

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.2	Percentage of Programmes where syllabus revision was carried out during academic year 2022-23

DEPARTMENT OF MATHEMATICS

Sl. No.	Programme Code	Programmename	Year of Introduction	Year of revision	Percentage of Syllabus content added or replaced
01.	164	B.Sc. Mathematics	2017-18	2022	39.39%
		(Full Time)			
02.	359	M.Sc.–Mathematics	2014-15	2022	45.83%
		(Full Time)			

S.No	Contents
1.	Minutes of Board of Studies
2.	Extracts of minutes of the Academic Council Meeting
3.	Curriculum and Syllabus of the programme – Before Revision
4.	Curriculum and Syllabus of the programme – After Revision

Legend: Highlighted Color - Red

Indicates courses which are removed from syllabus before revision

Highlighted Color - Green

Indicates courses which are removed from syllabus after revision

1. a. Minutes of the Board of Studies for B.SC AND M.SC-MATHEMATICS (Full Time) held on 11.06.2022

Department of Mathematics

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phosee + 91 + 4362 - 264600 Fax + 91 - 4362 - 264660 Email headmaths@pnuv.edu Web : www.gom.edu

BOARD OF STUDIES MEETING

For B.Sc, and M.Sc Mathematics PROGRAMME

Minutes of Meeting

Date: 11.06.2022

Time: 2.00 PM

Venue: Mathematics Department

The Board of Studies meeting was held on 11.06.2022 for revision of Curriculum and Syllabi of B.Sc Mathematics and M.Sc Mathematics programme of Regulation 2022.

Members present:

Members of the BoS

Sl.No.	Name	Designation	Representing	Signature
I.	Dr.S.Biovaneswari	Associate Professor & Head Department of Mathematics Periyar Maniammai Institute of Science and Technology Vallam, Thanjavur	Chair person	S may
2.	Dr.A. Tamilselvan	Prof. & Head Department of Mathematics Bhamthidasan University Tirochirappalli 620 024	Member (Academic Expert)	A. Tune
3.	Dr.A.George	Dem Academic Professor, Department of Mathematics, Periyae Maniammai Institute of Science and Technology Vallam, Thanjavur	Member	A.C.
4.	Dr.P. Vijayalakshmi	Dean(i/c) FHSM Asso Professor Department of Mathematics Periyar Maniammai Institute of Science and Technology Vallam, Thanjavur	Member	brond
5.	Dr.C.Vimala	Asso. Professor Department of Mathematics Perlyar Maniammai Institute of Science and Technology	Momber	CLL

Dr A Saukala	Vallari, Danjavat Asso Professor Department of Mathematics, Person Management Institute of	Member	chanles
	Science and Technology, Vallam, Thanjavar		11/4/2
Dr.P.N. Sudba	Amistant Professor Department of Mathematics Periyar Maniammai Institute of Science and Lechnology	Member	In die
Ms K Rajeswari	Assistant Professor Department of Mathematica Periyar Massammas Institute of Science and Lecturology	Member	As Silver
(100)	Ms K. Rajeswari	Periyar Maniammai Institute of Science and Technology Vallam, Thanyavar Assistant Professor Department of Mathematica Periyar Maniammai Institute of	Periyar Maniammai Institute of Science and Technology Vallam, Thansavar Assistant Professor Department of Mathematics Periyar Maniammai Institute of Science and Lechnology

A. FEEDBACK ON CURRICULAR ASPECTS

The feedback were collected and analyzed during 2018-19, 2019-20 and 2020-21 from the following stake holders

- · Teachers
- Employers
- Alumni
- Students
- Industrialist

In addition, the feedback from Academic Expert, Teachers, Alumni and Students who participated in Department Advisory Committee (DAC) Meeting were presented. The action taken for the feedbacks are given as "Remarks" in Table II.

B, CURRICULUM INTERVENTION BASED ON CO ATTAINMENT

The CO attainment and PO attainment for the courses of B.Sc Programme were presented to the members. The courses whose CO attainment was consistently below the target values were discussed. This has been considered as one of the point for syllabus modification for some courses and documented in the Table II.

C. PRESENTATION OF CURRICULUM AND SYLLABUS

All the courses which are framed by the department of Mathematics are presented individually. The deletion, addition and introduction of new courses related details are tabulated for all courses in the following table.

Table II: Discussions on courses with actions as remarks - B.Sc Mathematics

S.No.	Sem	New Course Name	Course content Deletion/ Addition/New	Percen tage of change	Remarks
1	1	Tamil – I/ Foundational Tamil- I	-	100%	Language
2	1	English – I	-	100%	Language
3	1	Differential Calculus and Trigonometry		60%	3 units changed
4	1	Analytical geometry 3-D and Integral Calculus	(1)	60%	3 units changed
5	1	Physics I		60%	3 units changed
6	1	Physics Practical - 1		70%	Introduced 7 new experiments
7	1	Human Ethics, Values, Rights and Gender Equality	cutting edge	40%	University Mandatory Course
8	11	Tamil - II/	Added as New	100%	Language

1	10	Foundational Tamil - II	Course	Now to	1
9	10	English - II		100%	Language
10	11	Classical Algebra	Ailded as New Course	100%	Based on requirements
11	111	Sequence and Series	-	50%	2.5 units changes
12	H	Physics - II		60%	3 units changed
13	11	Physics Practical - II	•	80%	Introduced 8 new experiments
14	8	Quantitative Aptitude I	Added as New Course	100%	Poodback received from stakeholders
15	n	Environmental Studies	cutting edge	40%	University Mandatory Course
16	111	Differential Equations and Laplace Transforms		4	7
17	101	Vector Calculus, Fourier Series and Fourier Transforms	ē:	20%	1 unit changed
18	10	Mathematical Statistics - I	¥3	40%	-
19	381	Mathematical Statistics Practical – 1	Added as New Course	100%	Feedback received from stakeholders
28	311	Quantitative Aptitude - II	Added as New Course	100%	Feedback received from stakeholders
21	301	Disaster Management	cutting edge	S	University Mandatory Course
22	IV	Abstract Algebra	Added as New Course	100%	
23	IV	Mechanics		-	
24	IV	Mathematical Statistics – 2	Added as New Course	100%	Feedback received from stakeholders
25	IV	Mathematical Statistics Practical – 2	Added as New Course	100%	Feedback received from stakeholders
26	IV	Quantitative Aptitude III	Added as New Course	100%	Feedback received from stakeholders
27	JV	Introduction to Entrepreneurship Development	cutting edge	100%	University Mandatory Course
28	y	Real Analysis	*	÷	
29	V	Discrete Mathematics	26	20%	9

43	VI	Cyber Security	cutting edge	100%	Mandatory Course
11	VI	Project	-	4	
	VI	Stochastic Processes		40%	-
0	N1	Astronomy	-	20%	
,	VΙ	Recent Veends in Industrial Mathematics	Inter disciplinary Added as New Course	100%	Feedback received from stakeholders
	VI	Puzzy sets and its applications	Added as New Course	100%	Feedback received from stakeholders
	VI	Operations Research	-	20%	
	VI	Complex Analysis		*16	
	v	Quantitative Aptitude – IV	Added as New Course	100%	Feedback received from stakeholders
	V	Fundamentals of Data Science & R Programming	Added as New Course	10055	Feedback received from stakeholders
	Y.	Stathematical Modeling	Added as New Course	100%	Feedback received from stakeholders
	N.	Graph Theory		40%	1
	V	Number Usony	1	7076	
	Y	Numerical Methods	2.		*

LIST OF NEWLY INTRODUCED COURSES IN REGULATION 2022
 R.Sc. Mathematics (39.39%)
 S.No. | Name of the region.

S.No	Name of the course
1.	Classical algebra
2.	Countinative Aptitude - 1
3.	2 1 The relations Benefitzed = 1
4.	Quantitative Aptitude - II
5.	Abstract Algebra
6.	Mathematical Stotistics - 2
7.	Mathematical Statistics Practical - 2
8.	Quantitative Aptitude - III
9.	At-elegannical Modeling
10	Fondamentals of Data Science & R Programming
11.	Quantitative Aptitude - IV
6.7	Current sets and its applications
13.	Recent Trends in Industrial Mathematics

Table II by Discussions on courses with actions as remarks M.Sc Mathematics

S.Nn	Sein	New Control Name	Course content Deletion/	Percentage of change	Remarks	Category
	£	Alpebra 1	Addition/New Len topics added	100%	Feedback received from stabeholders Already existed in the name of Groups and Rings in First Semester	Employa bility
2	£	Real Analysis - I		No change	Already existed in the name of Analysis I in First Semester	Employa hility
à	1	Graph Theory		No change		Employa bility
4	.1	Ordinary Differential Equations		40.%	Feedback received from stakeholders Already existed in the name of Differential Equations in First Semester	1.3
3	3	Optimization Techniques		40%	Feedback from stakeholders Already Existed in the name of Operation Research in Second Semester	Employa bility
6	1	Fuzzy sets and Fuzzy logic		No Change	Shifted from Second Semester	Employa bility
7	1	Coding Theory		No Change		Skill Enhance ment
8		Neural Networks	New Course	100%	Feedback received from stakeholders	Skill Enhance ment
9	11	Algebra -II	New Course	100 %	Feedback received from stakeholders	Employa bility
10	Ü	Real Analysis -II	New Course	100 %	Feedback received from stakeholders	Employa bility
11	ш	Partial Differential Equations	New Course	100 %	Feedback received from stakeholders	Employa hility
12	Н	Classical Dynamics	New Course	100 %	Feedback received from stakeholders	Employ: bility

13	- 11	Fluid Dynamics	New Course	100 %	Feedback received from stakeholders	Employa bility
14	n	Combinatories	New Course	100%	Feedback received from stakeholders	Employa bility
15	Hà	Cryptography	New Course	100%	Feedback received from stakeholders	Skill Enhance ment
16	п	Computer Programming (C++ Theory and Lab)	New Course	100 fw	Feedback received from stakeholders	Skill Enhance ment
17	111	Topology		No Clunge	-	I imploy a believ
18	.10	Integral Equations, Calculus of Variations and Transforms		No Change	Shifted from Second Semester	Employ a bility
19	m	Functional Analysis		No Change	Staffed from Fourth Semester	Employa bility
20	.111	Differential Geometry	New coanse	100%	Fordback from stakeholders	Employa bility
21	.01	Complex Analysis		No Change	Shifted from Fourth Semester	Employa bility
22	.111	Elements of Stochastic Processes	Now source	100%	Fordback from stakeholders	Employa bility
21	ш	Mathematical Modeling		No Change	Shifted from Fourth Nemester	Employa hildy
24	111	Data Analysis using SPSS		No Change		Skill Enhance
25	IV	Project Work				ment Skill Enhance ment

LIST OF NEWLY INTRODUCED COURSES IN REGULATION 2022 MSc Mathematics (45.83%)

N.No	Name of the course
1	Neural Networks
7	Algebra II
1.0	Real Analysis II
4	Partial Differential Equations
4	Classical Dynamics
0.	Fluid Dynamics
7	Combinatories
-\$	Cryptography
40	Computer Programming (C++ Theory and Lab)
10	Flements of Stochastic Processes
11	Differential Geometry

Table III b: Table of courses removed with remarks M.Se Mathematics

S.No	Course Code and Name	Remarks
1	Discrete Mathematics	Already Studied in UG
2	Mathematical Logic	Feedback received from stakeholders
3	Linear Algebra	Already Studied in UG
4	Analysis II	Feedback received from stakeholders
5	Data structures and Algorithms	Feedback received from stakeholders
6	Field Theory	Feedback received from stakeholders
7	Mathematical Statistics	Feedback received from stakeholders
8	Numerical Methods	Already Studied in UG
9	Commutative Algebra	Syllabus included in Algebra II
10	Automata Theory	Feedback received from stakeholders
11	Algebraic Number Theory	Feedback received from stakeholders

PERCENTAGE CHANGE IN THE SYLLABUS

b. M.Sc Mathematics

Number of new courses added = 11 = 45 credits Number of old courses removed = 11 = 41 credits % change = (45/92) x 100 = 48.91%

2. Extracts of minutes of the Academic Council Meeting

Periyar Magar, Voltan, Thungarar - 613-603, Tamil Nada, India Phone: v81 - 4962 - 266600 Tox - 491 - 4962 - 264900 Small registrarilaria orbi Medic www.pericada

Member

MINUTES OF FORTIETH MEETING OF THE ACADEMIC COUNCIL

Date : 27.08.2022 Venue: Richard Dawkins Hall
Time : 10.30 A.M Place : PMIST, Vallam - Thanjavur

The Fortieth Meeting of the Academic Council of the Periyar Maniammai Institute of Science & Technology (PMIST), Vallam, Thanjavur held on 27.08.2022 at 10.30 a.m.

Prof.S. Velusami, Hon'ble Vice-Chancellor, chaired the meeting.

The following Academic Council Members were present

1.	Dr.D.Aarthi Saravanan	Meillici
2.	Dr.A.Anend Jerard Sebastine	Member
3.	Dr.S.Arumugam	Member
4.	Dr.P.Aruna	Member
5.	Dr.S.Asokan	Member
6.	Dr.S.Buvaneswari	Member
7.	Dr.A.George	Member
8.	Dr.S.Gomathi	Member
9.	Dr.P.Guru	Member
10.	Dr.V.Hamsadhwani	Member
11.	Dr.R.Jayanthi	Member
12.	Dr.N.Jayanthi	Member
13.	Dr.J.Jeyachidra	Member
14.	Mr.J.Karthic Subramanlayan	Member
15.	Dr.T.Kavitha	Member
16.	Dr.K.Kesavan	Member
17	Dr.R.Krishnamurthi	Member
18	Dr.S.P.Kulanthaivel Babu	Member

But, as per the recommendations of the Board of Studies the new course.

BBA -(Hospitality Management) is offered.

The matter is placed before the Academic Council for approval.

Resolution

RESOLVED TO APPROVE the Curriculum and Syllabi of I to VI Semester of BBA -(Hospitality Management) under Full-Time (Regulation 2022).

DEPARTMENT OF MATHEMATICS

FHSM M.Sc.-Maths 40.5.4

TO CONSIDER AND APPROVE the Curriculum and Syllabi for I to IV Semester for M.Sc. Mathematics programme (Regulation 2022) for the candidates admitted from 2022–23 onwards.

Notes:

The Board of Studies of Department of Mathematics recommended the Curriculum and Syllabi for I to IV Semester for M.Sc. Mathematics programme under full time(Regulation 2022) for the candidates admitted from 2022 –23 onwards.

The matter is placed before the Academic Council for Approval.

Resolution

RESOLVED TO APPROVE the Curriculum and Syllabi for I to IV Semester for M.Sc Mathematics programme (Regulation 2022) for the candidates admitted from 2022–23 onwards.

FHSM B.Sc.-Maths 40.5.5 TO CONSIDER AND APPROVE the Curriculum and Syllabi for I to VI Semester for B.Sc.-Mathematics programme (Regulation 2022) for the candidates admitted from 2022–23.

Notes:

The Board of Studies of Department of Mathematics recommended the Curriculum and Syllabi for I to VI semester for B.Sc.-Mathematics programme under full time (Regulation 2022) for the candidates admitted from 2022-23. The matter is placed before the Academic Council for Approval.

Resolution

RESOLVED TO APPROVE the Comculum and Syllabi for I to VI Semister for B.Sc.-Mathematics programme (Regulation 2022) for the candidates admitted from 2022–23.

FHSM Maths 40.5.6

TO CONSIDER AND APPROVE the list of Value Added Courses to be offered

- by the department in the academic year 2022-23.
 - Quicker Mathematics
 C++
 - 3 LaTex
 - 4. Python Programming
 - 5 Mateb
 - 6 SAP

Notes:

The Board of Studies of Department of Mathematics recommended the above list of Value Added Courses (Regulation 2027).

The matter is placed before the Academic Council for Approval.

Resolution

RESOLVED TO APPROVE the adove hid of Value Added Courses.

DEPARTMENT OF COMMERCE

FHSM TO CONSIDER AND APPROVE the Curriculum and Syllabs for B Com (Hons)
B.Com.
Hons
under Full-Time (Regulation 2022)

40.5.7 Notes

The Board of Studies of Department of Commerce recommended the Curriculum and Syllatix for I to VI Selfester B Com (Hons) under Full-Time (Regulation 2022)

The matter is placed before the Academic Council for approval.

Resolution

RESOLVED TO APPROVE the Composition and Syllabs for B Com (Hons) under Eut-Time (Regulation 2022)

3.a. Curicullum and Syllabus of the programme – Before Revision

B.Sc. (Mathematics) Syllabus Before Revision REGULATION – 2018

		SEMESTER I			
Type	ourse Code	Course Name	L	7	
AECC 1	XGL101	Communication Skills in English	2		
LAN	XGL102A/ XGL102B	AriviyalTamil/ComprehensiveEnglish	3		
CC 1	3				
C 2 (DSC 2A)	XMT104	Foundation Course in Mathematics	4		
C 3 (DSC 3A)	XMT105	Differential Calculus & Integral Calculus	4		
UMAN 1	XUM106	Human Ethics, Values, Rights and Gender Equality	3		
CC 1 lab	XPG107	Fundamental Physics Lab	0		
		Total	9		}

		SEMESTER II						
Туре	Course Code	Course Name	L	T	P	SS	Н	C
AECC 2	XGL201	English for Effective						
7 ILCC 2	1102201	Communication	2	0	0	0	2	2
AECC 3	XES202	Environmental Studies	2	0	0	1	3	2
CC 4	XPG 203	Modern Physics	3	1	0	0	4	4
CC 5 (DSC	XMT204	Differential Equations & Laplace						
2B)		Transforms	4	1	0	0	5	5
CC 6 (DSC	XMT205	Sequences and Series						
3B)			4	1	0	0	5	5
CC 4 Lab	XPG206	Modern Physics Lab	0	1	2	0	3	2
		Total	15	4	2	1	22	20

		SEMESTER III						
Туре	Course Code	Course Name	L	T	P	SS	Н	C 2 4 5 5 5
SEC 1	XMT301	Logic and Sets	2	0	0	2*	2	2
CC 7	XMT302	Programming in C	3	1	0	0	4	4
CC 8 (DSC 2C)	XMT303	Real Analysis	4	1	0	0	5	5
CC 9 (DSC 3C)	XMT304	Analytical Geometry 3D	4	1	0	0	5	5
GE 1		*Open Elective - To be chosen by student	3	0	0	0	3	3
CC 7 lab	XMT305	Programming in C – Practical	0	1	2	0	3	2
UMAN 2	XUM306	Disaster Management	0	0	0	3*	0	0
Minor Course * Extra Credit		Office Automation (15 hours)	0	0	0	0	0	1*
		Total	16	4	2	5*	22	21+1*

		SEMESTER IV						
Туре	Course Code	Course Name	L	Т	P	SS	Н	C
SEC 2	XMT401	Theory of Equations	2	0	0	2*	2	2
CC 10	XMT402	Introduction to Matlab	3	1	0	0	4	4
CC 11 (DSC 2D)	XMT403	Vector Calculus and Fourier Series	4	1	0	0	5	5
CC 12 (DSC 3D)	XMT404	Algebra	4	1	0	0	5	5
GE 2		*Open Elective - To be chosen by student	3	0	0	0	3	3
CC 10 Lab	XMT405	Introduction to Matlab - Practical	0	1	2	0	3	2
Minor Course * Extra Credit		Animation Software I (15 hours)	0	0	0	0	0	1*
		Total	16	4	2	2*	22	21+1*

		SEMESTER V						
Type	Course Code	Course Name	L	Т	P	SS	Н	C
SEC 3	XMT501	Probability and Statistics	2	0	0	2*	2	2
DSE 1A	XMT502A	Matrices						
DSE IA	XMT502B	Discrete Mathematics	4	2	0	0	6	6
DCE 2A	XMT503A	Numerical Methods						
DSE 2A	XMT503B	Mechanics	4	2	0	0	6	6
DSE 3A	XMT504A	Linear Algebra						
DSE 3A	XMT504B	Astronomy	4	2	0	0	6	6
GE 3		*Open Elective - To be chosen						
GE 3		by	3	0	0	0	3	3
Minor Course * Extra Credit		Animation Software II (15 hours)	0	0	0	0	0	1*
		Total	17	6	0	2*	23	23+1*

	SEMESTER VI											
Type	Course Code	Course Name	L	T	P	SS	Н	C				
SEC 4	XMT601	Graph Theory	2	0	0	2*	2	2				
DSE 1B	XMT602A	Complex Analysis										
DSE 1B	XMT602B	Number Theory	4	2	0	0	6	6				
Date on	XMT603A	Linear Programming										
DSE 2B	XMT603B	Stochastic Processes	4	2	0	0	6	6				
DSE 3B	XMT604	Project	0	0	0	0	8	6				
	_	NSS/NCC/NSO	0	0	0	0	0	1*				

L - Lectu	re T- Tutorial P – Practical		(C-Cr	edit		
COURSE CODE	XGL101	L	Т	P	SS	Н	C
COURSE NAME	COMMUNICATION SKILLS IN ENGLISH	2	2 0 0 0				2
C:P:A - 3:0:0				ı			
COURSE OUT	COMES:	Do	mair	1	L	evel	
CO1	Explain the process of communication and its types	Cog	gnitiv	e U	Inder	stand	ling
CO2	Recall various sounds and use it in proper context	Cog	gnitiv	re]	Reme	mber	ing
CO3	Organise meeting events and recording it constructively	Cog	gnitiv	'e	App	olying	g
CO4	Adapt methods of framing questions and using punctuations	Cog	gnitiv	'e	Cre	eating	5
CO5	Demonstrate the basic skills at the time of interview and presentations	Cog	gnitiv	e I	Jnder	stand	ling
SYLLABUS		•			1	HOU	RS
UNIT I	The Process of Communication						
Communication-	the process of communication - barriers of communication	tion -	- diffe	erent		9	
types of commun	ication						
UNIT II	Phonetics						
	Vowels – Consonants – Transcription of Words a	nd S	enter	ices		9	
UNIT III	Report Writing						
Organizing succe meetings, memory	ssful meeting, One to one meeting, editing, criteria for , e mails	succ	essful			9	
UNIT IV	Grammar						
Articles – Quest Questions, Caus	tion Tag —Punctuation — Types of Sentences — Types and Effect.	es of				9	
UNIT V	Presentation Skills						
Presentation sk Non Verbal con	ills, Importance of body language in presentation	ons,	Verb	al ar	nd	9	
		T	otal	Hou	rs	45	
2015 Sumant. <i>Techni</i>	Communication and Language Skills.Cambridge Pr cal English.Vijay Nicole Imprints, Chennai, 2011 Everyday English. Cengage Learning, New Delhi			nai,			

10 4 0 2* 22 20+1*

Total

~~	RSE CODE	XGL102A			L	T	P	C				
COUF	RSE NAME	mwptpay; jkpo);		3	0	3					
	EQUISITE				L	T	Н					
	C:P:A	3:0:0			3	0	0	3				
		COURSE OUT			DON	IAIN	I	LEVEL				
After the		of the course, stud										
CO1	Recognize(<i>milahsk;</i> :l;gq;fs;>fiyr; nrh	f hZjy;) gy;NtV v:vhf:fci:ipfs: Na		Cogni	itive	Rei	member				
	-	%yk; mwpe;Jnfh		-, -, ,	6							
	Choose(nju	<i>ıpTnra;jy;)</i> tlnkho	pNtu;r;nrhw;fs;>G	Stpapay;>e								
CO2	pytpay; mwpe;Jnfh	gw;wpg; goe;	jkpo; ,yf;fpaq;t	fs; %yk;								
002		o s<i>f;Fjy;)</i>nj hy;fhg;g	gpak; %yk;	mwptpay;	Cogni	itive	Un	derstand				
CO3	nra;jpfisczi											
	Apply											
CO4		<i>ljy;)</i> gy;NtWfy;tpj;. ı;e;jgpupTfs; Fwp		;>gy;NtWf	Cogni	itive	Ap	ply				
CO5	Analyze(gF	<i>j;jy;)</i> mwptpay; rp	Wfijfspd; Njhw;w	k; kw;Wk;	Cogni	itivo	Δn	alvzo				
COS	tsu;r;r pepi	y ehlfq;fspd; gq;F	Fwpj;J njspTng\	Vjy;.	Cogiii	itive	Analyze					
myF-	- 1	mwı	ptpay;jkpo; mwr	oKfk;				9				
•	Ntu;r;nrhw;f	e;jpankhopt, iskpFjpahff; nfhz; a		Jjy;.	nrhw;	fiscU	thf;Fj	y; - 9				
					ifty (for		niby					
		gw;wpgoe;jkpo ay;>kz;zpay; gw;										
		ay,>kz,zpay, gw, vfs; - tsu; jkpo;.	wparibg,giii, iiia	i,jpis, - jkpo	, KOj,c	i, iy	,τρ -	πινιριραγ				
myF-			NtWfiyfspy; mwp	otpav:				9				
		fl;llf; fiyf;fy;tp- r			zpav:>	Gtpar	oav:>					
		;fhyf; fy;tpg; nghJ						, , , , ,				
myF-			/; jkpopy; rpWfij			<u> </u>		9				
	.vf;fzk; cUth	f;Fk; cj;jpfs; - rpw	o:irp\\/fiifo: rp\\/			املالاما:	f·fk· -	tuvb\//				
•				fij tiffs; - ey;	yrpWti	jcutni	,,,,,	tuyrivv—				
•	nkhopngau	g;Gkw;Wk; mwpt			yrpVVti_	JCUth		9				
r%fk; - myF -	nkhopngau; - 5	g;Gkw;Wk; mwpt mwptpay	pay; rpWfijfs;. y; jkpopy; ehlfq;	fspd; gq;F				9				
r%fk; - I myF- ehlfk; rupj;jpu	nkhopngau; - 5 - ehlf ,yf ehlfk;>r%fe	g;Gkw;Wk; mwpt mwptpay ;fzk;> ,Utifehlfq; hlfk; - eifr;Ritehlfc	pay; rpWfijfs;. /; jkpopy; ehlfq; fs; - gbg;gjw;F q;fs; - mnkr;#u; eh	fspd; gq;F upaehlfk; hlfq;fs; - njho	- ebg	ı;gjw;l vehlfa	- upa	9				
r%fk; - i myF- ehlfk; rupj;jpu	nkhopngau; - 5 - ehlf ,yf ehlfk;>r%fe	g;Gkw;Wk; mwpt mwptpay ;fzk;> ,Utifehlfq;	pay; rpWfijfs;. /; jkpopy; ehlfq; fs; - gbg;gjw;F	fspd; gq;F upaehlfk; hlfq;fs; - njho	- ebg py;Кiv ГОТА	ı;gjw;l vehlfa	- upa	9				
r%fk; - ı myF- ehlfk; rupj;jpu	- 5 ehlf ,yfehlfk;>r%fe	g;Gkw;Wk; mwpt mwptpay ;fzk;> ,Utifehlfq; hlfk; - eifr;Ritehlfc TUTORIAL	pay; rpWfijfs;. /; jkpopy; ehlfq; fs; - gbg;gjw;F q;fs; - mnkr;#u; eh	fspd; gq;F upaehlfk; hlfq;fs; - njho	- ebg	ı;gjw;l vehlfa	- upa	9				
r%fk; - ı myF- ehlfk; rupj;jpu LEC	- 5 ehlf ,yfehlfk;>r%fe CTURE 45	g;Gkw;Wk; mwpt mwptpay ;fzk;> ,Utifehlfq; hlfk; - eifr;Ritehlfc TUTORIAL	pay; rpWfijfs;. /; jkpopy; ehlfq; fs; - gbg;gjw;F q;fs; - mnkr;#u; eh PRACTICAL	fspd; gq;F upaehlfk; hlfq;fs; - njho	- ebg py;Kiv ГОТА	ı;gjw;l vehlfa	- upa	9				
myF- ehlfk; rupj;jpu LEC Nkw;gh	- 5 ehlf ,yfehlfk;>r%fe CTURE 45	g;Gkw;Wk; mwpt mwptpay ;fzk;> ,Utifehlfq; hlfk; - eifr;Ritehlfc TUTORIAL ;: lhf;lu; th.nr. Foe;	pay; rpWfijfs;. /; jkpopy; ehlfq; fs; - gbg;gjw;F q;fs; - mnkr;#u; eh PRACTICAL	fspd; gq;F upaehlfk; hlfq;fs; - njho	- ebg py;Kiv ГОТА	ı;gjw;l vehlfa	- upa	9				

4. ,yf;fpatuyhW- Gjpdk; gw;wpaJ

Mapping of Cos with POs:

	0													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO2	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO3	1	0	0	0	0	0	1	0	1	0	0	0	0	0
CO4	2	0	0	0	0	0	1	0	1	0	0	0	0	0
CO5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	7	0	0	0	0	0	6	0	4	0	0	0	0	0
Scaled	2	0	0	0	0	0	2	0	1	0	0	0	0	0
Value														
	1	0	0	0	0	0	1	0	1	0	0	0	0	0

1-5=1, 6-10=2, 11-15=3

0-No Relation, 1- Low Relation, 2 - Medium Relation, 3- High Relation

Mapping of COs with GAs:

11	U											
	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO1	0	0	0	0	0	0	0	1	1	2	0	0
CO2	0	0	0	0	0	0	0	0	0	2	0	0
CO3	0	0	0	0	0	0	0	0	0	1	0	0
CO4	0	0	0	0	0	0	0	0	0	0	1	0
CO5	0	0	0	0	0	0	0	1	1	1	1	0
Total	0	0	0	0	0	0	0	2	2	6	2	0
Scale	0	0	0	0	0	0	0	1	1	2	1	0

1-5=1, 6-10=2, 11-15=3

0-No Relation, 1- Low Relation, 2 – Medium Relation, 3- High Relation

CO Versus PO mapping:

			,	PO				PSO		
	1	2	3	4	5	6	7	1	2	
CO1		1								
CO2		1								
CO3		1					1			
CO4	1	2	2	1		1	2			
CO5	2	2	2	2		1	2			
Total	3	7	4	3		2	5			
Scaled Value	1	1	1	1			1			

 $1-5 \rightarrow 1$ $6-10 \rightarrow 2-11-15 \rightarrow 3$

3–Strong Correlation, 2–Medium Correlation, 1–Low Correlation, 0–No Correlation

COU	RSE CODE	XPG103	L	Т	P	C
COU	RSE NAME	FUNDAMENTAL PHYSICS	3	1	0	4
C:P:A		4:0:0	L	Т	P	Н
PRER	EQUISITE:		3	1	0	4
CO1	Recall and Exmotion and cir	<i>cplain</i> the basic principle simple harmonic reular motion	Cognit	ive	Remer Unders Anal	stand,
CO2		he properties of sound, reverberation time of production of ultrasonic waves.	Cognitiv	ve	Remer Anal	
CO3	modulus, vis	and determine Young's modulus, rigidity cosity and explain surface tension and re inside a drop.	Cognitiv	ve	Analy Unders Applic	stand,
CO4	physics and d	etermine the thermal conductivity of a bad solar constant.	Cognitiv	ve	Remer Anal Applic	yze,
CO5	to determine	wavelength of mercury source; understand on and production; propagation of fibre	Cognitiv	ve	Unders evalua	
UNIT	I Simple Harm	onic Motion and Circular Motion			9+	-3

Time period - Amplitude - Phase - Spring mass system - Simple pendulum - Composition of two simple harmonic motions along a straight line and at right angles - Lissajous figures - Damping force - Damped harmonic oscillator - Uniform circular motion - Acceleration of a particle in a circle - Centripetal and centrifugal forces - Banking on curved tracks - Motion of a bicycle and a car around a circle.

UNIT II Sound Uniform circular motion

9+3

Classification of sound - Characteristics of musical sound - Loudness - Weber Fechner law - Decibel - Absorption co-efficient - Reverberation - Reverberation time - Ultrasonic waves - Properties - Production : Magnetostriction and Piezo-electric method and uses.

UNIT III Properties of Matter

9+3

Elasticity - Elastic constants - Bending of beams - Young's modulus by non-uniform bending - Torsion in a wire - Determination of rigidity modulus of torsional pendulum - Viscosity - Coefficient of viscosity by Poiseuelle's method - Stoke's law - Terminal velocity - Surface Tension - Molecular theory of surface tension - Excess pressure inside a drop and bubble - Surface tension by drop weight method.

UNIT IV Thermal Physics

9+3

Kinetic theory of gases - Basic postulates - Ideal gas equation - Vanderwaal's equation of states - Laws of thermodynamics - Entropy - Change of entropy in reversible and irreversible processes - Lee's disc method for conductivity of bad conductor - Stefan's law of radiation - Solar Constant - temperature of the sun.

UNIT V Optics

9+3

Interference in thin films - Air wedge - Diffraction - Theory of plane transmission grating (normal incidence only) - LASER - Population inversion - Pumping - Laser action - Nd-YAG laser - CO_2 laser - Fibre optics - Principle and propagation of light in optic fibres - Numerical aperture and acceptance angle.

	LECTURE	TUTORIAL	TOTAL
	45	15	60
Text Rooks			

A Sundaravelusamy, "Allied Physics I", Priya Publications, 2009.

R. Murugesan, I B.Sc. "Ancillary Physics", S. Chand & Co., 2010.

References

Saigal. S, "Sound", Chand & Co., Delhi,1990

Brijlal and Subramanian, "Elements of properties of matter", S. Chand Limited, 1974.

Brijlal and Subramanian, "Heat and Thermodynamics", S. Chand Limited, 2008

Brijlal and Subramanian, "Optics", S. Chand Limited, 2012.

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1	1	1		1
CO 2	3	2	1	1	1	1	1		1
CO 3	3	2	1	1	1	1	1		1
CO 4	3	2	1	1	1	1	1		1
CO 5	3	2	1	1	1	1	1		1
Total	15	10	5	5	5	5	5		5
Scaled Value	3	2	1	1	1	1	1		1

 $^{1 - \}overline{5} > 1 \quad 6 - 10 > 2 \quad 11 - 15 > 3$

^{3–}Strong Correlation, 2–Medium Correlation, 1–Low Correlation, 0–No Correlation

COU	RSE C	ODE	COURSE NAME		L	T	P	C			
XMT	Γ 104		FOUNDATION COURSE IN MATHEM	MATICS	4	1	0	5			
C	P	A			L	T	P	Н			
5	0	0			4	1	0	5			
PRE	REQUI	SITE:	Basic concept of Algebra and Trigonometr	y	•						
COU	RSE O	UTCC	OMES:								
Cour	se outc	omes:	Domain Apply fundamental theorem of algebra to Cognitive			el					
			pply fundamental theorem of algebra to ween roots and coefficients.	Cognitive	Remembering Applying						
CO2	: Expla	in the	transformation of equation and to solve	Cognitive	Und	lersta	nding				
the re	the reciprocal equation using Newton's method.						Applying				
CO3	:Expan	d the to	rigonometric functions and to find the	Cognitive	Understanding						
			conometric functions by apply the related		App	lying	5				
			the problems.								
			erbolic and inverse hyperbolic functions	Cognitive			_				
			arithm of the complex numbers.			Remembering Applying					
			immations of trigonometric series and apply Cognitive Remembering								
prope	properties to find their related problems.						Applying				
UNI								15			
	•	*	ons: Fundamental Theorem of Algebra entric functions of roots.	- Relations	betwe	en r	oots	and			
UNI								15			

Transformation of Equations - Reciprocal Equations - Newton's Method of Divisors -Descartes' rule of signs – Horner's Method. UNIT III Trigonometry: Expansion of functions, sinnx, cosnx, tannx- Expansion of sinⁿx and cosⁿx

interms of sinx and cosx - Properties and their -related problems.

UNIT IV 15

Hyperbolic functions -Inverse hyperbolic functions- Logarithm of Complex Numbers.

UNIT V 15

Summations of trigonometric series- Properties and their related problems.

TOTAL
15 75
15 /5

Text Books

- 1. S. Narayanan & T. K. ManickavasagamPillai, "Algebra", Vol. 2, S. Viswanathan Pvt. Ltd., Chennai, 2004. Unit 1: Chapter 6, Secs 6.1-6.14 Unit 2: Chapter 6, Secs 6.15-6.30.
- 2. S. Narayanan & T. K. ManickavasagamPillai, "Trigonometry", S. Viswanathan Pvt. Ltd., Unit 4: Chapter 4, 5 Unit 5: Chapter 6. Chennai, 2001. Unit 3: Chapter 3

Reference

1. Arumugam & Issac, "Theory of Equations, Theory of Numbers and Trigonometry", New gamma Publishing house, Tirunelveli, 2011.

COs VS POs Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	1	1	1	1	1		1
CO2	3	2	1	1	1	1	1		1
CO3	3	2	1	1	1	1	1		1
CO4	3	2	1	1	1	1	1		1
CO5	3	2	1	1	1	1	1		1
Total	15	10	5	5	5	5	5	5	5
Scaled Value	3	2	1	1	1	1	1	1	1

 $^{1-5 \}rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURSE CODE COURSE NAME L I P C	Ī	COURSE CODE	COURSE NAME	L	T	P	С
---	---	-------------	-------------	---	---	---	---

$\mathbf{X}\mathbf{M}'$	Г 105		DIFFERENTIAL CALCULUS & IN	TEGRAL	4	4 1 0				
			CALCULUS							
C	P	A			L	T	P	Н		
5	0	0			4	1	0	5		
PRE	REQU	SITE:	Differentiation and Integration							
COU	JRSE O	UTCO	MES:							
Cou	rse outc	omes:		Domain	Level					
CO ₁	:Apply	the basi	cs of differentiation.	Cognitive	Remembering					
					Level Remembering Applying Understanding Applying Understanding Applying Remembering		Applying			
CO ₂	: Find	Evolute	es in Cartesian Coordinates.	Cognitive	Understanding					
					App	lying	.			
CO3	S:StateR	olle's t	heorem, Mean Value theorems,	Cognitive	Unc	lersta	nding			
	•		rem with Lagrange's and Cauchy's forms		App	lying	5			
	of rem	ainder,	Taylor's series and to find Maxima and							
	Minim	ıa.								
CO ₄	: Find	the defi	Cognitive	Ren	Remembering					
and 1	reduction	n formu	la.		Applying					
		_	tion by changing order of integrationusing	Cognitive			_			
doub	ole integ	rals.			Level Remembering Applying Understanding Applying Understanding Applying Remembering					

UNIT I		15			
Successive differ	nuity (ϵ and δ definition), Types of discontinuities, Differentiability entiation, Leibnitz's theorem, Partial differentiation, Euler's ogeneous functions.	ity of functions,			
UNIT II		15			
	rmals, Curvature, Asymptotes, Singular points, Tracing of curves esentation of curves and tracing of parametric curves, Polar coord				
UNIT III					
Cauchy's forms	Mean Value theorems, Taylor's theorem with Lagrange's and of remainder, Taylor's series (Statement only) Maclaurin's series Maxima and Minima, Indeterminate forms.	s of sin x, $\cos x$, e^x ,			
UNIT IV		15			
Definite integrals	s - Integration by parts & reduction formula				
UNIT V		15			
Double integrals	 changing the order of Integration – Triple Integrals. 				
LECTURE	LECTURE TUTORIAL TOTAL				
60	15	75			
TEXT BOOKS	3	***************************************			

- 1.S.Narayanan and T.K.Manicavachagom Pillai, "Calculus Volume I", S.Viswanathan (Printers&Publishers) Pvt Limited, Chennai -2011.
- **2.**S.Narayanan and T.K.Manicavachagom Pillai, "Calculus Volume II", S.Viswanathan (Printers & Publishers) Pvt Limited, Chennai -2011.

UNIT IV: Chapter 1 section 11, 12 & 13 UNIT V: Chapter 5 section 2.1, 2.2 & 4

REFERENCE

1.S.Arumugam and Isaac, "Calculus, Volume1", New Gamma Publishing House, 1991.

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1	1	1		1
CO 2	3	2	1	1	1	1	1		1
CO 3	3	2	1	1	1	1	1		1
CO 4	3	2	1	1	1	1	1		1
CO 5	3	2	1	1	1	1	1		1
	15	10	5	5	5	5	5		5
Scaled	3	2	1	1	1	1	1		1
Value									

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURSE CODE	XUM 106		L	T	P	SS	C	
COURSE	Human Ethics, Values, Rights and Gende	r Equality	3	0	0	0	0	
NAME								
PREREQUISITES	Not Required		L	T	P	SS	H	
C:P:A	3:0:0.0		3	0	0	0	3	
COURSE OUTCOM	MES	Domain	Le	vel				
CO1	Relate and Interpret the human ethics and human relationships	Cognitive	Reı	Remember, Understan				
CO2	Explain and Apply gender issues, equality and violence against women	Cognitive	Understand, Apply					
CO3	Classify and Develop the identify of women issues and challenges	Cognitive& Affective		•				
CO4	Classify and Dissect human rights and report on violations.	Cognitive	Analyze Receive Understand, Analyze				ze	
CO5	List and respond to family values, universal brotherhood, fight against corruption by common man and good governance.	Cognitive & Affective	Reı	Understand, Analyze Remember, Respond				

UNIT I HUMAN ETHICS AND VALUES

HUMAN ETHICS AND VALUES

Human Ethics and values - Understanding of oneself and others- motives and needs- Social service, Social Justice, Dignity and worth, Harmony in human relationship: Family and Society, Integrity and Competence, Caring and Sharing, Honesty and Courage, WHO's holistic development - Valuing Time, Co-operation, Commitment, Sympathy and Empathy, Self respect, Self-Confidence, character building and Personality.

UNIT IIGENDER EQUALITY

9

7

Gender Equality - Gender Vs Sex, Concepts, definition, Gender equity, equality, and empowerment. Status of Women in India Social, Economical, Education, Health, Employment, HDI, GDI, GEM. Contributions of Dr.B.R. Ambethkar, Thanthai Periyar and Phule to Women Empowerment.

UNIT IIIWOMEN ISSUES AND CHALLENGES

9

Women Issues and Challenges- Female Infanticide, Female feticide, Violence against women, Domestic violence, Sexual Harassment, Trafficking, Access to education, Marriage. Remedial Measures – Acts related to women: Political Right, Property Rights, and Rights to Education, Medical Termination of Pregnancy Act, and Dowry Prohibition Act.

UNIT IV HUMAN RIGHTS

9

Human Rights Movement in India – The preamble to the Constitution of India, Human Rights and Duties, Universal Declaration of Human Rights (UDHR), Civil, Political, Economical, Social and Cultural Rights, Rights against torture, Discrimination and forced Labour, Rights and protection of children and elderly. National Human Rights Commission and other statutory Commissions, Creation of Human Rights Literacy and Awareness. - Intellectual Property Rights (IPR). National Policy on occupational safety, occupational health and working environment.

UNIT V GOOD GOVERNANCE AND ADDRESSING SOCIAL 11 ISSUES

Good Governance - Democracy, People's Participation, Transparency in governance and audit, Corruption, Impact of corruption on society, whom to make corruption complaints, fight against corruption and related issues, Fairness in criminal justice administration, Government system of Redressal. Creation of People friendly environment and universal brotherhood.

LECTURE	SS	TOTAL
15	30	45

References

- 1. Aftab A, (Ed.), "Human Rights in India: Issues and Challenges", (New Delhi: Raj Publications, 2012).
- 2. Bajwa, G.S. and Bajwa, D.K. "Human Rights in India: Implementation and Violations" (New Delhi: D.K. Publications, 1996).
- 3. Chatrath, K. J. S., (ed.), "Education for Human Rights and Democracy" (Shimala: Indian Institute of Advanced Studies, 1998).
- 4. Jagadeesan. P., "Marriage and Social legislations in Tamil Nadu", Chennai: Elachiapen Publications, 1990).
- 5. Kaushal, Rachna, "Women and Human Rights in India" (New Delhi: Kaveri Books, 2000)
- 6. Mani. V. S., "Human Rights in India: An Overview" (New Delhi: Institute for the World Congress on Human Rights, 1998).
- 7. Singh, B. P. Sehgal, (ed) "Human Rights in India: Problems and Perspectives" (New Delhi: Deep and Deep, 1999).
- 8. Veeramani, K. (ed) Periyar on Women Right, (Chennai: Emerald Publishers, 1996)
- 9. Veeramani, K. (ed) Periyar Feminism, (Periyar Maniammai University, Vallam, Thanjavur: 2010).
- 10.Planning Commission report on Occupational Health and Safety http://planningcommission.nic.in/aboutus/committee/wrkgrp12/wg_occup_safety.p
- 11. Central Vigilance Commission (Gov. of India) website: http://cvc.nic.in/welcome.html.
- 12. Weblink of Transparency International: https://www.transparency.org/
- 13. Weblink Status report: https://www.hrw.org/world-report/2015/country-chapters/india

Mapping of COs with Pos

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1								2				
CO2								3	1			
CO3								2				
CO4								3		2		
CO5								3	2	2		2
Total		2						13	3	4		2
Scaled Value		1						3	1	1		1

COU	RSE CODE	XPG107		L	T	P	C		
COU	RSE NAME	FUNDAMENTAL PHYSICS LAB		0	0	4	2		
C:P:A		0.4:1:0.6		L	T	P	H		
PRER	EQUISITE: Ni	1		0	0	4	4		
COUR	SE OUTCOM	ES	Don	nain	I				
CO1:	Recall the us	age of laboratory instruments and measure	Cognit	ive	Und	erstar	nd		
	the Young's modulus of Non – uniform pending Psychomot								
CO2:									
	modulus of a wire Affective								
CO3:	_	and <i>measure</i> the thickness of a thin wire	Cognit		App				
	using Air wee	dge	Psycho	omotor	Mec	hanis	m		
Text B	Yext Books:								
	Psychomotor								
CO5	21								
			Affect	ive)	anizat			
List of	f Experiments				ŀ	Iours	,		
1	Non-uniform	Bending - Pin and Microscope Method				4			
2	Torsional pend	lulum - Determination of rigidity modulus of a v	vire			4			
3	Co-efficient of	viscosity of Liquid using graduated burette				4			
4	Spectrometer -	Refractive index of solid prism (A, D and μ)				4			
5	Post Office Box - Determination of Band gap of a semi-conductor								
6									
7		- Calibration of voltmeter				4			
8	LASER gratin micro-particle	g - Determination of wavelength of LASER and	size of tl	ne		4			

- 1. C. L. Arora, "BSc Practical Physics", S. Chand and Company Ltd, 2007.
- 2. D. Chattopadhyay and P. C. Rakshit, "An Advanced Course in Practical Physics", (New Central Book Agency), 2011.
- 3. S. Ghosh. A, "Text Book of Advanced Practical Physics", (New Central Book Agency) 7 Semester 1 Physics (Honours) Theory Paper, 2008.
- 4. Shukla R. K. and Anchal Srivastava, "Practical Physics", New Age International (P) Ltd, Publishers, 2006.

Reference books:

- 1. Squires G. L., Practical Physics, 4 th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., Fundamentals of Physics, 6th Edition, John Wiley and Sons, 2001.
- 3. Jenkins F.A. and White H.E., Fundamentals of Optics, 4th Edition, Mc Graw Hill Book Company, 2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

Mapping of COs with Pos

	PO	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1								2						
CO2								3	1					
CO3								2						
CO4								3		2				
CO5								3	2	2		2		
Total		2						13	3	4		2		
Scale		1						3	1	1		1		
d														
Value														

 $^{1-5 \}rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

0 – No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

COU	RSE C	ODE	XGL201	L T P SS				Н	C
COU	RSE N	AME	ENGLILSH FOR EFFECTIVE COMMUNICATION	2	0	0	0	2	2
C:P:A	A - 2:0:	0			•			•	
COUF	RSE OU	JTCOMES	:	Dor	nain		Le	evel	
CO1	Explo	ain the pro	cess of listening and its characteristics	Cogi	nitive	e U	Inders	stand	ing
CO2	Pract	Practicing the types of speeches Cognitive A							
CO3	Recog	gnize the b	pasic expressions and using it effectively	Cogi	nitiv	Inders	stand	ing	
CO4	Consi	struct the means of writing contents to media Cognitive Cro							
CO5 <i>Employing</i> varioustechniques in preparing communication letters Cognitive A							Aŗ	Apply	
SYLLABUS							HOURS		
UNIT	I]	LISTENI	NG SKILLS						
		tening, Bar Casual Cor	riers to Listening, Listening to Announcements – New eversations	s on F	Radio	and		9	
UNIT	II '	TYPES O	F SPEECH						
Manu			a, Rememorized and Extemporaneous speeches					9	
UNIT			N EXPRESSIONS						
	ng and I g Instruc		n – Making Requests – Asking and Giving Permission	– Off	ering	Help) –	9	
UNIT	IV	COMMUN	NICATION AND MEDIA						
English for News Paper, Radio, TV, Film, Writing Stories, Drama								9	
UNIT		CAREER	12						
Curric makin		Vitae and	Covering letters – facing an interview – Note	takin	g an	d N	ote	9	
				Γ	otal	Hou	ırs	45	;
Teyth	ooks								

Textbooks

Kiranmai Dutt,"A Course in Communication Skills", Foundation Books, Chennai. 2013 John Sealy,"Writing and Speaking", Oxford University Press, New Delhi, Third Edition 2009. Sanjay Kumar, Pushp Lata, "Communication Skills", Oxford University Press, New Delhi

Table 1: Mapping of Cos with POs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO2	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO3	1	0	0	0	0	0	1	0	1	0	0	0	0	0
CO4	2	0	0	0	0	0	1	0	1	0	0	0	0	0
CO5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	7	0	0	0	0	0	6	0	4	0	0	0	0	0
Scaled Value	2	0	0	0	0	0	2	0	1	0	0	0	0	0
	1	0	0	0	0	0	1	0	1	0	0	0	0	0

1-5=1, 6-10=2, 11-15=3

0-No Relation, 1- Low Relation, 2 – Medium Relation, 3- High Relation

Table 2: Mapping of COs with GAs:

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO1	0	0	0	0	0	0	0	1	1	2	0	0
CO2	0	0	0	0	0	0	0	0	0	2	0	0
CO3	0	0	0	0	0	0	0	0	0	1	0	0
CO4	0	0	0	0	0	0	0	0	0	0	1	0
CO5	0	0	0	0	0	0	0	1	1	1	1	0
Total	0	0	0	0	0	0	0	2	2	6	2	0
Scale	0	0	0	0	0	0	0	1	1	2	1	0

1-5=1, 6-10=2, 11-15=3

0-No Relation, 1- Low Relation, 2 - Medium Relation, 3- High Relation

COU	RSE CODE	XES202	L	T	SS	P	C		
COUI	RSE NAME	ENVIRONMENTAL STUDIES	2	0	1	0	2		
C:P:A		1.4: 0.3: 0.3	L	T	SS	P	H		
			2	0	1	0	3		
COURSE OUTCOMES DOMAIN LE									
CO1	CO1 Describe the significance of natural resources and explain Cognitive F								
	anthropogenic impacts.								
CO2 <i>Illustrate</i> the significance of ecosystem, biodiversity and natural Cognitive Under									
	geo bio chem	nical cycles for maintaining ecological balance.							
CO3	<i>Identify</i> the	facts, consequences, preventive measures of major	or C	ognitiv	/e	Remei	nber		
	pollutions ar	nd recognize the disaster phenomenon	A	ffectiv	e	Receiv	/e		
CO4	Explain the	socio-economic, policy dynamics and practice th	ne Co	ognitiv	/e	Under	stand		
control measures of global issues for sustainable development. Apply									
CO5 Recognize the impact of population and the concept of various Cognitive Unders							stand		
welfare programs, and <i>apply</i> the 0modern technology towards Analysis									
	environment	al protection.							
UNIT	- IINTRODU	ICTION TO ENVIRONMENTAL STUDIES AN	ND E	NERG	\mathbf{Y}		12		

Definition, scope and importance – Need for public awareness – Forest resources: Use and over-exploitation, deforestation, case studies – Water resources: Use and over-utilization of surface and ground water, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: renewable and non-renewable energy sources – Land resources: Land as a resource, land degradation, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

UNIT - II ECOSYSTEMS AND BIODIVERSITY

| /

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystem – Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT – III ENVIRONMENTAL POLLUTION

10

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: flood, earthquake, cyclone and landslide.

UNIT -IV SOCIAL ISSUES AND THE ENVIRONMENT

10

Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wasteland reclamation – Consumerism and waste products – Environment Protection Act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT -V HUMAN POPULATION AND THE ENVIRONMENT

6

Population growth, variation among nations – Population explosion– Environment and human health – HIV / AIDS– Role of Information Technology in Environment and human health. Population growth, variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education - HIV / AIDS – Women and Child welfare programme– Role of Information Technology in Environment and human health – Case studies.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOT AL
HOURS	30	0	0	15	45

TEXT BOOKS

1. Miller T.G. Jr., "Environmental Science", Wadsworth Publishing Co, USA, 2000.

Townsend C., Harper J and Michael Begon, "Essentials of Ecology", Blackwell Science, UK, 2003 Trivedi R.K and P.K.Goel, "Introduction to Air pollution", Techno Science Publications, India, 2003.

Disaster mitigation, Preparedness, Recovery and Response, SBS Publishers & Distributors Pvt. Ltd, New Delhi, 2006.

Butterworth Heinemann, "Introduction to International disaster management", 2006.

Gilbert M.Masters, "Introduction to Environmental Engineering and Science", Pearson Education Pvt., Ltd., Second Edition, New Delhi, 2004.

REFERENCE BOOKS

Trivedi R.K., "Handbook of Environmental Laws, Rules", Guidelines, Compliances and Standards, Vol. I and II, Enviro Media, India, 2009.

Cunningham, W.P.Cooper, T.H.Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.

S.K.Dhameja, "Environmental Engineering and Management", S.K.Kataria and Sons, New Delhi, 2012.

Sahni, "Disaster Risk Reduction in South Asia", PHI Learning, New Delhi, 2003.

Sundar, "Disaster Management", Sarup & Sons, New Delhi, 2007.

G.K.Ghosh, "Disaster Management", A.P.H.Publishers, New Delhi, 2006.

E RESOURCES

http://www.e-booksdirectory.com/details.php?ebook=10526

https://www.free-ebooks.net/ebook/Introduction-to-Environmental-Science

https://www.free-ebooks.net/ebook/What-is-Biodiversity

https://www.learner.org/courses/envsci/unit/unit_vis.php?unit=4

http://bookboon.com/en/pollution-prevention-and-control-ebook

http://www.e-booksdirectory.com/details.php?ebook=8557

http://www.e-booksdirectory.com/details.php?ebook=6804

http://bookboon.com/en/atmospheric-pollution-ebook

http://www.e-booksdirectory.com/details.php?ebook=3749

http://www.e-booksdirectory.com/details.php?ebook=2604

http://www.e-booksdirectory.com/details.php?ebook=2116

http://www.e-booksdirectory.com/details.php?ebook=1026

http://www.faadooengineers.com/threads/7894-Environmental-Science

Table 1: Mapping of CO's with PO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1							2	3	3
CO2							1	2	2
CO3							2	3	3
CO4							3	3	3
CO5							2	2	3
Total							10	13	14
Scaled							2	3	3
Value							2		3

1-5=1, 6-10=2, 11-15=3

0-No Relation, 1- Low Relation, 2 - Medium Relation, 3- High Relation

	RSE CODE	XPG203			L	T	P	C		
COUL	RSE NAME	MODERN	PHYSICS		3	1	0	4		
	C :P:A	2.8:0.4:0.8			L	Т	P	Н		
PRER	EQUISITE:	Basic Phys	sics at School level		3	1	0	4		
COURS	E OUTCOM	ES			•					
On the s		pletion of the	e course, students	DO	OMAIN	I	L	EVEL		
CO1 Define, explain and demonstrate and Relate knowledge of the basics of digital computer.					Cognitive: Rememb Understa Psychomotor: Mechani					
CO2	_	mediate and i	of INTEL 8085; implicit addressing	Co	Cognitive: Analy Apply					
CO3	Understand language pro	Fundament ogramming	als of assembly		gnitive:		Unde Rece	rstand ive		
CO4	···· 		'C', <i>explain</i> I/O	Co	Reme	ember				
CO5	Understand describe Bautomatic Static Varial	Cognitive: Affective:			Understand Receive					

UNIT - I 7+3

Planck's quantum, Planck's constant and light as a collection of photons; Photoelectric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer

experiment. Problems with Rutherford model- instability of atoms and observation of discrete atomic spectra; Bohr's quantization rule and atomic stability.

UNIT –II 8 + 3

Position measurement- gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle- impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle.

UNIT – III 10 + 3

One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; Quantum dot as an example; Quantum mechanical scattering and tunneling in one dimension - across a step potential and across a rectangular potential barrier.

UNIT –IV 10 + 3

Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, semi-empirical mass formula and binding energy

UNIT –V 10 + 3

Radioactivity: stability of nucleus; Law of radioactive decay; Mean life and half-life; -ray γ decay - energy released, spectrum and Pauli's prediction of neutrino; β decay; α emission.

TEXT BOOKS

1. J.R.Taylor, C.D.Zafiratos, M.A.Dubson,"Concepts of Modern Physics", Arthur Beiser, 2009, McGraw-Hill Modern

Physics, 2009, PHI Learning

REFERENCE BOOKS

- 1. Thomas A. Moore, Six," Ideas that Shaped Physics: Particle Behave like Waves", 2003,
- 2. E.H. Wichman, "Quantum Physics, Berkeley Physics", Vol. 4. 2008, Tata McGraw-Hill Co.
- 3. R.A. Serway, C.J. Moses, and C.A.Moyer,"Modern Physics", 2005, Cengage Learning

E RESOURCES

NPTEL, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
Hours	45	15	-	60

Mapping of CO's with PO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1							2	3	3
CO2							1	2	2
CO3							2	3	3
CO4							3	3	3
CO5							2	2	3
Total							10	13	14
Scaled Value							2	3	3

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

Differential Equations & Laplace

COURSE NAME

COURSE CODE

XMT204

1.		-0.	- Capace	1 0 5					
	·	7	Transforms						
C	P	A		L	Т	P	H		
5	0	0		4	1	0	5		
PR	ERE	QUISITE	Differential Calculus and Integral Calculus						
CO	URS	SE OUTC	OMES:						
		outcomes:		Doma	in	Lev	el		
CO)1: S	Solve simple	e problems related to first order, higher degree	Cogni	tive	App	lying		
	d	ifferential	equations solvable for x, solvable for y, solvable						
	fe	or dy/dx, C	lairauts form – Conditions of integrability of						
	1	M dx + N dx	y = 0.						
CO)2: S	Solve secon	d order linear differential equations with	Cogni	tive	App	lying		
	(constant co	efficients, variable coefficients, and solving the						
equ	atior	using met	hod of Variation of Parameters.						
CO	3: Fc	rmation of	Partial Differential Equation, Solve PDE of	Cogni	tive	App	lying		
	tl	ne standard	forms using Lagrange's method, Charpit's						
met			standard forms.						
CO)4: S	olve PDE	of second order homogeneous equation with	Cogni	tive	App	lying		
	c	onstant coe	efficients, particular integrals of the forms e ^{ax+by} ,						
sin(+by), $x^r y^s$ and e^{ax+by} . $f(x,y)$.						
			ce Transforms and inverse Laplace transform of	Cogni	tive	Ren	nembering		
		_	ng standard formulae, Basic theorems & simple			App	lying		
			Use of Laplace Transforms in solving ODE						
wit		istant coef							
				.1		<u> </u>			
UN	IT I						15		
Firs	st or	der, higher	degree differential equations solvable for x, s	solvable	for	y, so	lvable for		
dy/	dx, C	Clairauts fo	rm – Conditions of integrability of M dx + N dy =	$= 0 - \sin \theta$	nple	probl	ems.		
UN	IT I	[15		
Par	ticul	ar integrals	of second order differential equations with co	nstant o	coeff	icient	s - Linear		
equ	atior	s with vari	able coefficients – Method of Variation of Param	eters (S	Secor	nd Or	der only)		
	IT 1			`			15		
For	mati	on of Partia	al Differential Equation – General, Particular & C	Complete	e inte	grals			
Sol	ution	of PDE o	f the standard forms - Lagrange's method - Solvi	ing of C	harp	it's m	nethod and		
		andard form		_	•				
	IT I						15		
			er homogeneous equation with Constant coeffici-	ents – P	artic	ular i			
			$n(ax+by)$, $Cos(ax+by)$, $x^r y^s$ and e^{ax+by} . $f(x,y)$.						
	IT V						15		
Lap	olace	Transforn	ns – Standard formulae – Basic theorems & sin	mple ap	plica	tions	- Inverse		
. 1	_								

Laplace Transforms – Use of Laplace Transforms in solving ODE with constant

LECTURE TUTORIAL

L

4

T

1

P

0

 \mathbf{C}

5

coefficients.

