sing forms							
		LECTURE	TUTORIAL	PRACTI	CAL	TO	ΓAL				
		0	0	30		3	0				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1

CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA108 SOFT SKILL DEVELOPMENT

Course Outcomes:

CO1	С	Remembering	Define basic communication skills in professional and social contexts effectively
CO2	С	Remembering	Define verbs and apply it in situational context.
CO3	С	Remembering	Define Technical Writing
CO4	С	Remembering	Find out listening and reading skills through comprehension passages
CO5	С	Remembering	List the leadership qualities and interpersonal communication

CO6 C Remembering Relate leadership qualities and interpersonal communication

COURSE CODE	COURSE NAME	L	Т	P	С					
YCA108	SOFT SKILL DEVELOPMENT	2	0	0	2					
C:P: A = 2:0:0										
		L	Т	Р	H					
PREREQUISITE	Basic English Skills	2	0	0	2					
UNIT I TECHNICAL WRITING 6										
Characteristics of Technical Writing -2. Development of Employability Skills-3. Vocabulary										
Development-Sente	ence Completion- Error Spotting									
UNIT II INTERP	RETION IN WRITING				6					
Interpretation of V Interpretation of R Blogs/Forums- PPT	Verbal Analogy -Interpretation of Reading (Compre eading (Comprehension -Reasoning)- Practice for w T Preparation / Demonstration of Technical Presentation	hensio riting on	n -Co E-mai	oncep ls/Te	tion) echnical					
UNIT III INTER	VIEW PREPARATION				6					
Preparation of Resu Discussion Skills- I	Ime - Preparation for Job Interviews / Mock Interview Developing Listening Skill(Comprehension)	Sectio	on- Gr	oup						
UNIT IV GENER	AL CONVERSATION				6					
Practice for Short S Grammar- Commu	Speeches / Situational Conversation- English through nicating and collaborating with peer member	Mass	Medi	a - E	ssential					
UNIT V TEAM E	CMPOWERMENT				6					

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
	30	0	0	30
PEYT				
1 Uma Narula "T)evelopment Commu	nication. Theory a	and Practice" Revise	d Edition Har-
A anad Publication	2019	inication. Theory c		
2 Annette Canel a	and Wendy Sharn "C	ambridge English	· Objective First" Fo	ourth Edition
2. Annette Caper a	roity Pross 2012		. Objective first, fre	Jurtin Edition,
2 Emma Suo Drin	isity Tiess, 2013.	The 7 Soft Skills	Vou Nood to Stay Or	a Stan Ahaad"
5. Ellina Sue-Phil	lice, The Auvantage.	The / Soft Skills	You need to Stay Of	ie step Alleau,
First Edition, FT F	2015.	1	120 1 1 1.4	C 1 1
4. Guy Brook-Har	t, "Cambridge Englis	sh: Business Bench	imark", Second Editi	on, Cambridge
University Press, 2	2014.			
5. Norman Lewis,	"How to Read Better	r & Faster", Binny	Publishing House, N	New Delhi,
1978.				
1978. REFERENCES				
1978. REFERENCES 1. Michael McC	arthy and Felicity	O'Dell, ''English	Vocabulary in Use	:100 Units of
1978. REFERENCES 1. Michael McC Vocabulary Re	arthy and Felicity eference and Practice	O'Dell, "English ", Cambridge Uni	Vocabulary in Use iversityPress,1996.	:100 Units of
1978. REFERENCES 1. Michael McC Vocabulary Re 2. Murphy, Ray	arthy and Felicity (eference and Practice mond, "Intermediate	OʻDell, "English ", Cambridge Uni e English Gramı	Vocabulary in Use iversityPress,1996. mar", Second Editi	:100 Units of on, Cambridge
1978. REFERENCES 1. Michael McC Vocabulary Re 2. Murphy, Ray University Pre	arthy and Felicity (eference and Practice mond, "Intermediate ss, 1999.	O'Dell, "English ", Cambridge Uni e English Gramı	Vocabulary in Use iversityPress,1996. mar", Second Edition	:100 Units of on, Cambridge
 1978. REFERENCES Michael McC Vocabulary Re Murphy, Ray University Pre E REFERENCES 	arthy and Felicity (eference and Practice mond, "Intermediate sss, 1999.	OʻDell, "English ", Cambridge Uni e English Gramı	Vocabulary in Use iversityPress,1996. mar", Second Editi	:100 Units of on, Cambridge
1978. REFERENCES 1. Michael McC Vocabulary Re 2. Murphy, Ray University Pre E REFERENCES 1. https://onlinec.	arthy and Felicity (eference and Practice mond, "Intermediate ss, 1999.	O'Dell, "English ", Cambridge Uni e English Grami	Vocabulary in Use iversityPress,1996. mar", Second Editi	:100 Units of on, Cambridge

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA201 BIGDATA ANALYTICS

Course Outcomes:

CO1	С	Remember	Find out the importance of big data tools & Information Standard format
CO2	С	Remember	Define the basic concepts of big data
CO3	С	Remember	List out importance of NoSQL
CO4	С	Remember	Define Hadoop, HDFS and MapReduce concepts
CO5	С	Remember	Describe the use of Hive Pig
CO6	С	Remember	Define the process of Pig.

COURSE CODE	COURSE NAME	L	P	С						
YCA201	BIGDATA ANALYTICS	3	1	0	4					
C:P: A = 4:0:0		L	T	Р	H					
PREREQUISITE	Basic Computer Skills	3	0	4						
UNIT I : Big Data a	nd Analytics				12					
Classification of Digital Data: Structured Data- Semi Structured Data and Unstructured Data.										
Introduction to Big Data: Characteristics - Evolution - Definition - Challenges -with Big										
Data - Other Charac	teristics of Data - Big Data - Traditional Business	-Intell	igenc	e vei	rsus					
Big Data - Data War	ehouse and Hadoop. Environment Big Data Analytic	tics: Cla	assific	catio	n of					
Analytics – Challeng	ges - Big Data Analytics important - Data Science	ce - Da	ata Sc	eienti	st -					
Terminologies used	in Big Data Environments - Basically Available	Soft S	tate 1	Even	tual					
Consistency - Top An	nalytics Tools									
				T						
UNIT II : Technolog	gy Landscape				12					
NoSQL, Comparison	of SQL and NoSQL, Hadoop - RDBMS Versus Ha	doop -	Distri	bute	d					
Computing Challenge	es – Hadoop Overview - Hadoop Distributed File Sy	ystem -	Proce	essing	g					
Data with Hadoop -M	Ianaging Resources and Applications with Hadoop	YARN	- Inte	racti	ng					
with Hadoop Ecosyst	em				-					
UNIT III : MONGO	ODB and MAPREDUCE Programming			I	12					

 UNIT III: MONGODB and MAPREDUCE Programming
 12

 MongoDB: Mongo DB - Terms used in RDBMS and Mongo DB - Data Types - MongoDB

 Query Language. MapReduce: Mapper – Reducer – Combiner – Partitioner – Searching –

 Sorting– Compression

UNIT IV: HIVE

Introduction – Architecture - Data Types - File Formats - Hive Query Language Statements – Partitions – Bucketing – Views - Sub- Query – Joins – Aggregations - Group by and Having – RCFile - Implementation - Hive User Defined Function - Serialization and Deserialization

12

12

UNIT V: PIG

Introduction - Anatomy - Features - Philosophy - Use Case for Pig - Pig Latin Overview -

Pig Primitive Data Types - R	Running Pig - Exe	cution Modes of	Pig - HDFS Comn	nands -									
Parameter Substitution – Diagnostic Operator - Word Count Example using Pig.													
	LECTURE	TUTORIAL	PRACTICAL	TOTAL									
	45	15	0	60									
TEXT													
1. Michael Minelli, Michelle	Chambers, Amb	iga Dhiraj, Big D	Data, Big Analytics	: Emerging									
Business Intelligence and Ar	nalytic Trends for	Today's Busines	ses Wiley 2013	6 6									
Dusiness interrigence and in	larytic frends for	Today 5 Dubines	<i>505, 110y</i> , 2015										
REFERENCES													
6. Venkat Ankam, Big Dat	a Analytics, Rele	eased September	2016 ,Publisher(s)	6 Venkat Ankam Big Data Analytics Released September 2016 Publisher(s): Packt									
Publishing													
ISBN: 9781785884696													
ISBN: 9781785884696													
ISBN: 9781785884696 E REFERENCES													

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA203 ADVANCED DATA STRUCTURES

CO1 C	Remember	Find out the importance of Abstract Data Types
CO2 C	Remember	Define the structure of Algorithm Analysis
CO3 C	Remember	Define trees and its representation
CO4 C	Remember	List out various searching and sortingalgorithms
CO5 C	Remember	Describe the concept of sorting.
CO6 C	Remember	Define the features and applications of Graphs.

COURSE CODE	COURSE NAME	L	Т	Р	C
YCA203	ADVANCED DATA STRUCTURES	3	1	0	4
C:P: A = 4:0:0		L	Τ	Р	H

PREREQUISITE	Basic Co	omputer Funda	amentals		3	1	0	4
UNIT I : STACK &	QUEUE					I	L	12
Introduction-Contigue	ous imple	ementation of	stack-Various c	peration on	stack-v	variou	s Po	lish
Notations-prefix, postfix, infix, Conversion from one to another - using stack- Evaluation of								
post & prefix expression. Contiguous implementation of Queue- Linear queue, its drawback-								
Circular queue-Vario	Circular queue-Various operations on queue- Linked implementation of Stack and Queue							
operations								
UNIT II : GENERAL LIST 12								
List and its contiguou	is implem	entation, its dr	awback; Singly	linked list-o	operatio	ons on	it;	
doubly linked list- op	erations o	on it; Circular l	inked lists: Jose	phoes Probl	lem; Lii	nked l	ist	
using arrays, polynon	nial Arith	metic: additior	n, Subtraction an	nd Evaluatio	n, Link	ed Sta	ack a	nd
Queues.								
UNIT III: TREES	AND ITS	S REPRESEN	TATION					12
Definitions- Height, c	lepth, ord	er, degree, par	ent & children 1	elationship	etc-Bin	ary T	ree-	
Various theorems, co	mplete bi	nary tree, almo	ost complete bin	ary tree; Tre	ee Trav	ersals	-	
preorder, in order & p	oost order	traversals, the	ir recursive and	non recursi	ve impl	emen	tatio	18-
Expression tree-evalu	ation; Lir	nked represent	ations of binary	tree operation	ons. Th	reade	d	
binary- trees; Forrest,	Conversi	ion of the fore	est into tree Heap	p definition.				
UNIT IV:SEARCH	ING, HAS	SHING & SO	RTING				Ī	12
Requirements of a sea	arch algor	rithm; sequenti	al search, binar	y search, ind	lexed se	equen	tial	
search, interpolation	search, Ha	ashing- Basics	, methods, collis	sion, resolut	ion of c	ollisio	on,	
chaining; Internal Sor	ting-bubt	ole sort, selecti	on sort, insertio	n sort, quicl	k sort, n	nerge	sort	on
linked and contiguous	s lists, she	ell sort, heap so	ort, tree sort.		,	U		
UNIT V GRAPH								12
Deleted definitioner (Tranh ran	recontations a	diagonay matrix	adiaaanay	lict odi	00000		16
list Traversal scheme	s denth fi	rst saarch bra	adth first search	· Minimum	iist, auj spannir	acene	y 111u 	.1 u -
Shortest nath algorith	m· Kruck	al & Dijkstra	auth first scarch	, Minimum cellaneous fa	spanni saturec	Basic	, . ide	ant
AVI Tree- Definition	insertio	n & deletion o	neration: Basic	idea of R-tr	e defin	ition	orde	r
degree insertion & de	eletion on	erations_ B+_t	ree-definition c	omparison y	with R ₋₁	ree F	Sasic	1,
idea of string process	ing		ree definition, e	omparison		100, 1	Jusie	
face of string process.		LECTURE	TUTORIAL	PRACTI	CAL	Т	OTA	J.
		45	15	0)		60	
TEXT			1			i		
1. <u>A.K. Sharma</u> , "	Data Stru	ctures using C	", Pearson Educ	cation, 2013				
2.Robert L. Kruse	"Data Str	ructures and Pr	ogram Design i	<u>n C</u> , Pearson	n Educa	tion,	2013	_
3. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C.Stein, "Introduction to Algorithms",								
3rd Edition, MIT Press, 2009. A S. Linschutz and G. A. V. Pai, "Data Structures" Tata McGraw, Hill, 2010.								
4.5. Lipschutz and G.A.V. Pai, "Data Structures", Tata McGraw-Hill, 2010. REFERENCES								
5 Robert L. Kruse: Data Structures and program designing using C 2013								
6.Kamthane: Introduction to Data Structures in C, Pearson Education, 2005								
7.M.A.Weiss, "Data Structures and Problem Solving using Java", 4th Edition, Addison								
Wesley, 2009.		~						
8.D. Samanta, "C	lassic Dat	ta Structures",	2nd Edition, PF	II, 2009.	2000			
9.P. Brass, "Adva	nced Data	a Structures",	Cambridge Univ	ersity Press	, 2008			
E KEFEKENCES	E REFERENCES							

10.NPTEL, Data structures and algorithm ,Prof. Hema A Murthy,IITMadras,Prof.

