

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.2	Percentage of Programmes where syllabus revision was carried out during academic year 2022-23

DEPARTMENT OF MECHANICAL ENGINEERING

Sl. No.	Programme Code	Programme name	Year of Introduction	Year of revision	Percentage of Syllabus content added or replaced
01.	301	M.Tech – Renewable Energy	2004-05	2022	23.08%

S.No	Contents
1.	Minutes of Board of Studies
2.	Extracts of minutes of the Academic Council Meeting
3.	Curiculum and Syllabus of the programme – Before Revision
4.	Curiculum and Syllabus of the programme – After Revision

Legend : Highlighted Color - Red

Indicates courses which are removed from syllabus before revision

Highlighted Color - Green

- Indicates courses which are removed from syllabus after revision

1. a. Minutes of the Board of Studies for M.TECH- Renewable Energy(Full Time) held on 20.07.2022

Annex -11, 12, 13, 14

PERIYAR

ANIAMM

Time: 10.00 am - 1.30 pm

Department of Mechanical Engineering

Periyar Nagar, Vallain Thanjavar - 613-403 Tamil Nadu, India. Phone: +91 - 4362-264642 Fax: + 91 - 4362 - 264660 Email headmech@pms.edu Website: www.pms.edu

BOARD OF STUDIES MEETING

MINUTES OF MEETING

Date : 20.07.2022

Mode : Online / GOOGLE MEET

Google Meet Link: https://meet.google.com/kpt-rjzf-vgv

The Board of Studies meeting was held in virtual mode on 20.07.2022 with the following agenda and minutes of the discussion is given below.

Meeting Agenda:

- Implementation of actions taken against feedback received on curricular aspects from Stake holders for M.Tech. Renewable Energy Regulation 2022.
- Presentation of PEOs and POs and discussion on programme articulation matrix (PO coverage by all COs) for M.Tech. Renewable Energy Regulation 2022.
- 3. Presentation of Curriculum and Syllabi for M.Tech. Renewable Energy Regulation 2022.
- Presentation of syllabus for a new Open Elective course Energy Studies offered under B.Tech. Mechanical Engineering Regulation 2021 for other department students.
- Presentation of Curriculum and Syllabi for the following two specializations with B.Tech. Mechanical Engineering Regulation 2021
 - (a) B.Tech. (Hons.) Mechanical Engineering with Specialization in Robotics and Industrial Automation
 - (b) B.Tech. (Hons.) Mechanical Engineering with Specialization in Energy Engineering

Members Present:

S.No.	Name of the Member	Designation	Representation	Signature
ł.	Mr. A. Pugazhenthi	Assistant Professor & HOD / Mechanical Engineering.	Chairperson	Man
2.	Dr. M. Udayakumar	Professor HAG, Department of Mechanical Engineering, National Institute of Technology, Trichy.	External Member (Academic)	Mabyuh
3.	Dr. T. Sriharsha	Deputy Manager, Nanotechnology Research and Development, Bharat Heavy Electricals Limited, Trichy.	External Member (Industry)	shihare

l.	Dr. D. Jeyasimman	Associate Professor / Mechanical Engineering	Member	Teros a
5.	Mr. N. Shivakumar	Assistant Professor / Mechanical Engineering	Member	Nortan
6.	Mr. S. P. Manikandan	Assistant Professor / Mechanical Engineering	Member	asin
7.	Mr.P. Srinivasan	Assistant Professor / Mechanical Engineering	Member	Enlaw
8.	Mr.R. Thiyagarajan	Assistant Professor / Mechanical Engineering	Member	R Calala
9,	Mr. R. Udhayusankar	Assistant Professor / Mechanical Engineering	Member	Riby
10.	Mr.V. Pandiaraj	Assistant Professor / Mechanical Engineering	Member	Auntar
11,	Mr. J. Senbagaraj (Reg.No 121012301020)	Il Year / M.Tech. Renewable Energy (Regulation: 2021-23)	Student - Member	I Suntig
12.	Mr. K. Pranesh (Reg.No - 1190120151417)	IV Year / B.Tech. Mochanical Engineering (Regulation: 2019-23)	Student Member	K.M.
13,	Mr. R. VR. Hariharan (Reg.No 1190120151406)	(V Year / B.Tech. Mechanical Engineering (Regulation: 2019-23)	Student Member	Zarihn.
14.	Mr. T. Ivon Derek (Reg.No 121012065557)	III Year / B.Tech. Mechanical Engineering (Regulation: 2020-24)	Student Member	ARUN

A. FEEDBACK ON CURRICULAR ASPECTS

The feedback collected and analyzed during 2019-20 and 2020-21 from the following stake holders were presented

×

- 1. Teachers
- 2. Employers
- 3. Alumni students
- 4. Students

In addition, feedbacks obtained from Academic Expert, Industry Expert, Teachers, Alumni and students who participated in Department Advisory Committee Meeting (DAC) were also presented. The action taken for the feedbacks are given as "Remarks" column in the Table II.

B. PRESENTATION OF PEOs and POs

Four PEOs and seven POs for M.Tech. Renewable Energy Programme were presented to the members. The members have approved and recommended following.

Programme Educational Objectives (PEOs)

After three years of graduation, the graduates from M.Tech. Renewable Energy will be able to

- Demonstrate their knowledge, skills and proficiency in usage of modern tools in analysis and design of renewable energy systems.
- Involve in innovation, optimization, design and development of present and future renewable energy systems according to international standards as an individual or as a group.
- Carry out research, pursue higher education and engage in life-long learning in the field of renewable energy.
- Design and develop renewable energy systems for present and future energy requirements taking into account sustainability and environmental issues.

Programme Outcomes (POs)

114

A graduate at the end of the programme will be able to

- Demonstrate in depth knowledge in the field of renewable energy with recent information on latest technologies and global trends.
- Analyze complex renewable energy systems and formulate solutions as an individual or group through skills, tools, techniques, methods or literature survey.
- Create, select, learn and apply appropriate techniques, resources, and modern engineering and IT tools to complex renewable energy problems with an understanding of the limitations
- 4. Demonstrate knowledge and understanding of engineering and management principles and apply the same to one's own work, as a member and leader in a team, manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economic and financial factors.
- Communicate with the engineering community and with society at large, regarding complex engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, give and receive clear instructions.
- Recognize the need for, and have the preparation and ability to engage in life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.
- Demonstrate professional and intellectual integrity, professional code of conduct, ethics of
 research and scholarship, consideration of the impact of research outcomes on professional
 practices and understand the responsibility to contribute to the community for sustainable
 development of society.

C. PRESENTATION OF CURRICULUM AND SYLLABUS

All the courses which are framed by the department of Mechanical Engineering are presented individually. The deletion, addition and introduction of new courses related details are tabulated for all courses in the following table.

M.Tech. Renewable Energy

Table IIA: Discussions on c	ourses with actions	as remarks
-----------------------------	---------------------	------------

No	Semester	Course Code	Course Name	Course content Deletion / Addition / New	Percentage of change	Remarks
1	I	YREI01	Solar Energy Systems	No change	No change	
2	I	YRE102	Wind, Ocean and Geothermal	Added as new course	100 %	
3	1	YRE103		No Change	No Change	
4	1	YRE104A	Fluid Dynamics and Heat Transfer	No Change	No Change	•
5	1	YRE104B	Energy Conservation in HVAC	No Change	No Change	+
6	i		Fuels and Combustion Technology	No Change	No Change	•
7	1	YRE105A	Environmental Engineering	No Change	No Change	
8	1	YRE105B	Carbon Sequestration and Trading	No Change	No Change	
9	1	YRE105C	Waste Management and Energy Recovery	No Change	No Change	
10	1	YRE106	Solar Energy Laboratory	Added as new course	100 %	-
11	I	YRM107	Research Methodology and IPR	earch Methodology and IPR No Change No Chang		•
12	1	YEGOEI	English for Research Paper Writing	No Change	No Change	
13	1	YRE109	Process Modelling and Simulation Laboratory	Added as new Course.	100 %	
14	11	YRE201	Bio Energy Systems	No Change	No Change	-
15	II	YRE202		No Change	No Change	
16	11	YRE203	Electrical Energy Technology	No Change	No Change	-
17	ш	YRE204/	Optimum Utilization of Heat and Power	d No Change	No Change	-
18	п	YRE204	B Statistical Tools for Data analysis	No Change	No Chang	
19	11	YRE204	C Sustainable Development	No Change	No Chang	e
20		YRE204	D Hydro Power Technology	No Change	No Chang	
21	п	YRE205	A Instrumentation Technology for Energy Systems	No Change	No Chang	
22	2 11	YRE205	B Hydrogen, Fuel cells and Nuclear Energy	No Change	No Chanj	ge
2	3 II	YRE205	and Project Management	No Change	No Chan	ge
24	1 11	YRE205	D Energy Efficient Building	No Change	No Chan	ge

25	11	YRE206	Computational Fluid Dynamics Laboratory	Added as new Course.	60 %	
26	u	YRE207	Bio Energy Laboratory	Added as new Course	60 %	
27	п	YPSOE1	Constitution of India	No Change	No Change	
28	ш	YRE301	Dissertation Phase - 1	No Change	No Change	
29	III		Open Elective - I	-	-	
30	ш	YRE302A	Energy Audit and Management	No Change	No Change	
31	ш	YRE302B	Unit Operations in Industries	No Change	No Change	
32	ш	YRE302C	CAD/CAM and Simulation of Renewable Energy Systems	No Change	No Change	
33	m	YRE302D	Industrial Safety	Added as new Course	100%	
34	IV	YRE401	Dissertation Phase - 11	No Change	No Change	

B.Tech. Mechanical Engineering

Table IIB: Discussions on courses with actions as remarks

κ.

S.No	Semester	Course Code	Course Name	Course content Deletion/ Addition/New	Percentage of change	Remarks
1	-	XMEOE4	Energy Studies	Added as new Open Elective Course.	100 %	- 14

B. Tech. (Hons.) Mechanical Engineering with Specialization in Robotics and Industrial Automation

S.No	Semester	Course Code	Course Name	Course content Deletion/Addition/New	Percentage of change	Remarks
1	ш	XECHRI	Service Robotics with Drives and Sensors	Added as New Course.	100 %	•
2	IV	XECHR2	Industrial Robotics and Automation	Added as New Course.	100 %	
3	v	XECHR3	Fundamentals of ROS and Embedded in Robotics	Added as New Course,	100 %	
4	v	XECHR4	Artificial Intelligence and Computer Vision for Robotics	Added as New Course,	100 %	
5	VI	XECHR5	Deep Learning for Robotics	Added as New Course.	100 %	
5	VII	XECHR6	Mini Project	Added as New Course.	100 %	

Table IIC: Discussions on courses	s with	actions	as remarks	ċ
-----------------------------------	--------	---------	------------	---

is. (ech. (Hons.) Mechanical Engineering Pr	ogramme with Specialization in Energy Engineering
	-grantine with Specialization in Energy Engineering

01140	Somester	Course	and the second sec	A PERSONAL ACCOUNTS AND A PERSONAL		
		Code	Course Name	Course content	Percentage	Remark
1	III	XMEHE!	Alternation	Deletion/Addition/New	of change	
2	IV	XMEHE2	Controls of Energy	Added as New Course.	100 %	
3	IV	XMEHE3	and wind chergy Systems	Added as New Course.	100 %	
4			- I	Added as New Course.	100 %	
	v	XMEHE4	Energy Storage Systems and Sustainable Development	Added as New Course.	100 %	
5	VI	XMEHES	Provide the second se	Added as New Course.	100 %	
6	VI	XMEHE6	Renewable Energy Laboratory - II	1111	200-301	
7	VII	XMEHE7	Mini Project	Added as New Course.	100 %	
-				Added as New Course.	100 %	1

	Service and the service of the service	subline with specialization in
ĺ	Table IID: Discussions on co	urses with actions as remarks
	time to the second s	remarks

The external BOS member Dr. M. Udayakumar has recommended to include topics on liquid bio fuels and the same have been included in the course 'Alternative Sources of Energy'

D. LIST OF NEWLY INTRODUCED COURSES

M.Tech. Renewable Energy

S.No Sema

- I. Wind, Ocean and Geothermal Energy Systems
- 2. Solar Energy Laboratory
- 3. Process Modelling and Simulation Laboratory
- 4. Computational Fluid Dynamics Laboratory
- 5. Industrial Safety

B.Tech. Mechanical Engineering

1. Energy Studies

E. LIST OF COURSES REMOVED

Table III : Table of courses removed with remarks

M.Tech. Renewable Energy

S.No	Course Code and Title	Remarks
1	Mini Project	This core course has been removed as Practical Project component is added in all Laboratory courses.
2.	MAT and SCI Lab	This core course has been replaced with a new core course - Process Modelling and Simulation Laboratory - retaining relevant experiments.

F. PERCENTAGE CHANGE IN THE SYLLABUS

M.Tech. Renewable Energy

Number of new core courses added = 4 with 9 credits Number of core courses removed = 2 with 3 credits % change = (12/52) x 100 ~23.08%

G. NOTES ON BENCHMARKING WITH AICTE MODEL CURRICULUM

It is fond that AICTE has not given any model syllabus for Renewable Energy. The AICTE curriculum related to Post Graduate Programme in Mechanical Engineering (Specialization in Thermal Engineering) was presented in the BoS. The members compared the designed curriculum and discussed the following

- a. The credits of the two curriculum are found to be same.
- b. The courses which are mandatory and as Open Electives in the AICTE curriculum are present in the designed curriculum.

H. NOTES ON CREDIT DISTRIBUTION AND COMPARISION WITH AICTE GUIDELINES

Table IV: Credit distribution

M.Tech. Renewable Energy

	Number	of courses	Total credits				
AICTE Course Types	PMIST Adoption	AICTE Recommen dation	PMIST Adoption	AICTE Recommend ation	Deviation		
Professional Core Courses (PCC)	6	4	18	12	6		
Professional Core Courses Lab (PCC-L)	4	4	8	8	0		
Professional Elective Course (PEC)	4	4	12	12	0		
Open Elective (OE)	1	1	3	- 3	0		
Proj	2	3	26	28	- 2		
AICTE Mandatory Course (AICTE – MC)	1	1	2	2	0		
AICTE Audit Course (AICTE - Audit)	2	2	0	0	0		
Total	22	21	72	68	4		
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

I. COURSES ON EMPLOYABILITY/ENTREPRENEURSHIP/SKILL DEVELOPMENT

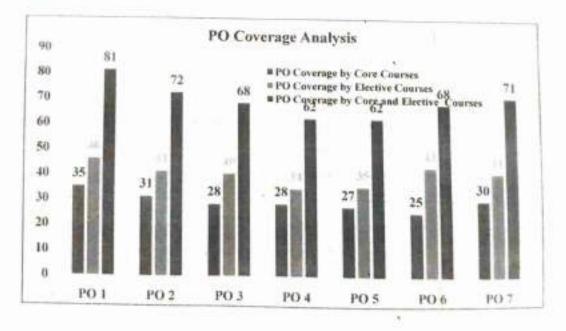
The curriculum for M.Tech. Renewable Energy Programme focus of including 97.06 % of courses with either/and employability/entrepreneurship/skill development. The courses are given below.

Table V Categorization of courses

M.Tech. Renewable Energy

S. No	100000000000000000000000000000000000000	Course Name	Category
1	YRE101	Solar Energy Systems	Employability
2	YRE102		Employability
3	YRE103	Process Modelling and Simulation in Energy Systems	Employability
4	YRE104A	Fluid Dynamics and Heat Transfer	Employability / Entrepreneurship / Skill Development
5	YRE104B		Employability / Entrepreneurship / Skill Development
6	YRE104C	realition of the second s	Employability / Entrepreneurship / Skill Development
7	YRE105A		Employability / Entrepreneurship / Skill Development
8	YRE105B		Employability / Entrepreneurship / Skill Development
9	YRE105C	Waste Management and Energy Recovery	Employability / Entrepreneurship / Skill Development
10	YRE106	Solar Energy Laboratory	Skill Development
11	YRM107	Research Methodology and IPR	Entrepreneurship / Skill Development
12	YEGOE1	English for Research Paper Writing	Entrepreneurship / Skill Development
13	YRE109	Process Modelling and Simulation Laboratory	Skill Development
14	YRE201	Bio Energy Systems	Employability
15	YRE202	Computational Fluid Dynamics	Employability
16	YRE203	Electrical Energy Technology	Employability
17	YRE204A	Optimum Utilization of Heat and Power	Employability / Entrepreneurship / Skill Development
18	YRE204B	Statistical Tools for Data analysis	Employability / Entrepreneurship / Skill Development
19	YRE204C	Sustainable Development	Employability / Entrepreneurship / Skill Development
20	YRE204D	Hydro Power Technology	Employability / Entrepreneurship / Skill Development
1	YRE205A	Instrumentation Technology for Energy Systems	Employability / Entrepreneurship / Skill Development
2	YRE205B	Hydrogen, Fuel cells and Nuclear Energy	Employability / Entrepreneurship / Skill Development
3	YRE205C	Energy Modelling, Economics and Project Management	Employability / Entrepreneurship / Skill Development

- 9 -


24	YRE205D	Energy Efficient Building	Employability / Entrepreneurship / Skill Development
25	YRE206	Computational Fluid Dynamics Laboratory	Skill Development
26	YRE207	Bio Energy Laboratory	Skill Development
27	YPSOE1	Constitution of India	Employability
28	YRE301	Dissertation Phase - II	Employability / Entrepreneurship / Skill Development
29		Open Elective -1	
30	YRE302A	Energy Audit and Management	Employability / Entrepreneurship / Skill Development
31		Unit Operations in Industries	Employability / Entrepreneurship / Skill Development
32		CAD/CAM and Simulation of Renewable Energy Systems	Employability / Entrepreneurship / Skill Development
33	YRE302D	Industrial Safety	Employability / Entrepreneurship / Skill Development
34	YRE401	Dissertation Phase - II	Employability / Entrepreneurship / Skill Development

J. DISCUSSION ON PROGRAMME ARTICULATION MATRIX (PO COVERAGE BY ALL COs)

M.Tech. Renewable Energy

÷.,

It is found that the curriculum covers all POs with small deviations. The members agreed that there need not be any changes in the POs.

The BOS members recommended to submit the outcome of this meeting in the forthcoming 40th Academic council meeting for approval.

HoD/Mechanical Engineering (A. PUGAZHENTHI)

14 Dean (FET)

1.am

(Dr. S. SENTHAMIL KUMAR)-

Dean (Academic) (Dr. A. GEORGE)

2. a. Extracts of the Minutes of 40th ACM Meeting for B.Tech & M.Tech held on 27.08.2022

B.TECH MECHANICAL ENGINEERING –FULL TIME AND PART TIME

RIYAR Perinar Auger, Vollain, Thenderer - 8.21-600, Tanof Node, India Present 1911, Add, J. Johannik, Park, Walt, and Standard Frash registrar Johannik, Wilds warw area and MINUTES OF FORTIETH MEETING OF THE ACADEMIC COUNCIL Date : 27.08.2022 Time : 10.30 A.M Venue: Richard Dawkins Hall Place : PMIST, Vallam - Thanjavur The Partially Meeting of the Association Council of the Partyan Manlamma Institute Science & Technology (PMIST), Vallam, Thanjayur held on 27.08.2022 at 10.30 a.m. the manufactured man Prof.9. Velusami, Hon'ble Vice-Chancellor, chaired the meeting. The following Academic Council Members were present. Dr.D.Aarthi Saravanan ٩. Member Dr.A.Anand Jerard Sebastine Member 2. 2. Dr.S.Arumugam Member Dr.P.Aruna 4. Member Member Dr.S.Asokan θ. e. . Dr.S.Buyaneswan Member Dr.A.George 7. Mamber s. Dr.S.Gomathi Member α. Dr.F.Gutu Member 10. Dr.V.Hamsadhwani Member 11. Dr.R.Jayanthi 12. Dr.N.Jayanthi Member Dr.N.Jayanthi Member 12 Dr.J.Jeyashidra believe the set 14. Mr.I. Kathio Subramaniayan 15. Dr.T.Kavitha Member Member 16. Dr.K.Kesavan 17. Dr.R.Kristmanurthi Member Member 16. Dr.S.P.Kulanthatvel Babu Member

.

5 PR2.	Programme	Contraction of the second	1.6 sha
4	B.TechCivil Engineering	4 Vezet	60
	5 Tech. (Hors.) - Civil Engineering with specialization in ISS and demote Sensing	7302-375	1 105
	BittediComputer Science and Engineering	4 YOU'S	120
	B Test. (Hone) - SEE with specialization in 21 and 5 days		
0	5 TextBecinial and Electronics Engineeting	4 75375	60
	B.Tech. (Hore.) - SEE with specialization in <i>Electric Vehicles</i> B.Tech. (Hore.) - SEE with specialization in <i>Energy</i> Engineering	0-40	
7	5 TechDectronice and Communication Engineering	4 Years	60
	B Tech. (Hond.) - BCE with operatization in A1 and M2 B Tech. (Hond.) - BCE with specialization is Robotics and industrial Automation	onected-to	4.9
	B.TeckMechanical Engineering	4.1086	60
	B.Tech. (Hone.) - Mechanical Engineering with specialization in Proceeds and Proceeds and Proceeding with specialization in Engineering with specialization in Energy Engineering		
	Process and Resistal Automation D.Tech. (right) - Mechanical Engineering with specialization in	17085	192
	Monores and Konstral Automation D.Teol. (Hors.) - Mechanical Engineering with specialization in Energy Engineering		102
30	MODIFICE and MODIFICATION ADDRESS ADDR	3 Years 3 Years 3 Years	
	Motiones and Material Automation D.Texts. (Hors.) - Methodorous Engineering with specialization in ENGLA D.D.S. Defa Balance B.S.S. Someday Boarse B.S.S. Someday Boarse B.S.S. Someday Boarse	2 Years 2 Years 3 Years	42 122 26
11	MODIFICE and MODIFICATION ADDRESS ADDR	2 Vears 2 Years 2 Years 3 Years	42
11 12 12 14	Motiones and Motional Automation DiTexts, (Hors.) - Metadarical Engineering with specialization in ENGLA Dite: Computer Science B.Sc. Amaton Balance B.Sc. Anticol Internets Dite: Anticol Internet Dite: Anticol Int	2 Vears 2 Years 2 Years 3 Years	41 12 12 12 12 12 12 12 12 12 12 12 12 12 1
111111111	MODECS and MODESTAL ALEXTRADON D. Teat., Intera., - Mechanical Engineering with specialization in Ency. Engineering B.Sc. A B.Sc. Son Science B.Sc. Annebon 5 Multimedia S.Sc. Annebon 5 Multimedia	2 Vees 2 Vees 3 Vees 2 Vees 2 Vees 2 Vees 2 Vees	41 12 12 12 12 12 12 12 12 12 12 12 12 12 1
	Motional and Material Assemble Different (Hors.) - Metadamost Engineering with specialization in Enclar B.Sc.A. B.Sc. Somewhy Boards B.Sc. Somewhy Boards B.Sc. Anticol Internet B.Sc. Ant	2 Vests 2 Vests 3 Vests 2 Vests 2 Vests 2 Vests 3 Vests 3 Vests	A BANKAG
111111111111111111111111111111111111111	Monosce and Monosce / Automation Monosce and Monosce / Automation Diffect, Interv Mechanical Engineering with specialization in Elite. Sets Second Sec	2 Years 2 Years 3 Years 2 Years 2 Years 3 Years 3 Years 3 Years	413×55 8500
111111111111111111111111111111111111111	Monosce and Monosce / Automation Monosce and Monosce / Automation Diffect, Interv Mechanical Engineering with specialization in Elite. Sets Second Sec	3 Vears 2 Years 3 Years 3 Years 3 Years 3 Years 3 Years 3 Years 3 Years	413×55 8500
11111111111111111111111111111111111111	Monosce and Monstral Automation DiTects, Intervention Engineering with specialization in Eliter Sets Setting Set Sets Setting Set Antervent Set Anter	3 Vines 3 Yours 3 Yours 4 Yours 3 Yours 4 Y	RS R ROS R RS
8 33 1 MULTINE	Motional Automation Motional Motional Automation Motional Automation Motional Aut	3 Vises 2 Vises 3 V	W Best Wood P 200 S
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Monores and Monetral Automation Monores and Monetral Automation Monores and Monetral Automation Monores M	2 Vision 2 V	A Ben a sea B sa sa
	Hotomers and Konsensal Automation Different (Home of Home of	2 Vices 2 Vices 3 V	श्व मेहर का सहका मि रहत हो स
1111년년 1912 년 1912년 1212년 1111년 1111년 1212년 121 1111년 1111년 111	Monores and Monetral Automation Monores and Monetral Automation Monores and Monetral Automation Monetral M	3 Vices 2 Visit 2 Visit 2 Vices 2 Vices 3 V	N BAN AND PERSONNA
VILMUN and Contraction	Hotomers and Konstral Automation Diffect, (Hone,)- Headman at Engineering with specialization in Engineering Book Diffect Balance Diffect Diffect Balance Diffect	2 Vites 2 Vises 2 Vises 2 Vises 2 Vises 2 Vises 2 Vises 2 Vises 2 Vises 3 Vites 3 V	a Ben nea Bea sa a ne
The sector sector sector	Monores and Monetral Asternation DiTects, Intervented Engineering with specialization in Ditects, Intervented Engineering with specialization in Ditects, Intervented Engineering with specialization in Ditects, Intervented	2 Vices 2 V	N BOX N AND PLOT N N N N
N WYD M Y H and 4 model 12 cl 1 m	Motional Automation Motional Motional Automation Motional Automation Motional Aut	Vises Vises	N BEN NON PERSONNAL
VILMUNS TRAFFICTER	Monores and Monetral Asternation DiTects, Intervented Engineering with specialization in Ditects, Intervented Engineering with specialization in Ditects, Intervented Engineering with specialization in Ditects, Intervented	2 Vices 2 V	a Ben nea Bea sa a ne

.

TO INFORM AND RECORD the closure of the following UG & PG Programmes Dean

Academic 40.2.5

from the academic year 2022-23.

Notes:

Due to few enquiries and less intake, it is proposed to close the following programmes from the academic year 2022-23.

Closures:

1. B.Tech.-Civil Engineering (Part-Time)

2. B.Tech.-Electrical and Electronics Engineering (Part-Time)

3. B.Tech.-Mechanical Engineering (Part-Time)

- 4. M.Tech.- Environmental Engineering (Part-Time)
- 5. M.Tech.- Nano Technology (Part-Time)
- 6. M.Tech.- Renewable Energy (Part-Time)
- 7. M.Tech.- Wireless Communications (Part-Time)
- 8. M.Tech.- Power Electronics and Drives (Part-Time)

The matter is placed before the Academic Council for information and record. Resolution

RESOLVED TO TAKE INTO RECORD the closure of the above mentioned UG & PG Programmes from the academic year 2022-23.