TOTAL

 60	15	75

TEXT BOOKS

- 1. T.K.Manicavachagom Pillay & S.Narayanan, "Differential Equations", S.Viswanathan Publishers Pvt. Ltd., 1996.
- **2**. Arumugam & Isaac, "Differential Equations", New Gamma Publishing House, Palayamkottai, 2003.

Unit: 1 Chapter IV – Sections 1,2 & 3, Chapter II – Section 6 [1]

Unit: 2 Chapter V – Sections 1,2,3,4 & 5, Chapter VIII – Section 4 [1]

Unit: 3 Chapter XII – Sections 1 – 6 [1]

Unit: 4 Chapter V [2]

Unit: 5 Chapter IX – Sections 1 – 8 [1]

REFERENCES

- 1. M.D.Raisinghania, "Ordinary and Partial Differential Equations", S.Chand & Co, 2016.
- 2. M.K. Venkatraman, "Engineering Mathematics", S.V. Publications, Revised Edition. 1985.

Table 1: COs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scale	3	2		1	1		1	1	1
Value									

 $1 - 5 \rightarrow 1$, $6 - 10 \rightarrow 2$, $11 - 15 \rightarrow 3$

0 – No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

COU	RSE CO	DE	COURSE NAME		L	Т	P	С	
XMT	Γ205		SEQUENCES AND SERIES	S	4	1	0	5	
С	P	A			L	Т	P	Н	
4	0.5	0.5			4	1	0	5	
PRE	REQUIS	TE: Nil			. 	k		.	
COU	RSE OU	TCOMES	S:						
Cour	se outcor	Domain	Level						
CO1	:Explain	Bound	ed Sequences, Monotonic	Cognitive	Un	Understanding			
-	ences, Cor illating se	U	Sequence , Divergent Sequences						
CO2: Explain Behavior of Monotonic functions.				Cognitive Psychomotor	Understanding Guided Response				
	:Explains	Cognitive	Understanding						

CO4: Apply comparison test to infinite series to test the convergence and to Explain Cauchy's general principal of convergence.	Cognitive	Understanding Applying
CO5: Apply D Alembert's ratio test, Cauchy's root test	Cognitive	Applying
to test convergence and to test the Alternating Series and Absolute Convergence of the series	Affective	Receiving

UNIT I Sequ	iences	15
Bounded Seque	ences – Monotonic Sequences – Convergent Sequence – D	ivergent Sequences
 Oscillating se 	quences	
UNIT IIAlgeb	ra of Limits	15
Behavior of Mo	onotonic functions.	
UNIT IIISom	e theorems on limits	15
subsequences –	limit points : Cauchy sequences	
UNIT IV Serie	es	15
infinite series –	Cauchy's general principal of convergence – Comp	arison – test
theorem and tes	et of convergence using comparison test (comparison test	statement only, no
proof).		
UNIT VTest of	f convergence using D Alembert's ratio test	15
Cauchy's root t	est – Alternating Series – Absolute Convergence (Stateme	nt only for all tests).
LECTURE	TUTORIAL	TOTAL
60	15	75
TEXT BOOKS		
•	gam & Mr.A.Thangapandi Isaac, "Sequences and Series",	New Gamma
C	ouse – 2002 Edition.	
-	3 : Sec. 3.0 – 3.5 Page No : 39-55	
Unit II: Chapte	er 3 : Sec. 3.6, 3.7 Page No:56 – 82	
Unit III: Chapt	er 3 : Sec. 3.8-3.11, Page No:82-102	
Unit IV: Chapt	er 4 : Sec. (4.1 & 4.2) Page No : 112-128.	
Unit V : Releva	nt part of Chapter 4 and Chapter 5: Sec. 5.1 & 5.2Page No.	o:157-167.
REFERENCE	S:	
1. Prof. S.Surya	Narayan Iyer, "Algebra", Margham publications, Chennai, 2002.	•
2 Duof MII	Francis Raj, "Algebra", Margham publications, Chennai, 2004.	

Table 1: COs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scale	3	2		1	1		1	1	1
Value		- 10							

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

COUF	RSE CODE	XPG206		L	T	P	C	
COUF	RSE NAME	MODERN PHYSICS LAB		0	1	2	2	
C:P:A		0.4:1:0.6		L	T	P	Н	
PRERI	EQUISITE: Ni	I		0	1	2	2	
COUR	SE OUTCOM	ES	Don	nain	I	Level		
CO1	Recall the us	age of laboratory instruments and measure	Cognit	ive	Understand			
	the Young's	modulus of uniform pending	Psycho	omotor	Mechanism			
CO2	Explain and	demonstrate the behavior of thermal	Psycho	omotor	Set			
	conductivity	of bad conductor	Affect	ve Valuing				
CO3	Manipulate	and <i>measure</i> the normal incidence of	Cognit	ive	Apply			
	grating		Psychomotor			hanis	m	
CO4	CO4 Compare and explain the Calibration of ammeter				Organization			
CO5	Describe the 1	resistance and specific resistance of a wire	Psycho	omotor	Perc	eptio	n	
			Affect	ive	Orga	anizat	ion	
List of	Experiments				Hours			
1	Uniform Ben	ding - Pin and Microscope Method.				3		
2	Lee's Disc - T	nermal Conductivity of Bad Conductor.				3		
3	Spectrometer	- Grating- Normal incidence method.				3		
4	Spectrometer -					3		
5		NOT logic gates - verification of truth table.			3			
6		r - Calibration of ammeter.			3			
7		r Diode - Forward and Reverse bias characteristic			3			
8	Metre Bridge	Determination of resistance and specific resistance	nce of a	wire.		3		
	Metre Bridge	Determination of resistance and specific resistance	nce of a	wire.		3		

TEXTBOOKS:

- 1. C. L. Arora, "BSc Practical Physics", B.Sc Practical Physics, S. Chand and Company Ltd, 2007.
- 2. D. Chattopadhyay and P. C. Rakshit, "An Advanced Course in Practical Physics", New Central Book Agency, 2011.
- 3. S. Ghosh, "A Text Book of Advanced Practical Physics", New Central Book Agency, 7 Semester 1 Physics (Honours) Theory Paper.
- 4. Shukla R. K. and Anchal Srivastava, "Practical Physics", New Age International (P) Ltd, Publishers, 2006.

REFERENCE BOOKS:

- 1. Squires G. L., "Practical Physics", 4th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., "Fundamentals of Physics", 6th Edition, John Wiley and Sons, 2001.
- 3. Jenkins F.A. and White H.E., "Fundamentals of Optics", 4th Edition, Mc Graw Hill Book Company, 2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

COURSE C	CODE	COURSE NAME	L	T		P	C	
XMT301		LOGIC AND SETS	2	0		0	2	
C P	A							
2 0	0		L	T	P	SS	Н	
1			2	0	0	2	4	
PREREQUIS	ITE: Fou	ndation course in Mathematics			•			
COURSE O	UTCOM	IES:						
Course outc	omes:		Doma	in	Leve			
CO1:Define a	nd Expla	in	Cogni	tive		mberi		
		s, Connectives, Statements formula and truth tables-			Unde	rstand	ing	
		tional, Well formed formulae- Equivalence of						
formulae and								
CO2: Define	_		Cogni	tive		mberi	_	
<u> </u>		a statement calculus, rules of inference, related			Unde	rstand	ing	
•		ethod of proof.						
CO3:Define a	-		Cogni	tive		mberi	_	
		he statement functions, variables and quantifiers			Unde	rstand	ing	
•		and bounded variables and the universe of discourse.						
CO4:Define a	_		Cogni	tive		mberi	_	
	_	duct – permutation – combination of binomial			Unde	rstand	ing	
theorem – Mu								
CO5: Define	_		Cogni	tive		mberi	_	
		The pigeon hole principle and The principle of			Unde	rstand	ing	
	exclusive	Derangements.				1		
UNIT I						6		
		as- Connectives- Statements formula and truth tables-Co	onditiona	ıl and	biconc	litional	_	
	ormulae-	Equivalence of formulae- Normal forms.				1 -		
UNIT II	-					6		
-	rence for	a statement calculus – rules of inference – related proble	ems – In	direct	metho	d		
of proof.								
UNIT III	1 771			1	C	6		
		e statement functions – variables and quantifiers – predi	icate for	mulae	– free	and		
	bies – the	universe of discourse.						
UNIT IV	m and maa	duct – permutation – combination of binomial theorem	Modele	· omio	l thoon	6		
The rule of su	in and pro	duct – permutation – combination of omormal theorem	– Multii	Юппа	theore	2111.		
UNIT V						6		
Mathematical	Induction	- The pigeon hole principle - The principle of inclusive	e and ex	clusiv	e Dera	ngeme	nts.	
LECTUR					1 700 4	DTAL		

TEXTBOOK

30

1 R.P. Grimaldi, "Discrete Mathematics and Combinatorial Mathematics", Pearson Education, 1998.

30

REFERENCES

- 1. P.R. Halmos, Naive "Set Theory", Springer, 1974.
- 2. E. Kamke, "Theory of Sets", Dover Publishers, 1950.
- 3. G. Ramesh and Dr.C. Ganesamoorthy, "Discrete Mathematics", Research gate, Feb, 2018.

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1	1	1		1
CO 2	3	2	1	1	1	1	1		1
CO 3	3	2	1	1	1	1	1		1
CO 4	3	2	1	1	1	1	1		1
CO 5	3	2	1	1	1	1	1		1
Total	15	10	5	5	5	5	5		5
Scaled	3	2	1	1	1	1	1		1
Value									

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 – No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

COURSE CODE	COURSE NAME		L	Т	P	C	
XMT302	PROGRAMMING IN C		3	1	0	4	
C P A							
3 0.5 0.5			L	T	P	H	
			3	1	0	4	
PREREQUISITE:	Nil						
Course Outcomes:		Domain		Leve	1		
CO1: Explain Cons	stants, Variables, Data types, Operator and	Cognitive		Unde	rstan	ding	
Expressions.							
	and Output operations, Decision	Cognitive		Unde		ding	
Making and B	ranching, Decision making and Looping.	Psychomotor		Guid			
I I							
CO3: Explain Char	Cognitive		Unde	rstan	ding		
Functions.							
_	Apply Structures and unions, Pointers and	Cognitive	Understanding				
File managen				Applying			
	ic memory allocation, Linked lists,	Cognitive		Applying			
	s and Programming Guide lines.	Affective		Receiving			
UNIT I		······································			12		
	onstants, Variables, Data types – Operator and Ex	xpressions.			T		
UNIT II					12		
Managing Input and C	Output operations – Decision Making and Branch	ing – Decision n	naki	ng and	d Loo	ping.	
UNIT III					12		
Arrays – Character Ar	rays and Strings – User defined Functions.						
UNIT IV					12		
Structures and unions	– Pointers – File management in C.						
UNIT V					12		
	ocation – Linked lists- Preprocessors – Programm	ning Guide lines.					
LECTURE T		TOTAL			L		
45 15				60)		
TEXT BOOK							
Balagurusamy E.,"P	rogramming in ANSI C", Sixth Edition, McG	Graw-Hill, 2012	2.				

REFERENCE

Bichkar, R.S., "Programming with C", University Press, 2012.

COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled	3	2		1	1		1	1	1
Value									

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

COU	RSE CO	DE	COURSE NAME		L	Т	P	С
XMT	303		REAL ANALYSIS		4	1	0	5
С	P	A			L	T	P	Н
5	0	0			4	1	0	5
PREF	REQUIS	ITE:	Nil					
Cours	se Outco	mes:						
				Domain	Le	vel		
The Absol		ioms, e, Com straigh	Field properties, Order in R, pleteness, Representation of Real at line, Intervals, Countable and	Cognitive	Un	dersta	andin	g
Open	Define a sets, C re of a se	losed	xplain sets, Limit points of a set and	Cognitive	Remembering Understanding			_
Limits Algeb		uous fi ontinuo	unctions, Types of discontinuities, us functions and Boundedness of	Cognitive	Remembering Understanding			
CO4: Deriva	Define a ability a	and Example and contact the contact and co		Cognitive	Remembering Understanding			_
CO5: condit functi functi	State and tions for ons, coons, Me	nd Exp r integ ntinuity ean va	rability, properties of integrable y and derivability of integral alue theorems, the fundamental and the first mean value theorem.	Cognitive	Remembering Understanding			
UNIT	I Rea	al num	bers:		15			
			I properties-Order in R- Absolute valuight line – Intervals – Countable and U	-	s – Repre	senta	tion o	f

UNIT II Neighbourhoods and limit points:

Open sets – Closed sets –Limit points of a set – Closure of a set.

UNIT III Limits and Continuity:

15

15

Limits – Continuous functions – Types of discontinuities- Algebra of Continuous functions – Boundedness of continuous functions.

UNIT IV Derivatives:

15

Introduction – Derivability and continuity- Algebra of derivatives – Inverse function theorem for derivatives – Darboux's theorem.

UNIT V 15

Riemann Integration- Definition – Daurboux's theorem – conditions for integrability – properties of integrable functions – continuity and derivability of integral functions – Mean value theorems – the fundamental theorem of Calculus and the first mean value theorem.

LECTURE	TUTORIAL	TOTAL
60	15	7 5

TEXT BOOKS

- 1. 1. M.K.Singhal and Asha Rani Singhal, "A first course in Real Analysis"., R. Chand & Co., June, 1997 (Units I to IV).
- 2. Shanthi Narayan, "A Course of Mathematical Analysis", S.Chand & Co. 1995 (Unit-V).

Unit-I Chapter 1, Sec. 1.1 - 1.10

Unit-II Chapter 2 Sec 2.1 - 2.6

Unit-III Chapter 5 Sec 5.1 - 5.5

Unit – IV Chapter 6 Sec 6.1 - 6.5

Unit – V Chapter 6 Sec 6.2, 6.3 & 6.5 6.7 6.8, 6.9 of [2]

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled	3	2		1	1		1	1	1
Value									

 $1-5 \rightarrow 1$, 6-10 \rightarrow 2, 11 - 15 \rightarrow 3

COUR	SE CO	DE	COURSE NAME	L	T	P	C
XMT3	04		ANALYTICAL GEOMETRY 3D	4	1	0	5
							•
C	P	A		L	T	P	H
5	0	0		4	1	0	5

PREREQUISITE: Nil

COURSE OUTCOMES:

Course outcomes:	Domain	Level
CO1:Find coordinates in space, direction cosines of a line, angle	Cognitive	Remembering
between line and to explain angle between planes and		Understanding
distance of a plane from a point.		
CO2: Find line of intersection of planes, coplanar lines, skew lines,	Cognitive	Remembering
Shortest distance between skew lines.	_	_
CO3:Explain section of sphere by plane-tangent planes, condition	Cognitive	Understanding
of tangency and system of spheres generated by two spheres.		
CO4: Explain and to find the equation of surface, cone,	Cognitive	Remembering
intersection of straight line and quadric cone, tangent plane	_	Understanding
and normal.		
CO5: Explain the condition for plane to touch the quadric cone,	Cognitive	Understanding
condition that the cone has three mutually perpendicular	_	
generators and condition for the plane to touch the conicoid.		

UNIT I

Coordinates in space-Direction consines of a line in space-angle between lines in space – equation of a plane

Coordinates in space-Direction consines of a line in space-angle between lines in space – equation of a plane in normal form. Angle between planes – Distance of a plane from a point.

UNIT II 15

Straight lines in space – line of intersection of planes – plane containing a line. Coplanar lines – skew lines and shortest distance between skew lines- length of the perpendicular from point to line.

UNIT III

General equation of a sphere-Section of sphere by plane-tangent planes —condition of tangency-system of spheres generated by two spheres - System of spheres generated by a sphere and plane.

UNIT IV

The equation of surface – cone – intersection of straight line and quadric cone – tangent plane and normal

UNIT V 15

Condition for plane to touch the quadric cone - angle between the lines in which the plane cuts the cone. Condition that the cone has three mutually perpendicular generators- Central quadrics – intersection of a line and quadric – tangents and tangent planes – condition for the plane to touch the conicoid.

LECTURE	TUTORIAL	TOTAL
60	15	75

TEXT BOOK

- 1. Shanthi Narayanan and Mittal P.K,"Analytical Solid Geometry" 16th Edition S.Chand & Co., New Delhi,2005.
- 2. Narayanan and Manickavasagam Pillay, T.K.," Treatment as Analytical Geometry" S.Viswanathan (Printers & Publishers) Pvt. Ltd.,2008
 - Unit I : Chapter I, Sec 1.5 to 1.9, Chapter II Sec 2.1 to 2.3, Pages : 10-31

Chapter II Sec 2.4 to 2.8 pages: 32-47 of [1] Unit II: Chapter III section 3.1-3.7, pages 55-89 of [1]

Unit III: Chapter VI Sec. 6.1 to 6.6 pages: 121-143 of [1] Unit IV: Chapter V Sec.43 to 47 pages: 103-113 of [2] Unit V: Chapter V Sec.49 to 53, Pages:115-125 of [2]

REFERENCE

1. P.Duraipandian & others, "Analytical Geometry 3 Dimensional", Edition, 1998.

COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled	3	2		1	1		1	1	1
Value									

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

CO	URS	E COD	COURSE NAME		L	Т	P	С	
	XMT	305	PROGRAMMING IN C (PRACTIC	AL)	0	0	2	2	
C	P	A							
2	0	0			L	Т	P	Н	
					0	0	2	4	
PR	ERE	QUISI7	E: Nil						
Co	urse (Outcom	s:	Domain		Leve	el		
CO	CO1: Apply Constants, Variables, Data types, Operator and Expressions to write simple programmes Cognitive						Understand		
CO	_		t and Output operations, Decision mple programmes	Cognitive Psychomoto	r	Understandin Guided Response			
CO			racter Arrays and Strings and User defined to write simple programmes	Cognitive		Understandir			
CO	_		ctures and unions, Pointers and gement in C to write simple programmes	Cognitive		Unde Appl		nding	
CO	CO5:Apply Dynamic memory allocation, Linked lists, Preprocessors and Programming Guide lines to write simple programmes Affective						Applying Receiving		
			List of Programmes					······	

- 1. Write a Program to convert temperature from degree Centigrade to Fahrenheit.
- 2. Write a Program to find whether given number is Even or Odd.
- 3. Write a Program to find greatest of three numbers.
- 4. Sorting given list of names in alphabetical order
- 5. Sorting given list of numbers in ascending order
- 6. Write a Program to using switch statement to display Monday to Sunday.
- 7. Write a Program to display first Ten Natural Numbers and their sum.

- 8. Write a Program to find Sum and Multiplication of Two Matrices.
- 9. Write a Program to find the maximum number in Array using pointer.
- 10. Write a Program to reverse a number using pointer.
- 11. Write a Program to solve Quadratic Equation using functions.
- 12. Write a Program to find factorial of a number using Recursion.
- 13. Write a program to calculate Mean, Variance and SD of N numbers
- 14. Write a Program to create a file containing Student Details.

Course Na	me	DISASTER MANAGEMENT						
Course Co	de XUM306							
Prerequis	te NIL		T -P -C					
			3- 0-0- 0					
C: P:			L -T - P- H					
2.64:0.24			3 - 0 - 0 - 3					
:0.12								
Course O	tcome		Domain C or P or A					
CO1	Understanding the concepts preparedness	of application of types of disaster	C(Application)					
CO2	Inferthe end conditions&Discu	ss the failures due to disaster.	C(Analyze)					
CO4 Understanding of importance of seismic waves occurring		of seismic waves occurring globally	C(Analyze)					
CO4	Estimate Disaster and mitigation	on problems.	C(Application)					
CO5	Keen knowledge on essentials	C(Application)						
	CONTENT							
UNIT I	INTRODUCTION	aredness – Goals and objectives of ISDR	9 hrs					
	disaster management–Alterr linkages - Principle of risk pa	•	er – development					
UNIT II	APPLICATION OF TECH	NOLOGY IN DISASTER RISK REDU	JCTION 9 hrs					
	systems – Decision support s – Intranets and extranets –	ologies: Data bases – RDBMS – Manag system and other systems – Geographic in video teleconferencing. Trigger mec- tion of remote sensing and GIS - Case stu	nformation systems hanism – Remote					
UNIT III	AWARENESS OF RISK R	EDUCTION	9 hrs					
		ution of trigger mechanism – risk reduct – risk reduction by public awareness	ion by education –					
UNIT IV	DEVELOPMENT PLANN	ING ON DISASTER	9 hrs					
	Implication of development	planning – Financial arrangements – Are	as of improvement					
	- Disaster preparedness - Community based disaster management							
	– Emergency response.							
UNIT V	SEISMICITY		9 hrs					
	Seismic waves – Earthquakes and faults – measures of an earthquake, magnitude and							
	intensity – ground damage – Tsunamis and earthquakes							
-		L - 45 hrs To	otal-45 hrs					
TEXT BO	OKS							

- Siddhartha Gautam and K Leelakrisha Rao, "Disaster Management Programmes and Policies", Vista International Pub House, 2012
- 2 Arun Kumar, "Global Disaster Management", SBS Publishers, 2008

REFERENCES

- 1. Encyclopaedia Of Disaster Management, Neha Publishers & Distributors, 2008
- 2. Pardeep Sahni, Madhavi malalgoda and ariyabandu, "Disaster risk reduction in south asia", PHI, 2002

- 3. Amita sinvhal, "Understanding earthquake disasters" TMH, 2010.
- **4.** Pardeep Sahni, Alka Dhameja and Uma medury, "Disaster mitigation: Experiences and reflections", PHI, 2000

Table 1: Mapping of COs with Pos

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1					5	2							
CO2	2					1	2					1		
CO3	1					2	2	1				2		
CO4	1					2	2	1				1		
CO5						5	2	3				1		
Total	5					15	10	5				5		
Scaled	1					3	2	1				1		
Value														

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

COI	URSE C	ODE	COURSE NAME	L	Т		P	С
XM	T401		THEORY OF EQUATIONS	2	0		0	2
C	P	A						
2	0	0		L	Т	P	SS	Н
		k		2	0	0	2	4
PRE	REQUI	SITE: Fo	undation Course in Mathematics					
COI	URSE C	UTCON	MES:					
Cou	rse outo	comes:		Doma	in	Leve	el	
CO ₁	: Explai	n Graphic	al representation of a polynomials, maximum and	Cogni	tive	Rem	embe	ring
mini	mum val	ues of a p	olynomials.			App	lying	
CO ₂	2: Apply	General j	properties of equations, Descartes's rule of signs	Cogni	tive	Rem	embe	ring
posit	ive and r	negative ru	ale to find the Relation between the roots and the			App	lying	
coeff	ficients o	f equation	ns.					
CO ₃	3: Define	and Expl	ain Sets, subsets, Set operations, the laws of set theory	Cogni	tive	Rem	embe	ring
and '	Venn dia	grams. Ex	amples of finite and infinite sets.			App	lying	
CO4	: Define	and Exp	olain with Examples	Cogni	tive	Und	erstan	ding
Finit	e sets an	d counting	g principle. Empty set, properties of empty set.			App	lying	
Stan	dard set o	perations	. Classes of sets. Power set of a set.					
CO5	: Solve	reciprocal	and binomial equations, and to find algebraic	Cogni	tive	Und	erstan	ding
solut	ions of the	ne cubic a	nd biquadratic with Properties of the derived functions.					
UNI	ΤI							6
Gene	eral prop	erties of p	olynomials, Graphical representation of a polynomials, r	naximur	n and	minir	num v	alues
of a	polynom	ials.						
UNI	TII							6
Gene	eral prop	erties of e	quations, Descarte's rule of signs positive and negative r	ule, Rela	ation 1	betwee	en	
the r	oots and	the coeffi	cients of equations.					
UNI	T III							6

Sets, subsets, Set operations, the laws of set theory and Venn diagrams. Examples of finite and infinite sets.

UNIT IV 6

Finite sets and counting principle. Empty set, properties of empty set. Standard set operations. Classes of sets. Power set of a set.

UNIT V 6

Solutions of reciprocal and binomial equations. Algebraic solutions of the cubic and biquadratic. Properties of the derived functions.

LECTURE	TOTAL
30	30

TEXTBOOKS

- 1 W.S. Burnside and A.W. Panton, "The Theory of Equations", Dublin University Press, 1954.
- 2. C. C. MacDuffee, "Theory of Equations", John Wiley & Sons Inc., 1954.

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1	1	1		1
CO 2	3	2	1	1	1	1	1		1
CO 3	3	2	1	1	1	1	1		1
CO 4	3	2	1	1	1	1	1		1
CO 5	3	2	1	1	1	1	1		1
Total	15	10	5	5	5	5	5		5
Scaled	3	2	1	1	1	1	1		1
Value									

 $^{1-5 \}rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

CC	COURSE NAME					L	T	P	C
XN	1T40	2		INTRODUCTION TO MATLA	В	3	1	0	4
C	P	A		·					
4	0	0				L	Т	P	Η
						3	1	0	4
PR	ERE	QUIS	ITE:	Nil					
Co	urse	Outco	mes:		Domain		Leve	el	
	CO1: Apply Variables, assignment, statements, expressions, Cognitive characters, encoding, vectors and matrices.							lying	
dim	CO2: Explain about creating row vectors and column vectors, dimensions in using functions with vectors and matrices.						Understanding Applying		
CO3:Apply MATLAB Scripts, Input and Output, scripts with input and output, user defined functions in simple applications.						Applying			
CO4: Apply Selection Statement, relational expressions, SWITCH statement, menu function, looping, FOR loop, nested FOR loop, WHILE loop.							Applying		
CO5: Apply String manipulations, creating string variable, operations on strings, fundamentals of arrays, structure and file operations with simple applications.							Applying		

UNIT I		12
Introduction to N vectors and matr	IATLAB – Variables and assignment statements –expressions – charactersices.	and encoding –
UNIT II		12
Creating row ved and matrices.	ctors and column vectors – matrix variables – dimensions in using functio	ns with vectors
UNIT III		12
MATLAB Progr	ammes - Matlab Scripts, Input and Output, scripts with input and output,	Introduction to
file input and out	put – user defined functions – simple applications.	
UNIT IV		12
Selection Statem nested FOR loop	ent – relational expressions, SWITCH statement, menu function, looping, WHILE loop.	g – FOR loop,
UNIT V		12
String manipulat	ions, creating string variable, operations on strings, fundamentals of array	ys, structure and
file operations-	simple applications on the above.	
LECTURE	TUTORIAL	TOTAL
45	15	60
TEXT BOOK		<u> </u>
1. Stormy Atta	away, "MATLAB - A Practical Approach", Butterworth-Heineman	n Publications
2009.		

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled									
Value									

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

COURSE CODE XMT403			COURSE NAME		L	T	P	C
			VECTOR CALCULUS & FO	4	1 0	5		
С	P	A			L	Т	P	Н
5	0	0			4	1	0	5
PR	EREQU	J ISITE :	Differential Calculus and Integ	gral Calculus				
Coı	urse Ou	tcomes:						
				Domain	Le	evel		
CO	1: Find (Gradient	of a vector, Directional derivative,	Cognitive	Re	meml	berin	g
divergence & curl of a vector, solenoidal & irrotational vector functions, Laplacian double operator and to solve simple problems.				Psychomotor	Applying Guided Response			
CO2: Find vector integration, tangential line integral, conservative force field, scalar potential, work				Cognitive	1	meml plyin		g

done by a force, Normal surface integral, Volume integral and to solve simple problems.		
CO3: UseGauss Divergence Theorem, Stoke's Theorem, Green's Theorem and to solve Simple problems & Verification of the theorems for simple problems.	Cognitive	Remembering Applying
CO4: Explain Fourier Series expansion of periodic functions with Period 2π Make Use of odd & even functions in Fourier Series.	Cognitive	Understanding Applying
CO5: Explain Half-range Fourier cosine Series & sine series, Change of interval & Combination of series.	Cognitive Affective	Understanding Receiving
UNIT I		15

Vector differentiation –velocity & acceleration-Vector & scalar fields –Gradient of a vector-Directional derivative – divergence & curl of a vector solenoidal& irrotational vectors –Laplacian double operator –simple problems.

UNIT II 15

Vector integration – Tangential line integral – Conservative force field – scalar potential – Work done by a force - Normal surface integral – Volume integral – simple problems.

UNIT III 15

Gauss Divergence Theorem – Stoke's Theorem – Green's Theorem – Simple problems & Verification of the theorems for simple problems.

UNIT IV 15

Fourier series- definition - Fourier Series expansion of periodic functions with period 2π – Use of odd & even functions in Fourier Series.

UNIT V

Half-range Fourier Series – definition- Development in Cosine series & in Sine series - change of interval – Combination of series.

LECTURE	TUTORIAL	TOTAL
60	15	75

TEXTBOOKS

- 1.M.L. Khanna, "Vector Calculus", Jai Prakash Nath and Co., 8th Edition, 1986.
- 2. S. Narayanan, T.K. Manicavachagam Pillai, "Calculus", Vol. III, S. Viswanathan Pvt Limited, and Vijay Nicole Imprints Pvt Ltd, 2004.
 - UNIT I Chapter 1 Section 1 & Chapter 2 Sections 2.3 to 2.6, 3, 4, 5, 7 of [1]

UNIT – II - Chapter 3 Sections 1, 2, 4 of [1]

UNIT – III - Chapter 3 Sections 5 & 6 of [2]

UNIT – IV - Chapter 6 Section 1, 2, 3 of [2]

UNIT – V - Chapter 6 Section 4, 5.1, 5.2, 6, 7 of [2]

REFERENCES

- 1. P. Duraipandiyan and Lakshmi Duraipandian, "Vector Analysis", Emerald publishers 1986.
- 2. Dr. Arumugam and prof. A. Thangapandi Issac, "Fourier series", New Gamma publishing House 2012.

Table 1: COs VS POs Mapping

	PO1	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9
		2							
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1

CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scale									
d									
Value									

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

0 – No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

COURSE CODE			COURSE NAME	L	T	P	C
XMT	T404 ALGEBRA				1	0	5
C	P	A					
5	0	0		L	Т	P	Н
		•		4	1	0	5
PREI	REQUISI	TE: Nil					
COU	RSE OU	JTCOMES:					
Cour	se outco	mes:		Domaiı	n]	Level	
CO1: Define groups, abelian and non-abelian groups with examples				Cognitive Remember		ering	
and to explain integer under addition and multiplication			Psychom Guided				
	modulo n.			otor]	Respons	e

groups of symmetries of (i) an isosceles triangle, (ii) an equilateral triangle, (iii) a rectangle, and (iv) a square, the permutation group Sym (n), Group of quaternions.

CO3: ExplainSubgroups, cyclic subgroups, the concept of a

CO2: Explain Cyclic groups from number systems, complex roots

of unity, circle group, the general linear group GLn (n, R),

subgroup generated by a subset and the commutator subgroup of group, examples of subgroups including the center of a group.

CO4: State and Explain Cosets, Index of subgroup, Lagrange's theorem, order of an element, Normal subgroups, Quotient groups.

CO5: Define and Explain rings, commutative and non-commutative rings with rings from number systems, Zn the ring of integers modulo n, rings of matrices, polynomial rings, and rings of continuous functions.

Cognitive Remembering
Affective Understanding
Receiving

Understanding

Understanding

Remembering

Understanding

Cognitive

Cognitive

Cognitive

15

Definition and examples of groups, examples of abelian and non-abelian groups, the group Zn of integers under addition modulo n and the group U(n) of units under multiplication modulo n.

UNIT II 15

Cyclic groups from number systems, complex roots of unity, circle group, the general linear group GLn (n,R), groups of symmetries of (i) an isosceles triangle, (ii) an equilateral triangle, (iii) a rectangle, and (iv) a square, the permutation group Sym (n), Group of quaternions.

UNIT III

UNIT I

Subgroups, cyclic subgroups, the concept of a subgroup generated by a subset and the commutator subgroup of group, examples of subgroups including the center of a group.

UNIT IV 15

Cosets, Index of subgroup, Lagrange's theorem, order of an element, Normal subgroups: their definition,

examples, and characterizations, Quotient groups.

UNIT V 15

Definition and examples of rings, examples of commutative and non-commutative rings: rings from number systems, Zn the ring of integers modulo n, ring of real quaternions, rings of matrices, polynomial rings, and rings of continuous functions. Subrings and ideals, Integral domains and fields, examples of fields: Zp, Q, R, and C. Field of rational functions.

LECTURE	TUTORIAL	TOTAL
60	15	7 5

TEXTBOOKS

- 1. S. Narayanan& T. K. ManickavasagamPillai, "Algebra", Vol. 1, S. Viswanathan Pvt. Ltd., Chennai, 2004.
- 2. S. Narayanan& T. K. ManickavasagamPillai, "Algebra", Vol. 2, S. Viswanathan Pvt. Ltd. Chennai, 2004.
- 3. Joseph A Gallian, "Contemporary Abstract Algebra", 4th Ed., Narosa, 1999.
- 4. George E Andrews, "Number Theory", Hindustan Publishing Corporation, 1984.

REFERENCES

- 1. John B. Fraleigh, "A First Course in Abstract Algebra", 7th Ed., Pearson, 2002.
- 2. M. Artin, "Abstract Algebra", 2nd Ed., Pearson, 2011.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled	3	2		1	1		1	1	1
Value									

- $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$
- 0 No relation, 1 Low relation, 2 Medium relation, 3 High relation

COURSE CODE		DE	COURSE NAME	L	T	P	C
XMT	405		INTRODUCTION TO MATLAB	0	0	2	2
			PRACTICAL				
C	P	A		L	T	P	Н
2	0	0		0	0	2	4
PRER	EQUISI	TE: Nil					
COUR	SE OU	ГСОМЕ	SS:				
Course	Course Outcome					Level	
CO1:	CO1: Apply Variables, assignment, statements, expressions,				ive	Applying	
charac	characters, encoding, vectors and matrices.						
CO2:	CO2: Explain about creating row vectors and column vectors,				ive	Understa	nding
dimens	dimensions in using functions with vectors and matrices.					Applying	5
CO3:	Apply	MATLA	AB Scripts, Input and Output, scripts	Cogniti	Cognitive Applyin		,

with input and output, user defined functions in simple		
applications.		
CO4: Apply Selection Statement, relational expressions,	Cognitive	Applying
SWITCH statement, menu function, looping, FOR loop, nested		
FOR loop, WHILE loop.		
CO5: Apply String manipulations, creating string variable,	Cognitive	Applying
operations on strings, fundamentals of arrays, structure and file		
operations with simple applications.		

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	COURSE CODE	COURSE NAME	L	Т		P	С
PREREQUISITE: Algebra COURSE OUTCOMES: COI: Define and Explain Sample space, probability axioms, real random variables, conditional expectation, and probability and ensity functions. CO2: Define and Explain Discrete distributions: uniform, binomial, poisson, continuous distributions. CO3: Define and Explain Discrete distributions: uniform, binomial, poisson, continuous distributions. CO4: Define and Explain Discrete distributions: uniform, binomial, poisson, continuous distributions. uniform, normal, exponential. CO5: Define and Explain Discrete distributions: uniform, binomial, poisson, continuous distributions. uniform, normal, exponential. CO5: Define and Explain Discrete distribution function and distributions. CO5: Define and Explain Discrete distributions function and distributions. CO5: Define and Explain Explain of function of two random variables, conditional expectations, and independent random variables. CO5: Define and Explain Expectation of function of two random variables, conditional expectation, moments, moment generating function, characteristic function. UNIT II Mathematical expectation, moments, moment generating function, characteristic function. UNIT III Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Dionain Cognitive Remembering Understanding Cognitive Reme	XMT501	Probability and Statistics	2	0		0	2
PREREQUISITE: Algebra COURSE OUTCOMES: COI: Define and Explain Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. CO2: Define and Explain Discrete distributions: uniform, binomial, poisson, continuous distributions: uniform, normal, exponential. CO5: Define and Explain Discrete distributions: uniform, binomial, poisson, continuous distributions: uniform, binomial, altistributions. CO5: Define and Explain Discrete distributions: uniform, binomial, poisson, continuous distributions: uniform, normal, exponential. CO6: Define and Explain Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. UNIT I Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT III Mathematical expectation, moments, moment generating function, characteristic function. UNIT III Mathematical expectation, moments, moment generating function, characteristic function. UNIT IV 6 COgnitive Cognitive Understanding Cognitive Understanding Cognitive Understanding Cognitive Understanding Cognitive Understanding Cognitive Understanding Cognitive Cognitive Understanding Cognitive Cognitive Understanding Cognitive Underst	C P A						
COURSE OUTCOMES: Course outcomes: CO1: Define and Explain Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. CO2: Define and Explain Mathematical expectation, moments, moment generating function, characteristic function. CO3: Define and Explain Discrete distributions: uniform, binomial, Poisson, continuous distributions: uniform, normal, exponential. CO4: Define and Explain Discrete distribution function and gistributions. uniform, normal, exponential. CO5: Define and Explain Joint cumulative distribution function and distributions. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. CO5: Define and Explain Expectation of function of two random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT II 6 Mathematical expectation, moments, moment generating function, characteristic function. UNIT III 6 Mathematical expectation, moments, moment generating function, characteristic function. UNIT IV 6 LECTURE 6 SC.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and	2 0 0		L	Т	P	SS	Н
COURSE OUTCOMES: Course outcomes: CO1: Define and Explain Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. CO2: Define and Explain Mathematical expectation, moments, moment generating function, characteristic function. CO3: Define and Explain Discrete distributions: uniform, binomial, Poisson, continuous distributions: uniform, normal, exponential. CO4: Define and Explain Discrete distributions: uniform, binomial, Poisson, continuous distributions: uniform, normal, exponential. CO5: Define and Explain Discrete distribution function and its properties, joint probability density functions, marginal and conditional distributions. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. UNIT I 6 Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT II 6 Mathematical expectation, moments, moment generating function, characteristic function. UNIT III 6 Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 LOGNITIV 7 LOGNITIV 8 LOGNITIV 10 LOGNITIV 11 LOGNITIV 10 LOGNITIV 11 LOGNITIV 12 LOGNITIV 13 LOGNITIV 14 LOGNITIV 15 LOGNITIV 16 LOGNITIV 16 LOGNITIV 16 LOGNITIV 16 LOGNITIV 17 LOGNITIV 18 LOGNITIV 18 LOGNITIV 18 LOGNITIV 19 LOGNITIV 10 LOGNI			2	0	0	2	4
CO1: Define and Explain Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. CO2: Define and Explain Mathematical expectation, moments, moment generating function, characteristic function. CO3: Define and Explain Discrete distributions: uniform, binomial, Poisson, continuous distributions: uniform, normal, exponential. CO4: Define and Explain Joint cumulative distribution function and its properties, joint probability and independent random variables. CO5: Define and Explain Expectation of function of two random variables, conditional distributions and independent random variables. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. CO5: Define and Explain Expectation of function of two random variables. CO6: Define and Explain Expectation of function of two random variables. CO7: Define and Explain Expectation of function of two random variables. CO8: Define and Explain Expectation of function of two random variables. CO9nitive Remembering Understanding Understanding Understanding Understanding Understanding Variables, conditional expectations, community distributions, cumulative distributions distributions. UNIT II 6 Mathematical expectation, moments, moment generating function, characteristic function. UNIT IV 6 Diant cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 3 TOTAL 30 TOTAL 30 TOTAL 30	PREREQUISITE: Alg	ebra					
CO1: Define and Explain Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density function. CO2: Define and Explain Mathematical expectation, moments, moment generating function, characteristic function. CO3: Define and Explain Discrete distributions: uniform, binomial, Poisson, continuous distributions: uniform, binomial, and independent random variables. CO4: Define and Explain Joint cumulative distribution function and distributions. CO5: Define and Explain Joint cumulative distribution function and distributions. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. UNIT I Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT II Mathematical expectation, moments, moment generating function, characteristic function. UNIT III Mathematical expectation, moments, moment generating function, characteristic function. UNIT IV Mathematical expectation of function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V Mathematical expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TOTAL 30 TOTAL 30 TEXTBOOK S.C.Gupta and Explain Mathematical expectations, moments, moment generating Statistics, edition Sultan Chand and	COURSE OUTCOME	S:	,				
random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. CO2: Define and Explain Mathematical expectation, moments, moment generating function, characteristic function. CO3: Define and Explain Discrete distributions: uniform, binomial, Poisson, continuous distributions: uniform, normal, exponential. CO4: Define and Explain Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. CO5: Define and Explain Expectation of function of two random understanding Understanding Understanding UNIT I 6 Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT II 6 Mathematical expectation, moments, moment generating function, characteristic function. UNIT III 6 Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Expectation of function function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 3 30 30 TOTAL 30 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and			ļ				
and probability mass/density functions. CO2: Define and Explain Mathematical expectation, moments, moment generating function, characteristic function. CO3: Define and Explain Discrete distributions: uniform, binomial, Poisson, continuous distributions: uniform, normal, exponential. CO4: Define and Explain Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. UNIT I 6 Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT III 6 Mathematical expectation, moments, moment generating function, characteristic function. UNIT III 6 Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and			Cogni	itive			_
CO2: Define and Explain Mathematical expectation, moments, moment generating function, characteristic function. CO3: Define and Explain Discrete distributions: uniform, binomial, Poisson, continuous distributions: uniform, normal, exponential. CO4: Define and Explain Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. UNIT I Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT III Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV Joint cumulative distributions function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and					Unde	erstand	ing
generating function, characteristic function. CO3: Define and Explain Discrete distributions: uniform, binomial, Poisson, continuous distributions: uniform, normal, exponential. CO4: Define and Explain Joint cumulative distribution function and distributions. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. UNIT I 6 Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT III 6 Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 3 TOTAL 30 TEXTBOOK S.C. Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and		•					
CO3: Define and Explain Discrete distributions: uniform, binomial, Poisson, continuous distributions: uniform, normal, exponential. CO4: Define and Explain Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. UNIT I 6 Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT III 6 Mathematical expectation, moments, moment generating function, characteristic function. UNIT IV 6 Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and		-	Cogni	itive			_
Poisson, continuous distributions: uniform, normal, exponential. CO4: Define and Explain Joint cumulative distribution function and distributions. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. CO5: Define and Explain Expectation of function of two random variables. CO5: Define and Explain Expectation of function of two random variables. CO5: Define and Explain Expectation of function of two random variables. CO5: Define and Explain Expectation of function of two random variables. CO5: Define and Explain Expectation, of function of two random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT II 6 Mathematical expectation, moments, moment generating function, characteristic function. UNIT IV 6 Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distributions function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 7 SC. Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and							
CO4: Define and Explain Joint cumulative distribution function and distributions, possibility density functions, marginal and conditional distributions. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. UNIT I 6 Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT II 6 Mathematical expectation, moments, moment generating function, characteristic function. UNIT III 6 Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 7 30 TEXTBOOK S.C. Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and		-	Cogni	itive			_
its properties, joint probability density functions, marginal and conditional distributions. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. COgnitive Remembering Understanding UNIT I 6 Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT II 6 Mathematical expectation, moments, moment generating function, characteristic function. UNIT IV 6 Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 7 30 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and							
distributions. CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. UNIT I 6 Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT II 6 Mathematical expectation, moments, moment generating function, characteristic function. UNIT III 6 Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 7 LECTURE 7 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and		-	Cogni	itive			_
CO5: Define and Explain Expectation of function of two random variables, conditional expectations, and independent random variables. UNIT I Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT II 6 Mathematical expectation, moments, moment generating function, characteristic function. UNIT III 6 Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and	1 1 1	bability density functions, marginal and conditional			Unde	erstand	ing
variables, conditional expectations, and independent random variables. UNIT I Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT II Mathematical expectation, moments, moment generating function, characteristic function. UNIT III 6 Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and							
UNIT I Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT II 6 Mathematical expectation, moments, moment generating function, characteristic function. UNIT III 6 Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 7 30 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and		-	Cogni	itive			
Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT II Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and	variables, conditional ex	pectations, and independent random variables.			Unde	erstand	ing
Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, and probability mass/density functions. UNIT II Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and	TINITO						
function, and probability mass/density functions. UNIT II Mathematical expectation, moments, moment generating function, characteristic function. UNIT III Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and		ty avious real random variables (discrete and continue)	uc) our	an lotin	ro dietr		
UNIT II Mathematical expectation, moments, moment generating function, characteristic function. UNIT III Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TOTAL 30 TEXTBOOK S.C. Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and			us), cuii	lulativ	ve disti	Toution	1
Mathematical expectation, moments, moment generating function, characteristic function. UNIT III Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV 6 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TOTAL 30 TEXTBOOK S.C. Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and	*	/ mass/density functions.					
UNIT III Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and		and the second s	- C 4:			U	
Discrete distributions: binomial, Poisson, continuous distributions: uniform, normal, exponential. UNIT IV Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and	_	on, moments, moment generating function, characteristic	2 Tunctio)II.			
UNIT IV Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and		inomial Poisson continuous distributions: uniform nor	·mol ov	nonon	tio1	0	ł
Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions. UNIT V 6 Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 700 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and	Discrete distributions. U	momai, i oisson, continuous distributions. umrorm, noi	mai, cx	ponen	ıtıaı.		
conditional distributions. UNIT V Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TOTAL 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and							,
UNIT V Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE 30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and			y functi	ons, n	nargina	ıl and	
Expectation of function of two random variables, conditional expectations, independent random variables. LECTURE							
LECTURE TOTAL 30 30)
30 TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and		of two random variables, conditional expectations, inde	pendent	rando	······································		
TEXTBOOK S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and					······		
S.C.Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth revised edition Sultan Chand and					30	J	
		"Fundamentals of Mathematical Statistics" tenth revise	d editio	n Sult	an Cha	ınd and	1
		1 distantentials of mathematical statistics, tentil revise	a camo	ıı Dull	u11 C116	ina and	

REFERENCES

- 1. Irwin Miller and Marylees Miller, John E. Freund, "Mathematical Statistics with Application", 7th Ed., Pearson Education, Asia, 2006.
- 2. Sheldon Ross, "Introduction to Probability Model", 9th Ed., Academic Press, Indian Reprint, 2007.

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1	1	1		1
CO 2	3	2	1	1	1	1	1		1
CO 3	3	2	1	1	1	1	1		1
CO 4	3	2	1	1	1	1	1		1
CO 5	3	2	1	1	1	1	1		1
Total	15	10	5	5	5	5	5	0	5
Scaled	3	2	1	1	1	1	1		1
Value									

 $1-5 \rightarrow 1$, 6-10 \rightarrow 2, 11 – 15 \rightarrow 3

find rank of the matrix.

UNIT I

CO5: Solve a system of linear equations using matrices.

0 – No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

COU	JRSE C	ODE	COURSE NAME		L	T	P	C
XM	Г502А		Matrices		4	2	0	6
С	P	A						
6	0	0			L	T	P	H
	i				4	2	0	6
PRE	REQUI	ISITE: N			å			
COU	JRSE O	UTCON	MES:					
Course outcomes:						Domain Level		
CO1: ExplainConcept of Linear Independence and examples of different bases. Subspaces of R2, R3.						Cognitive Understand		
CO2: Explain Matrix form of basic geometric transformations. Interpretation of eigen values and eigen vectors for such transformations and eigen spaces as invariant subspaces.								
CO3: Solvelinear homogeneous and non-homogeneous equations with number of equations and unknowns up to four.						Cognitive Applying		
CO4: Explain Matrices in diagonal form up to matrices of order 3, the computation of matrix inverses using elementary row operations and to						Understanding		

R, R2, R3 as vector spaces over R. Standard basis for each of them. Concept of Linear Independence and examples of different bases. Subspaces of R2, R3.

Cognitive

Applying

UNIT II

Translation, Dilation, Rotation, Reflection in a point, line and plane. Matrix form of basic geometric transformations. Interpretation of eigen values and eigen vectors for such transformations and eigen spaces as invariant subspaces.

UNIT III 18

Types of matrices. Rank of a matrix. Invariance of rank under elementary transformations. Reduction to normal form, Solutions of linear homogeneous and non-homogeneous equations with number of equations and unknowns upto four.

UNIT IV

Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix.

UNIT V 18

Solutions of a system of linear equations using matrices. Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics.

LECTURE	TUTORIAL	TOTAL
60	30	90

TEXTBOOKS

- 1. A.I. Kostrikin, "Introduction to Algebra", Springer Verlag, 1984.
- 2. S. H. Friedberg, A. L. Insel and L. E. Spence, "Linear Algebra", Prentice Hall of India Pvt. Ltd., New Delhi, 2004.
- 3. Richard Bronson, "Theory and Problems of Matrix Operations", Tata McGraw Hill, 1989.

REFERENCE

1. S. Narayanan& T. K. ManickavasagamPillai, "Algebra", Vol. 2, S. Viswanathan Pvt. Ltd. Chennai, 2004.

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1	1	1		1
CO 2	3	2	1	1	1	1	1		1
CO 3	3	2	1	1	1	1	1		1
CO 4	3	2	1	1	1	1	1		1
CO 5	3	2	1	1	1	1	1		1
Total	15	10	5	5	5	5	5	0	5
Scaled	3	2	1	1	1	1	1		1
Value									

 $^{1-5 \}rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

0 – No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

COURSE CODE		ODE	COURSE NAME	L	T	P	С
XMT502B			Discrete Mathematics	4	2	0	6
C	P	A					•
6	0	0		L	Т	P	Н
				4	2	0	6

PREREQUISITE: Logic and Sets

COURSE OUTCOMES:

Course outcomes:	Domain	Level
CO1: Define and Apply truth tables and the rules of propositional and	Cognitive	Remembering
predicate calculus.		Applying
CO2: Apply the following methods direct proof, indirect proof, and proof by contradiction, and case analysis to formulate short proofs.	Cognitive	Applying
CO3: Solvelinear recurrence relation with constant coefficients, non-homogeneous recurrence relations and non-homogeneous recurrence relations using methods of generating functions.	Cognitive	Applying
CO4: Explain Basic theorems on Boolean Algebra, Duality principle Boolean. functions.	Understanding	
CO5: Apply Boolean algebra, Logic gates and circuits combinatorial circuits, Boolean expression and Karnaugh map.	Applying	
UNIT I		18
Mathematical Logic- Propositional calculus- Basic Logical operators conditional statement- tautologies- contradictions- equivalence implications		l statements- Bi
UNIT II		18
Norms forms- Theory of inference for the statement calculus- The predicate and predicate calculus.	cate calculus	inference theory
UNIT III		18
Recurrence relations and generating functions- recurrence relation- seriation with constant coefficients- Nonhomogeneous recurrence relations- Methods of generating functions.		
UNIT IV		18

Boolean functions- Applications of Boolean algebra- Logic gates and circuits -combinatorial circuits-

18

TEXTBOOK

UNIT V:

1.J.B. Tremblay, R. Manohar, "Discrete Mathematical structures with applications to Computer Science", Tata McGraw Hill, International edition New Delhi, 1997, Reprint 2007.

REFERENCE

1. M.K. Venkatraman, Sridharan&Chandrasekaran, "Discrete Mathematics", The National Publishing company India, 2000.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled Value									

Basic theorems on Boolean Algebra- Duality principle Boolean functions.

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

COU	JRSE C	ODE	COURSE NAME	L	T	P	C	
XM	Т503А		Numerical Methods	4	2	0	6	
C	P	A						
6	0	0		L	Т	P	H	
				4	2	0	6	
PRE	REQUI	SITE:	Differential Calculus and Integral Calculus			. .	.±	
COI	J RSE O	UTCO	MES:					
Cou	rse outc	omes:		Domain	Level	evel		
CO ₁	: Explai	in and S	Solve Algorithms, Convergence, Bisection	Cognitive	1	mberin	ıg	
meth	od, Fals	e positio	on method, Fixed point iteration method,		Apply	ing		
New	ton's me	ethod.						
CO ₂	2: Solve	system	of linear equations using iterative methods	Cognitive	Reme	mberin	ıg	
Gaus	ss-Jacob	i, Gauss	-Seidel and SOR iterative methods.		Applying			
CO3	3: Explai	i n Lagra	nge and Newton interpolation: linear and	Cognitive	Remembering			
high	er order,	finite d	ifference operators.		Applying			
CO4	l: Apply	y forwar	d difference, backward difference and	Cognitive	Unde	Understanding		
centi	ral Diffe	rence to	find Numerical differentiation:		Apply	ing		
CO5	: Solve	Integrat	ion using trapezoidal rule, Simpson's rule,	Cognitive	Unde	standi	ng	
and l	Euler's r	nethod.						
UNI	ΤΙ					18		
Algo	orithms, (Converg	ence, Bisection method, False position meth	od, Fixed poi	nt iterati	ion me	thod,	
New	ton's me	ethod.						
UNI	ΤII					18		
Seca	nt metho	od, LU o	ecomposition, Gauss-Jacobi, Gauss-Siedel a	nd SOR iterat	tive			
meth	ods.							
UNI	T III					18		
Lagr	ange and	l Newto	n interpolation: linear and higher order, finite	e difference o	perators	•		
UNI	T IV					18		
Num	nerical di	fferentia	ation: forward difference, backward difference	ce and central	Differe	nce.		
UNI	UNIT V:							
Integ	gration: t	rapezoio	lal rule, Simpson's rule, Euler's method.					
	LECTUR TUTORIAL E							

TEXT BOOKS

30

60

1. B. Bradie, "A Friendly Introduction to Numerical Analysis", Pearson Education, India, 2007.

90

2. M.K. Jain, S.R.K. Iyengar and R.K. Jain, "Numerical Methods for Scientific and Engineering Computation", 5th Ed., New age International Publisher, India, 2007.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled	3	2		1	1		1	1	1
Value									

 $^{1-5 \}rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

^{0 –} No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

COU	URSE (CODE	COURSE NAME		L	T	P	C
XM'	T503B		Mechanics		4	2	0	6
С	P	A						
6 0 0					L	Т	P	Н
					4	2	0	6
PRE	EREQU	ISITE:	Algebra				i	
COI	URSE ()UTCO	MES:					
Cou	rse outo	comes:		Domain	I	Level		
CO1	l: Defin	ebasic C	Concepts and Principles, Forces acting at a Point	Cognitive Ren		Remen	membering	
to E	Explain	Lami's	Theorem and Applications, Parallel Forces, Like		Į	Jnders [*]	tandir	ng
and	Unlike	Parallel	Forces, Moment of a force, Couples related					
	lems.		•					
CO2	2: Expl	ain Equi	librium of Three Forces acting on a rigid body,	Cognitiv	e L	Jnders	tandir	1g
Frict	tion, La	ws of I	Friction, Angle of Friction, Cone of Friction,	-				-
			d problems					

Properties and related problems.

CO3: Explain Motion in a Straight line under uniform acceleration,
Newton's Laws of motion. Projectiles: Define and explain Path of
Projectile, Range on an inclined Plane, Properties and Problems.

CO4: Explain Collision of Elastic Bodies, Direct and oblique Impact, Loss of Kinetic Energy related properties and problems.

CO5: Explain ccentral Orbits Properties and related problems.

Cognitive Understanding
Understanding
Understanding

UNIT I

Basic Concepts and Principles - Forces acting at a Point - Lami's Theorem and Applications - Parallel Forces - Like and Unlike Parallel Forces - Moment of a force - Couples - Related problems.

UNIT II

Equilibrium of Three Forces acting on a rigid body - Friction - Laws of Friction - Angle of Friction - Cone of friction - Properties and related problems.

UNIT III 18

Motion in a Straight line under uniform acceleration - Newton's Laws of motion. Projectiles: Definition - Path of Projectile - Range on an Inclined Plane - Properties and Problems.

UNIT IV 18

Impulse and Impact: Collision of Elastic Bodies – Direct and Oblique Impact – Loss of Kinetic Energy – Related Properties and Simple Problems.

UNIT V: 18

Central Orbits: Motion under the action of Central Forces - Properties and Related Problems - Differential Equation of Central Orbit - Pedal Equation of Central Orbit - Velocities in a Central Orbit - Law of Forces - Properties and Related Problems

 LECTUR	TUTORIAL	TOTAL
E		
60	30	90

TEXTBOOKS

- 1. M. K. Venkataraman, "Statics", Agasthiar Publications, Trichy, 2004.
 - Unit 1: Chapters 2, 3, 4 Unit 2: Chapters 5, 7
- 2. M. K. Venkataraman, "Dynamics", Agasthiar Publications, Trichy, 2004.
 - Unit 3: Chapters 3: section 3.22, Chapter 4: Section 4.3, Chapter 6
 - Unit 4: Chapter 8 Unit 5: Chapter 11

REFERENCES

- 1. T. K. ManickavasagamPillai, "Statics", S. Viswanathan & Co., Chennai, 1980.
- 2. S. Narayanan, "Dynamics", S. Chand & Co., New Delhi, 1980.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1		1	1	1
CO 2	3	2	1	1			1	1	1
CO 3	3	2	1	1			1	1	1
CO 4	3	2	1	1	1		1	1	1
CO 5	3	2	1	1	1		1	1	1
Total	15	10	5	5	3	0	5	5	5
Scaled	3	2	1	1	1		1	1	1
value									

 $^{1-5 \}rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

^{0 –} No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

\mathbf{v}_{MT}	RSE C	ODE	COURSE NAME		L	T	P	C
	C504A		Linear algebra		4	2	0	6
C	P	A						
6	0	0			L	T	P	H
					4	2	0	6
PREI	REQUI	ISITE: N	Matrices					
COU	RSE O	UTCON	MES:					
Cour	se outc	omes:		Domain	1	Leve	el	
			Explain vector spaces, subspaces, linear	Cognitiv	ve	1	embe	•
			pan of a set with examples.				erstar	
find I	Rank ar	nd Nullity	<u> </u>	Cognitiv	ve	Rem	embe	ring
space	and to	Define v	atrix of a linear transformation, Inner product with examples orthogonality, Gram Schmidt ocess and orthogonal complement.	Cognitiv	ve		embe erstar	
			ora of Matrices, Types of Matrices and to find x and Rank of a matrix.	Cognitiv	ve	Rem	embe	rin
CO5:	_	•	haracteristic equation and Cayley -Hamilton Eigen values and Eigen vectors.	Cognitiv	ve		embe erstar	
UNIT	Г I : V е	ctor Spa	ices				18	
Vecto	or space	es – Defin	nition and examples $-$ Subspaces-linear transform	nation – S	pan	of a s	et.	
UNIT	Ր II: Ba	sis and	Dimension				18	
Linea	r Indep	endence	 Basis and Dimension –Rank and Nullity. 					
			nd Inner Product Space				18	
	x of a l	inear trai	nsformation -Inner product space – Definition and	d example	es –	Ortho	gona	lity
	Schmi	dt orthog	gonalization process – Orthogonal Complement.					
							18	
Gram UNI 1	Γ IV : Ί	v	f Matrices				i	
Gram UNIT Alget	T IV: Tora of M	1atrices -	f Matrices - Types of Matrices – The Inverse of a Matrix – E	Elementar	y Tı	ransfo	rmati	ons
Gram UNIT Alget	Γ IV : Ί	1atrices -		Elementar	y T1	ransfo	rmati	ons
Gram UNIT Alget Rank UNIT	FIV: Tora of Mora of a ma	Matrices - atrix. naracter	Types of Matrices – The Inverse of a Matrix – E istic equation and Bilinear forms				rmati 18	ons
Gram UNIT Alget Rank UNIT Chara	Γ IV: Tora of M of a ma Γ V: Ch acteristi	Matrices - atrix. naracter c equation	Types of Matrices – The Inverse of a Matrix – E istic equation and Bilinear forms on and Cayley -Hamilton theorem – Eigen values				18	
Gram UNIT Alget Rank UNIT Chara	FIV: Tora of Mora of a ma	Matrices - atrix. naracter c equation	Types of Matrices – The Inverse of a Matrix – E istic equation and Bilinear forms					

Unit1: Chapter 5, Sec 5.1 to 5.4 Unit2: Chapter 5, Sec 5.5 to 5.7

Unit3: Chapter 5, Sec 5.8, Chapter 6, Sec 6.1 to 6.3

Unit4: Chapter 7 Sec 7.1 to 7.5 Unit5: Chapter 7, Sec 7.7, 7.8

REFERENCE

1. I. N. Herstein, "Topics in Algebra", Second Edition, John Wiley & Sons (Asia), 1975.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled	3	2		1	1		1	1	1
Value									

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

0 – No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

COURSE CODE		ODE	COURSE NAME	L	T	P	C
XMT504B			Astronomy	4	2	0	6
С	P	A					
6	0	0		L	T	P	Н
				4	2	0	6

PREREQUISITE: Nil

COURSE OUTCOMES:

Course outcomes:	Domain	Level
CO1: Explain	Cognitive	Understanding
Relevant properties of sphere and formulae in spherical trigonometry		
(no proof, no problems), Celestial sphere and diurnal motion, Celestial		
coordinates and sidereal time.		
CO2: Define and Explain	Cognitive	Remembering
Morning and evening stars, circumpolar stars, diagram of the celestial		Understanding
sphere, zones of earth, perpetual day, dip of horizon and twilight.		
CO3: Define and Explain	Cognitive	Remembering
Refraction, laws of refraction, tangent formula, Cassini's formula,		Understanding
horizontal refraction, geocentric parallax and horizontal parallax.		
CO4: Define and Explain	Cognitive	Remembering
Kepler's laws, verification of 1st and 2nd laws in the case of earth,		Understanding
Anomalies, Kepler's equation, Seasons, causes and kinds of years.		
CO5: Define and Explain	Cognitive	Remembering
Moon, sidereal and synodic months, elongation, phase of moon,		Understanding
eclipses, umbra and penumbra, lunar and solar eclipses, ecliptic limits,		
maximum and minimum number of eclipses near a node and in a year		
and Saros.		
UNIT I		18

Relevant properties of sphere and formulae in spherical trigonometry (no proof, no problems) - Celestial sphere and diurnal motion -Celestial coordinates-sidereal time.