Shankar Balachandran,IITMadras,Dr. N S. Narayanaswamy,IIT Madras

11. NPTEL, Data structures and algorithm ,Prof. Naveen Garg,IIT Delhi

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA204 OBJECT ORIENTED PROGRAMMING LANGUAGE

CO1	С	Remember	Find out the importance of Object Oriented Programming Concept.
CO2	С	Remember	Define the overview of JAVA.
CO3	С	Remember	Discuss about control statements of JAVA.
CO4	С	Remember	List out String functions in Java.
CO5	С	Remember	Describe the applet and swing.
CO6	С	Remember	Comprehend the connection between Relational Database and Java.

COURSE CODE	COURSE NAME	L T P			С
YCA204	OBJECT ORIENTED PROGRAMMING	3	0	0	3
	LANGUAGE				
C:P: A = 3:0:0					
		L	T	Р	H
PREREQUISITE	Basic Computer Skills	3	0	0	3
UNIT I : OBJECT	ORIENTED PROGRAMMING PARADIGM		4	n!	9
Basic OOP concepts	s – Benefits – C++ Class definition – Member fun	nctions –	Static 1	neml	oers
- Constructor and d	estructors: various types. Operator overloading: U	nary, bir	nary – I	Rules	for
Operator overloading	ng – Type conversions - Function overloading	g – Frier	nd and	Vir	tual
Functions. Inheritan	ce: Various Types, Applications – Abstract classe	s – Virtu	al base	class	ses.
UNIT II : INTROL	DUCTION TO JAVA PROGRAMMING				9

An Overview of Java: Object Oriented Programming- Data Types, Variables, and Arrays: Primitive Types-Literals Variables - Type Conversion and Casting-Arrays-Operators: Control Statements-Classes and Methods – Inheritance-Exception Handling.

UNIT III : STRING HANDLING

String Handling: The String Constructors - String Length - Special String -Operations -Character Extraction - String Comparison - Searching Strings -Modifying a String -Input/Output: The I/O Classes and Interfaces – File - Byte Streams - Character Streams

UNIT IV:APPLET CLASS

The Applet Class: Basic Architecture - Applet Skeleton - Display methods - Status Window – Passing Parameters. Introducing GUI Programming with Swing– Introducing Swing - Swing Is Built on the WT- Two Key Swing Features - The MVC Connection - Components and Containers - The Swing Packages - A Simple Swing Application - Exploring Swing.

UNIT V:NETWORK PROGRAMMING

Working with URLs- Working with Sockets - Remote Method Invocation. Introduction to Database Management Systems - Tables, Rows, and Columns - Introduction to the SQL SELECT Statement - Inserting Rows - Updating and Deleting Existing Rows - Creating and Deleting Tables -Creating a New Database with JDBC - Scrollable Result Sets

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

9

9

9

TEXT

1. Herbert Schildt, "Java the Complete Reference", 10th edition, McGraw Hill Publishing Company Ltd, New Delhi, 2017.

2. Tony Goddis, "Starting out with Java from Control Structures Through Objects" 6th

Edition, Pearson Education Limited, 2016

REFERENCES

1. Herbert Schildt, Dale Skrien, "Java Fundamentals - A Comprehensive Introduction",

TMGH Publishing Company Ltd, New Delhi, 2013

2. John Dean, Raymond Dean, "Introduction to Programming with JAVA - A Problem

Solving Approach", TMGH Publishing Company Ltd, New Delhi, 2012.

E REFERENCES -1.https://nptel.ac.in/courses/106/105/106105191/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA206 BIG DATA ANALYTICS LABORATORY

CO1	С	Applying	<i>Develop</i> the program by using the concept of fundamental techniques for handling the big data tools
CO2	С	Applying	<i>Create</i> the programs using tools required to manage big data.
CO3	С	Applying	<i>Create</i> the programs using Map reduce algorithm
CO4	С	Applying	<i>Create</i> the program by using Hadoop, MapReduce, Hive, and Pig
CO5	С	Applying	Build the program for fundamental principles in achieving big data analytics with scalability and streaming capability
CO6	С	Applying	Implement the concept of Mongo DB

COURSE CODE	COURSE NA	ME		L	Τ	P	C
YCA206	BIG DATA A	NALYTICS L	ABORATORY	0	0	4	2
C:P: A = 2:0:0							
				L	T	P	H
				0	0	4	4
PREREQUISIT	Basic Compu	ter Fundamenta	ls				
Е							
LAB EXERCIS	ES					<u> </u>	30
1. Implemen	t File System Sl	hell Commands	for HDFS in Ha	idoop			
Environm	ent						
2. Write a M	Iapreduce progra	am using single	reduce function	for finding			
Maximun	n and Minimum	Number		_			
3. Write a M	Iapreduce progra	am using multip	le reduce function	on for Word			
Count in a	an given Text do	ocument					
4. Implemen	t the following	using Pig Latin	Input and Outpu	t Operations			
Relationa	l Operations			-			
5. Implemen	t the following	using Pig Latin	User Defined Fu	inctions			
Advanced	Relational Ope	erations					
6. Write a W	ord Count prog	ram using Pig L	atin Script				
7. Write a pi	rogram to find a	maximum temp	berature using Pi	g Latin Script			
8. Implemen	t the following	using Hive com	mands Handling	the Database			
9. Creating a	and Manipulatin	g table	C				
10. Implemen	t Simple Querie	- es for database u	sing Mongo				
11. Implemen	t Simple Querie	es for collections	s using Mongo				
		LECTURE	TUTORIAL	PRACTICA	T. T		T.
		0	0	30		30	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

YCA207 OBJECT ORIENTED PROGRAMMING LANGUAGE LABORATORY

Course Outcomes:

CO1	С	Applying	<i>Develop</i> the program by using the concept of object-oriented concepts in JAVA
CO2	С	Applying	<i>Create</i> the programs using concepts Exception handling.
CO3	С	Applying	<i>Create</i> the program by using Applet
CO4	С	Applying	<i>Build</i> the program for Network communication
CO5	C	Applying	<i>Implement</i> the concept of JDBC
CO6	С	Applying	Implement Java beans

COURSE CODE	COURSE NAME	L	Τ	P	С
YCA207	OBJECT ORIENTED PROGRAMMING	0	0	4	2
	LANGUAGE LABORATORY				
C:P: A = 2:0:0					
		L	Т	Р	Η
PREREQUISIT E	Basic Computer Fundamentals	0	0	4	4
LAB EXERCIS	ES			 	30
1. Implemen	ntation of Exception handling concepts in C++				
2. Build a Sy	wing application to implement metric conversion.				
3. Use Grid	Layout to design a calculator and simulate the functi	ons of a			

simple calculator.

4. Create a Color palette with a matrix of buttons using Applet.

- To invoke a servlet from HTML forms.
- To invoke servlet from Applets.
- To invoke servlet from JSP.
- 5. Implement message communication using Network Programming.
- 6. Write a program to connect databases using JDBC.
- 7. Simple program using Sockets

LECTURE	TUTORIAL	PRACTICAL	TOTAL
0	0	30	30

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA208 DATA VISUALIZATION LABORATORY

CO1	С	Applying	<i>Develop</i> the program by using the concept of basic functions of Excel and tableau
CO2	С	Applying	<i>Develop</i> the program by using the concept of basic operations of Excel and tableau
CO3	С	Applying	<i>Explore</i> to design, build, and deploy various charts for applications
CO4	С	Applying	<i>Create</i> the program by using comprehend, design and deploy the label
CO5	С	Applying	<i>Create</i> the program by using heat map
CO6	С	Applying	<i>Build</i> the program for understand and deploy dashboard

COURSE CODE	COURSE N	JAME			L	Τ	Р	C
YCA208	DATA VIS	UALIZATION	LABORATOR	RY	0	0	4	2
C:P: A = 2:0:0								
					L	Т	P	Η
PREREQUISITE	Basic Comp	outer Skills			0	0	4	4
LAB EXERCISES	5						<u>.</u> 	30
1. Implement	the following	using Excel						
1. Create Pi	e chart for Sal	les and Sales %	by Country (sor	ted in desce	endin	ng		
order)			5 5 1			0		
2. Create Ba	ar chart for Sa	les by Country	by Year (rounde	d to nearest	t			
thousand an	id sorted by G	rand Total)						
3 Create Li	ne char for Sa	les by Shin Mo	de (First Class	Same Day	Seco	nd		
Class and S	tandard Class)		sume Duy,		iiu		
4 Create Sc	catter chart for	' : Sales by Shin I	Mode by Countr	v (rounded	to th	P		
nearest doll	ar and sorted l	by First Class)	vioue by Country	y (rounded				
5 Create be	at man for Sa	les by Category	by Sub-Categor	w (in thous	ande			
and sorted k	at map for Sa	in descending o	order)	y (in tious	anus			
6 Design a	by sales value	abel for vendor	list					
0. Design a	In create the f	lock board	list					
7. Design al	in create the c	lasti board						
2. Implement the fo	llowing using	; Tableau						
1. Sales by	Ship Mode (F	irst Class, Same	Day, Second C	lass and Sta	ndar	rd		
Class)	÷ ``		•					
2.Sales by S	Ship Mode by	Country (round	ed to the nearest	dollar and	sorte	ed		
by First Cla	.ss)							
3. Sales by	Category by S	bub-Category (ir	thousands and	sorted by sa	ales			
	cending order	•						
value in des	U	-						
value in des		LECTURE	TUTORIAL	PRACT	[CA]	LT	OTA	L

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

YCA301 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Course Outcomes:

CO1	С	Understand	List out various methods to define AI techniques
CO2	С	Understand	Explain set theory and Relations
CO3	С	Understand	List out various counting and Predicate Logic
CO4	С	Understand	Interpret the problems in Probabilistic reasoning
CO5	С	Understand	Discuss Concept of learning the expert systems
CO6	С	Understand	Interpret various case studies of expert systems

COURSE CODE	COURSE NAME		L	Т	P	С
YCA301	ARTIFICIAL INTELL	IGENCE AND	3	0	0	3
	MACHINE LEARNIN	G				
C:P: A = 3:0:0			L	Т	P	H
			3	0	0	3
UNIT –I: AI Techni	aues					9
AI techniques-search	knowledge, abstraction- na	atural language pr	ocessing- visio	1 and	l spe	ech
processing- Games-th	eorem proving- robotics - e	expert systems.	8			
		- ·				
UNIT -II : State Spa	ice Search					9
State space search: P	roduction systems- Search s	space control: Dep	oth first, breadth	first	t sea	rch,
heuristic search - Hill	climbing - best first search	n - branch and bou	ınd.			
UNIT- III: Predicat	e Logic					9
Minimax search: Alt	bha-Beta cut offs- Predicat	e Logic : Skolen	nizing queries -	Uni	ficati	ion.
Modus pone - Resolu	tion - dependency directed	backtracking				
UNIT- IV: Backtrad	king					9
Rule Based Systems	-Forward reasoning-Conflic	ct resolution-Bacl	ward reasoning	7- Us	se of	• • no
backtrack-Structured	Knowledge Representation	s- Semantic Net-s	lots, exceptions	and	defa	ults
Frames- Probabilistic	reasoning-Use of certainty	factors-Fuzzy log	gic.			
UNIT- V: Expert Sy	stems	<u> </u>				9
Concept of learning	learning outermetion gone	tio algorithm la	amina hu ind	. atia		
concept of learning	Need and justification for	ovport systems	karning by mu	icuoi	n-nei	loso
studies MVCIN DI	-inceu anu justification for	expert systems-	knowledge acqu	115111	un-C	ast
studies. WHEETIN, KI.						
	LECTURE	TUTORIAL	PRACTICA	L]	ГОТ	AL
	45	0	0		45	,
		_ <u>_</u>				
TEXT						

1.Stuart J.Russell and Peter Norvig., "Artificial Intelligence- A Modern Approach", Pearson-3rd edition, 2010.