Dean Academic 40.2.6

TO INFORM AND RECORD reducing the number of intake for the following PG Programmes from the academic year 2022-23 onwards.

Notes:

Based on the guidelines given in the AICTE hand book of approval process 2022-23, and less intakes in the previous years; it is proposed to reduce the intake in the following PG Programmes from the academic year 2022-23 onwards:

1. M.Tech.- Environmental Engineering - from 20 to 18

2. M.Tech.- Nano Technology - from 20 to 18

3. M.Tech.- Renewable Energy

- from 20 to 18 4. M.Tech.- Wireless Communications - from 20 to 18

The matter is placed before the Academic Council for information and record.

Resolution

RESOLVED TO RECORD reducing the number of intake for the above mentioned PG Programmes from the academic year 2022-23 onwards.

Resolution

RESOLVED TO APPROVE the Curriculum and Syllabi for M.Tech. -Power Electronics and Drives under Full-Time (Regulation 2022).

TO CONSIDER AND APPROVE the curriculum and syllabi for B.Tech.

DEPARTMENT OF MECHANICAL ENGINEERING

FET B.Tech.-Mech 40.3.9

(Hons).- Mechanical Engineering with specialization in a) Robotics and Industrial Automation (b) Energy Engineering (Regulation 2021, Revision 1) Full time mode). The courses pertaining to the specialization and their credits (In addition to the courses in B.Tech-Mechanical Engineering curriculum and syllabi, Regulation 2021) are given below:

a). Robotics and industrial Automation

Course Code	Semecter	Course Title	L	Т	P	C	н
XECHR1		Service Robotics with Drives and Sensors	4	٥	2	3	5
XECHR2	IV	Industrial Robotics and Automation	1	0	2	3	5
XECHR3	<u>×</u>	Fundamentals of ROS and Embedded In Robotics	4	0	2	3	5
XECHR4	×	Artificial Intelligence and Computer Vision for Robotics	1	0	2	3	5
XECHRS	<u>M</u>	Deep Learning for Robotics	1	٥	2	3	5
XECHR6	VII	Mini Project	٥	٥	5	5	10
		Total	5	0	10	20	35

b). Energy Engineering

Course Code	Semester	Course Title	L	T	P	C	н
XMEHE1	=	Alternative Sources of Energy	3	0	0	3	3
XMEHE2	IV	Solar and Wind Energy Systems	3	1	0	4	4
XMEHE3	IV	Renewable Energy Laboratory - I	0	0	1	1	2
XMEHE4	×	Energy Storage Systems and Sustainable Development	3	٥	0	3	3
XMEHE5	<u>VI</u>	Energy Audit, Conservation and Management	3	0	0	3	3
XMEHE6	VI	Renewable Energy Laboratory - II	0	0	1	1	2
XMEHE7	VII	Mini Project	٥	0	5	5	10
		Total	12	1	7	20	29

The complete Curriculum and Syllabi are given in Annexure.

Notes:

In the 39th Academic Council Meeting, the specialization considered was "Robotics", But, as per the recommendations of the Board of Studies the specialization "Robotics and Industrial Automation" is offered.

The matter is placed before the Academic Council for approval.

Resolution

RESOLVED TO APPROVE the Curriculum and Syllabi for B.Tech. (Hons).- Mechanical Engineering with specialization in a) Robotics and Industrial Automation (b) Energy Engineering (Regulation 2021, Revision 1: Full time mode). The courses pertaining to the specialization and their credits (In addition to the courses in B.Tech-Mechanical Engineering curriculum and syllabi, Regulation 2021).

FET Mech 40.3.10 TO CONSIDER AND APPROVE the introduction of new Open Elective course offered by the Department of Mechanical Engineering for other department students.

department students.

Course Code	Course Title	L	T	P	C	н
XMEOE04	Energy Studies	3	0	0	3	3

Notes:

The Board of Studies of Department of Mechanical Engineering recommended the Open Elective course and its syllabus.

The matter is placed before the Academic Council for approval. Resolution

ric solution

RESOLVED TO APPROVE the introduction of new Open Elective course offered by the Department of Mechanical Engineering for other department students.

FET TO CONSIDER AND APPROVE the Programme Educational Objectives

M.Tech.-RE (PEO) and Programme Outcomes (PO) for M.Tech Renewable Energy 40.3.11 programme.

M.TECH - RENEWABLE ENERGY - FULL TIME AND PART TIME

Notes:

The faculty of the department along with the guidance of External academic experts framed PEOs and POs. The changes given by the stakeholders are considered and they are reflected in the COs as well. The PEOs and POs are given along with the Curriculum and Syllabi in Annexure.

The matter is placed before the Academic Council for approval. Resolution

RESOLVED TO APPROVE the Programme Educational Objectives (PEO) and Programme Outcomes (PO) for M.Tech Renewable Energy programme.

FET TO CONS M.Tech.-RE Renewabl 40.3.12 Notes:

TO CONSIDER AND APPROVE the Curriculum and Syllabi for M.Tech. Renewable Energy under Full Time (Regulation 2022). Notes:

The Board of Studies of the M.Tech. Renewable Energy under Department of Mechanical Engineering recommended the Curriculum from I to IV Semesters and Syllabi from I to IV Semesters for M.Tech. Renewable Energy (Regulation 2022). The Curriculum is in line with AICTE guidelines 2018 with 23.08% revision from previous syllabus. The syllabus revision is based on feedback on curricular aspects from stakeholders. The syllabus contains 97.06% courses having focus on employability / entrepreneurship / skill development.

New Courses offered by the department under Regulation 2022:

- 1. Wind, Ocean and Geothermal Energy Systems
- 2. Solar Energy Laboratory
- 3. Process Modelling and Simulation Laboratory
- Computational Fluid Dynamics Laboratory
- Industrial Safety

Open elective offered by the department under Regulation 2022: 1. Industrial Safety

23

The matter is placed before the Academic Council for approval. Resolution RESOLVED TO APPROVE the Curriculum and Syllabi for M.Tech. Renewable Energy under Full Time (Regulation 2022) and the openelective "Industrial Safety" offered by the department under Regulation 2022. 3. a. Curicullum and Syllabus of the M.Tech FT programme – Before Revision

CURRICULUM AND SYLLABUS – FULL TIME

REGULATIONS – 2019

(Applicable to the students admitted from the Academic year 2019-20)

SEMESTER I

Code No.	Course Title	L	Т	Р	С	HRS
YRE101	Solar Energy Systems	3	0	0	3	3
YRE102	Wind energy, Tidal energy and OTEC	3	0	0	3	3
YRE103	Process Modelling and Simulation in Energy Systems	3	0	0	3	3
YRE104***	Elective – I	3	0	0	3	3
YRE105***	Elective – II	3	0	0	3	3
YRE106	Solar Energy Lab	0	0	1	1	2
YRM107*- (MC)	Research Methodology and IPR	2	0	0	0	2
YEGOE1**-	Audit courses (Student's Choice)-	2	0	0	0	2
(MC-Audit)	English for Research Paper Writing	2	0	0	0	2
YRE109	MAT and SCI Lab	0	0	1	1	2
	19	0	2	17	23	

SEMESTER II

Code No.	Course Title	L	Т	Р	С	HRS
		-				
YRE201	Bio Energy Systems	3	0	0	3	3
YRE202	Computational Fluid Dynamics	3	0	0	3	3
YRE203	Electrical Energy Technology	3	0	0	3	3
YRE204***	Elective – III	3	0	0	3	3
YRE205***	Elective – IV	3	0	0	3	3
YRE206	Bio Energy and CFD Lab	0	0	1	1	2
YRE207	Mini Project	0	0	2	2	4
YPSOE1** (MC-Audit)	Audit courses (Student's Choice)- Constitution of India	2	0	0	0	2
Total			0	3	18	23

SEMESTER III

Code No.	Course Title	L	Т	Р	С	HRS
YRE301	Project Phase – I	0	0	10	10	20
YRE302***	Elective - V	3	0	0	3	3
YREOE****	Open Elective Course(Student's Choice)	3	0	0	3	3
	Total	6	0	10	16	26

SEMESTER IV

Code No.	Course Title	L	Т	Р	С	HRS
YRE401	Project Phase – II	0	0	16	16	32
Total		0	0	16	16	32

Total Credits - 67

- * Mandatory Course **- Mandatory Course - Audit ***- Elective Course ****- Open Elective Course Mandatory Courses – Audit (**)
 - English for Research Paper Writing
 Disaster Management

 - **3.** Sanskrit for Technical Knowledge
 - 4. Value Education
 - **5.** Constitution of India
 - 6. Pedagogy Studies
 - 7. Stress Management by Yoga
 - 8. Personality Development through Life Enlightenment Skills.

LIST OF ELECTIVES (***)

ELECTIVE GROUP - I:

Code No.	Course Title	L	Т	Р	С	HRS
YRE104A	Fluid Dynamics and Heat Transfer	3	0	0	3	3
YRE104B	Energy Conservation in HVAC	3	0	0	3	3
YRE104C	Fuels and Combustion Technology	3	0	0	3	3

ELECTIVE GROUP - II:

Code No.	Course Title	L	Т	Р	С	HRS
YRE105A	Environmental Engineering	3	0	0	3	3
YRE105B	Carbon Sequestration And Trading	3	0	0	3	3
YRE105C	Waste Management and Energy Recovery	3	0	0	3	3

ELECTIVE GROUP - III:

Code No.	Course Title	L	Т	Р	С	HRS
YRE204A	Optimum Utilization of Heat and Power	3	0	0	3	3
YRE204B	Statistical Tools for a Data analysis	3	0	0	3	3
YRE204C	Sustainable Development	3	0	0	3	3

ELECTIVE GROUP - IV:

Code No.	Course Title			Р	С	HRS
YRE205A	Instrumentation Technology for Energy Systems	3	0	0	3	3
YRE205B	Hydrogen and Nuclear energy	3	0	0	3	3
YRE205C	Energy Modeling, Economics and Project Management	3	0	0	3	3

ELECTIVE GROUP - V:

Code No.	Course Title	L	Т	Р	С	HRS
YRE302A	Energy Audit and Management	3	0	0	3	3
YRE302B	Unit Operations in Industries	3	0	0	3	3
YRE302C	CAD/CAM and Simulation of Renewable Energy Systems	3	0	0	3	3

LIST OF OPEN ELECTIVE COURSES (****)

Code No.	Course Title	L	Τ	Р	С	HRS
YREOE1	Hydro Power Technology	3	0	0	3	3
YREOE2	Energy Efficient Building	3	0	0	3	3

Note:

1. The credit distribution is followed as per the guidelines given by AICTE/UGC.

Course type		Credits			Contact Hours				
Course type		Т	Р	Total	L	Т	Р	Total	
Lecture course	3	0	0	3	3	0	0	3	
Lecture + Practical course	3	0	1	4	3	0	2	5	
Lecture + Tutorial course	3	1	0	4	3	2	0	5	
Lecture + Tutomar course	2	1	0	3	2	2	0	4	
Lecture + Tutorial + Practical course	3	1	1	5	3	2	2	7	

YRE101- SOLAR ENERGY SYSTEMS

(Use of approved data book permitted in the examination)

UNIT - I SOLAR RADIATION

Source of radiation – Sun earth relationship- extra terrestrial radiation.– Atmospheric attenuation – terrestrial radiation-radiation on a horizontal surfaces and inclined planes-relations between horizontal radiation and inclined surfaces – relations between monthly, daily and hourly radiation and components of the radiations– solar charts – Critical radiation-Measurement of global, direct and diffuse solar radiation- pyroheliometer, pyranometer, pyrogeometer, net pyradiometer-sunshine recorder – an overview of solar radiation data in India.

UNIT – II SOLAR COLLECTORS – FLAT PLATE COLLECTORS

Design considerations – classification- Flat plate collectors- air heating collectors liquid heating – Temperature distributions- Heat removal rate- Useful energy gain – Losses in the collectors-for efficiency of flat plate collectors – selective surfaces – tubular solar energy collectors analysis of concentric tube collector – testing of flat plate collectors. Solar green house. Solar tracking. solar kilns

UNIT- III CONCENTRIC SOLAR COLLECTORS AND THERMAL APPLICATION 9

Concentric collectors-Limits to concentration – concentrator mounting – tracking mechanism - performance analysis focusing solar concentrators: Heliostats. Solar powered absorption A/C system (Ammonia/water) solar water pump, solar chimney, solar drier, solar dehumidifier, solar still, solar cooker.

UNIT - IV SIMULATION AND ENERGY STORAGE

Simulation in Solar Process Design- TRANSYS- Design of active systems- f chart methods for liquid and air heaters- phi bar, of chart method - sensible, latent heat and thermo-chemical storage-pebble bed etc. materials for phase change- Glauber's salt-organic compounds -solar ponds.

UNIT- V SOLAR PV SYSTEM

Photovoltaic cell – characteristics -maximum power- tracking-cell arrays-power electric circuits for output of solar panels--inverters-batteries-charge regulators, Construction concepts. Latest trends in PV systems, Life cycle analysis of solar energy system time value of money, evaluation of carbon credit of solar energy system.

A compulsory seminar / assignment on design / case study/analysis /application in any one of the solar thermal energy system

L:45; T:15; Total:60

9

9

TEXT BOOKS:

- DuffieJ.A and Beckman, W.A., "Solar Engineering of Thermal Processes", 2nd Edition, John Wiley& Sons Inc., Newyork, 1991
- 2. G.N. Tiwari."Solar Energy ; Fundamentals ,design,modelilg and applications "Third RePrint , Narosa Publishing House, New Delhi,2006

REFERENCES:

- 1. Edward E.Anderson, "Fundamentals for Solar Energy Conversion", Addison Wesley pubCO.,1983.
- 2. Fank Kreith, Jan F.Kreider, Principles of solar Engg", 1978.
- 3. Koushika M.D," Solar Energy Principles and Applications", IBT publications and distributors, 1988.
- 4. Kaushik S.C, Tiwari G.N and Nayak J.K, "Thermal control in passive solar buildings" .IBT Publishers & Distributors, 1988.

3003

9

YRE 102 - WIND ENERGY, TIDAL ENERGY AND OTEC 3 0 0 3

UNIT - I MEASUREMENT TECHNIQUES (Use of approved data book permitted in the examination)

Introduction-measurement and instrumentation-Beau fort number Guest parameters-wind type-power law index betz constant Terrain value. Wind speed characterization-site survey and site analysis -Energy in wind-Highest, lowest wind speeds-wind speed for return periods-study of wind applicable Indian standards-steel Tables, Structrual Engineering.

UNIT - II WINDMILL AND WIND TURBINE

Wind mill characteristics – types of wind mills- performance analysis -Merits and limitation-variables in wind energy conversion system-wind power density-power in a wind stream-wind turbine efficiency-power of a wind turbine for given in-coming wind velocity - forces on the blades of a propeller-examples of wind farm site-mean wind velocity-wind velocity duration curve-energy pattern factor-wind power duration characteristics - Tip speed ratios - Solidity curves.

Terms-study of all types of turbines (HAWT, VAWT)-typical large capacity wind turbines-sizingtower design-power duration curves-wind rows diagrams -study of characteristics-actuator theory analysis of Hourly, daily, monthly, annual, wind behavior-control and instrumentations. syncln & power stabilization synchronization & power stabilization.

UNIT - III POWER GENERATION AND HYBRIDISATION

Types of wind energy system-alternators -Grid-combination of diesel generator, Battery storage-wind turbine circuits-wind map of India-Wind farm-indefinitely developed wind turbine-study of various wind turbines manufactured indigenously - kilowatt rating-retrofits-R&M-OP & FC-speed limitationfatigue stress.

UNIT - IV WAVE AND TIDAL ENERGY

Wave energy -Tidal changes – Ecological changes – Types Tidal Power – Energy from Sea – Tidal Turbines – Tidal Power Generation – Recent Trends and Developments – Problems and solutions – Case Studies.

UNIT - V OTEC

The concepts- construction and operational problems - history of OTEC development Alternative energy technology – Ocean thermal energy conversion – Techniques – Problems and solutions – Case Studies-ecological and environmental aspects.

A compulsory seminar / assignment on design / case study/analysis /application in any one of the Wid energy, Tidal and OTEC

L:45; Total:45

TEXT BOOKS:

1. E.L Wakil "Power plant technology", McGrawGill Publishers, New York

2. G. D Rai "Non Conventional Energy sources" Khanna publishers. New Delhi

REFERENCES:

- 1. S.Rao & B.B.Parulekar,"Energy Technology", 3rd edition,Khanna publishers,1995.
- 2. Anna Mani & Dr.Nooley,"wind Energy Data for India", 1983.
- 3. IS 875 part IV and IS 1893 material STDS IS 226 (IS 2862, ASTM A-36, BS. 4360 Gr 43 D)
- 4. Logan (EARL),"Turbo Machinary Basic theory and applications", 1981.

12

6

10

10

YRE 103- PROCESS MODELLING AND SIMULATION IN ENERGY SYSTEMS

3003

UNIT – I

Introduction to modeling, a systematic approach to model building, classification of models. Modeling Techniques-Response function and Numerical methods- Conservation principles, thermodynamic principles of process systems

UNIT-II

Introduction to development of steady state and dynamic lumped and distributed parameters models based on first principles, Analysis of ill-conditioned systems, Block diagrams and computer simulation, Modeling of process elements consisting of Mechanical (translational and rotational) electro- Mechanical ,fluid flow, thermal and chemical reaction system elements

UNIT-III

Development of grey box models. Empirical model building. Statistical model calibration and validation. Population balance models. Examples.

UNIT-IV

Solution strategies for lumped parameter models. Stiff differential equations. Solution methods for initial value and boundary value problems. Euler's method. R-K method. shooting method, fnite difference methods. Solving problems using MATLAB/ SCILAB

UNIT- V

Solution strategies for distributed parameter models. Solving parabolic, elliptic and hyperbolic partial differential equations. Finite element and finite volume methods.

TEXT BOOKS

- 1. K.M. Hangos and I.T Cameron," Process Modelling and Model analysis".academic Press 2001.
- W. L Luyben, "Process Modelling, Simulation and control for chemical Engineers" 2nd Edn, McGraw Hill Book Co, New York, 1990
- 3. W.F Ramirez "Computational Methods for Process Simulation" Butterworths, 1995

REFERENCES

- 1. Mark E. Davis," Numerical Methods and Modelling for Chemical Engineers" JohnWiley & Sons,1984.
- 2. Singiresu S. Rao "Applied Numerical Methods for Engineers and Scientists" Prentice hall, Upper saddle River, NJ 2001
- 3. Francis vanek, Louis D. Albright," Energy systems Engineering" McGraw- Hill book Company, N.Y 2008
- 4. "Power System Engineering" 2nd Ed.D.P Kothari, I.J. Nagrath, Tata MaGraw-Hill Co 2008.

6

9

9

12

9

L:45; T:15; Total:60

YRE106 - SOLAR ENERGY LAB

0 0 1 1

Solar Energy

- 1. Performance evaluation of solar flat plate collector
- 2. Performance evaluation of concentrating solar collector
- 3. Performance evaluation of solar cooker
- 4. Performance evaluation air dryer
- 5. Performance evaluation of a solar PV panel in series and parallel combination
- 6. Charging characteristics of a battery using PV panel
- 7. Effect of tilt angle and Effect of shadow on solar PV panel

YRE109- MAT and SCI LAB 0 0 1 1

- 1. Integration Techniques: Trapezoidal method, Simpson's 1/3 rd rule, Simpson's 3/8 rule
- 2. Finding root of Arithmetic Equation
- 3. Optimization Techniques
- 4. LPP methods
- 5. Transportation problems.
- 6. Image process of Bio gasification process

YRM107 (*) – Research Methodology and IPR (MC) 2000

Unit 1: Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit 2: Effective literature studies approaches, analysis Plagiarism, Research ethics,

Unit 3: Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

Unit 4: Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit 5: Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

Unit 6: New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

References:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students""
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007. Mayall , "Industrial Design", McGraw Hill, 1992.
- Niebel, "Product Design", McGraw Hill, 1974. 5.
- 6. Model Curriculum of Engineering & Technology PG Courses [Volume -II] 125 Asimov, "Introduction to Design", Prentice Hall, 1962.
- 7. Robert P. Merges, Peter S. Menell, Mark A. Lemley, " Intellectual Property in New Technological Age", 2016.
- 8. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

YRE 201 - BIO ENERGY SYSTEMS 3 0 0 3

UNIT- I BIO FULES

Bio fuels: types, Properties and sources- Bio fuels first, second and third generation production processes and technologies- Bio diesel comparison with diesel - Biofuel applications - Bio diesel and Ethanol as a fuel for I.C. engines - Relevance with Indian Economy - Bio-based Chemicals and Materials - Commercial and Industrial Products - Govt. Policy and Status of Bio-fuel technologies in India.

UNIT - II CHARACTERISATION OF BIOMASS

Biomass: Sources and Classification. - Properties - Energy plantation - Preparation of biomass. Size reduction- Briquetting of loose biomass - Drying, storage and handling of biomass. Conversion of biomass. Biomass processing for liquid and gaseous fuel production. Effect of

particle size, temperature, on products obtained - Processing of various biomass for gas production for Thermal and Electrical application.

UNIT-III BIOGAS TECHNLOGY

Feed stock for biogas production, animal residues, Aqueous wastes containing biodegradable organic matter- Microbial and biochemical aspects- factors and operating parameters for biogas production-Kinetics and mechanism-Dry and wet fermentation. Digesters-types-digesters for rural application -High rate digesters for industrial waste water treatment

UNIT- IV GASIFICATION OF BIOMASS

Thermo chemical Principles: Effect of pressure, temperature and introducing, steam and oxygen. Design and operation of fixed and fluidized bed Gasifier, circulating fluidized bed gasifiers, Safety aspects, operating characteristics of moving bed and fluidized bed gasifier- different typesadvantages and disadvantages- performance analysis of gasifiers.

UNIT - V COMBUSTION OF BIOMASS & COGENERATION SYSTEMS

Combustion of woody biomass - theory, calculations and design of equipments, Cogeneration in biomass processing industries. - Economic Case studies: Combustion of rice husk. Use of bagasse for cogeneration.

A compulsory seminar / assignment on design / case study/analysis /application in any one of the Bio Energy systems

TEXT BOOKS;

- 1. Chakraverthy A, "Biotechnology and Alternative Technologies for Utilisation of Biomass or Agricultural Wastes", Oxford & IBH publishing Co, 1989.
- 2. Mittal K.M "Biogas Systems : "Principles and Applications" New age international publishers (P) Ltd 1996, Nijaguna, B.T Biogas Technology, New age International publishers (P) Ltd

L:45: Total:45

10

9

REFERENCES:

- 1 Venkata Ramana P and Srinivas S.N, "Biomass Energy Systems", ISBN 81-85419-25-6, Tata Energy Research Institute, 1996.
- 2. Klass D.L and Emert G.M, "Fuels from Biomass and Wastes", Ann Arbor Since Publ. Inc. Michigan, 1985.
- 3. O.P.Chawla, "Advances in Bio-gas Technology" I.C.A.R., New Delhi, 1970.

YRE 202 - COMPUTATIONAL FLUID DYNAMICS 3003

UNIT - I GOVERNING DIFFERENTIAL EQUATION AND FINITE DIFFERENCE METHOD

Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerical Errors, Grid Independence Test.

UNIT - II CONDUCTION HEAT TRANSFER

Steady one-dimensional conduction, Two and Three-dimensional steady state problems, Transient one-dimensional problem, Two-dimensional Transient Problems.

UNIT - III INCOMPRESSIBLE FLUID FLOW

Governing Equations, Stream Function - Vorticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and Spalding, Computation of Boundary layer flow, Finite deference approach.

UNIT - IV CONVECTION HEAT TRANSFER AND FEM

Steady One-Dimensional and Two-Dimensional Convection - Diffusion, Unsteady one-dimensional convection -Diffusion, Unsteady two-dimensional convection - Diffusion - Introduction to finite element method - Solution of steady heat conduction by FEM - Incompressible flow - Simulation by FEM.

UNIT - V TURBULENCE MODELS

Algebraic Models - One equation model, K-I Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes.

L:45; T:15; Total :60

TEXT BOOK

1. Anderson ,D.A Tannehill, I I and Pletcher , R.H "Computational Fluid Mechanics and Heat transfer" Narosa Publication House, NewYork, USA, 1984

REFERENCES:

- 1. Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa PublishingHouse ,New Delhi1995.
- 2. Ghoshdasdidar, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw-Hill PublishingCompany Ltd., 1998.
- 3. Anderson, D.A., Tannehill, I.I., and Pletcher, R.H., "Computational Fluid Mechanics and Heat Transfer", Hemishphere Publishing Corporation, New York, USA, 1984.
- 4. Flectcher, C.A.J., "Computational Techniques for Different Flow Categories, Springer-Verlage 1987.

10

7

10

8

YRE 203 - ELECTRICAL ENERGY TECHNOLOGY

UNIT - I POWER SYSTEM FUNDAMENTALS

Single line representation – power flow study – power factor improvement, Protection, types of relays, symmetrical components, asymmetrical components, Introduction: Hybrid power system. HVDC - introduction, various coupling methods.

UNIT - II ELECTRIC ENERGY CONVERSION DEVICES

Transformers – Parallel operation, auto transformers, DC machines, Applications of DC machines – performance equation - generator characteristics - motor characteristics – applications of Synchronous machines - alternators – Induction machines.

UNIT - III SOLID-STATE POWER CONVERTERS AND DRIVES

Controlled rectifiers, choppers, inverters, voltage regulators and cyclo -converters. Speed control of dc motors and ac motors – converter fed chopper –fed control Inverter – ac voltage regulators, VFD.

UNIT - IV HYBRID POWER GENERATION

Types of hybrid systems, Integration issues - Steady state performance of Wind-driven induction generators. Grid connected solar photo voltaic system - line commutated converters - Boost converters- selection of inverter. Three phase AC voltage controllers for wind power plants - uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.

Micro Grids, Intelligent Grids, Smart grids, Phase Monitoring Unit (PMU), Case studies.

UNIT - V POWER QUALITY IMPROVEMENT

Introduction – Characterisation of Power Quality, impacts, Types of Harmonic filters: passive, Active and hybrid filters. Custom power devices: Load compensation using STATCOM / DSTATCOM, Voltage regulation.