UNIT II

Morning and evening stars -circumpolar stars- diagram of the celestial sphere -zones of earth -perpetual day-dip of horizon-twilight.

UNIT III 18

Refraction - laws of refraction -tangent formula-Cassini's formula - horizontal refraction- geocentric parallax -horizontal parallax.

UNIT IV 18

Kepler's laws - verification of 1st and 2nd laws in the case of earth - Anomalies -Kepler's equation - Seasons -causes -kinds of years.

UNIT V: 18

Moon-sidereal and synodic months - elongation - phase of moon - eclipses-umbra and penumbra - lunar and solar eclipses - ecliptic limits - maximum and minimum number of eclipses near a node and in a year - Saros.

LECTURE	TUTORIAL	TOTAL
60	30	90

TEXTBOOK

Kumaravel, S. and Susheela Kumaravel, "Astronomy", 8th Edition, SKV Publications, 2004. Unit 1:

Sec: 39-79

Unit 2: Sec: 80-90,106-116

Unit3: Sec: 117-144

Unit 4: Sec: 146-162,173-178 Unit 5: Sec: 229-241,256-275

REFERENCE

1. G V Ramachandran, "Textbook of Astronomy", Mission Press, Palayamkottai, 1965.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled	3	2		1	1		1	1	1
Value									

 $^{1-5 \}rightarrow 1$, 6-10 \rightarrow 2, 11 - 15 \rightarrow 3

^{0 –} No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

COU	COURSE CODE COURSE NAME		L	Т	P	C	
XMT	7602A		Complex Analysis	4	4 2		
C	P	Α				-	
6	0	0		L	Т	P	Н
	i			4	2	0	6
PRE	REQUI	SITE:	ifferential Calculus and Integral Calculus	<u>i</u>			

COURSE OUTCOMES:

Course outcomes:	Domain	Level
CO1: Use CR Equations in cartesian and polar co-ordinates to find an analytic function and to Explain Harmonic function Properties and applications.	Cognitive	Understanding Applying
CO2: Explain Conformal mappings - Linear and Non-linear transformations and to Apply cross ratio to construct Bilinear transformations.	Cognitive	Understanding Applying
CO3: Solve the integral using Cauchy's integral theorem, Cauchy's integral formula and to Explain Liouville's theorem, Maximum modulus theorem and to apply them in simple problems.	Cognitive	Understanding Applying
CO4: Using Taylors series and Laurent's seriesExpansion of functions in Power series and to explain types of singularities.	Cognitive	Applying
CO5: Apply Cauchy residue theorem to Solve Integration of functions of the type involving cosx, sinx.	Cognitive	Applying

UNIT I: Analytic Functions

18

Analytic function - Cauchy Riemann Equation in Cartesian and polar co-ordinates - Harmonic function Properties and applications.

UNIT II: Conformal Mappings and Transformations

18

 $Conformal\ mappings\ -\ Linear\ and\ Non-linear\ transformations\ -\ Bilinear\ transformations\ -\ Properties\ and\ applications$

UNIT III: Complex Integration

18

Integration in the Complex plane - Cauchy's Integral theorem - Cauchy's Integral formula - Liouville's theorem - Maximum modulus theorem - Applications and simple problems.

UNIT IV: Complex Differentiation

18

Taylor's and Laurent's series - Expansion of functions in power series - Singular points - Types of singularities - Properties of singularities - Identification of singularities.

UNIT V: Calculus of Residues

18

Calculus of Residues: Residue theorem - Integration of functions of the type involving cosx, sinx-Applications and problems relating to residues.

LECTURE	TUTORIAL	TOTAL
60	30	90

TEXTBOOK

1. S. Narayanan & T.K. ManickavasagamPillai, "Complex Analysis", S. Viswanathan Publishers, Chennai, 1997.Unit 1: Chapter 1 Unit 2: Chapter 2 Unit 3: Chapter 3

Unit 4: Chapter 4 Unit 5: Chapter 5

REFERENCES

- 1. S. Arumugam, A. Thangapandi Isaac& A. Somasundaram, "Complex Analysis", SciTech Publications, India, Pvt. Ltd., 2004.
- 2. S. Ponnusamy, "Foundations of Complex Analysis", 2ndEdition, Narosa Publication, New Delhi, 2005.
- 3. R. V. Churchill & J.W.Brown, "Complex variables and applications", 5thEdition, McGraw Hill, Singapore, 1990.

COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled	3	2		1	1		1	1	1
value									

 $^{1-5 \}rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

^{0 –} No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

COU	COURSE CODE		COURSE NAME	L	T	P	C
XMT603A			Linear programming	4	2	0	6
С	P	A					
5	0.5	0.5		L	Т	P	Н
				4	2	0	6

PREREQUISITE: NIL

COURSE OUTCOMES:

Course outcomes:	Domain	Level
CO1: FindGraphical Solution, Solve LPP using Simplex	Cognitive	Remembering
Method, Big M Method and Two-Phase Method.		Applying
CO2: Solve Linear Programming Problem Formulation of	Cognitive	Applying
Primal, Dual Pairs, Duality and Simplex Method.	Psychomotor	Guided
		Response
CO3: Solve Transportation Problems, finding initial basic	Cognitive	Applying
feasiblesolution using North West Corner Rule and Vogel's		
approximation method, Solve unbalanced Transportation		
Problems, Assignment Problems and Routing Problems.		
CO4: Solve ssequencing Problems, Problems with 'n' jobs and		Applying
'k' machines, Problems with 'n' jobs and 2 machines, Problems	Affective	Receiving
with 2 jobs and k machines and Problems with 2 jobs and 3		
machines.		
CO 5: Solve Game Theory Problems Two Persons Zero sum	Cognitive	Applying
games, maximin and minimax principle, Games without saddle		
points, Mixed strategies, using Graphical method and		
Dominance property.		
TINITE		10

UNIT I

Introduction to convex sets - Mathematical Formulation of LPP - Graphical Solution - Simplex Method - Big M Method - Two Phase Method.

UNIT II

Duality in Linear Programming: Formulation of Primal - Dual Pairs - Duality and Simplex Method - Dual Simplex Method

UNIT III 18

Transportation Problems: Mathematical formulation of the problem - finding initial basic feasible solution using North West Corner Rule and Vogel's approximation method - Moving towards Optimality - Unbalanced Transportation Problems. Assignment Problems: Mathematical formulation of Assignment Problems - Assignment algorithm - Routing Problems.

UNIT IV 18

Sequencing Problems: Problems with 'n' jobs and 'k' machines - Problems with 'n' jobs and 2 machines - Problems with 2 jobs and k machines - Problems with 2 jobs and 3 machines.

UNIT V:

Game Theory: Two persons Zero sum games - maximin and minimax principle - Games without saddle points - Mixed strategies - Graphical method - Dominance property.

LECTURE	TUTORIAL	TOTAL
60	30	90

TEXT BOOK

1. KantiSwarup, P. K. Gupta& Man Mohan, "Operations Research", Sultan Chand& Sons, New Delhi, Twelfth Revised Edition, 2005.

Unit 1: chapter 2: 2.1, 2.2, chapter 3: 3.2, chapter 4; 4.1, 4.4.

Unit 2: chapter 5: 5.2, 5.3, 5.7, 5.9.

Unit 3: Chapter 10: 10.2, 10.9, 10.14, Chapter 11: 11.2, 11.3.

Unit 4: Chapter 12: 12.1 – 12.6.

Unit 5: Chapter 17: 17.1 – 17.7.

REFERENCES

- 1. P. K. Gupta & D. S. Hira, "Operations Research", S. Chand & Company Ltd., New Delhi, 2002.
- 2. J. K. Sharma, "Operations Research theory and its applications", 2nd Edition, Macmillan, New Delhi, 2006.
- 3. R. Panneerselvam, "Operations Research", Prentice Hall of India Pvt. Ltd., New Delhi, 2002.

COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1			1	1
CO 2	3	2		1				1	1
CO 3	3	2		1				1	1
CO 4	3	2		1	1			1	1
CO 5	3	2		1	1			1	1
Total	15	10	0	5	3	0	0	5	5
Scaled	3	2		1	1			1	1
value									

 $1-5 \rightarrow 1$, 6-10 \rightarrow 2, 11 – 15 \rightarrow 3

XMT603B Stochastic Processes 4 2 0 6 C P A 6 0 0 0 L T P H PREREQUISITE: Probability and Statistics COURSE OUTCOMES: COURSE OUTCOMES: COU: Find and Solve Generating function, Laplace transforms, Laplace transforms of a probability distribution function, - Difference equations, Differential difference equations. CO2: Define and Explain with Examples Stochastic Process, Notion, Specification, Stationary Process, Markov Chains, and Higher transition probabilities, Stability of Markov system, and Limiting behavior. CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/I models, Birth and death process in queuing stability, queuing systems, M/M/I models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT II Generating function - Laplace transforms – Laplace transforms of a probability distribution function – Difference Equations Differential difference equations – Matrix analysis. UNIT II Classification of states and chains – Determination of higher transition probabilities. UNIT III Classification of states and chains – Determination of higher transition probabilities. UNIT III Classification of states and chains – Determination of higher transition probabilities – Stability Unition probabilities – Stability Classification of States and chains – Determination of higher transition probabilities – Stability Unition of the process of t
COURSE OUTCOMES: Course outcomes:
PREREQUISITE: Probability and Statistics COURSE OUTCOMES: Course outcomes: CO1: Find and Solve Generating function, Laplace transforms, Laplace transforms of a probability distribution function, - Difference equations, Differential difference equations. CO2: Define and Explain with Examples Stochastic Process, Notion, Specification, Stationary Process, Markov Chains, and Higher transition probabilities. CO3: Define and Explain Classification of states and chains, Determination of higher transition probabilities, Stability of Markov system, and Limiting behavior. CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/I models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II 18 Classification of states and chains – Determination of higher transition probabilities. UNIT III 18 Classification of states and chains – Determination of higher transition probabilities. Stability – Stability of Markov States and Chains – Determination of higher transition probabilities.
PREREQUISITE: Probability and Statistics COURSE OUTCOMES: Course outcomes: CO1: Find and Solve Generating function, Laplace transforms, Laplace transforms of a probability distribution function, - Difference equations, Differential difference equations. CO2: Define and Explain with Examples Stochastic Process, Notion, Specification, Stationary Process, Markov Chains, and Higher transition probabilities. CO3: Define and Explain Classification of states and chains, Determination of higher transition probabilities, Stability of Markov system, and Limiting behavior. CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT II Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III Classification of states and chains – Determination of higher transition probabilities – Stabilitys of the process of a probabilities – Stability of the process of t
COURSE OUTCOMES: Course outcomes: CO1: Find and Solve Generating function, Laplace transforms, Laplace transforms of a probability distribution function, - Difference equations, Differential difference equations. CO2: Define and Explain with Examples Stochastic Process, Notion, Specification, Stationary Process, Markov Chains, and Higher transition probabilities. CO3: Define and Explain Classification of states and chains, Determination of higher transition probabilities, Stability of Markov system, and Limiting behavior. CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT II Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III Classification of states and chains – Determination of higher transition probabilities – Stability.
CO1: Find and Solve Generating function, Laplace transforms, Laplace transforms of a probability distribution function, - Difference equations, Differential difference equations. CO2: Define and Explain with Examples Stochastic Process, Notion, Specification, Stationary Process, Markov Chains, and Higher transition probabilities. CO3: Define and Explain Classification of states and chains - Definition and examples - Higher transition probabilities. CO5: Define and Explain Stochastic Process and related distributions, Generalization of Poisson Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I
CO1: Find and Solve Generating function, Laplace transforms, Laplace transforms of a probability distribution function, - Difference equations, Differential difference equations . CO2: Define and Explain with Examples Stochastic Process, Notion, Specification, Stationary Process, Markov Chains and Higher transition probabilities. CO3: Define and Explain Classification of states and chains, Determination of higher transition probabilities, Stability of Markov system, and Limiting behavior. CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III 18 Classification of states and chains – Determination of higher transition probabilities – Stability
transforms, Laplace transforms of a probability distribution function, - Difference equations, Differential difference equations . CO2: Define and Explain with Examples Stochastic Process, Notion, Specification, Stationary Process, Markov Chains, and Higher transition probabilities. CO3: Define and Explain Classification of states and chains, Determination of higher transition probabilities, Stability of Markov system, and Limiting behavior. CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III Classification of states and chains – Determination of higher transition probabilities – Stability
function, - Difference equations, Differential difference equations . CO2: Define and Explain with Examples Stochastic Process, Notion, Specification, Stationary Process, Markov Chains, and Higher transition probabilities. CO3: Define and Explain Classification of states and chains, Determination of higher transition probabilities, Stability of Markov system, and Limiting behavior. CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT II Classification of states and chains – Determination of higher transition probabilities – Stability
equations . CO2: Define and Explain with Examples Stochastic Process, Notion, Specification, Stationary Process, Markov Chains, and Higher transition probabilities. CO3: Define and Explain Classification of states and chains, Determination of higher transition probabilities, Stability of Markov system, and Limiting behavior. CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT II Classification of states and chains – Determination of higher transition probabilities – Stability
CO2: Define and Explain with Examples Stochastic Process, Notion, Specification, Stationary Process, Markov Chains, and Higher transition probabilities. CO3: Define and Explain Classification of states and chains, Determination of higher transition probabilities, Stability of Markov system, and Limiting behavior. CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT II Classification of states and chains – Determination of higher transition probabilities – Stability
Process, Notion, Specification, Stationary Process, Markov Chains, and Higher transition probabilities. CO3: Define and Explain Classification of states and chains, Determination of higher transition probabilities, Stability of Markov system, and Limiting behavior. CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III 18 Classification of states and chains – Determination of higher transition probabilities – Stability
Chains, and Higher transition probabilities. CO3: Define and Explain Classification of states and chains, Determination of higher transition probabilities, Stability of Markov system, and Limiting behavior. CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III 18 Classification of states and chains – Determination of higher transition probabilities – Stability
CO3: Define and Explain Classification of states and chains, Determination of higher transition probabilities, Stability of Markov system, and Limiting behavior. CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III Classification of states and chains – Determination of higher transition probabilities – Stability
chains, Determination of higher transition probabilities, Stability of Markov system, and Limiting behavior. CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III 18 Classification of states and chains – Determination of higher transition probabilities – Stability
Stability of Markov system, and Limiting behavior. CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III 18 Classification of states and chains – Determination of higher transition probabilities – Stability
CO4: Define and Explain Poisson Process and related distributions, Generalization of Poisson Process, Birth and death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III 18 Classification of states and chains – Determination of higher transition probabilities – Stability
death process. CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III Classification of states and chains – Determination of higher transition probabilities – Stability
CO5: Define and Explain Stochastic Process in queuing and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III Classification of states and chains – Determination of higher transition probabilities – Stability
and reliability, queuing systems, M/M/1 models, Birth and death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III 18 Classification of states and chains – Determination of higher transition probabilities – Stability
death process in queuing theory, Multi-channel models and Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III 18 Classification of states and chains – Determination of higher transition probabilities – Stability
Bulk Queues. UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III Classification of states and chains – Determination of higher transition probabilities – Stability
UNIT I Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III 18 Classification of states and chains – Determination of higher transition probabilities – Stability
Generating function - Laplace transforms – Laplace transforms of a probability distribution function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III 18 Classification of states and chains – Determination of higher transition probabilities – Stability
function - Difference Equations Differential difference equations – Matrix analysis. UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III Classification of states and chains – Determination of higher transition probabilities – Stability
UNIT II Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III Classification of states and chains – Determination of higher transition probabilities – Stability
Stochastic Process - Notion – Specification – Stationary Process - Markov Chains – Definition and examples – Higher transition probabilities. UNIT III Classification of states and chains – Determination of higher transition probabilities – Stability
Chains – Definition and examples – Higher transition probabilities. UNIT III Classification of states and chains – Determination of higher transition probabilities – Stability
UNIT III Classification of states and chains – Determination of higher transition probabilities – Stability
•
of Markov system – Limiting behaviour.
UNIT IV 18
Poisson Process and related distributions – Generalization of Poisson Process – Birth and
death process.
UNIT V: 18
Stochastic Process in queuing and reliability – queuing systems – M/M/1 models – Birth and
death process in queuing theory – Multi channel models – Bulk Queues.
LECTURE TUTORIAL TOTAL
60 30 90
<u>, , , , , , , , , , , , , , , , , , , </u>
TEXTBOOK

Chapters 1,2,3 (Omitting 3.6,3.7,3.8), Chapter (Omitting 4.5 and 4.6) and Chapter 10

Chapter 2 – Sec 2.1, 2.2, 2.3 &

(Omitting 10.6, 10.7). Unit 1: Chapter 1 – Sec 1.1, 1.2, 1.3, Appendix A 1, 2, 3, 4. Unit 2:

Chapter 3 – Sec 3.1, 3.2. Unit 3: Chapter 3 – Sec 3.4, 3.5, 3.6. Unit 4: Chapter 4 – Sec 4.1, 4.2, 4.3, 4.4 Unit 5: Chapter 10 – Sec 10.1, 10.2, 10.3, 10.4, 10.5

REFERENCES

- 1. Samuel Karlin, "First Course in Stochastic Processes" 2nd Edition, Elsevier, 2012.
- 2. Srinivasan and Metha, "Stochastic Processes" TATA McGraw Hill, 1978.
- 3. U. Narayan, "Elements of Applied Stochastic Processes" A. John wiley & Sons, 2002.

COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled	3	2		1	1		1	1	1
value									

 $1-5 \rightarrow 1$, 6-10 \rightarrow 2, 11 – 15 \rightarrow 3

4. a.Curriculum and Syllabus of the programme – After Revision –B.Sc Maths

B.Sc. (Mathematics) Syllabus After Revision REGULATION – 2022 SEMESTER – I

Category	Code	Course Name	L			S	I	7)
Part – I	Part – I XGT101/XFT101 Tamil – I/ Foundational Tamil- I				0	0	3	3
Part – II	XGE102	English – I	3	0	0	0	3	3
Core -1	XMT103	Differential Calculus and Trigonometry	4	-))	5	-
Core -2	XMT104	Analytical geometry 3-D and Integral Calculus	4))	j	-
Allied -1	XPG105	Physics – I	3)	ŀ	ļ
Ailled -1	XPG106	Physics Practical - I	0)	ļ.)	ŀ	2
UMAN - 1	XUM001	Human Ethics, Values, Rights and Gender Equality	1))	-	2	
		Mentoring	0))))
		Library/E-Library	0))))
		Extension Activities (NSS, NCC, NSO,RRC and YRC)	0)))	2)
		Total	6	}		-	0	1

	SEMESTER II												
Category	Code	Course Name	L	T	P	SS	H	C					
Part – I	XGT201/ XFT201	Tamil – II/ Foundational Tamil – II	3	þ	0	0	3	3					
Part – II	XGE202	English – II	3	1	0	0	3	3					
Core-3	XMT203	Classical Algebra	3	1	0	0	4	4					
Core-4	XMT204	Sequence and Series	3	1	0	0	4	4					
Allied -2	XPG205	Physics – II	3	1	0	0	4	4					
Timea 2	XPG206	Physics Practical - II	0	0	4	0	4	2					
SEC -1	XMT207	Skill Based Elective Course - 1	2	0	0	0	2	2					
UMAN - 2	XUM002	Environmental Studies	1	0	0	1	2	1					
		Field Visit/Industrial Visit	0	0	0	0	0	2					
		Mentoring	0)	0	0	1	0					
		Library/E-Library	0)	0	0	1	0					
		Extension Activities (NSS, NCC, NSO, RRC and YRC)	0)	0	0	2	0					
		Total	18	3	4	1	30	25					

	SEMESTER III											
Category	Code	Course Name	L	T	P	SS	Н	С				
Core -5	XMT301	Differential Equations and Laplace Transforms	3	1	0	0	5	4				
Core -6	XMT302	Vector Calculus, Fourier Series and Fourier Transforms	3	1	0	0	5	4				
	XMT303	Mathematical Statistics - 1	3	1	0	0	5	4				
Allied -3	XMT304	Mathematical Statistics Practical –1	0	0	4	0	4	2				
GE - 1		Open Elective- I	3	0	0	0	3	3				
SEC - 2	XMT305	Skill Based Elective Course –2- Quantitative Aptitude - II	2	0	0	0	2	2				
UMAN -3	XUM003	Disaster Management	1	0	0	1	2	1				
		Mentoring	0	0	0	0	1	0				
		Library/E-Library	0	0	0	0	1	0				
		Extension Activities (NSS, NCC, NSO,RRC and YRC)	0	0	0	0	2	0				
		Total	15	3	4	1	30	20				

	SEMESTER IV										
Category	Code	Course Name	L	T	P	SS	H	C			
Core –7	XMT401	Abstract Algebra	3	1	0	0	5	4			
Core -8	XMT402	Mechanics	3	1	0	0	5	4			
Allied - 4	XMT403	Mathematical Statistics – 2	3	1	0	0	5	4			
Amed - 4	XMT404	Mathematical Statistics Practical – 2	0	0	4	0	4	2			
GE- 2		Open Elective- 2	3	0	0	0	3	3			
SEC – 3	XMT405	Skill Based Elective Course –3-	2	0	0	0	2	2			
SEC - 3	AWI1403	Quantitative Aptitude - III									
UMAN - 4	XUM004	Introduction to Entrepreneurship	1	0	0	1	2	1			
OMAN - 4		Development									
		Mentoring	0	0	0	0	1	0			
		Library/E-Library	0	0	0	0	1	0			
		Extension Activities (NSS, NCC,	0))	0	2	0			
		NSO,RRC and YRC)									
		Total	15	3	4	1	30	20			

		SEMESTER V						
Category	Code	Course Name	L	T	P	SS	Н	С
Core -9	XMT501	Real Analysis	3	1	0	0	5	4
Core-10	XMT502	Discrete Mathematics	3	1	0	0	4	4
DSE – 1	XMT503	Discipline Specific Course - 1	4	1	0	0	5	5
DSE-2	XMT504	Discipline Specific Course - 2	4	1	0	0	5	5
GE -3		Open Elective- 3	3	0	0	0	3	3
NME	XMT505	Fundamentals of Data Science & R Programming	1	1	0	0	2	2
SEC-4	XMT506	Skill Based Elective Course –4- Quantitative Aptitude -IV	2	0	0	0	2	2
IPT	XMT507	IPT	0	0	0	0	0	4
		Mentoring	0	0	0	0	1	0
		Library/E-Library	0	0	0	0	1	0
		Extension Activities (NSS, NCC, NSO,RRC and YRC)	0))	0	2	0
		Total	20	5	0	0	30	29

		SEMESTER VI						
Category	Code	Course Name	L	T	P	SS	H	C
Core -11	XMT601	Complex Analysis	3	_	0	0	5	4
Core -12	XMT602	Operations Research	3	1	0	0	4	4
DSE - 3	XMT603	Discipline Specific Course -	4	1	0	0	5	5
		3						
DSE - 4	XMT604	Discipline Specific Course -	4	1	0	0	5	5
		4						
Project	XMT605	Project	1	4	0	0	5	6
UMAN - 5	XUM005	Cyber Security	1	0	0	1	2	1
		Mentoring	0	0	0	0	1	0
		Library/E-Library	0	0	0	0	1	0
		Extension Activities (NSS,	0	0	0	0	2	2
		NCC, NSO,RRC and YRC)						
		Total	16	8	0	1	30	27

Note:

 $\begin{array}{cccc} L-Lecture & T-Tutorial & P-Practical \\ SS-Self Study & H-Hours & C-Credits \end{array}$

LIST OF SKILL BASED ELECTIVE COURSES

Category	Semester	Code	Course Name	L	T	P	Н	C
SEC -1	II	XMT207	Quantitative Aptitude – I	2	0	0	0	2
SEC -2	III	XMT305	Quantitative Aptitude - II	2	0	0	0	2
SEC -3	IV	XMT405	Quantitative Aptitude - III	2	0	0	0	2
SEC -4	V	XMT506	Quantitative Aptitude – IV	2	0	0	0	2

LIST OF DISCIPLINE SPECIFIC ELECTIVE COURSES

Semester - V

DSE – 1 (Any one of the following)

Category	Code	Course Name	L	T	P	Н	C
DSE1A	XMT503A	Numerical Methods	4	1	0	5	5
DSE1B	XMT503B	Number Theory	4	1	0	5	5

DSE - 2 (Any one of the following)

Category	Code	Course Name	L	T	P	Н	C
DSE2A	XMT504A	Graph Theory	4	1	0	5	5
DSE2B	XMT504B	Mathematical Modeling	4	1	0	5	5

Semester – VI

DSE - 3 (Any one of the following)

Category	Code	Course Name	L	T	P	H	C
DSE3A	XMT603A	Fuzzy sets and its applications	4	1	0	5	5
DSE3B	XMT603B	Introduction to Industry 4.0	4	1	0	5	5

DSE – 4 (Any one of the following)

Category	Code	Course Name	L	T	P	Н	C
DSE4A	XMT604A	Astronomy	4	1	0	5	5
DSE4B	XMT604B	Stochastic Processes	4	1	0	5	5

	E CODE	XGE102	L	T	P	SS	Н	
COURSI	E NAME	English - I	3	0	0	0	3	
C:P: A -	3:0:0		l			1		-
COURSI	E OUTCOM	ES:	Do	mai	n	L	evel	
CO1 R	ecall the basic	grammar and using it in proper context	Co	gniti	ve	Reme	mbe	riı
CO2 E .	xplain the pro	ocess of listening and speaking	Co	gniti	ve	Under	rstan	di
CO3 A	<i>dapt</i> importar	t methods of reading	Co	gniti	ve	Cr	eatin	g
CO4 D	emonstrate th	ne basic writing skills	Co	gniti	ve	Under	rstan	di
SYLLAF	BUS						ЮН	JR
UNIT I	Grammai	•						
i. Major b	pasic grammat	tical categories ii. Notion of correctness and attitu	de to	erroi	•		9)
correction	n							
UNIT II	Listening	and speaking						
iii. Impor	tance of lister	ning skills iv. Problems of listening to unfamiliar	dialec	ts			9)
v. Aspect		ation and fluency in speaking vi. Intelligibility in	speak	ing				
UNIT III		8						
		ding skills viii. Introducing different types of text	s – nai	rrati	ve,		9)
descriptiv	ve, extrapolati	ve						
UNIT IV	Basics of							
UINII IV		Writing						
			i. Exp	andi	ng a		9)
ix. Introd	uction to writ	ing skills x. Aspects of cohesion and coherence x					9)
ix. Introd	uction to writ		sente	nces			9)
ix. Introd given sen coherent	uction to writ tence without paragraph xiii	ing skills x. Aspects of cohesion and coherence x affecting the structure xii. Reorganizing jumbled	sente s, noti	nces ices,	into	a		
ix. Introd given sen coherent	uction to writ tence without paragraph xiii	ing skills x. Aspects of cohesion and coherence x affecting the structure xii. Reorganizing jumbled. Drafting different types of letters (personal note	sente s, noti	nces	into	a	30	
ix. Introd given sen coherent complain	uction to writ itence without paragraph xiii ts, appreciation	ing skills x. Aspects of cohesion and coherence x affecting the structure xii. Reorganizing jumbled. Drafting different types of letters (personal note	sente s, noti	nces ices,	into	a		
ix. Introd given sen coherent complain	uction to writ stence without paragraph xiii ts, appreciation	ing skills x. Aspects of cohesion and coherence x affecting the structure xii. Reorganizing jumbled. Drafting different types of letters (personal note	sente es, noti	ices,	Ho	a		
ix. Introd given sen coherent complain Text boo 1. Aceved	uction to writ itence without paragraph xiii ts, appreciation	ing skills x. Aspects of cohesion and coherence x affecting the structure xii. Reorganizing jumbled. Drafting different types of letters (personal note on, conveying sympathies etc.)	sente s, noti	nces ices, 'otal	Horaco	a		
ix. Introd given sen coherent complain Text boo 1. Aceved Deuter, M	uction to writ itence without paragraph xiii ts, appreciation	ing skills x. Aspects of cohesion and coherence x affecting the structure xii. Reorganizing jumbled a Drafting different types of letters (personal note on, conveying sympathies etc.) TM (1999) Reading and Writing Skills. London, o. Oxford Advanced Learner's Dictionary of Eng.	sente s, noti	nces ices, 'otal	Horaco	a		
ix. Introd given sen coherent complain Text boo 1. Aceved Deuter, M. Edition).	uction to writ tence without paragraph xiii ts, appreciation ks do and Gower M et.al. (2015) New Delhi, (ing skills x. Aspects of cohesion and coherence x affecting the structure xii. Reorganizing jumbled a Drafting different types of letters (personal note on, conveying sympathies etc.) TM (1999) Reading and Writing Skills. London, o. Oxford Advanced Learner's Dictionary of Eng.	sente s, noti	nces ices, 'otal	Horaco	a		
ix. Introd given sen coherent complain Text boo 1. Aceved Deuter, M Edition). 3. Eastwo	uction to writ itence without paragraph xiii ts, appreciation lks do and Gower M et.al. (2015) New Delhi, Cood, John (200	ing skills x. Aspects of cohesion and coherence x affecting the structure xii. Reorganizing jumbled at Drafting different types of letters (personal note on, conveying sympathies etc.) TM (1999) Reading and Writing Skills. London, oxford Advanced Learner's Dictionary of Engineering DUP	Sente es, notification of the sente est est est est est est est est est e	nces ces, 'otal nan	Hon 2.	a		
ix. Introd given sen coherent complain Text boo 1. Aceved Deuter, M. Edition). 3. Eastword Hadefi Hedge, T.	luction to write tence without paragraph xiii ts, appreciation with ts, appreciation wit	ing skills x. Aspects of cohesion and coherence x affecting the structure xii. Reorganizing jumbled a Drafting different types of letters (personal note on, conveying sympathies etc.) M (1999) Reading and Writing Skills. London, oxford Advanced Learner's Dictionary of Engine DUP No. Oxford Practice Grammar. Oxford, OUP Hadefield (2008). Reading Games. London, Ling. Oxford, OUP	T Longrish (N	nces ces, 'otal nan	Hon 2.	a		
ix. Introd given sen coherent complain Text boo 1. Aceved Deuter, M Edition). 3. Eastwo 4. Hadefi Hedge, T 6. Jolly, I	oks do and Gower M et.al. (2015) New Delhi, (2004) Deld, Chris and (2005). Write David (1984).	ing skills x. Aspects of cohesion and coherence x affecting the structure xii. Reorganizing jumbled. Drafting different types of letters (personal note on, conveying sympathies etc.) M (1999) Reading and Writing Skills. London, one of the conveying sympathies etc.) M (1999) Reading and Writing Skills. London, one of English Dup Oxford Advanced Learner's Dictionary of English Over the conveying sympathies etc.) Hadefield (2008). Reading Games. London, Ling. Oxford, OUP Writing Tasks: Stuidents' Book. Cambridge, CU	T Longrish (N	nces ces, 'otal nan	Hon 2.	a		
ix. Introd given sen coherent complain Text boo 1. Aceved Deuter, M. Edition). 3. Eastwo 4. Hadefi Hedge, T. 6. Jolly, I. 7. Klippe	cluction to writtence without paragraph xiii ts, appreciation to writtence without paragraph xiii ts, appreciation ts, appreciation ts, appreciation ts, appreciation ts, appreciation ts, appreciation to and Good, John (2005). Written (200	ing skills x. Aspects of cohesion and coherence x affecting the structure xii. Reorganizing jumbled a Drafting different types of letters (personal note on, conveying sympathies etc.) M (1999) Reading and Writing Skills. London, on Oxford Advanced Learner's Dictionary of Engine DUP Oxford Practice Grammar. Oxford, OUP I J Hadefield (2008). Reading Games. London, Ling. Oxford, OUP Writing Tasks: Stuidents' Book. Cambridge, CU 984). Keep Talking. Oxford, OUP	Longraish (Nongman)	nces ces, 'otal nan	Hon 2.	a		
ix. Introd given sen coherent complain Text boo 1. Aceved Deuter, M. Edition). 3. Eastwo 4. Hadefi Hedge, T. 6. Jolly, I. 7. Klippe 8. Sarasw	luction to write tence without paragraph xiii ts, appreciation ts, appreci	ing skills x. Aspects of cohesion and coherence x affecting the structure xii. Reorganizing jumbled a Drafting different types of letters (personal note on, conveying sympathies etc.) M (1999) Reading and Writing Skills. London, a Oxford Advanced Learner's Dictionary of Engine DUP Oxford Practice Grammar. Oxford, OUP I J Hadefield (2008). Reading Games. London, Ling. Oxford, OUP Writing Tasks: Stuidents' Book. Cambridge, CU 984). Keep Talking. Oxford, OUP Organized Writing 1. Hyderabad, Orient Blacks	Longraish (Nongman)	nces ces, 'otal nan	Hon 2.	a		
ix. Introd given sen coherent complain Text boo 1. Aceved Deuter, M. Edition). 3. Eastwo 4. Hadefi Hedge, T. 6. Jolly, I. 7. Klippe 8. Sarasw 9. Swan,	luction to writtence without paragraph xiii ts, appreciation ts, appreciat	ing skills x. Aspects of cohesion and coherence x affecting the structure xii. Reorganizing jumbled a Drafting different types of letters (personal note on, conveying sympathies etc.) M (1999) Reading and Writing Skills. London, on Oxford Advanced Learner's Dictionary of Engine DUP Oxford Practice Grammar. Oxford, OUP I J Hadefield (2008). Reading Games. London, Ling. Oxford, OUP Writing Tasks: Stuidents' Book. Cambridge, CU 984). Keep Talking. Oxford, OUP	Longraish (Nongman)	nces ces, 'otal nan	Hon 2.	a		

	0 1						т.	
Course						L	T	P
Course			தமி	ழ் - I		3	0	0
Prerequ						L	T	P
C:P:	:A	3:0:0				3	0	0
			COURSE OUTCOMES		DOM	IAIN		LE
			After the completion of tl	ne course, students will b	e able to			
			டையாளம் காணுதல்) பல		Cognit	ive	Re	mei
			தொண்டுகளைத் தமிழ்மெ	ாழி மூலம் அறிந்து				
	கொள்ள							
			செய்தல்) பன்முகப் பரி		Cognit	ive	Re	mei
85	கவிதைகளை இலக்கியங்கள் மூலம் அறிந்து கொள்ளல்.							
			க்குதல்) தமிழ் மகளிரின்	உரையாடல் சிறப்புச்	Cognit	ive	Un	der
6	ிசய்திக	ப்திகளை உணர்தல்.						
CO4 A	4 Apply (விளக்குதல்) பல்வேறு கலைத்துறைச் சார்ந்த பிரிவுகள், Cognitive Apply							ply
LC	மண்ணின் பாடல்கள் குறித்துத் தெளிவு பெறல்.							
CO5 Analyze (பகுத்தல்) சிறுகதைகளின் தோற்றம் மற்றும் வளர்ச்சி Cognitive An							An	alyz
ந	ிலை ந	ாடகங்க	ள் - கவிதை குறித்துத்	தெளிவு பெறுதல்.				
	5மிழ் அ	ு றிஞர்க	ரும் தமிழ்த்தொண்டும்				9	
கு-1								
				இலக்குவனார், உ.வே.சா			۰.	
				ாயகம் பிள்ளை தொடர்ப	ான செயத	நகள்,	சுமூ	ந்த
தொடர்க அலகு-2			பயாகள். கள் (மரபுக்கவிதை, புது	ക്കു കിതക))		
			V 7 1				_	
				ா, கண்ணதாசன், உடும	லை நாராu	∐600T €	5ഖി,	
			ண சுந்தரம், மருதகாசி				-/-	
			றாதது, சு.சு.லசல்லப்பா, நூர் மோகனரங்கன் தொ	மு.மேத்தா, ஈரோடு தமி _! நாரன செய்சிகள்	ழ்வபன், உ	யுபதுல	ரகு	ШПб
அலகு-3			நாடல்கள், தமிழ் மகளிரில			9		
				, பெரியார், அண்ணா, (ப		_	കേവ	
				ரி தெரியார், ஆண்ணா, ரு பிதே மில்லத் சமுதாயத்			المارود	٠,
				பிர்தம்மாள், டாக்டர் (ழத்				
			யம்மை, ராணி மங்கம்மா	• •	2		,	
அ லகு-4	1	நாட்டுப்ப	றுப்பாடல்			9		
தாலாட்டுப்பாடல், தொழில் பாடல், ஒப்பாரிப் பாடல்.								
அலகு-5 இலக்கிய வரலாறு 9								
உரைநன	டை, சிற	தகதை,	நாடகம், கவிதைகள்.					
	ECTURE		TUTORIAL	PRACTICAL		TO	ΓAL	
	45 45							

பார்வை நூல்கள்:

- 1. முனைவர் ந.லெனின், தாலாட்டுப் பாடல், பிப்ரவரி 2015, பிருந்தா பதிப்பகம், தஞ்சாவூர்
- 2. கோ. வெங்கடாசலம் (தொ.ஆ.) 2005, தமிழ் இலக்கிய கைவிளக்கு, அன்னை சரஸ்வத பதிப்பகம், குடியாத்தம்.
- முனைவர் இராஜா வரதராஜா பயன்முறைத் தமிழ் ஜுன் 2015, சிவகுரு பதிப்பகம், 7 கிழக்குச் செட்டித்தெரு, பரங்கிமலை, சென்னை – 16.

Table 1: Assessment Template

S.No.	Task	Marks
1	CA 1 (Descriptive + MCQ)	15
2	CA 2 (Class Test- Descriptive + MCQ)	15
3	CA3 (Rubrics prepared by the Course Teacher)	20
4	CA 4- End Semester Pattern (MCQ – 20% + Descriptive 80%)	50
	Total	100

(Course Name		Differential Calculus and Trigonometry		T	P	C
(Course (Code	XMT103	3	1	0	4
C	P	A		L	T	SS	Н
4	0	0		3	2	0	5
Prere	equisite		Higher Secondary level Mathematics				

On successful completion of this course, the students will be able to:

	Course Outcomes	Domain	Level
CO 1	Apply Leibnitz rule to solve problems related to nth order derivatives	Cognitive	Applying
CO 2	Identify maxima and minima of multivariable functions	Cognitive	Applying
CO 3	Apply the concept and principles of differential calculus to find the curvature, radius of curvature, envelopes, evolute and involute of different curves	Cognitive	Applying
CO 4	Demonstrate the expansions of trigonometric functions in terms of θ	Cognitive	Understanding
CO 5	Demonstrate the relations between hyperbolic	Cognitive	Understanding

functions and circular functions UNIT 1 **Successive Differentiation** 12 Successive Differentiation - The nth derivative - Standard results - Trigonometrical transformation -Formation of equations involving derivatives – Leibnitz formula for the nth derivative of a product – Proof UNIT 2 Partial Differentiation, Maxima and minima of functions of two variables Successive partial derivatives – Function of function rule – Total differential coefficient – Implicit functions – Homogeneous functions – Partial derivatives of a function of two functions – Taylor's expansion of f(x,y) - Maxima and minima of functions of two variables - Lagrange's method of undetermined multipliers. UNIT 3 Envelopes, Curvature of Plane curve Envelopes – Method of finding envelope – Curvature – Cartesian formula for radius of curvature – The coordinates of centre of curvature – Evolute and involute – Radius of curvature when the curve is given in polar co-ordinates – p-r equation; pedal equation of a curve – Chord of curvature. **UNIT 4** Expansions 12 Expansions of cos $n\theta$ and sin $n\theta$ - Expansion of tan $n\theta$ in powers of tan θ - Expansion of tan A + $B + C + \cdots$ - Examples on formation of equations – Expansions of $\cos^n \theta$ and $\sin^n \theta$ in terms of functions of multiples of θ - Expansion of cos θ and sin θ in a series of ascending powers of θ . **Hyperbolic Functions and Logarithms of Complex quantities** Hyperbolic functions – Relations between hyperbolic functions – Relations between hyperbolic functions and circular functions – Inverse hyperbolic functions – Separation into real and imaginary parts – Logarithms of complex quantities – logarithm of x + iy - General value of logarithm of x + iy. Lecture 45 Tutorial **Practical** Total 15 **Text Books** Calculus Volume I, S. Narayanan and T.K. ManicavachagomPillay, S. Viswanathanpvt. Ltd., 2014. Unit I: Chapter III (All sections) Unit II: Chapter VIII (Sections 1, 3, 4 & 5) Unit III: Chapter X (All sections) Trigonometry, Narayanan and T.K. ManicavachagomPillay, S. Viswanathanpyt. Ltd., 2014. Unit IV: Chapter III Unit V: Chapter IV (All sections) & Chapter V (Section 5) E-References https://math.Korea. Edu/math en/calculus/syllabus. Do [Korea University] https://explore course. Stanford. edu/search?q=MATH21 [Stanford University]

		COs VS POS							
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	13	8	15	5	3	5	5
SCALED	3	3	3	2	3	1	1	1	1
VALUE	3		3		3	1	1	1	<u>.</u>

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

Course Code		Analytical Geometry 3-D and Integral Calculus					3	1	Δ	<u> </u>	
Course Code				XMT104					1	0	4
C	P	A						L	T	SS	H
4	0	0						3	2	0	5
Pre	requis	site	High	er Secondary lev	el Mathe	matics					
On	succes	sful comp	letion of	this course, the s	students w	ill be able to:					
	Course Outcomes Doma							ain	Level		
CO	CO 1 Identify the given lines are coplanar lines and shortest distance Cognitive between the skew lines								tive	Applying	
								Cogni	ognitive Apply		lying
CO	3									Applying	
CO	4	Apply the concepts of Beta and Gamma functions and their Cognitive properties to evaluate definite integral.								Applying	
CO										Applying	
UN	IT 1	volume	or the reg	,ion bounded by t	our ves					1	12
Ana	lytical	Geometr	y 3-D – '	The plane – The s	straight lir	ne – Coplanar lines	- skew l	ines S.	D.		
UN	IT 2									1	12
Sph	ere- T	angent pla	ne- inter	rsection of two sp	heres – E	quation of tangent	plane to	a spher	e.		
UN	IT 3									1	12
Pro	perties	of definite	e integra	ls - Reduction fo	rmulae of	the types:					
		$\int x^n \cos x$	ax dx,∫s	$\sin^n x dx, \int \cos^n x dx$	x dx,∫sin¹	$^{n} x \cos^{n} x dx$, $\int tan$	n x dx				
UN	IT 4									1	12
					_	e of $\Gamma(n)$ – Recurre	ence forn	nula of	gamma	function	on –
	perties IT 5	of beta fu	nction –	relation between	beta and	gamma functions.				1	12
Mu	tiple i	ntegral: D	ouble int	egral – Evaluatio	n of doub	le integral - change	e of orde	er of inte	egration	– Pola	ar
	-	_		s - Application of					8		
	ectur	e	45	Tutorial 15 Practical 0		0	Tot		al		
Ι				1	1					1	

Text Books

Analytical geometry: T.K. M. Pillai, 2015 (for Unit I & II) Calculus Vol II: T.K. M. Pillai, 2015 (for Unit III, IV & V)

Unit I : Chapter 2 (Sec: 1-7), Chapter 3 (Sec: 1-8)

Unit II : Chapter 4 (Sec: 1-8)

Unit III : Chapter 1 (Sec: 11, 13.1 – 13.6)

Unit IV : Chapter 7 (Sec: 2 – 5) Unit V : Chapter 5 (Sec: 2 – 5.4)

References

Solid Geometry- M.L. Khanna (Jainath& Co Publishers, Meerut)

Mathematics for BSc – Vol I and. II - P. Kandasamy. Thilagarathy (S. Chand and Co-2004)

E-References

https://sites.math.washington.edu/~m125/ [Washington University]

https://courses.maths.ox.ac.uk/node/28 [Oxford University]

COs vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	13	8	15	5	3	5	5
SCALED	2	2	2	2	2	1	1	1	1
VALUE	3	3	3	4	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

Course Name		Name	Physics –I	L	T	P	C
	Course Code		XPG105	3	1	0	4
C	P	A		L	Т	SS	Н
4	0	0		3	1	0	4

Prerequisite Basic knowledge of physics concepts.

On successful completion of this course, the students will be able to:

	Course Outcomes	Domain	Level
CO 1	Identify the principles of elasticity, derive expression for twisting couple and determine rigidity modulus of a wire.	Cognitive	Remember, Understand and Apply
CO 2	Describe sound, propagation, perception analysis of acoustical wave and effect echoes in building.	Cognitive	Understand and apply

CO 3	Recall basic concepts of specific heat capacity List the laws of	Cognitive	Remember and
GO 4	thermodynamics.		understand
CO 4	Understand Interference, diffraction and identify their	Cognitive	Understand and Analyze
CO 5	applications.		Remember
COS	Recall the general properties of atoms and nucleus, Discuss the	Cognitive	Understand,
	various models and Analyze various applications of X-ray.		,
			analyze
TT. TT. 4			•
	Elasticity Strain –Hooke' law-Different moduli of elasticity - Twisting couple of modulus by Static Torsion method –Bending of beams–Experimental	•	12 Determination o
Stress – S Rigidity n of Young	Strain –Hooke' law-Different moduli of elasticity - Twisting couple o modulus by Static Torsion method –Bending of beams–Experimental's modulus by non-uniform bending.	•	12 Determination of the determination
Stress – S Rigidity n	Strain –Hooke' law-Different moduli of elasticity - Twisting couple o modulus by Static Torsion method –Bending of beams–Experimental	•	12 Determination of
Stress – S Rigidity n of Young UNIT 2	Strain –Hooke' law-Different moduli of elasticity - Twisting couple o modulus by Static Torsion method –Bending of beams–Experimental's modulus by non-uniform bending.	l methods for t	12 Determination of the determination 12 stics of buildings
Stress – S Rigidity n of Young UNIT 2	Strain –Hooke' law-Different moduli of elasticity - Twisting couple of modulus by Static Torsion method –Bending of beams–Experimental 's modulus by non-uniform bending. Sound on – characteristic of musical sound - Loudness – unit of loudness –	l methods for t	12 Determination of the determination 12 Stics of building

UNIT 4 Optics 12

Interference – determination of thickness of a thin wire by air wedge method – Diffraction – Fresnel's and Fraunhofer diffraction – Diffraction grating–Dispersion- Optical instrument: Spectrometer - Determination of refractive index and dispersive power of a prism.

UNIT 5 Atomic and Nuclear physics

12

Atom Physics – Electron - spin quantum numbers – Pauli's exclusion principle – Excitation and ionization potentials – Photoelectric effect –X – rays: continuous and characteristic–applications.

Nuclear Physics: Nuclear size -mass - charge - Mass defect - Binding energy - packing fraction -binding energy - nuclear fission - nuclear fusion - chain reaction -nuclear reactor.

Lecture 45 Internal 15 Fractical 0 Iotal 00		45	Tutorial	15	Practical	0	Total	60
---	--	----	----------	----	-----------	---	-------	----

Text Books

A Text book of sound - N. Subrahmanyam and BirjLal. Publisher, Vikas Publishing House, 1985 Allied physics – A. Sundaravelusamy, Priya Publications, Karur-2.

Properties of matter – R. Murugesan. S Chand & Co. Pvt. Ltd., New Delhi. 2

References

Concepts of Modern Physics, Arthur Beiser, 6th Ed, McGraw Hill (India) Pvt. Ltd., 2009

.Senthil Kumar G., "Engineering Physics", 2nd Enlarged Revised Edition, VRB Publishers, Chennai, 2011.

E-References[MOOC, SWAYAM, NPTEL, Websites etc.]

Biswanath Banerjee and Amit Shaw, Department of Civil Engineering IIT Kharagpur, "THEORY OF

ELASTICITY", National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/courses/105/105/105105177/

NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
3	3	3	2	3	1	1	1	1
3	3	3	2	3	1	1	1	1
3	3	2	1	3	1	0	1	1
3	3	3	3	3	1	2	1	1
3	3	3	3	3	1	2	1	1
15	15	14	11	15	5	6	1	1
3	3	3	3	3	1	2	1	1
	3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3	3 3 3 2 3 3 3 2 3 3 2 1 3 3 3 3 3 3 3 3 3 3 3 3	3 3 2 3 3 3 2 3 3 3 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 2 3 1 3 3 3 2 3 1 3 3 2 1 3 1 3 3 3 3 3 1 3 3 3 3 1 3 3 3 3 1	3 3 3 2 3 1 1 3 3 3 2 3 1 1 3 3 2 1 3 1 0 3 3 3 3 1 2 3 3 3 3 1 2 3 3 3 3 1 2	3 3 3 2 3 1 1 1 3 3 3 2 3 1 1 1 3 3 2 1 3 1 0 1 3 3 3 3 1 2 1 3 3 3 3 1 2 1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

C	ourse	Name	Physics Practical - I	L	Т	P	C
C	ourse	Code	XPG106	0	0	4	2
C	P	A		L	Т	P	Н
0.5	1	0.5		0	0	4	4

Prerequisite Basic knowledge of physics concepts.

On successful completion of this course, the students will be able to:

	Course Outcomes	Domain	Level			
CO 1	Describe sound, propagation, perception analysis of acoustical wave.	Cognitive Psychomotor	Knowledge			
CO 2	Identify the principles of elasticity, derive expression for twisting couple and determine rigidity modulus of a wire.	Psychomotor: Affective:	Analyze, Mechanism Respond			
CO 3	Cognitive Psychomotor	Evaluate				
CO 4	CO 4 Explain interference & diffraction and analysis various application of diffraction and interference. Psychomotor:					
CO 5	Know the determination of wavelength and size of the micro particle.	Cognitive Psychomotor	Comprehensio n, Evaluate			
Ex. No	Experiments (Any Eight Experiments)					
1.	CO2					
2.		CO2				
3.	Lee's disc –Specific heat capacity of the bad conductor.		CO3			

Lect	ture	0	Total	30								
	Laser grating – Determination of wave length and To find the size of the micro particle.											
10.	Laser	grating – Dete	ermination of wa	ve lengtl	and To find the s	ize of the micr	0	CO5				
9.	Deter	mination speci	fic heat capacity	using S	pherical Calorimet	er		CO3				
8.	Sonometer – verification of laws											
7.	Air w	Air wedge – Thickness of wire										
6.	Spect	rometer gratin	g – a wavelengtl	n of vario	ous spectral line by	normal incide	nce	CO4				
5.	Spect	rometer – Refi	ractive index of	a prism				CO4				
4.	Speci	fic heat capaci	ty of liquid – Ne	ewton's l	aw of cooling			CO3				

Text Books

- C. L. Arora, "B.Sc. Practical Physics", S. Chand & Company Ltd. Ram Nagar, New Delhi, 2007.
- R. K. Shukla & Anchal Srivastava. "Practical Physics," New Age International (P) Ltd, Publishers, New Delhi, 2006.

References

Indu Prakash and Ramakrishna, "A Text Book of Practical Physics," 11th Edition, KitabMahal, New Delhi, 2011.

C. Ouseph, K. Rangarajan, "A Text Book of Practical Physics", Volume I & II, S. Viswanathan Publishers, 1997.

E-References

Amal Kumar Das, Department of Physics, IIT Kharagpur ,"Experimental Physics – II", National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/courses/115/105/115105120/

S. Srinivasan, Department of Electrical Engineering, IIT Madras, "Digital Circuits and Systems", National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/courses/117/106/117106086/

	COs vs POs												
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO 1	3	3	3	3	3	1	2	1	1				
CO 2	3	3	3	3	3	1	2	1	1				
CO 3	3	3	3	3	3	1	3	1	1				
CO 4	3	3	3	3	3	1	2	1	1				
CO 5	3	3	3	3	3	1	3	1	1				
TOTAL	15	15	15	15	15	5	12	5	5				
SCALED	2	2	2	2	2	1	2	1	1				
VALUE	3	3	3	3	3	1	3	1	1				

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

1. Engineering Mathematics, Vol.I. P.Kandasamy, K.Thilagavathi, K.Gunavathi, S.Chand& sons, second edition, 1996

Unit – I: Matrices: Chapter 5

Text Books

2. Algebra Volume I, T.K.M. Pillay, T. Natarajan and K.S.Ganapathy, S. Viswanathan (Printers & Publishers) Pvt. Ltd., 2015.

Unit II : Chapter 6 (Sections 1 - 13)
Unit III : Chapter 6 (Sections 15 - 19, 24)
Unit IV : Chapter 3 (Sections 1, 5, 6, 8, 10)
Unit V : Chapter 4 (Sections 1, 2, 3, 5, 6, 9)

		Course Outo	comes			Domaii	n	Level				
CO 1	UtilizeCayle a given mati	-	orem to	find inverse and p	ower of	Cognitiv	e App	olying				
CO 2	Utilize New polynomial		find the	sum of the roots of	a given	Cognitiv	e App	olying				
CO 3				que to find the mynomial function	aximum	Cognitiv	e App	olying				
CO 4		Utilize the binomial theorem to expand polynomials and to identify terms for a given polynomial										
CO 5	CO 5 Utilize logarithmic functions to solve equations involving Cognitive exponential functions											
UNIT 1		12										
transformati UNIT 2	ion – Cayley- THEORY O	Hamilton theorem F EQUATIONS	n – Diag S	ear transformation on a maintain of a maintain of a maintain of the tric functions of th	atrix — ort	thogonal n	natrices.	12				
UNIT 3	TRANSFOR	RMATION OF I	EQUAT	wers of the roots of IONS s- standard forms	•		rease the	12 e roots of a				
		quantity- Remo	val of ter	rms- Descartes' ru	e of sign.			12				
theorem for summation	a rational incof a series	lex – particular o	cases of	reatest coefficient the Binomial expa				test terms –				
UNIT 5 EXPONENTIAL AND LOGARITHMIC SERIES 12												
Exponential limit – the exponential theorem – summation – Logarithmic series - modification of the logarithmic series – summation												
logaritillic	Lecture 45 Tutorial 15 Practical 0											

References

- 1. S. Arumugam and A. ThangapandiIssac, Theory of equations and Trigonometry, New Gamma Publishing House, Palayamkottai, 2011.
- 2. A. Singaravelu, Engineering Maths Volume I, Meenakshi Agency 2019 Edition

E-References

- 1. https://explore course. Stanford. edu/search?q=MATH51[Stanford University]
- 2. https://courses.maths.ox.ac.uk/node/37616[Oxford University]

	COs vs POs												
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO 1	3	3	3	2	3	1	1	1	1				
CO 2	3	3	3	2	3	1	1	1	1				
CO 3	3	3	3	2	3	1	1	1	1				
CO 4	3	3	3	2	3	1	1	1	1				
CO 5	3	3	3	2	3	1	1	1	1				
TOTAL	15	15	15	10	15	5	5	5	5				
SCALED VALUE	3	3	3	2	3	1	1	1	1				

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

Semester II

Co	ourse N	ame	Sequence and Series	L	T	P	C
Co	ourse C	Code	XMT204	3	1	0	4
C	P	A		L	Т	SS	Н
4	0	0		3	1	0	4

Prerequisite Basic knowledge of numbers.

On successful completion of this course, the students will be able to:

	Course Outcomes	Domain	Level
CO 1	Determine if an infinite sequence is bounded, monotonic or oscillating	Cognitive	Evaluating
CO 2	Determine the series whether it is convergent or divergent by using the appropriate tests.	Cognitive	Understanding
CO 3	Determine the series whether it is convergent or divergent by using the appropriate tests.	Cognitive	Evaluating
CO 4	Identify the sequence of partial sum for a given infinite series	Cognitive	Applying

CO 5	Demonstrate	e the concepts a	about the	Weirstrass inequa	lities and	Cognitiv	e Une	derstandin
	Cauchy's ineq	uality						
UNIT 1		•						12
		* *	wer bound	ds – Bounded seq	uences - n	nonotonic	sequenc	ce always
	nit, finite or inf	inite.						
UNIT 2								12
				on of convergence of $\sum \frac{1}{n^p}$ and Geo	_			·
•		U	U	$\stackrel{\smile}{\sim}$ n^p				
				n^p				12
UNIT 3 Cauchy's ro	ot test and their	simple problem		n^p e's test – Absolute			s - Alter	
UNIT 3 Cauchy's roseries with s		simple problem		n			s - Alter	
UNIT 3 Cauchy's roseries with s UNIT 4	ot test and their	r simple problem s.	ns - Raabe	e's test – Absolute	ly conver		s - Alter	native
UNIT 3 Cauchy's roseries with s UNIT 4	ot test and their	r simple problem s.	ns - Raabe	n	ly conver		s - Alter	native
Cauchy's roseries with s UNIT 4 Summation UNIT 5	ot test and their imple problem of series – Sum	r simple problems.	ns - Raabe	e's test – Absolute	ely converg	gent serie		native 12
Cauchy's roseries with s UNIT 4 Summation UNIT 5	ot test and their imple problem of series – Sum	r simple problems.	ns - Raabe	e's test – Absolute s – recurring seri	ely converg	gent serie		native 12

1. Algebra Volume I, T.K.M. Pillay, T. Natarajan and K.S.Ganapathy, S. Viswanathan (Printers & Publishers) Pvt. Ltd., 2015.

Unit I : Chapter 2 (Sec: 4 – 7), Pages: 20 - 40

Unit II :Chapter 2 (Sec: 8 – 16), Pages: 41 - 68

Unit III:Chapter 2 (Sec: 17 – 19, 21 – 24), Pages: 68 - 88

Unit IV:Chapter 5 (Sec: 1 – 7), Pages: 246 – 281

2. Algebra Volume II, T.K.M. Pillay, T. Natarajan and K.S.Ganapathy, S. Viswanathan (Printers & Publishers) Pvt. Ltd., 2015.

Unit V: Chapter 4 (Sec: 1 – 12), Pages: 179 - 212

Reference

1. Sequence and series: S. Arumugam and Isaac, New Gamma Publishing House – 2002 Edition

E-References

- 1. https://courses.maths.ox.ac.uk/node/43846[Oxford University]
- 2. https://explore course. Stanford. edu/search?q=MATH21[Stanford University]

	COs vs POs											
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9			
CO 1	3	3	3	3	3	1	2	1	1			
CO 2	3	3	2	1	3	1	0	1	1			
CO 3	3	3	3	3	3	1	2	1	1			
CO 4	3	3	3	2	3	1	1	1	1			
CO 5	3	3	2	1	3	1	0	1	1			

TOTAL	15	15	13	11	15	5	5	5	5
SCALED	2	2	2	2	2	1	1	1	1
VALUE	3	3	3	3	3	I	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

Cor	urse Na	ıme	Physics –II	L	T	P	С
Co	urse C	ode	XPG205	3	1	0	4
C	P	A		L	T	SS	Н
2.8	0.8	0.4		3	1	0	4

Prerequisite Basic knowledge of Physics.

On successful completion of this course, the students will be able to:

	Course Outcomes	Domain	Level
CO 1	Recall Ohms law, learn about resistors and capacitors and apply knowledge to calibrate low voltmeter using potentiometer.	Cognitive	Understand
CO 2	Recall Biot—Savart's law, explain current passing through straight conductor, coil and distinguish various properties of magnetic materials.	Cognitive	Remember, understand, analyze
CO 3	Recall basic of semiconductor distinguish different types of diodes and their applications.	Cognitive	Understand apply
CO 4	Examine the structure of number systems, perform the conversion among different number systems and discuss operation of all the gates.	Cognitive	Understand Apply
CO 5	Illustrate reduction of logical expressions using Boolean algebra and k-map.	Cognitive	Understand Apply
UNIT I	ELECTRICITY		9+3

Ohms law – Law of resistance in series in parallel – Specific resistance – Capacitors: capacitors in series and parallel – Kirchhoff's laws – Wheatstone's Bridge – Carey Foster's bridge – measurement of specific resistance - Potentiometer – Principle – Calibration of voltmeter.