REFERENCES

- 1. Nilsson, N.J., "Principles of AP', Narosa Publishing House, 1990.
- 2. Patterson, D. W., "Introduction to AI and Expert Systems", Prentice Hall of India, 1992.
- 3. Peter Jackson, "Introduction to Expert Systems", Addison Wesley Publishing Company, M.A., 1992
- 4. Rich, E., and Knight, K., "Artificial Intelligence", Tata McGraw Hill (2nd Edition), 1992.
- 5. Schalk off, R.J., "Artificial Intelligence An Engineering Approach", McGraw Hill International Edition, Singapore, 1992.
- 6. Sasikumar, M., Ramani, S., "Rule Based Expert System", Narosa Publishing House, 1994.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	2	2	2	1	2	2	3	3
CO 2	3	3	2	2	2	1	2	2	3	3
CO 3	3	2	2	2	2	1	2	2	3	3
CO 4	2	3	2	2	2	1	2	2	2	2
CO 5	3	2	2	2	2	1	2	2	2	2
CO 6	3	2	2	2	2	1	2	2	2	2
Total	17	15	12	12	12	6	12	12	15	15
Course	3	3	2	2	2	1	2	2	3	3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA302 COMPUTER GRAPHICS AND MULTIMEDIA

CO1	C	Remember	<i>Describe</i> two dimensional graphics.
CO2	C	Understand	<i>Illustrate</i> two dimensional transformations
CO3	С	Remember	<i>Explain</i> three-dimensional graphics
CO4	С	Understand	Discuss Illumination and colour models.
CO5	C	Understand	<i>Summarize</i> the interface using Multimedia authoring.
CO6	С	Understand	Define Basic 3d Scenes using Blender

COURSE CODE	COURSE NAME	L	Т	Р	Η	С
YCA302	COMPUTER GRAPHICS AND MULTIMEDIA	3	0	0	3	3

C:P: A = 3:0:0							1]
						L	Т	Р	H	С
PREREQUISITE	Basic C	Computer Skills	DR MODE	IS		3	0	0	3	3 0
Light sources —	hasic il	lumination mo	dels — h	alftone	natterns	and a	dither	ing t	echni	
Properties of light - RGB colour model colour model; Colo loading the frame b and object geometry UNIT- II: TWO-DI	— Stand — YIQ our selec ouffer, lin y, filled a	lard primation file colour model tion. Output pr ne function; cir trea primitives. ONAL GRAPE	and chroma — CMY c imitives — cle and ell HCS	antone nticity di olour me - points ipse gene	agram; In odel — H and lines erating alg	tuitiv SV c , line gorith	colour colour draw	our co mode ving a Pixel a	oncep el — lgorit addre	HLS thms, ssing
Two dimensional coordinates, compo coordinate reference viewing functions; c UNIT- III: THREE	geometro site tran ce frame clipping E-DIMEN	ric transforma sformations; T ; window-to-v operations — p NSIONAL GRA	tions — wo dimens iewport cc oint, line, a	Matrix ional vie ordinate and polyg	representa ewing — transform gon clippi	ations view natio ng al	s and ing pi on, Ty gorith	hon peline wo di ms.	noger e, vie mens	ewing ional
Three dimensional Polygon tables- Pl surfaces; Blobby of and surfaces. TRA modeling transform dimensional viewin surface detection mo UNIT- IV: MULTIN	concept ane equ bjects; S ANSFOI nations - ng — vi ethods. MEDIA	ts; Three dime ations — Poly pline represent RMATION Al — Translation, ewing pipeline SYSTEM DES	ensional ob ygon mesh ations — I ND VIEW Rotation, e, viewing IGN & MU	oject rep es; Cury Bezier cu /ING: 7 Scaling, coordina	presentation ved Lines urves and Three din composi ates, Proju DIA FILE	ons – and surfa nensi te tra ection	– Po surf cces -] onal ansfor ns, C	lygon aces, B-Spl geom matic lippin NG	surf Quad ine cric etric ons; T g; Vi 9	aces- dratic urves and Three isible
Multimedia basics technologies for m interface standards format standards – animation – Full mo	– Mult nultimed – Mult Multime otion vid	imedia applica ia – Defining imedia databas edia I/O techno eo – Storage an	objects fo objects fo es. Compr plogies – I d retrieval	lultimed or multinession a Digital v technolo	a system media sys nd decom oice and gies.	arcl stems apress audic	sion - V	ire – Iultin – Dat ideo i	Evo nedia a and image	data data d file e and
UNIT V: HYPERM	IEDIA								9	
Multimedia author Hypermedia messa message standards Study: Blender Gra Shading & Textures	ing and uge com – Integr aphics. I s	user interfact ponent – Cre ated document Blender Funda	e — Hyp ating hype manageme mentals —	ermedia ermedia ent – Di - Drawii	messagir message stributed ng Basic	ng -l – Ir multi Shap	Mobil ntegra media bes —	e me ted n a syst - Moe	ssagin nultin ems. dellin	ng – nedia Case g –
		LECTURE 45	TUTO	RIAL	PRACI 0	TICA	L	TC	<u>)TAI</u> 45	_
TEXT BOOKS 1.Computer Graph Publications, 2021 2. Donald Hearn and	uics and d Pauline	1 Multimedia- e Baker M, —C	Atul P.	, <u>Godse</u> , <u>I</u> raphics"	Dr. Deep	ali Hall,	A. C	<u>∂odse</u> Delhi	-Tech	nical 7
REFERENCES 1.Foley, Vandam, Edition, Pearson Ed 2.Jeffrey McConne Publishers,2006.	Feiner lucation, ell, —(and Hughes, - 2003. Computer Gra	—Compute phics: Th	er Graph eory in	ics: Princ to Practi	ciples cell,	s and Jones	Prac 5 and	ticel, 1 Ba	2nd artlett
3.Peter Shirley, Mi KelvinSung, and Al	ichael A K Peters,	shikhmin, Mic —Fundamenta	hael Gleic als of Comp	her, Step outer Gra	phen R N phicsl, Cl	Aarsc RC P	hner, ress, 2	Erik 2010.	Rein	hard,

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA305 MINI PROJECT

COURSECODE	COURSE NAME	L	Τ	Р	С
YCA305	MINI PROJECT	0	0	3	3
C:P: A = 3:0:0		L	Τ	Р	Η
PREREQUISITE	Basic Computer Skills	0	0	3	3

- CO1 C Apply Identify the Requirements Analysis
- CO2 C Apply Plan the Design for their project
- CO3 C Apply Model for data preprocessing
- CO4 C Apply Develop the Coding
- CO5 C Apply Plan for Testing
- CO6 C Apply

Solve the Conclusion

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1
--------	----------------------------------	---	---	---	---	------	--------	----------	-------------	------
	0-No relation 3- Highly relation					2- N	ledium	relation	1- Low rela	tion

YCA306 INDUSTRIAL LECTURER

COURSECODE	COURSE NAME	L	Τ	Р	С
YCA306	INDUSTRIAL LECTURER	0	0	2	2
C:P: A = 2:0:0		L	Т	Р	Н
PREREQUISITE	Basic Computer Skills	0	0	2	2

CO1	С	Apply	Examine the domain-based company and its environment
CO2	С	Apply	Associate with team members
CO3	С	Apply	Prepare the Technical Concepts
CO4	С	Apply	Solve the small problems
CO5	С	Apply	Create real time applications
CO6	С	Apply	State the Conclusion

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1
0-No relation 3- Highly relation 2- Medium relation 1- Low relation										on

YCA307 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING LABORATORY

Course Outcomes:

CO1	С	Apply	Manipulate various methods to define AI techniq	ues						
CO2	С	Apply	Starts and apply set theory and Relations							
CO3	С	Apply	Develop and implement various counting and Pre	dicate	Logi	с				
CO4	С	Apply	Develop and solve problems in Probabilistic reason	ning						
CO5 C Apply Build Concept of learning the expert systems										
CO6	С	Apply	pply Develop case study of DCNN							
COUR	SE (CODE	COURSE NAME	L	Т	Р	С			
YCA30)7		ARTIFICIAL INTELLIGENCE AND	0	0	4	2			
			MACHINE LEARNING LABORATORY							
C:P: A	= 2	:0:0		L	Т	Р	Н			
PREREQUISITEBasic Computer Skills0							4			
Lab Exercises										

1. Write a program to implement simple Chatbot using NLP concept of AI.

- 2. Write a program to implement Breadth first search traversal Algorithm with AI techniques.
- 3. Write a program to implement Depth first search traversal Algorithm using AI techniques.
- 4. Write a program to implement Tower of Hanoi Problem using AI techniques.
- 5. Write a program to implement Hung man game with AI techniques.
- 6. Write a program to implement Tic-Tac-Toe game with AI techniques.
- 7. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets in machine learning.
- 8. Write a program to implement K nearest Neighbour algorithm to classify the iris data set, print both correct and wrong predictions using Machine Learning Techniques.
- 9. Case Study in NLP Text classification, parts of speech tagging and stemming from sentences.
- 10. Case Study in DCNN GoogLeNet and AlexNet

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

YCA308 COMPUTER GRAPHICS AND MULTIMEDIA LABORATORY

CO	CO C Applying <i>Implement</i> Graphics functions														
CO	С	Applying	Build an application program using Line D	Drawin	ig alg	orithn	18								
$\frac{2}{CO}$	С	Applying	<i>Develop</i> an application using Circle Drawi	ng alg	orith	ns									
CO 4	С	Applying	Implement the 2D and 3D transformations												
CO 5	С	Applying	Apply the Key frame animation												
CO 6	С	Applying	Apply the path animation												
COU	RSF	E CODE	COURSE NAME	L	Τ	P	С								
YCA	308		COMPUTER GRAPHICS AND	0	0	4	2								
			MULTIMEDIA LABORATORY												
C:P:	A =	2:0:0													
				L	Т	Р	H								
PREF	REQ	UISITE	Basic Computer Skills	0	0	4	4								
L	ab F	Exercises					30								
1. 2. 3. 4. 5. 6.	In In In Al Pr W W	aplement F aplementat aplementat lgorithm. cograms on frite a prog frite a prog	undamental Graphics Functions. ion of Line drawing algorithms: DDA Algorithm, I ion of Circle drawing algorithms: Bresenham's Alg 2D and 3D transformations ram to implement Cohen Sutherland line clipping a ram to draw Bezier curve.	Bresen orithn	ham's n, Mic hm	s Algo 1-Poir	orithm nt								
7.	U	sing Flash/	Maya perform different operations (rotation, scalin	g mov	e etc.	7. Using Flash/Maya perform different operations (rotation, scaling move etc) on objects									

8. Create a Bouncing Ball using Key frame animation and Path animation.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1
	0.77		0.771		•					·

0-No relation 3- Highly relation

2- Medium relation 1- Low relation

YCA401 REVIEW OF LITERATURE

COURSECODE	COURSE NAME	L	Т	Р	С
YCA401	REVIEW OF LITERATURE	0	0	0	3
		_			
C:P:A = 3:0:0		L	Т	Р	H
PREREQUISITE	Basic Computer Skills	3*(SS)	0	0	3

- CO1 C Guided Response Experiment with domain
- CO2 C Guided Response Identifying the Topic
- Preparing the content/Arranging the Seminar CO3 C Guided Response
- CO4 C Guided Response Presenting the content
- CO5 C Guided Response Addressing the Audience
- CO6 C Guided Response Answer the Question

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	2	2	2	2	2	2	2	3	3
CO 2	2	2	2	2	2	2	2	2	3	3
CO 3	2	2	2	2	2	2	2	2	3	3
CO 4	2	2	2	2	2	2	2	2	3	3