FACT controlled devices, DVR. UPQC control strategies, UPFC, P-Q theory, Status of application of custom power devices. L:45; Total:45

TEXT BOOKS:

- 1. John J Graigner and W.D Stevenson "Power system analysis" McGrawHill publishinig company, 1994.
- 2. T.JE. Miller "FACT controlled device" Johan willey Publications.
- 3. M.H.Rasheed "Power Electronics" Tata Mc Graw Hill.
- 4. Arindam Ghosh "Power Quality Enhancement Using Custom Power Devices", kluwer Academic Publishers, 2002

YRE206- BIO ENERGY AND CFD LAB

Bio Energy:

- 1. Flue gas analysis IC engine and gasifier
- 2. Proximate and Ultimate analysis of fuels
- 3. Analysis of chemical oxygen demand (COD)
- 4. Analysis of biological oxygen demand (BOD)

3003

11

0 0 1 1

9

- 5. Determining the Flash point, Fire point and Calorific value of Biofuel
- 6. Effect of P_H on total dissolved solids (TDS)
- 7. Heat pipes demonstration

Computational Fluid Dynamics:

- 1. Experiments on flow patterns.
- 2. Velocity profile in an air pipe.
- 3. Wind tunnel calibration.
- 4. Draining of a tank..
- 5. Pipe friction..
- 6. Boundary layer studies.
- 7. Falling ball experiments.
- 8. Viscosity measurement.

YRE207 MINI PROJECT

$0 \ 0 \ 1 \ 2$

Syllabus contents:-

Students can take up small problems in the field of design engineering as mini project. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.

S	lemester	Course name	Course Code	`L	Т	Р	С
	Π	Constitution of India	YPSOE1	-	-	-	0

Course content

- 1. Meaning of the constitution law and constitutionalism
- 2. Historical perspective of the Constitution of India
- 3. Salient features and characteristics of the Constitution of India
- 4. Scheme of the fundamental rights
- 5. The scheme of the Fundamental Duties and its legal status
- 6. The Directive Principles of State Policy Its importance and implementation
- 7. Federal structure and distribution of legislative and financial powers between the Union and the States
- 8. Parliamentary Form of Government in India The constitution powers and status of the President of India
- 9. Amendment of the Constitutional Powers and Procedure
- 10. The historical perspectives of the constitutional amendments in India
- 11. Emergency Provisions : National Emergency, President Rule, Financial

Emergency

- 12. Local Self Government Constitutional Scheme in India
- 13. Scheme of the Fundamental Right to Equality
- **14.** Scheme of the Fundamental Right to certain Freedom under Article 19 Scope of the Right to Life and Personal Liberty under Article 21

YRE301 Project phase - I

00 10 10

Guidelines:

The Project Work will start in semester III and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M. Tech. The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.

YRE401 Project Phase - II 0 0 16 16

Guidelines:

It is a continuation of Project work started in semester III. He has to submit the report in prescribed format and also present a seminar. The dissertation should be presented in standard format as provided by the department. The candidate has to prepare a detailed project report consisting of introduction of the problem, problem statement, literature review, objectives of

the work, methodology (experimental set up or numerical details as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study. The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a guide, co-guide etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his guide.

LIST OF ELECTIVES (***)

YRE104A - FLUID DYNAMICS AND HEAT TRANSFER 3 0 0 3

UNIT – I

Basic equations and flow of non viscous fluids - Fluid and Fluid Properties - The differential equation of fluid flow – Flow of Non viscous fluids.

UNIT - II

The flow of viscous fluids – Laminar flow in closed conduits – turbulence – Dimensional analysis and its application to fluid dynamics – Turbulent flow in closed conduits – the laminar sub layer - Flow in the entrance section of closed conduits - Flow of incompressible fluids past immersed bodies - Flow in the shell side of multitude heat exchangers.

UNIT - III

The convection-heat – transfer coefficient – Dimensional Analysis in convection heat transfer – Heat transfer during laminar flow in closed conduits - turbulent flow heat transfer in closed conduits -Empirical correlation for high – Prandtl – Number fluids.

UNIT - IV

The analogy between momentum and heat transfer – Heat transfer with liquid metals – Heat transfer during incompressible flow past immersed bodies.

UNIT – V

Recent development in the designing of heat exchanger – Plate heat exchanger – run around coils – heat pipes – regenerators - effectiveness of heat exchanger.

TEXT BOOKS;

1. James G. Knudsen, Donald L. Katz., "Fluid Dynamics and Heat Transfer", 1958, Mc Graw Hill **Publishers**

REFERENCES:

1. Kern D.C., "Process Heat Transfer", Mc Graw Hill Publishers.

YRE104B - ENERGY CONSERVATION IN HVAC 3003

UNIT - I DESIGN OF HVAC SYSTEM COMPONENTS

compression Systems-Refrigerant properties- Energy Efficient compressor-Condensers-Vapour Evaporators-expansion devices- Cooling Systems other auxiliaries-Design and Analysis for Energy conservation- Case Studies- VAR Systems- Utilization of Waste heat and other sources- Analysis for Energy Efficiency Ratio.

UNIT – II AIR CONDITIONING SYSTEMS

Psychrometry - Comfort conditions -Types of A/c Systems- Energy conservation of Humidifiers, Air Washers- Air distribution and handling systems-Controls for AHU-Passive and Active A/c Systems-Thermal Properties and Energy content of Building materials.

L:45; Total:45

9

9

12

10

8

7

UNIT - III ESTIMATION OF BUILDING LOADS

Steady state method – Network method-Numerical method – correlations – computer packages for carrying out thermal design of buildings and predicting performance- Thermal comfort – Ventilation and air quality – Air conditioning requirement – Visual perception –Illumination Requirement – Auditory requirement – Energy Management Options – Energy Audit and Energy Targeting – Technological Options for Energy Management-standards on indoor parameters.

UNIT - IV FACTORS AFFECTING THE ENERGY USE

Factors that affect energy use in building- functional factors, environmental factors-Envelope factors-Air conditioning system factors- Energy source factors and Electrical systems factors- Fenestration design for optimal day lighting- Lighting and Visual ability – Light sources and Luminaries – Lighting System- Design-Day lighting-Day light factors- Luminance Efficacies- CRI for Lighting source and Usage- Economics and Aesthetics.

UNIT-V MODELING AND SIMULATION

Evaluation of natural ventilation in buildings, determination of probable indoor wind speed and direction- Ventilation heat transfer - Solar-air temperature-Introduction to Natural and artificial ventilation simulation systems- Energy Calculations- Degree Days procedure- BIN methods-Comprehensive simulation methods

TEXT BOOKS:

- 1. Faye C. McQuiston and Jerald D. Parker "Heating, Ventilating and Air Conditioning Analysis and Design", 4th Edition, John-Wiley & Sons, Inc, NewYork.1994.
- 2. C.P.Arora "Refrigeration and Air-conditioning", Tata-McCraw Hill Publishers, New Delhi

REFERENCES:

- 1. J.Krieder and A.Rabi "Heating and Cooling of Buildings. Design for Efficiency Mcgraw Hill (1994).
- 2. J.R.Williams, Passive Solar Heating, Ann Arbar Science(1983).
- 3. R.W.Jones, J.D.Balcomb, C.E.Kosiewiez, G.S.Lazarus, R.D.Mc Farland and W.O.Waray, Passive Solar Design Handbook, Vol.3 Report of U.S. Department of Energy (DOE/CS-0127/3) (1982).

YRE104C - FUELS AND COMBUSTION TECHNOLOGY3 0 0 3

UNIT – I FUELS, FUEL ANALYSIS & COMBUSTION STOICHIOMETRY

FUELS & FUEL ANALYSIS: Types of fuel-Physical and chemical characteristics of solid, liquid, and gaseous fuels-Nonconventional fuel-producergas, hydrogen, biogas etc- Determination of Calorific values-Ultimate and proximate analysis-problems associated with handlings, storage and combustion

COMBUSTION STOICHIOMETRY

Stoichiometry relations – conservation of mass principles – theoretical & actual combustion processes – calculation of air fuel ratio for a fuel of known combustion – calculation of flue gas composition of fuel and excess air supplied from exhaust gas analysis – combustion calculation with substoichiometry air – calculation of atmospheric air moisture – Dew point temperature of the combustion products – Flue gas analysis- Boiler performance analysis

UNIT - II THERMODYNAMICS OF COMBUSTION PROCESSES

COMBUSTION KINETICS: Degree of reactions-reactions equilibrium-Laws of mass actioncriteria of equilibrium-heat and temperature-Gibbs free energy – equilibrium constant-Vant hoffs isotherm – rate of reaction-factors affecting rate of reaction-calculation of equilibrium constant and composition of reating systems .

- 30 -

8

10

9

L:45; Total: 45

UNIT- III FLAME, FLAME STRUCTURE, IGNITION AND IGNITORS

Flame – flame structure – flame propagation – deflagaration – detonations – flame front – Ignition – self & forced ignition – Ignition temperature & ignition limits – Factors influencing ignition – SIT – Ignition lag – limits of inflammability & its determination – factors affecting inflammability limits – calculation of inflammability limits – flame blow off, blow out & flash back – flame quenching, Flame structure – flame stability – premixed & diffused flames – velocity of flame propagation – various methods of flame stabilization – swirl number & its significance – Turndown ratio – Ignitors – various types of ignitors – NFPA class I, II & III ignitors – Eddy plate ignitor – plasma ignitor – High energy Arc ignitor – DIPC ignitor.

UNIT- IV BASICS OF FURNACES

Industrial furnaces – process furnaces Steam generating furnaces – Kilns – Batch & continuous furnaces – Advantages of ceramic coating – Heat source – Distributions of head source in furnaces – Blast furnace – open hearth furnace – pot & crucible furnaces – waste heat recovery in furnaces – Recuperator – Regenerators – Furnace atmospheres – Furnace Insulation – Furnace Heat balance calculations, Pipe still Heater.

UNIT - V COAL BURNING EQUIPMENTS

Coal burning methods – over feed & underfeed supply of coal – Mechanical Stokers – Travelling grate & spreader stoker – vibrating grate stoker – Advantages & disadvantages of stoker firing over pulverized systems of firing – problems encountered with burning of high ash coal. Pulverized fuel burners – streamlined burner – turbulent burners – Tangential burner – cyclone burner – special type burners.

A compulsory seminar / Assignment on design /case study / Analysis/ Application in any one of the combustion system and accessories (viz Burner,Draught etc)

Text Books:

- 1. Dr. SamirSarkar, "Fuels & Combustion", Orient Longman, Second edition, 1990.
- 2. Gupta O.P. "Elements of Fuels, Furnaces & Refractories", 3rd edition, Khanna Publishers, 1996.

REFERENCES:

- 1. S.P. Sharma & Chander Mohan, "Fuels & Combustion", Tata McGraw Hill Publishing Co.Ltd., 1984
- 2. J.D. Gilchrist, "Fuels, Furnaces & Refractories", Pergamon Press, ISBN-008-029430-9 ----
- 3. Blokh A.G. "Heat Transmission in Steam Boiler furnaces", Hemisphere Publishing Corpn.ISBN-089-116-626-2

YRE105A - ENVIRONMENTAL ENGINEERING3003

UNIT - I ENVIRONMENTAL POLLUTION

Mass and energy transfer – units of measurements, material balance and energy fundamentals – Environmental chemistry stoichiometry, chemical equilibria. Mathematics of growth – exponential growth, resource consumption and population growth, resource consumption and population growth – problems. Atmosphere – Regions of atmosphere – Earth's natural atmosphere – consequences of population growth – classification of pollution – pollution of Air, Water & Soil – Effect of pollutants on living system – Environmental legislation.

L:45; Total:45

10

10

7

UNIT - II AIR POLLUTION CONTROL METHODS & EQUIPMENT

Sources of air pollution –classification & properties of air pollutants – scales of concentration – Effects of air pollution – meteorological aspects of air pollution – urban air pollution – carbon-dioxide & climate change – Acid deposition – Industrial air pollution – Automobile air pollution – Sampling, measurement and analysis of air pollutants such as SOx, NOx, CO, NH₃, CnHn, SPM, Opacity, Volatile organic compounds, Trace metals.

UNIT - III WATER POLLUTION

Water Sources – Origin of waste water – Classification of Water Pollutions – Effects of water pollutants – Water Pollution Laws and Standards – Water Pollution & Health – Waste Water Sampling – BOD – COD analysis – Waste Water Treatment – primary treatment – secondary treatment – Advanced waste water treatment – Anaerobic Digestion. Desalination – micro filtration – ultra filtration – Reverse Osmosis.

UNIT - IV SOLID WASTE DISPOSAL

Solid waste- Sources, types, Compositions and Properties - Land Fill Method of Solid Waste Disposal – Land Fill Classification, Types, Methods and Sitting Consideration – Layout and Preliminary Design of Land Fills – Composition, Characteristics, generation, Movement and Control of Landfill Leach ate and Gases – Environmental Monitoring System for Land Fill Gases.

UNIT - V OTHER TYPES OF POLLUTION

Noise Criteria - Noise Sources - Noise Control Measures - Thermal Pollution - Oil pollution - Pesticides - Radioactivity Pollution control - Tanneries and other Industries and their control

L:45, Total: 45

Q

9

9

9

TEXT BOOKS

1. James Gilbert M.Masters, "Introduction to Environmental Engineering And Science", 2nd edition, Prentice Hall, 1998.

REFERENCES:

1. Rao C.S Environmental Engineering and Pollution Control, 1st edition, New Age International Publishers, 1991.

YRE105B - CARBON SEQUESTRATION AND TRADING3003

UNIT - I GREENHOUSE GAS

Stabilization of greenhouse gas concentrations – greenhouse gas risks and reservoirs – green gas mitigation – Carbon di oxide and climate change, acid rain, global warming, impacts of global warming-Kyeto-procal.

UNIT - II CARBON

Practices for sequester carbon - car bon sequestration types – carbon credits – carbon testing – potential for carbon sequestration.

UNIT - III MANAGEMENT

Risk management and risk reduction - carbon economics - Verification of carbon change.

UNIT - IV CASE STUDIES

Carbon trading model – Century Model – Case Studies.

10

9

7

UNIT - V RULES AND REGULATIONS

Implication Methanol and Nitrous Oxide carbon bank – Best Management Practices 0 Publics issues – policies.

L:45; Total:45 implication

TEXT BOOKS

1. Emission Trading:Environmental Policies New approach-Richard F. Kosobud, Douglas L. Schreder, Holly M. Biggs Published 2000 John Wiley and Sons.

REFERENCES:

- 1. Agricultural Practices and Policies for Carbon Sequestration in Soil By John M. Kimble, Rattan Lal Published 2002CRCPress
- 2. The Impact of Carbon Dioxide and Other Greenhouse Gases on Forest Ecosystems By David F. Karnosky Published 2001 CABI Publishing.

YRE105C- WASTE MANAGEMENT AND ENERGY RECOVERY 3003

UNIT – I SOLID WASTE

Definitions – Sources, types, Compositions, Properties of Solid Waste – Municipal Solid Waste – Physical, Chemical and Biological Property – Collection – Transfer Stations – Waste Minimization and Recycling of Municipal Waste.

UNIT – II WASTE TREATMENT

Size Reduction – Aerobic Composting – Incineration – Furnace Type and Design, Medical/Pharmaceutical Waste Incineration – Environmental Impacts – Measures of Mitigate Environmental Effects due to Incineration UNIT – III WASTE DISPOSAL 9

UNII – III WASTE DISPOSAL

Land Fill Method of Solid Waste Disposal – Land Fill Classification, Types, Methods and Sitting Consideration – Layout and Preliminary Design of Land Fills – Composition, Characteristics, generation, Movement and Control of Landfill Leachate and Gases – Environmental Monitoring System for Land Fill Gases.

UNIT – IV HAZARDOUS WASTE MANAGEMENT

Definition and Identification of Hazardous Waste – Sources and Nature of Hazardous Waste – Impact on Environment – Hazardous Waste Control – Minimization and Recycling Assessment of Hazardous Waste – Disposal of Hazardous Waste, Underground Storage Tanks Construction, Installation and Closure.

UNIT - V ENERGY GENERATION FROM WASTE

Types – Biochemical Conversion – Sources of Energy Generation – Industrial Waste, Agro Residues – Anaerobic Digestion – Biogas Production – Types of Biogas Plant Thermochemical Conversion – Sources of Energy Generation – Gasification – Types of Gasifiers – Briquetting – Industrial Applications of Gasifiers – Utilization and Advantages of Briquetting – Environment Benefits of Biochemical and Thermochemical Conversion.

L:45; Total:45

REFERENCES:

9

8

8

10

- 1. Parker, Colin & Roberts, Energy from Waste An Evaluation of Conversion Technologies, Elsievier Applied Science, London, 1985.
- 2. Shah, Manoj Datta, Waste Disposal in Engineered Landfills, Narosa Publishing House, 1997.
- 3. Rich, Gerald et.al., Hazardous Waste Management Technology, Podevan Publishers, 1997.
- 4. Bhide AD., Sundaresan BB, Solid Waste Management in Developing Countries, INSDOC, New Delhi, 1983.

YRE204A - OPTIMUM UTILISATION OF HEAT AND POWER 3003

UNIT - I ENERGY CONVERSION TECHNIQUES

Energy resource assessment – energy supply, demand and storage planning methods – economic feasibility and assessment methods – energy transfer and conversion methods – thermodynamic and efficiency analysis methods – system analysis methodologies.

UNIT - II TOTAL ENERGY SCHEMES

Basic concepts of CHP – The benefits of CHP – Problems associated with CHP – The balance of energy demand – Types of Prime demand – Types of prime movers – The economics of CHP generation – CHP in the industrial sector – CHP in the commercial sector – CHP in the domestic sector district heating – Conclusions.

UNIT - III PROCESS INTEGRATION AND PINCH TECHNOLOGY

Pinch Technology – Basic concepts of pinch technology – Streams networks – The significance of the Pinch – Design of energy recovery systems – Selection of pinch temperature difference – Tabular method – Stream splitting – Process retrofit – Installation of heat pumps – Installation of heat engines – The grand composite curve – General comments about process integration.

UNIT - IV ENERGY RECOVERY

 $\label{eq:second} Insulation-Recuperative heat exchanger-Run \ \ around \ coil \ systems-Regenerative heat exchangers \\ - \ Heat \ pumps-Heat \ pipes-Selection \ of \ energy \ recovery \ methods, \ Cogeneration.$

UNIT - V APPLICATION OF CHP

CHP in agricultural sector - processing - energy requirements - potential. CHP in industrial sector - Processing - energy requirements - source of waste heat.

Text Books;

1. Eastop T.D & Croft D.R, "Energy efficiency for engineers and Technologists", 2nd edition, Longman Harlow, 1990.

REFERENCES:

1. O'Callaghan, Paul W, "Design and Management for energy conservation", Pergamon, ,1993.

YRE204B - STATISTICAL TOOLS FOR DATA ANALYSIS 3 003

UNIT - I RESEARCH

Objectives – types: descriptive, analytical, applied fundamental, quantitative, qualitative, conceptual, empirical – approach – significance – methods – process – Research design – need – concepts – sampling design.

L:45; Total:45

12

12

10

6

5

UNIT - II LITERATURE SEARCH

Offline search: Abstracts-subject index, author index, formula index and other indices-examplescurrent. Contents - organization - titles and index. On line Search: Computer browsing for literature search and down loading-basics of internet services-sources of abstracts, articles for browsing for literature search and down loading - basics of internet services-sources of abstracts, articles for browsing and downloading, technique for conversion form one format to another.

UNIT - III STATISTICAL PROCESS CONTROL (SPC)

The seven tools of quality, Statistical Fundamentals – Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for variables and attributes, Process capability, Concept of six sigma, New seven Management tools.

UNIT - IV DESIGN AND ANALYSIS OF EXPERIMENTS

Treatment and interpretation of engineering data. Curve fitting non linear least square regression.. Tests of significance - test of hypothesis, chi square test, analysis of variance and covariance. Introduction to factorial designs- 2^k factorial designs, introduction-Blocking and confounding in two level factorial designs- $2^{k \cdot p}$ fractional factorial designs, introduction -Random factors in experiments -Random factors in factorial experiments, mixed models

UNIT - V ERROR ANALYSIS IN MECHANICAL MEASUREMENTS

Types of errors-Precision and accuracy-Statistical tests on the accuracy of results-Binomial distribution-Gaussian distribution T-tests, Comparison of precision of two methods by test.

L:45; Total :45

TEXT BOOKS

- 1. C.R.Kothari, Research Methodology Methods and techniques, Wishwa Prakashan, New Delhi, 1996.
- 2. Design and Analysis of Experiments, 5th edition, by D.C. Montgomery, John Wiley & Sons, New York. 2001

REFERENCES:

1..W.I.Cochron, 'Statistical methods', Oxford and IBH publishers.

2.http://www.sciencedirect.com/science/journal

3.James R.Evans & William M.Lidsay, The Management and Control of Quality, (5thEdition), South-Western (Thomson Learning), 2002 (ISBN 0-324-06680-5

YRE204C – SUSTAINABLE DEVELOPMENT

UNIT - I INTRODUCTION

Industrial activity and Environment industrialization and sustainable development - Industrial Ecology - Prevention versus control of industrial pollution - Regulations to encourage cleaner production based approached.

UNIT - II CLEANER PRODUCTION CONCEPT

Importance – Historical evolution – Benefits – promotion – barriers – Role of Industry, government and Institutional - Resume, recovery, recycle, substitution - Internet information & other CP resources.

UNIT- III CLEANER PRODUCTION PROJECT DEVELOPMENT

3003

10

9

9

8

- 36 -

Overview of CP Assessment steps & skills – preparing for the site – material balance – Technical and Environmental feasibility analysis – Economic Evolution of alternatives – Total cost analysis – CP financing - Established programme – Preparing & programme plan – reset audit – Environmental statement

UNIT - IV LIFE CYCLE ANALYSIS & ENVIRONMENTAL MANAGEMENT SYSTEM

Elements of LCA - life cycle costing – ECO labelling - Design for the Environment Environmental standards – ISO 14001 – Environmental audit.

UNIT - V CASE STUDY

Industrial application of CP, LCA, EMS & Environmental audit

REFERENCES:

- 1. Pollution prevention: Fundamental and Practice, Paul L Bishap, McGrawhill, INC
- 2. Pollution prevention and abatement Handbook Towards cleaner production World bank and UNDP, Washinghton, D.C
- 3. Cleaner Production Audit, Prasad Modak, Asian Institute of Technology, Bangkok

YRE205A- INSTRUMENTATION TECHNOLOGY FOR ENERGY SYSTEMS

UNIT - I INTRODUCTION TO MEASUREMENT TECHNIQUES

General concepts of measurements, static and dynamic characteristics, Introduction to calibrations, calibration standards – characteristics of instruments – Definition – True value – Accuracy – Precision – Sensitivity – Resolution – errors & its measurements, Data acquisition & Display.

UNIT - II MEASUREMENT OF PRESSURE AND TEMPERATURE MEASUREMENT OF PRESSURE

Different units of pressure – Classification of pressure gauges – manometers – pressure balance gauges – force balancing gauge – elastic deformation – commercial pressure gauges using the above principles – ring balance type elements. Measurement of vacuum–Mcleod gauge – Pirani gauge. Measurement using strain gauges. Measurement of Pressure using electronic / micro processor based transmitter, calibration of the instrumentation.

UNIT-III MEASUREMENT OF TEMPERATURE & HEAT FLUX

Difference temperature scales – Non-electrical methods – change in volume of liquid – change in pressure of gas – change in vapour pressure. Electrical methods – Thermocouple – Resistance Temperature Detector – Radiation Pyrometer – Optical Pyrometer – Thermostats. Temperature measurement using electronic / micro processor based transmitter, Incidental radiation heat flux, conduction heat flux, calibration. Measurement of Electrical Energy – Voltage – Current – Power Factor.

UNIT - IV MEASUREMENT OF FLOW, LEVEL, HUMIDITY AND OTHER

L:45; Total: 45

9

9

3003

MISCELLANEOUS PARAMETERS

Flow measurement – types – differential pressure type flow meter – orifice meter – ventury tube – flow nozzle – pitot tube – positive displacement type flow meter – Inferential flow meter – turbine flow meter – variable area flow meter (rotameter) – mass flow meter. Low flow measurement using pizzo ring, Ultra Sonic flow meter for high flow. Level measurement – Basic methods – Measuring hydrostatic pressure – measuring the movement of the float – electric conduction method – sight glass. Non-Contact measurement techniques. Level measurement by DP transmitter. Definition of humidity – hydrometer & psychrometer – Humidity measurement. Measurement of pH:-pH scale – methods of pH measurements.mass spectrometer & Chromotograph. Hazardous area and its classification, calibration.

UNIT - V TRANSDUCERS & PROCESS CONTROL

Classification of Transducers – Active and passive transducers - Analog and digital transducers. Advantages of electrical transducers over mechanical transducers – Different types: Resistance – Inductance – Capacitance – Piezo electric transducers.

Functional block diagram of a process control loop and their elements. Definition of set point, dead zone, dead time, disturbance, deviation- Control system – Open and closed loop control system – feed forward control – Ratio control – cascade control. Closed loop conyrollers with examples. Programmable logic controllers & Disturbed controlled system. Computer control using Supervisory Computer.

L:45; T:15; Total: 60

TEXT BOOKS

1. John P.Bentley, "Principles of Measurement System", 3rd edition, Addision Wsley Longman Ltd.UK,2000.

REFERENCES:

- 1. Instrument Transducers: An introduction, Neubert H.K.P., Their performance and Design. 2nd edition, Oxford University Press, Cambridge, 1999, Sensors and Transducers, Patranabis, Wheeler Publishing 1999.
- 2. Stephanopoulos, "Chemical Process Control An Introduction, to Theory and practice", PHI, New Delhi, 1984.

YRE 205B - HYDROGEN AND NUCLEAR ENERGY3 0 0 3

UNIT - I HYDROGEN ENERGY

Hydrogen as a renewable energy source - Sources of Hydrogen - Fuel for Vehicles - Hydrogen Production - Direct electrolysis of water - direct thermal decomposition of water - biological and biochemical methods of hydrogen production - Storage of hydrogen - Gaseous, Cryogenic and Metal hydride - Utilization of hydrogen.

UNIT - II BATTERIES & FUEL CELL

Battery – Storage cell Technologies -storage cell fundamentals- characteristics – Emerging trends in batteries-Carbon- Zinc & alkaline cells, Mercury, Zinc –air &Silver oxide button cells, Lead acid, Edison, Ni cad & Ni mg cells and lithium Technology

Fuel cell – Principle of working- construction- Design and performance analysis of fuel cells-The alkaline fuel cell, Acidic fuel cells, PEM Fuel cells, SOFC - Emerging trends in fuel cells, - Applications – Industrial and commercial

UNIT - III NUCLEAR POWER

12

9

12

Nuclear energy conversion - Chemical and nuclear equations - Nuclear reactions -Fission and fusion - Energy from fission and fuel burn-up - Radioactivity – Neutron energies - Fission reactor types - Nuclear power plants - Fast breeder reactor and power plants - Production of nuclear fuels.