Electromagnetic induction: Laws of electromagnetic induction – self-induction - Mutual induction of coil.

UNIT II MAGNETISM

9+3

Biot–Savart's law – Ampere's circuital law – Magnetic properties of materials: magnetic intensity, magnetic induction, permeability, magnetic susceptibility – brief introduction of dia, para and ferro magnetic materials. – Magnetic field due to current carrying conductor – field along the axis of a coil.

UNIT III SEMICONDUCTOR

9+3

Properties of semiconductors – Types of semiconductors – PN junction diode –V I Characteristics – full wave

and Bridge rectifiers – Zener diode– characteristics of Zener diode – Zener diode as voltage regulator– Photo Diode and Uses.

UNIT IV NUMBER SYSTEM AND LOGIC GATES

9+3

Number System: Decimal – Binary – Octal – Hexadecimal Number Systems – Binary Arithmetic Operations – Addition – Subtraction – Multiplication – Division – 1's Complement – 2's Complement Binary Operation. Logic Gates: Basic Logic Gates AND, OR, NOT, NAND, NOR, XOR, X – NOR – Universal Building Blocks.

UNIT V BOOLEAN ALGEBRA AND KARNAUGH MAPS

9+3

Basic law of Boolean algebra – Demorgan's theorems – Duality Theorem – Reducing Boolean expressions Using Boolean laws – Minterms – Maxterms – Sum of Products – Products of Sums. 3 Variable K – Map – 4 - Variable K – Map sum of product only –Simplification of K-Maps.

Lecture	45	Tutorial	15	Practical	0	Total	60

Text Books

- 1. R Murugeshan, "Modern Physics", 3rd Edition, S. Chand Publishing, New Delhi, 2004.
- 2. Electricity and Magnetism, R. Murugesan, Revised Edition, S. Chand & Co., New Delhi, Reprint (2014)
- 3. M. Morris Mano and Michael D. Ciletti, —Digital Designl, 5th Edition, Pearson, 2014.
- 4. Albert Paul Malvino; Donald P Leach; GoutamSaha, "Digital principles and applications", 8th Edition, McGraw Hill Education, New Delhi, 2015.

References

- 1. Thomas L. Floyd, —Digital Fundamentals, 10th Edition, Pearson Education Inc, 2011.
- 2. Jacob Millman, Christos Halkias, "Analog and Digital Circuit and Systems", 2nd Edition, Tata McGraw-Hill Education, 2017.

E-References

1. Biswanath Banerjee and Amit Shaw, Department of Civil Engineering IIT Kharagpur, "THEORY OF ELASTICITY", National Programme on Technology Enhanced Learning (NPTEL),

https://nptel.ac.in/courses/105/105/105105177/

- 2. Prof. GoutamSaha, Department of Electronics & Communication Engineering IIT Kharagpur, "DIGITAL ELECTRONIC CIRCUITS", National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/courses/108/101/108101091/
- 3. Prof. S. Srinivasan Department of Electrical Engineering, IIT Madras, "Digital Circuits and Systems", National Programme on Technology Enhanced Learning (NPTEL),

https://nptel.ac.in/courses/117/106/117106086/

COs vs POs											
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		
CO 1	3	3	2	1	3	1	0	1	1		
CO 2	3	3	3	3	3	1	2	1	1		
CO 3	3	3	3	2	3	1	1	1	1		
CO 4	3	3	3	2	3	1	1	1	1		
CO 5	3	3	3	2	3	1	1	1	1		
TOTAL	15	15	14	10	15	5	5	5	5		
SCALED	3	3	2	2	3	1	1	1	1		
VALUE	3	3	3	2	3	1	1	1	1		

$\mathbf{0}$ - No Relation, $\mathbf{1}$ - Low Relation, $\mathbf{2}$ - Medium Relation, $\mathbf{3}$ - High Relation

Co	ourse	Name	Physics Practical - II	L	T	P	С	
C	ours	e Code	XPG206	0	0 0 4			
C	P	A		L	T	P	Н	
0.5	1	0.5		0 0 4		4		
Prei	requi	site	Basic knowledge of Physics.					
On s	ucce	ssful com	apletion of this course, the students will be able to:					
			Course Outcomes	Doma	in	Le	vel	

Measure different p Recall Magnetic solenoid Construct simple construct Know the conceptual Experiments (Any Potentiometer – low	ohysical parameter. chysical parameter. laws, explain ircuits using logical difference between	current ic gates. ween ana	maximum accuracy. passing through coil	Affect Cognit Psychon Affect Cognit Psychon Affect Cognit Psychon	ive notor notor ive notor notor cive notor	Analyze, Mechanism Respond Evaluate Analyze, Mechanism Synthesis Comprehensio n
Recall Magnetic solenoid Construct simple conceptual Know the conceptual Experiments (Any Potentiometer – low	laws, explain ircuits using logi al difference betw	current ic gates. ween ana ents)	passing through coil	Psychon Affect Cognit Psychon Cognit	notor notor ive iive notor cive C	Analyze, Mechanism Synthesis Comprehensio
Construct simple conseptual Know the conceptual Experiments (Any Potentiometer – low	ircuits using logical difference between the Experimental Experime	ic gates. ween ana		Affect Cognit Psychon Cognit	ive cive notor cive C	Mechanism Synthesis Comprehensio
Know the conceptual Experiments (Any Potentiometer – low	al difference between the control of	ween ana	log and digital circuits.	Psychon Cognit	notor cive C	Comprehensio
Experiments (Any Potentiometer – low	Eight Experime	ents)	log and digital circuits.	_		-
Potentiometer – low				·		
	range voltmeter	r				
Canary Eastan's Duid	range volumeter	I				CO1
Carey Foster's Bridg	ge – Specific Re	sistance	Determination			CO1
Deflection Magneto	meter – Tan A.					CO3
Field along the axis	of the coil					CO3
P.O Box – Specific	Resistance					CO1
Logic gates (AND,	OR, NOT) – usii	ng discre	te components			CO5
NAND & NOR as U	Jniversal Logic g	gates.				CO5
Basic Logic gates IC	C's verification.					CO2
Verification of De N	Morgan's theorem	m				CO4
Half adder & Half s	ubtractor using b	basic gate	2.			CO4
re 0	Tutorial	0	Practical	30	Total	30
F L F	Field along the axis P.O Box – Specific Logic gates (AND, MAND & NOR as U Basic Logic gates IO Verification of De Malf adder & Half s	Field along the axis of the coil P.O Box – Specific Resistance Logic gates (AND, OR, NOT) – usi JAND & NOR as Universal Logic Basic Logic gates IC's verification. Verification of De Morgan's theorem Half adder & Half subtractor using I	Field along the axis of the coil P.O Box – Specific Resistance Logic gates (AND, OR, NOT) – using discretance NAND & NOR as Universal Logic gates. Basic Logic gates IC's verification. Verification of De Morgan's theorem. Half adder & Half subtractor using basic gates.	Field along the axis of the coil P.O Box – Specific Resistance Logic gates (AND, OR, NOT) – using discrete components NAND & NOR as Universal Logic gates. Basic Logic gates IC's verification. Verification of De Morgan's theorem. Half adder & Half subtractor using basic gate.	Field along the axis of the coil P.O Box – Specific Resistance Logic gates (AND, OR, NOT) – using discrete components NAND & NOR as Universal Logic gates. Basic Logic gates IC's verification. Verification of De Morgan's theorem. Half adder & Half subtractor using basic gate.	Field along the axis of the coil P.O Box – Specific Resistance Logic gates (AND, OR, NOT) – using discrete components NAND & NOR as Universal Logic gates. Basic Logic gates IC's verification. Verification of De Morgan's theorem. Half adder & Half subtractor using basic gate.

- 1. C. L. Arora, "B.Sc. Practical Physics", S. Chand & Company Ltd. Ram Nagar, New Delhi, 2007.
- 2. R. K. Shukla & Anchal Srivastava. "Practical Physics," New Age International (P) Ltd, Publishers, New Delhi, 2006.

References

- 1. Indu Prakash and Ramakrishna, "A Text Book of Practical Physics," 11th Edition, KitabMahal, New Delhi, 2011.
- 2. C. Ouseph, K. Rangarajan, "A Text Book of Practical Physics", Volume I & II, S. Viswanathan Publishers, 1997.

E - References

Amal Kumar Das, Department of Physics, IIT Kharagpur, "Experimental Physics – II", National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/courses/115/105/115105120/

S. Srinivasan, Department of Electrical Engineering, IIT Madras, "Digital Circuits and Systems", National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/courses/117/106/117106086/

	COs vs POs												
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO 1	3	3	3	3	3	1	2	1	1				
CO 2	3	3	3	3	3	1	3	1	1				
CO 3	3	3	3	3	3	1	2	1	1				
CO 4	3	3	3	3	3	1	3	1	1				
CO 5	3	3	3	3	3	1	3	1	1				
TOTAL	15	15	15	15	15	5	13	5	5				
SCALED	2	3	2	2	3	1	2	1	1				
VALUE	3	3	3	3	3	1	3	1	1				

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

C	Course I	Name	Quantitative Aptitude I	L T P C						
(Course	Code	XMT207	2	0	0	2			
C	P	A		L	T	P	Н			
2	0	0		2	0	0	2			

Prerequisite Basic mathematical knowledge.

On successful completion of this course, the students will be able to:

	Course Outcomes	Domain	Level
CO1	Explain the basic concepts of Numbers, H.C.F. &L.C.M of Numbers and to solve the problems	Cognitive	Understanding
CO2	Explain the basic concepts of Decimal Fractions, Simplification and to solve the problems	Cognitive	Understanding

	Average and to	a calvia tha mualila		oots & Cube Roots	<i>'</i>	Cognitive	e Understandii	
		o soive the proble	ems					
CO4	_	-	Problems	on Numbers, Prob	lems on	Cognitive	Unde	erstanding
	Ages and to so	olvethe problems						
CO5	_	-	Surds & I	ndices, Percentage	and to	Cognitive	Unde	erstanding
	solvethe Proble	ems						
UNIT 1							6	
Numbers, F	H.C.F. &L.C.M	of Numbers.						
UNIT 2		6						
Decimal Fra	actions, Simplif	fication						
UNIT 3		_					6	
Square Roo	ots & Cube Roo	ts, Average.						
UNIT 4							6	
Problems or	n Numbers, Pro	oblems on Ages.						
UNIT 5							6	
Surds & Inc	dices, Percentag	ge.						
Lecture	30	Tutorial	0	Practical	0	То	otal 30	
Text Book								

R.S. Aggarwal, Quantitative Aptitude for Competitive Examinations, S Chand; 20th edition (2013)

References

- 1. Banking awareness by SangramKeshari Rout and SoumyaRanjanBehera, B.K. Publications Pvt. Ltd.; Second edition (2014).
- 2. UGC-CSIR NET/SET by Dr. Pawan Sharma and Anshuman, Arihant Publication.
- 3. Fast Track Objective Arithmetic by Rajesh Verma, ArihantPublication, Edition 2012.

E-References

- 1. www.careerbless.com
- 2. www.jagranjosh.com
- 3. www.bestguru.com

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	2	1	3	1	0	1	1

CO 4	2	2	2	1	2	1	0	1	1
CO 4	3	3		1	3	1	U	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	10	5	15	1	0	5	5
SCALED	2	2	2	1	2	1	0	1	1
VALUE	3	3	2	1	3	1	U	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

SEMESTER III

	Course	Name	Differential Equations and Laplace Transforms L T				C
	Course	e Code	XMT301	3	1	0	4
C	P	A		L	T	P	Н
4	0	0		3	2	0	5
Pr	erequis	site	Knowledge of Ordinary and Partial Derivatives				

On successful completion of this course, the students will be able to:

	Course Outcomes	Domain	Level
CO1	Identify the solution of a given partial differential equation which is in the form of Clairaut's.	Cognitive	Applying
CO2	Demonstrate the methods for finding particular integral of the partial differential equation	Cognitive	Understanding
CO3	Utilize the concepts of variation of parameters for solving a given partial differential equations	Cognitive	Applying
CO4	Solve a given partial differential equation using Lagrange's Method	Cognitive	Applying
CO5	Solve second order differential equations using Laplace Transforms	Cognitive	Applying
UNIT 1		1	9+3

Formation of differential equation – equation of the first order and the first degree - exact differential equation – rules for finding integrating factors – Equation of first order, but of higher degree - Clairaut's form.

UNIT 2 9+3

Linear differential equations with constant coefficients: Particular Integral – methods for finding P.I. - linear equations with variable coefficients.

UNIT 3 9+3

Variation of parameters- Total differential equation Pdx+Qdy+Rdz=0- rules for integrating

Pdx + Qdy + Rdz = 0

UNIT 9+3

4

Partial Differential Equation- Four standard types- Lagrange's method for solving Pq + Qq = R

UNIT 5 9+3

Laplace transform – Laplace transform of periodic functions – Some general theorems - Inverse transforms

- Solving second order differential equations using Laplace transform - problems

	Lecture	45	Tutorial	15	Practical	0	Total	60
--	---------	----	----------	----	-----------	---	-------	----

Text Book

1. Calculus, volume III, S. Narayanan, T.K.M. Pillai, S. Viswanathan Pvt. Ltd., 2014.

Unit I: Chapter 1 (sec: 1-6), Pages: 1-38

Unit II: Chapter 2 (sec: 1 - 4, 8), Pages: 49 - 75, 81 - 89

Unit III: Chapter 2 (sec: 10), Chapter 3 (sec: 7), Pages: 91-95, 108-114

Unit IV: Chapter 4 (sec: 1 – 6), Pages: 115 – 145 Unit V: Chapter 5 (sec: 1 – 8), Pages: 154 – 189

References

Engineering Mathematics- A. Singaravelu, Meenakshi Agency, 2022.

Ordinary and Partial Differential Equations- M.D. Raisinghania and R.S. Aggarwal. S.Chand& Company Ltd, New Delhi, 2022.

COs vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	14	9	15	5	4	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $\textbf{1-5} \rightarrow \textbf{1, 6-10} \rightarrow \textbf{2, 11-15} \rightarrow \textbf{3}$

	Course	e Name	Vector Calculus, Fourier Series and Fourier Transforms	L	T	T P				
(Cours	e Code	XMT302	3	1	0	4			
C	P	A		L	T	P	Н			
4	0	0		3	2	0	5			
Pre	requi	site	Knowledge In Differentiation, Integration							
On	succe	ssful comp	pletion of this course, the students will be able to:							
			Course Outcomes	Dom	ain	Le	vel			
CO	1 I	ldentify		Cognit	ive	Applyii	ng			
CO	2 I	dentify		Cognit	ive	Applying				
CO	3 I	dentify		Cognit	ive	Applyii	ng			
CO	4 I	dentity		Cognit	ive	Applying				
CO	5 I	dentify		Cognit	ive	Applying				
UN	IT V	VECTOR	DIFFERENTIATION			9.	+3			
1										
Dif	ferent	iation of v	ectors – Gradient, Divergence and Curl.							
UN	IT	VECTOR	INTEGRATION			9.	+3			
_										
2										
	egratio	on as inver	se of differentiation – The line integral – Surface integral – G	Gauss's D	iverg	ence the	orem,			
Inte	_		se of differentiation – The line integral – Surface integral – Cotoke's theorem (Without Proof).	Gauss's D	iverg	ence the	orem,			
Inte Gre	en's t	heorem, S		Gauss's D	iverg		orem,			
Inte Gre	en's t	heorem, S	toke's theorem (Without Proof).	Gauss's D	iverg					
Inte Gre UN 3	een's the IT I	heorem, S FOURIER functions -	toke's theorem (Without Proof). R SERIES - Fourier series – Dirichlet's Conditions – Even and odd fund			9.	+3			
Inte Gre UN 3 Per Hal	een's the IT III III III III III III III III III	heorem, S FOURIER functions - ge cosine se	toke's theorem (Without Proof). R SERIES - Fourier series – Dirichlet's Conditions – Even and odd funceries.			9- age sine s	+3 series			
Inte Gree UN 3 Per Hal	een's the IT III III III III III III III III III	heorem, S FOURIER functions - ge cosine se	toke's theorem (Without Proof). R SERIES - Fourier series – Dirichlet's Conditions – Even and odd fund			9- age sine s	+3			
Gre UN 3 Per: Hal UN 4	IT Historia	heorem, S FOURIER functions - ge cosine so FOURIER	toke's theorem (Without Proof). R SERIES - Fourier series – Dirichlet's Conditions – Even and odd funceries.			9- age sine s	+3 series			
Inte Gre UN 3 Per Hal UN	iodic f f rang IT I	heorem, S FOURIER functions - ge cosine so FOURIER	toke's theorem (Without Proof). R SERIES - Fourier series – Dirichlet's Conditions – Even and odd funceries. R SERIES			9- nge sine s	+3 series -			
Inte Gre UN 3 Per Hal UN 4	iodic f f rang IT I	heorem, S FOURIER functions - ge cosine so FOURIER	toke's theorem (Without Proof). R SERIES - Fourier series – Dirichlet's Conditions – Even and odd funceries. R SERIES - Parseval's Theorem, Harmonic Analysis.			9- nge sine s	series			

cosine and sine transform.

Lecture	45	Tutorial	15	Practical	0	Total	60

Text Book

1. P. Kandasamyand K. Thilagavathy, Mathematics Volume IV: Vector Calculus, Fourier series and Fourier Transforms, S. Chand&Company Ltd, New Delhi, 2004.

Unit I: Vector Calculus: Pages 1 – 23. Unit II: Vector Calculus: Pages 24 - 50

Unit III: Fourier series: Pages 93 - 144

Unit IV: Fourier series: Pages 145 – 174, 176 – 182 Unit V: Fourier Transforms: Pages 196 - 226

References

- 1. Vector Algebra and Analysis- T.K.M. Pillai, Anand Book Depot. 2009.
- 2. Calculus Volume III- T.K.M. Pillai, Anand Book Depot, 1991.
- 3. Engineering Mathematics- A. Singaravelu, Meenakshi Agency, 2022.

E-References

https://courses.maths.ox.ac.uk/node/43944[Oxford University]

https://courses.maths.ox.ac.uk/node/43955 [Oxford University]

https://www.maths.cam.ac.uk/undergrad/files/coursesIA.pdf [Cambridge]

COs	T/C	PO	3
CUS	VS	T U)

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	10	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

_	ourse	Name		Maun		Statistics- I		L	T	P	•	C
C	ourse	e Code			XMT.	303		3	1	0 P		4
C	P	A						L	T	P	,	Н
4	0	0						3	2	0)	5
Pre	requi	site	Basic l	knowledge of st	atistics.							
On s	succe	ssful comp	oletion o	f this course, th	e student	s will be able to:						
				Course Out	comes			Dom	ain		Le	vel
CO	1	Expla	in the co	oncepts of discr	ete and co	ontinuous random va	riable	Cogn	itive	Unde	erst	anding
CO	2	Expla	in the co	oncepts of two-	dimensio	nal random variable		Cogn	itive	Unde	erst	anding
CO	3			nt generating fi iven random va		or finding expectation	on and	Cogn	itive	Appl	yin	ıg
CO	4	_	in the oution an	concepts of d Exponential of		,	Samma	Cogn	itive	Unde	erst	anding
CO	5				nt of the	given random variab	oles by	Cogn	itive	Appl	yin	ıg
		way o	f regress	ion analysis								
UN	IT 1	way o.	regress	ion analysis							9+	-3
Ran disti	dom '	variables-	distribut	ion function- d		ndom variable – prob probability density fu	•				cret	te
Ran listi iunc	dom	variables-	distribut	ion function- d		_	•				cret	te
Ran distr func UN UN Two	dom ribution. IT 2 o-dimerginal	variables- on function ensional ra Distributi	distribut n - conti andom v on Func	ion function- d nuous random v ariable: joint pr tion – Stochasti	robability ic indepen	mass function – condence -Mathematica	unction -	– contin	nuous ility fu	distrib	outi 9+ n -	te on
Randistr Tunc UNI Two Mar	dom ribution. IT 2 o-dimerginal	variables- on function ensional ra Distributi	distribut n - conti andom v on Func	ion function- d nuous random v ariable: joint pr	robability ic indepen	mass function – condence -Mathematica	unction -	– contin	nuous ility fu	distrib	outi 9+ n -	te on -3
Randistr func UNI Two Mar expe	dom ribution. IT 2 D-dimerginal ectation IT 3 G.F –	variables- on function ensional ra Distributi on – Prope	distribut n - conti andom v on Func- erties of	ion function- d nuous random v ariable: joint pr tion – Stochasti variance – simp	robability ic independent	mass function – condence -Mathematica	unction -	probab tations	nuous ility fu - Prop	distrib	9+ n - of	-3
Ran UNI Two Mar Expe	dom ribution. IT 2 D-dimerginal ectation IT 3 G.F –	variables- on function ensional ra Distributi on – Prope	distribut n - conti andom v on Func- erties of	ion function- d nuous random v ariable: joint pr tion – Stochasti variance – simp	robability ic independent	mass function – condence -Mathematicams only.	unction -	probab tations	nuous ility fu - Prop	distrib	9+ n - of	-3
Randistriction (Inc.)	dom ribution. IT 2 D-dimerginal ectation IT 3 G.F - 0 7.	variables- on function ensional ra Distributi on – Prope Cumulants	distribut n - conti andom v on Func erties of	ion function- d nuous random v ariable: joint pr tion – Stochasti variance – simp	robability ic independent ple proble ons - Bin	mass function – condence -Mathematicams only.	unction - utinuous al Expect	probab tations	nuous ility fu	unction perties mode	9+ n - of 9+ and	-3 -3
Ran listr unc UNI Two Mar expe UNI M.Conly UNI Nor	dom ribution. IT 2 D-dimerginal ectation IT 3 G.F - 0 7.	variables- on function ensional ra Distributi on – Prope Cumulants	distribut n - conti andom v on Func erties of	ion function- d nuous random v ariable: joint pr tion – Stochasti variance – simp	robability ic independent ple proble ons - Bin	mass function – condence -Mathematicams only.	unction - utinuous al Expect	probab tations	nuous ility fu	unction perties mode	9+ n - of 9+ and	-3 -3 -3 on.
Ran listr func UNI Two Mar expe UNI M.Conly UNI Nor	dom ribution. IT 2 D-dimerginal ectation IT 3 G.F - 0 IT 4 IT 4 IT 5	variables- on function ensional ra Distributi on – Prope Cumulants	distribut n - conti andom v on Funct erties of s - Chara	ion function- d nuous random v ariable: joint pr tion – Stochasti variance – simp acteristic Functi	robability ic independent ple proble ons - Bin	mass function – condence -Mathematicams only.	unction - utinuous al Expect butions -	probab tations — Mom	ility fu	unction perties mode	9+ of 9+ utic 9+	-3 -3 -3 on.
Randistrifuncturing UNI	dom ribution. IT 2 D-dimerginal ectation IT 3 G.F - 0 maldi IT 5 relation	variables- on function ensional ra Distribution – Prope Cumulants estribution- on: Karl l	distribut n - conti andom v on Funct erties of s - Chara - Gamma	ion function- denuous random variable: joint protion – Stochastivariance – simple deteristic Function – Butteristic Function – Butterist	robability ic independence proble cons - Bin Beta distri	mass function – conndence -Mathematica ms only. omial, Poisson distribution (without prob	unction - utinuous al Expect butions lems) - I	probab tations — Mom	ility fu	unction perties mode	9+ of 9+ utic 9+	-3 -3 -3 on.
Randistriunce UNI Two Marexpe UNI M.Conly UNI Two Two UNI Two	dom ribution. IT 2 D-dimerginal ectation IT 3 G.F - 0 maldi IT 5 relation	variables- on function ensional ra Distribution – Prope Cumulants estribution on: Karl l	distribut n - conti andom v on Funct erties of s - Chara - Gamma	ion function- denuous random variable: joint protion – Stochastivariance – simple deteristic Function – Butteristic Function – Butterist	robability ic independence proble cons - Bin Beta distri	mass function – conndence -Mathematica ms only. omial, Poisson distribution (without probability for probability density for probability density for probability density for probability for probability density for probabil	unction - utinuous al Expect butions lems) - I	probab tations — Mom	ility fu	unction perties mode a listribute per region	9+ of 9+ utic 9+	-3 -3 -3 on.
Randistrifunción (Martin Martin M.Conly UN) Nor UN Corrected (La Control Martin M.Conly UN) La Corrected (Martin M.Conly UN) La Corrected (Martin M.Conly UN)	dom vribution. IT 2 D-dimerginal ectation IT 3 G.F - 0 IT 4 maldi IT 5 relation	variables- on function ensional ra Distribution – Prope Cumulants estribution- on: Karl la on coeffici	distribut n - conti andom v on Funct erties of s - Chara - Gamma	ion function- denuous random variable: joint protion – Stochastivariance – simple deteristic Functional distribution- But coefficient of operties of regree	cobability ic independent proble proble ons - Bin correlations consistence of the correlations correlations correlations correlations consistence of the correlations correlat	mass function – conndence -Mathematica ms only. omial, Poisson distribution (without probe on–Rank correlation efficients – related pr	butions - lems) - I	probab tations — Mom	nuous ility fu - Propenents, nents,	unction perties mode a listribute per region	9+ of 9+ utic 9+	-3 -3 -3 on. -3 ssion

(11th revised edition)

Unit I : Chapter 5 (Sec. 5.1 - 5.4) Unit II : Chapter 5 (Sec. 5.5- 5.5.6)

Chapter 6 (Sec. 6.1 - 6.5) Unit III: Chapter 7 (Sec.7.1-7.3.1)

Chapter8(Sec. 8.4, 8.4.1, 8.4.2, 8.4.5, 8.4.6, 8.5, 8.5.2 - 8.5.5)

Unit IV: Chapter 9 (Sec.9.2, 9.2.1-9.2.3, 9.2.5, 9.2.11, 9.3, 9.5, 9.8)

Unit V : Chapter 10 (Sec. 10.2-10.4& 10.7)

Chapter 11 (Sec.11.1-11.2.2)

Reference

Dr. P.R. Vittal "Mathematical Statistics" Margham Publications Chennai, 2009.

E-References

https://science.korea.edu/science_en/undergraduate/under_math3.do

[Korea University college of science]

http://www.bath.ac.uk/catalogues/2019-2020/ma/MA10211.html

[University of Bath, United Kingdom

COs vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	12	7	15	5	2	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

Apply variable Utilizing to find discrete Find to distribute Apply given part Apply given part of the first term of the	the concept of given distribution to find the area of the problems the concept of correlation and regression to solve the problem	Doma Cognit Cognit Cognit	tive A	Applyii Applyii	ng tanding
Apply variable Utilizing to find discrete Find to distribute Apply given property and the second sec	Course Outcomes The concept of discrete and continuous random bles to solve the problems The concepts of two-dimensional random variables defined the marginal and conditional distribution of both the and continuous random variables the mean, variance and mgf of binomial and Poisson bution The concept of given distribution to find the area of the problems The concept of correlation and regression to solve the problem	Doma Cognit Cognit Cognit	ain tive A tive I tive I tive I	Le Applyin Applyin	evel ng tanding
Apply variable Utilizing to find discrete Find to distribute Apply given part of the first apply	Course Outcomes The concept of discrete and continuous random bles to solve the problems The concepts of two-dimensional random variables defined the marginal and conditional distribution of both the and continuous random variables the mean, variance and mgf of binomial and Poisson bution The concept of given distribution to find the area of the problems The concept of correlation and regression to solve the problem	Doma Cognit Cognit Cognit	ain tive A tive I tive I	Le Applyin Applyin	evel ng ng tanding
Apply variable Utilizing to find discrete Find to distribute Apply given part Apply given part of the first term of the	Course Outcomes The concept of discrete and continuous random bles to solve the problems The concepts of two-dimensional random variables defined the marginal and conditional distribution of both the and continuous random variables the mean, variance and mgf of binomial and Poisson bution The concept of given distribution to find the area of the problems The concept of correlation and regression to solve the problem	Cognit Cognit Cognit	tive A	Applyii Applyii Undersi	ng ng tanding
Apply variable Utilizing to find discrete Find to distribute Apply given part Apply given part of the first term of the	Course Outcomes The concept of discrete and continuous random bles to solve the problems The concepts of two-dimensional random variables defined the marginal and conditional distribution of both the and continuous random variables the mean, variance and mgf of binomial and Poisson bution The concept of given distribution to find the area of the problems The concept of correlation and regression to solve the problem	Cognit Cognit Cognit	tive A	Applyii Applyii Undersi	ng ng tanding
variable Utilizing to find discrete Find to distribute Apply given properties of the control of	the concept of discrete and continuous random bles to solve the problems ing the concepts of two-dimensional random variables d the marginal and conditional distribution of both te and continuous random variables the mean, variance and mgf of binomial and Poisson bution the concept of given distribution to find the area of the problems the concept of correlation and regression to solve the problem	Cognit Cognit Cognit	tive A	Applyii Applyii Undersi	ng ng tanding
variable Utilizing to find discrete Find to distribute Apply given properties of the control of	ing the concepts of two-dimensional random variables d the marginal and conditional distribution of both te and continuous random variables the mean, variance and mgf of binomial and Poisson bution the concept of given distribution to find the area of the problems the concept of correlation and regression to solve the problem	Cognit Cognit	tive U	Applyii Inders	ng tanding
to find discrete Find t distribute Apply given part Apply given part of the first find the first	d the marginal and conditional distribution of both te and continuous random variables the mean, variance and mgf of binomial and Poisson oution the concept of given distribution to find the area of the problems the concept of correlation and regression to solve the problem	Cognit	tive U	Unders	tanding
Find t distribute Apply given progressiven p	the mean, variance and mgf of binomial and Poisson bution the concept of given distribution to find the area of the problems the concept of correlation and regression to solve the problem	Cognit	tive A		
given p Apply given p	problems the concept of correlation and regression to solve the problem			Applyii	10
Apply given p	the concept of correlation and regression to solve the problem	Cognit	tive 1		ıg
	•			Applyii	ng
				(6
	viscrete distribution function - continuous random variables distribution function.	e- Probal	bility d	ensity	
				(6
onal rand	ndom variable: joint probability mass function - continuo	us proba	bility fi	inction	t -
ribution	n Function -Mathematical Expectations - Properties of ex	pectation	ı – Proj	perties	of
nple pro	oblems only				
					6
umulant	ts - Characteristic Functions - Binomial, Poisson distribu	tions – N	Ioment	s, mod	e and
	MGF only				
				(6
oution- C	Gammadistribution- Beta distribution - Exponential distri	bution			
				-	6
		ssion: Li	near reg	gressio	<u>n</u> –
	it.)	Total		30
efficien		1			
		ficient.	ficient.	ficient. 0 Tutorial 0 Practical 30 Total	rl Pearson coefficient of correlation—Rank correlation—Regression: Linear regression ficient.

Publishers, New Delhi, 3rd Edition, Reprint 2008.

Reference

Dr. P.R. Vittal "Mathematical Statistics" Margham Publications Chennai, 2009.

E-References

https://science.korea.edu/science_en/undergraduate/under_math3.do[Korea University college of science] http://www.bath.ac.uk/catalogues/2019-2020/ma/MA10211.html[University of Bath, United Kingdom

COs vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	11	9	15	5	4	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

Co	urse	Name	Quantitative Aptitude - II	L	T	P	C
Co	ourse	Code	XMT305	2	0	0	2
C	P	A		L	T	P	Н
2	0	0		2	0	0	2

Prerequisite Basic higher secondary level mathematical knowledge.

On successful completion of this course, the students will be able to:

	Course Outcomes	Domain	Level
CO1	Apply the basic concepts of profit and loss, ratio & proportion to solve the problems	Cognitive	Applying
CO2	Apply the basic concepts of partnership, chain rule to solve the problems	Cognitive	Applying
CO3	Explain the basic concepts of time & work, pipes &cisternsto	Cognitive	Applying

Lecture	30	Tutorial	0	Practical	0	Total	30
Boats & Str	reams, Alligat	ion or Mixture.					
UNIT 5							6
Times & Di	istance, Proble	ems on Trains.					
UNIT 4							6
	rk, Pipes& Ci	sterns					
UNIT 3							6
Partnership.	, Chain Rule.						
UNIT 2							6
Profit & Lo	ss, Ratio & Pr	roportion.					
UNIT 1							6
	or mixture to	o solve the proble	ems				
CO5	_	•		d streams and allegation	Cogn	nitive	Applying
	trains to solv	ve the problems					
CO4	_	-	f time &	distance and problems or	Cogn	nitive	Applying
	solve the pro	oblems					

R.S. Aggarwal, Quantitative Aptitude for Competitive Examinations, S Chand; 20th edition (2013)

References

Banking awareness by Sangram Keshari Rout and Soumya Ranjan Behera, B.K. Publications Pvt. Ltd.; Second edition (2014).

UGC-CSIR NET/SET by Dr. Pawan Sharma and Anshuman, Arihant Publication.

Fast Track Objective Arithmetic by Rajesh Verma, Arihant Publication, Edition 2012.

E-References

www.careerbless.com www.jagranjosh.com

www.bestguru.com

COs vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1

TOTAL	15	15	15	10	15	5	5	5	5
SCALED	2	2	2	2	2	1	1	1	1
VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

C	ourse	Name	DISASTERMANAGEMENT	L T P 1 0 0 L T SS 1 0 1	C		
C	ourse	Code	XUM003	1	0	0	1
С	P	A		L	T	SS	Н
1	0	0		1	0	1	2

Prerequisite Basic knowledge about environment.

On successful completion of this course, the students will be able to:

	Domain	Level	
CO1	Understanding the concepts of application of types	Cognitive	Apply
	Of disaster preparedness		
CO2	Infer the end conditions & Discuss the failures due to disaster.	Cognitive	Analyze
CO3	Understanding of importance of seismic waves	Cognitive	Analyze
	occurring globally		
CO4	Estimate Disaster and mitigation problems.	Cognitive	Apply
CO5	Keen knowledge on essentials of risk reduction	Cognitive	Apply
UNIT 1	INTRODUCTION	- 1	3

Introduction—Disaster preparedness—Goals and objectives of ISDR Programme-Risk identification — Risk sharing — Disaster and development: Development plans and disaster management—Alternative to dominant approach — disaster — development — linkages — Principle of risk partnership.

UNIT 2 APPLICATION OF TECHNOLOGY IN DISASTER RISK REDUCTION

3

Application of various technologies: Databases–RDBMS–Management Information Systems-Decision support system and other systems – Geographic information systems – Intranets and extranets–video tele conferencing. Trigger mechanism–Remote sensing-an insight–contribution of remote sensing and GIS-Case study.

UNIT 3 AWARENESS OF RISK REDUCTION

3

Trigger mechanism—constitution of trigger mechanism—risk reduction by education—disaster Information network—risk reduction by public awareness.

UNIT 4 DEVELOPMENT PLANNING ON DISASTER

3

Implication of development planning–Financial arrangements–Areas of improvement–Disaster Preparedness-Community based disaster management–Emergency response.

UNIT 5 | SEISMICITY

3

Seismic waves—Earth quakes and faults— measures of an earth quake, magnitude and intensity—ground damage—Tsunamis and earth quakes.

Lecture 15 Tutorial - Practical - Total	15
---	----

Text Book

1.Siddhartha Gautamand K Leela krisha Rao, "Disaster Management Programmes and Policies", VistaInternationalPubHouse, 2012

ArunKumar, "Global Disaster Management", SBS Publishers, 2008

References

"Encyclopaedia Of Disaster Management", Neha Publishers & Distributors, 2008

Pardeep Sahni,Madha vimalalgoda and ariya bandu,"Disaster risk reduction in South Asia",PHI,2002 Amita sinvhal,"Understanding earth quake disasters"TMH,2010.

Pardeep Sahni, Alka Dhameja and Umamedury, "Disaste rmitigation: Experiences and reflections", PHI, 2000

E-References

http://icom.museum/disaster_preparedness_book/copyright.pdf

http://www.international.icomos.org/centre_documentation/bib/riskpreparedness.pdf

COs vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	3	3	1	2	1	1
CO 3	3	3	3	3	3	1	2	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	12	15	5	7	5	5
SCALED VALUE	3	3	3	3	3	1	2	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

SEMESTER IV

C	ourse Name Abstract Algebra		L	T	P	C	
(Course	Code	XMT401	T401 3		0	4
C	P	A		L	T	P	Н
4	0	0		3	2	0	5

On success	sful completion of	of this course, th	e students	will be able to:				
		Course Outo	comes			Domain	Level	
CO1	Construct Cay	ley table for the	given per	mutation groups		Cognitive	Applying	
CO2	Identify the lea	ft and right cose	t of the giv	ven symmetric grou	ıp	Cognitive	Applying	
CO3	Explain norma	al subgroups and	l quotient g	groups		Cognitive	Understanding	
CO4	Explain the co	ncepts of ring ar	nd its prop	erties		Cognitive	Understanding	
CO5	Explain Integr	al domain and E	Euclidean d	lomain		Cognitive	Understanding	
UNIT 1							9+3	
Groups: Dermutatio		amples – Elemer	ntary Prop	erties of a Group –	Equivale	nt definition	ns of a Group –	
UNIT 2	л отоцра.						9+3	
Subgroups	- Cyclic Groups	s – Order of an F	Element –	Cosets and Lagrang	ge's Theo	orem.		
UNIT 3							9+3	
Normal Su	horoups and Ou	- 4: 4 C						
	iogroups und Qu	otient Groups –	Isomorphi	sm – Homomorphi	sm.			
UNIT 4				sm – Homomorphi erties of rings – Ison		n – Types of	9+3 Frings –	
UNIT 4 Rings: Def Characteris UNIT 5	finitions and Exa stic of a ring – S	mples – Elemen ubrings – Ideals	tary prope – Quotien	erties of rings – Ison t rings.	morphisn		9+3	
UNIT 4 Rings: Def Characteris UNIT 5 Maximal a	finitions and Exa stic of a ring – S	mples – Elemen ubrings – Ideals – Homomorph	tary prope – Quotien	erties of rings – Ison	morphisn		9+3	
UNIT 4 Rings: Def Characteris UNIT 5 Maximal a factorizatio	finitions and Exastic of a ring – Sound Prime Ideals on domain – Euc	mples – Elemen ubrings – Ideals – Homomorph lidean domain.	tary prope — Quotien ism of rin	erties of rings – Ison t rings. gs – Field of quot	morphism	ın Integral o	9+3 domain – Uniqu	
UNIT 4 Rings: Def Characteris UNIT 5 Maximal a	finitions and Exastic of a ring – Sound Prime Ideals on domain – Euc	mples – Elemen ubrings – Ideals – Homomorph	tary prope – Quotien	erties of rings – Ison t rings.	morphisn		9+3 domain – Uniqu	
UNIT 4 Rings: Def Characteris UNIT 5 Maximal a factorizatio Lecture Text Book S. Arumug Unit I -Cha Unit II -Cha Unit IV -Cha Unit V -Cha Reference N. Herstein Vijay, K. B	finitions and Exact stic of a ring – Solution of a ring – Solution of a ring – Solution of a ring – Euconomic of a ring – Euconomic of a ring – Euconomic of a ring extension of a ring – Solution of a ring extension of a ring extens	mples – Elemen ubrings – Ideals – Homomorph lidean domain. Tutorial gapandiIssac, M s 3.1 to 3.4 ns 3.5 to 3.8 ns 3.9 to 3.11 ns 4.1 to 4.8 ns 4.9 to 4.11, 4. ebra, John Wiley Bhambri, A cou	ism of ring 15 Iodern Alg 13 & 4.14 7 & Sons, Surse in Abs	erties of rings – Ison t rings. gs – Field of quot Practical gebra, SciTech Publ	ients of a o lications 1 1975. as Publisl	Tot Pvt. Ltd., Cl	9+3 domain – Unique tal 60 nennai, 2003.	

https://courses.maths.ox.ac.uk/node/43944[Oxford University] https://courses.maths.ox.ac.uk/node/43955 [Oxford University]

	COs vs POs												
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO 1	3	3	3	2	3	1	1	1	1				
CO 2	3	3	3	2	3	1	1	1	1				
CO 3	3	3	2	1	3	1	0	1	1				
CO 4	3	3	2	1	3	1	0	1	1				
CO 5	3	3	2	1	3	1	0	1	1				
TOTAL	15	15	12	7	15	5	2	5	5				
SCALED VALUE	3	3	3	2	3	1	1	1	1				

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

C	Course	rrse Name Mechanics		L	T	P	С
(Course	e Code	XMT402	3	1	0	4
С	P	A		L	T	P	Н
4	0	0		3	2	0	5
Pre	requi	site	Basic Physics knowledge				

On successful completion of this course, the students will be able to:

	Course Outcomes Domain							
CO1	Explain about forces, velocity, acceleration, moments, couples, friction etc., in trigonometrically and geometrically	Cognitive	Understanding					
CO2	Explain Newton's laws of motion and equilibrium of forces acting on a rigid body	Cognitive	Understanding					
CO3	Apply geometrical concepts in parallel forces, moments, and couples in physics problems	Cognitive	Applying					
CO4	Analyze for Newton's laws of motion and projectiles	Cognitive	Analyzing					
CO5	Analyze the equation of central orbits	Cognitive	Analyzing					
UNIT 1			12					

Basic concepts and principles –Forces acting at a point-Lami's theorem and applications-Parallel forces –Like and unlike parallel forces-Moment of a force– Couples– Related problems.

UNIT 2	12

Equilibrium of three forces acting on a rigid body-Friction-Laws of friction-Angle of friction-Cone of friction- Properties and related problems.

UNIT 3 12

Motion in a straight line under uniform acceleration - Newton's laws of motion. Projectiles: Definition-Path of projectile-Range on an inclined plane- Properties and problems.

UNIT 4 12

Impulse and Impact: Collision of elastic Bodies–Direct and oblique impact–Loss of Kinetic Energy–Related Properties and Simple Problems.

UNIT 5 | 12

Central Orbits: Motion under the action of central Forces - Properties and related Problems -Differential equation of central orbit-Pedal equation of central orbit-Velocities in a central orbit- Law of forces- Properties and related Problems

Lecture	45	Tutorial	15	Practical	0	Total	60

Text Books

M.K.Venkataraman, "Statics", Agasthiar Publications, Trichy, 2004.

Unit1: Chapters2,3,4

Unit2:Chapters 5,7

M.K. Venkataraman, "Dynamics", Agasthiar Publications, Trichy, 2004.

Unit3:Chapters3: section3.22,Chapter4:Section4.3,Chapter6

Unit4:Chapter 8

Unit5:Chapter11

References

T.K.Manickavasagam Pillai, "Statics", S. Viswanathan & Co., Chennai, 1980.

S.Narayanan," Dynamics", S.Chand & Co., New Delhi, 1980.

E-References

http://nptel.ac.in

COs vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9			
CO 1	3	3	2	1	3	1	0	1	1			
CO 2	3	3	2	1	3	1	0	1	1			
CO 3	3	3	3	2	3	1	1	1	1			
CO 4	3	3	3	3	3	1	2	1	1			
CO 5	3	3	3	3	3	1	2	1	1			
TOTAL	15	15	13	10	15	5	5	5	5			
SCALED	3	3	3	2	3	1	1	1	1			

X/AT TIE						
VALUE O - No Rel	ation 1.	Low Relation, 2- Medium Relation, 3- High Relation				
$\frac{1.5 \rightarrow 1,6}{1.5}$						
Course	Name	Mathematical Statistics - II	L	T	P	C
Course	Code	XMT403	3	1	0	4
C P	A		L	T	P	Н
4 0	0		3	2	0	5
Prerequis	ite	Basic knowledge of random variables and distributions.		l		
On success	sful comp	pletion of this course, the students will be able to:				
		Course Outcomes	Dom	ain	Le	evel
CO1	Explain	n the test of significance for large sampling	Cogni	itive	Underst	tanding
CO2	Explain	n the chi square distribution	Cogni	itive	Understanding	
CO3	Explain	n the Student's t-distribution	itive	Understanding		
CO4	Explain	n the F distribution	Cogni	itive	Understanding	
CO5	Classif	y the various types of analysis of variance	Cogni	itive	Understanding	
UNIT 1	Large	sampling theory			12	
• •	_	test of significance- null hypothesis- error in sampling- critic significance for large- samples- sampling of attributes.	cal regio	ons and	l level o	f
UNIT 2		tribution			1	.2
χ² - variate		nation of the X ² distribution (Method of M.G.F only)- M.G.F,	C.G.F-	mode	and ske	wness -
		probability curve - Theorems on distribution - Applic opulation variance – goodness of fit test.	ation of	X - c	listributi	on:
UNIT 3	_	t's t-distribution			1	.2
		ribution - constants of t-distribution- limiting of t-distribution, difference of mean.	n- appli	cation	of t-dist	ribution
UNIT 4		ribution			1	2
test for eq	uality of	cribution- constant of F-distribution- mode of F-distribution- two population variance (only simple problems of F- distri- between F and tests.				
UNIT 5		is of Variance			1	2
Introduction	n - one-	way, two-way classifications - Experimental designs: Rand	domized	l block	design	- Latin

squares.							
Lecture	45	Tutorial	15	Practical	0	Total	60

Text Books

Fundamentals of mathematical statistics, S.C Gupta, V. K. Kapoor (11th edition) - Sultan Chand & Sons 2002.

Unit I : Chapter: 14 (Sec. 14.1 – 14.7.2)

Unit II : Chapter: 15 (Sec. 15.1- 15.4, 15.6(15.6.1-15.6.2))

Unit III :Chapter: 16 (16.2, 16.3(16.3.1, 16.3.2))

Unit IV: Chapter: 16(16.5-16.8)

'Statistical Methods' Vol. II, Dr. S.P. Gupta, Sultan Chand & Sons 2008.

Unit V:Chapter: 5, 6

Reference

Dr. P.R. Vittal "Mathematical Statistics" Margham Publications Chennai, 2009.

E-References

 $1. https://acadinfo.wustl.edu/CourseListings/CourseInfo.aspx?sem=FL2020\&sch=L\&dept=L24\&crs=494[Washington\ University]$

<u>2.</u>https://www.maths.cam.ac.uk/undergrad/files/coursesIB.pdf [Cambridge]

\sim	\sim		-	`
('I	lc	VS	νι	10
.,		v.¬		,,,

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	10	5	15	5	0	5	5
SCALED VALUE	3	3	2	1	3	1	0	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

C I 2 (Prerec	0 0 quisite	XMT404	0 L	0	4	2						
2 (Prerec	0 0 quisite		C P A L									
Prerec	quisite			T	P	Н						
			0	0	4	2						
On suc	ccessful com	Basic knowledge of random variables and distributions.										
	1	pletion of this course, the students will be able to:										
		Course Outcomes	Dom	ain	L	evel						
CO1	Explain the	concept of large samples and solve the related problems	Cogn	itive	Applyi	ng						
CO2	Solve the pr	roblems by using χ^2 Distribution	Cogn	itive	Applyi	ng						
CO3	Solve the pr	roblems by usingt- test of single mean, difference of mean.	Cogn	itive	Applyi	ng						
CO4	Apply the c	oncept of F-distribution to solve simple problems	Cogn	itive	Applyi	ng						
CO5	using metho	concept ofanalysis of variance to solve the problems by ods such as one-way, two-way classifications, randomized and Latin squares										
UNI		pling theory				6						
T 1												
Types	s of sampling-	test of significance- null hypothesis- error in sampling- Criti-	ical regi	ons ar	d level	of						
	100	significance for large sample.										
UNI	χ ² Distrib	ution				6						
T 2												
	istribution- Tl nce – goodnes	neorems on χ^2 distribution - Application of χ^2 - distributions of fit test	: Inferer	nce ab	out a po	pulation						
UNI		-distribution				6						
Т3												
Defini	ition of t-distr	ibution- application of t-distribution - test of single mean, dis	fference	of me	ean.							
UNI	F-distribut	ion				6						
T 4												
		ribution- application of F-distribution - test for equality of t F- distribution).	two pop	ulatio	n variar	ice (only						
UNI	Analysis of	*				6						
T 5						-						
	 luction - one-	way, two-way classifications – Experimental designs: Rand	domized	l bloc	k design	<u> </u>						
square				- 5100	403151	_ Latin						

Lecture	0	Tutorial	0	Practical	30	Total	30
---------	---	----------	---	-----------	----	-------	----

Text Books

Fundamentals of mathematical statistics, S.C Gupta, V. K. Kapoor (11th edition) - Sultan Chand & Sons2002.

Unit I:Chapter: 14 (Sec. 14.1 – 14.7.2)

Unit II:Chapter: 15 (Sec. 15.1-15.4, 15.6(15.6.1-15.6.2))

Unit III:Chapter: 16 (16.2, 16.3(16.3.1, 16.3.2))

Unit IV:Chapter: 16(16.5-16.8)

'Statistical Methods' Vol. II, Dr. S.P. Gupta, Sultan Chand & Sons 2008.

Unit V: Chapter: 5, 6

Reference

Dr. P.R. Vittal "Mathematical Statistics" Margham Publications Chennai, 2009.

E-References

https://acadinfo.wustl.edu/CourseListings/CourseInfo.aspx?sem=FL2020&sch=L&dept=L24&crs=494[Wash ington University]

https://www.maths.cam.ac.uk/undergrad/files/coursesIB.pdf [Cambridge]

				COs vs Po	Os				
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	10	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

C	ourse	Name		Quant	itative A	ptitude - III		L	T	P	C
CO	OURSE CODE XMT405 2 0 0 P A L T P							2			
C	P	A						L	Т	P	Н
2	0	0						2	0	0	2
Pre	requi	site	Basic r	nathematical kr	owledge	•					
On	succe	ssful comp	oletion o	f this course, the	e students	s will be able to:					
				Course Outo	comes			Dom	ain	L	evel
CO	1		•			rest of the given pr	oblems	Cogn	itive	Remei	mbering
CO	2	Find th	e area o	f the bounded re	egion			Cogn	itive	Remei	mbering
CO	3	Findth	e volume	e and surface are	ea of the	given region		Cogn	itive	Remei	mbering
CO	4	Findthe clock	e angle b	etween the hou	r hand an	nd minute hand of t	he	Cogn	itive	Remei	mbering
CO	5		e permut	ations and com	binations	of the given proble	ems	Cogn	itive	Remei	mbering
UN	IT 1										6
	_	terest, Co	mpound	Interest.							
UN	IT 2										6
Log	arithr	ns, Area.									
UN	IT 3										6
	ume &	& Surface	Areas, R	aces & Games	of Skill.						6
Cale	endar,	, Clocks.									
UN	IT 5										6
Stoc	cks &	Shares, Po	ermutatio	ons & Combina	tions.						
Le	ectur	e í	30	Tutorial	15	Practical	0		Tota	al	30
Tex	t Boo	k				1	-	I.			
R.S.	. Agg	arwal, Qua	antitative	Aptitude for C	Competiti	ve Examinations, S	Chand; 2	20 th edit	tion (2	(013)	
Ban Seco UGO Fast E-R	ond e C-CS Trac Refere	awareness dition (201 IR NET/S k Objectivences	(4). ET by D e Arithn	r. Pawan Sharm	na and Ar	oumya Ranjan Beh nshuman, Arihant F Arihant Publication	Publication	n.	ations	Pvt. Lto	d.;
		erbless.con anjosh.com									

COs vs POs												
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9			
CO 1	3	2	1	0	3	1	0	1	1			
CO 2	3	2	1	0	3	1	0	1	1			
CO 3	3	2	1	0	3	1	0	1	1			
CO 4	3	2	1	0	3	1	0	1	1			
CO 5	3	2	1	0	3	1	0	1	1			
TOTAL	15	10	5	0	15	5	0	5	5			
SCALED VALUE	3	2	1	0	3	1	0	1	1			

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

(Course	Name	Entrepreneurship Development	L	T	P	C
	Course	e Code	XUM004	1	0	0	1
C	P	A		L	T	SS	Н
2	0	0		1	0	1	2
Pr	erequi	site	Basic skills like critical thinking, creativity, risk-taking, problem leadership.	-solvin	g, netwo	rking,	

On successful completion of this course, the students will be able to:

	Course Outcomes	Domain	Level
CO1	Understand the concept of Entrepreneurship	Cognitive	Understanding
CO2	Understand about an Entrepreneur	Cognitive	Understanding
CO3	Understand the characteristics of Entrepreneur	Cognitive	Understanding
CO4	Understand the ways to acquire skills of Entrepreneur	Cognitive	Understanding
CO5	Understandthe concept of Intrepreneurship	Cognitive	Understanding
UNIT 1	INTRODUCTION TO ENTREPRENEURSHIP		3 + 3

Meaning and Concept of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in Economic Development, Myths about Entrepreneurs, Agencies in Entrepreneurship Management and Future of Entrepreneurship.

UNIT 2 THE ENTREPRENEUR

3 + 3

Gender Discrimination in society and in family, Gender equity, equality, and empowerment. Social and Economic Status of Women in India in Education, Health, Employment, Definition of HDI, GDI and GEM. Contributions of Dr.B.R. Ambethkar, Thanthai Periyar and Phule to Women Empowerment.

UNIT 3 CHARACTERISTICS OF AN ENTREPRENEUR

3+3

Introduction - Characteristic Features of Successful Indian Entrepreneurs - Differences between an Entrepreneur and a Manager - Difference between an Entrepreneur and an Intrapreneur - Relationship between the terms Entrepreneur, Entrepreneurial and Entrepreneurship - Difference between a Scientist, Inventor and Entrepreneur - Relationship between Entrepreneur and Enterprise - Difference between Entrepreneur and Enterprise - Difference between a Self-employed person and Entrepreneur - Common Myths on Entrepreneur.

UNIT 4 SKILLS FOR AN ENTREPRENEUR

3 + 3

Business Management Skills - Communication and active listening skills - Risk-taking skills - Networking Skills - Critical Thinking Skills - Problem Solving Skills - Creative Thinking Skills - Customer Service Skills - Financial Skills - Leadership Skills - Time Management and Organizational Skills - Technical Skills.

UNIT 5 INTRAPRENEURSHIP

3+3

What is Intrapreneurship? – Understanding Intrapreneurship – Types of Intrapreneurs – Characteristics of Intrapreneurs – Examples of Intrapreneurship.

Lecture	15	Self - Study	15	Total	30
---------	----	--------------	----	-------	----

Text Book

1. Jayashree Suresh, Entrepreneurial Development, Margham Publications.

References

- 1.Essentials of Entrepreneurship and Small Business Management (6th Edition) by Norman M. Scarborough (Paperback Jan 13, 2010)
- 2. Entrepreneurship and Small Business Management, Student Edition by Glencoe McGraw-Hill (Hardcover

Feb 24, 2005)

3. Vasant Desai, Dynamics of Entrepreneurship Development, Star Publication, New Delhi.

E-References

https://in.indeed.com/career-advice/career-development/entrepreneur-skills

2. https://www.investopedia.com/terms/i/intrapreneurship.asp

COs vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	10	5	15	5	0	5	5
SCALED VALUE	3	3	2	1	3	1	0	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

$$1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$$

SEMESTER V

	Course Name			Real Analysis					T	P	C	
C	ourse	Code		XMT501					1	0	4	
C	P	A						L	T	P	Н	
4	0	0						3	2	0	5	
PR	ERE(QUISITE	Kne	owledge in the b	asic prop	erties of real number	S					
On	succe	ssful comp	oletion	of this course, th	e student	s will be able to:						
Course Outcomes Domain							ain	Level				
CO1		Expla	Explain the basics of real numbers.					Cognitive		Understanding		
CO2		Expla	in the n	neighborhoods an	nd limit p	oints.		Cognit	ive	Understanding		
CO3			Demonstrate about continuity and discontinuity of various Cognitive functions in different contexts.						ive	Understanding		
CO4		Demo	Demonstrate about derivatives and continuity Cognitive						ive	Understanding		
CO5		Expla	Explain the Riemann integration and mean value theorems.					Cognitive		Understanding		
UN	IT 1	Real r	Real numbers							9+3		
				-		olute value- Complete	eness –	Repres	entatio	on of Re	al	
				ods and limit po		nd Uncountable sets.				9 -	+ 3	
UN.	IT 2	Neigh	bornoo									
				Limit points of a	set – Clo	sure of a set.						
Ope		s – Closed	sets –L		set – Clo	sure of a set.				9 -	+ 3	
Ope UN: Lim	IT 3	S – Closed Limits Continuou	sets –L and Co	cimit points of a		sure of a set. uities- Algebra of Co	ntinuou	s funct	ions –			
Ope UN: Lim of c	IT 3	s – Closed Limits	sets –L and Co s functions.	cimit points of a			ntinuou	s funct	ions –		dness	
Ope UN: Lim of c UN:	en sets IT 3 iits — ontine IT 4	Limits Continuou uous funct Deriva	sets –L and Co s functions. atives	cimit points of a continuity ions – Types of a	discontin					Bounde	dness	
Ope UN Lim of c UN Intro	en sets IT 3 iits — ontine IT 4	Limits Continuou uous funct Derivation – Deri	sets –L and Co s functions. atives	cimit points of a continuity ions – Types of a	discontin	uities- Algebra of Co				Bounde 9 + for deri	dness	
Ope UN: Lim of c UN: Intro-D UN: Rier inte	IT 3 its — ontine IT 4 oduct arbou IT 5 mann grable	Limits Continuou uous funct Derivation – Derivation – Derivation – Integration function	sets –L and Co as functions. atives vability m. on- De	cimit points of a continuity ions – Types of continuity and continuity-finition – Daur	Algebra boux's terivability	of derivatives – Inventor of integral function	rse func	etion the	eorem	Bounde 9 - for deri 9 - prope	dness - 3 vatives - 3 rties of	
Ope UN: Lim of c UN: Intro – D UN: Rier inte	IT 3 its — ontine IT 4 oduct arbou IT 5 mann grable	Limits Continuou uous funct Derivation – Derivation – Derivation – Derivation – Integration tal theore	sets –L and Co as functions. atives vability m. on- De as – co m of Ca	cimit points of a continuity ions – Types of continuity and continuity-finition – Daur ontinuity and definition definition and definition in the continuity and defin	Algebra boux's terivability	of derivatives – Inventor of integral function	rse func	etion the	eorem	Bounde 9 - for deri 9 - prope theorem	dness - 3 vatives - 3 rties of	

- 1.M.K. Singhal and Asha Rani Singhal, "A first course in Real Analysis"., R. Chand & Co., June, 1997 (Units I to IV).
- 2. Shanthi Narayan, "A Course of Mathematical Analysis", S. Chand& Co. 1995 (Unit-V).

Unit-I Chapter 1, Sec. 1.1 - 1.10

Unit-II Chapter 2 Sec 2.1 - 2.6

Unit-III Chapter 5 Sec 5.1 - 5.5

Unit – IV Chapter 6 Sec 6.1 - 6.5

Unit – V Chapter 6 Sec 6.2, 6.3 & 6.5 6.7 6.8, 6.9 of [2]

Reference

Arumugam. S. and Thangapandi Issac, "Sequences and Series", New Gamma, Publishing House, Palayamkottai - 627 002, 1997.

Goldberg. R. "Methods of Real Analysis", Oxford and IBH Publishing Co., New Delhi (2000).

Arumugam and Issac, "Modern Analysis", New Publishing House, 2017.

Malik S.C and Savitha Arora, "Mathematical Analysis", 1991, Wiley Eastern Limited New Delhi.