CO 5	2	2	2	2	2	2	2	2	3	3
Total	10	10	10	10	10	10	10	10	15	15
Course	3	2	2	2	2	2	2	2	3	3

YCA402 MAIN PROJECT

COURSECODE	COURSE NAME	L	Τ	Р	C
YCA402	MAIN PROJECT	0	0	24	11
C:P:A = 11:0:0		L	Τ	Р	Η
PREREQUISITE	Basic Computer Skills	0	0	24	24

- CO1 C Apply Identify the Requirements Analysis CO2 C Apply Plan the Design for their project Apply Model for data preprocessing CO3 C Develop the Coding CO4 C Apply Plan for Testing CO5 C Apply
- CO6 C Apply

Solve the Conclusion

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

COU	RSE C	ODE		COURSE	NAME	L T P C						
YCA	ME2A		OP	TIMIZATION	TECHNIQUES	5	3	0	0	3		
С	Р	Α					L	Т	P	Н		
3	0	0					3	0	0	3		
PRE	REQUI	SITE:N	IL						1			
COU	RSE O	UTCOM	IES:									
Cour	se outco	omes:				D	omai					
CO1 : – Plai	Solve line Meth	near pro od and B	gramming Branch and	g problems using d Bound Technic	g Gomary Cuttin Jues	ig C	Cogniti	ve	Apply	ving		
CO2: chara	: Analyz cteristic	ing queu features	ing mode of a quei	els by applying t iing system.	he basic	C	Cogniti	ve	Analy	vsing		
CO3: item/o	: Decide equipme	an optin ent/mach	nal replac ine.	C	Cogniti	ve	Evalu	ating				
CO4: Explain the need of inventory management.Cogni										rstanding		
CO5: Solve two person zero sum game by applying Dominance Cognitive Appl property Cognitive Cognitive Cognitive										ving		
CO6: Solve two person zero sum game by applying graphicalCognitiveApplyingmethod.CognitiveCognitiveCognitive									ving			
UNI	Γ- I: Int	eger Pro	grammi	ng						9		
Pure	and Mix	ked Integ	er Progra	mming Problem	s – Gomary Cut	tting -	- Plane	e Met	hod –	Fractional		
and N		igorithm	s - Branc	h and Bound Teo	chniques					0		
	ing Syst	ter Cl	heory	tics of Quaning	System Class	ificati	on of	Ουρυ		9 //M/1 and		
M/M/	/C queui	ing Mode	els.	ties of Queuing	System – Class	mean		Queu	105 - 10	/1/1v1/1 and		
UNI	- III: R	eplacem	ent Mod	el						9		
Repla Items	that Fa	Problem	n – Repla	acement of Iten	ns that Deterior	ate w	ith tir	ne –	Repla	cement of		
UNI	- IV: Ir	ventory	Theory							9		
ABC Probl	Analysi em – Ui	s – Econ ncertain I	omic Lot Demand -	Size Problems - Inventory Cont	– EOQ with Sho rol with Price B	ortage reaks.	– Mu	lti–Ite	em De	terministic		
UNI	Г- V: Ga	me The	ory							9		
Intro	luction	– Maxin	nin and m	ninimax criteria	of optimality –I	Domir	nance	prope	erty – A	Arithmetic		
metho	od for 2	x 2 game	es – Solut	tion of 2 x n or n	n x 2 games			~ A F				
						PKA		AL		71AL 75		
TEX'	T ROO	KS		43	U	1	U			43		
1. H E 2. K	amdyA. ducatior antiSwa	TAHA.,' n,Inc,200 trup, Gup	''Operatio 7. ota, P.K., a	ns research- and Man Mohan	An Introd	uctior	ı", h", Su	8 th edi ltan C	ition, Chand	Pearson & Sons-		
N	ew Dell	ni. 1990.										
REF	ERENC	ES ID C	.1 .1	1.0.	<u></u>	C	TT'11	NT	X7 1	1007		
1. K 2. M In	arnbo, N lital K. V Iternatio	N.S., "Ma V., "Optin mal (P) L	athematic mization .td., New	al Programming Methods In Ope Delhi, 1992.	Techniques", M rations Research	cGrav	w Hill, Syster	New n Ana	York. alysis",	1985. , New Age		
J. S	B. Saffer, L.R., Fitter J.B., and MeyerW.L., "The Critical Path Method". McGraw Hill. New											

- York. 1990.
- Gillet, B.E., "Introduction to Operations Research: A Computer Oriented Algorithmic Approach". Tata McGraw Hill, New York, 1990.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	2	0	1	1	1	1	1	0	0
CO 2	3	3	1	2	1	1	1	1	0	0
CO 3	3	3	2	3	1	1	1	1	0	0
CO 4	2	1	0	0	1	1	1	1	0	0
CO 5	3	2	0	1	1	1	1	1	0	0
CO 6	3	2	0	1	1	1	1	1	0	0
Total	17	13	3	8	6	6	6	6	0	0
Scaled Value	3	3	1	2	2	2	2	2	0	0

 $5-9 \rightarrow 1$, $10-14 \rightarrow 2$, $15-18 \rightarrow 3$ 0-No relation 3- Highly relation 2- Medium relation 1- Low relation

COURSECODE	COURSECODE COURSENAME L T P								
YCAME2B	AUTOMATA THEORY	3	0	0	3				
C P A									
3 0 1		L	Т	Р	H				
		3	0	0	3				
PREREQUISITE	Analysis								
COURSE OUTCO	OMES:								
Course outcomes:		Doma	in	Level					
CO1: Define and	Explain Strings, Alphabets and Languages	Cogni	tive	Understa	nding				
CO2: Define and Explain Regular expressions and Properties Cognitive Understanding of Regular sets.									
CO3: Define and	Explain Context Free grammars	Cogni	tive	Understa	nding				
CO4: Define and Context free	CO4: Define and Explain Pushdown Automata & properties of Cognitive Understand Context free languages								
CO5: Define and hierarchy.	tive	Understanding							
CO6: Explain Chomski hierarchy. Cognitive Understand									
UNIT I					9				
Strings, Alphabets	and Languages (Section 1.1 of the Text)				•				
Finite Automata (C	hapters 2, Sections 2.1 to 2.4)								
UNIT II					9				
Regular expression	s and Properties of Regular sets.(Sections 2.5 t	to 2.8 a	nd 3.1	l to 3.4)					
UNITIII					9				
Context Free gram	nars (Section 4.1 to 4.5)								
UNIT IV					9				
Pushdown Automat	a & properties of Context free languages								
Theorem 5.3, 5.4 (v	vithout proof), (Section is 5.1 to 5.3 and 6.1 to	6.3)							
UNIT V					9				
Turning Machine a	nd Chomski hierarchy, (Sections 7.1 to 7.3 and	9.2 to	9.4)						
	LECTURE TUTORIAL	PRAC	CTIC.	AL TOT	TAL 45				
TEXTBOOK									
1. J.E. Hopocroft and J.D. Ulman, Introduction to Automata Theory Languages and Computation, Narosa, 1999.									
REFERENCES									
1. G.ERevesz, Intro	duction to Formal Languages								
2. P.Linz,Introdu	ction to Forma Languages and Automata, Naro	sa2000)						

3. G.Lallment, Semigroups and Applications.

COs VS POs

	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
	I									
CO 1	2	1	0	0	1	1	1	1	0	0
CO 2	2	1	0	0	1	1	1	1	0	0
CO 3	2	1	0	0	1	1	1	1	0	0
CO 4	2	1	0	0	1	1	1	1	0	0
CO 5	2	1	0	0	1	1	1	1	0	0

CO6	2	1	0	0	1	1	1	1	0	0
TOTAL	12	6	0	0	6	6	6	6	0	0
SCALED VALUE	2	1	0	0	1	1	1	1	0	0
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation										
$5-9 \rightarrow 1$, $10-14 \rightarrow 2$, $15-18 \rightarrow 3$										

COUR	RSE CO	ODE	COURSE NAME	L	T	Р	С				
YCAN	IE2C		NUMERICAL METHODS	3	0	0	3				
С	Р	Α		L	Т	Р	Н				
3	0	0		3	0	0	3				
PRER	EQUIS	ITE: N	IL				<u> </u>				
COURSE OUTCOMES:											
Course outcomes: Domain Level											
Course outcomes:DomainLevelCO1:Solve the algebraic equations and transcendental equations using iteration method and Newton Raphson method and to find the solution of linear system of equations using direct method and indirect method.CognitiveApplyin											
CO2:I and ap	nterpret proxima	the valuation me	ue of the curve $y = f(x)$ using interpolation thod.	Cognit	ive	Analy	sing				
CO3:E Simpso	Evaluate on's 1/3	e numeri rd and 3/	cal integration using Trapezoidal, ^{(8th} rules.	pezoidal, Cognitive Evaluati							
CO4:S method	Solve fir ds.	st order	initial value problems using single step	Cognit	ive	Apply	ing				
CO5: method	Solve fi ds.	rst order	r initial value problems using single step	Cognit	ive	Apply	ing				
CO6: method	Solve fi ds.	rst order	initial value problems using multistep	Cognit	ive	Apply	ing				
UNIT	· I: Solu	ition of	algebraic and transcendental equations				9				
Solution Newto method	on of a n- Rapl d –Gaus	lgebraic hson me s-Jorda	e and transcendental equations - Fixed p ethod- Solution of linear system of equation methods – Iterative methods of Gauss-Jaco	oint ite ons - G bi and G	ration auss auss-	methe Elimin Seidel.	od – ation				
UNIT-	II:Inte	erpolatio	on and Approximation				9				
Interpo Interpo interpo	olation volation volation volation.	with equ with une	al intervals - Newton's forward and backw qual intervals - Lagrange interpolation – Ne	vard diff wton's c	èrenc livide	e form d diffe	ulae- ence				
UNIT-	III:Nu	merical	Differentiation and Integration				9				
Approx Trapez UNIT-	ximation oidal, S IV: Ini	n of deri Simpson I tial Val	vatives using interpolation polynomials - Nu 's 1/3 and Simpson's 3/8 rules. ue Problems for Ordinary Differential E	imerical quation	integ I s	ration 1	ising				

Single step-methods - Taylor's series method - Euler's method - Modified Euler's method -Fourth order Runge-Kutta method for solving first and second order equations

UNIT- V:Initial Value I	Problems for	Ordinary	Differential	Equations
--------------------------------	--------------	-----------------	--------------	-----------

9

Multi-step methods - Milne's and Adams-Bash forth predictor-corrector methods for solving first order equations.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

TEXT BOOKS

1. Grewal, B.S. and Grewal, J.S., "Numerical methods in Engineering and Science", 6th Edition, Khanna Publishers, New Delhi, (2013).

2. Jain M.K., Iyengar S.R.K, Jain R.K, "Numerical Methods problems and solutions", Revised Second Edition (2019).

REFERENCES

1.V. Rajaraman, Computer oriented numerical methods, PHI Pub(2013).