UNIT - IV NUCLEAR POWER

Fuel rod design - Steam cycles for nuclear power plants - reactor heat removal – Coolant channel orificing - Core thermal design - Thermal shields - Fins in nuclear plants – Core thermal hydraulics - Safety analysis - LOCA - Time scales of transient flow and heat transfer processes.

UNIT - V NUCLEAR WASTE MANAGEMENT

Segregation and safe disposal of nuclear waste –case studies

TEXT BOOKS'

- 1. M. M. El-Wakil: Power Plant Technology, McGraw Hill, 1985
- Hand book of Batteries and Fuel cells ,3rd Edision, Edited by David and Thomas, McGrawhill Book company,N.Y 2002
 B. Reddy,
- 3. Fuel cell, Principles and applications ,Viswanathan,B and Scibioh,Aulice M. Universities Press.2006

REFERENCES:

- 1. A. W. Culp Jr: Principles of Energy Conversion, McGraw Hill, 2001
- 2. Principles of fuel cells by Xianguo Li, Taylor & francis,2006
- 3. T. F. Morse: Power Plant Engineering, Affiliated East West Press, 1978
- 4. R. H. S. Winterton: Thermal Design of Nuclear Reactors, Pergamon Press, 1981
- 5. R. L. Murray: Introduction to Nuclear Engineering, Prentice Hall, 1961

YRE205C - ENERGY MODELING, ECONOMICS AND PROJECT MANAGEMENT

UNIT - I MODELS AND MODELING APPROACHES

Macroeconomic Concepts - Measurement of National Output - Investment Planning and Pricing - Economics of Energy Sources - Reserves and Cost Estimation.

UNIT - II INPUT OUTPUT ANALYSIS

Multiplier Analysis - Energy and Environmental Input / Output Analysis - Energy Aggregation – Econometric Energy Demand Modeling - Overview of Econometric Methods.

UNIT - III ENERGY DEMAND ANALYSIS AND FORECASTING

Methodology of Energy Demand Analysis - Methodology for Energy Technology Forecasting - Methodology for Energy Forecasting - Sectoral Energy Demand Forecasting.

UNIT - IV ECONOMICS OF STANDALONE POWER SUPPLY SYSTEMS

Solar Energy - Biomass Energy - Wind Energy and other Renewable Sources of Energy -Economics of Waste Heat Recovery and Cogeneration - Energy Conservation Economics.

UNIT - V PROJECT MANAGEMENT-FINANCIAL ACCOUNTING

Cost Analysis - Budgetary Control - Financial Management - Techniques for Project Evaluation.

L:45; Total:45

REFERENCES:

10

5

L:45; Total:45

3003

9

8

12

10

- 39 -

- 1. M.Munasinghe and P.Meier (1993): Energy Policy Analysis and Modeling, Cambridge University Press.
- 2. W.A.Donnelly (1987): The Econometrics of Energy Demand: A Survey of Applications, New York.
- 3. S.Pindyck and Daniel L.Rubinfeld (1990): Econometrics Models and Economic Forecasts, 3rd edition MC Graw -Hill, New York.
- 4. Energy Management handbook, Turner.

YRE302A ENERGY AUDIT AND MANAGEMENT

UNIT - I INTRODUCTION

Energy scenario – Principles and imperatives of energy conversion – Energy consumption pattern – Resource availability – Why save energy – reasons to save energy – an over view of energy consumption and its effects – current energy consumption in India – Role of Energy Managers in Industries.

UNIT - II ENERGY CONSERVATION OF THERMAL UTILITIES

Energy Audit–Characteristic Methods Employed in Certain Energy Intensive Industries – Various Energy Conservation Measures in Steam – Losses in Boiler. Methodology of Upgrading Boiler Performance – Boiler Blow Down Control – Excess Air control – Pressure Reducing Stations. Energy Conservation in Steam Systems – Importance of correct Pressure, Temperature, & Quality of Steam – Condensate Recovery – Condensate Pumping – Thermo Compressors – Recovery of Flash Steam – Air Removal & Venting – Moisture Removal. Steam Traps – Types, Function, Necessity – Section and application. Co-generation – in-plant power generation systems – co-generation Schemes and configuration – Design Considerations – Heat Rate Improvement. Case studies.

UNIT - III ENERGY CONSERVATION OF UTILITIES

Centrifugal pumps – energy consumption & energy saving potentials – Design consideration minimizing over design – case studies – Fans & Blowers – Specification – Safety margin – choice of fans controls – design considerations. Air compressor & compressed air systems – selection of compressed air layout – Encon aspects to be considered at design – Design consideration. Refrigeration & Air conditioning – Heat load estimation – methods of minimizing heat loads – optimum selections of equipments – case studies. Energy conservation in cooling towers & spray ponds – Case studies.

UNIT - IV ENERGY AUDITING

Potential areas for Electrical Energy Conservation in various Industries – Conservation methods – Energy Management Opportunities in Electrical Heating, Lighting System, Cable Selection – Energy Efficient Motors – Factors Involved in Determination of Motor Efficiency Adjustable AC Drivers, Application & its Uses – Variable speed Drivers / Belt Drives Energy Efficiency in Electrical Systems – HT Power Distribution – Control system in HT/LT side, Harmonics – Energy Efficiency in Lighting – Case studies.

UNIT - V ENERGY MANAGEMENT

Organizational background desired for energy management persuation / motivation / publicity role, tariff analysis, detailed process of M&T Energy monitoring, auditing & targeting – Economics of various Energy conservation schemes, instrumentation and calibrationElectronics Control and Industrial Energy Management Systems. Thermostats, Boiler controls; proportional, differential and integral control, optimizers; compensators.

10

10

10

8

7

3 0 0 3

L:45; T:15; Total:60

TEXT BOOKS

1. Eastop T.D & Croft D.R, Energy Efficiency for Engineers and Technologists, Longman Scientific & Technical, ISBN – 0-582 – 03184, 1990.

REFERENCES:

- 1. Reay D.A, Industrial Energy Conservation, 1st edition, Pergamon Press, 1977.
- 2. Larry C whitetal, Industrial Energy Management & Utilization.

YRE302B- UNIT OPERATIONS IN INDUSTRIES3 0 0 3

UNIT - I CRUSHING, GRINDINGSIZE SEPARATION & CONVEYING OF BULK SOLIDS

Various Laws of Crushing – classification of crushing and grinding machineries – Coarse crushers – Intermediate crushers – fine grinders – jaw crusher – Gyratory Crusher – Crushing rolls – Hammer mills – Ball and tube mills – Ultrafine grinders – Closed circuit grinding – Grindability Index. Introduction – characterization of solid particles – standard screens – screen analysis – Types of screening equipments – Air separation methods – Cyclone and bag filters – Size separation by settling - Laws of Settling – Classifiers – Material separation by difference in density – Heavy media cyclone - Froth floatation – Hindered settling – working of thickener. Conveying of bulk solids – conveyor of bulk materials – screw conveyors – Belt conveyors – Bucket Elevators – Pneumatic Conveyers.

UNIT - II MIXING AND FILTRATION

Introduction – mixing of liquids/Liquids, Liquids/Gases, Liquids/Solid – Types of mixers – various mixing equipments – Power requirement for an Impeller Mixer. Theory of Industrial filtration – Constant pressure and constant rate filtration – Filter Aids – Filtration Equipment Classification – Filter Presses – Leaf Filters – Rotary Drum Filter – Centrifuges

UNIT - III EVAPORATION

Introduction – Duhrings Chart – Boiling Point Elevation – Capacity and Economy of Evaporators – Evaporators Classification – Short tube and Long Tube Evaporators – Forced Circulation Evaporators – Climbing and Falling Film Evaporators – Multiple Effect Evaporator – Evaporator Accessories

UNIT - IV HUMIDIFICATION AND DRYING

Definition – Adiabatic Saturation Temperature – Humidity Chart – Wet bulb Temperature and Measurement of Humidity – Spray Ponds and Cooling Towers – Cooling Tower Designing considerations. Introduction – Drying Theory – Equilibrium Moisture Content – Bound, Unbound, Free Moisture – Drying Rate Curves – Constant Drying Rate – Falling Rate Period – Classification of Dryers – Tray Dryers – Rotary Dryers – Turbo Dryer – Cylinder Dryer – Festoon Dryer – Drum Dryer – Spray Dryer – Fluid Bed Dryer

UNIT - V DISTILLATION

12

8

8

Introduction – Various Distillation Methods – Flash Distillation – Batch Distillation – Steam Distillation – Continuous Distillation – Minimum Reflux Ratio- Total Reflux – Optimum Reflux Ratio – Steam Distillation Calculations – Ideal Plate – Actual Plate – Plate Efficiency - Distillation column Internals – Concepts of Azeotropic and Extractive Distillation – Enthalpy Balance for a Continuous Distillation Column (for binary system) L:45; Total:45

REFERENCES:

- 1. P.Chattopadhyay, "Unit operations of chemical Engineering", 2nd edition, Khanna Publishers, 1996.
- 2. W.L.McCabe and J.C.Smith, "Unit operations of Chemical Engineering",5th edition, McGraw Hill International editions, 1993.
- 3. Alan S Foust, "Principles of Unit Operations", 2nd edition, Wiley International Edition, 1960.
- 4. J.M. Coulson & Richardson, Chemical Engineering, 5th edition, Butterworth Heinemann, 1996.

YRE302C- CAD/CAM AND SIMULATION OF RENEWABLE ENERGY SYSTEMS

UNIT - I BASIC CONCEPTS OF CAD

CAD Hardware and software operating system, application software, CAD workstation Principles of computer graphics – graphics programming, input techniques, transformation. Elements of mechanical drafting package, graphic standards, graphic libraries, design and drafting interface. Advanced modeling techniques.

UNIT - II ADVANCED MODELLING TECHNIQUES

Modeling of curve and surface, non uniform rotational of splines , commercial surface modeling software – principles of solid modeling – rendering methods – CAD/CAM data base development and database management systems –principles of optimum design

UNIT- III COMPUTER AIDED MANUFACTURING AND PROCESS

Computer aided manufacturing- fundamentals of CAD/CAM – computers in manufacture – Programming languages, process interface hardware – hierarchy of computers in CAM. Computer process monitoring, types of production monitoring systems – process control – modeling and analysis – direct digital control – supervisory computer control – steady state optimal control – adaptive control, on – line search strategies. Systems for manufacturing support.

UNIT- IV CAD MODELLING AND SIMULATION OF SOLAR AND WIND ENERGY SYSTEMS 9

Solar collectors, solar cooker, solar water heater, solar pasteuriser, solar drier, wind mill and wind generator.

UNIT- V CAD MODELLING AND SIMULATION OF SYSTEMS USING BIOMASS 9

Updraft gasifier – downdraft gasifier, cross draft gasifier – multi fuel gasifier – fixed and fluid bed gasifier –Biogas plant.

L:45; Total: 45

REFERENCES:

9

3003

9

- 1. William M Newman and Robert Sproul "principles of interactive graphics" McGraw Hill, 1984.
- 2. Radha Krishnan.P. & Kothandaraman.C.P. "Computer graphics design" Dhanpat Rai and Sons, 1990.
- 3. Groover.M.P. "Automation, Production systems and Computer Aided Manufacturing" Prentice Hall, 1984.
- 4. CAD/CAM Theory & practice, Inbrahim & Zeid Pub: Tata McGraw Hill.

OPEN ELECTIVES (**)**

UNIT - I HYDROLOGY

TEXT BOOKS:

YREOE1 – HYDRO POWER TECHNOLOGY

Overview of Hydropower systems-Preliminary Investigation-Rainfall and run off measurements-Hydrographs-Flow duration graph and mass storage graphs-determination of site selection- Types hydro electric power plants-General arrangements and layouts - preparation of Reports and Estimates-Review of World Resources- Basic Factors in Economic Analysis of Hydropower projects-Project Feasibility-Load Prediction and Planned Development

UNIT- II DEVELOPMENT OF PROTO TYPE SYSTEMS

Advances in Planning, Design and Construction of Hydroelectric Power Stations-Trends in Development of Generating Plant and Machinery-Plant Equipment for pumped Storage Schemes-Some aspects of Management and Operations-Updating and Refurbishing of Turbines- case studies

UNIT - III SELECTION AND ANALYSIS OF TURBINES

Pelton, Francis and Kaplan Turbine Measurement of pressure head, Velocity-Various parameters for finding out the potential of Hydro energy-Selection of turbines based on specific quantities –case study.

UNIT - IV HYDRO POWER STATION OPERATION, MAINTENANCE AND TROBLE SHOOTING

Governing of Power Turbines-Functions of Turbine Governor-Condition for Governor Stability-Surge Tank Oscillation and Speed Regulative Problem of Turbine Governing in Future- Planning, Design and Construction of Hydroelectric Power Stations-Remaining Life cycle analysis

UNIT-V SMALL, MINI AND MICRO HYDRO POWER PLANTS TURBINES

1. P.K Nag "Power plant Engineering" Tata McGrawHill, New Delhi,2004

Introduction – analysis of micro hydro and mini hydro turbines – Economical and electrical aspects of small, mini and micro hydro turbines potential developments – design reliability of small, mini micro hydro turbines – case studies.

L:45; Total: 45

9

9

3003

2. Domkundwar and Arora "a course inPower plant Engineering" Khanna publishers, New Delhi **REFERENCES:**

1. L.Monition, M.Lenir and J.Roux, Micro Hydro Electric Power Station(1984)

2. AlenR. Inversin, Micro Hydro Power Source Book(1986)

YREOE2 ENERGY EFFICIENT BUILDING

UNIT - I INDOOR ENVIRONMENT

Introduction of Architecture as the art and science of designing. Building Science its significance indoor Environment. Components of Indoor Environment. Quality of Indoor Environment.

3003

UNIT - II THERMAL ANALYSIS AND DESIGN FOR HUMAN COMFORT 12

Human comfort- Thermal, Visual, Acoustical and Olfactory comfort, comfort, En ergy and indoor Environment. Concept of Solar temperature and its significance. Calculation of instantaneous heat gain through building envelops. Calculation of solar radiation on buildings. Building orientation and significance. Introduction to design of shading devices (horizontal, vertical and egg-crate). Factors that affect energy use in buildings. Ventilation and its significance. Lighting and visual ability-Lighting system Design – Day lighting Economics.

UNIT - III SOLAR PASSIVE CONCEPTS FOR COOLING FOR BUILDINGS

Passive concepts- passive heating concepts, passive cooling concepts and passive heating & cooling concepts. passive concepts appropriate for the various climatic zones in India.

UNIT-IV ENERGY MANAGEMENT AND ENERGY AUDIT OF BUILDINGS

Introduction to energy management of buildings and energy audit of buildings. Aims of energy management of buildings. The historical and diagnostic energy audit, their objectives and benefits. Introduction energy management matrix monitoring and targeting. Building energy survey and audit report form.

UNIT V ENERGY EFFICIENT LANDSCAPE DESIGN

Modification of microclimate through landscape elements for energy conservation. Energy conservation through site selection, sitting & orientation. Energy conservation through integration of buildings and site, site planning and design.

L:45; Total:45

REFERENCES:

- 1. Sodha M. Bansal, N.K.bansal, P.K., Kumar. A, and Malik, M.A.S., "Solar Passive Buildings" Pergamon Press, 1986.
- 2. Evans, Martin, "Housing, Climate and Comfort." ISBN 0 85139 102 8, The Architectural Press, London, 1980.
- 3. Bureau of Indian standards, I.S. 11907- 1986 Recommendations for calculation of Solar Radiation Building, 1986.
- 4. Givoni, B, "Man, Climate and Architecture", Elsevier, Amsterdam, 1986.
- 5. Smith Ajitha, D. ., "Building Environment", Tata McGraw Hill publishing company Limited, New Delhi, 1985
- 6. Robinette, G.O., (ed), " Landscape Planning for Energy Conservation". Van Nostrand Reinhold, New Yark, 1990.

MANDATORY COURSES – AUDIT COURSES

0

7

8

<u>1. ENGLISH FOR RESEARCH PAPER WRITING</u>

UNIT 1:- Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness 4

UNIT 2:- Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4

UNIT 3:- Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT 4:- key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature, 4

UNIT 5:- Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions 4 UNIT 6:- useful phrases, how to ensure paper is as good as it could possibly be the first- time submission 4

Suggested Studies:

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011.

2. DISASTER MANAGEMENT:-

UNIT 1:- Introduction Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

UNIT 2:- Repercussions Of Disasters And Hazards: Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

UNIT 3:- Disaster Prone Areas In India Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics 4

UNIT 4:- Disaster Preparedness And Management Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

4

UNIT 5:- Risk Assessment Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Assessment. Strategies for Survival.

UNIT 6:- Disaster Mitigation Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India. 4

SUGGESTED READINGS:

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "'New Royal book Company.
- 2. Sahni, Pardeep Et.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- 3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi.

8

8

8

6

3. SANSKRIT FOR TECHNICAL KNOWLEDGE

UNIT 1 :-

Alphabets in Sanskrit Past/Present/Future Tense Simple Sentences

UNIT 2 :-

Order Introduction of roots Technical information about Sanskrit Literature

UNIT 3:-

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

Suggested reading:-

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

4. VALUE EDUCATION:-

UNIT 1:-

- 1. Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. 4
- 2. Moral and non- moral valuation. Standards and principles.
- 3. Value judgements

UNIT 2 :-

1.Importance of cultivation of values.

2.Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. 3.Honesty, Humanity. Power of faith, National Unity. 6

4.Patriotism.Love for nature ,Discipline

UNIT 3:-

1.Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking.

2. Integrity and discipline.

3. Punctuality, Love and Kindness.

4. Avoid fault Thinking.

5.Free from anger, Dignity of labour.

6.Universal brotherhood and religious tolerance.

7.True friendship.

8. Happiness Vs suffering, love for truth.

9. Aware of self-destructive habits.

10.Association and Cooperation.

11.Doing best for saving nature

UNIT 4:-

1. Character and Competence –Holy books vs Blind faith.

2.Self-management and Good health.

- 3. Science of reincarnation.
- 4.Equality, Nonviolence ,Humility, Role of Women.
- 5.All religions and same message.
- 6.Mind your Mind, Self-control.

7.Honesty, Studying effectively

Suggested reading:-

1 Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi.

6

5. CONSTITUTION OF INDIA:-

UNIT 1- History of Making of the Indian Constitution: History Drafting Committee, (Composition & Working)	4
UNIT 2 – Philosophy of the Indian Constitution:• Preamble Salient Features	4
 UNIT 3 – Contours of Constitutional Rights & Duties: 1. Fundamental Rights 2. Right to Equality 3. Right to Freedom 4. Right against Exploitation 5. Right to Freedom of Religion 6. Cultural and Educational Rights 7. Right to Constitutional Remedies 8. Directive Principles of State Policy 9. Fundamental Duties. 	4
 UNIT 4- Organs of Governance: Parliament Composition Qualifications and Disqualifications Powers and Functions Executive President Governor Council of Ministers Judiciary, Appointment and Transfer of Judges, Qualifications Powers and Functions 	4

1. District's Administration head: Role and Importance,

2. Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation.

3. Pachayati raj: Introduction, PRI: Zila Pachayat.

4. Elected officials and their roles, CEO Zila Pachayat: Position and role.

5. Block level: Organizational Hierarchy (Different departments),

6. Village level: Role of Elected and Appointed officials,

7. Importance of grass root democracy

UNIT 6 –

Election Commission:

- 1. Election Commission: Role and Functioning.
- 2. Chief Election Commissioner and Election Commissioners.

3. State Election Commission: Role and Functioning.

4. Institute and Bodies for the welfare of SC/ST/OBC and women.

Suggested reading:-

1. The Constitution of India, 1950 (Bare Act), Government Publication.

2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.

3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.

4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

6. PEDAGOGY STUDIES:-

UNIT 1 –

1.Introduction and Methodology

2. Aims and rationale, Policy background, Conceptual framework and terminology

3. Theories of learning, Curriculum, Teacher education.

4. Conceptual framework, Research questions.

5. Overview of methodology and Searching.

UNIT 2-

1. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries.

2. Curriculum, Teacher education.

UNIT 3 –

1. Evidence on the effectiveness of pedagogical practices

2.Methodology for the in depth stage: quality assessment of included studies.

3. How can teacher education (curriculum and practicum) and the school

4.curriculum and guidance materials best support effective pedagogy? Theory of change.

5.Strength and nature of the body of evidence for effective pedagogical

6.practices. Pedagogic theory and pedagogical approaches.

7. Teachers' attitudes and beliefs and Pedagogic strategies.

UNIT 4-

1.Professional development: alignment with classroom practices and follow-up support

2.Peer support

3.Support from the head teacher and the community.

4.Curriculum and assessment

5.Barriers to learning: limited resources and large class sizes

UNIT 5-

1. Research gaps and future directions

4

4

4

4

2.Research design
3.Contexts
4.Pedagogy
5.Teacher education
6.Curriculum and assessment 7.Dissemination and research impact.

Suggested reading:-

1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.

2

8

8

8

- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.
- 7. www.pratham.org/images/resource%20working%20paper%202.pdf.

7. STRESS MANAGEMENT BY YOGA:-

UNIT 1 –

Definitions of Eight parts of yog. (Ashtanga)

UNIT 2-

Yam and Niyam.
Do's and Don't's in life.
i) Ahinsa, satya, astheya, bramhacharya and aparigraha
ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan
UNIT 3-

Asan and Pranavam

i iouii uii		
i)	Various yog poses and their benefits for mind & body	8

ii) Regularization of breathing techniques and its effects Types of pranayam

Suggested reading:-

1. 'Yogic Asanas for Group Training-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur

2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata

8. PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

UNIT 1- Neetisatakam-Holistic development of personality 1.Verses- 19,20,21,22 (wisdom) 2.Verses- 29,31,32 (pride & heroism) 3.Verses- 26,28,63,65 (virtue) 4.Verses- 52,53,59 (dont's) 5.Verses- 71,73,75,78 (do's)

UNIT 2-

Approach to day to day work and duties.
 Shrimad Bhagwad Geeta : Chapter 2-Verses 41, 47,48,
 Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
 Chapter 18-Verses 45, 46, 48

UNIT 3-

Statements of basic knowledge. 1.Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68 2.Chapter 12 -Verses 13, 14, 15, 16,17, 18 Personality of Role model. Shrimad Bhagwad Geeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39 Chapter18 – Verses 37,38,63

Suggested reading:-

- 1. "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata,
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

4. a. Curicullum and Syllabus of the M.Tech FT programme – After Revision

CURRICULUM AND SYLLABUS

REGULATIONS – 2022

(Applicable to the students admitted from the Academic year 2022-23)

Category	Code No.	Course Title	L	Т	Р	С	Η
PCC	YRE101	Solar Energy Systems	3	0	0	3	3
PCC	YRE102	Wind, Ocean and Geothermal Energy Systems	3	0	0	3	3
PCC	YRE103	Process Modelling and Simulation in Energy Systems	3	0	0	3	3
PEC		Professional Elective – I	3	0	0	3	3
PEC		Professional Elective – II	3	0	0	3	3
PCC-L	YRE106	Solar Energy Laboratory	0	0	2	2	4
AICTE Mandatory Course*	YRM107	Research Methodology and IPR	2	0	0	2	2
AICTE - Audit**	YEGOE1	English for Research Paper Writing	2	0	0	0	2
PCC-L	YRE109	Process Modelling and Simulation Laboratory	0	0	2	2	4
	Total			0	4	21	27

SEMESTER II

Category	Code No.	Course Title	L	Т	Р	С	Η
PCC	YRE201	Bio Energy Systems	3	0	0	3	3
PCC	YRE202	Computational Fluid Dynamics	3	0	0	3	3
PCC	YRE203	Electrical Energy Technology	3	0	0	3	3
PEC		Professional Elective – III	3	0	0	3	3
PEC		Professional Elective – IV	3	0	0	3	3
PCC-L	YRE206	Computational Fluid Dynamics Laboratory	0	0	2	2	4
PCC-L	YRE207	Bio Energy Laboratory	0	0	2	2	4
AICTE - Audit	YPSOE1	Constitution of India	2	0	0	0	2
	Total		17	0	4	19	25

SEMESTER III

Category	Code No.	Course Title	L	Т	Р	С	Н
PROJ	YRE301	Dissertation Phase – I	0	0	10	10	20
PEC		Professional Elective - V	3	0	0	3	3
OEC		Open Elective Course	3	0	0	3	3
		Total	6	0	10	16	26

SEMESTER IV

Category	Code No.	Course Title	L	Т	Р	С	Н
PROJ	YRE401	Dissertation Phase – II	0	0	16	16	32
		Total	0	0	16	16	32

Total Credits - 72

Legend

PCC – Professional Core Course

PEC- Professional Elective Course

OEC - Open Elective Course

 $PCC\text{-}L-Professional\ Core\ Course-Lab$

PROJ - Project

* - Mandatory Course

**- Mandatory Course - Audit

Note:

1. The credit distribution is followed as per the guidelines given by AICTE/UGC.

Course type		Credit	5	Hours				
Course type	L	Т	Р	L	Т	Р		
Lecture course	3	0	0	3	0	3		
Practical / Project course	0	0	1	0	0	2		

LIST OF PROFESSIONAL CORE ELECTIVES

ELECTIVE GROUP - I:

Code No.	Course Title	L	Т	Р	С	Н
YRE104A	Fluid Dynamics and Heat Transfer	3	0	0	3	3
YRE104B	Energy Conservation in HVAC	3	0	0	3	3
YRE104C	Fuels and Combustion Technology	3	0	0	3	3

ELECTIVE GROUP - II:

Code No.	Course Title	L	Т	Р	С	Н
YRE105A	Environmental Engineering	3	0	0	3	3
YRE105B	Carbon Sequestration and Trading	3	0	0	3	3
YRE105C	Waste Management and Energy Recovery	3	0	0	3	3

ELECTIVE GROUP - III:

Code No.	Course Title	L	Т	Р	С	Н
YRE204A	Optimum Utilization of Heat and Power	3	0	0	3	3
YRE204B	Statistical Tools for Data Analysis	3	0	0	3	3
YRE204C	Sustainable Development	3	0	0	3	3
YRE204D	Hydro Power Technology	3	0	0	3	3

ELECTIVE GROUP - IV:

Code No.	Course Title	L	Т	Р	С	Н
YRE205A	Instrumentation Technology for Energy Systems	3	0	0	3	3
YRE205B	Hydrogen, Fuel cells and Nuclear Energy	3	0	0	3	3
YRE205C	Energy Modelling, Economics and Project Management	3	0	0	3	3
YRE205D	Energy Efficient Building	3	0	0	3	3

ELECTIVE GROUP - V:

Code No.	Course Title	L	Т	Р	С	Н
YRE302A	Energy Audit and Management	3	0	0	3	3
YRE302B	Unit Operations in Industries	3	0	0	3	3
YRE302C	CAD/CAM and Simulation of Renewable Energy Systems	3	0	0	3	3
YRE302D	Industrial Safety	3	0	0	3	3

LIST OF OPEN ELECTIVE COURSES

Code No.	Course Title	L	Т	Р	С	Η
YREOE1	Industrial Safety	3	0	0	3	3

C 4		T							
Semesto	-	I							
Course		Solar Energ	y Systems						
Course									
L –T –I	-		C:P: A	L –T –P –H					
3-0-0			3:0:0	3-0-0-3					
CO Numb er	CO STA	TEMENT		Knowledge Level					
CO1	Identify	proper solar ra	diation site	К3					
CO2	Design s	olar flat plate o	collectors	К3					
CO3	Design s	olar concentric	collectors	К3					
CO4	Apply co	ncepts related	to solar energy storage systems	К3					
CO5	Apply the	e concepts for	selection of PV systems	К3					
CO6	Apply the	К3							
		COURSE CONTENT							
COURS	SE CONT	ENT							
UNIT Source or radiation inclined	I SOI of radiatio n-radiatior l surfaces	LAR RADIAT n – Sun earth n on a horizor a – relations b	relationship- extra terrestrial radiation.— Atmosp tal surfaces and inclined planes-relations between monthly, daily and hourly radiat	een horizontal radiation and ion and components of the					
UNIT I Source radiation inclined radiation pyroheli	I SOI of radiatio n-radiatior l surfaces ns– solar	LAR RADIAT n – Sun earth n n on a horizor a – relations b charts – Critic yranometer, p	relationship- extra terrestrial radiation.— Atmosp tal surfaces and inclined planes-relations betwo	heric attenuation – terrestrial een horizontal radiation and ion and components of the and diffuse solar radiation-					
UNIT I Source radiation inclined radiation pyroheli	I SOI of radiation n-radiation l surfaces ns– solar iometer, p n data in l	LAR RADIAT n – Sun earth n n on a horizor a – relations b charts – Critic yranometer, p ndia.	relationship- extra terrestrial radiation.— Atmosp tal surfaces and inclined planes-relations betw etween monthly, daily and hourly radiat cal radiation-Measurement of global, direct a	heric attenuation – terrestrial een horizontal radiation and ion and components of the and diffuse solar radiation-					
UNIT I Source of radiation inclined radiation pyrohelin radiation UNIT I Design Temper of flat	I SOI of radiation n-radiation n-radiation surfaces ns solar solar iometer, p n data in 1 I SOI considera considera rature distribute plate college	LAR RADIAT n – Sun earth n on a horizor - relations b charts – Critic yranometer, p india. LAR COLLE tions – classi ributions- Heat ectors – select	relationship- extra terrestrial radiation.– Atmosp ntal surfaces and inclined planes-relations betwe etween monthly, daily and hourly radiat cal radiation-Measurement of global, direct a yrogeometer, net pyradiometer-sunshine record	pheric attenuation – terrestrial een horizontal radiation and ion and components of the and diffuse solar radiation- ler – an overview of solar 9 Hours collectors liquid heating – the collectors-for efficiency analysis of concentric tube					
UNIT I Source of radiation inclined radiation pyrohelin radiation UNIT I Design Temper of flat	I SOI of radiatio n-radiatior n-radiatior surfaces ns— solar solar iometer, p n data in l I SOI considera ature distr plate colle off I colle of r – testing I	LAR RADIAT n – Sun earth n on a horizor - relations b charts – Critic yranometer, p india. LAR COLLE tions – classi ributions- Heat ectors – select	relationship- extra terrestrial radiation.– Atmosp ntal surfaces and inclined planes-relations betwe etween monthly, daily and hourly radiat cal radiation-Measurement of global, direct yrogeometer, net pyradiometer-sunshine record CTORS – FLAT PLATE COLLECTORS fication- Flat plate collectors- air heating removal rate- Useful energy gain – Losses in ive surfaces – tubular solar energy collectors ollectors. Solar green house. Solar tracking. sola	pheric attenuation – terrestrial een horizontal radiation and ion and components of the and diffuse solar radiation- ler – an overview of solar 9 Hours collectors liquid heating – the collectors-for efficiency analysis of concentric tube					
UNIT I Source radiation inclined radiation pyrohel radiation UNIT I Design Temper of flat collecto UNIT I Concen analysis	I SOI of radiatio n-radiatior n-radiatior surfaces ns - solar iometer, p iometer, p n data in l I SOI considera ature distr plate colle colle r - testing I II CO API tric collects	LAR RADIAT n – Sun earth n on a horizor a – relations b charts – Critic yranometer, p india. LAR COLLE tions – classic ributions- Heat ectors – select of flat plate con NCENTRIC PLICATION tors-Limits to a solar concent	relationship- extra terrestrial radiation.– Atmosp ntal surfaces and inclined planes-relations betwe etween monthly, daily and hourly radiat cal radiation-Measurement of global, direct yrogeometer, net pyradiometer-sunshine record CTORS – FLAT PLATE COLLECTORS fication- Flat plate collectors- air heating removal rate- Useful energy gain – Losses in ive surfaces – tubular solar energy collectors ollectors. Solar green house. Solar tracking. sola	heric attenuation – terrestrial een horizontal radiation and ion and components of the and diffuse solar radiation- ler – an overview of solar 9 Hours collectors liquid heating – the collectors-for efficiency analysis of concentric tube r kilns ERMAL 9 Hours ng mechanism - performance /C system (Ammonia/water)					
UNIT I Source radiation inclined radiation pyrohel radiation UNIT I Design Temper of flat collecto UNIT I Concen analysis	I SOI of radiatio n-radiatior n-radiatior surfaces ns- solar iometer, p iometer, p n data in l I SOI consideration ature distribute colled of - testing I II CO API tric collects tric collects focusing ater pump,	LAR RADIAT n – Sun earth n on a horizor a – relations b charts – Critic yranometer, p ndia. LAR COLLE tions – classi ributions- Heat ectors – select of flat plate co NCENTRIC PLICATION tors-Limits to solar concent solar chimney	relationship- extra terrestrial radiation.– Atmosp ntal surfaces and inclined planes-relations betwe etween monthly, daily and hourly radiat cal radiation-Measurement of global, direct a yrogeometer, net pyradiometer-sunshine record CTORS – FLAT PLATE COLLECTORS fication- Flat plate collectors- air heating removal rate- Useful energy gain – Losses in ive surfaces – tubular solar energy collectors ollectors. Solar green house. Solar tracking. sola SOLAR COLLECTORS AND THE concentration – concentrator mounting – trackin rators: Heliostats. Solar powered absorption A	heric attenuation – terrestrial een horizontal radiation and ion and components of the and diffuse solar radiation- ler – an overview of solar 9 Hours collectors liquid heating – the collectors-for efficiency analysis of concentric tube r kilns ERMAL 9 Hours ng mechanism - performance /C system (Ammonia/water)					
UNIT I Source or radiation inclined radiation pyroheli radiation UNIT I Design Temper of flat collecto UNIT I Concern analysis solar wa UNIT I Simulat heaters-	ISOIof radiation-radiatiorn-radiatiorsurfacesns- solariometer, pn data in lISOIconsiderationature distrplate collector - testingIICOAPItric collectfocusingater pump,VSINion in Solationphi bar,	LAR RADIAT n – Sun earth n n on a horizor a – relations b charts – Critic yranometer, p india. LAR COLLEC tions – classic ributions- Heat ectors – select of flat plate con NCENTRIC PLICATION tors-Limits to a solar concent solar chimney IULATION A ar Process Des of chart meth	relationship- extra terrestrial radiation.– Atmosp ntal surfaces and inclined planes-relations between etween monthly, daily and hourly radiat cal radiation-Measurement of global, direct a grogeometer, net pyradiometer-sunshine record CTORS – FLAT PLATE COLLECTORS fication- Flat plate collectors- air heating removal rate- Useful energy gain – Losses in ive surfaces – tubular solar energy collectors ollectors. Solar green house. Solar tracking. sola SOLAR COLLECTORS AND THE concentration – concentrator mounting – trackin rators: Heliostats. Solar powered absorption A , solar drier, solar dehumidifier, solar still, solar	heric attenuation – terrestrial een horizontal radiation and ion and components of the and diffuse solar radiation- ler – an overview of solar 9 Hours collectors liquid heating – the collectors-for efficiency analysis of concentric tube r kilns ERMAL 9 Hours ng mechanism - performance /C system (Ammonia/water) cooker. 9 Hours art methods for liquid and air					

Photovoltaic cell – characteristics -maximum power- tracking-cell arrays-power electric circuits for output of solar panels--inverters-batteries-charge regulators, Construction concepts. Latest trends in PV systems, Life cycle analysis of solar energy system time value of money, evaluation of carbon credit of solar energy system.

Lecture =45 HoursTutorial = 0 HoursTotal = 45 Hours

TEXT BOOKS

- 1. DuffieJ.A and Beckman, W.A., "Solar Engineering of Thermal Processes", 2nd Edition, John Wiley& Sons Inc., Newyork, 1991
- 2. G.N. Tiwari."Solar Energy ; Fundamentals ,design,modelilg and applications "Third RePrint , Narosa Publishing House, New Delhi,2006

REFERENCE BOOKS

- 5. Edward E.Anderson, "Fundamentals for Solar Energy Conversion", Addison Wesley pubCO., 1983.
- 6. Fank Kreith, Jan F.Kreider, Principles of solar Engg", 1978.
- 7. Koushika M.D," Solar Energy Principles and Applications", IBT publications and distributors, 1988.

	P01	P02	P03	P04	P05	P06	P07
CO1	3	3	2	2	3	2	3
CO2	3	3	2	2	3	2	3
CO3	3	3	2	2	3	2	3
CO4	3	3	2	2	3	2	3
CO5	3	3	2	2	3	2	3
CO6	3	3	2	2	3	2	3
Tot	18	18	12	12	18	12	18

Mapping of COs with POs

1 - Low, 2 - Medium, 3- High

Semester		Ι		
Course Na	ame	MS		
Course C	ode	YRE102		
L –T –P –	·C		C:P:A	L –T –P –H
3-0-0-	3		3:0:0	3-0-0-3
СО	CO ST	ATEMENT		Knowledge Level
Number				
CO1	Identif	y the wind reso	purce assessment methods.	К3
CO2	Develo	p the wind flow	w models.	К3
CO3	Select	the optimum d	esign for variable operations of wind turbine	K3
CO4	Choose	the suitable s	ite for the layout of wind farm.	К3
CO5	<i>Identif</i>	y the electri sion.	К3	
CO6	<i>Catego</i> system	<i>rize</i> the oce s	K4	

- .
 - Understand and apply basic concepts of hydrogen energy and storage cells.
 - Apply the concept of nuclear energy for power generation by optimizing the design and following safety norms.
 - Understand the concept of nuclear waste management and use proper techniques for efficient management.

COURSE CONTENT

UNIT I	WIND RESOURCE AND ASSESSMENT	9 Hours
	Introduction – Modern Wind Turbines – Betz Constant, Limit - Win vs. Traditional Generation – Technology Advancements – Material U Penetration Levels – Applications. Wind Resource Assessment – Introduction – Characteristics of Stea Wind Speed Distribution Function – Vertical Profiles of the steady W Energy Pattern Factor – Energy Content of the Wind Resource Assess	sage – Wind Energy dy Wind – Weibull Vind – Wind Rose –
UNIT II	AERODYNAMICS	9 Hours
	Introduction – Aerofoil – Wind Flow Models – Axial Momentum T Theory for a Rotating Wake – Blade Element Theory – Strip Theory Losses Correction – Drag Translator Device – Wind Machine Charact	- Tip Losses – Tip
UNIT III	WIND TURBINE, SITING AND WIND FARM DESIGN	10 Hours
	Introduction – Classification of Wind Turbines – Turbine Compone Design – Rotor Torque and Power – Optimum Design for Variable O of Reynolds Number – Cambered Aerofoils – Load Calculation – Power Control – Braking Systems – Turbine Blade design – Rotor Hu Wind Flow Modelling – Capacity Factor – Planning of Wind Farm Turbines – Ecological Indicators – Site Analysis – Methodology – Li – Initial Site Selection – Measure Correlate Predict (MCP) Technic Wake Models.	peration – Influence - Cost Modelling – ab. n – Sitting of Wind ayout of Wind Farm que – Micrositing –
UNIT IV	ECONOMICS, ELECTRICAL AND CONTROL SYSTEMS	9 Hours
	Cost Calculation – Annual Energy Output (AEO) –Capital I Depreciation – Life Cycle Costing – Environmental Impact - Biologie	-

UNIT V	 Water and Wetlands – Visual Impact – Sound Impact – Commu Classification of Generators – Synchronous Generators – Induces Speed Generators – Control Systems – Power Collection Systems – Embedded Wind Generation. OCEAN AND GEOTHERMAL ENERGY SYSTEMS 	ction Generator – Variable
	 Wave energy -Tidal changes – Ecological changes – Types T Sea – Tidal Turbines – Tidal Power Generation - Ocean the (OTEC) - construction and operational problems – history Alternative energy technology - Problems and solutions Developments. A compulsory seminar / assignment on design / case study/and one of the Wind energy, Tidal and OTEC - Geothermal energy 	hermal energy conversion y of OTEC development s - Recent Trends and nalysis /application in any
Lecture = 4		
TEXT BO	OKS	
 Joshua E Pvt. Ltd J. F. Ma Applicat E.L Wak G. D Rai REFEREN 	dra, D.Kastha, S.Banerjee, "Wind Electrical Systems", Oxford Uni Earnest and Tore Wizelius, "Wind Power Plants and Project Dev ., New Delhi, 2011. nwell, J. G. McGowan and A. L. Rogers, "Wind Energy Explain tion", Wiley, 2009. iil "Power plant technology", McGrawGill Publishers, New York "Non Conventional Energy sources" Khanna publishers. New De NCES: . L., "Wind Energy Conversion Systems", Prentice Hall 1990.	velopment", PHI Learning ned – Theory, Design and
	Joshua, "Wind Power Technology", Second edition, PHI Learning	Pvt. Ltd., New Delhi,
3. Spera D. ASME P	A., "Wind Turbine Technology: Fundamental Concepts of Wind Tress, New York, 2009. Quashning, "Understanding Renewable Energy Systems", Earthsca	
5. Tony Bu WILEY	rton, David Sharpe, Nick Jenkins, Ervin Bossanyi, "Wind Energy & SONS, LTD, Second Edition,2011. B.B.Parulekar,"Energy Technology", 3rd edition,Khanna publisho	Handbook" JOHN

6. S.Rao & B.B.Parulekar,"Energy Technology", 3rd edition,Khanna publishers,1995.

			U						
	P01	P02	P03	P04	P05	P06	P07		
CO1	3	3	2	2	3	3	3		
CO2	3	3	2	2	3	3	3		
CO3	3	3	2	2	3	3	3		
CO4	3	3	2	2	3	3	3		
CO5	3	3	2	3	2	2	3		
CO6	3	3	2	2	2	2	3		
Tot	18	18	12	13	16	16	18		
	1 - Low 2 Madium 3- High								

Mapping of COs with POs

1 - Low, 2 – Medium, 3- High

Semeste	r	Ι		
Course			IODELLING AND SIMULATION IN ENE	RGY SYSTEMS
Course		YRE103		
L –T –P			C:P:A	L –T –P –H
3 - 0 - 0			3:0:0	3-0-0-3
CO		TEMENT		Knowledge Level
Numb	000111			into the uge Letter
er				
CO1	solve pro	blems related to	o modelling	К3
CO2			to different types of models such as lumped, teady, dynamic state models	К3
CO3		oblems related	to various systems involving variety of	К3
CO4			o model building	K3
CO4			to Solution strategies for lumped parameter	
	models			
CO6	models.	blems related	to Solution strategies for distributed parameter	K3
Objectiv	ves			
		bout the model		
			ypes of models, systems and its elements	
		• •	of modelling related problems	
· • '	To solve p	oroblems related	d to model building	
COURS	E CONT	ENT		
UNIT I	MO	DELLING		7 Hours
	mod	els. Modellin	odelling, a systematic approach to model buing Techniques-Response function and iples, thermodynamic principles of process systematics	Numerical methods-
UNIT II			EMS AND ELEMENTS	11 Hours
	para diag Mec	meters models rams and cor hanical (transl	evelopment of steady state and dynamic le based on first principles, Analysis of ill-cond nputer simulation, Modelling of process e ational and rotational) electro- Mechanical, f ystem elements	litioned systems, Block lements consisting of
UNIT I	I MO	DEL DEVEL	OPMENT	9 Hours
		-	grey box models. Empirical model buildin dation. Population balance models. Examples.	ng. Statistical model
UNIT I		LUTION STR		9 Hours
	Solu meth shoo	tion strategies ods for initial oting method, fi	for lumped parameter models. Stiff different value and boundary value problems. Euler's nite difference methods. Solving problems usin	tial equations. Solution method. R-K method. ng MATLAB/ SCILAB
UNIT V		LUTION STR		9 Hours
			for distributed parameter models. Solving lifferential equations. Finite element and finite	
Lecture	= 45 Hou	T	utorial = 0 Hours Total = 45 Ho	urs
TEXT E	BOOKS			
1 K M	Hangos	nd I T Comerci	n," Process Modelling and Model analysis".aca	demic Press 2001
2. W. L	Luyben,		delling, Simulation and control for chemical	
			Methods for Process Simulation" Butterworth	s,1995

REFERENCES

- 1. Mark E. Davis," Numerical Methods and Modelling for Chemical Engineers" JohnWiley & amp Sons, 1984.
- 2. Singiresu S. Rao "Applied Numerical Methods for Engineers and Scientists" Prentice hall, Upper saddle River, NJ 2001
- Francis vanek, Louis D. Albright," Energy systems Engineering" McGraw- Hill book Company, N.Y 2008
- 4. "Power System Engineering" 2 nd Ed.D.P Kothari, I.J. Nagrath, Tata MaGraw-Hill Co 2008

	PO1	P02	P03	P04	PO5	P06	PO7
CO1	3	3	2	2	3	2	3
CO2	3	3	2	2	3	2	3
CO3	3	3	2	2	3	2	3
CO4	3	3	2	2	3	2	3
CO5	3	3	2	2	3	2	3
CO6	3	3	2	2	3	2	3
Tot	18	18	12	12	18	12	18
		1.10	$v^2 - M$	odium :	3. High		

Mapping of COs with Pos

1 - Low, 2 – Medium, 3- High

Semester	I	
Subject N	NameSOLAR ENERGY LABORATORY	
Subject C	Code YRE106	
L –T –P –	-C C:P:A L -	-Т -Р -Н
0-0-2-	2 0:1:0 0-0	0 - 2 - 4
Course O	Dutcome Do	omain/Level
	C	or P or A
CO1	<i>identify</i> the performance of various solar collectors.	P3
CO2	<i>identify</i> the performance of various solar gadgets like air dr cooker and solar PV panels.	ryer, P3
CO3	<i>Experiment</i> the Charging characteristics of a battery us Solar PV panel and various effects on it.	sing P3
CO4	<i>identify</i> the direct normal, global horizontal irradiance and a solar tracking accuracy using solar energy gadgets.	also P3
CO5	Optimize the flow rate for maximum heat absorption us various samples.	sing P3
CO6	Simulate PV cell using Matlab / Simulink software.	Р3

Objectives

Study the performance of solar thermal energy applications flat plate and concentric type collectors.

- Study the performance solar photovoltaic (PV) panels at different combinations and conditions.
- Study and Optimize the performance of various Solar energy gadgets.

Model the Solar PV cell using software.

COURSE CONTENT

CO Relat	ion	
LIST OF	EXPERIMENTS	CO
1.	Performance evaluation of solar flat plate collector	1
2.	Performance evaluation of concentrating solar collector	1
3.	Performance evaluation of solar box cooker	2
4.	Performance evaluation air dryer	2
5.	Performance evaluation of a solar PV panel in series and parallel combination	2
6.	Charging characteristics of a battery using PV panel	3
7.	Effect of tilt angle and Effect of shadow on solar PV panel	3
8.	Solar Energy Measurements - Pyrheliometer	4
9.	Solar Energy Measurements - Pyranometer	4
10.	Parabolic Trough -Flow Rate	4
11.	External Compound Parabolic Collector (XCPC) - Oil and Water	5
12.	Mathematical modeling of photovoltaic cell/module/arrays with tags in Matlab /Simulink	6
Τ	OTAL HOURS - 30	

TEXT BOOKS

- - 1. DuffieJ.A and Beckman, W.A., "Solar Engineering of Thermal Processes", 2nd Edition, John Wiley& Sons Inc., Newyork, 1991
 - 2. G.N. Tiwari."Solar Energy; Fundamentals, design, modelling and applications "Third RePrint, Narosa Publishing House, New Delhi,2006

REFERENCES

- 1. Edward E.Anderson, "Fundamentals for Solar Energy Conversion", Addison Wesley pub CO., 1983.
- 2. Fank Kreith, Jan F.Kreider, Principles of solar Engg", 1978.
- 3. Koushika M.D," Solar Energy Principles and Applications", IBT publications and distributors, 1988.
- 4. Kaushik S.C, Tiwari G. N and Nayak J.K,"Thermal control in passive solar buildings" .IBT Publishers & Distributors, 1988.

	P01	P02	P03	P04	PO5	P06	P07
CO1	2	3	3	1	2	2	3
CO2	2	3	3	1	2	2	3
CO3	2	3	3	1	2	2	3
CO4	2	3	3	1	2	2	3
CO5	2	3	3	1	2	2	3
CO6	2	3	3	1	2	2	3
Tot	12	18	18	6	12	12	18

Mapping of COs with POs

COURSE CODE	COURSE NAME	L	Т	Р	С
YRM107	RESEARCH METHODOLOGY AND IPR	D IPR 2		0	2
After completion of	the course, a student will be able to				
1. Identify and	l formulate a research problem, collect data, identify re	search gap	for the)	
identified p	roblem				
2. Able to con	solidate literature survey and provide inference on own	words			
3. Describe Pa	atents, Designs, Trade and Copyright				
4. Appraise, d	iscuss and categorize Patent Rights				
5. Identify and	d describe new developments in IPR				

UNIT I

Meaning of research problem, Sources of research problem, Criteria-Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT II

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

UNIT III

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

UNIT V

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

LECTURE	TUTORIAL	TOTAL
30	0	30

6

6

6

6

6

REFERENCES

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students""
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

CO Vs PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1				1	3	3	3
CO2				1	3	3	3
CO3				1	3	3	3
CO4				1	3	3	3
CO5				3	3	3	3

COURSE CODE	COURSE NAME			L	Т	Р	С
YEGOE1	ENGLISH FOR RESEARCH	PAPER WRITI	NG	2	0	0	0
UNIT I							6
Planning and Prep	aration, Word Order, breaking u	p long sentence	s, Struct	uring	Parag	raphs	and
Sentences, Being C	oncise and Removing Redundancy	, Avoiding Ambi	guity and	l vague	eness		
UNIT II							6
Clarifying Who Die	d What, Highlighting Your Findir	ngs, Hedging and	l Criticiz	ing, Pa	araph	rasing	and
Plagiarism, Sections	s of a Paper, Abstracts. Introductio	n					
UNIT III							6
Review of the Liter	ature, Methods, Results, Discussion	n, Conclusions, T	he Final	Check	•		
UNIT IV							6
key skills are neede	d when writing a Title, key skills	are needed when	writing	an Abs	stract,	key s	kills
are needed when wi	riting an Introduction, skills needed	d when writing a	Review of	of the L	litera	ture,	
UNIT V							6
	hen writing the Methods, skills nee		•				
Ū,	iscussion, skills are needed when	•		useful	phras	es, ho	w to
ensure paper is as g	ood as it could possibly be the first						
		LECTURE	TUTO	RIAL		ГОТА	L
		30	0		3	30	
DEFEDENCES							
REFERENCES				~	1	D 1	
	(2006) Writing for Science, Yale V	•			•		s)
	6) How to Write and Publish a Sci					ress	
0	(1998), Handbook of Writing for						
	lwork, English for Writing Research	ch Papers, Spring	er New	Y ork D	ordre	cht	
Heidelberg	London, 2011						

CO Vs PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1			3	1	3	2	2
CO2			3	1	2	3	3
CO3			3	1	2	3	3
CO4			3	1	3	3	3
CO5			3	3	2	3	3

Semester		Ι					
Course Na			lelling and Simulat	ion Laboratory			
Course Co		YRE109			I T D H		
L - T - P - 0 0 - 0 - 2 - 2			C:P:A 0:1:0		L –T –P –H 0–0– 2 – 4		
<u>CO</u>		TATEMENT	0.1.0		Knowledge Level		
Number					_		
CO1	Code	root-finding al	gorithms		K6		
CO2		integration alg			K6		
CO3	condit	tions	•	actor (CSTR) under gravity	К3		
CO4		<i>Simulate</i> Continuously Stirred Tank Reactor (CSTR) under 3D K3 isothermal (open loop and closed loop) conditions					
CO5		Simulate Continuously Stirred Tank Reactor (CSTR) under 3D K3 isothermal and nonisothermal conditions					
CO6		ate an inhouse EXERCISES	biomass energy rela	ated problem.	K3		
5.Simulatio 6.Simulatio 7. Simulati 8. Simulati 9.Simulatio	on of G on of Th on of T on of n on of n on of R	avity-flow tan aree-isotherma hree-isotherma onisothermal (l CSTR (Open loop) al CSTR (closed loo CSTR (Open loop) ram for three-CSTR) p)			
-		C		nass gasification plant			
<u>^</u>	ation o			· biomass gasification plan	t under varying load		
Lecture =	0 Hour	s Tu	itorial = 0 Hours	Practical =30 Hours	Total = 30 Hours		
REFEREN	NCES						
1 337 7 7	w.h.on	"Due seen Me		and control for chemical H			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	1	0	2	2
CO2	3	3	3	1	0	2	2
CO3	3	3	3	1	0	2	2
CO4	3	3	3	1		2	2
CO5	3	3	3	1	0	2	2
CO6	3	3	3	1	0	2	2
Total	18	18	18	6	0	12	12

Semeste	r	II						
Course			GY SYSTEMS					
Course		YRE201						
L –T –P		111201	C:P:A	L –T –P –H				
12 - 1 - 1 3 - 0 - 0			3:0:0	3-0-0-3				
CO		TEMENT	5.0.0	Knowledge Level				
CO1	Identify (different Biofu	el types and explain their properties	K3				
CO2			ment Policies and status of bio fuel in India.	K3				
CO3			bes and explain their properties and applications	K4				
CO4			version through biochemical route.	K3				
CO5			version through thermochemical route.	K3				
CO6			ermal efficiency by designing suitable systems	K3				
000		recovery and co						
Objectiv								
•		he fundaments	als of biofuel types and their generations.					
			definitions used for biomass and basic biomass c	onversion.				
			of bioenergy use worldwide and the incentives of					
	in India.							
*	Detail the	digestion and	fermentation Technologies in biogas plants.					
			nd Gasification Technologies in common use.					
*	Describe	the power gen	eration scenario, the layout components of pow	ver plant and analyze				
	Cogenerat	ion cycle.						
COURS	E CONT	ENT						
UNIT I	BIO	FULES		9 Hours				
	Bio	fuels: types,	Properties and sources- Bio fuels first, second	and third generation				
			ses and technologies- Bio diesel comparison	with diesel - Biofuel				
		applications – Bio diesel and Ethanol as a fuel for I.C. engines –						
		Relevance with Indian Economy - Bio-based Chemicals and Materials - Commercial and						
			s - Govt. Policy and Status of Bio-fuel technologi					
UNIT I		ARACTERIS	9 Hours					
			and Classification Properties - Energy plant					
			action- Briquetting of loose biomass - Drying, st	0				
		biomass. Conversion of biomass. Biomass processing for liquid and gaseous fuel						
	-		of particle size, temperature, on products obta	÷				
			r gas production for Thermal and Electrical appli					
UNIT II		GAS TECHN		9 Hours				
			biogas production, animal residues, Aqueou					
			anic matter- Microbial and biochemical aspects-					
			ogas production- Kinetics and mechanism-Dry					
	-	• •	gesters for rural application – High rate digeste	rs for industrial waste				
TINIT		er treatment	OF BIOMASS	0.11				
UNIT I			OF BIOMASS	9 Hours				
			Principles: Effect of pressure, temperature and i					
			nd operation of fixed and fluidized bed Gasifier	6				
			ety aspects, operating characteristics of moving					
			types- advantages and disadvantages- perf	ormance analysis of				
TINITIO		fiers.						
UNIT V		MBUSTION	OF BIOMASS & COGENERATION	N 9 Hours				
		STEMS	1 1 1 .1 . + + +					
			voody biomass – theory, calculations and c					
	Cog	eneration in bi	omass processing industries Economic Case s	tudies: Combustion of				
	•		bagasse for cogeneration.					