E-References

https://nptel.ac.in

α		\mathbf{D}
1 'I 14	TIC	POs
	, v.	1 ()5

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	10	10	5	15	5	0	5	5
SCALED	3	2	2	1	3	1	0	1	1
VALUE									

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

	ourse	Name		Disc	rete Math	ematics	L	T		P	C
C	ourse	Code			XMT50	2	3	1		0	4
C	P	A					L	T		P	Н
4	0	0					3	1		0	4
Pre	requi	isite	Higher	Secondary leve	el Mathema	tics					
On	succe	ssful con	npletion	of this course, th	ne students	will be able to:					
				Course Out	comes		Dom	ain		Lev	vel
CO	1	Solve		l order recur generating func		ations by finding th	e Cogni	itive	App	plyin	g
CO	2	Utilize statem		oles and the prop	perties of lo	gic to simplify given log	Cogni	itive	App	plyin	g
CO	3			the given statem perators	ents are log	gically equivalent or not	Cogni	itive	Eva	aluati	ing
CO	4	Analy	ze the ba	asic structures o	f lattice and	d Boolean algebra	Cogni	itive	Ana	alyzi	ng
CO	5	Identi	ify differ	ent formal langu	uage classe	s and their relationships	Cogni	itive	App	plyin	g
	IT 1	ce relatio	ns and g	enerating functi	on: Recurr	ence-an introduction-po	ynomials	and t	heir o	9 + evalı	
Rec Rec Hor	urren		ns- solut			ence-an introduction-po eneous (linear) Relation					ıation
Rec Rec Hor UN	eurren nogei IT 2	ce relationeous rela F- stateme	ns- solut ations.	tion of finite ord	ler Homoge		- Solution	n of N	lon-	evalı 9 +	ation
Rec Rec Hor UN Log	turren noger IT 2 gic: The sing tr	ce relationeous rela F- stateme	ns- solut ations.	tion of finite ord	ler Homoge	eneous (linear) Relation	- Solution	n of N	lon-	evalu 9 + Forr	- 3
Rec Rec Hor UN Log pars	turren moger IT 2 gic: The sing to IT 3	rees.	ns- solut ntions. ents – co	onnectives- atom	ler Homogo	eneous (linear) Relation	- Solution Formed (st	n of N	ents)	9 + Forr 9 +	- 3 mulae
Rec Rec Hor UN Log pars UN	eurren moger IT 2 gie: The sing tr	ruth table	ents – co	onnectives- atom	ler Homogo	eneous (linear) Relation repound statements-well gical Implications and I	Formed (st	n of N	ents)	9 + Forr 9 +	- 3 mulae
Rec Hor UN Log pars UN Log Rep	eurren moger IT 2 gie: The sing tr	ruth table	ents – co	onnectives- atom	ler Homogo	eneous (linear) Relation	Formed (st	n of N	ents)	9 + Forr 9 +	- 3 nulae
Rec Rec Hon UN Log pars UN Log Rep UN	rurren moger IT 2 gic: The sing tr IT 3 gic: Tr blacen IT 4	F- statemerees.	of a forness- Fun	onnectives- atom mula – Tautolog ctionally Compl	nic and con	eneous (linear) Relation repound statements-well gical Implications and I	Formed (st	tateme	ents)	9 + Forr 9 + ulae 9 +	- 3 nulae
Rec Rec Hon UN Log pars UN Log Rep UN	rurren moger IT 2 gic: The sing tr IT 3 gic: Tr blacen IT 4	F- statemerees.	of a forness- Fun	onnectives- atom mula – Tautolog ctionally Compl	nic and con	eneous (linear) Relation npound statements-well gical Implications and I connectives and Duality	Formed (st	tateme	ents)	9 + Forr 9 + ulae 9 +	- 3 mulae
Reconstruction Recons	tices a	F- statemerees.	of a forness- Fun	onnectives- atom mula – Tautolog ctionally Compl	nic and con	eneous (linear) Relation npound statements-well gical Implications and I connectives and Duality	Formed (st	tateme	ents)	9 + Forr 9 + ulae 9 +	- 3 nulae - 3 - butive
Reconstruction Recons	tices a ces. IT 5 omatic	F- statemerees. ruth table nent procurand Boole a and La	of a formess- Fundanages	onnectives- atom mula – Tautolog ctionally Compl bras: Lattices- s : Finite Autom of a string by a	ata – defin	eneous (linear) Relation npound statements-well gical Implications and I connectives and Duality	quivalence law.	tateme	ents)	9 + Forr 9 + ulae 9 + distri	- 3 nulae - 3 butive

Text Book

"Discrete Mathematics" by Dr. M.K. Venkatraman, Dr.N. Sridharan, N. Chandrasekeran, the National Publishing Company, 2003.

Unit I : Chapter: 5 Sec 1-5 (Pages: 5.01-5.19)

Unit II : Chapter: 9 Sec 1- 5 (Pages: 9.1- 9.20)
Unit III : Chapter: 9 Sec 6- 10 (Pages: 9.21- 9.42)
Unit IV : Chapter: 10 Sec 1- 4 (Pages: 10.1- 10.32)
Unit V : Chapter: 12 Sec 1-7 (Pages: 12.1- 12.16)

Reference

Koleman and Bushy- Discrete Mathematical Structures, Prentice Hall of India, New Delhi- 2002.

E-References

https://www.cst.cam.ac.uk/teaching/2021/DiscMath[University of Cambridge]

https://explorecourses.stanford.edu/search?q=CS157[Stanford]

COs vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	3	3	1	3	1	1
CO 4	3	3	3	3	3	1	2	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	12	15	5	8	5	5
SCALED	3	3	3	3	3	1	2	1	1
VALUE									

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

C	ourse	Name		Nu	merical	methods		L	T	P	•	C
C	Course	e Code			XMT5	503		4	1	0)	5
C	P	A						L	T		P	Н
5	0	0						4	1		0	5
Pre	erequ	isite	Knowl	edge In Higher S	Secondar	y Level Mathematic	es					
On	succe	essful con	npletion o	of this course, th	e studen	ts will be able to:						
				Course Outo	comes			Dom	ain		Le	vel
CO)1			olution of nume g appropriate me		gebraic and transce	ndental	Cogni	itive	App	yin	g
CO)2		·	olution of simulti imination and G		near algebraic equa dan method	tion	Cogni	itive	App	yin	g
CO)3	plane	by using	interpolation m	ethod	given n- points in		Cogni	itive	App	lyin	g
CO)4			olution of an e ferentiation and		using the concepts	of the	Cogni	itive	App	yin	g
CO)5	Analy	zethe so	lution of anordi	nary Diff	erential Equations u and Runge - Kutta n		Cogni	itive	Anal	yzi	ng
UN	IT 1	Eulei	memou,	modified Eulei	memou a	ina Kunge - Kuua n	letilou				12	+ 3
				_		ental Equations: The on Raphson Method					n n	nethod-
	IT 2					•					12	+ 3
				_	_	Gauss elimination 1						
		of a mat	rix using	Gauss eliminat	ion meth	od- Gauss Jacobi m	ethod- G	auss- S	eidel			
	IT 3											+ 3
for	ward	interpolat	ion form		interpola	on formula - Backw tion formula – Lagr						
	IT 4		8 8	1							12	+ 3
der rule	ivativ e.			· ·		's forward and back mpson's one third r				le- W	edd	le's
UN	IT 5										12	+ 3
seri	ies- P		ethod of	•	-	tions-Power series ons- Euler method-					•	•
L	ectur	e	60	Tutorial	15	Practical	0		Tota	al		75
Tex	xt Bo	ok			I			l .				

"Numerical Methods" (2001), P. Kandasamy, K. Thilagavathy, K. Gunavathy, S. Chand& Company Ltd.,

New Delhi.

Unit I: Chapter: 3 (3.1.1 to 3.4.3), Pages: 69 - 96

Unit II: Chapter: 4 (4.1-4.3 and 4.7-4.9), Pages: 112-126, 145-158

Unit III: Chapter: 6 (6.1-6.6), Pages: 209 – 225, Chapter: 7 (7.1-7.4), Pages: 231 – 240, Chapter: 8 (8.7 only), Pages: 271 - 276.

Unit IV:Chapter: 9 (9.1- 9.3, 9.6- 9.15), Pages: 281 - 317

Unit V: Chapter: 11 (11.1-11.15), Pages: 348 - 393

References

S. Sastri, Introduction methods of Numerical Analysis, Fifth Edition, PHI Learning Pvt. Ltd, 2012.

M.K. Venkataraman, Numerical methods in science and Engineering- Fifth Edition (Revised& Enlarged), The National Publishing Co., Chennai, 2004.

A. Singaravelu, Numerical methods Meenakshi Agency, 2019.

E-References

https://explorecourses.stanford.edu/search?q=CME206 [Stanford University]

https://courses.maths.ox.ac.uk/node/44065 [Oxford]

				COs vs P	Os				
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	3	3	1	2	1	1
TOTAL	15	15	15	11	15	5	6	5	5
SCALED VALUE	3	3	3	3	3	1	2	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

C	ourse	Name		Nu	ımber 🏾	Theory		L	Т	P	С
C	ourse	e Code			XMT5	03		4	1	0	5
C	P	A						L	T	P	Н
5	0	0						4	1	0	5
Prei	requi	site	Knowle	dge in Algebra							
On s	succe	ssful comp	oletion of	this course, the	students	will be able to:					
				Course Out	comes			Do	main	I	Level
CO	1	Apply	the Eucli	idean algorithm	to comp	oute the gcd of two in	tegers.	Cog	gnitive	App	lying
CO	2	Apply	the Diric	hlet product to	Mobious	s functions.		Cog	gnitive	App	olying
CO.	3	Apply	the Diric	hlet multiplica	tion to M	angold functions.		Cog	gnitive	App	olying
CO	4	Solve	the nun	nber theoretic	problen	ns on averages ari	thmetic	Cog	gnitive	App	olying
		function	ons								
CO	5	Solve	the linear	congruences u	sing the	concepts of congruen	ce	Cog	gnitive	App	olying
		relatio	ns								
UNI	T 1									1	2 + 3
The	Fund	amental T	heorem o	f Arithmetic: I	ntroducti	on- Divisibility - Gre	atest Co	mmon	divisor	- Prin	ne
						The series of reciproc	als of the	e prim	es - The	Eucli	dean
		- The gre	atest Con	nmon divisor o	f more th	an two numbers.				1	2+3
UNI		1.0		N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1		() m				
relat	tion c	onnecting	and - A p	-	for (n) -	The mobius function the Dirichlet produc					ion- A
UNI		mverses a	ild the ivi		TOTTIGIG					1	2 + 3
The	Man	goldt func	tion (n) -	multiplicative 1	functions	- Multiplicative func	tion and	Dirich	ılet mult	iplicat	tion -
The Gen	inver eraliz	se of a convol	mpletely a	multiplicative formal power se	unction -	Liouville's function	A (n) - t	he div	isor fund	ctions	$\sigma_a(n)$
UNI				1						1	2 + 3
	_				_	ation Asymptotic equatormulas - the average	•			er's	
UNI	T 5					<u> </u>		-		1	2 + 3
	_			l basic propert		ngruence's - Residue s.	classes	comp	lete resi	due sy	ystems -
Lecture 60 Tutorial 15 Practical 0 Total 75								75			
					<u> </u>						

Text Book

Analytic Number Theory by Tom.M.Apostal, Springer Science & Buisness Media, 2013.

Unit I Chapter 1 (1.1 - 1.8) Unit II Chapter 2 (2.1 - 2.7) Unit III Chapter 3 (2.8 - 2.15) Unit IV Chapter 5 (3.1- 3.5) Unit V Chapter 9 (5.1- 5.3)

References

Number Theory, GeorgeE. Andrews, Courier Corporation, 1994.

Introduction to theory of Number, G.H. Hardy and E.M. Wright, Oxford University Press, 6th edition (2008).. Basic Number Theory, S.B. Malilk, Vikas Publishing, 2018.

E-References

http://nptel.ac.in

CO	S	VS	ľ	Os
CU	S	VS	ľ	Us

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	10	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

C	ourse	Name		G	raph T	heory		L	T	P	C
C	ourse	Code			XMT5	504		4	1	0	5
C	P	A						L	T	P	Н
5	0	0						4	1	0	5
Pre	requi	site	Knowl	edge In Basic M	I athemat	ics					
On s	succe	ssful comp	oletion o	f this course, the	e student:	s will be able to:					
				Course Outc	omes			Don	nain	L	evel
CO	1	Explai	n the bas	sic concepts gra	phs and c	peration on graph		Cogn	itive	Under	standing
CO	2	Demon	strate tl	ne concepts of w	valks, tria	als, paths, connecte	edness	Cogn	itive	Under	standing
		and cor	nponent	s							
CO	3	Infer the	ne charac	cterization of tre	ees and co	entre of a tree		Cogn	itive	Under	standing
CO	4	Outlin	e the bas	ics of matching	s and pla	narity		Cogn	itive	Under	standing
CO	5	Relate	the four	colour theorem	and five	colour theorem		Cogn	itive	Under	standing
UNI	T 1	Graph	s and Su	ıbgraphs						12	2 + 3
				0 1		orphism, Ramsey n		-	endent	sets and	i
UN				pns and line gra		trices and operation	ons on gra	phs		12	2 + 3
						rials and paths – co	onnectedno	ess and	l comp		
_		ectivity	<i>C</i> 1	1	,	1			1		
UNI	T 3	Euleria	an and H	Hamiltonian Gi	aphs, Ti	rees				12	2 + 3
		and Hamil	tonian G	Fraphs – Trees –	- characte	erization of trees –	centre of	a tree			
UNI				l Planarity							2 + 3
	_				– Planarit	xy - Definition - c	haracteriza	ation o	f plana	r graph	s –
		s, crossing	and out	er planarity							
UNI	IT 5	Colour	ability							12	2 + 3
Chr	omati	c number-	Chroma	ntic index – Five	e colour t	heorem – Four col	our proble	em - Cl	nromat	ic Poly	nomials
Le	ecture	9	60	Tutorial	15	Practical	0		Tota	al	75
Tex	t Boo	k									
	Ltd., I I I I I I I I I I I I I I I I I I I	chennai, 2	2006. Chap Chap Chap	-	Arumug	am& S. Ramacha	andran,SC	ITECH	I publ	ications	s (India) l

Unit V : Chapter 9

References

1. Graphs Theory with Applications to Engineering and computer science – NarsinghDeo, Printice- Hall of

India Private Ltd, 2014.

- 2. Graph Theory- F. Harary, Narosa Publishing House, edition 2013.
- S.A. Choudham, A First Course in Graph Theory, Macmillan India Ltd,1987.

E-References

http://nptel.ac.in

CO	S VS	s P	Os
----	------	-----	-----------

				COS VS I	03				
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	10	5	15	5	0	5	5
SCALED VALUE	3	3	2	1	3	1	0	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

Co	ourse	Name	Mathematical Modeling	L	T	P	C	
C	ourse	Code	XMT504	4	1	0	5	
C	P	A		L	T	P	Н	
5	0	0		4	1	0	5	
Prer	equi	site	Basic knowledge of algebra ,differentiation concepts.					
On s	ucces	ssful com	pletion of this course, the students will be able to:					
			Course Outcomes	Dom	ain	Le	evel	
CO	L		the classification of mathematical models and limitations ematical modelling	Cogn	itive	Unders	tanding	
CO2	2	Apply	the concepts offirst orderordinary differential equations to	Cogn	itive	Applyi	ng	
		form n	nathematical modeling for Dynamic and Geometrical as					
CO3	3		e the mathematical models involved in economics through	Cogn	itive	Analyz	ing	
<u> </u>	1		er ordinary differential equations	<u> </u>	:4:	A 1	•	
CO ₄	•	-	e the mathematical models in Medicine, Arms Race, Battles ernational Trade in terms of systems of ordinary differential	Cogn	itive	Anaiyz	ing	
		equation	-					
COS	5	-	e the models in Planetary motions, Circular motion and	Cogn	itive	Algebra- deling. 12 + 3 n-Linear fferential		
		motion	of Satellites			Level Understandi Applying Analyzing Analyzing Analyzing 12 + 3 al models- Algebra- deling. 12 + 3 al-Linear efferential efferential efferential		
UNI	T 1					12	+ 3	
_			quiring Mathematical modeling and technique-Classification					
			s of mathematical models-Modeling through Geometry-Mode	_	_	_	l-	
		through	Trigonometry-Modeling through Calculus-Limitations of Mat	hematı	cal mo			
UNI								
			eling through differential Equations-Linear Growth and Deca	•				
		•	Models-Compartment Models-Modeling in Dynamics throug		•			
_		of first of	rder- Mathematical modeling of Geometrical problems throug	gii OFUII	iary ur	neremia	u	
UNI		OI III St O	uci.			12	+ 3	
		 tical Mod	eling in Population Dynamics-Modeling of Epidemics through	h syste	ms of (
			ns of first order-Compartment models through systems of ord	•		-		
		-	mics through systems of ordinary differential equations of first	•		1**		
						12 + 3		

Mathematical models in Medicine, Arms Race, Battles and International Trade in terms of systems of ordinary differential equations-Modeling in Dynamics through systems of Ordinary Differential equations of first order.

UNIT 5 12 + 3

Mathematical modeling of Planetary motions – Modeling of Circular motion and motion of Satellites.

Lecture 00 Tutoriai 15 Fracticai 0 Totai 75	Lecture	60	Tutorial	15	Practical	0	Total	75
---	---------	----	----------	----	------------------	---	-------	----

Text book

"Mathematical Modeling' by J.N. Kapur, New Age International Private Limited, Second edition, 2021.

Unit I : Chapter 1.1-1.9
Unit II : Chapter 2.1-2.6
Unit III : Chapter 3.1-3.4
Unit IV : Chapter 3.5-3.6

Unit V : Chapter 4.1-4.2

References

1." An Introduction to Mathematical Modeling "byEdward A. Bender, Dover publications (2003)

E-References

http://nptel.ac.in

				COs vs Po	Os				
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	3	3	3	1	2	1	1
CO 5	3	3	3	3	3	1	2	1	1
TOTAL	15	15	14	12	15	5	7	5	5
SCALED VALUE	3	3	3	3	3	1	2	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

C	Course	Name	Fundamentals of Data Science &	L	T	P	С
			R Programming				
(Course	e Code	XMT505	1	1	0	1
C	P	A		L	T	P	Н
1	0	0		1	1	0	2
Pre	requi	site	Basic computer knowledge				

On successful completion of this course, the students will be able to:

	Course Outcomes	Domain	Level
CO1	Describe the significance of data science and understand the Data Science process	Cognitive	Understanding
CO2	Build, and prepare data for use with a variety of statistical methods and models	Cognitive	Applying
CO3	Analyze Data using various Visualization techniques.	Cognitive	Analyzing
CO4	Analyze the variables, scalars, vectors in R programming.	Cognitive	Analyzing
CO5	Apply the various charts and plots.	Cognitive	Applying
UNIT 1			12 + 3
UNIT 2	Inference, Populations and Samples, Populations and Samples of Big Data Can Mean Big Assumptions, Modeling, Philosophy of Explorat Analysis, The Data Science Process, A Data Scientist's Role in this Population Data Munging: Properties of Data, Languages for Data Science, Collection Data, Crowdsourcing. Scores and Rankings: Developing Sc Systems, Z-scores and Normalization, Advanced Ranking Technique Analysis: Sampling from Distributions, Statistical	ory Data Process ecting Data, Poring s Statistical	12 + 3
	Significance, Permutation Tests and P-values	isticai	
UNIT 3			12 + 3
	Introduction to R Understanding R data structure, Variables in R, Sca Vectors. Matrices, List, Data frames, Using c, Cbind, Rbind, attach at functions in R, Factors		
UNIT 4			12 + 3
	Importing data Importing data from excel, importing data from SAS, database, Saving in R data, Loading R data objects, writing to files M Data, selecting rows/observations, selecting columns/fields, merging Relabeling the column names	lanipulating	
UNIT 5			12 + 3

R Programming, While loop, If loop, For loop, Arithmetic operations Charts and Plots, Box plot, Histogram, Pareto charts, Pie graph, Line chart, Scatterplot

Lecture	60	Tutorial	15	Practical	0	Total	75

Text Book

Steven S. Skiena, "The Data Science Design Manual", Springer 2017.

Rachel Schutt & O'neil, "Doing Data Science", Straight Talk from The Frontline O'REILLY, ISBN:978-1-449-35865-5, 1st edition, October 2013.

Cotton, R., Learning R: a step-by-step function guide to data analysis. 1st edition. O'reilly Media Inc.

References

Joel Grus," Data Science from Scratch" First Edition, April 2015 2. Gareth James, Daniela Witten, Trevor Hatie, RoberstTibhirani, "An Introduction to Statistical Learning-with Applications in R ", 2013 R Programming for Data Science, Roger D. Peng, LeanPub, 2015.

 α

E-References

1."Data science for engineers" https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-cs28/

2.https://jrnold.github.io/r4ds-exercise-solutions/index.html

https://www.r-project.org/

https://cran.r-project.org/

				COs vs P	Os				
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	12	7	15	5	2	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

	uisc	Name		Quan	iitalive A	ptitude -IV		L	T		P	C	
Co	urse	Code			XMT	506		2	0		0	2	
C	P	A						L	Т		P	Н	
2	0	0						2	0		0	2	
Prere	equis	site	Basic	mathematical kr	owledge								
On su	icces	sful comp	oletion o	of this course, the	e students	s will be able to:							
				Course Outo	comes			Dom	ain		Le	vel	
CO1		Explain solve pro		sic concepts of F	Probability	y and True Discounta	and to	Cogn	itive	Ap	plyin	g	
CO2		_		sic concepts of B olve problems	anker's [Discount, Heights &		Cogn	itive	Ap	plyin	g	
CO3		_		sic concepts of ootoo to solve the prob		out, Series and Pattern	ns,	Cogn	itive	Applying			
004		Evnlain	4 h a h a a		C 1.	Dia Charte and to se	alve	Cogn	itive	Ar	plyin	g	
CO4		the prob		sic concepts of B	ar Grapns	s i le Charts and to so	orve .	00811					
CO4 CO5		the prob	lems			ns and to solve the	Jive .	Cogn		_	plyin	g	
		the prob	the bas				, in the second			_	pplyin 6		
CO5 UNIT	Γ1	the prob	the bas	sic concepts of L			, , , , , , , , , , , , , , , , , , ,			_		ĺ	
CO5 UNIT Proba UNIT	Γ1 ability Γ2	Explain Problem y, True D	the bas	sic concepts of L	ine Grapl					_	6	ĺ	
CO5 UNIT Proba UNIT	Γ1 ability Γ2 er's I	Explain Problem y, True D	the bas	sic concepts of L	ine Grapl					_	6		
CO5 UNIT Proba UNIT Banke	Γ1 ability Γ2 eer's I Γ3 man (Explain Problem y, True D Discount,	the bas s iscount	sic concepts of L	ine Graph					_	6		
CO5 UNIT Proba UNIT Banke UNIT Odd r UNIT	Γ1 ability Γ2 er's I Γ3 man (Γ4	Explain Problem y, True D Discount,	the bas s iscount Height	sic concepts of L	ine Graph					_	6		
CO5 UNIT Proba UNIT Banke UNIT Odd r UNIT	Γ1 ability Γ2 er's I Γ3 man (Γ4	the prob Explain Problem y, True D Discount, Out, Serie	the bas s iscount Height	sic concepts of L	ine Graph					_	6		
CO5 UNIT Proba UNIT Banke UNIT Odd r UNIT Bar G	Γ1 ability Γ2 ter's I Γ3 man (Γ4 Graph	the prob Explain Problem y, True D Discount, Out, Serie	the bas s iscount Height	sic concepts of L	ine Graph					_	66		
CO5 UNIT Proba UNIT Banke UNIT Odd r UNIT Bar G UNIT	Γ1 ability Γ2 ter's I Γ3 man (Γ4 Graph	the prob Explain Problem y, True D Discount, Out, Serie	the bas s iscount Height	sic concepts of L	ine Graph		0			Ap	66		

Banking awareness by Sangram Keshari Rout and Soumya Ranjan Behera, B.K. Publications Pvt. Ltd.; Second edition (2014).

UGC-CSIR NET/SET by Dr. Pawan Sharma and Anshuman, Arihant Publication.

Fast Track Objective Arithmetic by Rajesh Verma, Arihant Publication, Edition 2012.

E-References

- 1. www.careerbless.com
- 2. www.jagranjosh.com
- 3. www.bestguru.com

COs vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	10	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

SEMESTER VI

Co	ourse	Name	Complex Analysis	L	T	P	С	
C	ourse	Code	XMT601	3	1	0	4	
C	P	A		L	T	P	Н	
4	0	0		3	2	0	5	
Pre	requi	site	Knowledge in Calculus					
On	succe	ssful com	pletion of this course, the students will be able to:					
			Course Outcomes	Dom	ain	Le	vel	
CO	1		line whether the given function is Continuous / stiable / analytic.	Cogni	tive E	Evaluat	ing	
CO	2		tine the image of given region under the given bilinear	Cogni	tive E	Evaluat	ing	
CO	3	Explain Explain	n Cauchy's theorem and Cauchy Integral formula	Cogni	tive U	Inderst	anding	
CO	4		tine the annulus of convergence of a given function using cepts of series expansion	Cogni	tive H	Evaluat	ing	
CO	5	Evalua theorem	te complex contour integrals using the Cauchy Residue	Cogni	tive E	Evaluat	ing	
UN	IT 1	Compl	ex numbers			9 -	+ 3	
Diff Mili	erent	iability - nompson	 Functions of a complex variable – Limits – Theorems on limits – Cauchy Riemann equations – Analytic functions – Internation Transformation 			ctions		
			mentary transformations – Bilinear transformation – cross rather special bilinear transformations	atio – f	ixed poi	nts of	bilinear	
	IT 3		ex Integration			9 -	+ 3	
theo	rem -	Higher of the Hi	nite integral – Cauchy's Theorem – Cauchy's integral formul derivatives – Cauchy's inequality – Liouville's theorem – Fun n. E xpansions			rem of		
				:	ا باسمارین			
		•	rlor's series – Laurent's series – Zeros of an analytic function - meromorphic function.	on — S1r	iguiariti	es and	poies -	
	IT 5		is of residues			9 -	+ 3	
			y's Residue theorem - Argument theorem - Rouche's theo	rem -	Evaluat	on of	definite	
	gral – cture		Integration types. 15 Tutorial 15 Practical 0		Total		60	
Tex	t Boo	ok						

2014.

Unit I : Chapter 1 (Sec: 1.1), Pages: 1-2

Chapter 2 (Sec: 2.1 - 2.8), Pages: 24 - 52

Unit II : Chapter 3 (Sec: 3.1 – 3.5), Pages: 74 – 100

Unit III : Chapter 6(Sec: 6.1 – 6.4), Pages: 132 – 170 Unit IV : Chapter 7(Sec: 7.1 – 7.4), Pages: 173 – 207 Unit V : Chapter 8(Sec: 8.1 – 8.3), Pages: 209 – 254

References

"Foundations of complex Analysis" by S. Ponnusamy- Narosa Publishing House- New Delhi Chennai.

2. "Functions of a complex variables with applications" by E.G. Phillis (1968)- Oliver & Boy D, Edinburg

E-References

http//nptel.ac.in

COs vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	3	3	1	3	1	1
CO 2	3	3	3	3	3	1	3	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	3	3	3	1	3	1	1
CO 5	3	3	3	3	3	1	3	1	1
TOTAL	15	15	14	13	15	5	12	5	5
SCALED VALUE	3	3	3	3	3	1	3	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

	edge In Basic M	XMT60	2		3 L 3	1 T	0 P	4 H
Knowle	dge In Basic M							
Knowle	dge In Basic M				3	1		
	dge In Basic M				J	1	0	4
completion of	-	athemati	cal Concepts					
completion of	this course, the	students	will be able to:					
	Course Outco	omes			Dom	ain	L	evel
	method to so	lve a gi	ven linear progra	mming	Cogn	itive	Applyi	ing
	programming pr	oblem us	ing simplex metho	od and	Cogn	itive	Applyi	ing
ermine the	optimal solution			ns and				
lize dominanc	ce property for fi	nding sac	ldle point of the zer	ro-sum	Cogn	itive	Applyi	ing
				· ·			9	+ 3
od – Big M m	_	_	_	in Linea	r Prog	rammiı		+ 3 mulatio
1 ans – Main		————	ianty - problems.				9	+ 3
Method - Net	work Scheduling	by PERT	7/ CPM: Critical pa	th Metho	d and	PERT (calculat	
Problem and	Assignment Pro	blem.						
							9	+ 3
_	_					ategies	- The g	graphic
45	Tutorial	15	Practical	0		Tota	1	60
	ve thelinear p M method ntify the time termine the oblige dominance me with mixed search- An overage- Application and Application and Big M method - Netw Problem and Optimal solumance propert	ve thelinear programming pr M method ntify the timeline of a given premine the optimal solution signment Problems lize dominance property for fine with mixed strategies search- An overview: Nature ang- Applications and Limitation and Search and Applications and Limitation and Pairs — Mathematical formula Method - Network Scheduling Problem and Assignment Pro Optimal solution of two personance property- general solution	ve thelinear programming problem us M method ntify the timeline of a given project using termine the optimal solution for Transignment Problems lize dominance property for finding saddle with mixed strategies search- An overview: Nature and characteristics and Limitations of OR mods. od – Big M method - Two phase- Simple Pairs – Mathematical formulation of due Method - Network Scheduling by PERT Problem and Assignment Problem. Optimal solution of two person zero- senance property- general solution of (m.)	we thelinear programming problem using simplex method M method ntify the timeline of a given project using PERT termine the optimal solution for Transportation problem signment Problems lize dominance property for finding saddle point of the zer ne with mixed strategies search- An overview: Nature and characteristic Features of ng- Applications and Limitations of OR- Linear Programm nods. od – Big M method - Two phase- Simplex Method-Duality Pairs – Mathematical formulation of duality - problems. Method - Network Scheduling by PERT/ CPM: Critical pair Problem and Assignment Problem. Optimal solution of two person zero- sum games- games nance property- general solution of (m x n) rectangular gar	we thelinear programming problem using simplex method and M method Intify the timeline of a given project using PERT Itermine the optimal solution for Transportation problems and dignment Problems Itered dominance property for finding saddle point of the zero-sum me with mixed strategies Search- An overview: Nature and characteristic Features of OR- Mong- Applications and Limitations of OR- Linear Programming Problemds. Od – Big M method - Two phase- Simplex Method-Duality in Linear Pairs – Mathematical formulation of duality - problems. Method - Network Scheduling by PERT/ CPM: Critical path Method Problem and Assignment Problem. Optimal solution of two person zero- sum games- games with mix nance property- general solution of (m x n) rectangular games (LPP)	we thelinear programming problem using simplex method and M method Intify the timeline of a given project using PERT Intermine the optimal solution for Transportation problems and diagrament Problems Interpretation property for finding saddle point of the zero-sum diagramment Problems Interpretation property for finding saddle point of the zero-sum diagramment Problems Interpretation property for finding saddle point of the zero-sum diagramment Problems Interpretation property for finding saddle point of the zero-sum diagramment Problem: Production of OR- Linear Programming Problem: Production of DR- Linear Programming Problem: Production of DR- Linear Programming Problem: Production of DR- Mathematical formulation of duality - problems. Method - Network Scheduling by PERT/ CPM: Critical path Method and DR- Problem and Assignment Problem. Optimal solution of two person zero- sum games- games with mixed stransacce property- general solution of (m x n) rectangular games (LPP only)	we thelinear programming problem using simplex method and Cognitive M method Intify the timeline of a given project using PERT Cognitive members and solution for Transportation problems and Cognitive diagrament Problems Itize dominance property for finding saddle point of the zero-sum cognitive me with mixed strategies Itize dominance property for finding saddle point of the zero-sum cognitive me with mixed strategies Itize dominance property for finding saddle point of the zero-sum cognitive me with mixed strategies Itize dominance property for finding saddle point of the zero-sum cognitive me with mixed strategies Itize dominance property in the zero-sum cognitive me with mixed strategies Itize dominance property in the zero-sum cognitive me with mixed strategies mance property- general solution of (m x n) rectangular games (LPP only)	we thelinear programming problem using simplex method and Cognitive Applying M method Intify the timeline of a given project using PERT Cognitive Applying termine the optimal solution for Transportation problems and Cognitive Applying ignment Problems Interpolation of the zero-sum of t

Unit II : Chapters 4, 5,6,8,9 Unit III : Chapters 9 and 27

Unit IV : Chapters 15 and 16 Unit V : Chapters 20

Reference

1." Operations Research" Kanti Swarup, PK. Gupta and Man Mohan, Sultan Chand and Sons, edition 2020.

E-References

http//nptel.ac.in

COs vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	10	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

C	Course	Name	Fuzzy Sets and its Applications	L	T	P	C
(Course	e Code	XMT603	4	1	0	5
C	P	A		L	T	P	Н
5	0	0		4	1	0	5
Pre	erequi	site					
On	succe	ssful comp	pletion of this course, the students will be able to:				
			Course Outcomes	Dom	ain	Le	evel
CO)1	Define t	he Fuzzy sets, Fuzzy graphs and their principles.	Cogn	itive	Unders	standing
CO	2	Underst	tandFuzzy relations and Fuzzy graphs.	Cogn	itive	Analyz	ing
CO	13	Analyze	EFuzzy quantifiers and Multi conditional approximate	Cogn	itive	Analyz	ing
CO		reasonin	g				
		Explain	the Fuzzification. Defuzzification and the various	Cogn	itive	Unders	standing
CO)4	Defuzzi	fication methods				
CO	5	Apply t	he Fuzzy ranking methods in Civil Engineering,	Cogn	itive	Applyi	ng
CO		Mechan	ical Engineering, Industrial Engineering and Medicine				
UN	IT 1	Fuzzy se	ets			12	2+ 3
alge nun	ebraic	operation – special e	 Basic set theoretic operations for Fuzzy sets – Extens Extension Principle: operation for type 2 fuzzy sets – alextended operations – Extended operations for LR-representate elations and Fuzzy Graphs 	gebraic	opera	ntions wi	•
Fuz	zy rel	ations and	fuzzy sets – Composition of Fuzzy relations – Min-max com	npositio	n and	its prop	er
ties	•	zy graphs	 Special fuzzy relation - Possibility Theory – Possibility of 	-			
UN	IT 3	Fuzzy L	ogic			12	2+3
hed exp	lges – ert sys	Inference	overview – Multi valued logic – Fuzzy propositions – Fuzzy from conditional fuzzy propositions– Approximate reasonir zzy implications and their selection – Multi conditional apprount untion.	ng : An c	vervi	ew of fu	zzy
	IT 4	Fuzzy S				12	2+3
Def	fuzzifi xima a	cation and and the me	An overview – Fuzzy rule base. Fuzzy inference engine. Fuzz I the various Defuzzification methods (the centre of area, the can of maxima methods) An example – Fuzzy systems and Neural Networks – Automa	centre o	of	cal Syste	ems.
	IT 5	1	n making in Fuzzy Environment				2+3
			making — Multiperson decision making — Multicriteria de Fuzzy ranking methods — Fuzzy linear programming — App				

Mechanical Engineering, Industrial Engineering and Medicine.

LECTURE 60 TUTORIAL 15 PRACTICAL 0 TOTAL 75

Text Books

Fuzzy set theory and its applications Fourth edition, H. J. Zimmermann. Springer, 2015.

Unit – I: Chapters. 2, 3(Sec. 3.1 - 3.2.1), 5

Unit – II: Chapters. 6, 8(Sec. 8.2 - 8.4)

Fuzzy sets and Fuzzy Logic, Theory and Applications, George J. Klir and Bo Yuan, PHI, 2013.

Unit – III: Chapters. 8(Sec. 8.1 – 8.6), 11(Sec. 11.1 – 11.5)

Unit – IV: Chapters. 12

Unit – IV: Chapters. 15, 16(Sec. 16.2, 16.3), 17(Sec. 17.2)

References

1. "Fuzzy Set Theory Fuzzy Logic and their Application", Bhargava A.K.. Publisher, S. Chand Publishing, 2013

E-References

 $1. \underline{http://www.tezu.ernet.in/dmaths/programme/PhD-MathSc-syllabus_2013.pdf}$

[Cambridge University]

2. http://www.imperial.ac.uk/civil-engineering/prospective-students/postgraduate-taught-admissions/environmental-engineering-cluster/syllabus/cive97035/

[Imperial College London]

COs vs P	'Us
----------	------------

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	3	3	3	1	2	1	1
CO 3	3	3	3	3	3	1	2	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	13	10	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

	Course	Name	Introduction to Industry 4.0	L	T	P	C
	Course	e Code	XMT603	4	1	0	5
C	P	A		L	T	P	Н
5	0	0		4	1	0	5
Pr	erequis	site		1			

On successful completion of this course, the students will be able to:

	Course Outcomes	Domain	Level
CO1	Know the reason for adopting Industry 4.0 and Artificial	Cognitive	Remembering
	Intelligence.		
CO2	Understand the need for digital transformation.	Cognitive	Understanding
CO3	Apply the industry 4.0 tools.	Cognitive	Applying
CO4	Analyze the applications of Big Data.	Cognitive	Analyzing
CO5	Examine the applications and security of IoT Applications	Cognitive	Analyzing
UNIT 1	Industry 4.0	1	12+ 3

Need – Reason for Adopting Industry 4.0 - Definition – Goals and Design Principles - Technologies of Industry 4.0 – Big Data – Artificial Intelligence (AI) – Industrial Internet of Things - Cyber Security – Cloud – Augmented Reality.

UNIT 2 Artificial Intelligence

12 + 3

Artificial Intelligence: Artificial Intelligence (AI) – What & Why? - History of AI - Foundations of AI - The AI - environment - Societal Influences of AI - Application Domains and Tools - Associated Technologies of AI - Future Prospects of AI - Challenges of AI .

UNIT 3 Big Data and IoT

12 + 3

Big Data: Evolution - Data Evolution - Data: Terminologies - Big Data Definitions - Essential of Big Data in Industry 4.0 - Big Data Merits and Advantages - Big Data Components: Big Data Characteristics - Big Data Processing Frameworks - Big Data Applications - Big Data Tools - Big Data Domain Stack: Big Data in Data Science - Big Data in IoT - Big Data in Machine Learning - Big Data in Databases - Big Data Use cases Big Data in Social Causes - Big Data for Industry - Big Data Roles and Skills - Big Data Roles - Learning Platforms; Internet of Things (IoT): Introduction to IoT - Architecture of IoT - Technologies for IoT - Developing IoT Applications - Applications of IoT - Security in IoT.

UNIT 4 Applications And Tools Of Industry 4.0

12 + 3

Applications of IoT – Manufacturing – Healthcare – Education – Aerospace and Defense – Agriculture – Transportation and Logistics – Impact of Industry 4.0 on Society: Impact on Business, Government, People. Tools for Artificial Intelligence, Big Data and Data Analytics, Virtual Reality, Augmented Reality, IoT, Robotics.

UNIT 5 Jobs 2030 12+ 3

Industry 4.0 – Education 4.0 – Curriculum 4.0 – Faculty 4.0 – Skills required for Future - Tools for Education – Artificial Intelligence Jobs in 2030 – Jobs 2030 - Framework for aligning Education with Industry 4.0 .

Lecture60Tutorial15Practical0Total75

Text Book

Higher Education for Industry 4.0 and Transformation to Education 5.0(2020)- P. Kaliraj& T. Devi

References

1." Industry 4.0", by Jean-Claude André, Publisher: Wiley-ISTE (2019)

E-References

https://nptel.ac.in/courses/106/105/106105195/

COs vs POs

			`	005 151					
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	0	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	3	3	1	2	1	1
CO 5	3	3	3	3	3	1	2	1	1
TOTAL	15	15	12	9	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

	se Name			Astrono	omy		L	T	P	C					
Cour	rse Code			XMT6	04		4	1	0	5					
C P	A						L	Т							
5 0	0						4	1	0	5					
Prereq	uisite	Know	ledge In Physics	s and Ma	thematics										
On suc	cessful co	mpletion	of this course, th	ne student	s will be able to:										
			Course Outo	comes			Dom	ain	L	evel					
CO1	Expl	ain the ce	elestial sphere ar	nd its mov	rement.		Cogni	itive	Under	standing					
CO2	Dem	onstrate	the radius of ear	th and ro	tation of earth		Cogn	itive	Under	standing					
CO3	Infe	the pheno	omenon of twilig	ght and re	fraction.		Cogni	itive	Under	standing					
CO4		y Keple tary syste		to cons	truct explanations	about	Cogni	itive	Apply	ing					
CO5 UNIT		pret the	e quation of time	, seasons	and calendar		Cogn	itive		standing 2+3					
Celesti	al sphere -	- Diurnal	motion												
UNIT 2									1	2+3					
The Ea of horiz		s of Eartl	h – Terrestrial la	titudes ar	d longitudes – Rad	ius of ear	th – Ro	otation	of ear	th – Dip					
UNIT:	3								1	2+ 3					
Twiligh	ht – Refrac	etion													
Twiligh	ht – Refrac	etion								2+ 3					
Twiligh	ht – Refrac	etion													
Twiligh UNIT 4 Kepler	ht – Refract 4 's Laws	etion							1						
UNIT 4 Kepler UNIT	ht – Refrace 4 's Laws 5		seasons – calend	ar					1	2+ 3					
Twiligh UNIT 4 Kepler	ht – Refract 4 's Laws 5 Equation of		seasons – calend	ar 15	Practical	0		Tota	1	2+ 3					
Twiligh UNIT 4 Kepler UNIT 4 Time: 1	ht – Refract 4 's Laws 5 Equation of	of time –	T		Practical	0		Tota	1	2+ 3					
Twiligh UNIT 4 Kepler UNIT 5 Time: 1 Lectu Text B "Astron	ht – Refract 4 's Laws 5 Equation of the lates of the lat	of time – 60 S. Kumar	Tutorial	15 eelaKuma	Practical uravelu, Agasthiyar		on, 20		1	2+ 3					
Twiligh UNIT 4 Kepler' UNIT 5 Time: 1 Lectu Text B "Astron Unit	ht – Refrace 4 's Laws 5 Equation of the lambda should be	of time – 60 S. Kumar	Tutorial ravelu and Sushe	15 eelaKuma 9 – 79	uravelu, Agasthiyar		on, 20		1	2+ 3					
Twiligh UNIT 4 Kepler UNIT 5 Time: 1 Lectu Text B "Astron Unit Unit II	ht – Refract 4 's Laws 5 Equation of the lates of the lat	of time – 60 S. Kumar Cha	Tutorial ravelu and Sushe pter II, Article 3 pter III (Sec: 3.1	15 eelaKuma 9 – 79 – 3.5), A	aravelu, Agasthiyar Article 87 – 110	Publicati	on, 20		1	2+ 3					
Twiligh UNIT 4 Kepler UNIT 5 Time: 1 Lectu Text B "Astron Unit Unit II Unit III	ht – Refract 4 's Laws 5 Equation of the lates of the lat	of time – 60 S. Kumar Cha Cha	ravelu and Sushe apter II, Article 3 apter III (Sec: 3.1 apter III (sec: 3.6)	eelaKuma 9 – 79 – 3.5), A	aravelu, Agasthiyar Article 87 – 110 · IV, Article 111 – 1	Publicati	on, 20		1	2+ 3					
Twilight UNIT 4 Kepler 4 UNIT 5 Time: 1 Lectu Text B "Astron Unit Unit II Unit III Unit IV	ht – Refract 4 's Laws 5 Equation of the lambda shock nomy" by : : : : : : : : : : : : : : : : : : :	S. Kumar Cha Cha Chay	ravelu and Sushe apter II, Article 3 apter III (Sec: 3.6) apter VI, Article	25 eelaKuma 9 – 79 . – 3.5), A o, Chapter 146 – 163	aravelu, Agasthiyar Article 87 – 110 TIV, Article 111 – 1	Publicati	on, 20		1	2+ 3					
Twiligh UNIT 4 Kepler UNIT 5 Time: 1 Lectu Text B "Astron Unit Unit II Unit III Unit IV Unit V	ht – Refract 4 's Laws 5 Equation of the lates of the	S. Kumar Cha Cha Chay	ravelu and Sushe apter II, Article 3 apter III (Sec: 3.1 apter III (sec: 3.6)	25 eelaKuma 9 – 79 . – 3.5), A o, Chapter 146 – 163	aravelu, Agasthiyar Article 87 – 110 TIV, Article 111 – 1	Publicati	on, 20		1	2+ 3					
Twiligh UNIT 4 Kepler UNIT 5 Time: 1 Lectu Text B "Astron Unit II Unit II Unit IV Unit V Refere	ht – Refract 4 's Laws 5 Equation of the latest series and the latest series are latest series and the latest series are	S. Kumar Cha Cha Cha Cha Cha	ravelu and Sushe apter II, Article 3 apter III (Sec: 3.6) apter VI, Article apter VII, Article	eelaKuma 9 – 79 – 3.5), A , Chapter 146 – 16 166 – 17	aravelu, Agasthiyar Article 87 – 110 TIV, Article 111 – 1	Publicati	on, 20		1	2+ 3					

2. Textbook on Astronomy H. SubramaniAiyar, Publisher: National Book Trust (1970)

E-References

http://bulletin.columbia.edu/columbia-college/departments-instruction/astronomy/#coursestext [Columbia University]

Https://Www.Physics.Utoronto.Ca/~Jharlow/Teaching/Astron03/Fullnotes/ [University Of Toronto]

CODIDE	COs	VS	PO	
--------	-----	----	----	--

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	11	7	15	5	1	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

ı		ame		Stoc	hastic I	Processes		L	T	P	C
	rse Co	ode			XMT	504		4	1	0	5
C P	•	A						L	T	P	Н
5 0)	0						4	1	0	5
Prereg	quisite	e	Basic le expecta	0 1	obability	theory and linear al	gebra inc	luding	condi	tional	
On suc	cessfi	ul com			he studen	ts will be able to:					
				Course Out	comes			Dom	ain	Le	vel
CO1		Explai	n the cl	assification of s	stochastic	process and Marko	v chain	Cogni	tive	Underst	andin
CO2]		chains	•	•	cted absorption time f		Cogni	tive	Applyii	ng
CO3]	Demoi	nstrate	the concepts of	birth and	death processes		Cogni	tive	Underst	andin
CO4	3	Summ	arize th	e concepts of re	enewal pr	ocess		Cogni	tive	Underst	andin
CO5]	Infer t	he conc	epts of super m	artingales	s and sub martingale	es	Cogni	tive	Underst	andin
JNIT	1									12	+ 3
J NIT The ba	2 sic lin	nit the	orem of	Markov chains	and appl	ications-Discrete re	newal equ				+ 3
1		probab	ılıtıes -	criteria for rec	currence-	A queuing Examp	le.			12	+ 3
JNIT.		amples	s of con	tinuous time Me	arkov cha		.1	2222	1 D .		
Classic nore a	about	Poisso	on proc	esses- A count	er model	ins-General pure bing birth and death processes.					esses-
Classic nore a	about and de	Poisso	on proc	esses- A count	er model					equation	esses-
Classic more a pirth a UNIT a Renew Process heorer UNIT a	about and do 4 ral proses – Tm - T gales	Poisse eath pocesses More the Re	on proc rocesses - Defini on som newal	esses- A count s-Examples of tion of Renewa e special Rene Theorem – App	er model birth and l process ewal prod lications	-birth and death p	ots – Som quations	Differe e exan and ele	nples ement	12 of Reneary Ren	esses-s of + 3 ewal ewal + 3
more a birth a UNIT a Renew Process heorer UNIT a	about and do 4 val pro ses - T 5 gales al san	Poisse eath pocesses More the Re	on proc rocesses - Defini on som newal	esses- A count s-Examples of tion of Renewa e special Rene Theorem – App	er model birth and l process ewal prod lications	-birth and death polyder of Renewal theore	ots – Som quations	Differe e exan and ele	nples ement	of Reneary Ren	esses-s of + 3 ewal ewal + 3

Press New York.

Unit I : Chapter (1.2 to 1.3) Unit II : Chapter (2.1 to 2.5) Unit III : Chapter (3.1 to 3.5) Unit IV : Chapter (4.1 to 4.6) Unit V : Chapter (6.1 to 6.3)

References

- 1. "Stochastic Processes" S.K. Srinivasan and K.M. Mehata, TataMcGraw Hill Publishing Company Ltd., New Delhi.
- 2. "Stochastic Processes" Mehdi, Second Edition Wiley Eastern Ltd., New Delhi.

E-References

http//nptel.co.in

	COs vs POs												
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9				
CO 1	3	3	2	1	3	1	0	1	1				
CO 2	3	3	3	2	3	1	1	1	1				
CO 3	3	3	2	1	3	1	0	1	1				
CO 4	3	3	2	1	3	1	0	1	1				
CO 5	3	3	2	1	3	1	0	1	1				
TOTAL	15	15	11	6	15	5	1	5	5				
SCALED	3	3	3	2	3	1	1	1	1				

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

VALUE

Course Code XUM005	C	ourse	Name	Cyber Security	L	T	P	C			
Prerequisite Basic Programming knowledge and technical skills. On successful completion of this course, the students will be able to: Course Outcomes	C	Course	Code	XUM005	1	0	0	1			
Prerequisite Basic Programming knowledge and technical skills. On successful completion of this course, the students will be able to: Course Outcomes	C	P	A		L	T	Н				
Consider Course Outcomes Domain Level	1	0	0		1	0	1	2			
Course Outcomes	Pre	requis	site	Basic Programming knowledge and technical skills.	I		1				
CO 1	On	succes	ssful com	pletion of this course, the students will be able to:							
technologies. CO 2 Understand the organizational structure of Cyber security CO 3 Understand the Cyber Security policy development CO 4 Understand the Indian IT act and the initiatives CO 5 Understand and Apply the Cyber security practices CO 6 Understand and Apply the Cyber security practices CO 7 Understand and Apply the Cyber security practices CO 8 Understand and Apply the Cyber security Profice Applying UNIT 1 INTRODUCTION CYBER Security — Cyber Security policy — Domain of Cyber Security Policy — Laws and Regulations — Enterprise Policy — Technology Operations — Technology Configuration — Strategy Versus Policy — Cyber Security Evolution — Productivity — Internet — E commerce — Counter Measures — Challenges UNIT 2 CYBER SECURITY OBJECTIVES AND GUIDANCE Cyber Security Metrics — Security Management Goals — Counting Vulnerabilities — Security Frameworks — E Commerce Systems — Industrial Control Systems — Personal Mobile Devices — Security Policy Objectives — Guidance for Decision Makers — Tone at the Top — Policy as a Project — Cyber Security Management — Arriving at Goals — Cyber Security Documentation — The Catalog Approach — Catalog Format — Cyber Security Policy Taxonomy. UNIT 3 CYBER SECURITY POLICY CATALOG Cyber Governance Issues — Malvertising — Impersonation — Appropriate Use — Cyber Crime — Geo location — Privacy — Cyber Conflict Issues — Intellectual property Theft — Cyber Espionage — Cyber Sabotage — Cyber Welfare— Computer Forensics — Steganography UNIT 4 CYBER SECURITY INITIATIVES AND IT ACT Counter Cyber Security Initiatives in India, Cyber Security Exercise, Cyber Security Incident Handling, Cyber Security Assurance, IT Act, Hackers—Attacker—Counter measures , Web Application Security , Digital Infrastructure Security , Defensive Programming. Traditional Problems Associated with Computer Crime, Introduction to Incident Response. UNIT 5 SECURITY PRACTICES				Course Outcomes	Dom	ain	Le	evel			
CO 3 Understand the Cyber Security policy development Cognitive Understanding CO 4 Understand the Indian IT act and the initiatives Cognitive Understanding CO 5 Understand and Apply the Cyber security practices Cognitive Applying UNIT 1 INTRODUCTION 3 Cyber Security – Cyber Security policy – Domain of Cyber Security Policy – Laws and Regulations – Enterprise Policy – Technology Operations – Technology Configuration – Strategy Versus Policy – Cyber Security Evolution – Productivity – Internet – E commerce – Counter Measures – Challenges UNIT 2 CYBER SECURITY OBJECTIVES AND GUIDANCE 3 Cyber Security Metrics – Security Management Goals – Counting Vulnerabilities – Security Frameworks – E Commerce Systems – Industrial Control Systems – Personal Mobile Devices – Security Policy Objectives – Guidance for Decision Makers – Tone at the Top – Policy as a Project – Cyber Security Management – Arriving at Goals – Cyber Security Documentation – The Catalog Approach – Catalog Format – Cyber Security Policy Taxonomy. UNIT 3 CYBER SECURITY POLICY CATALOG 3 Cyber Governance Issues – Net Neutrality – Internet Names and Numbers – Copyright and Trademarks – Email and Messaging – Cyber User Issues – Malvertising – Impersonation – Appropriate Use – Cyber Crime – Geo location – Privacy – Cyber Conflict Issues – Intellectual property Theft – Cyber Espionage – Cyber Sabotage – Cyber Welfare – Computer Forensics – Steganography UNIT 4 CYBER SECURITY INITIATIVES AND IT ACT 3 Counter Cyber Security Initiatives in India, Cyber Security Exercise, Cyber Security Incident Handling, Cyber Security Assurance, IT Act, Hackers–Attacker–Counter measures ,Web Application Security, Digital Infrastructure Security ,Defensive Programming. Traditional Problems Associated with Computer Crime, Introduction to Incident Response. UNIT 5 SECURITY PRACTICES 3	CO 1 technologies. Cognitive Understanding										
CO 4 Understand the Indian IT act and the initiatives Cognitive Understanding CO 5 Understand and Apply the Cyber security practices Cognitive Applying UNIT 1 INTRODUCTION 3 Cyber Security - Cyber Security policy - Domain of Cyber Security Policy - Laws and Regulations - Enterprise Policy - Technology Operations - Technology Configuration - Strategy Versus Policy - Cyber Security Evolution - Productivity - Internet - E commerce - Counter Measures - Challenges UNIT 2 CYBER SECURITY OBJECTIVES AND GUIDANCE 3 Cyber Security Metrics - Security Management Goals - Counting Vulnerabilities - Security Frameworks - E Commerce Systems - Industrial Control Systems - Personal Mobile Devices - Security Policy Objectives - Guidance for Decision Makers - Tone at the Top - Policy as a Project - Cyber Security Management - Arriving at Goals - Cyber Security Documentation - The Catalog Approach - Catalog Format - Cyber Security Policy Taxonomy. UNIT 3 CYBER SECURITY POLICY CATALOG 3 Cyber Governance Issues - Net Neutrality - Internet Names and Numbers - Copyright and Trademarks - Email and Messaging - Cyber User Issues - Malvertising - Impersonation - Appropriate Use - Cyber Crime - Geo location - Privacy - Cyber Conflict Issues - Intellectual property Theft - Cyber Espionage - Cyber Sabotage - Cyber Welfare- Computer Forensics - Steganography UNIT 4 CYBER SECURITY INITIATIVES AND IT ACT 3 Counter Cyber Security Initiatives in India, Cyber Security Exercise, Cyber Security Incident Handling, Cyber Security Assurance, IT Act, Hackers-Attacker-Counter measures , Web Application Security , Digital Infrastructure Security , Defensive Programming. Traditional Problems Associated with Computer Crime, Introduction to Incident Response. UNIT 5 SECURITY PRACTICES 3	CO 2 Understand the organizational structure of Cyber security Cognitive Understanding										
CO 5 Understand and Apply the Cyber security practices Cognitive Applying UNIT 1 INTRODUCTION 3 Cyber Security - Cyber Security policy - Domain of Cyber Security Policy - Laws and Regulations - Enterprise Policy - Technology Operations - Technology Configuration - Strategy Versus Policy - Cyber Security Evolution - Productivity - Internet - E commerce - Counter Measures - Challenges UNIT 2 CYBER SECURITY OBJECTIVES AND GUIDANCE 3 Cyber Security Metrics - Security Management Goals - Goals - Security Policy Objectives - Guidance for Decision Makers - Tone at the Top - Policy as a Project - Cyber Security Management - Arriving at Goals - Cyber Security Documentation - The Catalog Approach - Catalog Format - Cyber Security Policy Taxonomy. UNIT 3 CYBER SECURITY POLICY CATALOG 3 Cyber Governance Issues - Net Neutrality - Internet Names and Numbers - Copyright and Trademarks - Email and Messaging - Cyber User Issues - Malvertising - Impersonation - Appropriate Use - Cyber Crime - Geo location - Privacy - Cyber Conflict Issues - Intellectual property Theft - Cyber Espionage - Cyber Sabotage - Cyber Welfare- Computer Forensics - Steganography UNIT 4 CYBER SECURITY INITIATIVES AND IT ACT 3 Counter Cyber Security Initiatives in India, Cyber Security Exercise, Cyber Security Incident Handling, Cyber Security Assurance, IT Act, Hackers-Attacker-Counter measures Web Application Security, Digital Infrastructure Security , Defensive Programming. Traditional Problems Associated with Computer Crime, Introduction to Incident Response. UNIT 5 SECURITY PRACTICES	CO 3 Understand the Cyber Security policy development Cognitive Understanding										
UNIT 1 INTRODUCTION Cyber Security - Cyber Security policy - Domain of Cyber Security Policy - Laws and Regulations - Enterprise Policy - Technology Operations - Technology Configuration - Strategy Versus Policy - Cyber Security Evolution - Productivity - Internet - E commerce - Counter Measures - Challenges UNIT 2 CYBER SECURITY OBJECTIVES AND GUIDANCE Cyber Security Metrics - Security Management Goals - Counting Vulnerabilities - Security Frameworks - E Commerce Systems - Industrial Control Systems - Personal Mobile Devices - Security Policy Objectives - Guidance for Decision Makers - Tone at the Top - Policy as a Project - Cyber Security Management - Arriving at Goals - Cyber Security Documentation - The Catalog Approach - Catalog Format - Cyber Security Policy Taxonomy. UNIT 3 CYBER SECURITY POLICY CATALOG Cyber Governance Issues - Net Neutrality - Internet Names and Numbers - Copyright and Trademarks - Email and Messaging - Cyber User Issues - Malvertising - Impersonation - Appropriate Use - Cyber Crime - Geo location - Privacy - Cyber Conflict Issues - Intellectual property Theft - Cyber Espionage - Cyber Sabotage - Cyber Welfare- Computer Forensics - Steganography UNIT 4 CYBER SECURITY INITIATIVES AND IT ACT Counter Cyber Security Initiatives in India, Cyber Security Exercise, Cyber Security Incident Handling, Cyber Security Assurance, IT Act, Hackers-Attacker-Counter measures ,Web Application Security , Digital Infrastructure Security ,Defensive Programming. Traditional Problems Associated with Computer Crime, Introduction to Incident Response. UNIT 5 SECURITY PRACTICES	CO 4 Understand the Indian IT act and the initiatives Cognitive Understanding										
Cyber Security — Cyber Security policy — Domain of Cyber Security Policy — Laws and Regulations — Enterprise Policy — Technology Operations — Technology Configuration — Strategy Versus Policy — Cyber Security Evolution — Productivity — Internet — E commerce — Counter Measures — Challenges UNIT 2	CO 5 Understand and Apply the Cyber security practices Cognitive Applying										
Enterprise Policy – Technology Operations – Technology Configuration – Strategy Versus Policy – Cyber Security Evolution – Productivity – Internet – E commerce – Counter Measures – Challenges UNIT 2	UN	IT 1	INTRO	DDUCTION				3			
UNIT 3CYBER SECURITY POLICY CATALOG3Cyber Governance Issues – Net Neutrality – Internet Names and Numbers – Copyright and Trademarks – Email and Messaging – Cyber User Issues – Malvertising – Impersonation – Appropriate Use – Cyber Crime – Geo location – Privacy – Cyber Conflict Issues – Intellectual property Theft – Cyber Espionage – Cyber Sabotage – Cyber Welfare– Computer Forensics – SteganographyUNIT 4CYBER SECURITY INITIATIVES AND IT ACT3Counter Cyber Security Initiatives in India, Cyber Security Exercise, Cyber Security Incident Handling, Cyber Security Assurance, IT Act, Hackers–Attacker–Counter measures ,Web Application Security , Digital Infrastructure Security ,Defensive Programming. Traditional Problems Associated with Computer Crime, Introduction to Incident Response.3UNIT 5SECURITY PRACTICES3	Sec UN Cyb Cor Gui Arri	Security Evolution – Productivity – Internet – E commerce – Counter Measures – Challenges UNIT 2									
Email and Messaging – Cyber User Issues – Malvertising – Impersonation – Appropriate Use – Cyber Crime – Geo location – Privacy – Cyber Conflict Issues – Intellectual property Theft – Cyber Espionage – Cyber Sabotage – Cyber Welfare – Computer Forensics – Steganography UNIT 4				•				3			
Counter Cyber Security Initiatives in India, Cyber Security Exercise, Cyber Security Incident Handling, Cyber Security Assurance, IT Act, Hackers—Attacker—Counter measures ,Web Application Security, Digital Infrastructure Security, Defensive Programming. Traditional Problems Associated with Computer Crime, Introduction to Incident Response. UNIT 5 SECURITY PRACTICES 3	Ema	ail and locat	Messagi ion – Pri	ng – Cyber User Issues – Malvertising – Impersonation – App vacy – Cyber Conflict Issues – Intellectual property Theft	ropriate	e Use -	- Cyber	Crime –			
Cyber Security Assurance, IT Act, Hackers–Attacker–Counter measures ,Web Application Security , Digital Infrastructure Security ,Defensive Programming. Traditional Problems Associated with Computer Crime, Introduction to Incident Response. UNIT 5 SECURITY PRACTICES 3								3			
	Cyb Sec Cor	er S urity , nputer	Security Digital Crime, In	Assurance, IT Act, Hackers–Attacker–Counter modern Infrastructure Security ,Defensive Programming. Tradition ntroduction to Incident Response.	easures	,We	b Ap _l Associa	plication ted with			
,					curity	,Guide					

up a Secure password ,Two-steps authentication ,Password Manager ,Wi-Fi Security ,Guidelines for social media security ,Tips and best practices for safer Social Networking.