2. E. Balagurusamy, Numerical methods ,copyright 1999 by Tata MC Graw Hill,25th (2008)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	2	0	1	1	1	1	1	0	0
CO 2	3	3	1	2	1	1	1	1	0	0
CO 3	3	3	2	3	1	1	1	1	0	0
CO 4	3	2	0	1	1	1	1	1	0	0
CO 5	3	2	0	1	1	1	1	1	0	0
CO6	3	2	0	1	1	1	1	1	0	0
Total	18	14	3	9	6	6	6	6	0	0
Scaled Value	3	3	1	2	1	1	1	1	0	0
$5-9 \rightarrow$	1,	10	$-14 \rightarrow$	2,	15	$-18 \rightarrow 3$	3			

 $5-9 \rightarrow 1$,

 $15-18 \rightarrow 3$

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

COU	RSE N	AME		COME	BINATO	RICS	L	Т	Р	С		
COU	JRSE C	ODE		Y	CAME2I)	3	0	0	3		
С	Р	A					L	Т	Р	Н		
3	0	0					3	0	0	3		
PRER	EQUIS	ITE	Basic	es of sets								
On su	ccessful	comple	etion of	f this course, th	e studen	ts will be able to:						
			COU	RSE OUTCOM	IES		DOMA	IN	LE	VEL		
CO 1	CO 1 Explain the distributions of distinct objects and non-distinct objects Cognitive									standing		
CO 2	Apply diverse counting strategies to solve varied problems involving strings, combinations, distributions, and partitions Cognitive Aj									plying		
CO 3	Solv hom char	ve lin logeneit cacterist	ear r y, line ic equa	ecurrence rel arity, constant tion	ations coefficie	by recognizing nts, degree, and	Cognit	ive	Ap	plying		
CO 4	Ide posi	ntify the tions us	he nui sing roo	nber of perm k polynomials	utations	with forbidden	Cognit	ive	App	Applying		
CO 5	App of g	Apply Polya's theorem for finding number of permutations of given objects Cognitive Appl								oplying		
CO6	Ana	lyse W	eights a	nd inventories	of functio	ns	Cognit	ive	An	alyse		
UNIT	1 Per	mutatio	ons and	combinations			I			9		
Distrib	outions of	of distin	ct objec	cts – Distributio	ns of non	-distinct objects –	Stirling'	s form	ula.			
UNIT	2 Gen	erating	g functi	ons						9		
Genera into no	ating fur on distin	ction fo	or comb – partit	binations – Enur ions of integers	nerators f – Ferrer'	for permutations di s graphs – Elemen	istributio tary relat	ns of c tions.	listinct	objects		
UNIT	3 Rec	urrenc	e <mark>relat</mark> i	on						9		
Linear – A sp	recurrent ecial cla	nce rela ss of no	tions w	ith constant coe difference equa	fficients- ations – F	solutions by the te Recurrence relation	echnique is with tv	of gen vo indi	nerating ices.	functions		
UNIT	4 The	princi	ple of i	nclusion and ex	clusion					9		
Genera polyno	al formu omials –	la – Per permut	mutations v	ons with restrict with forbidden r	ion on rel positions.	ative positions – I	Derangen	nents –	- Rook			
UNIT	5 Poly	a's the	ory of	counting						9		
Equiva Weigh theore	alence cl ts and ir m	asses u iventori	nder a p es of fu	permutation gro inctions – Polya	up – Burr i's fundar	nside theorem – Eq nental theorem – C	juivalenc Generaliz	e class ation o	ses of fu of Polya	inctions – l's		
LEC	ECTURE 45 TUTORIAL 0 PRACTICAL 0 TOTAL									45		

TEXT BOOKS

- 1. Cameron, P.J. (1998) Combinatorics: Topics, Techniques, Algorithms. Cambridge: Cambridge University Press.
- 2. Liu, C.L., Eddberg, M. (1968), Solutions to problems in Introduction to Combinatorial Mathematics. New York: McGraw-Hill Book & Co.

REFERENCES

- 1. Liu, C.L. (1968). Introduction of Combinatorial Mathematics. New York: McGraw Hill Book Co.
- 2. Stanley, R.P. (1997). Enumerative Combinatorics, Volume I, Cambridge Studies in Advanced Mathematics, Volume 49. Cambridge University Press.

COs VS POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	2	1	0	0	1	1	1	1	0	0
CO 2	3	2	0	1	1	1	1	1	0	0
CO 3	3	2	0	1	1	1	1	1	0	0
CO 4	3	2	0	1	1	1	1	1	0	0
CO 5	3	2	0	1	1	1	1	1	0	0
CO6	3	3	1	2	1	1	1	1	0	0
TOTAL	17	12	1	6	6	6	6	6	0	0
SCALED	3	2	1	1	1	1	1	1	0	0
VALUE										
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation										
$5-9 \rightarrow 1$,	$5-9 \rightarrow 1$, $10-14 \rightarrow 2$, $15-18 \rightarrow 3$									

YCABE5A - FOUNDATIONS OF DECISION PROCESSES

CO1	С	Remember	Define various methods to define role of decision making
CO2	С	Understand	Summarize game theory and competitive strategies
CO3	С	Remember	Describe various queuing and inventory models
CO4	С	Understand	Describe problems in Finance.
CO5	С	Understand	Understand Systematic problem analysis
CO6	С	Understand	<i>Interpret</i> various case studies using decision making

Course Code	Course Name	L	Т	Р	C
YCABE5A	FOUNDATIONS OF DECISION PROCESSES	3	0	0	3
C:P:A = 3:0:0					1
		L	Т	Р	H
PREREQUISITE	Business Skill	3	0	0	3
UNIT- I:-Decision	n Making	J			9

Role of a	lecision	making	in mana	gement	-Frames	work-Crite	eria unde	r condit	ions of	certainty-	
risk and uncertainty-Bayes theorem-Sequential decision making decision tree analysis.											
UNIT –I	I: Comr	oetitive	Strategie	es		•101011 1110			- unun jon	9	
Theory of	of utility	v- Utilit	v functio	on curv	e- Com	petitive	strategies	. game	theory-	Oueuing	
model-Si	ngle cha	nnel, sii	igle phas	e waitin	g line m	nodel with	Poisson.	, 8.	J		
UNIT- III: Simulation 9											
Distributed arrival rates and exponentially distributed service times-Markov models-											
Simulation: Monte Carlo- Application to queuing and inventory models-Applications in											
functiona	l areas c	of marke	ting, prod	duction.							
UNIT- IV: Finance											
Finance- Behavioral aspects in decision making-open and closed models of decisions.											
UNIT –V: Systematic Problem Analysis 9											
Systemati	ic proble	em analy	ysis and o	lecision	making	- Decisio	n making	in funct	tional are	eas - case	
studies.											
				LECTURE		TUTOR	TUTORIAL H		PRACTICAL		
				45		0		0		45	
TEXT											
3. Grego	ory, G. "	Decisio	n analysis	s", Pitma	an, Lond	don, .1988	8.				
4. Johns	on. R.D	et. al.	"Quantit	ative Te	chnique	es filr Bus	iness Dec	isions".	Prentice	Hall.	
N.J	1977.										
REFERF	ENCES										
3. Ronal	d A. Ho	ward, A	li E. Abt	oas, "Foi	undation	ns of Deci	sion Anal	lysis".Pe	earson,. 2	2016.	
4. David	l C.skinı	ner.,"Int	roduction	to decis	sion ana	lysis", 3 ⁿ	edition,	Apractit	ioner's g	uide to	
impro	oving dee	cision q	uality, 19	99.	205	201	D G	200	BGG (
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2	
CO 1	2	1	1	1	2	1	1	1	2	2	
CO 2	2	1	1	1	2	1	1	1	2	2	
CO 3	2	2	1	1	2	1	1	1	2	2	
CO 4	2	2	1	1	2	1	1	1	2	2	
CO 5	2	2	1	1	2	1	1	1	2	2	
CO 5	2	2	1	1	2	1	1	1	2	2	
Total	12	10	6	6	12	6	6	6	12	12	
Course	2	2	1	1	2	1	1	1	2	2	

YCABE5B CORPORATE PLANNING

CO1	С	Knowledge	Describe various methods to define Corporate Planning and
			Budgeting
CO2	С	Understand	UnderstandSocial Responsibilities
CO3	С	Knowledge	Describe various Professionalism
CO4	С	Understand	Describe problems in Mission and Purpose
CO5	С	Understand	Understand Concept of learning the Organisation Appraisal
CO6	С	Understand	Describe thegaps in planning of an organisation.

COURSE CODE	COURSE	NAME			L T P C							
YCABE5B	CORPOI	RATE PLANN	ING		3	0	0	3				
C:P:A = 3:0:0	•											
					L	Т	Р	Η				
PREREQUISITE	Business S	Skill			3	0	0	3				
UNIT- I: Corporate Planning and Budgeting 9												
Significance of Planning: Types-Needs-Requisites-Corporate planning: system approach-Role												
of the planner-Corporate planning and budgeting.												
UNIT- II: Social Responsibilities 9												
Social responsibilit	ies: Scope,	contents, coope	eration and socie	ty, consumers	5, CO1	pora	tion	and				
democracy, commu	inity-goveri	nment.										
UNIT- III: Professionalism 9												
Social responsibilit	tv-versus p	rofitability-pro	ductivity-growth	-Professional	ism	as a	mea	ans of				
social bahaviour.	J	J I I	<i>, 6</i>									
UNIT- IV: Mission	n and Purn	ose					T	9				
Mission and purpos	se: Business	s definitions - o	bjectives and go	als-Environm	ent a	ppra	isal:					
Concepts, compone	ents-Scannin	ng and appraisi	ng the environm	ent.								
UNIT- V: Organis	ation App	raisal						9				
Organization appra	isal: Dynan	nics-capability	factors- Conside	rations- Meth	ods a	and						
techniques- Structu	ring- Plann	ing gaps: Gap a	analysis- Manage	er audit: Signi	ficar	nce o	of gaj	<u>)</u> S				
		LECTURE	TUTORIAL	PRACTIC	CAL		TO	ΓAL				
		45	0	0		Ì	4	5				
TEXT												
1.Kazni. A "Busin	ness Policy	". Tata McGrav	v Hill. New Dell	i, 1992.								
2. Johnson. G etal. 3rd edition. "Exploring corporate Strategy", Prentice Hall of India, New												
Delhi. 1994.												
REFERENCES												
1.CA.(Dr.)K.M. Ba	insal "Corp	orate Accountin	ng". Taxmann.S.	University of	f Del	hi.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	2	1	1	2	1	1	1	2	2
CO 2	2	1	1	1	2	1	1	1	2	2
CO 3	2	2	1	1	2	1	1	1	2	2
CO 4	2	2	1	1	2	1	1	1	2	2
CO 5	2	1	1	1	2	1	1	1	2	2
CO 6	2	1	1	1	2	1	1	1	2	2
Total	12	9	6	6	12	6	6	6	12	12
Course	2	1	1	1	2	1	1	1	2	2

YCABE5C MANAGEMENT OF SOFTWARE PROJECTS

CO1	С	Knowledge	Describe various methods to define Software projects
CO2	С	Understand	Understand the project scheduling and project management.
CO3	С	Knowledge	Describe system life cycle
CO4	С	Understand	Describe the problems related to the project
CO5	С	Understand	Understand and determine skill requirements
CO6	С	Understand	Explain reporting and presentation techniques

Course Code	Course Name	L	Т	Р	С	
YCABE5C	MANAGEMENT OF SOFTWARE PROJECTS	3	0	0	3	
C:P:A = 3:0:0		Ī			T	
		L	Т	Р	H	
PREREQUISITE	Business Skill	3	0	0	3	
UNIT- I:-Introduction						
Managerial Issues projects-Size and (in Software Projects-Introduction to software markets-Plan Cost Estimations.	ıning	of s	oftw	are	
UNIT –II: Projec	t Scheduling and Management				9	
Project Schedulin Maturity Models f	g-Measurement of software quality and productivity-ISC or organizational growth-Project management and Practice.) and	l Caj	pabi	lity	
UNIT- III: Syster	n life cycle and Design				9	
Managing the syst testing-implement	tems life cycle- requirements determination-logical design ation.	-phys	sical	desi	gn-	
UNIT- IV: Integr	ation issues and Project Management				9	
System and databa	ase integration issues-metrics for project management and s	ystem	ıs			
performance evalu	ation-managing expectations- superiors-users-team membe	rs and	d oth	ler		
related to the proje	ect.					
UNIT- V: Cost E	ffectiveness Analysis				9	
Determining skill and presentation te	requirements and staffing the project-cost-effectiveness ana echniques-and effective management of both behavioural ar	lysis- id tec	-repc hnic	orting al	g	

asp	pects of the project.									
		LECTURE	TUTORIAL	PRACTICAL	TOTAL					
		45	0	0	45					
TE	TEXT									
 Gilb, T., "Principles of Software Engineering Management", Addison Weskey. Reading. M.A. 1988. Putnam. L.H. Myers. W., "Industrial Sire"" Software - Effective Management using 										
БТ	Measurement". IEEE C.S.	Press. 1997.								
Kŀ	CFERENCES									
4.	Dr.Jeroen Arnoldus, Dr.Sie	euwert Van Otte	erloo, Dr.Joost So	chalken-Pinkster, "So	oftware					
	Project Management", ICT	Institute								
5.	Lean Agile and Kanban, "	Software Engir	neering Managem	nent", on Pawel Brod	zinski					
6.	"Principles of Software De	velopment Lead	dership: Applying	g Project Managemer	nt					
	Principles to Agile Softwar	e Development	" by Ken Whitak	ter.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PSO 2
									1	
CO 1	2	2	1	1	2	1	1	1	2	2
CO 2	2	1	1	1	2	1	1	1	2	2
CO 3	2	2	1	1	2	1	1	1	2	2
CO 4	2	2	1	1	2	1	1	1	2	2
CO 5	2	1	1	1	2	1	1	1	2	2
CO 6	2	1	1	1	2	1	1	1	2	2
Total	12	9	6	6	12	6	6	6	12	12
Course	2	1	1	1	2	1	1	1	2	2