Lecture =45 Hours	Tutorial	= 0 Hours	Total =	= 45 Hours		
TEXT BOOKS						
1. Chakraverthy A,	"Biotechnology	and Alternative	Technologies	for Utilisation	of Biomass	or

Agricultural Wastes", Oxford & IBH publishing Co, 1989.

2. Mittal K.M "Biogas Systems: "Principles and Applications" New age international publishers (P) Ltd 1996, Nijaguna, B.T Biogas Technology, New age International publishers (P) Ltd

REFERENCE BOOKS

- 1. Venkata Ramana P and Srinivas S.N, "Biomass Energy Systems", ISBN 81-85419- 25-6, Tata Energy Research Institute, 1996.
- 2. Klass D.L and Emert G.M, "Fuels from Biomass and Wastes", Ann Arbor Since Publ. Inc. Michigan, 1985.
- 3. O.P.Chawla, "Advances in Bio-gas Technology" I.C.A.R., New Delhi, 1970.

	Mapping of COs with POs								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7		
CO1	3	2	1	2	1	2	1		
CO2	2	1	1	3	3	3	3		
CO3	2	2	2	1	2	1	3		
CO4	2	2	2	1	2	1	3		
CO5	2	2	2	1	2	1	3		
CO6	3	3	2	1	3	2	2		
Total	14	12	10	9	13	10	15		

Semes	ster II					
Cours	e Name ELECTRIC	AL ENERGY TECHNOLOGY				
Cours	e Code YRE203					
	L –Т –Р –С	C:P:A	L –T –P –H			
	3-0-0-3	3:0:0	3-0-0-3			
Cours	se Outcome	Domain/Level C or P or A				
CO1	<i>Demonstrate</i> the power sy	K2				
CO2	<i>Illustrate</i> the various electrapplications.	K2				
CO3	<i>Classify</i> various Solid-statistic importance.	te Power Converters and drives and	K2			
CO4	<i>Demonstrate</i> the various I its importance.	Hybrid Power generation methods and	K2			
CO5	<i>Demonstrate</i> the vario importance.	us Smart grid systems and its	K2			
CO6	<i>Relate</i> various Power qu significances.	ality improvements methods and its	K2			
The ol	bjective of this course					
*	To learn about work vario	is power system components.				
.*.	To learn should employed a function electric energy conversion devices					

◆ To learn about application of various electric energy conversion devices

✤ To classify about various Power converters and drives.

To understand the various methods of hybrid power generation and power quality improvement.

UNIT I	POWER SYSTEM FUNDAMENTALS	7 HRS
	Single line representation – power flow study – power factor imported protection, types of relays, symmetrical components, asymmetrical components	omponents,
UNIT II		9 HRS
	Transformers – Parallel operation, auto transformers, DC machines DC machines – performance equation - generator character characteristics – applications of Synchronous machines - alterna machines.	ristics - motor
UNIT III	SOLID-STATE POWER CONVERTERS AND DRIVES	9 HRS
	Controlled rectifiers, choppers, inverters, voltage regulators and cyclo Speed control of dc motors and ac motors – converter fed chop Inverter –ac voltage regulators, VFD.	
UNIT IV	HYBRID POWER GENERATION	6 HRS
	converters - Boost converters- selection of inverter. Three ph	
UNIT V	controllers for wind power plants - uncontrolled rectifiers, PWM Interactive Inverters-matrix converters. SMART GRIDS	ase AC voltage I Inverters, Grid 3 HRS
UNIT V	controllers for wind power plants - uncontrolled rectifiers, PWM Interactive Inverters-matrix converters.	I Inverters, Grid 3 HRS
UNIT V UNIT V	controllers for wind power plants - uncontrolled rectifiers, PWM Interactive Inverters-matrix converters. SMART GRIDS Micro Grids, Intelligent Grids, Smart grids, Phase Monitoring United States	ase AC voltage I Inverters, Grid 3 HRS
	controllers for wind power plants - uncontrolled rectifiers, PWM. Interactive Inverters-matrix converters. SMART GRIDS Micro Grids, Intelligent Grids, Smart grids, Phase Monitoring Unstudies	ase AC voltage I Inverters, Grid 3 HRS nit (PMU), Case 11 HRS Harmonic filters: npensation using
UNIT V	 controllers for wind power plants - uncontrolled rectifiers, PWM Interactive Inverters-matrix converters. SMART GRIDS Micro Grids, Intelligent Grids, Smart grids, Phase Monitoring Unstudies POWER QUALITY IMPROVEMENT Introduction – Characterisation of Power Quality, impacts, Types of passive, Active and hybrid filters. Custom power devices: Load con STATCOM / DSTATCOM, Voltage regulation. FACT controlled devices, DVR. UPQC control strategies, UPFC, P 	ase AC voltage I Inverters, Grid 3 HRS nit (PMU), Case 11 HRS Harmonic filters: npensation using
UNIT V	 controllers for wind power plants - uncontrolled rectifiers, PWM Interactive Inverters-matrix converters. SMART GRIDS Micro Grids, Intelligent Grids, Smart grids, Phase Monitoring Unstudies POWER QUALITY IMPROVEMENT Introduction – Characterisation of Power Quality, impacts, Types of passive, Active and hybrid filters. Custom power devices: Load con STATCOM / DSTATCOM, Voltage regulation. FACT controlled devices, DVR. UPQC control strategies, UPFC, P of application of custom power devices. 45 hrs Tutorial = 0 hrs Practical=0 hrs Total = 45 hrs 	ase AC voltage I Inverters, Grid 3 HRS nit (PMU), Case 11 HRS Harmonic filters: npensation using

Mapping of COs with PO

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	3	3	2	1	3
CO2	3	2	3	2	2	1	2
CO3	3	2	3	2	2	1	2
CO4	3	2	3	3	2	1	3
CO5	3	1	3	3	2	1	3
CO6	3	3	3	2	2	1	2
Total	18	12	18	15	12	6	15

Semeste							
Course			nal Fluid Dy	namics Laboratory			
Course		YRE206					
L-T-F			C:P:A		L - T - P - H		
$\frac{0-0-2}{CO}$		TEMENT	1:0:0		0 - 0 - 2 - 4		
CO	CUSIA	IENIENI			Knowledge Level		
CO1	Simulate	lid-driven cav	ty and conve	ction process	K3		
CO2	Simulate	incompressible	e laminar flui	d flow problems in pipe	K3		
CO3	Simulate	incompressible	e turbulent flu	id flow problems in pipe	K3		
CO4	Simulate	wind turbine r	nodels in com	pressible fluid flow environment	K3		
CO5		.	-	xperiments and CSTR.	K3		
CO6	-		tion aspects o	f Renewable Energy systems.	K3		
	List of Ex	periments					
1.	Simulation	n of lid-driven	cavity.				
2.	Simulation	n of heat conve	ection for 3D	radiator.			
3.	Incompres	ssible laminar f	luid flow sim	ulation in elbow pipe.			
4.	Incompres	ssible laminar f	luid flow sim	ulation in T-shaped pipe.			
5.	Incompres	ssible turbulent	fluid flow sin	mulation in elbow pipe.			
6.	Incompres	ssible turbulent	fluid flow sin	mulation in T-shaped pipe.			
7.	Wind Turl	bine simulation	1.				
8.	Draining o	of a 3D fluid fi	lled tank.				
9.	Falling ba	ll experimenta	simulation.				
10.	Simulation	n of 3D CSTR.					
11.	Study of N	Natural convect	tion in Renew	able energy systems.			
12.	Study of f	orced convecti	on in Renewa	ble Energy systems.			
Lecture	= 0 Hour	rs Tutorial	= 0 Hours	Practical =30 Hours	Total = 45 Hours		
REFER	ENCES						
	8						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	2	2	3	1	1
CO2	3	3	2	2	3	1	1
CO3	3	3	2	2	3	1	1
CO4	3	3	2	2	3	1	1
CO5	3	3	2	2	3	1	1
CO6	3	3	2	2	3	1	1
Total	18	18	12	12	18	6	6

Mapping of COs with PO

1 - Low, 2 - Medium, 3- High

Semester Subject Nan Subject Cod		
L -T -P -C 0- 0 - 2 - 2	C:P:A 0:1:0	L –T –P –H 0- 0– 2 – 4
Course Out	come	Domain/Level C or P or A
CO1	<i>Calibrate</i> the performance of Flue gas analysis and properties of given sample.	Р3
CO2	<i>identify</i> the chemical, Biological oxygen demand and calorific values of given fuel.	P3
CO3	<i>identify</i> the Effect P_H levels on total dissolved solids	P3
CO4	<i>identify</i> effect of milling time and particle size.	P3
CO5	identify High Heating Value of given sample.	P3
CO6	<i>Demonstrate</i> the operations in briquetting, biomass gasifier and biomethanation plant.	Р3
Objectives		

Objectives

Study the performance of Flue gas analysis

Study the performance Bio fuels Flash point, Fire point and Calorific value

COURSE CONTENT

CO Rela	CO Relation				
LIST OF	EXPERIMENTS	CO			
1.	Flue gas analysis – IC engine and gasifier	1			
2.	Determine the Density and Specific Gravity of a given sample	1			
3.	Proximate and Ultimate analysis of given sample	1			
4.	Analysis of chemical oxygen demand (COD)	2			
5.	Analysis of biological oxygen demand (BOD)	2			
6.	Determining the Flash point, Fire point and Calorific value of Biofuel	2			
7.	Effect of P _H on total dissolved solids (TDS)	3			
8.	Determine the effect of milling time on the Particle size and size reduction of given sample using Ball milling machine	4			
9.	Determine the higher heating value (HHV) of unleaded gasoline (or a similar fuel	5			

	supplied by the instructor) using the adiabatic oxygen bomb calorimeter.		
10.	Briquetting operation demonstration and study	6	
11.	Biomethanation plant demonstration and study	6	
12.	2kW Biomass gasifier demonstration and study	6	

TOTAL HOURS - 30

TEXT BOOKS

- 1. Chakraverthy A, "Biotechnology and Alternative Technologies for Utilisation of Biomass or Agricultural Wastes", Oxford & IBH publishing Co, 1989.
- 2. Mittal K.M "Biogas Systems: "Principles and Applications" New age international publishers (P) Ltd 1996, Nijaguna, B.T Biogas Technology, New age international publishers (P) Ltd

REFERENCES

- 1. Venkata Ramana P and Srinivas S.N, "Biomass Energy Systems", ISBN 81-85419- 25-6, Tata Energy Research Institute, 1996.
- 2. Klass D.L and Emert G.M, "Fuels from Biomass and Wastes", Ann Arbor Since Publ. Inc. Michigan, 1985.
- 3. O.P.Chawla, "Advances in Bio-gas Technology" I.C.A.R., New Delhi, 1970.

	P01	P02	P03	P04	P05	906	P07
CO1	3	1	3	3	1	2	1
CO2	3	3	2	2	1	2	1
CO3	3	3	2	2	1	2	1
CO4	3	3	3	3	1	2	3
CO5	3	2	3	3	1	2	1
CO6	3	3	2	2	1	2	1
Tot	18	15	15	15	6	12	8

Mapping of COs with POs

COURSE CODE	COURSE NAME	L	Т	P	C
YPSOE1	CONSTITUTION OF INDIA	2	0	0	0
UNIT I HISTOF	RY AND PHIOLOSOPHY				6
History of Making	g of the Indian Constitution: History-Drafting Comm	ittee,	(Comp	ositio	n &
	y of the Indian Constitution: Preamble-Salient Features				
	RS OF CONSTITUTIONAL RIGHTS & DUTIES:				6
Fundamental Right	ts -Right to Equality-Right to Freedom-Right against	Explo	oitation	n-Righ	t to
Ũ	on-Cultural and Educational Rights-Right to Constitution	-		•	
	Policy-Fundamental Duties.				
UNIT HIORGANS	S OF GOVERNANCE:				6
0				-	******
	ition-Qualifications and Disqualifications-Powers and	Func	ctions-	Execu	tive-
Parliament-Compos	ition-Qualifications and Disqualifications-Powers and -Council of Ministers-Judiciary, Appointment and				

UNIT IVLOCAL ADMINISTRATION 6 District's Administration head: Role and Importance, -Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction, PRI: Zila Pachayat. Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy **UNIT VELECTION COMMISSION:** 6 Election Commission: Role and Functioning. -Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women. **LECTURE TUTORIAL** TOTAL 30 0 30

REFERENCES

1. The Constitution of India, 1950 (Bare Act), Government Publication.

2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.

3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.

4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

CO Vs PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1				3		1	1
CO2				3		1	1
CO3				3		1	1
CO4				3		1	1
CO5				3		1	1

PROFESSIONAL CORE ELECTIVES

Semester		Ι					
Course Na	ime	FLUID DYNAMICS AND HEAT TRANSFER					
Course Co	ode	le YRE104A					
L –T –P –	С		C:P:A	L –T –P –H			
3-0-0-3	3		3:0:0	3-0-0-3			
СО	CO S	TATEMENT		Knowledge Level			
Number							
CO1	solve	problems relat	ed to Fluid flow	К3			
CO2	solve	problems relat	ed to different types of Fluid	К3			
	flow						
CO3	Solve	problems rela	ted to heat transfer variety of	К3			
	eleme	elements.					
CO4	<i>solve</i> problems related to turbulent flow heat transfer K3						
	in clo	sed conduits					
CO5	solve	problems relat	ed to Heat transfer with liquid metals	К3			

CO6	solve problems related to heat exchanger	К3			
COURSE	CONTENT				
UNIT I	INTRODUCTION 8 Hours				
	Basic equations and flow of non-viscous fluids – Fluid and Flu differential equation of fluid flow – Flow of Non viscous fluids	id Properties – The			
UNIT II	VISCOUS AND INCOMPRESSIBLE FLUID FLOW	11 Hours			
	The flow of viscous fluids – Laminar flow in closed conduits – turbe analysis and its application to fluid dynamics – Turbulent flow in a laminar sub layer - Flow in the entrance section of closed a incompressible fluids past immersed bodies.	closed conduits – the			
UNIT III	CONVECTIVE HEAT TRANSFER THROUGH FLUIDS	10 Hours			
	The convection-heat – transfer coefficient – Dimensional Analysi transfer – Heat transfer during laminar flow in closed conduits – transfer in closed conduits – Empirical correlation for high – Prandtl	- turbulent flow heat			
UNIT IV	CONVECTIVE HEAT TRANSFER THROUGH LIQUID METALS	8 Hours			
	The analogy between momentum and heat transfer – Heat transfer Heat transfer during incompressible flow past immersed bodies.	with liquid metals –			
UNIT V	DESIGN OF HEAT EXCHANGERS	8 Hours			
	Recent development in the designing of heat exchanger – Plate h around coils – heat pipes – regenerators - effectiveness of heat ex shell side of multitude heat exchangers	changer. Flow in the			
Lecture =	45 Hours Tutorial = 0 Hours Total = 45 Hours	5			
TEXT BO	OKS				
1. REFEREN	James G. Knudsen, Donald L. Katz., "Fluid Dynamics and Heat Graw Hill Publishers NCES	Transfer", 1958, Mc			
	1. Kern D.C., "Process Heat Transfer", Mc Graw Hill Publishers.				

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	2	0	0	2	2
CO2	3	2	2	0	0	2	2
CO3	3	2	2	0	0	2	2
CO4	3	2	3	0	0	2	1
CO5	2	2	2	0	0	1	1
CO6	2	2	2	0	0	1	1
Total	16	12	13	0	0	10	9

Semeste	er	I						
Course	Name ENERGY CONSERVATION IN HVAC							
Course	e Code YRE104B							
L –T –F	Р-С	L –T –P –H						
3 - 0 - 0	-0-0-3 3:0:0							
CO Numb er	Numb							
CO1	solve pro	blems related	to HVAC system components	K3				
CO2	solve pro	blems related	to Air conditioning systems	K3				
CO3	CO3 solve problems related to Thermal Properties and Energy							
CO4	0.	blems related	to Estimation Of Building Loads	К3				
CO5	solve pro	К3						
CO6	<i>solve</i> pro	К3						
COURS	SE CONT	ENT						
UNIT I	DESI	GN OF HVA	C SYSTEM COMPONENTS	9 Hours				
Vapour compression Systems-Refrigerant properties- Energy Efficient compressor-Condensers- Evaporators-expansion devices- Cooling Systems other auxiliaries-Design and Analysis for Energy conservation- Case Studies- VAR Systems- Utilization of Waste heat and other sources- Analysis for Energy Efficiency Ratio.								
	JNIT II AIR CONDITIONING SYSTEMS 9 Hours							
Washers	Psychrometry – Comfort conditions -Types of A/c Systems- Energy conservation of Humidifiers, Air Washers- Air distribution and handling systems-Controls for AHU-Passive and Active A/c Systems-Thermal Properties and Energy content of Building materials.							
UNIT I	II ESTI	9 Hours						
Steady state method – Network method-Numerical method – correlations – computer packages for carrying out thermal design of buildings and predicting performance- Thermal comfort – Ventilation and air quality – Air conditioning requirement – Visual perception –Illumination Requirement – Auditory requirement – Energy Management Options – Energy Audit and Energy Targeting – Technological Options for Energy Management-standards on indoor parameters.								
UNIT I	V FAC	9 Hours						
Factors that affect energy use in building- functional factors, environmental factors-Envelope factors- Air conditioning system factors- Energy source factors and Electrical systems factors- Fenestration design for optimal day lighting- Lighting and Visual ability – Light sources and Luminaries – Lighting System- Design-Day lighting-Day light factors- Luminance Efficacies- CRI for Lighting source and Usage- Economics and Aesthetics.								
UNIT V								
Evaluation of natural ventilation in buildings, determination of probable indoor wind speed and direction- Ventilation heat transfer - Solar-air temperature-Introduction to Natural and artificial								

ventilation simulation systems- Energy Calculations- Degree Days procedure- BIN methods-Comprehensive simulation methods

Lecture = 45 Hours

Total = 45 Hours

TEXT BOOKS / REFERENCE BOOKS

1. Faye C. McQuiston and Jerald D. Parker "Heating, Ventilating and Air Conditioning – Analysis and Design", 4th Edition, John-Wiley & Sons, Inc, NewYork.1994.

- 2. C.P.Arora "Refrigeration and Air-conditioning", Tata-McCraw Hill Publishers, New Delhi **REFERENCES:**
- 1. J.Krieder and A.Rabi "Heating and Cooling of Buildings. Design for Efficiency Mcgraw Hill (1994).

Tutorial = 0 Hours

- 2. J.R.Williams, Passive Solar Heating, Ann Arbar Science(1983).
- R.W.Jones, J.D.Balcomb, C.E.Kosiewiez, G.S.Lazarus, R.D.Mc Farland and W.O.Waray, Passive Solar Design Handbook, Vol.3 Report of U.S. Department of Energy (DOE/CS-0127/3) (1982).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	2	0	0	2	3
CO2	3	2	2	0	0	2	3
CO3	3	2	2	0	0	2	3
CO4	3	2	3	0	0	2	3
CO5	2	2	2	0	0	1	2
CO6	2	2	2	0	0	1	2
Total	16	12	13	0	0	10	16

Semester		Ι							
Course Name		FUELS AND COMBUSTION TECHNOLOGY							
Course Code YRE104C									
L – Т – Р – С		C:P:A					L –T –P –H		
3 - 0 - 0 - 3			3:0:0					3-0-0-3	
СО	COSTATEMENT						Knowledge Level		
Number									
CO1	<i>solve</i> problems related to fuels, fuel analysis							К3	
CO2	<i>solve</i> problems related to combustion						К3		
	stoich								
CO3	solve problems related to various systems						К3		
	involving variety of elements.								
CO4	solve problems related to flame, flame structure,						К3		
	ignitio	on and ignitors							
CO5	solve	problen	ns re	elated	to	basics	of	К3	
	furnaces								

CO- PO MAPPING

CO6	<i>solve</i> problems related to coal burning equipment	K3
COURSE	CONTENT	
UNIT I	FUELS, FUEL ANALYSIS & COMBUSTION STOICHIOMETRY FUELS & FUEL ANALYSIS:	8 Hours
	Types of fuel-Physical and chemical characteristics of solid, liquid Nonconventional fuel-producer gas, hydrogen, biogas etc- Determ values-Ultimate and proximate analysis-problems associated with ha combustion	nination of Calorific
UNIT II	COMBUSTION STOICHIOMETRY	10 Hours
	Stoichiometry relations – conservation of mass principles – the combustion processes – calculation of air fuel ratio for a fuel of k calculation of flue gas composition of fuel and excess air supplies analysis – combustion calculation with sub- stoichiometry air atmospheric air moisture – Dew point temperature of the combustion analysis- Boiler performance analysis COMBUSTION KINETICS: Degree of reactions-reactions equilibrium action-criteria of equilibrium-heat and temperature-Gibbs free errorstant-Vant hoffs isotherm – rate of reaction-factors affecting system	nown combustion – ed from exhaust gas r – calculation of products – Flue gas brium-Laws of mass hergy – equilibrium g rate of reaction- ns.
UNIT III	FLAME, FLAME STRUCTURE, IGNITION AND IGNITORS	10 Hours
	Flame – flame structure – flame propagation – deflagaration – detona Ignition – self & forced ignition – Ignition temperature & igniti influencing ignition – SIT – Ignition lag – limits of inflammability & factors affecting inflammability limits – calculation of inflammability off, blow out & flash back – flame quenching, Flame structure premixed & diffused flames – velocity of flame propagation – vario stabilization – swirl number & its significance – Turndown ratio types of ignitors – NFPA class I, II & III ignitors – Eddy plate ignitor High energy Arc ignitor – DIPC ignitor.	ion limits – Factors & its determination – / limits – flame blow – flame stability – us methods of flame – Ignitors – various
UNIT IV	BASICS OF FURNACES	10 Hours
	Industrial furnaces – process furnaces Steam generating furnaces continuous furnaces – Advantages of ceramic coating – Heat source head source in furnaces – Blast furnace – open hearth furnace – pot & waste heat recovery in furnaces – Recuperator – Regenerators – Fu Furnace Insulation – Furnace Heat balance calculations, Pipe still Heat	ce – Distributions of & crucible furnaces – rnace atmospheres –
UNIT V	COAL BURNING EQUIPMENT	7 Hours
	Coal burning methods – over feed & underfeed supply of coal – M Travelling grate & spreader stoker – vibrating grate stoker – Advanta of stoker firing over pulverized systems of firing – problems encount high ash coal. Pulverized fuel burners – streamlined burner – Tangential burner – cyclone burner – special type burners.	ges & disadvantages ered with burning of
Lecture =4	A compulsory seminar / Assignment on design /case study / Analysis one of the combustion system and accessories (viz Burner,Draught et 45 Hours Tutorial = 0 Hours Total = 45 Hours	

Text Books

- 1. Dr. SamirSarkar, "Fuels & Combustion", Orient Longman, Second edition, 1990.
- 2. Gupta O.P. "Elements of Fuels, Furnaces & Refractories", 3rd edition, Khanna Publishers, 1996.

REFERENCES

- 1. S.P. Sharma & Chander Mohan, "Fuels & Combustion", Tata McGraw Hill Publishing Co.Ltd., 1984
- 2. J.D. Gilchrist, "Fuels, Furnaces & Refractories", Pergamon Press, ISBN-008-029430-9
- 3. Blokh A.G. "Heat Transmission in Steam Boiler furnaces", Hemisphere Publishing Corpn.ISBN-089-116-626-2

I							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	2	0	0	2	2
CO2	3	2	2	0	0	2	2
CO3	3	2	2	0	0	2	2
CO4	3	2	3	0	0	2	1
CO5	2	2	2	0	0	2	1
CO6	2	2	2	0	0	2	1
Total	16	12	13	0	0	12	9

Semester		Ι		
Course Na	me	ENVIRONN	IENTAL ENGINEERING	
Course Co	Course Code YRE105A			
L –T –P –0	2		C:P:A	L –Т –Р –Н
3-0-0-3			3:0:0	3-0-0-3
СО	CO CO STATEMENT			Knowledge Level
Number				
CO1	Reco	gnize various	К3	
		formation proc		
CO2	Ident	ify air pollution	К3	
	qualit	ty data on cher	nical characteristic.	
CO3	Unde	rstand the im	portance of various microbial	K3
	proce	esses in wastew	ater treatment.	
CO4	Asses	s the bacteriol	K3	
	system	ms.		
CO5	Unde	rstand the imp	portance of various microbial processes in Solid	K3
	Waste	e Disposal trea	tment.	