Basic Security for Windows, User Account Password Introduction to mobile Smartphone Security, AndroidSecurity, IOS Security Online Banking Security, Mobile Banking Security, Security of Debit and Credit Card, UPI Security Security of Micro ATMs e-wallet Security Guidelines Security Guidelines for Point of Sales(POS)

Lecture	15	Tutorial	0	Practical	0	Total	15

Text Books

Jennifer L. Bayuk, J. Healey, P. Rohmeyer, Marcus Sachs, Jeffrey Schmidt, Joseph Weiss

'Cyber Security Policy Guidebook" John Wiley & Sons 2012.

Rick Howard "Cyber Security Essentials" Auerbach Publications 2011.

Cyber Laws & Information Technology, Jothi Rathan, VijayRathan, Bhrath Pubishers,7th Edition January 2019.

References

Modern Cyber security Practices by Pascal Ackerman, BPB Publications, 2020

Dan Shoemaker Cyber security The Essential Body Of Knowledge, 1st ed. Cengage

Learning 2011

Rhodes-Ousley, Mark, "Information Security: The Complete Reference", Second Edition, McGraw-Hill, 2013.

E-References

https://www.coursera.org/specializations/cyber-security

www. nptel.ac.in

http://professional.mit.edu/programs/short-programs/applied-

<u>cybersecurityhttps://us.norton.com/internetsecurity-how-to-cyber-security-best-practices-for-employees.</u> html

https://www.meity.gov.in/content/cyber-laws

COs vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	0	0	0	0	0	2	0	3	0
CO 2	0	0	0	0	0	0	2	0	0
CO 3	3	0	0	0	0	2	3	0	3
CO 4	0	0	0	0	0	0	0	0	0
CO 5	3	0	0	0	0	0	0	0	3
TOTAL	6	0	0	0	0	4	5	3	6
SCALED VALUE	2	0	0	0	0	1	1	1	2

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

3.b. Curriculum and Syllabus of the programme – Before Revision

M.Sc. (Mathematics) - MASTER OF SCIENCE (Before Revision) (TWO YEARS - FULL TIME)

REGULATION – 2018 –(Revision I)

(Applicable to the students admitted from the academic year 2019-2020 onwards)

Semester	Course Code	Course Name	Lecture	Tutorial	Practical	Credit
	YMA101	Groups and Rings	4	1	0	5
	YMA102	Analysis - I	4	1	0	5
I	YMA103	Differential Equations	3	1	0	4
	YMA104	Discrete Mathematics	3	1	0	4
	YMA1E*	One among the list of Electives (1E)	3	0	0	3
						21

* List of Electives (1E)

Elective Code	Course Name	L	Т	P	С
01	Graph Theory	3	0	0	3
02	Coding Theory	3	0	0	3
03	Mathematical Logic	3	0	0	3

Semester	Course	Course Name	Lecture	Tutorial	Practical	Credit
	Code					
	YMA201	Linear Algebra	4	1	0	5
	YMA202	Analysis - II	4	1	0	5
II	YMA203	Integral Equations, Calculus Of Variations And Transforms	3	1	0	4
	YMA204	Operations Research	3	1	0	4
	YMA2E*	One among the list of Electives (2 E)	3	0	0	3
						21

List of Electives(2E)

Elective Code	Course Name	L	T	P	С
01	Algebraic Number Theory	3	0	0	3
02	Data structures and Algorithms	3	0	0	3
03	Fuzzy sets and Fuzzy logic	3	0	0	3

Semester	Course Code	Course Name	Lecture	Tutorial	Practical	Credit
	YMA301	Field Theory	3	1	0	4
	YMA302	Topology	4	1	0	5
	YMA303	Automata Theory	3	1	0	4
III	YMA304	Mathematical Statistics	3	1	0	4
	YMA3E*	One among the list of Electives (3 E)	3	0	0	3
						20

* List of Electives(3E)

Elective Code	Course Name	L	T	P	C
01	Data Analysis Using Spss	3	0	0	3
02	Numerical Methods	3	0	0	3
03	Commutative Algebra	4	0	0	3

Semester	Course Code	Course Name	Lecture	Tutorial	Practical	Credit
	YMA401	Complex Analysis	4	1	0	5
	YMA402	Functional Analysis	4	1	0	5
IV	YMA403	Mathematical Modeling	3	1	0	4
		Project work				8
						22

SEMESTER I

COURS	SECODE	<u> </u>	COURSENAME	L	Т	P	С
YMA10	1		GROUPS AND RINGS	4	1	0	5
С	P	A					
_				т		n	***
5	0	0		L	T	P	Н
				4	1	0	5
PRERE	QUISIT	E: Basi	c concepts of sets, groups and rings				
COURS	SE OUT	COMES	:				
			-	Domai	n I	Level	
Define a	e and Explain Subgroups, Normal subgroups and Quotient Groups, ange's Theorem. e and Explain Homomorphism Theorems, Isomorphism Theorems, morphisms Theorems, Cayley's theorem. utation groups, Another Counting principle. e and Explain Sylow's Theorems and their simple applications, Direct acts: External and Internal, Finite an Groups. ine and Explain Rings, Subrings, Ideals, Factor Rings, Cognitive I		Rememb	ering			
	_	1	Jndersta	•			
Define a	nd Expl	ain Hon	nomorphism Theorems, Isomorphism Theorems,	Cogniti	ive F	Rememb	ering
Automo	rphisms '	Theoren	ns, Cayley's theorem.		Ţ	Jndersta	anding
Permuta	tion grou	ıps, Ano	ther Counting principle.				
l	_	•		Cogniti	ive F	Rememb	ering
Products	s: Externa	al and Ir	ternal, Finite		J	Jndersta	anding
Abelian	Groups.						
1		-		Cogniti		Rememb	_
	•		gral Domains. Maximal and prime ideals. The ntegral domain.		Į	Jndersta	anding
ł			idean Ring, A Particular Euclidean Ring,	Cogniti	ive F	Rememb	ering
1	-		lynomial over the Rational Field, Polynomial Rings		1	Jndersta	_
	mmutativ		· ·				
UNIT I							15
Definition	on & exa	mples: (Groups, Subgroups, Normal subgroups and Quotient G	iroups, La	agrange	e's Theo	rem.
UNIT I	I						15
i .	•		ns, Isomorphism Theorems, Automorphisms Theorem	s, Cayley	's theo	rem.	
Permuta	tion grou	ıps, Ano	ther Counting principle.				
UNITII	I						15
Sylow's	Theoren	ns and th	eir simple applications, Direct Products: External and	Internal,	Finite	Abelian	Groups
UNIT I							15
	<u> </u>		Factor Rings, Homomorphism, Integral Domains. Max	kimal and	prime	ideals.	
The field UNIT V		nents of	an integral domain.				15
		A Partic	ular Euclidean Ring, Polynomial Ring, Polynomial ov	er the Ra	tional F	Field, Po	
	ver Comi						
ļ	TURE	TUTC	PRIAL			TOT	AL
60 TEXTB	0017	15				75	

Herstein, I.N., "Topics in Algebra", Willey Eastern 1975. Unit I -

Chapter 2 (Section 2.1 - 2.6)

Unit II - Chapter 2 (Section 2.7 - 2.11)

Unit III - Chapter 2 (Section 2.12 - 2.14)

Unit IV - Chapter 3 (Section 3.1 - 3.6)

Unit V - Chapter 3 (Section 3.7 - 3.11)

REFERENCES

John B. Fraleigh, "A First Course in Abstract Algebra", Narosa Publication, Third Edition, 2003. Cohn P. M., "Basic Algebra", Springer's Publications, Second Edition, 2005.

COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2			1	1	1	1	1
CO2	3	2			1	1	1	1	1
CO3	3	2			1	1	1	1	1
CO4	3	2			1	1	1	1	1
CO5	3	2			1	1	1	1	1
Total	15	10			5	5	5	5	5
Scaled Value	3	2			1	1	1	1	1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURS	ECODI	Ε	COURSE NAME	L	T	P	С
YMA102	2		ANALYSIS - I	4	1	0	5
С	P	A					
5	0	0		L	Т	P	Н
				4	1	0	5
PRERE	QUISIT	Œ:	<u> </u>	1			
COURS	E OUT	COME	S: Basic concepts of real numbers				
Course o			*	Domair	ı	Level	
CO1: De	efine an	d Expl	ain the Real and Complex Number Systems.	Cogniti	ve	Rememb	ering
						Understa	_
CO2: De	efine an	d Expl	ain Basic Topology.	Cogniti		Rememb	
						Understa	nding
CO3· Da	fine an	d Evnl	ain convergence of sequences and series	Cogniti	ve	Rememb	ering
CO3. DC	anc an	и Елрі	and convergence of sequences and series	Cogiliti		Understa	_
GO 4 D				a			
CO4: De	efine an	d Expl	ain Continuity of functions	Cognitiv		Rememb	_
						Understa	
		_	lain the derivative of a real function, the Continuity of	Cognitiv		Rememb	_
Derivativ	es, Der	ivatives	s of Higher Order, and Taylor's Theorem.			Understa	nding
UNIT I	The Rea	al and	Complex Number Systems:				15
Ordered	sets, Th	e real f	eld, The complex field, Euclidean spaces.				
UNITII	Ba	sic Top	oology:				15
Finite, C	ountable	e and U	ncountable sets, Metric space, Compact sets, Perfect Set	s, Conne	cted S	Sets.	
TINITETTI		T	10				1.5
UNITIII			cal Sequences and Series:	non card T		Limita	15 Some
_	_		in Metric Spaces), subsequences, Cauchy sequences, Up es, Series of Negative terms, The root and ratio tests.	per and I	Lower	Limits,	some
UNIT IV			es, series of regative terms, the root and ratio tests.				15
			metric spaces) Continuous functions, Continuity and				10
			y and Connectedness, Discontinuities, Monotonic functi	ons, Unit	form (Continuit	V.
_			its at Infinity.	, Om			<i>,</i>
UNIT V			·				15
			l Function, Mean Value Theorems, The Continuity of Do	erivatives	s, L'H	lospital's	
			order, Taylor's Theorem.		,	1	,
LECT			ORIAL			TOT	A L
60		15				75	
TEXTB	OOK						

_

1. Walter Rudin,"Principles of Mathematical Analysis", (3rd Edition) McGraw-Hill, 2016.

Unit I - Chapter 1 (Pages: 3-5, 8-11, 12-16)

Unit II - Chapter 2 (Pages: 24 -42)

Unit III - Chapter 3 (Pages: 47-63, 65-69) Unit IV -

Chapter 4 (Pages:83-97)

Unit V - Chapter 5 (Section 103-111)

REFERENCES

Shanti Narayan," A Course of Mathematical Analysis", S.Chand & Co,2005.

Apostol, T.M,"Mathematical Analysis", 2ndEdition, 1996.

Malik, S.C,"Mathematical Analysis", Wiley Eastern Ltd, 2017.

COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2			1	1	1	1	1
CO2	3	2			1	1	1	1	1
CO3	3	2			1	1	1	1	1
CO4	3	2			1	1	1	1	1
CO5	3	2			1	1	1	1	1
Total	15	10			5	5	5	5	5
Scaled Value	3	2			1	1	1	1	1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURSECODE		E	COURSETITLE	L	T	P	C
YMA103			DIFFERENTIAL EQUATIONS	3	1	0	4
C	P	A					
4	0	0		L	Т	P	Н
		•		3	1	0	4
PRERE	OUISI	TE: Di	fferentiation and Integration	1	1	1	I
COURS							
Course o	outcom	es:	Domain		Level		
ind The	genera	l solutio	Cognitive		Remembering Understanding		
olve the	homog	eneous	Cognitive		Applying		
functions			•				
CO3: Fi	nd the	critical	Cognitive		Remembering		
Liapound	ov's dir	ect met	chod.			Understanding	
Solve Fir	st orde	linear	Cognitive		Applying		
methods.							
	lve init	ial and	boundary value problems.	Cogniti	ive	Applyir	
UNIT I							12
The gene	ral solu	ition of	the homogeneous equation – The use of one known solu	tion to f	ind and	other	
– The m	ethod c	of varia	tion of parameter - Power series solutions - Series solu	tions of	first c	order eq	uations –
Second of	rder lir	near equ	uations – ordinary points – Regular singular points – Gau	ss hypei	geom	etric eq	uations –
the point	0 at in	finity.					
UNIT II							12
_	ties of		 Properties of Legendre polynomials – Bessel functions el function – linear systems – Homogeneous linear 		_		
UNITIII							12
		nd unio	queness of solutions – The method of Successive appro-	ximatio	ı – Pio	card's t	
			ts – Critical points and stability for linear systems –				
method.				•	•	•	
UNIT IV	7						12
First ord	er parti	al diffe	erential equations - Linear equations of the first order -	Partial of	differe	ntial eq	uations –
Compatil	ole syst	ems –	Charpit's method – Jacobi's method – Integral surface thr	ough a	given o	circle.	
UNIT V							12
Solution	of initi	ial and	boundary value problems - Characteristics - D'Alembe	ert's solu	ıtion -	- Signif	icance of
character	istic cu	ırves –	Laplace transforms solutions for displacement in a st	ring – a	a long	string	under its
weight -	Longit	udinal	vibration of a elastic bar with prescribed force on one end	l – free v	ibratio	ons ofst	ring.
LECT	URE		TORIAL			TO	ΓAL
45		15				60	<u>-</u>
	OOK						

_

Simmons, G.F.,"Differential Equations with Applications and Historical Notes", TMH,New Delhi,2003

T. Amarnath, "An Elementary Course in Partial Differential Equations", Narosa, New Delhi, 1997.

Unit I- Chapter 3: Sections – 15,16,19, Chapter 5: Sections – 26 to 31

Unit II- Chapter 8: Sections – 44 to 47, Chapter 10: Sections – 54 to 56

Unit III- Chapter 13: Sections – 68, 69, Chapter 11: Sections – 60, 61 Unit IV –

Chapter 1: Sections – 1.4 to 1.9

Unit V - Chapter 2: Sections – 2.1, 2.2, 2.3.1, 2.3.2, 2.3.3, 2.3.5, 2.5.1, 2.5.2

REFERENCES

- 1. W.T.Reid, "Ordinary Differential Equations", John Wiley, New York, 1971.
- 2. E.A.Coddington and E.Levinson, "Theory of ODE", Mc Graw Hill Publishing Company, New york, 1955.
- 3. J.N. Sneddon, "Elements of Partial Differential Equations", Mc Graw Hill Publishing Company, New york,1957.

COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	1	1		2			1
CO2	2	1	1	1		2			1
CO3	2	1	1	1		2			1
CO4	2	1	1	1		2			1
CO5	2	1	1	1		2			1
Total	10	5	5	5		10			5
Scaled Value	2	1	1	1		2			1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURS	ECODI	E	COURSENAME	L	Т	P	С	
YMA10	4		DISCRETE MATHEMATICS	3	1	0	4	
C	P	A						
	1	A						
4	0	0		L	T	P	Н	
				3	1	0	4	
PRERE	QUISIT	Γ E: Al	gebra					
COURS	FOUT	COM	rg.					
Course			LD:	Doma	in	Level		
			lair Decie le cieal amountique	Cogni			orina	
COI: D	enne an	а Ехр	lain Basic logical operations.	Cogin		Rememb Understa		
efine ar	d Expl	ain the	theory of inference for the statement Calculus.	Cogni	tive	Remembo Understa	ering	
CO3: So	olve Rec	urrenc	e Relations using Generating Functions.	Cogni	tive	Applying		
CO4: Do	efine an	d Exp	lain Lattices and Boolean Algebra.	Cogni		Rememb Understa		
CO5: Do	efine an	d Exp	lain Grammar and Languages.	Cogni		Rememb		
						Understa	inding	
UNIT I	Mathen	natical	Logic:				12	
Basic log	gical ope	eration	s, conditional and biconditional statements, tautologie	es, contradi	ction,			
Normal t	forms.							
UNIT II	The th	eory o	f inference for the statement Calculus:				12	
Rules of	inference	ce, Cor	nsistency, Automatic Theorem proving, Predicate Cale	culus, quar	ntifiers,	Inferenc	e	
Theory of	of the Pr	edicate	Calculus.					
UNIT II	I Recur	rence	Relations and Generating Functions:				12	
Polynom	iial expr	ession	s, telescopic form, recursion theorem, closed form exp	pression, g	eneratir	ng		
function,	solutio	n of re	currence relation using generating function.					
UNIT I	V Lattic	es and	Boolean Algebra:				12	
Partial or	rdered s	ets, Pro	operties of Lattices, Lattices as Algebraic Systems, Bo	oolean Alg	ebra.			
UNIT V	Gramr	nar an	d Languages:				12	
Phrase st	tructure	gramn	nars, rewriting rules, derivation sentential forms, lange	uage gener	ated by			
grammaı	r, regula	r, cont	ext free and context sensitive grammar and languages					
	TURE		CORIAL			TOT	AL	
45		15				60		
TEXTB	OOK							

P. Tremblay, R. Manohar,"Discrete Mathematical Structure with Applications to Computer Science", McGraw-Hill International Edition, 1997.

Unit I - Chapter 1 (Section 1.1,1.2 & 1.3)

Unit II - Chapter 1 (Section 1.4, 1.5 & 1.6) Unit IV -

Chapter 4 (Section 4.1& 4.2) Unit V – Chapter 4

(Section 4.6)

Alan Doerr, "Applied Discrete Structure for Computer Science", Pearson Education, 2013

Unit III – Chapter 8 (Section 8.1,8.2,8.3 &8.5)

REFERENCE

Kenneth H. Rosen, "Discrete Mathematics and Its Applications", Mc Graw-Hill International Edition, 2002.

COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	1	1		2			1
CO2	2	1	1	1		2			1
CO3	2	1	1	1		2			1
CO4	2	1	1	1		2			1
CO5	2	1	1	1		2			1
Total	10	5	5	5		10			5
Scaled Value	2	1	1	1		2			1

 $^{1-5 \}rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

^{0 -} No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

LIST OF ELECTIVES

COURS	ECODI	E	COURSENAME	L	T	P	C
YMA1E	1		GRAPH THEORY	3	0	0	3
С	P	A					
3	0	0		L	T	P	Н
				3	0	0	3
PRERE	QUISIT	ΓE:					
COURS	E OUT	COM	ES: Basic concepts of Graph Theory				
Course			1 1	Domain	1]	Level	
CO1: De	efine an	d Exp	lain Graphs, subgraphs and trees.	Cognitiv		Rememb Understa	
Define an	d Expl	ain Co	nnectivity - Blocks - Euler tours - Hamilton Cycles.	Cognitiv		Remembe Understa	-
	_		atchings and Coverings in Bipartite Graphs, er and Vizing's Theorem.	Cognitiv	ve 1	Applying	7
			dependent sets and cliques, vertex colourings.	Cognitiv		Rememb Understa	_
			ne and planar Graphs, Dual graphs, Euler's Formula orem and the Four- Colour Conjecture- Applications.	Cognitiv	ve l	Rememb Understa	ering
UNIT I	GRAPI	IS, SU	BGRAPHS AND TREES				9
_	•		phs - Graph Isomorphism - The Incidence and Adjacency and Connection - Cycles - Trees - Cut Edges and Bonds			•	-
UNIT II	CONN	ECTI	VITY, EULER TOURS AND HAMILTON CYCLES	S			9
-			Euler tours - Hamilton Cycles – Applications.				
UNITII	[M	ATCI	IINGS, EDGE COLOURINGS				9
Matching Theorem	-	_	and Coverings in Bipartite Graphs - Edge Chromatic N	umber - V	'izing'	S	•
			ENT SETS AND CLIQUES, VERTEX COLOURIN	GS			9
_			nsey's Theorem - Chromatic Number - Brooks' Theorem s- Applications.	1 -			
UNIT V							9
Plane an	d planar	Graph	s - Dual graphs - Euler's Formula - The Five-Colour Th	eorem and	d the		l
Four-Col	lour Coi	_	e- Applications.				
LECT	TURE					TOT	AL
45	0.07-					45	
TEXTB	OOK						

J.A.Bondy and U.S.R. Murthy, "Graph Theory and Applications", Macmillan, London, 1976. Unit I -

Chapter 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2.3)

Unit II - Chapter 3 (Section 3.1 - 3.2); Chapter 4 (Section 4.1 - 4.2)

Unit III - Chapter 5 (Section 5.1 - 5.2); Chapter 6 (Section 6.1 - 6.2)

Unit IV - Chapter 7 (Section 7.1 - 7.2); Chapter 8 (Section 8.1 - 8.2, 8.4)

Unit V - Chapter 9 (Section 9.1 - 9.3, 9.6)

REFERENCES

1. Harary, "Graph Theory" Narosa Publishing House., 2001.

2.A.Gibbons, "Algorithmic Graph Theory, Cambridge University Press, Cambridge, 1989. 3.R.J.Wilson and J.J.Watkins, "Graphs: An Introductory Approach", John Wiley and Sons, New York, 1989.

V.K. Balakrishnan, Schaum's Outlines of "Theory and problems of Graph Theory", Tata McGraw Hill Education Private Limited Delhi, 2004.

5.S.A.Choudum, "A First Course in Graph Theory", MacMillan India Ltd. 1987.

COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	1	1	1	2	1	1	1
CO2	2	1	1	1	1	2	1	1	1
CO3	2	1	1	1	1	2	1	1	1
CO4	2	1	1	1	1	2	1	1	1
CO5	2	1	1	1	1	2	1	1	1
Total	10	5	5	5	5	10	5	5	5
Scaled Value	2	1	1	1	1	2	1	1	1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURSI	E CO	DE	COURSE NAME	E NAME L					
YMA1E2	2		CODING THEORY		3	0	0	3	
С	P	A			L	T	P	Н	
3	0	0			3	0	0	3	
PRERE(
COURSI			IES:						
Course o	utcor	nes:		Domain]]	Level		
Defineand		ain	Error detection, Correction and	Cognitive			nembe	_	
decoding						Und	erstan	ding	
CO2: Define and Explain Linear codes Cognitive Remembering									
	Understandi								
CO3:Def	ine a	nd Expl	ain Linear codes Bounds in coding	Cognitive		+	nembe		
theory			-			Und	erstan	ding	
Define and	l Expl	lain Cy	clic codes: Definitions – Generator	Cognitive		Ren	nembe	ring	
	_	-	tor matrix and parity check matrix –				erstan	_	
Decoding	of C	yclic co	odes					_	
CO 5: De	efine a	and Ext	plain Special cyclic codes	Cognitive		Ren	nembe	ering	
		•					erstan	_	
UNIT-I				•				9	
decoding decoding UNIT-II	– Dis	_	distance – Nearest neighbourhood minimum of a code	distance				9	
Linear co	des: I	Linear c	codes – Self orthogonal codes – Self dual cod	es – Bases for				1	
			tor matrix and parity check matrix – Encondi		code –	-			
Decoding	g of li	near co	des – Syndrome decoding.						
UNIT-II	I							9	
Bounds in	n codi	ing thec	ory: The main coding theory problem – lower	bounds -					
			d – Gilbert Varshamov bound – Binary Hami						
		es – Go	lay codes – Singleton bound and MDS codes	 Plotkin bound 	•				
UNIT-IV								9	
-			ons – Generator polynomials – Generator ma	trix and parity cl	neck				
	Deco	ding of	Cyclic codes.					To .	
UNIT-V								9	
Special cy codes – R	•		BCH codes — Parameters of BCH codes — De n codes.	coding of BCH					
LECT	URE					TO	TAL		
45						45			

TEXT BOOKS:

1. San Ling and Chaoping Xing, Coding Theory: A first course, Cambridge University Press, 2004.

Unit 1 : Sections 2.1, 2.2, 2.3, 2.4, 2.5

Unit 2 : Sections 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8

Unit 3: Sections 5.1, 5.2, 5.3, 5.4, 5.5,

Unit 4: Sections 7.1, 7.2, 7.3, 7.4

Unit 5 : Sections 8.1, 8.2

REFERENCES:

S. Lin &D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Prentice-Hall, Inc., New Jersey, 1983.

Vera Pless, Introduction to the Theory of Error Correcting Codes, Wiley, NewYork, 1982.

E. R Berlekamp, Algebriac Coding Theory, Mc Graw-Hill, 1968.

H. Hill, A First Course in Coding Theory, OUP,1986.

COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	1	1	1	2	1	1	1
CO2	2	1	1	1	1	2	1	1	1
CO3	2	1	1	1	1	2	1	1	1
CO4	2	1	1	1	1	2	1	1	1
CO5	2	1	1	1	1	2	1	1	1
Total	10	5	5	5	5	10	5	5	5
Scaled Value	2	1	1	1	1	2	1	1	1

 $^{1-5 \}rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

X7X / A 4 TO 4	E COL	ЭE	COURSE NAME		L	T	P	C		
YMA1E3	3		Mathematical Logic		3	0	0	3		
	P	A			L	T	P	H		
	0	0			3	0	0	3		
			iscrete Mathematics							
COURSE			ES:		ı					
Course ou				Domain		Level				
	_	-	entax of First-Order Logic, Semantics of	Cognitive		Reme		_		
First-Orde	er Lan	guages	s, Structures of First-Order Languages.			Unde	stanc	ding		
GOA D 6		1.	11.75	G :::		D.				
		id Exp	lain Propositional Logic and	Cognitive		Reme		-		
Tautology Understandi										
			Explain Consistency and Completeness	Cognitive		Reme		_		
and Extensions by definition of first order theories Under										
			beddings and Isomorphisms Compactness	Cognitive		Reme		_		
theorem, C theories	Catego	oricity	and Complete			Unde	stanc	ling		
	C'	. 1 F	lain Dannaine Camatiana					•		
			plain Recursive functions, at order theories and Godel's first	Cognitive		Reme		_		
Incomplet						Unde	stanc	ung		
UNIT-I			····				9			
			Semantics of First-Order Languages: Structure of a Theory	es of First-Order l	Lang	guages	s, Tru	ıth		
			of a Theory				9			
UNIT-II	onal Lo	ogic: T	·	gic, Tautology Th	neore	em. Pı				
UNIT-II Propositio		-	autologies and Theorems of propositional Lo			em. Pı				
UNIT-II Propositio First Orde	er Logi	ic, Me	·			em. Pı				
UNIT-II Propositio First Orde equivalence	er Logi ce the	ic, Me	autologies and Theorems of propositional Lo ta theorems of a first order theory, e.g., theorems			em. Pi		n		
UNIT-II Propositio First Orde equivalence UNIT-III	er Logi ce the	orem,	autologies and Theorems of propositional Lo ta theorems of a first order theory, e.g., theorems	ems on constants,			roof i	n		
UNIT-II Propositio First Orde equivalence UNIT-III Consistence	er Logi ce theo cy and	orem,	Cautologies and Theorems of propositional Lo ta theorems of a first order theory, e.g., theore deduction and variant theorems etc.,	ems on constants,			roof i	n		
UNIT-II Propositio First Order equivalence UNIT-III Consistence Extensions	er Logi ce theo cy and s by d	orem,	Cautologies and Theorems of propositional Lo ta theorems of a first order theory, e.g., theored deduction and variant theorems etc.,	ems on constants,			roof i	n		
UNIT-II Propositio First Orde equivalenc UNIT-III Consistenc Extensions UNIT-IV	er Logice theo cy and s by d	ic, Merorem, orem, orem, orem, orem, orem, orem, or orem, or or orem, or	Cautologies and Theorems of propositional Lota theorems of a first order theory, e.g., theorededuction and variant theorems etc., pleteness, Lindenbaum Theorem. Henkin External conformation of first order theories, Interpretation theorem.	ems on constants, ension, Complete	ness	theor	9 em,	n		
Proposition First Order equivalence UNIT-III Consistence Extensions UNIT-IV Model The	er Logice theo cy and s by d eory:	ic, Merorem, or Competition	Cautologies and Theorems of propositional Losta theorems of a first order theory, e.g., theorededuction and variant theorems etc., pleteness, Lindenbaum Theorem. Henkin Externo of first order theories, Interpretation theoredeductions and Isomorphisms, Lowenheim-Skoler	ems on constants, ension, Complete	ness	theor	9 em,	n		
UNIT-II Propositio First Orde equivalence UNIT-III Consistence Extensions UNIT-IV Model The Categorici	er Logice theo cy and s by d eory:	ic, Merorem, or Competition	Cautologies and Theorems of propositional Losta theorems of a first order theory, e.g., theorededuction and variant theorems etc., pleteness, Lindenbaum Theorem. Henkin Externo of first order theories, Interpretation theoredeductions and Isomorphisms, Lowenheim-Skoler	ems on constants, ension, Complete	ness	theor	9 em,	m,		
Proposition First Order equivalence UNIT-III Consistence Extensions UNIT-IV Model The Categorici UNIT-V	er Logice theo cy and s by d eory: 1	ic, Merorem, of Completinities	Cautologies and Theorems of propositional Losta theorems of a first order theory, e.g., theorededuction and variant theorems etc., pleteness, Lindenbaum Theorem. Henkin Externo of first order theories, Interpretation theoredeductions and Isomorphisms, Lowenheim-Skoler	ension, Completerem. m Theorem, Comp	ness	theor	9 em,	m,		
Proposition First Order equivalence UNIT-III Consistence Extensions UNIT-IV Model The Categorici UNIT-V Recursive	er Logice theo cy and s by d eory: l ity, Co	ic, Merorem, of Competinition Embecomplet ions, A	Cautologies and Theorems of propositional Lota theorems of a first order theory, e.g., theorededuction and variant theorems etc., pleteness, Lindenbaum Theorem. Henkin Extern of first order theories, Interpretation theorededuction and Isomorphisms, Lowenheim-Skoler e Theories	ension, Completerem. m Theorem, Comp	ness	theor	9 em,	m,		
Proposition First Order equivalence UNIT-III Consistence Extensions UNIT-IV Model The Categorici UNIT-V Recursive	er Logice theo cy and s by d eory: l ity, Co	ic, Merorem, of Competinition Embecomplet ions, A	Cautologies and Theorems of propositional Lota theorems of a first order theory, e.g., theorededuction and variant theorems etc., pleteness, Lindenbaum Theorem. Henkin Extern of first order theories, Interpretation theorededuction and Isomorphisms, Lowenheim-Skoler e Theories	ension, Completerem. m Theorem, Comp	ness	theor	9 em,	m,		
First Order equivalence UNIT-III Consistence Extensions UNIT-IV Model The Categorici UNIT-V Recursive first Incon	er Logice theo cy and s by d eory: l ity, Co	ic, Merorem, of Competinition Embecomplet ions, A	Cautologies and Theorems of propositional Lota theorems of a first order theory, e.g., theorededuction and variant theorems etc., pleteness, Lindenbaum Theorem. Henkin Extern of first order theories, Interpretation theorededuction and Isomorphisms, Lowenheim-Skoler e Theories	ension, Completerem. m Theorem, Comp	ness	theor	9 em, 9 peore. 9	m,		
Proposition First Order equivalence UNIT-III Consistence Extensions UNIT-IV Model The Categorici UNIT-V Recursive first Incontact LECTU 45	er Logice theo cy and s by d eory: l ity, Co	ic, Merorem, of Competinition Embecomplet ions, Anness the	Cautologies and Theorems of propositional Lota theorems of a first order theory, e.g., theorededuction and variant theorems etc., pleteness, Lindenbaum Theorem. Henkin Extern of first order theories, Interpretation theorededuction and Isomorphisms, Lowenheim-Skoler e Theories	ension, Completerem. m Theorem, Comp	ness	theoremess the ability	9 em, 9 peore. 9	m,		
Proposition First Order equivalence UNIT-III Consistence Extensions UNIT-IV Model The Categorici UNIT-V Recursive first Incon LECTU 45 TEXT BC	er Logice theo cy and s by d eory: I ity, Co e function plete URE	ic, Merorem, of Competinition Emberomplet	Cautologies and Theorems of propositional Lota theorems of a first order theory, e.g., theorededuction and variant theorems etc., pleteness, Lindenbaum Theorem. Henkin Extern of first order theories, Interpretation theorededuction and Isomorphisms, Lowenheim-Skoler e Theories	ems on constants, ension, Complete em. m Theorem, Comp	ness	theoremess the ability	9 em, 9 peore. 9	m,		

REFERENCES:

1. Mendelson E. Introduction to Mathematical Logic, Chapman & Hall.

COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled Value	3	2		1	1		1	1	1

 $1-5\rightarrow 1$, $6-10\rightarrow 2$, $11-15\rightarrow 3$

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

-

SEMESTER II

COURS	ECODI	E	COURSENAME	L	T	P	C
YMA20	1		LINEAR ALGEBRA	4	1	0	5
С	P	A					
5	0	0		L	T	P	H
				4	1	0	5
PRERE	QUISIT	TE: Gr	oup theory and Ring theory				
COURS	E OUT	COM	ES:				
Course o	outcom	es:		Domain	1	Level	
			lementary Basic Concepts- Linear	Cognitiv	ve	Remem	bering
Independ						Underst	
CO2: Do	efine an	d Exp	lain Dual Spaces- Inner Product Space- Modules.	Cognitiv		Remem	
CO2 C	1 .1	A 1 1		Comiti		Underst	
	ive the	Aigebi	ra of Linear Transformations to find characteristics	Cognitiv	ve	Applyir	ıg
roots.		~	. 15 m: 1 6 N	G '			
			anonical Forms, Triangular form, Nilpotent	Cognitiv		Remem	_
			n Form and Rational Canonical form.	Cognitiv		Underst	
			ace and Transpose, Determinants, Hermitian, Unitary and as, Real Quadratic forms.	Coginti		Remem Underst	_
UNIT I	Tansioi	matioi	is, Real Quadratic forms.			Unucisi	15
	ary Raci	c Conc	cepts- Linear Independence and Bases.				13
UNIT II		e Conc	repts- Emeai independence and bases.				15
		ner Pro	duct Space- Modules.				
UNITII			duct Space- Wodules.				15
- '		Linear	Transformations- Characteristics Roots- Matrices.				15
UNIT IV							15
		s: Tria	ngular form- Nilpotent Transformations- Jordan Form - R	ational C	Canon	ical for	
UNIT V							15
		pose –	Determinants- Hermitian, Unitary and Normal Transform	ations- I	Real		
Quadrati		•					
LECT	TURE		ORIAL			TO	ΓAL
60	0.077	15				75	
TEXTB			' Al 1 2 W'll D . 1075 H '-1 Cl		0.42		
		•	in Algebra", Willey Eastern 1975. Unit I - Chapter 4 (Section 4.4–4.5) Unit III - Chapter 6 (Section 6.1)		& 4.2	.)	
			ection 6.4– 4.5) Unit III - Chapter 6 (Section 6.1)	-0.3)			
REFER		` `	Section 6.7 6.776 in Computer 6 (Section 6.6 6.11)				
			irst Course in Abstract Algebra", Narosa Publication, Thin	d Editio	n.201	3.	
	_		gebra", Springer's Publications, Second Edition, 2003.	a Lanto	,201	٠.	
	,u	2	, 1 <u>0</u>				

COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	2	1	1	1	1	1	1
CO2	3	2	2	1	1	1	1	1	1
CO3	3	2	2	1	1	1	1	1	1
CO4	3	2	2	1	1	1	1	1	1
CO5	3	2	2	1	1	1	1	1	1
Total	15	10	10	5	5	5	5	5	5
Scaled Value	3	2	2	1	1	1	1	1	1

1-5→1, **6-10→2**, **11-15→3**

 $\mathbf{0}$ - No Relation, $\mathbf{1}$ – Low Relation, $\mathbf{2}$ - Medium Relation, $\mathbf{3}$ - High Relation

COURS	ECOD	E	COURSENAME	L	T	P	C
YMA202	2		ANALYSIS - II	4	1	0	5
С	P	A					
5	0	0		L	T	P	Н
				4	1	0	5
PRERE	QUISI	TE: Ba	sic concepts of convergence and uniform convergence	I	1		
COURS	E OUT	ГСОМ	ES:				
Course o	outcom	es:		Domair	1	Level	
Define an	d Expl	lain Ex	stence, Properties of the Integral, Integration and	Cogniti	ve	Remem	bering
Different						Underst	
CO2: De	efine ar	nd Exp	ain Uniform convergence and Continuity.	Cogniti		Remem	
						Underst	anding
Define ar	nd Exp	lain Ui	niform convergence and Integration and Differentiation.	Cogniti	ve	Remem	bering
					•	Underst	anding
Define ar	nd Exp	lain Se	t functions, Construction of Lebesgue Measures,	Cogniti	ve	Remem	bering
			imple functions in measure.			Underst	anding
			lain Integration Comparison with the Riemann	Cogniti		Remem	_
	tegral,	Integra	tion of Complex functions, Functions of class J^2 .			Underst	
UNIT I							15
		Existen	ee of the Integral, Properties of the Integral, Integration a	nd Differ	entiat	ion.	1
UNIT II							15
Uniform	Conve	rgence,	Uniform convergence and Continuity.				
UNITIII	[15
Uniform	conver	gence a	and Integration, Uniform convergence and Differentiation	1.			
UNIT IN	I						15
Set funct	ions, C	onstruc	tion of Lebesgue Measures, Measurable function, Simple	e function	ns in n	neasure	
UNIT V							15
Integration class J^2 .	on Com	npariso	n with the Riemann Integral, Integration of Complex fund	ctions, Fu	nction	ns of	
LECT	TURE	TUI	ORIAL			TO	ΓAL
60		15				75	
TEXTB							
Walter R	udin, "	Princip	les of Mathematical Analysis", (3 rd Edition), McGraw-H	ill, 2016	Unit 1	[-	
			135)Unit II - Chapter 7 (Pages: 143-151) Unit III - Chap				
Unit IV -	Chapt	er 11 (I	Pages: 300-314) Unit V - Chapter 5 (Section 314-325)				
REFER							
Shanti Na Delhi,20		, "A coi	urse of Mathematical Analysis", S. Chand & CompanyLt	d New			
		Mather	natical Analysis", Narosa Book Distributors Pvt Ltd, 2 nd	Edition	New		
Delhi, 19		ivianici	imioni / marysis , marosa book bishibutolis i vi blu, 2	Lainoil,	14CW		
		athemat	ical Analysis", Wiley Eastern Ltd.2017.				
	-,		J , J = 2 2				

COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2			1	1	1	1	1
CO2	3	2			1	1	1	1	1
CO3	3	2			1	1	1	1	1
CO4	3	2			1	1	1	1	1
CO5	3	2			1	1	1	1	1
Total	15	10			5	5	5	5	5
Scaled Value	3	2			1	1	1	1	1

 $1-5\rightarrow 1$, $6-10\rightarrow 2$, $11-15\rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURS	SECOD	E	COURSENAME	L	T	P	C
YMA20	3		INTEGRAL EQUATIONS, CALCULUS OF VARIATIONS AND TRANSFORMS	3	1	0	4
C	P	A					
4	0	0		L	T	P	Н
				3	1	0	4
PRERE	QUISIT	Γ Ε : Μ	ultivariable calculus and vector calculus	•			
COURS	E OUT	COM	ES:				
	outcom			Domai	n]	Level	
		_	lain Calculus of variations, Maxima and Minima, the	Cognit	ive	Rememb	ering
simplest	case, N	atural	boundary and transition conditions, variational notation		Ī	Understa	anding
CO2: D	efine an	d Exp	lain Fourier sine and cosine transforms - Properties	Cognit		Rememb	
Convolu	tion -So	olving	integral equations - Finite Fourier transform		Ī	Understa	inding
CO3: D	efine an	d Exp	lain Hankel Transform: Definition – Inverse formula –	Cognit	ive 1	Rememb	ering
		_	s for Besselfunction – Linearity property			Understa	_
CO4: D	efine an	d Exp	lain Linear Integral Equations - Definition, Regularity	Cognit	ive	Rememb	ering
onditio	ns – spe	cial ki	nd of kernels –eigen values and eigen functions –			Understa	nding
convolu	tion Inte	gral					
CO5: D	efine an	d Exp	lain Volterra Integralequation – examples – some results	Cognit	ive 1	Rememb	ering
		_	nel. Classical FredholmTheory.			Understa	_
UNIT I							12
variation Liouvill	nal notat e proble	ion – 1	 Maxima and Minima – the simplest case – Natural boundered general case – constraints and Lagrange's multipliers 				- Sturr
UNIT I							12
equation		e Four	urier sine and cosine transforms - Properties Convolution ier transform - Finite Fourier sine and cosinetransforms -				m
UNITII							12
property		el Tra	efinition – Inverse formula – Some important results for Insform of the derivatives of the function –Hankel Transfo				
UNIT I							12
function	s – conv	olutio	ons - Definition, Regularity conditions – special kind of k in Integral – the inner and scalar productof two functions quations – examples–Fredholm alternative - examples – a	– Notatio	on – re	duction t	_
UNIT V							12
Method some res	of succe	out the	approximations: Iterative scheme – examples – Volterra l resolvent kernel. Classical FredholmTheory: the method				ples –
redholi	n's first	theore	em – secondtheorem – third theorem.				
TEC	TURE	יז דיידי	ΓORIAL			TOT	A T

	45	15	60
T	EVTDOOK		

TEXTBOOK

- [1] Ram.P.Kanwal Linear Integral Equations Theory and Practise, Academic Press1971.
- [2] F.B. Hildebrand, Methods of Applied Mathematics II ed. PHI, ND 1972.
- [3] A.R. Vasishtha, R.K. Gupta, Integral Transforms, Krishna Prakashan Media PvtLtd, India, 2002.
- UNIT I Chapter 2: Sections 2.1 to 2.9 of [2]UNIT II Chapter 7 of [3]
- UNIT III Chapter 9 of [3]; UNIT IV -Chapters 1 and 2 of [1]UNIT V Chapters 3 and 4 of [1]

REFERENCES

- [1] S.J. Mikhlin, Linear Integral Equations (translated from Russian), Hindustan BookAgency, 1960.
- [2] I.N. Snedden, Mixed Boundary Value Problems in Potential Theory, North Holland, 1966.

COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2			1	1	1	1	1
CO2	3	2			1	1	1	1	1
CO3	3	2			1	1	1	1	1
CO4	3	2			1	1	1	1	1
CO5	3	2			1	1	1	1	1
Total	15	10			5	5	5	5	5
Scaled value	3	1			1	1	1	1	1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURS	SECOD	E	COURSENAME	L	Т	P	C	
YMA20	4		OPERATIONS RESEARCH	3	1	0	4	
C	P	Α				•		
4	0	0		L	T	P	Н	
	<u>.i</u>			3	1	0	4	
PRERE	QUISI	ΓE: Nil			i	<u> </u>	.i	
COURS	SE OUT	COMES	3:					
Course	outcom	es:		Doma		Level		
CO1: D	efine an	d Expla	in Decision theory in detail.	Cogni	Ţ	Rememb Understa	nding	
CO2: E	xplain a	and solve	e problems in PERT and CPM	Cogni		Understa Applying	_	
-			entory control models and probabilistic Inventory e problems by using the methods:	Cogni		Understa Applying	_	
			es of Queueing System, Classification of Queueing of Queueing Models.	Cogni		Understa Rememb	_	
			ent and maintenance models and solve methods.	Cognitive Und App				
		ION TH	_				12	
_			y Approach - Types of Decision-Making Environi				_	
	•		Making under Risk - Posterior Probabilities and Ba	yesian A	nalysis	- Decisi	on Tr	
Analysis UNITII			ing with Utilities. MANAGEMENT: PERT ANDCPM				12	
				· DEDT	CDM N	-41-	14	
			en PERT and CPM - Steps in PERT/CPM Technique ence Relationships - Critical Path Analysis - Probabil		CPM N	etwork		
			time-cost Trade Off - Updating the Project - Resource		ion .			
UNITII	•	-	INISTIC INVENTORY CONTROLMODELS				12	
Meaning Inventor Determi Probabil	g of Inv y Syste nistic In istic Inv	entory C em - Inventory ventory C	Control - Functional Classification - Advantage of Control Model building - Deterministic Inventor with Shortages Control Models:	ry Model	s with	no she	tures ortage	
			ic Models without Setup cost - Single Period Probabi	mues IVIO	uei with	setup c		
IINIT I			ГНЕОКУ				12	
	1 Featur	res of C	Queueing System - Operating Characteristic of Q		•			
Essentia Distribu	tion in	-	g Systems - Classification of Queueing Models - of Arrivals and Departures - Erlangian Service times			_		

Failure Mechanism of items - Replacement of Items Deteriorates with Time - Replacement of items that fail completely - other Replacement Problems.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXTBOOK

K.Sharma, "Operations Research Theory and Applications", Third Edition, Macmillan India Ltd., 2007, Unit I - Chapter-11 (Section 11.1 - 11.8)

Unit II - Chapter-13 (Section 13.1 - 13.9)

Unit III - Chapter-14 (Section 14.1 - 14.8); Chapter-15: (Section 15.1 - 15.4) Unit IV -

Chapter-16 (Section 16.1 - 16.9); Appendix 16. A (PP 774-781) Unit V - Chapter-17

(Section 17.1 - 17.5)

REFERENCES

F.S. Hillier and J.Lieberman, "Introduction to Operations Research" (8th Edition), Tata McGraw Hill Publishing Company, New Delhi, 2006.

Beightler. C, D.Phillips, B. Wilde, "Foundations of Optimization" (2nd Edition) Prentice Hall Pvt Ltd., New York, 1979

Bazaraa, M.S; J.J.Jarvis, H.D.Sharall, "Linear Programming and Network flow", John Wiley and sons, New York, 1990.

Gross, D and C.M.Harris, "Fundamentals of Queueing Theory", (3rd Edition), Wiley and Sons,

New York, 1998.

Hamdy A. Taha, "Operations Research" (sixth edition), Prentice - Hall of India PrivateLimited, New Delhi. 2007

COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1		1	2		1		1
CO2	2	1		1	2		1		1
CO3	2	1		1	2		1		1
CO4	2	1		1	2		1		1
CO5	2	1		1	2		1		1
Scaled Value	10	5		5	10		5		5

1 - Low, 2 - Medium, 3- high

LIST OF ELECTIVES

COUR		DE	COURSE NAME	L	T	P	C
YMA2l			ALGEBRAIC NUMBER THEORY	3	0	0	3
C	P	A		L	T	P	H
3	0	0		3	0	0	3
PRERI							
COUR			ES:	.		. .	
Course				Domai		Level	1 '
etine ai Theorei	•	lain Pri	mes,Congruences, Fermat's, Euler's and Wilson's	Cogniti	ve	Remem	_
		1.: T.	heimon of managinal calculations	C:4:		Unders Remem	
	•		chniques of numerical calculations – hy – Prime power Moduli – Primitive roots and	Cogniti	ve	Unders	_
Power I			ny – Finne power Woddii – Finnitive roots and			Unucis	anunig
			Imber theory from an Algebraic Viewpoint, The	Cogniti	Ve	Remem	hering
			where r is an odd prime – Quadratic Reciprocity– The	Coginti	VC	Unders	_
•	•		where q is an odd prime – Quadratic Reciprocity– The			Chacis	minailig
. 40001 k	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(- / 4) *	and an odd positive integer.				
Define a	and Ext	olain Ec	uivalence and Reduction of Binary Quadratic Forms,	Cogniti	ve	Remem	bering
			, Arithmetic Functions – The Mobius Inversion Formula –			Unders	
Recurre	ence Fu	nctions	 Combinatorial number theory 				
			ophantine Equations – The equation ax+by=c –	Cogniti	ve	Remem	bering
			Diophantine Equations –			Unders	anding
Pythago		riangles	í				
UNIT-l							9
			ility – Primes – The Binomial Theorem – Congruences – I		otien	t -	
			Wilson's Theorems – Solutions of congruences – The Chi	nese			
Remain		orem.					
UNIT-I							9
	•		cal calculations – Public key cryptography – Prime power	Moduli			
		ots and	Power Residues –Congruences of degree two.				
UNIT-J							9
Number	-	from a		ratio Dog	idue	S-	
			n Algebraic Viewpoint – Groups, rings and fields – Quadr	iauc Kes			
The Leg	-	symbol	(a/r) where r is an odd prime – Quadratic Reciprocity	ratic Kes			
The Leg – The Ja	acobi S	symbol		rauc Kes			
The Leg – The Ja UNIT-1	acobi S IV	symbol ymbol	(a/r) where r is an odd prime – Quadratic Reciprocity (P/q) where q is an odd positive integer.				9
The Leg - The Ja U NIT-I Binary (acobi S I V Quadra	symbol ymbol tic Fori	(a/r) where r is an odd prime – Quadratic Reciprocity (P/q) where q is an odd positive integer. ms – Equivalence and Reduction of Binary Quadratic Form	ns – Sum			9
The Leg - The Ja U NIT-I Binary (three sq	acobi S IV Quadra Juares –	symbol ymbol tic Fori Positiv	(a/r) where r is an odd prime – Quadratic Reciprocity (P/q) where q is an odd positive integer. ms – Equivalence and Reduction of Binary Quadratic Form re Definite Binary Quadratic forms – Greatest integer Fund	ns — Sum			9
The Leg The Ja UNIT-I Binary (three sq Arithme	acobi S IV Quadra uares – etic Fur	symbol ymbol tic Fori Positiv	(a/r) where r is an odd prime – Quadratic Reciprocity (P/q) where q is an odd positive integer. ms – Equivalence and Reduction of Binary Quadratic Form re Definite Binary Quadratic forms – Greatest integer Fundamental The Mobius Inversion Formula – Recurrence Functions	ns — Sum			9
The Leg The Ja UNIT-I Binary (three sq Arithma Combin	acobi S IV Quadra uares – etic Fur natorial	symbol ymbol tic Fori Positiv	(a/r) where r is an odd prime – Quadratic Reciprocity (P/q) where q is an odd positive integer. ms – Equivalence and Reduction of Binary Quadratic Form re Definite Binary Quadratic forms – Greatest integer Fund	ns — Sum			I
The Leg The Ja UNIT-I Binary (three sq Arithme Combin UNIT-Y	acobi S IV Quadra quares – etic Fur natorial	symbol ymbol tic Fori Positiv actions numbe	(a/r) where r is an odd prime – Quadratic Reciprocity (P/q) where q is an odd positive integer. ms – Equivalence and Reduction of Binary Quadratic Form re Definite Binary Quadratic forms – Greatest integer Functions – The Mobius Inversion Formula – Recurrence Functions retheory.	ns – Sun ction –			9
The Leg The Ja UNIT-J Binary (three sq Arithme Combin UNIT-V Diophan	acobi S IV Quadra quares – etic Fur natorial V ntine E	symbol ymbol tic Fori-Positivactions numbe	(a/r) where r is an odd prime – Quadratic Reciprocity (P/q) where q is an odd positive integer. ms – Equivalence and Reduction of Binary Quadratic Form re Definite Binary Quadratic forms – Greatest integer Functions – The Mobius Inversion Formula – Recurrence Functions retheory. s – The equation ax+by=c – Simultaneous Linear Diophan	ns – Sun ction –			I
The Leg The Ja UNIT-I Binary (three sq Arithme Combin UNIT-V Diophar Equatio	acobi S IV Quadra quares – etic Fur natorial V ntine E	symbol ymbol tic Form Positivactions number quation with agore	(a/r) where r is an odd prime – Quadratic Reciprocity (P/q) where q is an odd positive integer. ms – Equivalence and Reduction of Binary Quadratic Form re Definite Binary Quadratic forms – Greatest integer Functions – The Mobius Inversion Formula – Recurrence Functions retheory.	ns – Sun ction –	ns of	OTAL	

45

TEXT BOOKS:

an Niven, Herbert S, Zuckerman and Hugh L, Montgomery, An Introduction to the Theory of Numbers, Fifth edn., John Wiley & Sons Inc, 2004.

UNIT I Chapter 1 and Chapter 2: Sections 2.1 to 2.3

UNIT II Chapter 2 : Sections 2.4 to 2.9

UNIT III Chapter 2: Sections 2.10, 2.11 and Chapter 3: Sections 3.1 to 3.3

UNIT IV Chapter 3: Sections 3.4 to 3.7 and Chapter 4

UNIT V Chapter 5: Sections 5.1 to 5.4.

REFERENCES:

Elementary Number Theory, David M. Burton W.M.C. Brown Publishers, Dubuque, Lawa, 1989

Number Theory, George Andrews, Courier Dover Publications, 1994.

Fundamentals of Number Theory, William J. Leveque Addison-Wesley Publishing Company, Phillipines, 1977.

COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled value	3	2		1	1		1	1	1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COUR	SE CO	DE	COURSE NAME		L	Т	P	С
YMA2	E2		DATA STRUCTURE AND ALGO	RITHMS	3	0	0	3
С	P	A			L	Т	P	Н
3	0	0			3	0	0	3
PRERI	EQUIS	ITE: D	iscrete Mathematics					
COUR	SE OU	TCOM	ES:					
Course	outcor	nes:		Domain			evel	
CO1: U	Understa	and and	apply linear data structures	Cognitive			ndersta oplying	•
CO2: U	Understa	and and	apply nonlinear data structures	Cognitive			ndersta oplying	0
CO3: U	Understa	and and	apply sorting techniques	Cognitive		Ur	ndersta pplying	nding
CO 4:	Underst	and and	l apply graph algorithms	Cognitive			ndersta oplying	•
CO 5: 1	Design	differen	at algorithmtechniques.	Cognitive			ndersta plying	•
UNIT-	I							9
ADT –	List AI	OT – Sta	ack ADT – Queue ADT.					
UNIT-	II							9
Trees –	Binary	Trees -	Binary Search Trees – AVL Trees –	Splay Trees – Tree Tr	aversa	1 - B	Trees-	B+ Tree
UNIT-	III							9
Insertio	n sort –	Shell s	ort – Heap sort – Merge sort – Quick s	sort – Bucket sort – Ex	kternal	Sort	ing.	
UNIT-	IV							9
	_		ortest path algorithms – Network Flow First search – NP completeness.	problems – Minimum	Span	ning '	Tree –	
UNIT-		•	•					9
Greedy algorith		hms – l	Divide and Conquer – Dynamic Progra	amming - Randomized	l Algo	rithm	s – Ba	cktracking
LE	CTURI	E				T(OTAL	
	45						45	
TEXT	ROOK	C /DFF	TERENCE BOOKS			ı		

TEXT BOOKS /REFERENCE BOOKS

Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Second Edition, Pearson Education, Reprint 2011.

Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein, "Introductionto Algorithms", Second Edition, Mcgraw Hill,2002

ReemaThareja, "Data Structures Using C", Oxford University Press,2011

Algorithms, Data Structures, and Problem Solving with C++", Illustrated Edition by Mark Allen Weiss, Addison-Wesley PublishingCompany

"How to Solve it by Computer", 2nd Impression by R. G. Dromey, PearsonEducation

COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1		1	1	1
CO 2	3	2	1	1			1	1	1
CO 3	3	2	1	1			1	1	1
CO 4	3	2	1	1	1		1	1	1
CO 5	3	2	1	1	1		1	1	1
Total	15	10	5	5	3	0	5	5	5
Scaled value	3	2	1	1	1		1	1	1

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

COURS	ECODI	E	COURSENAME	L	T	P	C
YMA2E	3		FUZZY SETS AND FUZZY LOGIC	3	0	0	3
С	P	A					
3	0	0		L	T	P	Н
		ı		3	0	0	3
			screte Mathematics	•	•		
COURS	E OUT	COM	ES:				
Course				Domain	1	Level	
			asic definitions of Crisp sets, the notion of fuzzy sets	Cognitiv		Remem	-
			fuzzy sets.			Underst	
CO2: Do	efine an	d Exp	lain operation on Fuzzy Sets.	Cognitiv		Remem	•
						Underst	
CO3: D	efine an	d Exp	lain Fuzzy Relations	Cognitiv		Remem	_
						Underst	
CO4: Do	efine an	d Exp	lain Classical Logic.	Cognitiv	ve	Remem	
						Underst	
	_		uzzy logic, fuzzy tautologies -	Cognitiv		Remem	_
			lence and logical proofs.			Underst	
			d Fuzzy Sets				9
			ions - the notion of fuzzy sets - basic concepts of fuzzy s	ets.			
UNITII			n on FuzzySets				9
-	•	ent - fu	nzzy union - fuzzy intersection - combination and general	aggregat	ion		
operation		D.I.					0
UNIT II				. 1	1	.•	9
•	•	relatio	ns - binary relation - equivalence and similarity relations	- tolerand	ce rela	ations	
- orderin	-	ool I d	orio				9
			ctions - equivalence - exclusive OR and exclusive NOR -	logical p	roofs		<u> </u>
UNIT V			tions - equivalence - exclusive or and exclusive Nor -	logical pi	10015.		<u></u>
				1	11	1	9
LEC'		proxin	nate reasoning - fuzzy tautologies - contradictions - equiv	alence an	a log	TO	
45	ICKE		_			45	IAL
TEXTB	OOKS					10	
	. Klir &		A. Folger, "Fuzzy Sets, Uncertainty, and Information", F	Prentice H	all of	India P	vt.
Timothy	J. Ross.	, "Fuz	zy Logic with Engineering Applications", 3 rd edition, M	cGraw-Hi	ill. In	c, 2010.	
REFER							
 Zimm Netherla 	ermann. nds,201:	. H.J, ' 5.	"Fuzzy Set Theory and Its Applications", 4 th edition, S				
Bart Kos	ko, "Ne	ural N	letworks and Fuzzy Systems", Prentice-Hall Internationa	1,1992.			

COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1		1	1	1
CO 2	3	2	1	1			1	1	1
CO 3	3	2	1	1			1	1	1
CO 4	3	2	1	1	1		1	1	1
CO 5	3	2	1	1	1		1	1	1
Total	15	10	5	5	3	0	5	5	5
Scaled value	3	2	1	1	1		1	1	1

 $1-5 \rightarrow \overline{1, 6-10} \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

SEMESTER III

COURS	ECOD	E	COURSETITLE	L	T	P	C	
YMA30	1		FIELD THEORY	3	1	0	4	
С	P	A						
4	0	0		L	T	P	Н	
				3	1	0	4	
PRERE	QUISI	ΓE: Al	gebra					
COURS	E OUT	COM	ES:					
Course	outcom	es:		Domain	ı	Level		
Define a	nd Exp	olain E	xtension fields – Finite Extension – Algebraic	Cognitiv	ve	Rememl	bering	
Extensio	n - Trai	nscende	ence of e.			Underst	anding	
Define a	nd Exp	lain Ro	oots of Polynomials Remainder Theorem – Splitting	Cognitiv	ve	Rememl	bering	
field - M	ore abo	ut root	S.			Underst	anding	
Define a	nd Exp	olain E	lements of Galois Theory- Fixed field – Normal	Cognitiv	ve	Remem	bering	
extensio	n- Fund	amenta	l Theorem.			Underst	anding	
Define a	nd Exp	lain Sc	lvability by radicals – Solvable group – Galois	Cognitiv	ve	Remembering		
group ov	er the r	ational				Understanding		
Define a	nd Exp	lain Fi	nite fields - Wedderburn's theorem on finite	Cognitiv		Rememl		
division	rings –	A The	orem of Frobenius.			Underst	anding	
UNIT I							12	
Extensio	n fields	– Fini	e Extension – Algebraic Extension - Transcendence of e).				
UNIT II	[12	
Roots of	Polyno	mials	$Remainder\ Theorem-Splitting\ field\ \hbox{-}\ More\ about\ root$	s.				
UNITII	[12	
Element	s of Gal	ois The	eory- Fixed field – Normal extension- Fundamental Theo	orem.				
UNIT I	V						12	
Solvabil	ity by ra	adicals	– Solvable group – Galois group over the rational.					
UNIT V							12	
			urn's theorem on finite division rings – A Theorem of Fi	obenius.				
	TURE		TORIAL			TOT	CAL	
45 TEXTR	OOV	15				60		
TEXTB		Tomico	in Alcahua" Willey Factors 1075					
REFER			in Algebra", Willey Eastern, 1975.					
			rst Course in Abstract Algebra", Narosa Publication, Thi	rd Edition	2013	2		
			ebra", Springers Publications, Second Edition, 2003.	ra Euruor	1,2013	,		
	, Da	210 / 112	ona, springers i defications, second Edition,2005.					

COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2			1	1	1	1	1
CO2	3	2			1	1	1	1	1
CO3	3	2			1	1	1	1	1
CO4	3	2			1	1	1	1	1
CO5	3	2			1	1	1	1	1
Total	15	10			5	5	5	5	5
Scaled Value	3	2			1	1	1	1	1

 $1-\overline{5\rightarrow1, 6-10\rightarrow2, 11-15\rightarrow3}$

 $\mathbf{0}$ - No Relation, $\mathbf{1}$ – Low Relation, $\mathbf{2}$ - Medium Relation, $\mathbf{3}$ - High Relation

COURS	ECOD	E	COURSENAME	${f L}$	T	P	C	
YMA30	2		TOPOLOGY	4	1	0	5	
С	P	A						
5	0	0		L	T	P	Н	
		l		4	1	0	5	
PRERE	QUISI	ΓE: Ar	alysis	"	l .		·	
COURS	E OUT	COM	ES:					
Course				Doma	in	Level		
CO1: D	efine an	nd Exp	lain Topological Spaces	Cogni	tive	Remen	bering	
						Unders		
CO2: D	efine an	ıd Exp	lain Continuous Functions	Cogni		Remem	_	
~~~						Unders		
CO3: D	efine an	ıd Exp	lain Connectedness	Cogni		Remem		
~						Unders		
CO4: Define and Explain Compactness  Cognitive Remember Understar								
COS. D	ofino on	d Evn	lain Countability and Separation Axiom	Cogni		Remen		
COS. D	eime an	iu Exp	am Countability and Separation Axiom	Cogin		Unders	_	
UNIT I	Topolo	gical S	nages			Officers	15	
			asis for a topology - The order topology - The pro	duct topology	n V v	V The		
topology		ces - D	asis for a topology - The order topology - The pro	duct topology	шΛх	1 - 1110	subspa	
		ามกมร ไ	Functions				15	
			oints-Continuous functions - the product topology	- The metricto	nology	, - The		
		-	nued) - Uniform limit theorem.	The metrical	рогову	. 1110		
UNIT I			•				15	
Connect	ed space	es - cor	nected subspaces of the Real line - Components a	and local conne	ectedne	SS.	<u> </u>	
UNIT I							15	
Compac	t spaces	- com	pact subspaces of the Real line - Limit Point Comp	pactness – Loc	alCom	oactness	S.	
			and Separation Axiom				15	
The Cou	ntability	y Axio	ms - The separation Axioms - Normal spaces - Th	e Urysohn Len	nma - T	The		
Urysohn	metriza	ation T	heorem - The Tietz extension theorem.	-				
-	<b>TURE</b>		CORIAL			TO	TAL	
60		15				75		
TEXTB	OOK	1				1		
ames R.	Munkre	es, "To	pology", (2nd Edition) PHI Learning Pvt. Ltd., (T	Third Indian Re	print)			
NewDel	hi,2014	Unit I -	Chapter 2: Sections 12 to 17Unit II - Chapter 2: S	Sections 18 to	21 (Om	it Secti	on	
22)Unit	III - Cha	apter 3	Sections 23 to 25 Unit IV - Chapter 3: Sections 26	5 to29				

Unit V - Chapter 4: Sections 30 to 35
REFERENCES

J. Dugundji, "Topology", Prentice Hall of India, New Delhi, 1975.

George F.Sinmons, "Introduction to Topology and Modern Analysis", McGraw Hill Book Co., 1963.

J.L. Kelly, "General Topology", Van Nostrand, Reinhold Co., New York. 1995

L.Steen and J.Subhash, "Counter Examples in Topology", Holt, Rinehart and Winston, New York, 1970.

S. Willard, "General Topology", Addison - Wesley, Mas. 1970.

### **COs vs POs Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2			1	1	1	1	1
CO2	3	2			1	1	1	1	1
CO3	3	2			1	1	1	1	1
CO4	3	2			1	1	1	1	1
CO5	3	2			1	1	1	1	1
Total	15	10			5	5	5	5	5
Scaled Value	3	2			1	1	1	1	1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

-

COUR	SECOD	E	COURSENAME	L			C
YMA3	03		AUTOMATA THEORY	3	1	0	4
С	P	A					
4	0	0		L	T	P	Н
				3	1	0	4
PRERI	EQUISIT	ΓE: A	nalysis				
	SE OUT		ES:				
Course	outcom	es:		Domain		Level	
			rings, Alphabets and Languages	Cognitiv	-	Rememb Understa	
efine a	nd Expl	ain Re	egular expressions and Properties of Regular sets.	Cognitiv		Rememb Understa	nding
Define a	and Exp	lain C	ontext Free grammars	Cognitiv		Rememb Understa	_
CO4: I languag		nd Exp	olain Pushdown Automata & properties of Context free	Cognitiv	-	Rememb Understa	_
Define a	and Exp	lain T	urning Machine and Chomski hierarchy.	Cognitiv		Rememb Understa	_
UNIT I							12
Strings,	Alphabe	ts and	Languages (Section 1.1 of the Text)Finite Automata (Ch	apters 2, S	Sectio	ns 2.1 to	2.4)
UNIT I	I						12
Regular	express	ions a	nd Properties of Regular sets.(Sections 2.5 to 2.8 and 3.1	to 3.4)			
UNITI	II						12
Context	Free gra	ammar	s (Section 4.1 to 4.5)				
UNIT I	IV						12
		mata &	properties of Context free languagesTheorem 5.3, 5.4 (	without pr	oof),	(Section	
5.3 and	6.1 to 6.	3)					
UNIT V	V						12
Turning	g Machin	e and	Chomski hierarchy, (Sections 7.1 to 7.3 and 9.2 to 9.4)				•
LEC	TURE		ΓORIAL			TOT	AL
45		15				60	
TEXTI							
	pocroft a tation, N		Ulman, Introduction to Automata Theory Languages ar 1999	nd			
REFE	RENCES	<u> </u>					
. G.ER	evesz,Ir	ntrodu	ction to Formal Languages				
			to Forma Languages and Automata, Narosa 2000				
. G.Lal	llment, S	Semig	roups and Applications				

# **COs vs POs Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1		1	2		1		1
CO2	2	1		1	2		1		1
CO3	2	1		1	2		1		1
CO4	2	1		1	2		1		1
CO5	2	1		1	2		1		1
Total	10	5		5	10		5		5
Scaled Value	2	1		1	2		1		1

**1-5→1**, **6-10→2**, **11-15→3** 

 $\mathbf{0}$  - No Relation,  $\mathbf{1}$  – Low Relation,  $\mathbf{2}$ - Medium Relation,  $\mathbf{3}$ - High Relation

COURS	ECOD	E	COURSENAME	TICS    L   T	P	С	
YMA30	4		MATHEMATICAL STATISTICS	3	1	0	4
C	P	A					
4	0	0		L	T	P	Н
	•			3	1	0	4
PRERE	OUISI	ΓE: Ni				I	
COURS							
Course	outcom	es:		Doma	in I	Level	
CO1: D	efine ar	d Exp	lain Estimation Theory.	Cogni		Rememb Jndersta	_
CO2: E	xplain a	nd sol	ve Tests based on normal, t and f distributions for	Cogni		Jndersta	
	_		nce and proportions – Analysis of $r \times c$ tables –			Applying	_
Goodnes	s of fit						
CO3: E	xplain a	nd sol	ve Correlation And Regression.	Cogni		Jndersta Applying	_
CO4: E	xplain a	nd sol	ve Design of Experiments	Cogni	tive [	Jndersta Applying	nding
CO5: E	xplain a	nd sol	ve Statistical Quality Control by X, R charts, p, c and	Cogni		Jndersta	
np charts	s.				A	Applying	5
UNIT I	Estima	tion Tl	neory	•	•		12
Estimato	rs: Un l	oiasedn	ess, Consistency, Efficiency and Sufficiency - Maximum	n likelil	nood est	imation	_
Method	of mom	ents.					
UNIT II	Testin	g Of H	ypothesis				12
Tests ba tables –			t and f distributions for testing of means, variance and p	roportio	ons – An	alysis o	$f r \times c$
			And Regression				12
			orrelation – Method of least squares – Plane of Regres	sion – F	ropertie	es of res	
			e correlation – Coefficient of partial correlation - Mul				
		_	gression and Partial correlations in terms of lower order	_			
UNIT I	V Desig	n of Ex	xperiments				12
			One way and two way classifications – Completely rand	omized	design -	- Rando	
•			uare design.		U		
			uality Control				12
			Control charts for measurements (X and R charts) – contr	ol chart	s for		1
			charts) – Tolerance limits – Acceptance sampling, Introd				
	TURE		TORIAL			TOT	AL
45		15				60	
TEXTB	OOK	ı				ı	
Gupta. S	.C., and	l Kapoo	or. V.K., "Fundamentals of Mathematical Statistics", Sul	tan Cha	nd ands	ons,	

REFERENCES

J.E. Freund, "Mathematical Statistical", 5th Edition, Prentice Hall of India,2001.

Jay L. Devore, "Probability and Statistics for Engineering and the Sciences", 5thEdition, Thomas and Duxbury, Singapore, 2002.

# Mapping of CO's with PO's:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	3			1			1	1
CO2	3	2			1			1	1
CO3	3	3			1			1	2
CO4	3	3			1		1	1	1
CO5	3	3			1		1	1	1
Total	15	15			5		2	5	6
Scaled Value	3	3			1		1	1	2

 $1 - \overline{5 \rightarrow 1, 6 - 10 \rightarrow 2, 11 - 15 \rightarrow 3}$ 

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

### LIST OF ELECTIVES

COU	JRSE CO	ODE	COURSE NAME	L	T	P	C			
7	YMA3E1	[	DATA ANALYSIS USING SPSS	3	0	0	3			
C	P	A		L	T	P	Н			
3	0	0		3	0	0	3			
PREI	REQUIS	ITE: P	robability and Statistics		I					
COU	RSE OU	TCOM	IES:							
Cours	se outcor	nes:		Domai	in	Level				
CO1:	Define a	nd Exp	olain Starting SPSS, SPSS Main Menus, Working with	Cognit	ive	Remem	_			
the Da	ata Editor	r, Impo	rting and Exporting data, Plotting of Charts using Bar			Underst	anding			
and P	ie diagrai	m.								
CO2:	Define :	and Ex	rplain measures of central tendencies and measures of	Cognit	ive	Remem	bering			
disper	rsion usin	g SPS	S			Unders	tanding			
CO3:	Define a	nd Exp	<b>plain</b> Type I and Type II error, Basics of one sample t-	Cognit	ive	Remem	bering			
		-	ple t-test and paired t-test using SPSS			Underst	_			
			olain One way ANOVA, two way ANOVA and Chi-	Cognit	ive	Remem	bering			
	e test usir	-	·			Underst				
			cplain correlation and regression using SPSS	Cognit	ive	Remem	bering			
Understanding										
UNIT	ΓI			1	I		9			
Introd	luction to	SPSS	Starting SPSS – SPSS Main Menus – Working with the	Data E	ditor -	- SPSS V	iewer –			
			ting data. Plotting of Charts: Simple Bar diagram, M							
Diagr										
UNIT							9			
			and Frequencies using SPSS. Measures of central							
			netric mean and Harmonic Mean. Measures of Dispersion	on: Rang	e, inte	r quartil	e range,			
UNIT		n and s	Standard deviation. Measures of Skewness and Kurtosis				9			
		notheci	s: Type I error and Type II Errors – Concept of p val	116c _ R	acic (	oncents	-			
			ndent Samples t-test, Paired samples t-test using SPSS with				or one			
UNIT				<b>F</b>			9			
Analy	sis of Va	ariance	: Basic concepts of ANOVA - One Way and Two W	ay ANO	VA u	sing SP	SS with			
interp	retation.	Chi-sq	uare Test for Independence of attributes using SPSS.							
UNIT							9			
			arson's coefficient of Correlation - Spearman's Rank	correla	tion	<ul><li>Simpl</li></ul>	e linear			
			S with interpretation.			mor	D A T			
	CTURE					TO:	IAL			
45 TEXT	ГВООК					45				
		and Ca	njaya S. Gaur (2008): Statistical Methods for Practice and	d Recear	ch					
			alysis using SPSS, First Edition, Sage Publications.	a ixestal	C11					
	ERENCES		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							
			Discovering Statistics Using SPSS, Sage Publications.							
	•		low C. McMurroy I and Cozons P. (2004) SDSS Explain	1 D	.1 1					

_

2. Hinton P R, Brownlow C, McMurray, I. and Cozens, B. (2004) SPSS Explained, Routledge

# Mapping of CO's with PO's:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	3			1			1	1
CO2	3	2			1			1	1
CO3	3	3			1			1	2
CO4	3	3			1		1	1	1
CO5	3	3			1		1	1	1
Total	15	15			5		2	5	6
Scaled Value	3	3			1		1	1	2

 $1-\overline{5\rightarrow1, 6-10\rightarrow2, 11-15\rightarrow3}$ 

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

	ECODI	E	COURSENAME	L	T	P	C	
YMA3E			NUMERICAL METHODS	3	0	0	3	
C	P	A						
3	0	0		L	T	P	H	
				3	0	0	3	
PRERE	QUISIT	E:Alg	gebra	•	,		•	
COURS	E OUT	COM	ES:					
Course o	outcome	es:		Domain	ı I	Level		
ind the s	solution	by usi	ng Bisection method-Newton-Raphson Method-Curve	Cognitiv	ve I	Remem	bering	
fitting str	raight lii	ne and	parabola.					
CO2: So	olve Sim	ultane	ous Linear Equations.	Cognitiv	ve I	Remem	bering	
			•				anding	
CO3: Fi	<b>nd</b> the v	alue o	f y = f(x) using interpolation formula.	Cognitiv	ve I	Remem	bering	
		<u>Jnderst</u>	anding					
			d second derivative of $f(x)$ and to find the value of	Cognitiv		Remem		
integrals	using n	umeric	cal methods.		Ţ	Jnderst	anding	
CO5: Solve ordinary differential equations by using various methods.  Cognitive Rem								
					Ţ	Jnderst	anding	
UNIT I			Algebraic Equations & Curve fitting Bisection method-N				9	
UNIT II	[						9	
Solution			eousLinear Equations-Gauss-Eliminationmethod-Meth	odoffacto	rizatio	n-Gaus	ss Jacob	
and Gaus		l meth	ods					
UNITIII			ous					
r	4:						9	
			v-Newton forward and backward interpolation formulae S	Sterling's	formu	la-	9	
Lagrange	e's form			Sterling's	formu	la-	<u>'</u>	
Lagrange UNIT IV	e's form V	ula.	-Newton forward and backward interpolation formulae S				9	
Lagrange UNIT IV Numeric	e's form V al Diffe	ula. rentiat	r-Newton forward and backward interpolation formulae S				9	
Lagrange UNIT IV Numeric –Simpso	e's form V al Differ n's three	ula. rentiat	r-Newton forward and backward interpolation formulae S				9 third ru	
Lagrange UNIT IV Numeric —Simpso UNIT V	e's form V al Differn's three	ula. rentiat e-eight	r-Newton forward and backward interpolation formulae States ion and Integration, Numerical differentiation, Trapezoidah rule.	lal rule-Si	mpsoi	ı'sone-	9	
Lagrange UNIT IV Numerica Simpso UNIT V Numerica	e's form  V  al Differ  n's three  al Solut	rentiate-eight	r-Newton forward and backward interpolation formulae States ion and Integration, Numerical differentiation, Trapezoid th rule.  Ordinary Differential Equations, Euler's method – fourth	lal rule-Si	mpsoi	ı'sone-	<b>9</b> third ru	
Lagrange UNIT IV Numeric -Simpso UNIT V Numeric method-I	e's form V al Differ n's three al Solut Milne's	rentiate-eight	r-Newton forward and backward interpolation formulae States ion and Integration, Numerical differentiation, Trapezoidah rule.	lal rule-Si	mpsoi	ı'sone- Lutta	9 third ru 9	
Lagrange UNIT IV Numerica —Simpso UNIT V Numerica method-I LECT	e's form V al Differ n's three al Solut Milne's	rentiate-eight	r-Newton forward and backward interpolation formulae States ion and Integration, Numerical differentiation, Trapezoid th rule.  Ordinary Differential Equations, Euler's method – fourth	lal rule-Si	mpsoi	a'sone- Cutta	9 third ru 9	
Lagrange UNIT IV Numerica Simpso UNIT V Numerica method-1 LECT 45	e's form  V  al Differ  n's three  al Solut  Milne's  FURE	rentiate-eight	r-Newton forward and backward interpolation formulae States ion and Integration, Numerical differentiation, Trapezoid th rule.  Ordinary Differential Equations, Euler's method – fourth	lal rule-Si	mpsoi	ı'sone- Lutta	9 third ru 9	
Lagrange UNIT IV Numerica Simpso UNIT V Numerica method-1 LECT 45 TEXTB	e's form V al Differn's three al Solut Milne's FURE OOK	rentiat e-eight ion of predic	r-Newton forward and backward interpolation formulae State ion and Integration, Numerical differentiation, Trapezoid th rule.  Ordinary Differential Equations, Euler's method – fourth tor corrector method.	lal rule-Si	mpsoi	a'sone- Cutta	9 third ru 9	
Lagrange UNIT IV Numerica Simpso UNIT V Numerica method-1 LECT 45 TEXTB	e's form V al Differn's three al Solut Milne's FURE OOK	rentiat e-eight ion of predic	r-Newton forward and backward interpolation formulae States ion and Integration, Numerical differentiation, Trapezoid th rule.  Ordinary Differential Equations, Euler's method – fourth	lal rule-Si	mpsoi	a'sone- Cutta	9 third ru 9	
Lagrange UNIT IV Numerica Simpso UNIT V Numerica method-1 LECT 45 TEXTB	e's form V al Differ n's three al Solut Milne's FURE OOK .S.S, "In	rentiate-eight	r-Newton forward and backward interpolation formulae State ion and Integration, Numerical differentiation, Trapezoid th rule.  Ordinary Differential Equations, Euler's method – fourth tor corrector method.	lal rule-Si	mpsoi	a'sone- Cutta	9 third ru 9	
Lagrange UNIT IV Numerica —Simpso UNIT V Numerica method-1  LECT 45 TEXTBO 1. Sastry	e's form V al Differ n's three al Solut Milne's FURE OOK CS.S., "In	rentiate-eightion of predicentroduc	r-Newton forward and backward interpolation formulae State ion and Integration, Numerical differentiation, Trapezoid th rule.  Ordinary Differential Equations, Euler's method – fourth tor corrector method.	al rule-Si n order Ru India, 200	mpsoi	TOT 45	9 third ru 9	
Lagrange UNIT IV Numerica Simpso UNIT V Numerica method-1 45 FEXTBO 1. Sastry REFER Gerald, (	e's form V al Differ n's three al Solut Milne's FURE OOK S.S., "In	rentiate-eightion of predicentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducentroducent	r-Newton forward and backward interpolation formulae State ion and Integration, Numerical differentiation, Trapezoid th rule.  Ordinary Differential Equations, Euler's method – fourth tor corrector method.	al rule-Si n order Ru India, 200	mpsoi	TOT 45	9 third ru 9	

# **COs vs POs Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	1	1		2			1
CO2	2	1	1	1		2			1
CO3	2	1	1	1		2			1
CO4	2	1	1	1		2			1
CO5	2	1	1	1		2			1
Total	10	5	5	5		10			5
Scaled Value	2	1	1	1		2			1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

 $\mathbf{0}$  - No Relation,  $\mathbf{1}$  – Low Relation,  $\mathbf{2}$ - Medium Relation,  $\mathbf{3}$ - High Relation

COURS	SE CO	DE	COURSE NAME				P	C			
YMA3I	E3	_	COMMUTATIVE ALGEBRA				0	3			
C	P	A			Ĺ	T	P	H			
3	0	0		3	3	0	0	3			
PRERE											
COURS	SE OU	TCOM	ES:								
Course	outcor	nes:		Domain	l	L	Level				
Unde								membering derstanding			
CO2:Define and Explain proficient in the theory of Modules  Cognitive							Remembering Understanding				
CO3: Define and Explain the methods of decomposition ofrings.  Cognitive								Remembering Understanding			
CO 4: Define and Explain Chain conditions – Primarydecomposition in Cognitive Noetherian rings.								Remembering Understanding			
								Remembering Understanding			
UNIT-I								9			
	orphisn		norphism's – ideals – Extension and Contraction, moduct sequences.	ıles and n	nod	ule		9			
			dules – Tensor product of algebra – Local properties – ags of fractions.	extended	and	d					
UNIT-III								9			
Primary – Valua		•	on – Integral dependence – The going-up theorem – Th	ne going d	low	n thec	rem	•			
UNIT-I	V							9			
Chain co	onditio	ns – Pri	mary decomposition in Noetherian rings.								
UNIT-V							nderstanding emembering inderstanding emembering inderstanding emembering inderstanding emembering inderstanding part of the p				
Artin rir	gs - D	iscrete	valuation rings – Dedekind domains – Fractional ideal	ls.				<u> </u>			
	TURE					TO	TAL	ı			
45						45					
TEXT I	200V	<b>C.</b>				1					
tiyah, M 1969.Ur	I., Mac nit 1 : C	Donald Chapter	, I.G., Introduction to Commutative Algebra, Addison 1, Chapter 2 (up to page 23)Unit 2 : Chapter 2 (pages 2) Unit 4 : Chapters 6,7.Unit 5 : Chapters 8,9.								

### **REFERENCES:**

- 1. H.Matsumura, Commutative ring theory, Cambridge University Press,1986.
- 2. N.S. Gopalakrishnan, Commutative Algebra, Oxonian Press Pvt. Ltd, New Delhi, 1988. R.Y.Sharp, Steps in Commutative Algebra, Cambridge University Press,1990.

# **COs VS POs Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled value	3	2		1	1		1	1	

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

### SEMESTER IV

COURSECO	DE	COURSENAME	L	Т	P	С
YMA401		COMPLEX ANALYSIS	4	1	0	5
C P	A					
5 0	0		L	Т	P	Н
			4	1	0	5
PREREQUIS	ITE: Ar	alysis	I	1		
COURSE OU		•				
Course outcor	mes:		Domai	n	Level	
CO1: Define a	and Exp	lain Line Integrals- Rectifiable arc – Line integrals as	Cogniti	ve	Rememb	ering
functions of ar	c- Cauch	y's Theorem for rectangle- Cauchy's Theorem			Understa	nding
for disc						
CO2: Define a	and Exp	lain Integral Formula – Higher derivatives –	Cogniti	ve	Rememb	_
Removable sin	igularitie	s – Taylor's theorem – Zeros and Poles – The			Understa	nding
Local Mapping	g - The I	Maximum Principle.				
Define and Ex	<b>plain</b> Th	ne General Statement of Cauchy's Theorem –	Cogniti	ve	Rememb	ering
Proof of Cauch	ny's The	orem – Locally Exact Differentials – Multiply			Understa	nding
Connected Reg	gions.					
Define and Ex	<b>plain</b> Th	ne Residue Theorem – The Argument Principle –	Cogniti	ve	Rememb	
		Integrals – The Mean – value property – Poisson's			Understa	nding
		eorem – The Reflection Principle.				
	_	lain Weierstrass's Theorem – The Taylor Series	Cogniti	ve	Rememb	ering
		Partial Fractions- Jensen's Formula			Understa	nding
Hadamard's Th	neorem					
UNIT I						15
_		ble arc – Line integrals as functions of arc- Cauchy's Tl	neorem fo	r rect	angle- Ca	uchy's
Theorem for d	isc.					1
UNIT II						15
	•	ntegral Formula – Higher derivatives – Removable sing	ularities -	- Tay	lor's theo	rem –
	es – The	Local Mapping – The Maximum Principle.				T. =
UNITIII						15
•		mple Connectivity – Homology – The General Statemer		chy's	Theorem	<ul><li>Proof</li></ul>
	heorem -	- Locally Exact Differentials – Multiply Connected Reg	ions.			T. =
UNIT IV						15
		- The Argument Principle - Evaluation of Definite Integ	grals – Th	e Me	an – value	•
	sson's fo	rmula- Schwarz's Theorem – The Reflection Principle.				
UNIT V	T.1					15
		- The Taylor Series - The Laurent Series - Partial Frac	tions- Jen	sen's	Formula	_
Hadamard's T		CODIAI			TOT	A T
LECTURE		TORIAL			TOT	AL
60 TEXTBOOK	15				75	
ILAIDUUK						

Lars V.Ahlfors, "Complex Analysis", 3rd Edition McGraw Hill Education (India) Private Ltd.2013. Chapter 4 - Section 1.1 to 1.5, Section 2.1 to 2.3, Section 3.1 to 3.4, Section 4.1 to 4.7, Section 5.1 to 5.3, Section 6.1 to 6.5. Chapter 5 - Section 1.1 to 1.3, Section 2.1, Section 3.1 & 3.2.

### **REFERENCES:**

Poonusamy, "Complex Analysis", Alpha Science International Ltd; 2nd Revised edition, 2005.

### **COs vs POs Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	1	1		2			1
CO2	2	1	1	1		2			1
CO3	2	1	1	1		2			1
CO4	2	1	1	1		2			1
CO5	2	1	1	1		2			1
Total	10	5	5	5		10			5
Scaled Value	2	1	1	1		2			1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURS	ECOD	E	COURSENAME	L	T	P	C
YMA40	2		FUNCTIONAL ANALYSIS	4	1	0	5
C	P	A					
5	0	0		L	T	P	Н
-				4	1	0	5
PRERE	QUISIT	Γ <b>E:</b> An	alysis	•		· ·	
COURS	E OUT	COM	ES:				
Course o				Doma		<b>Level</b>	
<b>Define a</b> r – Banach	_		ormed Spaces – Continued of Linear Maps – Hahn	Cognit		Remembe Inderstai	
Define a	nd Exp	lain Ba	nach Spaces – Uniform Boundedness Principle –	Cognit	ive F	Remembe	ring
Closed C	raph an	d Ope	n Mapping Theorems.		Ţ	J <mark>nderst</mark> ai	nding
Define a	nd Expl	lain Bo	ounded Inverse Theorem – Spectrum of a Bounded	Cogni	ive F	Remembe	ring
Operator					Ţ	Jnderstai	nding
Define a	nd Expl	l <b>ain</b> In	ner Product Spaces – Orthonormal Sets – Projection	Cogni	ive F	Remembe	ring
			on Theorems.		Ţ	Jnderstaı	nding
			ounded Operators and adjoint, Normal, Unitary and	Cogni		Remembe	
Self-adjo	int Ope	rators.			Ţ	Jnderstai	nding
UNIT I							15
Normed	Spaces	<ul><li>Cont</li></ul>	inued of Linear Maps – Hahn – Banach Theorems.				
UNIT II							15
Banach S	Spaces -	- Unifo	rm Boundedness Principle – Closed Graph and Open M	Sapping T	heore	ms.	•
UNITIII							15
		e Theor	rem – Spectrum of a Bounded Operator.				
UNIT IV							15
Inner Pro	oduct Sp	oaces –	Orthonormal Sets – Projection and Riesz Representation	on Theore	ems.		
UNIT V							15
			l adjoint, Normal, Unitary and Self-adjoint Operators.				
LECT	URE		ORIAL			TOT	AL
60		15				75	
TEXTB	OOK						
Balmoha New Del			Functional Analysis", 3 rd Edition, New Age Internation	nal (P) Li	mited	Publishe	rs,
REFER							
G.F.Sim Compan	mons,"I	ntrodu York,	1963.	v Hill In		onal Boo	ok
E. Kreys	zig, "In	troduct	Analysis", Tata McGraw-Hill Publishing Company, Ne ory Functional Analysis with Applications", John Wile Fedrick, "First Course in Functional Analysis", Prentice	y & Sons	, New		

### **COs vs POs Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	1	1		2			1
CO2	2	1	1	1		2			1
CO3	2	1	1	1		2			1
CO4	2	1	1	1		2			1
CO5	2	1	1	1		2			1
Total	10	5	5	5		10			5
Scaled Value	2	1	1	1		2			1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

	JRSE C		COURSE NAME	L	T	P	C
	YMA403	3	MATHEMATICAL MODELING	3	1	0	4
C	P	A					
3	0	1		L	Т	P	Н
				3	1	0	4
PREF	REQUIS	ITE: P	robability and Statistics				<u> </u>
COU	RSE OU	TCOM	IES:				
Cours	se outcoi	mes:		Doma	in	Level	
CO1:	Define a	nd exp	lain Mathematical Modelling through Ordinary	Cogni	tive	Remem	bering
			s of First order	Affect		Unders	_
		1			•	Receivi	_
CO2:	Define a	nd exn	lain Mathematical Modelling through Systems of	Cogni	tive	Remem	
			Equations of First Order	Affect		Unders	
Oram	ary Diffe	a ciitiai	Equations of First Order	7111000	110	Receivi	_
CO3	Define a	nd evn	lain Mathematical Modelling through Ordinary	Cogni	tive	Remem	
			s of Second Order	Cogini	1110	Underst	
				<u> </u>	. •		
		nd exp	lainMathematical Modelling through Difference	Cogni	tive	Remem	
Equat				~ .		Underst	
<b>CO5</b> :	Define a	and exp	olainMathematical Modelling through Graphs	Cogni	tive	Remem	_
						Unders	tanding
UNIT	I: Math	nematio	al Modelling through Ordinary Differential Equation	nsof Firs	t orde	er	9+3
Linear	r Growth	and Do	ecay Models – Non-Linear Growth and Decay Models –	Compartr	nent N	Models –	
Dynai	mics prob	blems –	Geometrical problems.	-			
UNIT	`II:Matl	hemati	cal Modelling through Systems of OrdinaryDifferenti	al Equat	ions (	of First	9+3
Orde	r			-			
Popul	ation Dy	namics	- Epidemics - Compartment Models - Economics - Me	edicine, A	rms l	Race, Ba	ttles and
			Dynamics.			•	
			tical Modelling through Ordinary Differential Equati	onsof Se	cond	Order	9+3
			Circular Motion and Motion of Satellites – Mathematical		g thro	ugh Line	ar
	-	•	s of Second Order –Miscellaneous Mathematical Models	•			
			tical Modelling through Difference Equations				9+3
•			ic Theory of Linear Difference Equations with Constant	Coefficier	nts – I	Economic	es and
Finan	ce – Popi	ulation	Dynamics and Genetics –Probability Theory.				
UNIT	V: Mat	hemati	cal Modelling through Graphs				9+3
			Modelled through Graphs – Mathematical Modelling in T	erms of l	Direct	ed Grapl	ıs,
			nted Digraphs and UnorientedGraphs.				
LE	CTURE	TU	TORIAL			TO	ΓAL
45		15				60	
	ГВООК					1	
			natical Modelling, Wiley Eastern Limited, New Delhi, 19	988.			
	ERENCE						
			matical Models in Biology and Medicine, Affiliated East	-West F	ress F	Pvt	
	ed, New		••	. ,, OSt 1	000 1		
	ea, New	Delhi,	19				

### **COs vs POs Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2			1	1	1	1	1
CO2	3	2			1	1	1	1	1
CO3	3	2			1	1	1	1	1
CO4	3	2			1	1	1	1	1
CO5	3	2			1	1	1	1	1
Total	15	10			5	5	5	5	5
Scaled Value	3	2			1	1	1	1	1

**1-5→1**, **6-10→2**, **11-15→3** 

 $\mathbf{0}$  - No Relation,  $\mathbf{1}$  – Low Relation,  $\mathbf{2}$ - Medium Relation,  $\mathbf{3}$ - High Relation

- 3.b. Curriculum and Syllabus of the programme Before Revision
- 4.b. Curriculum and Syllabus of the programme After Revision –M.Sc Maths

# CURRICULUM AND SYLLABUS FOR M.Sc. (MATHEMATICS) - MASTER OF SCIENCE AFTER REVISION (TWO YEAR - FULL TIME) REGULATION - 2022

(Applicable to the students admitted from the academic year 2022-2023 onwards)

Semester	Course Code	Course Name	L	T	P	Н	C
	YMA101	Algebra - I	4	1	0	5	5
	YMA102	RealAnalysis - I	4	1	0	5	5
т	YMA103	Graph Theory	4	1	0	5	5
1	YMA104	Ordinary Differential Equations	4	1	0	5	5
	YMA105	Optimization Techniques	4	1	0	5	5
	YMA1E*	One among the list of electives (1E)	3	0	0	3	3
		Mentoring	0	0	0	1	0
		Library/ E- Library	0	0	0	1	0
		Total	23	5	0	30	28

### *Listof Electives (1E)

<b>Elective Code</b>	Course Name	L	T	P	C
1	Fuzzy sets and Fuzzy logic	3	0	0	3
2	Coding Theory	3	0	0	3
3	Neural Networks	3	0	0	3

Semester	Course Code	Course Name	L	T	P	H	C
	YMA201	Algebra -II	4	1	0	5	5
	YMA202	Real Analysis -II	4	1	0	5	5
II	YMA203	Partial Differential Equations	4	1	0	5	5
	YMA204	Classical Dynamics	4	1	0	5	5
	YMA2E*	One among the list of electives (2E)	3	0	0	3	3
NME	YMA205	Computer Programming (c++ Theory and Lab)	3	0	2	5	5
		Mentoring	0	0	0	1	0

Library/ E- Library	0	0	0	1	0
Total	22	4	2	30	28

### *List of Electives (2E)

Elective Code	Course Name	L	T	P	C
1	Fluid Dynamics	3	0	0	3
2	Combinatorics	3	0	0	3
3	Cryptography	3	0	0	3

Semester	Course Code	Course Name	L	T	P	H	C
	YMA301	Topology	4	1	0	5	5
	YMA302	Integral Equations, Calculus of Variations and Transforms	4	1	0	5	5
III	YMA303	Functional Analysis	4	1	0	5	5
	YMA304	Differential Geometry	4	1	0	5	5
	YMA305	Complex Analysis	4	1	0	5	5
	YMA3E*	One among the list of Electives (3E)	3	0	0	3	3
		Mentoring	0	0	0	1	0
		Library/ E- Library	0	0	0	1	0
		Total	23	5	0	30	28

### *List of Electives (3E)

Elective code	Course Name	L	T	P	C
1	Elements of Stochastic Processes	3	0	0	3
2	Mathematical Modeling	3	0	0	3
3	Data Analysis using SPSS	3	0	0	3

Semester	<b>Course Code</b>	Course Name	L	T	P	H	C
IV	YMA401	Project	0	0	0	30	8
		Total				30	8

**Mandatory:** Value Added courseand Self LearningCourse – (NPTEL) will be offered during theprogramme

**Total Number of Credits: 92** 

### **Total Number of Hours** :120

COU	RSE N	AME	ALGEBRA - I	L	T	P	С
COU	RSE C	ODE	YMA101	4	1	0	5
С	P	A		L	Т	P	Н
5	0	0		4	1	0	5
PRER	EQUIS	ITE	Basics of sets, relations and functions		I		
On suc	cessful	comple	tion of this course, the students will be able to:				
			COURSE OUTCOMES	DOMA	IN	LE	VEL
CO 1		structC ree 2 and	ayley table for the given symmetric group of 13	Cognit	ive	App	olying
CO 2	Exte	end gro	up structure to finite permutation groups	Cognit	ive	Unders	standing
CO 3		ssify gr	oups of finite order upto 120 using Sylow's	Cognit	ive	Anal	lyzing
CO 4	<b>Ide</b> i dom	-	e quotient field of the given integral	Cognit	ive	App	olying
CO 5	Cat	egorize	the factorization of polynomials over a field	Cognit	ive	Ana	lyzing
UNIT	1						15 hours
Binary	Operati	ions – G	roups - Subgroups – Permutations I – Permutation	s II – Cy	clic C	Groups	
UNIT :	2						15 hours
			et Products – Finitely Generated Abelian groups groups- Homomorphisms	s - Grou	ps of	Cosets	- Norma
UNIT	3						15 hours
Series	of Grou	ps – Iso	morphism theorems- Proof of the Jordan Holder t	heorem-	–Grou	up action	on a set
Applica	ations o	f G-sets	to counting - Sylow's theorems -ApplicationsofS	ylow the	orems	S	
UNIT 4	4						15 hours
Rings -	_	al Doma	ins - Some non-commutative examples –The Field	d of quot	ients -	– Quotie	nt rings
UNIT							15 hours
		m of I	Rings – Rings of polynomials – Factorization	n of Pa	olynoi	mialsove	rafield -

Euclideandomains-Gaussian integers and norms

LECTURE60TUTORIAL15PRACTICAL0TOTAL75

### TEXT BOOK

1.John B. Fraleigh, A First Course in Abstract Algebra, Narosa Publishing House, Third edition, 1992.

UNIT - I Chapter 1, 2, 3,4,5,6

UNIT – II Chapter 7,8,9,11,12,13

UNIT - III Chapter 14,15,16,17,18,19

UNIT – IV Chapter 23,24,25,26,27,28

UNIT – V Chapter 29,30,31,33,34

### **REFERENCES**

1.P.B. Bhattacharya et al., Basic Abstract Algebra, 2nd edition, Cambridge University Press, 1995

2.I.N.Herstein, Topics in Algebra, John Wiley, 2nd Edition, 1975.

3.R. Solomon, Abstract Algebra, AMS Indian edition, 2010.

#### CO Vs PO

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	1	3	1	1	1	1
CO 4	3	3	3	1	3	1	1	1	1
CO 5	3	3	3	1	3	1	1	1	1
TOTAL	15	15	14	6	15	5	4	1	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	RSE N	AME	REAL ANALYSIS - I	L	Т	P	C
COU	RSE C	ODE	YMA102	4	1	0	5
С	P	A		L	T	P	Н
5	0	0		4	1	0	5
PRER	EQUIS	SITE	Basic concepts of real numbers			<u> </u>	
On suc	ccessful	comple	tion of this course, the students will be able to:				
			COURSE OUTCOMES	DOMA	AIN	LE	VEL
CO 1	_	<b>olain</b> the	e concepts of real number system and its operties	Cognit	ive	Unders	standing
CO 2	Exp	lain the	concepts of metric space and its properties	Cognit	ive	Unders	standing
CO 3	App	oly conv	ergence sequence in metric space	Cognit	ive	App	lying
CO 4		ssify th	e characterization of compact metric space	Cognit	ive	Anal	yzing
CO 5			Banach contraction principle in formulating and n problems	Cognit	ive	App	lying
UNIT	1						15 hours
Sets ar	nd Func	ctions, N	Induction, Finite and Infinite sets.	Real Nu	mber	system:	Algebrai
and Or	der proj	perties: I	nfimum, Supremum, LUB Axiom. Countable and	uncount	able s	sets.	
UNIT	2						15 hours
Metric	spaces	– Defini	tion and examples - open balls and open sets				
UNIT	3					-	15 hours
Sequer	ices and	d Series	of real numbers - limit theorems - monotone	sequence	es – (	Cauchy c	riterion -
limsup	, liminf	- Conve	ergent sequences in metric spaces - limit and clus	ter point	s – C	auchy sec	quences -
Bound	ed sets -	– Dense	sets.				
UNIT	4					-	15 hours
a Real V		nction - C	uivalent Definitions of Continuity – Uniform Continuity - I ompact spaces and their properties – Continuous functions of				
UNIT	5						15 hours
		s: Conne	ected spaces – Complete metric spaces – Examinciple.	ples- Ba	ireCa	tegory T	heorem -

LECTURE60TUTORIAL15PRACTICAL0TOTAL75
--------------------------------------

### TEXT BOOKS

R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis 3rdEdn, John Wiley &Sons, 2000.

S.Kumaresan, Topologyof Metric Spaces, Narosa Publishing House, New Delhi, 2005.

UNIT-I- Chapters 1 and 2from [1]

UNIT-II -Chapter1from [2]

UNIT-III-Chapter3from [1] and Chapter2 sections 2.1 to 2.5 from [2]

UNIT-IV-Chapter3, Chapter4from[2](sections3.3and 3.6omitted)and Chapter5 from [1]

UNITV-Chapter 5section5.1andChapter 6sections 6.1,6.3and6.4(section6.2,6.3.16 and6.3.17 omitted)from [2]

### REFERENCES

Edward D. Gaughan, Introduction to Analysis, AMS, Indian edition, 2010.

KennethA. Ross, Elementary Analysis: The Theory of Calculus, Springer Verlag, 2004.

WalterRudin, Principles of Mathematical Analysis, Third Edition, McGraw Hill, 1976.

#### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	3	3	1	2	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	13	9	15	5	4	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	RSE N	AME		GRAI	PH THE	ORY	L	T	P	С		
COU	RSE C	ODE		7	YMA103		4	1	0	5		
С	P	A					L	T	P	Н		
5	0	0					4	1	0	5		
PRERI	EQUIS	ITE	Basic co	oncepts of Gi	raphs			1		1		
On suc	cessful	comple	etion of t	his course, th	ne studen	ts will be able to:						
			COURS	E OUTCOM	<b>IES</b>		DOMA	AIN	LE	VEL		
CO 1	Exp	<b>lain</b> basi	ic concep	ts of <b>graphs</b>			Cognit	ive	Unders	tanding		
CO 2	Exp	lain ver	tex conn	ectivity and e	dge conn	ectivity in graphs	Cognit	ive	Unders	tanding		
CO 3	Exp	<b>lain</b> Eule	erian Graph	s and Hamilton	ian Graphs		Cognit	ive	Unders	tanding		
CO 4		·	oring prin	•	lving pro	oblems in Vertex	Cognit	ive	App	lying		
CO 5									Unders	erstanding		
UNIT 1	L				Basic Re	esults			]	15 hours		
Directe	d Grap			ts - Tournam	ents.	Paths and Conne						
UNIT 2					Connect					15 hours		
		_		•	_	- Connectivity, Tr			Charac	terizatio		
		operties	- Countii			nning Trees - Cayle	y's Forn	nula.				
UNIT 3						and Matchings				15 hours		
	_				erings - 1	Edge Independent	Sets -M	latching	gs and	Factors		
		ns - Han	niltonian									
UNIT 4					raph Col					15 hours		
		ing - Cr	ritical Gra	aphs - Triang	gle - Free	Graphs - Edge Co	olourings	of Gra	aphs - C	Chromati		
Polyno												
UNIT 5					Planar					15 hours		
		_	_			its Consequences				_		
-			-	oh - The Four	r-Colour	Theorem and the I	Heawood	l Five-(	Colour 7	Theorem		
		Theoren			T	1	T		1			
TROT	<b>URE</b>	(	0 1	TUTORIAL	15	PRACTICAL	0	TO	TAL	<b>75</b>		

### **TEXT BOOK**

1.Douglas B. West, "Introduction to Graph Theory", Prentice Hall of India, Second Edition, 2002.

### REFERENCES

Bondy J. A, and Murty U. S. R., "Graph Theory", Springer, 2008.

Balakrishnan R. and Ranganathan K., "A textbook of Graph Theory", Springer, 2012.

Graham R.L., Rothschild B.L and Spencer J.H., "Ramsey Theory", Wiley Publishers, Second Edition, 1990.

Biggs N., "Algebraic Graph Theory", Cambridge Tracts in Mathematics 67, Cambridge University Press, 1994. MX8003 Algebraic Theory of Semigroups.

### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	12	7	15	5	2	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	JRSE N	AME	ORDINARY DIFFERENTIAL EQUATIONS	L	T	P	C			
COU	JRSE C	ODE	YMA104	4	1	0	5			
С	P	A		L T						
5	0	0		4	5					
PRER	EQUIS	ITE	Knowledge in differentiation							
On su	ccessful	comple	tion of this course, the students will be able to:							
			COURSE OUTCOMES	DOMA	IN	LEV	VEL			
CO 1			theory of power series when solving second ential equations	Cognit	ive	App	lying			
CO 2		•	broblems arises in mathematical physics using f Bessel functions	Cognit	ive	App	lying			
CO 3 Apply Picard's theorem for calculating exact solution for a given initial value problem Cognitive						App	lying			

The general solution of the homogeneous equation – The use of one known solution to find another – The method of variation of parameters – Power Series solutions. A review of power series – Series solutions of first order equations – Second order linear equations; Ordinary points.

Cognitive

Cognitive

Analyzing

Applying

15 hours

Examine the classical vibrating string problem through

eigenvalues and eigenfunctions with given boundary

Identify critical points and phase portrait of nonlinear

**CO 4** 

**CO 5** 

UNIT 1

conditions

equations

UNIT 2 15 hours

Regular Singular Points – Gauss's hypergeometric equation – The Point at infinity - Legendre Polynomials – Bessel functions – Properties of Legendre Polynomials and Bessel functions.

UNIT 3 15 hours

Linear Systems of First Order Equations – Homogeneous Equations with Constant Coefficients – The Existence and Uniqueness of Solutions of Initial Value Problem for First Order Ordinary Differential Equations – The Method of Solutions of Successive Approximations and Picard's Theorem.

UNIT 4 15 hours

Oscillation Theory and Boundary value problems – Qualitative Properties of Solutions– Sturm Comparison Theorems – Eigenvalues, Eigenfunctions and the Vibrating String.

UNIT 5 15 hours

Nonlinearequations: Autonomous Systems; the phase planean dits phenomena—Types of critical points; Stability — critical points and stability for linear systems — Stability by Liapunov's direct method — Simple critical points of nonlinear systems.

LECTURE60TUTORIAL15PRACTICAL0TOTAL75

### **TEXT BOOK**

1.G.F. Simmons, Differential Equations with Applications and Historical Notes, TMH, New Delhi, 1974.

UNIT – I -Chapter 3: Sections 15, 16, 19 and Chapter 5: Sections 25 to 27

UNIT - II -Chapter 5: Sections 28 to 31 and Chapter 6: Sections 32 to 35

UNIT - III - Chapter 7: Sections 37, 38 and Chapter 11: Sections 55, 56

UNIT - IV -Chapter 4: Sections 22 to 24

UNIT - V -Chapter 8: Sections 40 to 44

#### REFERENCES

M.E. Taylor, Introduction to Differential Equations, AMS Indian Edition, 2011.

M. Braun, Differential Equations and Their Applications, Springer, 1992.

E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw Hill, 1955.

#### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	3	3	1	2	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	11	15	5	6	5	5
SCALED VALUE	3	3	3	3	3	1	2	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COUR	CE N	AME	I	ODTIMIZAT	TON TE	CHNIQUES	т т	Т	Ъ	
COUR				OPTIMIZAT	10N 1E YMA105	CHNIQUES	L 4	1	P 0	5 C
COOK	P	A			IMAIUS		L	T	P	H
5	0	0					4	1	0	5
PRERE			Prob	ability and rand	om nroce	90	-	1	U	
						its will be able to:				
OH Bucc	Coolui			RSE OUTCOM		tts will be uble to:	DOMA	IN	LE	VEL
	Exp					ching a decision	201121	121 (		, <u>22</u>
CO 1	_		•	•		the possibility of	Cognit	ive	Unders	standing
		-				ated in advance.				8
G 0 4						techniques using	<i>a</i>			
CO 2		T, CPM		1 3		1 6	Cognit	ive	App	lying
GO 3	Exp	lain tl	he d	ynamics of	inventory	management's	G :		TT 1	. 1'
CO 3	prine	ciples, c		ts, and techniqu	•	-	Cognit	ive	Unders	standing
CO 4	Solv	e fourth	order	polynomial fun	ction usi	ng Newton	C:4		App	lying
CO 4	Rap	hson Me	ethod				Cognit	ive		
CO 5	App	lythe d	irect s	search method	and gra	dient method for	Cognit	ivo	App	lying
COS	obta	ining op	timal	solutions for the	e given fu	nction	Cogiiii	ive		
UNIT 1				DEC	CISION T	THEORY			-	15 hours
Steps in	Decisi	on theo	ry App	oroach - Types o	of Decision	on-Making Enviror	nments - ]	Decis	ion Maki	ng Under
Uncertai	nty - 1	Decision	n Mak	ing under Risk	- Posteri	or Probabilities an	d Bayesi	an A	nalysis -	Decision
	alysis	- Decision	on Ma	king with Utilit	ies					
UNIT 2			PR	OJECT MAN	AGEME	NT: PERT AND	СРМ		-	15 hours
					_	in PERT/CPM Te	_			
_				•		l Path Analysis -		ty in	PERT A	analysis -
_						Resource Allocation				
UNIT 3						ORY CONTROL				15 hours
_	•	•				ation - Advantage	-	_	•	
	•	-		•	_	Deterministic Inver	•			•
			•	_		stic Inventory (			_	e Period
	1St1C IV	lodels w	/ithout			od Probabilities Mo	odel with	Setup		151
UNIT 4	noin - 1	Duc la 1 -	na NT-			zation Theory	ston D = : 1			15 hours
				•		onditions- The New	ıon- <b>K</b> apl	ison I	vietnoa-	
UNIT 5	ned Pr	obieins-	- Equa	lity Constraints		•			-	15 hours
	rainad	Algori	ithma			ming Algorithms od- Gradient Met	hod C	natea		15 hours
		_		ance-Constraine			nou- Co	nisti a	meu Al	goriums-
LECTI		6		TUTORIAL	15	PRACTICAL	0	T	OTAL	75
TEXT B			<u> </u>	TOTORIAL	13	IRACITCAL	U	1(	JIAL	13
			ions R	Research Theory	y and An	plications", Third	Edition	Mac	millan Ir	ndia I td
1.0.12.011	111u,	Sperat		Coouren Theory	, and 11p	riioaciono , riinu	24111011,	17140		L.u.,

#### 2007

Unit I - Chapter-11 (Section 11.1 - 11.8)

Unit II - Chapter-13 (Section 13.1 - 13.9)

Unit III - Chapter-14 (Section 14.1 - 14.8); Chapter-15 : (Section 15.1 - 15.4)

2. Hamdy A Taha, Operations Research: An Introduction, Eighth Edition,. University of Arkansas,

Fayetteville, PEARSON Prentice Hall. © 2007 by Pearson Education, Inc.

Unit IV-Chapter 18 – Section 18.1.1, 18.1.2, 18.2.1, 18.2.2

Unit V-Chapter 19 – Section 19.1.1, 19.1.2, 19.2.2 and 19.2.3

### REFERENCES

HillierF.S. and J. Lieberman, "Introduction to Operations Research" (8th Edition), Tata McGraw Hill Publishing Company, New Delhi, 2006.

Beightler. C, D.Phillips, B. Wilde, "Foundations of Optimization" (2nd Edition) Prentice Hall Pvt Ltd., New York, 1979

Bazaraa, M.S; J.J.Jarvis, H.D.Sharall, "Linear Programming and Network flow", John Wiley and sons, New York, 1990.

Gross, D and C.M.Harris, "Fundamentals of Queueing Theory", (3rd Edition), Wiley and Sons, New York, 1998.

Hamdy A. Taha, "Operations Research" (sixth edition), Prentice - Hall of India PrivateLimited, New Delhi.2007

#### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	11	6	15	5	1	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

COUF	RSE N	AME		FUZZY SETS	AND FU	ZZY LOGIC	L	T	P	С
COUI	RSE C	ODE		7	YMA1E1		3	0	0	3
С	P	A					L	T	P	Н
3	0	0					3	0	0	3
PRERE	QUIS	SITE	Basic	concepts of se	ts					
On succ	essful	comple	tion o	f this course, tl	he studen	ts will be able to:				
			COU	RSE OUTCON	MES		DOMA	IN	LE	VEL
CO 1	Cor	npare tl	ne relat	ionship betwee	n Crisp se	ets and Fuzzy sets	Cognit	ive	App	olying
CO 2	Explain operation on Fuzzy Sets Cognitive Under								Under	standing
CO 3	Cor	npare F	uzzy R	telations and cr	isp relatio	ns	Cognit	ive	App	olying
CO 4	Der	nonstra	te the p	propositional ca	lculus		Cognit	ive	Under	standing
CO 5	Exp	olain the	conce	pts of fuzzy log	gic		Cognit	ive	Under	standing
UNIT 1				Crisp	Sets and	<b>Fuzzy Sets</b>				9 hours
Crisp se	ts basi	c definit	ions -	the notion of fu	zzy sets -	basic concepts of	fuzzy set	S		
UNIT 2				Oper	ation on	FuzzySets				9 hours
Fuzzy c	omple	ment - fi	uzzy u	nion - fuzzy into	ersection	- combination and	general a	ggrega	ation op	erations
UNIT 3				F	Tuzzy Rel	ations				9 hours
Crisp ar	nd fuz	zy relati	ons -	binary relation	- equival	ence and similarity	y relation	ıs - to	lerance	relations-
ordering	;S									
UNIT 4					Classical	Logic				9 hours
Tautolo	gies - o	contradi	ctions -	- equivalence -	exclusive	OR and exclusive	NOR - lo	gical _]	proofs	
UNIT 5					Fuzzy L	ogic				9hours
Fuzzy lo	gic - a	approxir	nate re	asoning - fuzzy	tautologi	es - contradictions	- equival	ence a	nd logic	cal proofs
LECT	URE	4	5	TUTORIAL	0	PRACTICAL	0	ТО	TAL	45
TEXT I	BOOK	KS		1	1	1		ı		
George	J. Klir	& Tina	A. Fol	ger, "Fuzzy Set	s, Uncert	ainty, and Informat	tion", Pre	entice	Hall of	India Pvt.
Ltd., Ne	w Del	hi, 1988								
Timothy	J. Ro	ss, "Fuz	zy Log	gic with Engine	ering App	olications", 3rd edit	ion, McC	Graw-F	Hill. Inc	, 2010.
REFER	ENC	ES								

Zimmermann. H.J, "Fuzzy Set Theory and Its Applications", 4th edition, Springer, Netherlands, 2015. Bart Kosko, "Neural Networks and Fuzzy Systems", Prentice-Hall International, 1992.

### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	12	7	15	5	2	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

COU	RSE N	AME	CODING THEORY	L	T	P	C	
COU	RSE C	ODE	YMA1E2	3	0	0	3	
C	P	A		L	T	P	Н	
3	0	0		3	0	0	3	
PRER	<b>EQUIS</b>	ITE	Linear algebra		l			
On su	ccessful	comple	tion of this course, the students will be able to:					
			COURSE OUTCOMES	DOMA	IN	LEV	EL	
CO 1		ize the relatived wo	maximum likelihood decoding rule to decode the rds	Cognit	ive	Appl	ying	
CO 2			generator matrix and parity check matrix for the linear code	Cognit	ive	Appl	ying	
CO 3	Exp	<b>lain</b> var	ious bounds involved in coding theory	Cognit	ive	Unders	tanding	
CO 4			the generator polynomial for all binary of given length	Cognit	ive	Appl	Applying	
CO 5	Exa	mine th	e decoding of narrow-sense binary BCH codes	Cognit	ive	Analyzing		
UNIT	1				I	9	hours	
Error o	letection	n, Corre	ction and decoding: Communication channels – I	Maximun	n likel	ihood de	coding	
Hamm	ing dist	ance – N	Nearest neighborhood minimum distancedecoding	– Distanc	ce of a	code		
UNIT	2					9	hours	
Linear	codes:	Linear	codes - Self orthogonal codes - Self dual co	odes – B	sases f	forlinear	codes	
Genera	itor mat	rix and	parity check matrix - Encoding with a linear co-	de – Dec	oding	of linear	codes	
Syndro	me dec	oding.						
UNIT	3					9	hours	
Bound	s in coc	ling the	ory: The main coding theory problem – lower bo	ounds -Sp	phere o	covering	bound	
Gilbert	Varsha	ımov bo	und – Binary Hamming codes – q-ary Hamming	codes – C	Golay o	codes – S	Singleto	
bound	and MD	OS codes	s – Plotkin bound					
UNIT	4					9	hours	
Cyclic	codes:	Definit	ions – Generator polynomials – Generator ma	trix and	parity	check	matrix	
Decod	ing of C	yclic co	des.					

UNIT 5 9 hours

Special cyclic codes: BCH codes – Parameters of BCH codes – Decoding of BCHcodes – Reed Solomon codes.

LECTURE 45 TUTORIAL 0 PRACTICAL 0 TOTAL 45

### TEXT BOOK

1.San Ling and Chaoping Xing, Coding Theory: A First Course, Cambridge University Press, 2004.

Unit 1: Sections 2.1, 2.2, 2.3, 2.4, 2.5

Unit 2: Sections 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8

Unit 3: Sections 5.1, 5.2, 5.3, 5.4, 5.5,

Unit 4: Sections 7.1, 7.2, 7.3, 7.

Unit 5: Sections 8.1, 8.2

#### REFERENCES

S. Lin &D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Prentice-Hall, Inc., New Jersey, 1983.

Vera Pless, Introduction to the Theory of Error Correcting Codes, Wiley, New York, 1982.

E. R Berlekamp, Algebraic Coding Theory, Mc Graw-Hill, 1968.

H. Hill, A First Course in Coding Theory, OUP,1986

#### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	3	3	1	2	1	1
TOTAL	15	15	14	10	15	5	6	5	5
SCALED VALUE	3	3	3	2	3	1	2	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	RSE N	AME	NEURAL NETWORKS	L	Т	P	С	
COU	RSE C	CODE	YMA1E3	3	0	0	3	
C	P	A		L	Т	P	Н	
3	0	0		3	0	0	3	
PRERI	EQUIS	SITE	Linear algebra	1	•	1		
On suc	cessful	comple	tion of this course, the students will be able to:					
			COURSE OUTCOMES	DOMA	IN	LE	VEL	
CO 1	Sun	nmarize	different neuron network models	Cognit	ive	Under	standing	
CO 2	Exp	olain Per	ceptron Architectures and Learning Rules	Cognit	ive	Under	standing	
CO 3		-	rule for finding the appropriate weight matrix linear associator	Cognit	ive	Арр	olying	
CO 4		nstruct work	back propagation algorithm for the given	Cognit	ive	Арр	olying	
CO 5		·	second order Taylor series expansions for the on about the two minima	Cognit	ive	Арр	olying	
UNIT 1			Neuron Model and Network Architecture	es			9 hours	
		Neuror	Model- Network Architectures- Perceptrones.	-Hammin	ig N	etwork-	Hopfield	
UNIT 2	2		Perceptron Architectures				9 hours	
Percept Linear			es and Learning Rule with Proof of Convergence	. Supervi	sed F	lebbian l	Learning -	
UNIT 3	3		<b>Supervised Hebbian Learning</b>				9 hours	
The He	bb Ru	le-Pseud	o inverse Rule-Variations of Hebbian Learning	-Back Pr	ropag	ation - I	Multilayer	
Percept	ron							
UNIT 4 Back Propagation 9 hor							9 hours	
Back pr		_	orithm-Convergence and Generalization - Perform	ances Su	rface	s and Op	timum	
UNIT 5	5		PerformanceSurfacesandPerformanceOptimi	zations			9 hours	
	Directional Derivatives - Minima-Necessary Conditions for Optimality-Quadratic Functions- Performance Optimizations-Steepest Descent-Newton's Method-Conjugate Gradient.							

LECTURE45TUTORIAL0PRACTICAL	. 0	TOTAL	45
-----------------------------	-----	-------	----

### TEXT BOOK

1.Martin T. Hagan, Howard B. Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi,2002.

### **REFERENCES**

James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003.

Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997.

### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	13	8	15	5	3	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	RSE N	AME		ALO	GEBRA	- II	L	T	P	С
COU	RSE C	ODE		Y	YMA201		4	1	0	5
C	P	A					L	Т	P	Н
5	0	0					4	1	0	5
PRERI	EQUIS	ITE	YMA	A101				1		
On suc	cessful	comple	tion o	f this course, th	ne studer	nts will be able to:				
			COU	RSE OUTCOM	1ES		DOMA	AIN	LE	EVEL
CO 1	Exp	lain the	conce	pts of prime ide	al and M	aximal ideal	Cognit	ive	Unde	rstanding
CO 2	Exp	lain the	conce	pts of splitting f	rields		Cognit	ive	Unde	rstanding
CO 3	Exp	lain the	proof	solvability by ra	adicals		Cognit	ive	Unde	rstanding
CO 4	Exp	lain the	conce	pts of Galois's l	Extension	ns	Cognit	ive	Unde	rstanding
CO 5	Exp	lain th	e proc	of of fundamen	ntal theo	orem of Galois's	Cognit	ive	Under	rstanding
COS	The	ory					Cogiii	ive	Onde	standing
UNIT 1	1									15 hours
Prime i	deals a	nd Maxi	mal Id	eals, Irreducible	polynor	nials.				
UNIT 2	2									15 hours
Classic	al Forn	nulas, Sp	olitting	Fields					<u> </u>	
UNIT 3	3									15 hours
The Ga	lois Gr	oup, Ro	ots of l	Unity, Solvabili	ty by Rad	licals.				
UNIT 4	4									15 hours
Indepen	ndence	of Chara	acters,	Galois Extension	ons					
UNIT !	5									15hours
The Fu	ndamer	ntal theo	rem of	Galois theory,	Applicat	ions, Galois Great	Theorem.		<u> </u>	
LECT	URE	6	0	TUTORIAL	15	PRACTICAL	0	TO	TAL	75
TEXT	воок			ı		,		1		
1.Josep	h Rotm	an, Gal	ois The	eory, 2nd edition	n, Spring	er Verlag, 1990.				
UNIT -	- I Page	es 31 - 4	3							
UNIT -	- II Pag	es 44 -5	8							
UNIT -	- III Pa	ges 59 -	75							
UNIT -	- IV Pa	ges 76-8	32							

UNIT – V Pages 83-95

### REFERENCES

DavidS. DummitandRichardM.Foote,AbstractAlgebra,2ndEdition,Wiley StudentEdition, 2008. SergeLang. Algebra-Revisedthird edition-Springer–Verlag-2002. IanStewart,GaloisTheory,ChapmanandHall,1973

### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	15	5	15	5	0	5	5
SCALED VALUE	3	3	3	1	3	1	0	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COL	JRSE N.	AME	REAL ANALYSIS - II	L	T	P	C
COL	URSE C	ODE	YMA202	4	1	0	5
С	P	A		L	T	P	Н
5	0	0		4	1	0	5
PREREQUISITE Basic concepts of convergence and uniform convergence							

### On successful completion of this course, the students will be able to:

	COURSE OUTCOMES	DOMAIN	LEVEL
CO 1	Explain mean value theorem and functions of bounded variations	Cognitive	Understanding
CO 2	Compare mean value theorems for Riemann Stieltjes Integrals	Cognitive	Applying
CO 3	<b>Explain</b> uniform convergence and integration and differentiation	Cognitive	Understanding
CO 4	Explain directional derivatives and total derivative	Cognitive	Understanding
CO 5	<b>Explain</b> Inverse function theorem and Implicit function theorem	Cognitive	Understanding
UNIT 1			15 hours

Differentiation of single variable: Derivatives – The chain rule – local extrema – Rolle's theorem – Mean Value Theorem – Taylor's formula – Derivatives of vector – valued functions – Functions of Bounded variation and rectifiable curves – Total variation – Functions of bounded variation – Equivalence of paths – Change of parameter.

UNIT 2 15 hours

Riemann – Stieltjesintegral:Definition –linearpropertiesoftheintegral – Necessary conditions for the existence -First fundamental theorem of Integral calculus -Mean Value Theorem for integrals – Second fundamental theorem of Integral calculus-Change of variable in a Riemann integral – Second Mean value Theorem for Riemannintegrals.

UNIT 3 15 hours

Sequenceandseries of functions—Pointwise convergence—Uniform convergence—

Uniformconvergenceandintegration—UniformconvergenceandDifferentiation—

Sufficient conditions for uniform convergence of a series.

UNIT 4 15 hours

Functions of Several variables – Directional derivative – Total derivative – Jacobian – Chain rule – Mean

Value Theorem – Taylor's formula.

UNIT 5 15hours

Inverse function theorem – Implicit function theorem – Extremum problems with side conditions.

LECTURE60TUTORIAL15PRACTICAL0TOTAL75

### **TEXT BOOK**

TomM. Apostol, Mathematical Analysis Second Edition, Narosa Publishing House, New Delhi, 1985.

UNIT-I-Chapter5 and 6

UNIT-II-Chapter7Section 7.1-7.22

UNIT-III- Chapter 9Section 9.1 - 9.11 and 9.14 - 9.18

UNIT-IV-Chapter12

UNIT-V-Chapter 13

### **REFERENCES**

WalterRudin, Principles of Mathematical Analysis, Third Edition, Mc Graw Hill, 1976.

TomApostol, Calculus II, Mc Graw Hill, 1983.

#### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	11	6	15	5	1	5	5
SCALED VALUE	3	3	2	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COL	JRSE N.	AME	PARTIAL DIFFERENTIAL EQUATIONS	L	T	P	C
COI	URSE C	ODE	YMA203	4	T P 1 0 T P 1 0		5
С	P	A		L	T	P	Н
5	0	0		4	1	0	5
PREF	REQUIS	ITE	Knowledge in Undergraduate differential equation	ons			1

### On successful completion of this course, the students will be able to:

	COURSE OUTCOMES	DOMAIN	LEVEL
CO 1	Summarize the first order partial differential equations	Cognitive	Understanding
CO 2	Analyzethe different methods of Partial Differential Equations of the Second Order	Cognitive	Analyzing
CO 3	Applythe method of variable separable for solving Laplace Equation	Cognitive	Applying
CO 4	<b>Apply</b> the partial differential equations for obtaining general solutions of wave equation	Cognitive	Applying
CO 5	<b>Utilize</b> Green's Function for finding solutions of diffusion equation	Cognitive	Applying