YCABE5D ENTERPRISE RESOURCE PLANNING

CO 1	С	Understand	<i>Explain</i> the functionalities of Enterprise resource planning
CO2	С	Understand	Characterize the ERP implementation procedures
CO3	С	Remember	Describes the elements of ERP
CO4	С	Understand	Differentiate the available ERP packages

CO5 C Understand *Interpret* integration process of ERP

CO6 C Understand *Summarize* the models of ERP with other related technologies

COURSE	COURSE N.	AME		L	Т	Р	C
YCABE5D	ENTERPRI	SE RESOUR	TE	3	0	0	3
Tendlod	PLANNING			0	v	v	-
C:P:A = 3:0:0							
				L	Т	P	H
PREREQUISITE	Business Ski	11		3	0	0	3
UNIT J. INTROI						I	9
Overview - ERP esser	tials. Benefits	ERP evolution	n. ERP market	ERP tiers	s – inforr	nation	/
systems – Business Pr	ocess Re-Engi	neering(BPR)	Presentation t	ier – applie	cation tie	er –	
database tier		licering(DI IC),	1 resentation (ier uppik	cution the	21	
database tier.							
UNIT- II: ENTERP	RISE SYSTEN	MS					9
ERP Implementation	Lifecycle, Im	plementation N	Aethodology -	Enterprise	e system	ns – sta	and-
alone mainframe syste	ems – client se	rver architectu	re – service-or	riented arcl	hitecture	– type	s of
enterprise systems – t	ypes of data – S	SAP overview.					
UNIT- III: PROCES	SS IN ERP						9
Basic Procurement pro	ocess – physica	al flow – docur	nent flow – in	formation	flow – fi	nancia	l
impact- role of enterp	rise systems in	the procureme	nt process – f	ulfilment p	rocess –		
production process.							
UNIT- IV: INTEGR	ATION						9
Integrated processes -	- Integrated pr	ocesses execut	ion – additio	nal intracon	mpany p	rocess	es –
extended (intracompa	ny) processes.						
			CTRANC				•
UNIT- V: CASE ST	UDY AND FU	TURE DIRE	CTIONS			т (9
ERP for software indu	istry – ERP for	a hardware ma	anufacturing c	ompany – D for tous	ERP for	Lapto	þ
company - Mc Donald	$\frac{1}{1}$ story – FRP	and e-Comme	rce ERP and	F 101 toys I Internet Fi	uture Dir	rection	c
company - Mc Donard	LIS STOLY LIST			PRAC		TOT	3. AT.
		45	0	(45	5
TEXTBOOK			1				
1. Alexis Leon, "ERP	Demystified",	Tata McGraw	Hill, New De	lhi, 2014			
REFERENCES							
1. Simha R Magal, Jet	ff Word, —Ess	entials of Busi	ness Processes	s and Infor	mation S	ystem	sI,
Wiley Publications, 20	009.						
2 Mariana Dradfard	Madam FI	D. Calast Jame	1 4 1	- T- 11		1.1	
2. Marianne Bradford	, —Modern EF	(P: Select, Imp	lement and us	e Today's a	advancec	i busin	ess
systems, Luiu Publisi	ners, Second E	dition, 2010.					
3. Jvotindra Zaveri. –	-Enterprise Re	source Plannin	g. Second edi	tion. Hima	lava Pub	olishing	Ţ
house, 2012				,			ر
110400, 2012.							
E REFERENCES							
1. ERP, Prof. P. K. Bi	swas, Dept. of	Electronics and	d Elecrical Co	mmunicati	ion Engg	., IIT,	

Kharagpur

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PSO 2
									1	
CO 1	2	2	1	1	2	1	1	1	2	2
CO 2	2	1	1	1	2	1	1	1	2	2
CO 3	2	2	1	1	2	1	1	1	2	2
CO 4	2	2	1	1	2	1	1	1	2	2
CO 5	2	1	1	1	2	1	1	1	2	2
CO 6	2	1	1	1	2	1	1	1	2	2
Total	12	9	6	6	12	6	6	6	12	12
Course	2	1	1	1	2	1	1	1	2	2

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCACE3A CLOUD COMPUTING

CO1	С	Remember	Characterize the concept of Cloud Computing
CO2	C	Understand	<i>Identify</i> the architecture, infrastructure and delivery models of cloud computing
CO3	С	Remember	Classify various Cloud services
CO4	С	Understand	Choose the appropriate Programming Models and approach
CO5	С	Remember	Identifies the purposes of map reduce paradigms
CO6	С	Remember	Classify about different applications in Cloud

COURSE CODE	COURSE NAME	L	Т	Р	С
YCACE3A	CLOUD COMPUTING	3	0	0	3
C:P:A = 3:0:0					
		L	T	Р	H
PREREQUISITE	Basic Computer Skills	3	0	P 0 0 0	3
UNIT I CLOUD CO	OMPUTING FOUNDATION	I	i		9
Introduction to Clou	d Computing- Move to Cloud Compu	ting-Types of Cl	loud-wo	orking	g of
Cloud computing- Cloud	oud Computing Technology.				
UNIT II DATA STO	ORAGE AND VIRTUALIZATION				9

Data Storage-Cloud Storage- Cloud Computing frameworks-Google,EMC,Amazon and Salesforce.com. Virtualization - Basics of Virtualization - Types of Virtualization - Implementation Levels of Virtualization - Virtualization Structures - Tools and Mechanisms - Virtualization of CPU, Memory, I/O Devices - Virtual Clusters and Resource Management – Virtualization for Data-canter Automation.

UNIT III CLOUD SERVICES AND PROGRAMMING MODELS

Software as a Service (SaaS), Platform as a Service (PaaS), Infrastructure as a Service(IaaS) Parallel and Distributed Programming Paradigms – MapReduce, Twister and Iterative MapReduce – Hadoop Library from Apache

UNIT IV CLOUD COMPUTING TOOLS AND TECHNOLOGIES

9

9

9

Grid, Cloud and Virtualization-Cloud Computing Application Platform – Tools for building cloud- Map Reduce Paradigms: Introduction, GFS Architecture, HDFS Architecture, Hbase, Google big Table, Amazon's (key value) pair storage and Microsoft's Azure infrastructure, Map reduce programming examples.

UNIT V CLOUD APPLICATIONS

Google Cloud Applications-Google App Engine-Case Study: Cloud as Infrastructure for an internet-Case Study-An Enterprise with Multiple Data Centers.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

TEXT

2. Kris Jamsa, "Cloud Computing", Jones & Bartlett Learning, 2nd Edition, 2022

REFERENCES

- 4. Syed A.Ahson, Mohammad Ilyas, Cloud Computing and Software Services-Theory and Techniques, CRC, 2011.
- 5. Anthony T. Velte Toby J. Velte, Ph.D. Robert Elsenpeter, Cloud Computing-A Practical Approach, The McGraw-Hill, 2010
- 6. George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud" O'Reilly

E REFERENCES

1. http://track.justcloud.com/?hash=7397.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCACE3B BLOCK CHAIN

CO1	С	Remember	Describe the concept of block chain
CO2	С	Understand	<i>Explain</i> block chain network
CO3	С	Understand	Classify crypto currency and bit coin
CO4	С	Understand	Summarize the regulation of crypto currency
CO5	С	Understand	<i>Define</i> block chain applications
CO6	С	Understand	<i>Explain</i> about innovation in next generation industry

COURSE CODE	COURSE NAME	Ī	L	Т	P	С					
YCACE3B	BLOCK CHAIN			3	0	0	3				
C:P:A = 3:0:0											
				L	Τ	P	Η				
PREREQUISITE	Basic Computer Ski	ills		3	0	0	3				
UNIT-I: INTRODUCT	ION TO BLOCK C	HAIN					9				
Introduction, Advantage	over conventional di	stributed databas	se, Block d	chain	Netw	ork,	Mining				
Mechanism, Distributed Consensus, Merkle Patricia Tree, Gas Limit, Transactions and Fee,											
Anonymity, Reward, Chain Policy, Life of Blockchain application, Soft & Hard Fork, Private											
and Public block chain.											
UNIT-II: DISTRIBUTE	D CONENSUS						9				
Distributed Consensus: N	lakamoto consensus,	Proof of Work	, Proof of	Stak	e, Pro	of of	f Burn,				
Difficulty Level, Sybil Att	tack, Energy utilization	on and alternate.									
UNIT – III: CRYPTOCU	URRENCY						9				
Cryptocurrency: History,	Distributed Ledger,	Bitcoin protocol	s - Mining	g stra	tegy a	and re	ewards,				
Ethereum - Construction	, DAO, Smart Cont	ract, GHOST, V	/ulnerabili	ty, A	ttacks	, Sid	echain,				
Namecoin											
UNIT-IV: CRYPTOCU	IRRENCYREGUL A	ATION AND AI	PPLICAT	IONS	5		9				
Cryptocurrency Regulation	on: Stakeholders, Ro	ots of Bitcoin,	Legal Asp	pects	- Cry	ptoc	urrency				
Exchange, Black Market	and Global Econon	ny- Blockchain	Application	ns: Ir	nterne	t of '	Things,				
Medical Record Managem	ent System, Domain	Name Service a	nd future o	f Blo	ckcha	in					
UNIT-V: NEXT GENER	RATION INDUSTR	Y		_		-	9				
Industry 4.0: The Fourth	Revolution Sustai	nability Assessr	nent of Ma	anufa	<u>cturin</u>	<u>g</u> Inc	lustry -				
Lean Production System	- Smart and Conne	ected Business I	Perspective		<u>Smart</u>	Fact	ories –				
Industry 5.0		TUTODIAL					-				
	LECTURE	TUTORIAL	PRACTI	CAL	T	UTA					
	45	0	0			4	5				
TEXT	I I D		A 1		11	1	<u>C</u>				
5. Arvind Narayanan,	Joseph Bonneau,	Edward Felten	, Andrew	M1	iler	and	Steven				
Goldreder, Bitcoin an	a Cryptocurrency	rechnologies:	A Compre	enens	ive I	ntroc	uction,				
A Plockshein for Desire	Tess (July 19, 2016).	Stop by Stop Co	ida ta Ura	Janata	ndina	Dla	kahain				
4. DIOCKCHAIII IOF DEGIIII	Notney	step by step Gl		Jeista	munig	D100	кспаш				
Deference	walley										
2 Comptonymentics and 1	Plaakahaina hu Arin	n DuDont									
3. Cryptocurrencies and 1 4. Plockobain Applicatio	DIOCKCHAINS DY QUIN	II DUPOIII	hu Archd	on D	ahaa						
+. Dioekenani Applicatio	ns. A manus-On App	поаси гарегоаск	by AISING	сер в	anga						
L											

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

YCACE3C DIGITALIMAGE PROCESSING

CO1	С	Understand	<i>Describe</i> the basics of digital image fundamentals.						
CO2	С	Remember	Understand the classifications of Image Processing						
			techniques.						
CO3	С	Understand	Describe various types of feature extraction techniques						
			applicable for image vision.						
CO4	С	Understand	Explain Image encoding						
CO5	С	Understand	Describe encoding images based on the concept of						
			Fourier transforms.						
CO6	С	Understand	Define the concept of filtering and Restorations.						