CO-PO MAPPING

CO6	<i>justify</i> the use of pollution control equipment and their design.	K3
	<i>fusity</i> the use of ponution control equipment and then design.	K5
Objectives		
To in	nculcate among student sensitivity towards social and corporate respon	sibilities.
🛠 Tou	nderstand the transformation and degradation of organic pollutants in	the environment.
🛠 Tou	nderstand different types of pollutions in the environment.	
	mpart knowledge on soil sciences and develop understanding abou tioning processes in soil.	t pollutants fate and
🛠 Tou	nderstand the role of various microbes in waste water treatment.	
COURSE C	ONTENT	
UNIT I	ENVIRONMENTAL POLLUTION	10 Hours
	Mathematics of growth – exponential growth, resource consump growth, resource consumption and population growth – problems. A of atmosphere – Earth's natural atmosphere – consequences of classification of pollution – pollution of Air, Water & Soil – Effect of system – Environmental legislation.	hemical equilibria. btion and population tmosphere – Regions population growth – f pollutants on living
UNIT II	AIR POLLUTION CONTROL METHODS & EQUIPMENT	10 Hours
	Sources of air pollution –classification & properties of air polconcentration – Effects of air pollution – meteorological aspects of air pollution – carbon-di-oxide & climate change – Acid deposi pollution – Automobile air pollution – Sampling, measurement a pollutants such as SOx, NOx, CO, NH ₃ , CnHn, SPM, Opaci compounds, Trace metals.	air pollution – urban tion – Industrial air and analysis of air
UNIT III	WATER POLLUTION	09 Hours
	Water Sources – Origin of waste water – Classification of Water Pe water pollutants – Water Pollution Laws and Standards – Water F Waste Water Sampling – BOD – COD analysis – Waste Water 7 treatment – secondary treatment – Advanced waste water treat Digestion. Desalination – micro filtration – ultra filtration – Reverse	Pollution & Health – Treatment – primary atment – Anaerobic
UNIT IV	SOLID WASTE DISPOSAL	09 Hours
	Solid waste- Sources, types, Compositions and Properties - Land I Waste Disposal – Land Fill Classification, Types, Methods and Sit Layout and Preliminary Design of Land Fills – Composition, Charac Movement and Control of Landfill Leach ate and Gases – Enviro System for Land Fill Gases.	09 Hours Fill Method of Solid ting Consideration – cteristics, generation, onmental Monitoring
UNIT IV UNIT V	Solid waste- Sources, types, Compositions and Properties - Land I Waste Disposal – Land Fill Classification, Types, Methods and Sit Layout and Preliminary Design of Land Fills – Composition, Charac Movement and Control of Landfill Leach ate and Gases – Enviro System for Land Fill Gases. OTHER TYPES OF POLLUTION	09 Hours Fill Method of Solid ting Consideration – cteristics, generation, onmental Monitoring 07 Hours
	Solid waste- Sources, types, Compositions and Properties - Land I Waste Disposal – Land Fill Classification, Types, Methods and Sit Layout and Preliminary Design of Land Fills – Composition, Charac Movement and Control of Landfill Leach ate and Gases – Enviro System for Land Fill Gases.	09 Hours Fill Method of Solid ting Consideration – cteristics, generation, onmental Monitoring 07 Hours rmal Pollution - Oil

TEXT BOOKS / REFERENCE BOOKS

1.James Gilbert M.Masters, "Introduction to Environmental Engineering And Science", 2nd edition, Prentice Hall, 1998.

2.Rao C.S Environmental Engineering and Pollution Control, 1st edition, New Age

International Publishers, 1991.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	2	2	3	2	3
CO2	3	2	1	2	3	3	3
CO3	3	2	2	1	2	2	3
CO4	3	2	2	1	2	2	3
CO5	3	2	2	1	1	2	3
CO6	3	2	2	3	3	3	3
Total	18	12	11	10	14	14	18

Mapping of COs with POs

Semest	er	Ι			
Course	Name	CARBON S	EQUESTRATION AND TRADING		
Course	Code	YRE105B			
L –T –]	Р-С		C:P:A	L –T –P –H	
3-0-	0-3		3:0:0	3-0-0-3	
CO CO STATEMENT				Knowledge Level	
Numb					
er					
CO1	<i>Identify</i> t	К3			
CO2	Examine	K4			
CO3	Distingu	K4			
CO4	<i>Develop</i> suitable carbon economics for sustainability.			K3	
CO5	Interpret	case studies for	or optimized carbon trading models.	K5	
CO6	Apply ru	iles and regul	ations as best practice for managing public	К3	
	issues.	-			
Objecti	ives				
*	Understan	d the problem	of greenhouse gas and analyse the cause and effe	cts.	
*	Apply prin	nciples for cart	oon Sequestration		
•					

• Manage risk associated with carbon trading and apply rules and regulation for problems.

COURSE C	CONTENT	1
UNIT I	GREENHOUSE GAS	9 Hours
	Stabilization of greenhouse gas concentrations – greenhouse gas ri green gas mitigation – Carbon di oxide and climate change, acid ra impacts of global warming-Kyeto-procal.	
UNIT II	CARBON	9 Hours
	Practices for sequester carbon - car bon sequestration types – carbon testing – potential for carbon sequestration.	oon credits – carbon
UNIT III	MANAGEMENT	9 Hours
	Risk management and risk reduction – carbon economics – Ve change.	rification of carbon

UNIT IV	CASE STUDIE	CASE STUDIES					
	Carbon trading n	Carbon trading model – Century Model – Case Studies.					
UNIT V	RULES AND R	RULES AND REGULATIONS 9 Hours					
	Implication Met	Implication Methanol and Nitrous Oxide carbon bank - Best Management Practices					
	Publics issues –	policies.		-			
Lecture = 4	Lecture = 45 Hours Tutorial = 0 Hours Total = 45 Hours						
TEXT BOOKS							
1 Emi	nion Trading Env	ironmontal Policias Naw approx	ch Dichard E Kosch	ud Douglas I			

1. Emission Trading:Environmental Policies New approach-Richard F. Kosobud, Douglas L. Schreder, Holly M. Biggs Published 2000 John Wiley and Sons.

REFERENCES

- 1. Agricultural Practices and Policies for Carbon Sequestration in Soil By John M. Kimble, Rattan Lal Published 2002 CRC Press
- 2. The Impact of Carbon Dioxide and Other Greenhouse Gases on Forest Ecosystems By David F. Karnosky Published 2001 CABI Publishing.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	2	2	2	3	2	3
CO2	2	2	1	2	2	3	3
CO3	2	2	2	1	2	3	3
CO4	2	2	2	1	2	3	3
CO5	2	2	2	1	1	2	3
CO6	2	2	2	2	3	3	3
Total	12	12	11	9	13	16	18

CO-PO MAPPING

	1		
me	WASTE 1	MANAGEMENT AND ENERGY	RECOVERY
de	YRE1050		
L –T –P –C		C:P:A	L –T –P –H
3 - 0 - 0 - 3		3:0:0	3-0-0-3
CO STAT	EMENT		Knowledge Level
			-
Categorize the different types and properties of solid			K4
waste			
Develop appropriate methods for size reduction and			К3
compostin	g		
Analyze th	e environm	ental effects of incineration	K4
Organize 1	nethods for	efficient waste disposal.	К3
Categorize	the types	hazardous waste and illustrate the	K4
manageme	nt techniqu	es and disposal methods.	
Apply app	ropriate pri	nciples for energy generation from	К3
waste			
derstand th	e different	sources of wastages and their proper	ties.
	te CO STAT Categorize waste Develop a compostin Analyze th Organize th Organize th Categorize manageme Apply approverse	Ie YRE105C CO STATEMENT Categorize Categorize the differ waste Develop appropriate composting Analyze the environm Organize methods for Categorize the types management techniqu Apply appropriate waste	Image: Provide state state YRE105C C:P:A 3:0:0 CO STATEMENT 3:0:0 Categorize the different types and properties of solid waste Develop appropriate methods for size reduction and composting Analyze the environmental effects of incineration Organize methods for efficient waste disposal. Categorize the types hazardous waste and illustrate the management techniques and disposal methods. Apply appropriate principles for energy generation from

- Apply principle for energy generation from the waste.
- COURSE CONTENT

UNIT I	SOLID WASTE	9 Hours			
		Compositions, Properties of Solid Waste - Municipal			
	•	mical and Biological Property – Collection – Transfer			
		n and Recycling of Municipal Waste.			
UNIT II	WASTE TREATMENT	9 Hours			
		omposting - Incineration - Furnace Type and Design,			
		e Incineration – Environmental Impacts – Measures of			
	Mitigate Environmental Effect				
UNIT III	WASTE DISPOSAL	9 Hours			
		ste Disposal – Land Fill Classification, Types, Methods			
		- Layout and Preliminary Design of Land Fills -			
	·	generation, Movement and Control of Landfill Leachate			
		onitoring System for Land Fill Gases.			
UNIT IV	HAZARDOUS WASTE	9 Hours			
	MANAGEMENT				
	Definition and Identification of Hazardous Waste – Sources and Nature of Hazardous				
		nent – Hazardous Waste Control – Minimization and			
		Hazardous Waste – Disposal of Hazardous Waste,			
		Construction, Installation and Closure.			
UNIT V	ENERGY GENERATION FROM WASTE	9 Hours			
		ion – Sources of Energy Generation – Industrial Waste,			
	• •	Digestion – Biogas Production - Types of Biogas Plant			
		- Sources of Energy Generation – Gasification – Types			
		Industrial Applications of Gasifiers – Utilization and			
		– Environment Benefits of Biochemical and			
	Thermochemical Conversion.	- Environment Denemits of Dioenenmeat and			
Lecture =45 Ho		urs Total = 45 Hours			
	A REFERENCE BOOKS				
		Waste – An Evaluation of Conversion Technologies,			
	r Applied Science, London, 198				
2. Shah, M	ianoj Datta, waste Disposal in F	Engineered Landfills, Narosa Publishing House, 1997.			

- 3. Rich, Gerald et.al., Hazardous Waste Management Technology, Podevan Publishers, 1997.
- 4. Bhide AD., Sundaresan BB, Solid Waste Management in Developing Countries, INSDOC, New Delhi, 1983.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	2	3	3	2	3
CO2	3	2	2	2	3	2	3
CO3	3	3	2	2	3	2	3
CO4	3	3	2	3	3	2	3
CO5	3	3	2	3	3	2	3
CO6	3	3	2	3	3	3	3
Total	18	16	12	16	18	13	18

CO-PO MAPPING

COURSE CODE	COURSE	NAMI	£						L	Т	P	С
YRE204A	OPTIMU	JM UT	ILISA	FION (OF HE	CAT AN	D PO	WER	3	0	3	3
After completion of	of the course	e, a stuc	lent wil	l be ab	le to							
1. Discuss the end	ergy transfe	r and co	onversi	on meth	nodolog	gies.						
2. Discuss the con	ncepts of Co	ombine	d Heat	and Pov	wer and	d their u	sage ir	n various	secto	ors.		
3. <i>Explain</i> the pin	nch technolo	ogy and	l their c	oncepts	5							
4. Design the pro	cess retrofit	t and its	integra	ation								
5. Analysis of end	ergy recover	ry throu	igh hea	t excha	ngers, l	heat pui	nps an	d heat pi	ipes			
6. <i>Describe</i> the aj	pplication of	f combi	ined he	at and p	ower.							
UNIT I ENER	GY CONV	'ERSIC)N TE	CHNIQ	QUES							12
Energy resource a												
feasibility and ass	essment me	ethods -	- energ	y transf	fer and	conver	sion m	ethods -	- ther	mody	namic	and
efficiency analysis	s methods –	system	analys	is meth	odolog	jies.						
UNIT II TOTAL	ENERGY	SCHE	MES									12
Basic concepts of	CHP – Th	e benet	fits of (CHP –	Proble	ems asso	ociated	with C	HP –	The	balanc	e o
energy demand –												
generation – CHP												
sector district heat				em	in the	comme	i ciur 5	cetor	CIII	in un	c donn	cour
UNIT III PROC				ND PI	NCH 1	FCHN		2V				10
Pinch Technology									he sig	mific	ance o	
Pinch – Design of		-	-						-			
method – Stream s		-	•			-	-					
– The grand comp												,
<u> </u>					<u> </u>		0					6
UNIT IV ENER	GY RECO	VERY										-
Insulation – Recu	perative hea	t excha	nger –	Run-ar	ound c	oil syste	ems –	Regener	ative	heat e	exchan	ger
– Heat pumps – He												C
UNIT V APPLIC					•							5
CHP in agricultura	al sector - p	rocessi	ng - ene	ergy rec	uirem	ents - p	otentia	I. CHP i	n the	indus	trial se	ecto
- Processing - ener						1						
C						LECTU	RE	TUTO	RIAL		ГОТА	L
					4	15		0		4	45	
REFERENCES												
	D & Croft I	D.R., "F	Energy	efficien	cy for	engine	ers and	Techno	logist	ts", 2	nd edi	tion
	Harlow, 199		05		5	0			U	,		
0	an, Paul W,		gn and I	Manage	ement f	for energ	gy cons	servation	n", Pe	rgamo	on, 199	93.
2.00 Cullugi			-	-						-		
2. 0 Sunagn	, ,		CO	Vs PO	Manr	ning						
2. 0 Cunugn	, , ,			Vs PO								
2. 0 Cullugh		PO1	CO PO2	Vs PO PO3	Mapp PO4		PO6	PO7				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	3	1	1	2	1
CO2	3	3	2	2	1	1	1
CO3	3	3	3	1	1	1	1
CO4	2	2	3	1	1	1	1
CO5	1	3	3	2	1	1	1
CO6	3	3	2	2	1	1	1
Total	15	16	16	9	6	7	6

COURSE CODE	COURSE NAME		L	Т	Р	(
YRE204B	STATISTICAL TOOLS FOR	R DATA ANALYSI	S 3	0	3	3
After completion	of the course, a student will be abl	e to				-
7. Discuss the t	ypes of research and its design and	need.				
B. Discuss the l	terature search					
	es through browsing and downloadi	•				
•	various curves and concepts of stati	stical process contro	ol			
-	nalysis of experiments					
	error analysis through various tests	•				
	EARCH					8
•	ypes: descriptive, analytical, a		-	-		
conceptual, emp	irical – approach – significance –	methods-process	– Research d	esign	– need	1 –
concepts - samp	ing design.					
UNIT II LITE	RATURE SEARCH					11
Offline search:	Abstracts-subject index, author inc	lex, formula index	and other ind	lices-e	xampl	es-
current. Content	s – organization – titles and index.	On line Search: Con	nputer browsin	ng for	literatu	ure
search and down	loading-basics of internet service	es-sources of abstrac	ets, articles fo	or brov	vsing	for
	and down loading – basics of in				-	
	wnloading, technique for conversio					
	FISTICAL PROCESS CONTRO					9
	of quality, Statistical Fundamentals		al Tendency	and Di	spersi	on,
	Sample, Normal Curve, Control		-		-	
-	ept of six sigma, New seven Manag			,		
1 57						9
UNIT IV DESI	GN AND ANALYSIS OF EXPER	IMENTS				
Treatment and i	nterpretation of engineering data.	Curve fitting nonlir	ear least squ	are reg	gressio	n
Tests of signific	ance – test of hypothesis, chi sq	uare test, analysis	of variance a	ind co	varian	ce.
Introduction to f	actorial designs- 2k factorial design	s, introduction-Bloc	king and conf	oundi	ng in t	wo
	designs- 2k-p fractional factoria		-		-	
	ndom factors in factorial experiment	-				
-	R ANALYSIS IN MECHANICA		NTS			8
	-Precision and accuracy-Statistic			esults-		
• •	ssian distribution T-tests, Comparis		-			
		LECTURE	TUTORIA		ГОТА	L
		45	0		15	
REFERENCES			Ŭ			
	, Research Methodology – Method	s and techniques. W	ishwa Prakasł	nan. Ne	ew	
Delhi, 1996				,		
	Analysis of Experiments, 5th editio	n, by D.C. Montgon	nery, John Wi	ley &	Sons.	
New York,	-		, , - , , -	<i>.</i>	,	
	n, 'Statistical methods', Oxford and	l IBH publishers.				
	sciencedirect.com/science/journal	-				

- 4. http://www.sciencedirect.com/science/journal
- 5. James R.Evans & William M.Lidsay, The Management and Control of Quality, (5th Edition), South-Western (Thomson Learning), 2002 (ISBN 0-324-06680-5)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	3	1	2	2	1	3
CO2	2	1	3	1	2	2	3
CO3	1	3	3	2	1	2	3
CO4	2	3	1	1	2	1	3
CO5	1	3	3	2	1	2	3
CO6	1	3	2	3	3	1	3
Total	9	16	13	11	11	9	18

CO Vs PO Mapping

RE204CSUSTAINABLE DEVELOPMENTfter completion of the course, a student will be able to. Discuss the effect of industrial ecology and analyze indus. Discuss the barriers and role of industry in cleaner produ. Derive the cleaner production assessment and technical fill. Analysis of cleaner production economics and financing. Describe the environment management system. Explain the environment audit system.NIT IINTRODUCTIONdustrial activity and Environment industrialization and sus revention versus control of industrial pollution – Regulation	feasibility analy	rsis pment – Indus	0 trial E	3	12
 Discuss the effect of industrial ecology and analyze indus Discuss the barriers and role of industry in cleaner produ Derive the cleaner production assessment and technical in Analysis of cleaner production economics and financing Describe the environment management system Explain the environment audit system. NIT I INTRODUCTION dustrial activity and Environment industrialization and sus revention versus control of industrial pollution – Regulation 	feasibility analy	rsis pment – Indus	trial E		12
 Discuss the barriers and role of industry in cleaner produ Derive the cleaner production assessment and technical in techn	feasibility analy	rsis pment – Indus	trial E		12
 Derive the cleaner production assessment and technical i Analysis of cleaner production economics and financing Describe the environment management system Explain the environment audit system. NIT I INTRODUCTION dustrial activity and Environment industrialization and sustervention versus control of industrial pollution – Regulation	feasibility analy	pment – Indus	trial E		12
 Analysis of cleaner production economics and financing Describe the environment management system Explain the environment audit system. NIT I INTRODUCTION dustrial activity and Environment industrialization and sus revention versus control of industrial pollution – Regulation 	stainable develo	pment – Indus	trial E		12
. Describe the environment management system . Explain the environment audit system. NIT I INTRODUCTION dustrial activity and Environment industrialization and sustervention versus control of industrial pollution – Regulation	stainable develo	•	trial E		12
. Explain the environment audit system. NIT I INTRODUCTION dustrial activity and Environment industrialization and sus revention versus control of industrial pollution – Regulation		•	trial E		12
NIT I INTRODUCTION dustrial activity and Environment industrialization and sus revention versus control of industrial pollution – Regulation		•	trial E		12
dustrial activity and Environment industrialization and sus revention versus control of industrial pollution – Regulation		•	trial E		12
revention versus control of industrial pollution – Regulation		•	trial E		
	ns to encourage	cleaner produ		cology	y —
pproaches.			ction-l	based	
-					
NIT II CLEANER PRODUCTION CONCEPT					7
nportance – Historical evolution – Benefits – promotion – I	barriers – Role	of Industry, go	vernm	ent ar	ıd
stitutional - Resume, recovery, recycle, substitution - Inte	ernet information	n & other CP r	esourc	es.	
NIT III CLEANER PRODUCTION PROJECT DEVI	ELOPMENT				10
verview of CP Assessment steps & skills – preparing for	r the site – mat	erial balance -	- Tech	inical	and
nvironmental feasibility analysis – Economic Evolution					
nancing - Established programme – Preparing & progr			•		
atement	Press	10000 40000	2011 1 1		
NIT IV LIFE CYCLE ANALYSIS & ENVIRONMEN	NTAL MANAG	EMENT SYS	STEM		8
lements of LCA - life cycle costing - ECO labelling -	Design for the	Environment	Envi	ronme	enta
andards – ISO 14001 – Environmental audit.	Design for the			. 011110	11111
$\frac{1}{100}$					
anuarus – 150 14001 – Environmentai audit.					
NIT V CASE STUDY					8
	udit				8
NIT V CASE STUDY	udit	TUTORIAI	, Т	ТОТА	-

REFERENCES

- 1. Pollution prevention: Fundamental and Practice, Paul L Bishap, McGrawhill, INC
- 2. Pollution prevention and abatement Handbook Towards cleaner production World bank and UNDP, Washinghton, D.C
- 3. Cleaner Production Audit, Prasad Modak, Asian Institute of Technology, Bangkok

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	3	3	2	1	1	2
CO2	3	3	3	2	1	1	1
CO3	2	2	3	1	2	2	3
CO4	2	3	1	2	2	2	3
CO5	2	2	3	3	2	3	1
CO6	2	2	3	3	2	3	1
Total	11	18	16	13	10	12	11

CO Vs PO Mapping

Semester		II					
Course Na	me	HYDRO POWER T	ECHNOLOGY				
Course Co	de	YRE204D					
L –T –P –	С		C:P:A	L –T –P –H			
3-0-0-3	3 - 0 - 0 - 3		3:0:0	3-0-0-3			
CO Number		CO STATEMENT					
CO1		<i>Discuss</i> the fundamental concepts behind the hydrology and hydro power projects with their terminologies					
CO2		· ·	nversion of these water resources to useful form oment of proto type systems	К3			
CO3		<i>t</i> the suitable water turbicoject work.	ines based on the requirements and the necessity of	K3			
CO4	Expla	in the concepts of wate	r turbines with their basic design requirements in ation hydro power projects.	K3			
CO5		<i>tibe</i> basic design and con- life cycle analysis	nstruction of hydroelectric power stations and	K3			
CO6	-		o hydro power plants with their turbines in generation and economical aspects.	K3			

Objectives		
 Und deve Und para Abil 	earn and understand the fundamental concepts behind the hydrology and hydro erstanding principles of conversion of water resources to useful form of energy elopment of proto type systems erstand the basic design concepts of various water turbines along with meters and their maintenance ity to define the small, mini, micro hydro power plants with their turbines in r eration and economical aspects.	through the their selection
UNIT I	HYDROLOGY	10 Hours
	Overview of Hydropower Systems-Preliminary Investigation-Rainfall measurements-Hydrographs-Flow duration graph and mass storage graphs- site selection- Types hydroelectric power plants-General arrangements preparation of Reports and Estimates-Review of World Resources- E Economic Analysis of Hydropower projects-Project Feasibility-Load Predic Development.	determination of and layouts - Basic Factors in tion and Planned
UNIT II	DEVELOPMENT OF PROTO TYPE SYSTEMS	8 Hours
	Advances in Planning, Design and Construction of Hydroelectric Power S Development of Generating Plant and Machinery-Plant Equipment for Schemes-Some aspects of Management and Operations- case studies.	
UNIT III	SELECTION AND ANALYSIS OF TURBINES	9 Hours
	Pelton, Francis and Kaplan Turbine Measurement of pressure head, parameters for finding out the potential of Hydro Energy-Selection of tu specific quantities Updating and Refurbishing of Turbines- case study.	•
UNIT IV	HYDRO POWER STATION OPERATION, MAINTENANCE AND TROBLE SHOOTING	10 Hours
	Governing of Power Turbines-Functions of Turbine Governor-Condition Stability-Surge Tank Oscillation and Speed Regulative Problem of Turbin Future- Planning, Design and Construction of Hydroelectric Power Stations cycle analysis	ne Governing in
UNIT V	SMALL, MINI AND MICRO HYDRO POWER PLANTS TURBINES	8 Hours
	Introduction – analysis of micro hydro and mini hydro turbines – Economi aspects of small, mini and micro hydro turbines potential developments – de small, mini micro hydro turbines – case studies.	
Lecture = 4	5 Hours Tutorial = 0 Hours Total = 45 Hours	
TEXT BOC	DKS / REFERENCE BOOKS	
(1985)2. AlenR. I3. J. Paul CElectric	ion,M.Lenir and J.Roux,Micro Hydro Electric Power Station, Published by W nversin,Micro Hydro Power Source Book (1986) Guyer ,An Introduction to Mechanical design of Hydro Electric Power Plants (Power Plants) simeons ,Hydro Power-the use of water as an alternative source of Energy	-

5. Jog, M. G Hydro-Electric and Pumped Storage Plants, Published by Wiley, New York, (1989)

6. Bryan Leyland ,Small hydroelectric engineering practice-, Published by CRC Press

7. C.C. Warnik, Hydropower Engineering- Published by Prentice Hall

	P01	P02	P03	P04	P05	P06	P07
CO1	2	1	1	1	1	1	1
CO2	2	1	1	1	1	1	1
CO3	2	1	1	1	1	1	1
CO4	2	1	1	1	1	1	1
CO5	2	1	1	1	1	1	1
CO6	2	1	1	1	1	1	1
Total	12	6	6	6	6	6	6

Mapping of COs with POs

1 - Low, 2 - Medium, 3- High

Semester		II			
Course Na	ame	INSTRUME	ENTATION TECHNOLOGY FOR ENERGY	SYSTEMS	
Course Co	ode	YRE205A			
L –T –P –	С		C:P:A	L –T –P –H	
3-0-0-	3 - 0 - 0 - 3		3:0:0	3-0-0-3	
CO Number	COS	TATEMENT	Knowledge Level		
CO1		<i>t</i> appropriate Mynamic conditi	К3		
CO2	Apply	v suitable meth	К3		
CO3	Identi techni		ent temperature measurement	К3	
CO4	<i>List</i> n	nethods for me	asuring flow, level, humidity	K4	
CO5	Categ	gorize measure	ments for miscellaneous parameters	К3	
CO6	Know contro	the <i>Function</i>	K4		
Objectives	5				
	be able rameter		ropriate measuring techniques for measuring va	riables under different	

To able to measure pressure and temperature using different measuring techniques.