UNIT 1	Partial Differential Equations of the First O	rder	15 hours

PartialDifferentialEquations—OriginsofFirstOrderDifferentialEquations—Cauchy'sProblem for first order equations—Linear Equations of the first order—Nonlinear partialdifferential equations of the first order—Cauchy's method of characteristics—CompatiblesystemofFirstorder Equations—Solutions satisfying given Condition—Jacobi's method.

## UNIT 2 Partial Differential Equations of the Second Order 15 hours

The Origin of Second Order Equations – Linear partial Differential Equations with constantcoefficients – Equations with variable coefficients – Separation of variables – The method ofIntegralTransforms–Non – linearequations of thesecond order.

UNIT 3 Laplace's Equation 15 hours

Elementary solutions of Laplace equation – Families of Equipotential Surfaces – Boundary value problems – Separation of variables – Surface Boundary Value Problems – Separation of Variables – Problems with Axial Symmetry – The Theory of Green's Function for Laplace Equation.

### UNIT 4 The Wave Equation 15 hours

The Occurrence of the wave equation in Physics–Elementary Solutions of the One–dimensional Wave equations – Vibrating membrane, Application of the calculus of variations –Three dimensional problem–General solutions of the Wave equation

UNIT 5 The Diffusion Equation 15hours

Elementary Solutions of the Diffusion Equation – Separation of variables – The use of Integral Transforms – The use of Green's functions

LECTURE60TUTORIAL15PRACTICAL0TOTAL75

### **TEXT BOOK**

1.Ian Sneddon, Elements of Partial Differential Equations, McGraw Hill International Book Company, New Delhi, 1983

### **REFERENCES**

- M. D. Raisinghania, Advanced Differential Equations, S. Chand and Company Ltd., New Delhi, 2001.
- K. Sankara Rao, Introduction to Partial Differential Equations, Second edition, Prentice-Hall of India, New Delhi, 2006.
- J. N. Sharma and K. Singh, Partial Differential Equations for Engineers and Scientists, Narosa Publishing House, 2001.

#### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	3	3	3	1	2	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	14	10	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

	SE C	ODE	OURSE NAME CLASSICAL DYNAMICS OURSE CODE YMA204							
C		ODL		Y	MA204	,	4	0	5	
	P	A					L	T	P	Н
5	0	0					4	1	0	5
PREREC	QUIS	ITE	Trig	onometry and St	atics					
On succe	ssful	comple	tion (	of this course, th	e studei	nts will be able to:				
			COU	RSE OUTCOM	IES		DOMA	AIN	LE	VEL
CO 1	Exp	lain the	mech	anical system, er	nergy an	d momentum.	Cognit	ive	Unders	standing
CO 2	Exp	lain Lag	grange	e's equation and	integrals	of motion.	Cognit	ive	Unders	standing
CO 3	CO 3 Explain Rayleigh's dissipation function and impulsive motion Cognitive Under									
CO 4 ExplainHamilton's principle andHamilton's equations Cognitive Under										standing
CO 5 Explain Hamilton's Principal Function, The Hamiltonand Jacobi's Cognitive Under									Unders	standing
UNIT 1										15 hours
Energy ar UNIT 2	nd mo	mentun	n.			neralized Coordina				15 hours
Lagrange	's equ	ation: D	<b>D</b> eriva	tion and example	es - Integ	grals of the Motion	- Small o	scillatio	ons.	
UNIT 3										15 hours
-				grange's Equation ty dependent pot	Ť	vleigh's dissipation	n function	n - imp	oulsive	motion
UNIT 4										15 hours
Hamilton'space.	's equ	ations:	Hami	lton's principle -	Hamilto	on's equations - Ot	her variat	tional pr	rinciple	es - phas
UNIT 5										15hours
Hamilton Separabili		cobi T	heory	: Hamilton's Pr	incipal	Function – The I	Hamilton	- Jaco	bi's e	quation
LECTU		6	0	TUTORIAL	15	PRACTICAL	0	TOT	Γ <b>AL</b>	75
TEXT BO										

Sections 1.1 to 1.5 UNIT – II Chapter 2: Sections 2.1 to 2.4 UNIT – III Chapter 3: Sections 3.1 to 3.4 UNIT – IV Chapter 4: Sections 4.1 to 4.4 UNIT – V Chapter 5: Sections 5.1 to 5.3

### REFERENCES

- 1.H. Goldstein, Classical Mechanics, (2nd Edition), Narosa Publishing House, New Delhi.
- 2. Narayan Chandra Rana&PromodSharad Chandra Joag, Classical Mechanics, Tata McGrawHill, 1991.

### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	10	5	15	5	0	5	5
SCALED VALUE	3	3	2	1	3	1	0	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	URSE N.	AME	COMPUTER PROGRAMMING (C++ Theory and Lab)	L	T	С	
COL	URSE C	ODE	YMA205	3	0	2	5
С	P	A		L	T	P	Н
5	0	0		3	0	2	5

### **PREREQUISITE**

### On successful completion of this course, the students will be able to:

	COURSE OUTCOMES	DOMAIN	LEVEL
CO 1	Explain C programming fundamentals	Cognitive	Understanding
CO 2	Apply structure and union for various functions	Cognitive	Applying
CO 3	Explain advanced concept of pointers and files	Cognitive	Understanding
CO 4	Explainobject oriented technologies	Cognitive	Understanding
CO 5	Explain Algorithms Using Functions and Objects	Cognitive	Understanding
UNIT 1	INTRODUCTION TO C LANGUAGE		15 hours

Overview of C – Constants, Variables and Data Types – Operators and Expressions – Managing Input/Output Operations – Formatted I/O – Decision Making - Branching — if, nested if , switch, goto and Looping- while, do, for statements.

#### Lah

- 1.Program to implement formatted I/O operations
- 2. Program to implement formatted I/O operations
- 3. Program to implement control structures

### UNIT 2 | ARRAYS, FUNCTIONS, STRUCTURES AND UNIONS

15 hours

Arrays – dynamic and multi-dimensional arrays - Character arrays and Strings – String handling Functions - User defined Functions – Categories of Functions – Recursion - Structures and Unions – Array of Structures – Structures and Functions

### Lab:

- 4. Program using 2D arrays
- 5.Program to implement calling the function through call by value method&call by reference
- 6.Program to implement Structures

### UNIT 3 POINTERS AND FILE MANAGEMENT

15 hours

Pointers – Declaration, Accessing a variable, character strings, pointers to functions and structures - File Management in C – Dynamic Memory allocation – Linked Lists – Preprocessors.

#### Lab:

- 7. Program to implement dynamic memory allocation
- 8. Program to implement pointer to function
- 9. Program to implement an array of pointers

### UNIT 4 | INTRODUCTION TO C++

15 hours

Overview of C++-Classes and Objects-Friend Functions-Friend Classes-Inline Function-Static Members-Arrays-Pointers-References-Dynamic Allocation- Function Overloading-Overloading Constructor Functions-Copy Constructors-Default Argument-Operator Overloading-Member Operator Overloading

#### Lab:

- 10. Demonstrate Inline Functions
- 11.Implement Class and Subclass
- 12. Demonstrate Constructors & Destructors.

### UNIT 5 | ADDITIONAL FEATURES

15 hours

Inheritance-Base Class-Access Control-Virtual Functions-Pure Virtual Functions-Templates-Generic Functions-Applying Generic Functions-Generic Classes-Exception Handling-C++ I/O Streams-File I/O-STL-Overview-Container Classes-Lists-Maps-Algorithms Using Functions and Objects-String Class **Lab:** 

- 13. Implement Virtual Function
- 14. Programs to implement the concept of exception handling
- 15. Program to implement file operations.

LECTURE	60	TUTORIAL	15	PRACTICAL	0	TOTAL	75

#### TEXT BOOKS

E.Balagurusamy, Programming in ANSI C, Tata McGraw Hill, 2008

Herbert Schildt, C++ The Complete Reference, Tata McGrawHill Edition, 2014

#### REFERENCES

Deitel and Deitel, C How to Program, Addison Wesley, 2011

K. N. King, C Programming: A Modern Approach, 2nd Edition, W. W. Norton & Company; 2 edition, 2008

Robert Lafore, OOP in Turbo C++, Galgotia Publications, 2001

### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	11	6	15	5	1	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	RSE N	AME	FLUID DYNAMICS	L	T	' P	•	С	
COU	RSE C	ODE	YMA2E1	3	0	0	)	3	
С	P	A		L	T	P	•	Н	
3	0	0		3	0	0	)	3	
PRERI	EQUIS	ITE	Trigonometry	L	1	I			
On suc	cessful	comple	tion of this course, the students will be able to:						
			COURSE OUTCOMES	DOMA	IN	L	EV	EL	
CO 1		all the ba	asic concepts of velocity, density and curvilinear.	Cogniti	ve	Reme	mb	ering	
CO 2	Und	lerstand	the concepts and equations of fluid dynamics	Cogniti	ve	Under	sta	nding	
CO 3	Analyze and understand the concepts of the force cognitive experienced by a twodimensional fixed body in a steady irrotational flow								
CO 4		Analyze the approximate solutions of the Navier – Stokes equation.  Cognitive Applying							
CO 5	1		ppropriate method to solve integral equation of yer, Blasius equation and its series solution	Cogniti	gnitive Applyi			ying	
UNIT 1	1		Bernoulli's Equation and Equations of Mo	tion			9	hours	
Body – condition	Densitons – K I fluid.	y – Pres	- Velocity – Stream Lines and Path Lines – Streasure. Differentiation with respect to the time – Equal and physical – Rate of change of linear moment	quation o	f con	tinuity	– E	Boundary ion of a	
UNIT 2			<b>Equations of Motion (Contd)</b>					hours	
		nomentum Theorem – Conservative forces – Bernoulli's theorem in steady motion for inviscid fluid – circulation – Kelvin's theorem – vortex motion – Helmholtzequation							
UNIT 3 Two-Dimensional Motion							9	hours	
source	– sink	– Vorte	tion – Two Dimensional Functions – Complex ex – doublet – Circle theorem. Flow past a circ force. (Magnus effect)						
UNIT 4	1		<b>Dynamics of Real Fluids</b>				9	hours	
Viscou	s flows	– Navie	r-Stokes equations – Vorticity and circulation in a	viscous	fluid	– Stea	dv 1	flow	

through an arbitrary cylinder under pressure – Steady Couette flow between cylinders in relative motion – Steady flow between parallel planes.

UNIT 5

### The Laminar Boundary Layer in Incompressible Flow

9hours

Boundary Layer concept – Boundary Layer equations – Displacement thickness, Momentum thickness – Kinetic energy thickness – integral equation of boundary layer – flow parallel to semi infinite flat plate –

Blasius equation and its solution in series.

LECTURE	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45
	•						

#### TEXT BOOKS

Units I and II: L. M. Milne Thomson, Theoretical Hydro Dynamics, Macmillan Company, 5th Edition (1968). Chapter I : Sections 1.0 - 1.3, 3.10-3.41 (omit 3.32) Chapter III : Sections 3.42 - 3.53 (omit 3.44)

Units III, IV and V: Modern Fluid Dynamics Volume I, N. Curle and H. J. Davies, D. Van Nostrand Company Limited, London, 1968. Chapter III: Sections 3.1-3.7.5 (omit 3.3.4, 3.4, 3.5.2, 3.6) Chapter V: Sections 5.2.1-5.3.3 Chapter VI: Sections 6.1-6.3.1 (omit 6.2.2, 6.2.5)

#### **REFERENCES**

F. Chorlton, Textbook of Fluid Dynamics, CBS Publishers, New Delhi, 2004.

A. J. Chorin and A. Marsden, A Mathematical Introduction to Fluid Dynamics, SpringerVerlag, New York, 1993.

**E – Resources** (MOOC, SWAYAM, NPTEL, Websites etc)

1 https://nptel.ac.in/courses/112/106/112106200/

#### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	10	5	15	5	0	5	5
SCALED VALUE	3	3	2	1	3	1	0	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	RSE N	AME	COMBINATORICS	L	Т	P	С			
COU	RSE C	ODE	YMA2E2	3	0	0	3			
C	P	A		L	Т	P	Н			
3	0	0		3	0	0	3			
PRER	EQUIS	ITE	Basics of sets		1		.1			
On suc	cessful	comple	tion of this course, the students will be able to:							
			COURSE OUTCOMES	DOMA	IN	LE	VEL			
CO 1	Exp obje		distributions of distinct objects and non-distinct	Cognit	ive	Under	standing			
CO 2		_	se counting strategies to solve varied problems rings, combinations, distributions, and partitions	Cognit	ive	Арр	olying			
CO 3		nogeneity	ear recurrence relations by recognizing v, linearity, constant coefficients, degree, and c equation	Cognit	Cognitive Ap					
CO 4			e number of permutations with forbidden ng rook polynomials	Cognit	ive	App	pplying			
CO 5		<b>oly</b> Polya iven obj	's theorem for finding number of permutations ects	Cognit	ive	Арр	applying			
UNIT	1		Permutations and combinations		•		9 hours			
Distrib	utions c	of distinc	t objects – Distributions of non-distinct objects –	Stirling's	s forn	nula.				
UNIT	2		Generating functions				9 hours			
Genera	ting fur	nction fo	or combinations – Enumerators for permutations	distribut	tions	of distin	ct objects			
into no	n distin	ct cells -	- partitions of integers – Ferrers graphs – Elements	ary relati	ons.					
UNIT	3		Recurrence relation				9hours			
			ions with constant coefficients- solutions by the to nlinear difference equations – Recurrence relation	_		_	functions			
UNIT	4		The principle of inclusion and exclusion	1			9 hours			
Genera	1 form	ula – F	Permutations with restriction on relative position	ions –	Deran	gements	- Rook			
polyno	mials –	permuta	tions with forbidden positions.							
UNIT :	5		Polya's theory of counting				9 hours			

Equivalence classes under a permutation group – Burnside theorem – Equivalence classes of functions – Weights and inventories of functions – Polya's fundamental theorem – Generalization of Polya's theorem

LECTURE	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45

#### **TEXT BOOKS**

Cameron, P.J. (1998) Combinatorics: Topics, Techniques, Algorithms. Cambridge: Cambridge University Press.

Liu, C.L., Eddberg, M. (1968). Solutions to problems in Introduction to Combinatorial Mathematics. New York: McGraw-Hill Book & Co.

### REFERENCES

Liu, C.L. (1968). Introduction of Combinatorial Mathematics. New York: McGraw Hill Book Co.

Stanley, R.P.(1997). Enumerative Combinatorics, Volume I, Cambridge Studies in Advanced Mathematics, Volume 49. Cambridge University Press.

#### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	14	9	15	5	4	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	RSE N	AME	CRYPTOGRAPHY	L	T	P	С	
COU	RSE C	ODE	YMA2E3	3	0	0	3	
C	P	A		L	T	P	Н	
3	0	0		3	0	0	3	
PRERI	EQUIS	ITE	Basic concepts of number theory				I	
On suc	cessful	comple	tion of this course, the students will be able to:					
			COURSE OUTCOMES	DOMA	IN	LE	VEL	
CO 1			concept and properties of modular arithmetic in rithms to find the solution	Cognit	ive	App	lying	
CO 2			ard's rho method for solving the elliptic curve	Cognit	ive	App	lying	
CO 3			ic properties of finite fields for factoring over finite fields	Cognit	App	Applying		
CO 4	<b>Den</b> ciph		te the concepts of stream ciphers and block	Cognit	ive	Unders	Understanding	
CO 5		-	concepts of public key cryptography, RSA and e cryptography	Cognit	ive	App	lying	
UNIT 1	1				I		9 hours	
Introdu	ction -	- Encry	ption and Secrecy - The objective of Crypt	tography	- N	lumber [	Theory	
Introdu	ction –	Modula	r Arithmetic.					
UNIT 2	2					9	9 hours	
Integer problen		zation p	roblem – Pollard's rho factoring – Elliptic curve	e factorin	ng – I	Discrete	logarith	
UNIT 3	3					9	9 hours	
Finite f	ields –	Basic p	roperties – Arithmetic of polynomials –Factoring	polynon	nials o	over finit	e fields	
	free fac	ctorizatio	on.					
Square						1	9 hours	

UNIT 5

9 hours

Public key cryptography – Concepts of public key cryptography – Modular arithmetic – RSA – Discrete logarithm – Elliptic curve cryptography.

**LECTURE** 

45

TUTORIAL

0

**PRACTICAL** 

0

**TOTAL** 

**45** 

### **TEXT BOOKS**

Hans Delfs, Helmut Knebl, Introduction to Cryptography, Springer Verlag, 2002.

Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone, Handbook of Applied Cryptography, CRC Press, 2000.

William Stallings, Cryptography and Network Security, Prentice Hall of India, 2000.

### REFERENCES

Pachghare V.K., Cryptography and Information Security, PHI Learning Pvt. Ltd., New Delhi, 2009 Behrouz A. Forouzan and DebdeepMukhopathyey, Cryptography and Network Security, 2013, second edition, McGraw Hill Education Pvt. Ltd., New Delhi.

#### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	14	9	15	5	4	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COUR	SE N	AME	TOPOLOGY	L	Т	P	С		
COUR	SE C	ODE	YMA301	4	1	0	5		
С	P	A		L	T	P	Н		
5	0	0		4	1	0	5		
PRERE(	QUIS	ITE	Basic concepts of sets	•	•		•		
On succe	essful	comple	tion of this course, the students will be able to:						
			COURSE OUTCOMES	DOMA	AIN	LF	EVEL		
CO 1	<b>Iden</b> not	ntify wh	ether a given family of subsets is a topology or	Cognit	ive	Ap	plying		
CO 2			concepts of continuous function on product l metric topology	Cognit	ive	Ap	plying		
CO 3	_	lain the	e concepts of local connectedness and path	Cognit	rstanding				
CO 4	_	lain the	concepts of limit point compactness and local	Cognitive Understanding					
CO 5	prov	•	Oncept of separation axiom and normal spaces to Urysohnmetrizationtheoremand the Tietz eorem	Cognit	ive	Ap	plying		
UNIT 1			Topological Spaces				15 hours		
Topologic subspace	-		Basis for a topology - The order topology - The p	roduct to	polog	gy on X	x Y - The		
UNIT 2			<b>Continuous Functions</b>				15 hours		
Closed se	ets an	d limit	points-Continuous functions - the product topolo	gy - The	met	ric topo	logy - The		
metric to	polog	y (conti	nued) - Uniform limit theorem.						
UNIT 3			Connectedness				15 hours		
Connecte	d spa	ces - coi	nnected subspaces of the Real line - Components a	and local	conn	ectednes	SS.		
UNIT 4			Compactness				15 hours		
Compact	space	es - com	pact subspaces of the Real line - Limit Point Com	pactness	– Lo	cal Com	pactness.		
UNIT 5			Countability and Separation Axiom				15hours		
The Cour	ntabili	ty Axio	ms - The separation Axioms - Normal spaces - Th	e Urysol	ın Le	mma - T	The The		

LECTURE	60	TUTORIAL	15	PRACTICAL	0	TOTAL	75
---------	----	----------	----	-----------	---	-------	----

### TEXT BOOK

1. James R. Munkres, "Topology", (2nd Edition) PHI Learning Pvt. Ltd., (Third Indian Reprint)

NewDelhi,2014

Unit I - Chapter 2: Sections 12 to 17

Unit II - Chapter 2: Sections 18 to 21 (Omit Section 22)

Unit III - Chapter 3: Sections 23 to 25

Unit IV - Chapter 3: Sections 26 to 29

Unit V - Chapter 4: Sections 30 to 35

### **REFERENCES**

J. Dugundji, "Topology", Prentice Hall of India, New Delhi, 1975.

George F. Simmons, "Introduction to Topology and Modern Analysis", McGraw Hill Book Co., 1963.

J.L. Kelly, "General Topology", Van Nostrand, Reinhold Co., NewYork.1995

L.Steen and J.Subhash, "Counter Examples in Topology", Holt, Rinehart and Winston, New York, 1970.

S. Willard, "General Topology", Addison - Wesley, Mas. 1970.

### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	14	9	15	5	4	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

# 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURSE NAME	INTEGRAL EQUATIONS, CALCULUS OF	L	T	P	С
	VARIATIONS AND TRANSFORMS				

C   P   A	COU	RSE C	ODE	YMA302	4	1	(	)	5			
PREREQUISITE Multivariable calculus and vector calculus  On successful completion of this course, the students will be able to:  COURSE OUTCOMES DOMAIN LEVEL  CO 1 Identify maxima and minima of functionals Cognitive Applying  CO 2 DUTILIZE Fourier transform for solving boundary value problems  CO 3 Solve Bessel function integrals over a finite interval Cognitive Applying  CO 4 Identify eigenvalues and eigenfunction of the homogeneous integral equations with degenerate kernels  CO 5 SolveVolterra integral equation and Fredholm integral equations by using method of successive approximations  UNIT 1	С	P	A		L	T	J	•	Н			
On successful completion of this course, the students will be able to:  COURSE OUTCOMES  CO 1 Identify maxima and minima of functionals  CO 2 Utilize Fourier transform for solving boundary value problems  CO 3 Solve Bessel function integrals over a finite interval  CO 4 Identify eigenvalues and eigenfunction of the homogeneous integral equations with degenerate kernels  CO 5 SolveVolterra integral equation and Fredholm integral equations by using method of successive approximations  UNIT 1 Is hours  Calculus of variations — Maxima and Minima — the simplest case — Natural boundary and transition conditions — variational notation — more general case — constraints and Lagrange's multipliers — variable end points — Sturm-Liouville problems  UNIT 2 Ishours  Fourier transform - Fourier sine and cosine transforms - Properties Convolution -Solving integrate equations - Finite Fourier transform - Finite Fourier sine and cosine transforms - Fourier integrate theorem - Parseval's identity  UNIT 3 Ishours  Hankel Transform : Definition — Inverse formula — Some important results for Bessel function — Linearity property — Hankel Transform of the derivatives of the function —Hankel Transform of differential operators — Parseval's Theorem  UNIT 4 Ishours  Linear Integral Equations - Definition, Regularity conditions — special kind of kernels —eigen values and	5	0	0		4	1	(	)	5			
COURSE OUTCOMES  CO 1 Identify maxima and minima of functionals  CO 2 Utilize Fourier transform for solving boundary value problems  CO 3 Solve Bessel function integrals over a finite interval  CO 4 Identify eigenvalues and eigenfunction of the homogeneous integral equations with degenerate kernels  CO 5 SolveVolterra integral equation and Fredholm integral equations by using method of successive approximations  CO 6 Variations – Maxima and Minima – the simplest case – Natural boundary and transition conditions - variational notation – more general case – constraints and Lagrange's multipliers – variable end points – Sturm-Liouville problems  UNIT 2 Ishours  Fourier transform – Fourier sine and cosine transforms – Properties Convolution –Solving integrate equations – Finite Fourier sine and cosine transforms – Fourier integrate theorem – Parseval's identity  UNIT 3 Ishours  Hankel Transform: Definition – Inverse formula – Some important results for Bessel function – Linearity property – Hankel Transform of the derivatives of the function –Hankel Transform of differential operators – Parseval's Theorem  UNIT 4 Ishours  Linear Integral Equations - Definition, Regularity conditions – special kind of kernels –eigen values and	PRER	EQUIS	ITE	Multivariable calculus and vector calculus	<b>.</b>		<b>-</b>					
CO 1   Identify maxima and minima of functionals   Cognitive   Applying	On suc	cessful	comple	tion of this course, the students will be able to:								
CO 2   Utilize Fourier transform for solving boundary value problems   Cognitive   Applying   CO 3   Solve Bessel function integrals over a finite interval   Cognitive   Applying   CO 4   Identify eigenvalues and eigenfunction of the homogeneous integral equations with degenerate kernels   CO 5   SolveVolterra integral equation and Fredholm integral equations by using method of successive approximations   CO 5   UNIT 1   Is hours   Calculus of variations — Maxima and Minima — the simplest case — Natural boundary and transition conditions — variational notation — more general case — constraints and Lagrange's multipliers — variable end points — Sturm-Liouville problems   UNIT 2   Ishours   Fourier transform — Fourier sine and cosine transforms — Properties Convolution — Solving integra equations — Finite Fourier transform — Finite Fourier sine and cosine transforms — Fourier integra theorem — Parseval's identity   UNIT 3   Ishours   Hankel Transform : Definition — Inverse formula — Some important results for Bessel function — Linearity property — Hankel Transform of the derivatives of the function —Hankel Transform of differential operators — Parseval's Theorem   UNIT 4   Ishours   Linear Integral Equations — Definition, Regularity conditions — special kind of kernels — eigen values and				COURSE OUTCOMES	DOMA	IN	I	LEV	/EL			
CO 2 problems  CO 3 Solve Bessel function integrals over a finite interval  CO 4 Identify eigenvalues and eigenfunction of the homogeneous integral equations with degenerate kernels  CO 5 SolveVolterra integral equation and Fredholm integral equations by using method of successive approximations  Cognitive Applying  CO 5 SolveVolterra integral equation and Fredholm integral equations by using method of successive approximations  Calculus of variations — Maxima and Minima — the simplest case — Natural boundary and transition conditions - variational notation — more general case — constraints and Lagrange's multipliers — variable end points — Sturm-Liouville problems  UNIT 2 Ishours  Fourier transform - Fourier sine and cosine transforms - Properties Convolution -Solving integra equations - Finite Fourier transform - Finite Fourier sine and cosine transforms - Fourier integra theorem - Parseval's identity  UNIT 3 Ishours  Hankel Transform : Definition — Inverse formula — Some important results for Bessel function — Linearity property — Hankel Transform of the derivatives of the function —Hankel Transform of differential operators — Parseval's Theorem  UNIT 4 Ishours  Linear Integral Equations - Definition, Regularity conditions — special kind of kernels —eigen values and	CO 1	Ider	ntify ma	xima and minima of functionals	Cognit	ive	A	ppl	ying			
CO 4 Identify eigenvalues and eigenfunction of the homogeneous integral equations with degenerate kernels  CO 5 SolveVolterra integral equation and Fredholm integral equations by using method of successive approximations  Cognitive Applying  UNIT 1 Calculus of variations — Maxima and Minima — the simplest case — Natural boundary and transition conditions — variational notation — more general case — constraints and Lagrange's multipliers — variable end points — Sturm-Liouville problems  UNIT 2 Ishours  Fourier transform — Fourier sine and cosine transforms — Properties Convolution — Solving integrate equations — Finite Fourier transform — Finite Fourier sine and cosine transforms — Fourier integrate theorem — Parseval's identity  UNIT 3 Ishours  Hankel Transform : Definition — Inverse formula — Some important results for Bessel function — Linearity property — Hankel Transform of the derivatives of the function — Hankel Transform of differential operators — Parseval's Theorem  UNIT 4 Ishours  Linear Integral Equations — Definition, Regularity conditions — special kind of kernels — eigen values and	CO 2			rier transform for solving boundary value	Cognit	ive	A	ying				
CO 4 integral equations with degenerate kernels  CO 5 SolveVolterra integral equation and Fredholm integral equations by using method of successive approximations  Cognitive Applying  Cognitive Applying  Cognitive Applying  UNIT 1	CO 3	Solv	e Besse	l function integrals over a finite interval	Cognit	ive	ying					
UNIT 1  Calculus of variations – Maxima and Minima – the simplest case – Natural boundary and transition conditions - variational notation – more general case – constraints and Lagrange's multipliers – variable end points – Sturm-Liouville problems  UNIT 2  Ishours  Fourier transform - Fourier sine and cosine transforms - Properties Convolution -Solving integratequations - Finite Fourier transform - Finite Fourier sine and cosine transforms - Fourier integrated theorem - Parseval's identity  UNIT 3  Hankel Transform: Definition – Inverse formula – Some important results for Bessel function – Linearity property – Hankel Transform of the derivatives of the function –Hankel Transform of differential operators – Parseval's Theorem  UNIT 4  Ishours  Linear Integral Equations - Definition, Regularity conditions – special kind of kernels – eigen values and	CO 4		• •	ç	Cognit	ognitive Applyin						
Calculus of variations – Maxima and Minima – the simplest case – Natural boundary and transition conditions - variational notation – more general case – constraints and Lagrange's multipliers – variable end points – Sturm-Liouville problems    UNIT 2	CO 5	Solv	eVolter	ra integral equation and Fredholm integral	Cognit	lognitivo Annlying						
Calculus of variations – Maxima and Minima – the simplest case – Natural boundary and transition conditions - variational notation – more general case – constraints and Lagrange's multipliers – variable end points – Sturm-Liouville problems  UNIT 2	003	equa	itions by	using method of successive approximations	Cognitive Applying							
conditions - variational notation – more general case – constraints and Lagrange's multipliers – variable end points – Sturm-Liouville problems  UNIT 2  Fourier transform - Fourier sine and cosine transforms - Properties Convolution -Solving integra equations - Finite Fourier transform - Finite Fourier sine and cosine transforms - Fourier integra theorem - Parseval's identity  UNIT 3  Hankel Transform: Definition – Inverse formula – Some important results for Bessel function – Linearity property – Hankel Transform of the derivatives of the function –Hankel Transform of differential operators – Parseval's Theorem  UNIT 4  Linear Integral Equations - Definition, Regularity conditions – special kind of kernels –eigen values and	UNIT	1						1	5 hours			
end points – Sturm-Liouville problems  UNIT 2  Fourier transform - Fourier sine and cosine transforms - Properties Convolution -Solving integra equations - Finite Fourier transform - Finite Fourier sine and cosine transforms - Fourier integra theorem - Parseval's identity  UNIT 3  15 hours  Hankel Transform : Definition – Inverse formula – Some important results for Bessel function – Linearity property – Hankel Transform of the derivatives of the function –Hankel Transform of differential operators – Parseval's Theorem  UNIT 4  15hours  Linear Integral Equations - Definition, Regularity conditions – special kind of kernels –eigen values and	Calculu	is of va	riations	- Maxima and Minima - the simplest case - I	Natural ł	ounc	lary aı	nd t	ransition			
UNIT 2  Fourier transform - Fourier sine and cosine transforms - Properties Convolution -Solving integral equations - Finite Fourier transform - Finite Fourier sine and cosine transforms - Fourier integral theorem - Parseval's identity  UNIT 3  Hankel Transform: Definition - Inverse formula - Some important results for Bessel function - Linearity property - Hankel Transform of the derivatives of the function -Hankel Transform of differential operators - Parseval's Theorem  UNIT 4  15hours  Linear Integral Equations - Definition, Regularity conditions - special kind of kernels -eigen values and	condition	ons - va	riationa	l notation – more general case – constraints and L	Lagrange	's mu	ıltiplie	rs –	variable			
Fourier transform - Fourier sine and cosine transforms - Properties Convolution -Solving integral equations - Finite Fourier transform - Finite Fourier sine and cosine transforms - Fourier integral theorem - Parseval's identity  UNIT 3  15 hours  Hankel Transform: Definition - Inverse formula - Some important results for Bessel function - Linearity property - Hankel Transform of the derivatives of the function -Hankel Transform of differential operators - Parseval's Theorem  UNIT 4  15hours  Linear Integral Equations - Definition, Regularity conditions - special kind of kernels -eigen values and	end poi	ints – St	urm-Lio	puville problems								
equations - Finite Fourier transform - Finite Fourier sine and cosine transforms - Fourier integral theorem - Parseval's identity  UNIT 3  Hankel Transform: Definition - Inverse formula - Some important results for Bessel function - Linearity property - Hankel Transform of the derivatives of the function - Hankel Transform of differential operators - Parseval's Theorem  UNIT 4  Linear Integral Equations - Definition, Regularity conditions - special kind of kernels - eigen values and	UNIT 2	2						1	5hours			
theorem - Parseval's identity  UNIT 3  Hankel Transform : Definition — Inverse formula — Some important results for Bessel function —  Linearity property — Hankel Transform of the derivatives of the function —Hankel Transform of differential operators — Parseval's Theorem  UNIT 4  15hours  Linear Integral Equations - Definition, Regularity conditions — special kind of kernels —eigen values and	Fourier	transfo	orm - I	Fourier sine and cosine transforms - Properties	Convol	ution	-Solv	ing	integral			
UNIT 3  Hankel Transform: Definition – Inverse formula – Some important results for Bessel function –  Linearity property – Hankel Transform of the derivatives of the function –Hankel Transform of differential operators – Parseval's Theorem  UNIT 4  Linear Integral Equations - Definition, Regularity conditions – special kind of kernels –eigen values and	equatio	ns - Fi	nite Fo	urier transform - Finite Fourier sine and cosin	e transfo	orms	- Fou	rier	integral			
Hankel Transform: Definition – Inverse formula – Some important results for Bessel function – Linearity property – Hankel Transform of the derivatives of the function –Hankel Transform of differential operators – Parseval's Theorem  UNIT 4  Linear Integral Equations - Definition, Regularity conditions – special kind of kernels –eigen values and	theoren	n - Pars	eval's id	entity								
Linearity property – Hankel Transform of the derivatives of the function –Hankel Transform of differential operators – Parseval's Theorem  UNIT 4  Linear Integral Equations - Definition, Regularity conditions – special kind of kernels –eigen values and	UNIT:	3						1	5 hours			
differential operators – Parseval's Theorem  UNIT 4  Linear Integral Equations - Definition, Regularity conditions – special kind of kernels –eigen values and	Hankel	Transf	orm :	Definition – Inverse formula – Some importan	t results	for	Bessel	fu	nction –			
UNIT 4 15hours  Linear Integral Equations - Definition, Regularity conditions - special kind of kernels -eigen values and	Lineari	ty prop	erty –	Hankel Transform of the derivatives of the fi	unction	–Han	kel T	rans	sform of			
Linear Integral Equations - Definition, Regularity conditions – special kind of kernels –eigen values and	differer	ntial ope	erators –	Parseval's Theorem								
	UNIT 4	4						1	5hours			
aigan functions convolution Integral the inner and scalar product of two functions. Materian	Linear	Integral	Equation	ons - Definition, Regularity conditions – special k	ind of ke	ernels	-eige	n va	lues and			
eigen functions – convolution Integral – the inner and scalar product of two functions – Notation –	eigen f	unction	s – con	volution Integral - the inner and scalar product	of two	funct	ions –	- No	otation –			
reduction to a system of Algebraic equations – examples– Fredholm alternative - examples – ar	reduction	on to a	systen	n of Algebraic equations – examples– Fredholm	m altern	ative	- exa	mp	les – an			

approximate method.

UNIT 5 15hours

Method of successive approximations: Iterative scheme – examples – Volterra Integral equation – examples – some results about the resolvent kernel. Classical Fredholm Theory: the method of solution of Fredholm – Fredholm's first theorem – second theorem – third theorem

LECTURE60TUTORIAL15PRACTICAL0TOTAL75

#### **TEXT BOOKS**

Ram.P.Kanwal – Linear Integral Equations Theory and Practice, Academic Press 1971.

F.B. Hildebrand, Methods of Applied Mathematics II ed. PHI, ND 1972.

A.R. Vasishtha, R.K. Gupta, Integral Transforms, Krishna Prakashan Media Pvt Ltd, India, 2002.

UNIT – I Chapter 2: Sections 2.1 to 2.9 of [2]

UNIT – II Chapter 7 of [3]

UNIT – III Chapter 9 of [3];

UNIT – IV -Chapters 1 and 2 of [1]

UNIT – V Chapters 3 and 4 of [1]

### REFERENCES

S.J. Mikhlin, Linear Integral Equations (translated from Russian), Hindustan Book Agency, 1960.

I.N. Snedden, Mixed Boundary Value Problems in Potential Theory, North Holland, 1966.

#### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	10	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	RSE N	AME		FUNCTIO	NAL AN	IALYSIS	L	T	P	C
COU	RSE C	ODE		<b>'</b>	YMA303		4	1	0	5
С	P	A					L	T	P	Н
5	0	0					4	1	0	5
PRER	EQUIS	ITE	Basic	concepts of alg	gebra		<b>.</b>		•	
On suc	cessful	comple	tion o	f this course, th	ne studen	ts will be able to:				
			COU	RSE OUTCOM	1ES		DOMA	IN	LI	EVEL
CO 1	Exp	<b>lain</b> No	rmed S	Spaces and Hahi	n – Banac	h Theorems	Cogniti	ve	Unders	tanding
CO 2	Exp	olain Clo	sed G	raph and Open l	Mapping	Theorems	Cogniti	ve	Unders	tanding
СОЗ	1 -	olain Bounded Op			orem –	Spectrum of a	Cogniti	ve	Unders	tanding
CO 4		olain In	ner Pr	roduct Spaces	and Ries	z Representation	Cogniti	ve	Unders	tanding
CO 5	Exp	lain Bo	unded	Operators and S	Self-adjoi	nt Operators	Cogniti	ve	Unders	tanding
UNIT	1									15 hours
Norme	d Space	es – Con	tinued	of Linear Maps	– Hahn –	- Banach Theorem	S			
UNIT	2									15 hours
Banach	Spaces	s – Unifo	orm Bo	oundedness Prin	ciple – C	losed Graph and C	pen Map	ping	Theorer	ns
UNIT	3									15 hours
Bounde	ed Inve	rse Theo	rem –	Spectrum of a I	Bounded (	Operator				
UNIT	4									15 hours
Inner P	roduct	Spaces -	- Ortho	onormal Sets – l	Projection	and Riesz Repres	entation [	Γheor	rems	
UNIT	5									15hours
Bounde	ed Oper	ators an	d adjoi	int, Normal , Ur	nitary and	Self-adjoint Oper	ators			
LECT	TURE	6	0	TUTORIAL	15	PRACTICAL	0	T	OTAL	75
TEXT	BOOK						•	•	-	
1.Balm	ohan V	V Lima	ye, "F	unctional Ana	lysis", 31	d Edition, New	Age Int	ernati	ional (F	) Limited
Publish	ers, Ne	w Delhi	, 2017							
REFE	RENCI	ES								
G.F.Si	nmons,	"Introdu	iction	to Topology	and Mod	ern Analysis",Mo	Graw H	ill I1	nternatio	onal Book

Company, New York, 1963.

- W. Rudin, "Functional Analysis", Tata McGraw-Hill Publishing Company, New Delhi, 1973.
- E. Kreyszig, "Introductory Functional Analysis with Applications", John Wiley & Sons, New York, 1978.
- H. C. Goffman and G.Fedrick, "First Course in Functional Analysis", Prentice Hall of India, New Delhi, 1987

### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	10	5	15	5	0	5	5
SCALED VALUE	3	3	2	1	3	1	0	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COUR	SE NA	ME	DIFFERENTIAL GEOMETRY	L	T	1	P	C			
COUR	SE CC	DDE	YMA304	4	1		0	5			
C	P	A		L	T	'	P	Н			
5	0	0		4	1		0	5			
PRERE(	QUISI'	TE	Multivariable Calculus and Vector Calculus			•					
On succe	essful o	comple	tion of this course, the students will be able to:								
			COURSE OUTCOMES	DOMA	IN		LE	VEL			
CO 1	Ident	<b>tify</b> inv	olutes and evolutes of a given curve	Cogniti	ve	Ap	plying	5			
CO 2	Expl	<b>ain</b> the	concept of Helicoids and Families of curves	Cogniti	ve	Un	dersta	anding			
CO 3		-	desic curvature, Gaussian curvature and Surfaces of ture of a given curve	Cogniti	ve	Ap	plyin	o o			
CO 4	Expla	<b>ain</b> nor	intrinsic properties of a surface	Cogniti	ve	Un	dersta	nding			
CO 5	Expla	ain con	npact surface and complete surface	Cogniti	ve	Un	dersta	nding			
UNIT 1			SPACE CURVES				1	15 hours			
Fundame UNIT 2 Definition	ntal Ex	xistence urface - Familie	Theorem for space curves – Helics.  INTRINSIC PROPERTIES OF A SURFA  Curves on a surface - Surfaces of revolution – s of curves - Isometric correspondence - Intrinations.	CE Helicoid	ıls –	Met	ric -	15 hours Direction			
UNIT 3			GEODESICS				]	15 hours			
Bonnet the mapping.	neorem	•	eodesic - Existence theorems - Geodesic parallelessian curvature - Surfaces of constant curvature -	Conforn			ing -	Geodesic			
UNIT 4			NON INTRINSIC PROPERTIES OF A SUR					15hours			
associated	Second fundamental form - Principal curvatures- Lines of curvature - Developables - Developables associated with space curves - Developables associated with curves on surfaces- Minimal surfaces and ruled surfaces - Fundamental equations of Surface theory - Parallel surfaces.										
UNIT 5			DIFFERENTIAL GEOMETRY OF SURFA	CES			]	15 hours			
Compact surfaces whose points are umbilics- Hilbert's lemma- Compact surfaces of constant Gaussian											

or mean curvature- Complete surfaces- Characterization of complete surfaces- Hilbert's theorem-Conjugate points on geodesics.

_	<u> </u>							
	LECTURE	60	TUTORIAL	15	PRACTICAL	0	TOTAL	75

# TEXT BOOK

1.T. J. Wilmore, "An introduction to Differential Geometry", Oxford University Press, 1997.

### **REFERENCES**

Do Carmo, "Geometry of curves and surfaces", Academic Press, 2017.

D.Somasundaram, "Differential Geometry", Narosa Publ. House, Chennai, 2005.

J.A. Thorpe, "Elementary Topics in Differential Geometry", Springer - Verlag, New York, 1979.

### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	12	7	15	5	2	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

	URSE N	IAME	COM	PLEX ANALYSIS	L	T	P	С		
COI	URSE (	CODE		YMA305	4	1	0	5		
C	P	A			L	T	P	Н		
5	0	0			4	1	0	5		
PREF	REQUI	SITE	Basic concepts of	real numbers						
On su	ıccessfu	l comple	tion of this course	, the students will be able to:						
			COURSE OUTC	OMES	DOMA	IN	LEV	VEL		
CO 1	Ex	plain Ca	ichy's Theorem for	r rectangle and disc	Cognit	ive	Unders	tanding		
CO 2 Apply Cauchy's integral formula and Taylor's theorem for finding the higher order derivatives App										
CO 3		<b>plain</b> Lo	cally Exact Differen	entials – Multiply Connected	Cognit	ive	App	lying		
CO 4	Eva	aluate th	e given definite inte	egrals using Cauchy' theorem	Cognit	ive	Anal	yzing		
CO 5			Taylor Series and to les for the given properties	he Laurent Series for finding oblem	Cognit	ive	App	lying		
UNIT		-	<u> </u>				1	15 hours		
Line I	Integrals	s- Rectif	able arc – Line in	tegrals as functions of arc- Ca	auchy's	Theore	em for r	ectangle		
Cauch	ny's The	orem for	disc							
Cauch UNIT		orem for	disc				1	15 hours		
UNIT	7.2			a – Higher derivatives – Rem	novable s	singula				
UNIT	ndex of	a point	- Integral Formul	a — Higher derivatives — Rem Iapping — The Maximum Princi		singula				
UNIT	ndex of	a point	- Integral Formul			singula	arities –	Taylor'		
UNIT The Intheore UNIT	ndex of em – Zer	a point	- Integral Formulation		iple		arities –	Taylor'		
UNIT The Intheore UNIT Chain	ndex of em – Zen	a point ros and P	- Integral Formulation - The Local Management	Iapping – The Maximum Princi	atement	of Cau	arities –	Taylor'		
UNIT The Intheore UNIT Chain	ndex of em – Zen	a point ros and P	- Integral Formulation - The Local Management	Iapping – The Maximum Princi	atement	of Cau	arities –	Taylor'  15 hours  heorem		
UNIT The Intheore UNIT Chain Proof UNIT	ndex of em – Zer as and C of Cauc	a point ros and P ycles – S hy's The	- Integral Formulation - The Local Management - The Local Management - Connectivity orem - Locally Expenses	Iapping – The Maximum Princi	iple ratement nnected l	of Cau Region	arities –  1  1  1  1  1  1  1  1  1  1  1  1  1	Taylor'  15 hours  15 hours		
UNIT The Intheore UNIT Chain Proof UNIT	ndex of em – Zer as and C of Cauce C 4	a point ros and P ycles – S hy's The	- Integral Formulation - The Local Management - The Local Management - Locally Example - The Argument Property - The Argument Property - Integral - Integr	Iapping – The Maximum Principle  – Homology – The General Stact Differentials – Multiply Con	ratement nnected l	of Cau Region	arities –  1  1  1  1  1  1  1  1  1  1  1  1  1	Taylor'  15 hours  15 hours		
UNIT The Intheore UNIT Chain Proof UNIT	ndex of em – Zer as and C of Cauce C 4 rty – Po	a point ros and P ycles – S hy's The	- Integral Formulation - The Local Management - The Local Management - Locally Example - The Argument Property - The Argument Property - Integral - Integr	Iapping – The Maximum Principle – Homology – The General State Differentials – Multiply Control of Definit	ratement nnected l	of Cau Region	arities –  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Taylor'  15 hours  15 hours  - value		
UNIT The Intheore UNIT Chain Proof UNIT The R proper	ndex of em – Zer s and C of Cauce C 4 esidue C rty – Po	ros and P ycles – S hy's The Γheorem isson's fo	- Integral Formulation - The Local Management - Locally Experiment - Locally Experiment - The Argument Programula - Schwarz's	Iapping – The Maximum Principle – Homology – The General State Differentials – Multiply Control of Definit	atement nnected le Integra	of Cau Regior ls – Ti	arities –  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Taylor'  15 hours  15 hours  - value		
UNIT The Intheore UNIT Chain Proof UNIT The R proper UNIT	ndex of em – Zer as and C of Cauce arty – Po	ros and P ycles – S hy's The Γheorem isson's fo	- Integral Formulation - The Local Management - Locally Experiment - Locally Experiment - The Argument Programula - Schwarz's	Iapping – The Maximum Principle – Homology – The General Struct Differentials – Multiply Contribution of Definit Theorem – The Reflection Principle	atement nnected le Integra	of Cau Regior ls – Ti	arities –  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Taylor'  15 hours  15 hours  - value		
UNIT The Intheore UNIT Chain Proof UNIT The R proper UNIT Weier Hadar	ndex of em – Zer as and C of Cauce T4 rty – Po	Theorem	- Integral Formulation of the Local Management of the Local Management Programment Program	Iapping – The Maximum Principle – Homology – The General Struct Differentials – Multiply Contribution of Definit Theorem – The Reflection Principle – Evaluation of Definit Theorem – The Reflection Principle – The Laurent Series – Particular values – The Laurent Series – Particular values – The Laurent Series – Particular values – Particular values – The Laurent Series – Particular values – The Laurent Series – Particular values – Particular values – The Laurent Series – Particular values – Particular	atement nnected le Integra	of Cau Region ls – Ti	arities –  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	heorem -  15 hours  - value		

# TEXT BOOK

1.LarsV.Ahlfors, "Complex Analysis", 3rd Edition McGraw Hill Education (India) Private Ltd.2013. Chapter 4 - Section 1.1 to 1.5, Section 2.1 to 2.3, Section 3.1 to 3.4, Section 4.1 to 4.7, Section 5.1 to 5.3, Section 6.1 to 6.5. Chapter 5 - Section 1.1 to 1.3, Section 2.1, Section 3.1 & 3.2.

### REFERENCE

1.S. Ponnusamy, "Complex Analysis", Alpha Science International Ltd; 2nd Revised edition, 2005

### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	3	3	1	2	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	14	10	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	RSE N	AME	ELEM	ENTS OF S	STOCH	ASTIC PROCESS	L	T	P	C	
COU	RSE C	ODE		7	MA3E1	[	3	0	0	3	
C	P	A					L	T	P	Н	
3	0	0					3	0	0	3	
PRERI	EQUIS	ITE	Probabil	ity and Stati	stics			ı	l		
On suc	cessful	comple	etion of th	is course, th	ne stude	nts will be able to:					
			COURSI	E OUTCOM	1ES		DOMA	AIN	LI	EVEL	
CO 1	Utili TPM		ntinuous t	ime Markov	w model	for constructing	Cognit	ive	Ap	plying	
CO 2		<b>lain</b> re	enewal pr	ocess and	long ter	rm analysis with	Cognit	ive	Unde	rstanding	
CO 3	App	ly diffe	rent metho	ods and solve	e Birth a	nd Death queues	Cognit	ive	Ap	plying	
CO 4			he compu k of Queu	nd G/M/1 Queues	Cognit	Ana	alyzing				
CO 5	Con		he idea o	f Brownian	Motion	and First Passage	Cognit	ive	Evaluating		
UNIT 1	-			Continuou	s-Time	Markov Models				9hours	
Continu	ous Ti	me Marl	kov Chain	, Examples,	Transier	nt Analysis, Occupa	ncy Tim	es, Lir	niting I	Behavior	
UNIT 2	2			General	lized Ma	arkov Models				9 hours	
Renewa	l Proce	ess, Cum	nulative Pr	cocess, Semi	-Markov	Process, Examples	and Lor	ng-terr	n Analy	/sis.	
UNIT 3	3			Q	ueueing	Models				9 hours	
Queueii	ng Syst	ems, Sir	ngle-Statio	on Queues, E	Birth and	Death queues with	Finite ar	nd Infi	nite Ca	pacity.	
UNIT 4	<b>.</b>			Queue	eing Moo	dels (Contd)				9 hours	
M/G/1 a	and G/N	M/1 Que	eues and N	letwork of Q	ueues.						
UNIT 5	;			Bı	rownian	Motion				9 hours	
Standar	d Brow	nian Mo	otion, Bro	wnian Motic	on and Fi	irst Passage Times.			l		
LECT	URE	4	5 T	UTORIAL	0	PRACTICAL	0	TO	)TAL	45	
TEXT	воок	-	L		1			ı			
1.V. G. Springe			oduction to	Modeling a	and Anal	ysis of Stochastic S	ystems,	Secon	d Editio	on,	

_

# REFERENCES

- J. Medhi, Stochastic Processes, New Age, 2009.
- S. M. Ross, Stochastic Processes, Wiley Series in Probability and Statistics, 1996

# **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	3	3	1	2	1	1
CO 5	3	3	3	3	3	1	3	1	1
TOTAL	15	15	14	11	15	5	7	5	5
SCALED VALUE	3	3	3	3	3	1	2	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

_

COU	RSE N.	AME	MATHEMATICAL MODELING									
COU	RSE C	ODE	YMA3E2	3	0	0	3					
C	P	A		L	T	P	Н					
3	0	0		3	0	0	3					
PRER	EQUIS	ITE	YMA103			<u> </u>	· ·					
On suc	cessful	comple	tion of this course, the students will be able to:									
			COURSE OUTCOMES	DOMA	IN	Ll	EVEL					
CO 1		-	nodels that can be constructed by ordinary equations of first order under study	Cognit	ive	Ap	plying					
CO 2			partment models to solve the problems involved s and medicine	Cognit	ive	Ap	plying					
CO 3		•	thematical models that can be developed by linear differential equations	Cognit	ive	An	alyzing					
CO 4		-	ar difference equation to solve problems in economics	Cognit	ive	Ap	plying					
CO 5		-	solutions of the given problems that can be bugh graphs	Cognit	ive	Ap	plying					
UNIT	1	Mather	natical Modeling through Ordinary Differential Equation	ns of Firs	t orde	er	9 hours					
Linear	Growth	and De	ecay Models – Non-Linear Growth and Decay M	Iodels –	Comp	partment	Models -					
Dynam	ics prol	olems –	Geometrical problems									
UNIT	2 Mat	hematica	Modeling through Systems of OrdinaryDifferential Eq	uations of	f First	Order	9hours					
Popula	tion Dy	namics -	- Epidemics - Compartment Models - Economics	-Medic	ine, A	Arms Ra	ice, Battles					
and Int	ernatior	nal Trad	e – Dynamics									
UNIT	3	Mathem	atical Modeling through Ordinary Differential Equation	sof Secon	d Ord	ler	9 hours					
Planeta	ry Mot	ions – C	ircular Motion and Motion of Satellites – Mathen	natical M	Iodel	ing thro	ugh Linear					
Differe	ntial Ec	quations	of Second Order –Miscellaneous Mathematical M	odels								
UNIT	4		Mathematical Modeling through Difference Equati	ons			9 hours					
			Theory of Linear Difference Equations with Con on Dynamics and Genetics –Probability Theory	stantCoe	efficie	ents – E	conomics					

_

UNIT 5	Mathematical Modeling through Graphs	9 hours
--------	--------------------------------------	---------

Solutions that can be Modeled through Graphs – Mathematical Modeling inTerms of Directed Graphs,

Signed Graphs, Weighted Digraphs and UnorientedGraphs

LECTURE 45 TUTORIAL 0 PRACTICAL 0 TOTAL 45

# TEXT BOOK

1.J.N. Kapur, Mathematical Modeling, Wiley Eastern Limited, New Delhi, 1988

### REFERENCE

1.J. N. Kapur, Mathematical Models in Biology and Medicine, Affiliated East –West Press Pvt Limited, New Delhi, 19

### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	3	3	1	2	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	11	15	5	6	5	5
SCALED VALUE	3	3	3	3	3	1	2	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURSE NAME			DATA ANALYSIS USING SPSS	L	T	P	C		
COURSE CODE			YMA3E3	3	0	0	3		
C	P	A		L	T	P	Н		
3	0	0		3	0	0	3		
PRER	EQUIS	SITE	Probability and Statistics	ı	l		1		
On su	ccessfu	l compl	etion of this course, the students will be able t	to:					
		(	COURSE OUTCOMES	DOMA	IN	LE	VEL		
CO 1	Exp	<b>plain</b> ba	sic concepts of SPSS, working with the Data	Cogniti	VA	Under	etanding		
COI	Edi	tor and	Plotting of Charts using Bar and Pie diagram	Cogiliti	VE	Understanding			
CO 2	Ex	<b>plain</b> m	easures of central tendencies and measures of	Understan	dina	Understanding			
CO 2	disp	persion	using SPSS	Understan	ding				
	Uti	lize co							
CO 3	sign	nificance	e level for the given data using one sample t-	Cognitive		Applying			
	test, independent sample t-test and paired t-test in SPSS								
CO 4	Ap	ply One	Camiting		A				
CO 4	4 square test for the given data in SPSS Cognitive						Applying		
CO 5	Compare the relationship for the datausing methods of						A malvin a		
COS	cor	relation	and regression in SPSS	Cogniti	ve	Applying			
UNIT	1						9 hours		
Introdu	action t	to SPSS	- Starting SPSS - SPSS Main Menus - Wor	king with	the Dat	a Edito	r – SPSS		
Viewe	r – Imp	orting a	nd Exporting data. Plotting of Charts: Simple E	Bar diagran	ı, Multi	ple Bar	Diagram		
and Pi	e Diagr	am.							
UNIT 2							9 hours		
Descri	ptive S	tatistics	and Frequencies using SPSS. Measures of ce	ntral tende	ncies: A	Arithme	tic mean,		
Media	n, Mod	le, Geor	netric mean and Harmonic Mean. Measures o	f Dispersio	n: Ran	ge, inte	r quartile		
range,	Mean I	Deviatio	n and Standard deviation. Measures of Skewnes	ss and Kurt	osis.				
UNIT	3						9 hours		
Testing	g of Hy	pothesis	s: Type I error and Type II Errors – Concept of	p values –	Basic	Concep	ts of One		
	a + +aa+	т 1	dent Comples t test Daired comples t test using	SDSS with	intorne	atation			
Sample	e i-iesi,	Indeper	ident Samples t-test, Paired samples t-test using	DI DO WIIII	merpi	etation.			

Analysis of Variance: Basic concepts of ANOVA – One Way and Two-Way ANOVA using SPSS with interpretation. Chi-square Test for Independence of attributes using SPSS.

UNIT 5 9 hours

Correlation: Karl Pearson's coefficient of Correlation – Spearman's Rank correlation – Simple linear Regression using SPSS with interpretation.

LECTURE	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45

### **TEXT BOOK**

1.Ajai J Gaur and Sanjay S. Gaur (2008): Statistical Methods for Practice and Research: A guide to data analysis using SPSS, First Edition, Sage Publications

### **REFERENCES**

Andy Field.(2011); Discovering Statistics Using SPSS, Sage Publications.

Hinton P R, Brownlow C, McMurray, I. and Cozens, B. (2004) SPSS Explained, Routledge

### **COs VS POs**

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	13	8	15	5	3	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

SEMESTER	COURSE CODE	COURSE NAME		Т	P	Н	C
IV	YMA401	PROJECT WORK		0	0	30	8
		TOTAL				30	8