Course Code	Course Name	L	Т	Р	C
YCACE3C	DIGITAL IMAGE	3	0	0	3
	PROCESSING				
C:P:A = 3:0:0		L	Т	Р	Н
	3 0		0	3	
UNIT –I: Digital Image Fundam	entals	•		9	
Image digital Representation. Element Image processing system elements. F Hadamard transforms.	nts of visual perception -Samplin Fourier transforms. Extension to 2	g and q 2· D, OC	uantizat CR, Wal	ion. Ish,	
UNIT-II: Image Transformation	and segmentation			9	
Enhancement and segmentation: Hist	togram modification. Smoothing,	sharpe	ning.		
UNIT – III: Feature Extraction				9	
Thresholding - Edge Detection. Segn	nentation. Point and region depen	dent te	chniques	s.	
UNIT -IV : Image Encoding				9	

Image encoding: Fidelity criteria. Transform compression. KL, Fourier, DCT. Spatial compression, Run length coding. Huffman and contour coding.

UNIT- V: Image Re	estoration			9						
Restoration: Models.	Restoration: Models. Inverse filtering. Least squares filtering. Recursive filtering.									
	LECTURE	TUTORIAL	PRACTICAL	TOTAL						
	45	0	0	45						
TEXT										

 Mark Nixon, et.a l, "Feature Extraction & Image processing for Computer vision" 3 rd Edition, 2012.

REFERENCES

 Gonslaez, Richard E. Woodset.a1, "Digital Image Processing", Addison Wesley, Reading, M.A., 1990.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCACE3DNATURAL LANGUAGE PROCESSING

CO1	С	Understand	Define the Linear Text Classification of NLP
CO2	С	Remember	Demonstrate the Nonlinear classification
CO3	С	Understand	Identify the various Language Models of NLP
CO4	С	Understand	Analyze and Apply the Formal Language Theory
CO5	С	Understand	Explain Logical Semantics
CO6	С	Understand	<i>Explain</i> and formulate the Predicate argument Semantics

Course Code	Course Name	L	Τ	Р	C
YCACE3D	NATURAL LANGUAGE PROCESSING	3	0	0	3
C:P:A = 3:0:0		L	Τ	Р	H
		3	0	0	3
UNIT- I : NLP In	troduction	·		9	i i

NLP Introduction: Natural Language Processing and Its Neighbours – Three Themes in NLP -Linear Text Classification: The bag of words – Naïve Bayes – Discriminative Learning – Loss Functions and Large-margin Classification – Logistic Regression – Optimization

UNIT-II : Nonlinear Classification

Nonlinear Classification: Feedforward Neural Network – Designing Neural Network – Learning Neural Network – Conventional Neural Network - Linguistic Applications of Classification: Sentiment and Opinion Analysis – Word Sense Disambiguation – Design Decisions for Text Classification – Evaluating Classifier – Building Datasets.

UNIT- III: Language Models

Nonlinear Classification: Feedforward Neural Network – Designing Neural Network – Learning Neural Network – Conventional Neural Network - Linguistic Applications of Classification: Sentiment and Opinion Analysis – Word Sense Disambiguation – Design Decisions for Text Classification – Evaluating Classifier – Building Datasets.

UNIT -IV : Formal Language Theory

Formal Language Theory: Regular Languages – Context Free Languages - Context Free Parsing: Deterministic Bottom up Parsing – Ambiguity – Weighted Context Free Grammars – Learning Weighted Context Free Grammars – Grammar Refinement

UNIT- V : Logical Semantics

Logical Semantics: Meaning and Denotation – Logical Representation of Meaning – Semantic Parsing and the Lambda Calculus – Learning Semantic Parsers - PredicateArgument Semantics: Semantic Roles – Semantic Role Labeling – Abstract Meaning Representation

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

9

9

9

TEXT

1. Jacob Eisenstein, "Introduction to Natural Language Processing", MIT Press, 2019.

REFERENCES

- Lawrence Rabiner, Biing-Hwang Juang, B. Yegnanarayana, "Fundamentals of Speech Recognition" 1st Edition, Pearson, 2009.
- Steven Bird, Ewan Klein, and Edward Loper, "Natural language processing with Python", O'REILLY

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCACE4A DEEP LEARNING

Course Outcomes:

CO1 C	Understand	Describe the basics of neural networks.				
CO2 C	Understand	Understand Deep Learning				
CO3 C	Understand	Describe various types of feature of	extrac	tion	tech	niques
		applicable for image vision.				
CO4 C	Understand	Describe various deep learning architec	ctures.			
CO5 C	Understand	Define the concept of image segmentat	ion			
CO6 C	Understand	<i>Explain</i> the case study with deep learning	ng			
Course Code		Course Name	L	Τ	P	С
YCACE4A		DEEP LEARNING	3	0	0	3
C:P:A = 3:0:0)		L	Т	Р	Н
			3	0	0	3
UNIT –I: F	undamentals of	Neural Networks				9
General Conce	epts of Neurons -	- Perceptron Algorithm – Feed Forward ar	nd Ba	ck Pro	opag	ation
Network.						
UNIT-II: In	troduction to De	eep Learning				9
Feed Forward	Neural Networks	s – Gradient Descent – Back Propagation .	Algor	ithm ·	_	
Vanishing Gra	ndient problem –	Mitigation – RelU Heuristics for Avoiding	g Bad	Loca	l Mi	nima
– Heuristics fo	or Faster Training	g – Nesterov's Accelerated Gradient Desce	ent – l	Regul	ariza	ution –
Dropout.						
UNIT – III:	Convolutional N	eural Networks				9
CNN Architec	ctures – Convolut	ion – Pooling Layers – Transfer Learning	– Ima	nge		
Classification	using Transfer L	earning.				
UNIT -IV : D	eep Learning A	rchitectures				9
LSTM, GRU,	Encoder/Decode	r Architectures – Autoencoders – Standar	d- Spa	arse –	Der	oising
- Contractive-	- Variational Au	toencoders - Adversarial Generative Net	works	s – A	utoe	ncoder
and DBM.						
UNIT-V: A	pplications of D	eep Learning				9
Image Segme	ntation – Object	Detection - Automatic Image Captionin	g – I	nage	gen	eration
with Generati	ve Adversarial	Networks - Video to Text with LSTM	Mod	lels -	- At	tention
Models for C	omputer Vision	- Case Study: Named Entity Recognition	on –	Opini	on I	Mining
using Recurre	nt Neural Netwo	orks – Parsing and Sentiment Analysis us	ing R	lecurs	ive	Neural
Networks –	Sentence Classi	fication using Convolutional Neural N	letwo	rks –	- Di	alogue

Generation with LSTMs			
	LECTURE	TUTORIAL	TOTAL
	45	0	45
ТЕХТ			1
1.Ian Good Fellow, Yoshua Bengio, Aaron	Courville, "Deep Learn	ning", MIT Pres	ss, 2017.
REFERENCES			
1.Francois Chollet, "Deep Learning with P	ython", Manning Public	cations, 2018.	
2.Phil Kim, "Matlab Deep Learning: With	Machine Learning, Neu	ral Networks a	nd Artificial
Intelligence", Apress, 2017.			
3.Ragav Venkatesan, Baoxin Li, "Convolu	tional Neural Networks	in Visual Com	puting",
CRC Press, 2018.			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

YCACE4B EXPLORATORY LEARNING

CO 1	С	Understand	Illustrate the basic concepts of Exploratory Data Analysis.
CO2	С	Understand	Outline the EDA assumptions.
CO3	С	Understand	Utilize EDA techniques
CO4	С	Understand	Summarize Graphical techniques for EDA
CO5	С	Understand	Classify the probability distribution in EDA
CO6	С	Understand	Explain on EDA case studies

COURSE CODE	COURSE NAME	L	Τ	P	C
YCACE4B	EXPLORATORY LEARNING	3	0	0	3
C:P:A = 3:0:0					1
		L	Τ	P	Η
PREREQUISITE	Basic Concepts of Programming, Design	3	0	0	3
UNIT-I: INTROL	DUCTION				9
Introduction to Explo and exploratory data exploratory analysis.	ratory Data Analysis, Difference between classic c analysis, difference between summary analysis and	lata anal l data	lysis		

UNIT-	II: EDA										9
Basic E	DA assum	nptions, in	mportan	ce of und	erlyin	g assun	nptio	ons, tech	niques fo	or	
testing a	assumptio	ns, interp	retation	of 4-Plot	, cons	equence	es of	non-rai	ndomnes	s,	
non-fixe	ed parame	ters like	location	and varia	ation p	aramet	ers, c	consequ	ences rel	ated	
to distri	butional a	ssumptio	ns.	1							0
EDA to	III: EDA		NQUES	o graphi		hniqua		to como	lation nl	t for	9
random	data moo	lerate cor	relation	strong a	nd sut	oregres	s, au sive	correlat	tion sinu	soidal	
correlati	ion. Vario	ous Plot.	relation,	suong a	nu uut	oregres	51 . C	correla	.1011, 51110	.501001	
UNIT-	IV: ANO	VA									9
Graphic	al technic	ues for E	DA, Qu	antitative	e techn	iques, A	ANC	VA, Ba	artlett's to	est, prol	oability
distribut	tions, fam	ily of pro	bability	distributi	ion, lo	cation a	and s	scale par	rameters,	estima	tion of
paramet	ers, vario	us distrib	utions.								······
UNIT-	V: CASE	STUDI	ES								9
EDA ca	se studies	– Rando	m distril	oution, R	andon	<u>ı walk,</u>	stan	dard res	istor, He	at flow	meter.
					E	TUTO	RIA	L PR	ACTIC	AL T	OTAL
	DOOKS.			45			J		U		45
1 Expl	books:	ata Analy	sis by Io	hn W Ti	ukev (1977) _	- 201	6 Repri	nt 2 Ex	nlorator	w Data
Analysi	s with R h	v Roger	Peng (2))16).	ukey (1777)	201		III. 2. LA	piorator	y Data
REFER	RENCES) 10801	1 0118 (2(
1. Think	c Stats: Ex	ploratory	y Data A	nalysis (2	2nd ed	ition) b	y Al	llen B. I	Downey	(2014)	
	PO1	PO2	PO3	PO4	POS	5 PC)6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2		1	1	3	1
CO 3	3	2	2	2	2	1		2	1	3	1
CO 4	3	2	2	2	1	2		1	1	3	2
CO 5	3	2	2	2	1	2		2	1	3	1
CO6	3	2	2	2	2	2		2	1	3	1
Total	18	12	12	12	9	1	1	10	6	18	8
Course	3	2	2	2	1	2		2	1	3	1
	0-No re	lation	3- Highl	y relation	ı 2-	Mediu	m re	lation	1 - Low 1	elation	

YCACE4C BUSINESS INTELLIGENCE

CO1	С	Understand	Define Structure of Business Intelligence sy	stem					
CO2	С	Understand	Describe OLAP Concept						
CO3	С	Understand	<i>Explain</i> Data view	Explain Data view					
CO4	С	Understand	Summarize Advanced Dimensional Design						
CO5	С	Understand	Explain Creating Data from Analysis Services						
CO6	С	Understand	<i>Explain</i> Retrieving Data from Analysis Servi	ces					
Cour	se Code		Course Name	L	Τ	P	С		
YCA	CE4C		BUSINESS INTELLIGENCE	3	0	0	3		
C:P: <i>A</i>	A = 3:0:0			L	Τ	Р	Η		
				3	0	0	3		

UNIT –	I: Intro	oduction								9
Meaning Multidir Analysis Surrogat	g- Purpo nensional s. Unders te Keys ar	se and Analysi tanding 1 nd alterna	Structu s Conc Dimensi tive Tab	re of E epts: Att onal Dat le Structu	Business tributes- a Warel ire.	Intellig Hierarc house: F	gence S hies an act Tabl	ystems. d Dime le, Dime	Unders nsions ension 7	standing in data Tables -
Unit II	:Understa	anding O	LAP							9
Basic Co Spread s Data Ex	oncepts of sheet- Unc traction, 7	f OLAP-A lerstandir Fransform	Advantag 1g Analy 1ation an	ges -Fast 1 vsis Servic d Load. N	response ces speed Aeaning	- Meta-d d and me and Tool	ata-based ta-data. A ls for the	d queries Analysis same.	- Workin Services	ng with s Tools.
UNIT –	III: Cre	ating Bu	siness Ir	ntelligenc	e Proje	ct				9
Creating Time, ar Cube - member	g Data sound Modify Preview s- Deploy	urce, Creating dime of Cub ing and E	ating Da nsions. I e- Add Browsing	ta view. Parent-Ch ing meas ga Cube.	Modify hild Dim sure and	ing the E ension. C 1 measur	Data view C reating re group	v. Creati Cube: V s to a o	ng Dime Vizard to cube-Ca	ensions, o Create lculated
UNIT -	lV : Adva	inced Me	asures a	and Calcu	ulations					9
Aggrega Creation many di	te Function of KPI's mensions	ions. Usi s - Adva -	ng MD2 nced Di	X to retr mension	ieve va al Desig	lues from gn: Creat	n cube ing refe	- Calcul rence- fa	ation So oct and r	cripting. nany to
Unit V :	: - Data N	lining								9
Using F Actions- Excel w	inancial A - Retriev i ith Analys	Analysis (ing Data sis Servic	Cubes -I from A es.	nteracting Analysis	g with a Service	cube -Cı s: Creati	reating S ng Persp	tandard bectives-	and Dril MDX (ll Down Queries,
				LECTURE TUTORIAL PRACTICAL TOT						
	LECTURE IUTORIAL FRACTICAL IOTA 45 0 0 45							ACTIC	OTAL	
			-	45	CE TU	0		ACTICA 0	AL I	45
TEXT 1. Carlo Making' REFER	Vercellis '. John W ENCES	(2011). ' iley & So	'Busines	45 ss Intellig	ence: Da	0 ata Minin	lg and O	0 ptimizati	ion for E	45 Decision
TEXT 1. Carlo Making' REFER 1. Carlo Making' 2.David Elizabet	Vercellis ['] . John W ENCES Vercellis ['] . John W Loshin h Vitt, Mi	(2011). ' iley & So (2011). ' iley & So (2012). ' ichael Luo	'Busines ons 'Busines ons. 'Busines ckevich,	45 ss Intellig ss Intellig	ence: Da ence: Da	0 ata Minin ata Minin The Savv	Ig and O Ig and O Ig and O	o ptimizati ger's G	ion for I ion for I uide". N	45 Decision Decision Newnes.
TEXT 1. Carlo Making' REFER 1. Carlo Making' 2.David Elizabet	Vercellis ['] . John W ENCES Vercellis ['] . John W Loshin h Vitt, Mi PO1	(2011). ' iley & Sc (2011). ' iley & Sc (2012). ' ichael Luc PO2	'Busines ons 'Busines ons. 'Busines ckevich, PO3	45 ss Intellig ss Intellig ss Intellig PO4	ence: Da ence: Da gence: T PO5	0 ata Minin ata Minin The Savv PO6	Ig and O Ig and O Ig and O Ig and O Ig and O	o ptimizati ger's G PO8	ion for E uide". N	45 Decision Decision Newnes.
TEXT 1. Carlo Making' REFER 1. Carlo Making' 2.David Elizabet	Vercellis ² . John W ENCES Vercellis ² . John W Loshin h Vitt, Mi PO1 3	(2011). ' iley & Sc (2011). ' iley & Sc (2012). ' ichael Luc PO2 2	'Busines ons 'Busines ons. 'Busines ckevich, PO3 2	45 ss Intellig ss Intellig ss Intellig PO4 2	ence: Da ence: Da gence: T PO5 2	0 ata Minin ata Minin The Savv PO6 2	eg and O ag and O ag and O ry Mana PO7 2	0 ptimizati ger's G PO8 1	ion for I ion for I uide". N PSO1 3	45 Decision Decision Newnes. PSO2 2
TEXT 1. Carlo Making' REFER 1. Carlo Making' 2.David Elizabet CO 1 CO 2	Vercellis ² . John W ENCES Vercellis ² . John W Loshin h Vitt, Mi PO1 3 3	(2011). ' iley & Sc (2011). ' iley & Sc (2012). ' ichael Luc PO2 2 2	'Busines ons 'Busines ckevich, PO3 2 2	45 ss Intellig ss Intellig ss Intellig PO4 2 2	ence: Da ence: Da gence: Da gence: T PO5 2 1	O 0 ata Minin ata Minin The Savv PO6 2 2	eg and O eg and O eg and O ry Mana PO7 2 1	o ptimizati ger's G PO8 1 1	ion for E ion for E uide". N PSO1 3 3	OTAL45DecisionDecisionNewnes.PSO221
TEXT 1. Carlo Making' REFER 1. Carlo Making' 2.David Elizabet CO 1 CO 2 CO 3	Vercellis ² . John W ENCES ³ . John W Loshin h Vitt, Mi PO1 3 3 3	(2011). ' iley & Sco (2011). ' iley & Sco (2012). ' ichael Luc PO2 2 2 2 2 2	'Busines ons 'Busines ons. 'Busines ckevich, PO3 2 2 2 2 2	45 ss Intellig ss Intellig PO4 2 2 2 2	ence: Da ence: Da gence: T PO5 2 1 2	0 ata Minin The Savv PO6 2 1	eg and O eg and O eg and O ry Mana PO7 2 1 2	o ptimizati ger's G PO8 1 1 1	AL IG	45 Decision Decision Decision Newnes. PSO2 2 1
TEXT 1. Carlo Making' REFER 1. Carlo Making' 2.David Elizabet CO 1 CO 2 CO 3 CO 4	Vercellis ['] . John W ENCES Vercellis ['] . John W Loshin h Vitt, Mi PO1 3 3 3 3 3	(2011). ' iley & Sc (2011). ' iley & Sc (2012). ' ichael Luc PO2 2 2 2 2 2 2 2 2	'Busines ons 'Busines ons. 'Busines ckevich, PO3 2 2 2 2 2 2	45 45 55 Intellig 55 Intellig 55 Intellig 904 2 2 2 2 2 2	ence: Da ence: Da gence: T PO5 2 1 2 1	O 0 ata Minim ata Minim The Savv PO6 2 1 2 1 2	Ig and O ag and A ag and ag and ag and and ag and ag and and a ag and and a ag and and and a ag and	o ptimizati ger's G PO8 1 1 1 1	AL IG	OTAL45DecisionDecisionDecisionNewnes.PSO22112
TEXT 1. Carlo Making' REFER 1. Carlo Making' 2.David Elizabet CO 1 CO 2 CO 3 CO 4 CO 5	Vercellis ² . John W ENCES Vercellis ² . John W Loshin h Vitt, Mi PO1 3 3 3 3 3 3 3	(2011). ' iley & Sc (2011). ' iley & Sc (2012). ' ichael Luc PO2 2 2 2 2 2 2 2 2 2 2 2	'Busines ons 'Busines ons. 'Busines ckevich, PO3 2 2 2 2 2 2 2 2 2	45 45 55 Intellig 55 Intellig 55 Intellig 55 Intellig 56 PO4 2 2 2 2 2 2 2 2 2 2	ence: Da ence: Da gence: T PO5 2 1 2 1 1 1	O 0 ata Minin ata Minin The Savv PO6 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	L PR ag and O ag and O ag and O ry Mana PO7 2 1 2 1 2 1 2	o ptimizati ger's G PO8 1 1 1 1 1	AL IG	OTAL45DecisionDecisionDecisionNewnes.PSO2212121
TEXT 1. Carlo Making' REFER 1. Carlo Making' 2.David Elizabet CO 1 CO 2 CO 3 CO 4 CO 5 CO6	Vercellis ² . John W ENCES Vercellis ³ . John W Loshin h Vitt, Mi PO1 3 3 3 3 3 3 3 3 3	(2011). ' iley & Sco (2011). ' iley & Sco (2012). ' ichael Luc PO2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	'Busines ons 'Busines ons. 'Busines ckevich, PO3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	45 ss Intellig ss Intellig PO4 2 2 2 2 2 2 2 2 2 2 2 2 2	ence: Da ence: Da gence: Da gence: T PO5 2 1 2 1 1 2 1 1 2	OTORIAI 0 ata Minim ata Minim The Savv PO6 2 1 2 1 2	In the second se	ptimizati ptimizati ger's G PO8 1 1 1 1 1 1 1	AL IG	OTAL45DecisionDecisionNewnes.PSO221121111
TEXT 1. Carlo Making' REFER 1. Carlo Making' 2.David Elizabet CO 1 CO 2 CO 3 CO 4 CO 5 CO6 Total	Vercellis ² . John W ENCES Vercellis ³ . John W Loshin h Vitt, Mi PO1 3 3 3 3 3 3 3 18	(2011). * iley & Sc (2011). * iley & Sc (2012). * ichael Luc PO2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Busines ons 'Busines ons. 'Busines ckevich, PO3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	45 45 55 Intellig 55 Intellig 55 Intellig 75 PO4 2 2 2 2 2 2 2 2 2 12	ence: Da ence: Da gence: Da gence: T PO5 2 1 2 1 2 1 1 2 9	PO6 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I PR Ig and O Ig and Ig an	o ptimizati ger's G PO8 1 1 1 1 1 1 6	AL 10 ion for E uide". N PSO1 3 3 3 3 3 3 3 18	4545DecisionDecisionDecisionNewnes.PSO22112118

YCACE4D PREDICTIVE ANALYTICS

CO1	С	Understand	Describe the basics of data mining .
CO2	С	Understand	<i>Illustrate</i> the concepts of data visualization
CO3	С	Understand	Describe model development and its techniques
CO4	С	Understand	Describes various algorithms in analytics
CO5	С	Understand	Infer various model deployment.
CO6	С	Understand	Describes various analytic types.

Course Code	Course Name				L	Т	P	С			
YCACE4D	PREDICTIVE	ANALYTICS	5		3	0	0	3			
C:P:A = 3:0:0	b :P:A = 3:0:0					Т	Р	Η			
					3	0	0	3			
UNIT –I: Introduction								9			
Introduction to Data Min	ing Introduction	, what is Da	ata Mining? C	Concepts	of L)ata	mini	ing,			
Technologies Used, Data Mining Process, KDD Process Model, CRISP – DM, Mining on various											
kinds of data, Applications of Data Mining, Challenges of Data Mining.											
Unit II :Data Understandi	ng and Preparat	ion						9			
Introduction, Reading data f	rom various sour	ces, Data visua	lization, Distrib	outions an	d sun	nmar	y				
statistics, Relationships among variables, Extent of Missing Data. Segmentation, Outlier detection,											
Automated Data Preparation, Combining data files, Aggregate Data, Duplicate Removal, Sampling											
DATA, Data Caching, Partitioning data, Missing Values.											
UNIT – III: Model develo	pment & techniq	lues					9	9			
Data Partitioning, Model se	lection, Model De	evelopment Te	chniques, Neura	al networ	ks, D	ecisio	on tre	ees,			
Logistic regression, Discri	minant analysis,	Support vect	or machine, B	ayesian	Netw	orks,	Lin	iear			
Regression, Cox Regression	, Association rule	es.									
UNIT -IV : Model Evaluat	tion and Deployn	nent					9	9			
Introduction, Model Valida	tion, Rule Induct	tion Using CH	IAID, Automati	ng Mode	ls for	r Cat	egor	ical			
and Continuous targets, Comparing and Combining Models, Evaluation Charts for Model											
Comparison, MetaLevel M	odeling, Deployi	ing Model, A	ssessing Model	Perform	ance,	Upo	latin	g a			
Model.											
Unit V :Analytics								9			
Software Analytics – Embe	dded Analytics –	Learning Ana	lytics – Predicti	ve Analy	tics –	- Pres	crip	tive			
Analytics – Social Media	Analytics – Beha	avioral Analyt	ics. Analyse an	d predict	resu	lts b	ased	on			
historical patterns.											
		LECTURE	TUTORIAL	PRACI	ICA	LI	TOT	AL			
		45	0	0			45	5			
TEXT											
1. Predictive & Advanced Analytics (IBM ICE Publication)											
				4 99 7001 1 1							
2. Jiaweu Gab, Micgekul	be Janver, Jian	Pei, "Data M	lining Concept	ts", Third	Edit	ion,	Mor	gan			
2. Jiaweu Gab, Micgekul Kaufmann Publications	be Janver, Jian 1 , 2012.	Pei, "Data M	lining Concept	ts", Third	Edit	ion,	Mor	gan			

- Drew Bentley, "Business Intelligence and Analytics", Library Press, 2017.
 Arun K Pujari "Data Mining Techniques", 3rd Edition, University Press, 2013.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1