UNIT I	INTRODUCTION TO MEASUREMENT TECHNIQUES	6 Hours
	General concepts of measurements, static and dynamic characteristicalibrations, calibration standards – characteristics of instruments - value – Accuracy – Precision – Sensitivity – Resolution – errors & Data acquisition & Display.	– Definition – True
UNIT II	MEASUREMENT OF PRESSURE	9 Hours
	Different units of pressure – Classification of pressure gauges – ma balance gauges – force balancing gauge – elastic deformation – c gauges using the above principles – ring balance type element vacuum–Mcleod gauge – Pirani gauge. Measurement using strain ga of Pressure using electronic / micro processor based transmitter, instrumentation.	commercial pressure s. Measurement o auges. Measuremen , calibration of the
UNIT III	MEASUREMENT OF TEMPERATURE & HEAT FLUX	9 Hours
	Difference temperature scales – Non-electrical methods – change in change in pressure of gas – change in vapour pressure. Ele Thermocouple – Resistance Temperature Detector – Radiation P Pyrometer – Thermostats. Temperature measurement using electron based transmitter, Incidental radiation heat flux, conduction heat Measurement of Electrical Energy – Voltage – Current – Power Factor	ectrical methods - yrometer – Optica ic / micro processo at flux, calibration
UNIT IV	MEASUREMENT OF FLOW, LEVEL, HUMIDITY AND OTHER MISCELLANEOUS PARAMETERS	1
	Flow measurement – types – differential pressure type flow meter venturi tube – flow nozzle – pitot tube – positive displacement Inferential flow meter – turbine flow meter – variable area flow mete flow meter. Low flow measurement using piezo ring, Ultra Sonic flow meter for high flow. – Basic methods – Measuring hydrostatic pressure – measuring the m – electric conduction method – sight glass. Non-Contact measureme measurement by DP transmitter. Definition of humidity – hydromete Humidity measurement. Measurement of pH: -pH scale – methods o Mass spectrometer &Chromatograph. Hazardous area and its classific	type flow meter - r (rotameter) – mass Level measurement ovement of the floa nt techniques. Leve er & psychrometer - f pH measurements
UNIT V	TRANSDUCERS & PROCESS CONTROL	9 Hours
	Classification of Transducers – Active and passive transducers - transducers. Advantages of electrical transducers over mechanical tra types: Resistance – Inductance – Capacitance – Piezo electric transdu Functional block diagram of a process control loop and their elemen point, dead zone, dead time, disturbance, deviation- Control system loop control system – feed forward control – Ratio control – cascade controllers with examples. Programmable logic controllers & D system. Computer control using Supervisory Computer. Hours Tutorial = 0 Hours Total = 45 Hours	nsducers – Differen cers. hts. Definition of set – Open and closed control. Closed loop
Lecture =45		

REFERENCES:

- 1. Instrument Transducers: An introduction, Neubert H.K.P., Their performance and Design. 2nd edition, Oxford University Press, Cambridge, 1999, Sensors and Transducers, Patranabis, Wheeler Publishing 1999.
- 2. Stephanopoulos, "Chemical Process Control An Introduction, to Theory and practice", PHI, New Delhi, 1984.

	P01	P02	P03	P04	PO5	P06	P07
CO1	3	3	2	1	2	3	2
CO2	3	3	2	1	2	3	2
CO3	3	3	2	1	2	3	2
CO4	3	3	2	1	2	3	2
CO5	3	3	2	1	2	3	2
CO6	3	3	2	1	2	3	2
Tot	18	18	12	6	12	18	12

Mapping of COs with POs

1 - Low, 2 - Medium, 3- High

Semester		п						
Course Name		HYDROGE	HYDROGEN, FUEL CELLS AND NUCLEAR ENERGY					
Course C	ode	YRE205B						
L –T –P –	-C		C:P:A	L –T –P –H				
3-0-0-	3		3:0:0	3-0-0-3				
CO Number	CO ST	FATEMENT	Knowledge Level					
CO1		fy the produgen energy	К3					
CO2	Develo	<i>p</i> storage tech	K3					
CO3	Develo	p storage tech	K3					
CO4	<i>Examine</i> the nuclear energy conversion and different K4 types of reactors.							
CO5	Inspec	t the nuclear p	ower plant by considering safety aspects.	K4				
CO6	Plan appropriate techniques for managing nuclear wastes.K3							
Objective	S							
			sic concepts of hydrogen energy and storage					

◆ Apply the concept of nuclear energy for power generation by optimizing the design and

following safety norms.

 Understand the concept of nuclear waste management and use proper techniques for efficient management.

COURSE CONTENT

UNIT I	HYDROGEN ENERGY	9 Hours				
	Hydrogen as a renewable energy source - Sources of Hydrogen -					
	Hydrogen Production - Direct electrolysis of water - direct therma	-				
	water - biological and biochemical methods of hydrogen production - Storage of					
	hydrogen - Gaseous, Cryogenic and Metal hydride - Utilization of hyd					
UNIT II	BATTERIES & FUEL CELL	12 Hours				
	Battery – Storage cell Technologies -storage cell fundamentals					
	Emerging trends in batteries-Carbon- Zinc & alkaline cells, Mercury					
	oxide button cells, Lead acid, Edison, Ni cad & Ni mg cells and lithiu	0.				
	Fuel cell – Principle of working- construction- Design and performa	•				
	cells-The alkaline fuel cell, Acidic fuel cells, PEM Fuel cells, SOFC in fuel cells, - Applications – Industrial and commercial	- Emerging trends				
UNIT III	NUCLEAR ENERGY AND FUELS	9 Hours				
	NUCLEAR ENERGY AND FUELS	9 Hours				
	Nuclear energy conversion - Chemical and nuclear equations - Nucle					
	and fusion - Energy from fission and fuel burn-up - Radioactivity -	e e				
	Fission reactor types - Nuclear power plants - Fast breeder reactor	and power plants -				
	Production of nuclear fuels.					
UNIT IV	NUCLEAR POWER	10 Hours				
	Fuel rod design - Steam cycles for nuclear power plants - reactor hea	t removal – Coolant				
	channel orificing - Core thermal design - Thermal shields - Fins in n	uclear plants - Core				
	thermal hydraulics - Safety analysis - LOCA - Time scales of tran	sient flow and heat				
	transfer processes.					
UNIT V	NUCLEAR WASTE MANAGEMENT	5 Hours				
	Segregation and safe disposal of nuclear waste –case studies					
Lecture = 4	5 Hours Tutorial = 0 Hours Total = 45 Hours					
TEXT BOO)KC					

1. M. M. El-Wakil: Power Plant Technology, McGraw Hill, 1985

- 2. Hand book of Batteries and Fuel cells ,3rd Edision, Edited by David and Thomas, B. Reddy, McGrawhill Book company,N.Y 2002
- 3. Fuel cell, Principles and applications ,Viswanathan,B and Scibioh,Aulice M. Universities Press.2006 **REFERENCES:**
- 1. A. W. Culp Jr: Principles of Energy Conversion, McGraw Hill, 2001
- 2. Principles of fuel cells by Xianguo Li, Taylor & francis,2006
- 3. T. F. Morse: Power Plant Engineering, Affiliated East West Press, 1978
- 4. R. H. S. Winterton: Thermal Design of Nuclear Reactors, Pergamon Press, 1981
- 5. R. L. Murray: Introduction to Nuclear Engineering, Prentice Hall, 1961

	P01	P02	P03	P04	PO5	PO6	P07
CO1	3	2	2	2	2	2	2
CO2	3	2	2	2	2	3	3
CO3	3	2	2	2	2	2	2
CO4	3	2	2	2	3	2	1
CO5	3	2	2	2	3	2	1
CO6	3	3	2	2	3	3	3
Tot	18	13	12	12	15	14	12

Mapping of COs with POs

1 - Low, 2 – Medium, 3- High

Semester		II		
Course N	ame	ENERGY M	IODELLING, ECONOMICS AND PROJECT	MANAGEMENT
Course C	ode	YRE205C		
L –T –P –	-C		C:P:A	L –T –P –H
3-0-0-	3		3:0:0	3-0-0-3
CO Number	CO ST	TATEMENT	Knowledge Level	
CO1	Select unders	appropriate tanding the end	К3	
CO2	<i>Exami</i> aggreg	<i>ne</i> the input ation.	K4	
CO3	<i>Identif</i> analysi	ý suitable m	К3	
CO4	<i>List</i> su	itable methods	for Energy Forecasting	K4
CO5	<i>Develop</i> model for understanding the Economics of power supply K3 system			
CO6	Organ	<i>ize</i> Project mai	К3	
Objective	S			

✤ Understand the concept of developing models for energy scenarios.

✤ Analyze the input and output parameters to optimize the energy needs.

✤ To be able to forecast energy demand and develop model for power supply system.

COURSE CONTENT

UNIT I	MODELS AND MODELLING APPROACHES	8 Hours				
	Macroeconomic Concepts - Measurement of National Output - Inve	stment Planning and				
	Pricing - Economics of Energy Sources - Reserves and Cost Estimation.					
UNIT II	INPUT OUTPUT ANALYSIS	9 Hours				
	Multiplier Analysis - Energy and Environmental Input / Output Aggregation –Econometric Energy Demand Modelling - Overvi Methods.					
UNIT III	ENERGY DEMAND ANALYSIS AND FORECASTING	12 Hours				
	Methodology of Energy Demand Analysis - Methodology for Forecasting -Methodology for Energy Forecasting - Sectora Forecasting.					
UNIT IV	ECONOMICS OF STANDALONE POWER SUPPLY SYSTEMS	10 Hours				
	Solar Energy - Biomass Energy - Wind Energy and other Renewable Economics of Waste Heat Recovery and Cogeneration - En Economics.					
UNIT V	PROJECT MANAGEMENT-FINANCIAL ACCOUNTING	6 Hours				
	Cost Analysis - Budgetary Control - Financial Management - Teo Evaluation.	chniques for Project				
Lecture =45	5 Hours Tutorial = 0 Hours Total = 45 Hours					
REFEREN	CES					

- 1. M.Munasinghe and P.Meier (1993): Energy Policy Analysis and Modelling, Cambridge University Press.
- 2. W.A.Donnelly (1987): The Econometrics of Energy Demand: A Survey of Applications, New York.
- 3. S.Pindyck and Daniel L.Rubinfeld (1990): Econometrics Models and Economic Forecasts, 3rd edition MC Graw -Hill, New York.
- 4. Energy Management handbook, Turner.

	P01	P02	P03	P04	PO5	P06	P07
CO1	3	3	3	2	2	2	1
CO2	3	3	2	1	2	2	1
CO3	3	3	1	1	2	2	1
CO4	3	3	1	3	2	2	1
CO5	3	3	1	3	2	2	1
CO6	3	3	1	3	2	2	1
Tot	18	18 1 - Lov	9 9 2 M	13	12 3- High	12	6

Mapping of COs with POs

1 - Low, 2 – Medium, 3- High

Semester	П	
Course Nan		
Course Cod	e YRE205D	
L -T -P -C 3 - 0 - 0 - 3	C:P:A 3:0:0	L –T –P –H 3–0– 0– 3
CO Number	CO STATEMENT	Knowledge Level
CO1	<i>Describe</i> the building science and its significance in the indoor Environment.	K2
CO2	<i>Explain</i> the thermal, visual, acoustical and all factory comfort in relation to indoor environment	К3
CO3	<i>Demonstrate</i> the solar energy temperature concepts, ventilation with its effects and lighting system design on buildings	К3
CO4	<i>Describe</i> the solar passive heating and cooling concepts.	К3
CO5	<i>Discuss</i> the energy audit, their objectives and building energy survey and audit report	К3
CO6	<i>Explain</i> the energy conservation through building design and site planning.	K3
Objectives		
	nderstand the basics of energy management and energy audit of buildings xplain the energy conservation through building design and site planning. ONTENT	
UNIT I	INDOOR ENVIRONMENT	8 Hours
	Introduction of Architecture as the art and science of designing. Buildin significance indoor Environment. Components of Indoor Environment. Qua Environment.	
UNIT II	THERMAL ANALYSIS AND DESIGN FOR HUMAN COMFORT	10 Hours
	Human comfort- Thermal, Visual, Acoustical and all factory comfort, comforindoor Environment. Concept of Solar temperature and its significance. Instantaneous heat gain through building envelops. Calculation of solar buildings. Building orientation and significance. Introduction to design of sl (horizontal, vertical and egg-crate). Factors that affect energy use in building and its significance. Lighting and visual ability- Lighting system Design - Economics	Calculation of radiation on hading devices gs. Ventilation
UNIT III	SOLAR PASSIVE CONCEPTS FOR COOLING FOR BUILDINGS	8 Hours
	Pelton, Francis and Kaplan Turbine Measurement of pressure head, Ve parameters for finding out the potential of Hydro energy-Selection of turb specific quantities –case study.	
UNIT IV	ENERGY MANAGEMENT AND ENERGY AUDIT OF BUILDINGS	9 Hours
	Introduction to energy management of buildings and energy audit of build energy management of buildings. The historical and diagnostic energy	

	objectives and benefits. Introduction energy management matr	ix monitoring and targeting
UNIT	Building energy survey and audit report form. V ENERGY EFFICIENT LANDSCAPE DESIGN	9 Hours
	Modification of microclimate through landscape elements for conservation through site selection, sitting & orientation. E	
	integration of buildings and site, site planning and design.	
Lectur	e = 45 Hours Tutorial = 0 Hours To	otal = 45 Hours
FEXT	BOOKS / REFERENCE BOOKS	
1.	Sodha M., Bansal, N.K., Bansal, P.K., Kumar, A. and Malik, M.A.S	S.,"Solar Passive Buildings
	Pergamon Press, 1986.	-
2.	Koenigsberger, O.H., Ingersoll, T.G., Mayhew Alan and Szokolay, Housing and Building part 1: Climatic Design", OLBN 0 00212 001 1973.	· · · · · · · · · · · · · · · · · · ·
3.	N K Bansal, "Energy Conservation in Buildings"	
	Evans, Martin, "Housing, Climate and Comfort." ISBN 0 85139 102 London, 1980.	28, The Architectural Pres
5.	Bureau of Indian standards, I.S. 11907- 1986 Recommendation Radiation Building, 1986.	is for calculation of Sol
6.	Givoni, B, "Man, Climate and Architecture", Elsevier, Amsterdam,	1986.
7.	Smith Ajitha, D, "Building Environment", Tata McGraw Hill p New Delhi, 1985	ublishing company Limite
8.	Robinette, G.O., (ed), "Landscape Planning for Energy Conservatio New Yark, 1990.	n". Van Nostrand Reinhol
9.	Bureau of Indian Standards, I.S. 11907 –1986 Recommendation Radiation Buildings, 1986.	ns for calculation of Sol
10	Smith, R. J., Phillips, G.M. and Sweeney, M. "Environmental Science	aa" Langman Saiantifia a

10. Smith, R. J., Phillips, G.M. and Sweeney, M. "Environmental Science", Longman Scientific and Technical, Essex, 1982.

	P01	P02	P03	PO4	P05	P06	P07
CO1	2	1	1	1	1	1	1
CO2	2	1	1	1	1	1	1
CO3	2	1	1	1	1	1	1
CO4	2	1	1	1	1	1	1
CO5	2	1	1	1	1	1	1
CO6	2	1	1	1	1	1	1
Total	12	6	6	6	6	6	6
	1.1	ow 2.	Ma	dium	3. Hi	ah	

Mapping of COs with POs

1 - Low, 2 – Medium, 3- High

Semeste	er	III						
Course	Name	Energy Audit and Management						
Course	Code	YRE302A	YRE302A					
L –T –I	Р-С		C:P:A	L –T –P –H				
3-0-0)-3		3:0:0	3-0-0-3				
CO Numb er	CO STA	TEMENT		Knowledge Level				
CO1	Identify	the need for en	ergy savings.	К3				
CO2	_	-	ergy conservation of thermal attention the efficiencies.	К3				
CO3		e knowledge hermal utilities	to calculate the efficiency of	К3				
CO4	consump	tion	Energy Audit to reduce energy	К3				
CO5	and optin	nize the energy	y monitoring system to analyze consumption in an organization.	К3				
CO6			lysis of various investment alternatives for ds of the organization.	К3				
Objecti	ves							
	SE CONT	ENT						
UNIT I	I INT	RODUCTIO	N	9 Hours				
UNIT I	cons – ar Indi	sumption pattern over view of $a - Role$ of End	 Principles and imperatives of energy c rn – Resource availability – Why save energy – 1 energy consumption and its effects – current e ergy Managers in Industries. ERVATION OF THERMAL UTILITIES	reasons to save energy				
UNIT I	Var Upg Pres corr Pun Moi Co- con	 Energy Audit–Characteristic Methods Employed in Certain Energy Intensive Industries – Various Energy Conservation Measures in Steam – Losses in Boiler. Methodology of Upgrading Boiler Performance – Boiler Blow Down Control – Excess Air control – Pressure Reducing Stations. Energy Conservation in Steam Systems – Importance of correct Pressure, Temperature, & Quality of Steam – Condensate Recovery – Condensate Pumping – Thermo Compressors – Recovery of Flash Steam – Air Removal & Venting – Moisture Removal. Steam Traps – Types, Function, Necessity – Section and application. Co-generation – in-plant power generation systems – co-generation Schemes and configuration – Design Considerations – Heat Rate Improvement. Case studies. ENERGY CONSERVATION OF UTILITIES 9 Hours 						
	cons Safe com cons load	sideration mini ety margin – o pressed air sy sidered at desi l estimation – r	s – energy consumption & energy saving mizing over design – case studies – Fans & Blo- choice of fans controls – design consideration stems – selection of compressed air layout – gn – Design consideration. Refrigeration & Air nethods of minimizing heat loads – optimum sele gy conservation in cooling towers & spray ponds	wers – Specification – s. Air compressor & Encon aspects to be r conditioning – Heat ections of equipment –				

UNIT IV	ENERGY AUDITING	9 Hours						
	Potential areas for Electrical Energy Conservation in various Indust							
	methods - Energy Management Opportunities in Electrical Heating, Lighting System,							
	Cable Selection – Energy Efficient Motors – Factors Involved in Dete	ermination of Motor						
	Efficiency Adjustable AC Drivers, Application & its Uses – Variable	speed Drivers / Belt						
	Drives Energy Efficiency in Electrical Systems - HT Power Dis	stribution – Control						
	system in HT/LT side, Harmonics – Energy Efficiency in Lighting – G	Case studies.						
UNIT V	ENERGY MANAGEMENT	9 Hours						
	Organizational background desired for energy management persua	sion / motivation /						
	publicity role, tariff analysis, detailed process of monitoring & target	ting (M&T). Energy						
	monitoring, auditing & targeting – Economics of various Energy co	nservation schemes,						
	instrumentation and calibration -Electronics Control and Industrial E	Energy Management						
	Systems. Thermostats, Boiler controls; proportional, differential a	nd integral control,						
	optimizers; compensators.	-						
Lecture = 4	5 HoursTutorial = 0 HoursTotal = 45 Hours							
TEXT BOOKS / REFERENCE BOOKS								
1. Eastop T.	1. Eastop T.D & Croft D.R, Energy Efficiency for Engineers and Technologists, Longman Scientific &							
Technical, IS	SBN – 0-582 – 03184, 1990.							
Reference B	ook							

- 1. Reay D.A, Industrial Energy Conservation, 1st edition, Pergamon Press, 1977.
- 2. Larry C whitetal, Industrial Energy Management & Utilization.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	3	3	3	2	3	2
CO2	2	2	1	3	2	1	1
CO3	2	2	1	2	2	2	1
CO4	1	1	2	2	3	3	3
CO5	1	1	2	2	3	3	3
CO6	1	1	2	2	3	3	3
Total	9	10	11	14	15	15	13

Mapping of COs with POs

1 - Low, 2 – Medium, 3- High

Semest	er	III						
Course	Name	UNIT OPERATIONS IN INDUSTRIES						
Course		YRE302B						
		I KE502D		LTDU				
L –T –I			C:P: A	L –T –P –H				
3-0-0	0-3		3:0:0	3-0-0-3				
CO Numb er	CO STA	TEMENT		Knowledge Level				
CO1	<i>Identify</i> industries	material crus	K3					
CO2	Develop understar	K3						
CO3		Apply the principle of different evaporator types inK3industries.						
CO4	<i>Apply</i> humidity charts to achieve optimal results in K3 industries.							
CO5	Identify a	<i>Identify</i> appropriate Dryer and calculate drying rate. K3						
CO6	Utilize ap	propriate disti	llation method in industries	K3				
Objecti	ves			·				
Upon su	iccessful c	ompletion of c	ourse, the student will able to					
	Characteri equipment	-	alate solids, Principles of size reduction, crushing	g and grinding				
*	• •	solids and sep	paration methods for different types of mixtures l	ike solid-solid, solid				
	mass bala	nces in distillat	•	ase equilibrium and				
	Apply nur SE CONT		nd understand the basics of drying process.					
UNIT	I CRI	U SHING ,	GRINDINGSIZE SEPARATION	& 12 Hours				
			F BULK SOLIDS	12 110015				
	crus Crus	hers – Interm shing rolls – H	Crushing – classification of crushing and grinding ediate crushers – fine grinders – jaw crusher ammer mills – Ball and tube mills – Ultrafine gr bility Index. Introduction – characterization of so	 Gyratory Crusher - cinders – Closed circui 				

MIXING AND FILTRATION

UNIT II

Material separation by difference in density – Heavy media cyclone - Froth floatation – Hindered settling – working of thickener. Conveying of bulk solids – conveyor of bulk materials – screw conveyors – Belt conveyors – Bucket Elevators – Pneumatic Conveyers

Introduction – mixing of liquids/Liquids, Liquids/Gases, Liquids/Solid – Types of mixers – various mixing equipment – Power requirement for an Impeller Mixer. Theory of

8 Hours

d Long '	8 Hours ity and Economy of Tube Evaporators – aporators – Multiple
d Long '	Tube Evaporators –
	8 Hours
onds and cent – Bo te – Fal	Chart – Wet bulb Cooling Towers – bund, Unbound, Free lling Rate Period – er – Cylinder Dryer –
	9 Hours
1-4:	Batch Distillation – atio- Total Reflux – ate – Actual Plate –
	Idool DI

Reference Book

- P.Chattopadhyay, "Unit operations of chemical Engineering", 2nd edition, Khanna Publishers, 1996.
- 2. W.L.McCabe and J.C.Smith, "Unit operations of Chemical Engineering",5th edition, McGraw Hill International editions, 1993.
- 3. Alan S Foust, "Principles of Unit Operations", 2nd edition, Wiley International Edition, 1960.
- J.M. Coulson & Richardson, Chemical Engineering, 5th edition, Butterworth Heinemann, 1996.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	3	3	3	2	3	2
CO2	2	2	1	3	2	1	1
CO3	2	2	1	2	2	2	1
CO4	1	1	2	2	3	3	3
CO5	1	1	2	2	3	3	3
CO6	1	1	2	2	3	3	3
Total	9	10	11	14	15	15	13

Mapping of COs with POs

Semest	er	III						
Course	Name	CAD/CAM AND SIMULATION OF RENEWABLE ENERGY SYSTEMS						
Course	Code	YRE302C						
L –T –I	Р-С		C:P:A	L –T –P –H				
3-0-	0-3		3:0:0	3-0-0-3				
CO Numb er	CO STA	CO STATEMENT						
CO1	explain y	various aspects	of CAD.	K2				
CO2	solve pro	K3						
CO3	<i>explain</i> Manufac	K2						
CO4	explain v	various aspects	K2					
CO5	simulate	solar and wind	К3					
CO6	simulate	biomass energ	zy systems.	K3				
Objecti	ives							
* * *	Understar Understar	nd various aspe nd various aspe aspects of solar	acts of CAD in relation to energy systems. Acts of CAM in relation to energy systems. Acts of Process planning systems in relation to energy and wind and biomass energy systems.	ergy systems.				
UNIT	I BAS	SIC CONCEP	TS OF CAD	9 Hours				
	Prin tran libra	ciples of co sformation. El aries, design ar	nd software operating system, application softword computer graphics – graphics programmin dements of mechanical drafting package, grap and drafting interface. Advanced modelling techni	g, input techniques, hic standards, graphic ques.				
UNIT I			DELLING TECHNIQUES	9 Hours				
	moo data	delling softwar base developr	e and surface, non uniform rotational of spline re – principles of solid modelling – rendering nent and database management systems –princip	methods - CAD/CAM				
UNIT I	Π CO	MPUTER AII	DED MANUFACTURING AND PROCESS	9 Hours				
	- Pr Con - m state	ogramming lan nputer process odelling and a	anufacturing- fundamentals of CAD/CAM – cor nguages, process interface hardware – hierarchy monitoring, types of production monitoring sys nalysis – direct digital control – supervisory con ttrol – adaptive control, on – line search support.	of computers in CAM. tems – process control nputer control – steady				

UNIT IV	CAD MODELLING AND SIMULATION OF SOLAR AND WIND ENERGY SYSTEMS	9 Hours
	Solar collectors, solar cooker, solar water heater, solar pasteuriser, so and wind generator.	olar drier, wind mill
UNIT V	CAD MODELLING AND SIMULATIONOF SYSTEMS USING BIOMASS	9 Hours
	Updraft gasifier – downdraft gasifier, cross draft gasifier – multi fuel fluid bed gasifier –Biogas plant.	gasifier – fixed and
Lecture =45	HoursTutorial = 0 HoursTotal = 45 Hours	

TEXT BOOKS / REFERENCE BOOKS

Reference Book

1. William M Newman and Robert Sproul "principles of interactive graphics" McGraw Hill, 1984.

2.Radha Krishnan.P. & Kothandaraman.C.P. "Computer graphics design" Dhanpat Rai and Sons, 1990. 3.Groover.M.P. "Automation, Production systems and Computer Aided Manufacturing" Prentice Hall, 1984.

4.CAD/CAM Theory & practice, Inbrahim & Zeid Pub: Tata McGraw Hill.

	P01	P02	P03	P04	PO5	P06	P07
CO1	2	3	3	3	2	3	2
CO2	2	2	1	3	2	1	1
CO3	2	2	1	2	2	2	1
CO4	1	1	2	2	3	3	3
CO5	1	1	2	2	3	3	3
CO6	1	1	2	2	3	3	3
Tot	9	10	11	14	15	15	13

Mapping of COs with POs

1 - Low, 2 – Medium, 3- High

Semeste	er	Ш		
Course Name Industrial		Industrial S	afety	
Course	Code			
L –T –I	Р-С		C:P: A	L –T –P –H
3 - 0 - 0 - 3			3:0:0	3-0-0-3
CO Numb er	CO STA	TEMENT		Knowledge Level
CO1	Evaluate records	К3		
CO2	Explain	the functions a	nd activities of maintenance engineering	К3
CO3	Identify	wear failure fo	or prevention and control	К3
CO4	Identify	causes of fault	in industrial systems	К3
CO5	Impleme	ent periodic m	aintenance procedures	К3
CO6	Impleme	preventive maintenance procedures	К3	
COURS	SE CONT	ENT		1
UNIT	I INI	DUSTRIAL S	SAFETY AND ACCIDENT	9 hrs

Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods

UNIT II FUNDAMENTALS OF MAINTENANCE ENGINEERING:

9 hrs

Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT III WEAR AND CORROSION AND THEIR PREVENTION

9 hrs

Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT IV	FAULT TRACING	9hrs
Fault tracing	g-concept and importance, decision treeconcept, need and application	ations, sequence of
fault finding	g activities, show as decision tree, draw decision tree for pro	blems in machine

tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT V

PERIODIC AND PREVENTIVE MAINTENANCE

9hrs

Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Lecture =45 HoursTutorial = 0 HoursTotal = 45 Hours

TEXT BOOKS

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.

REFERENCE BOOK

- 1. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	3	3	3	2	3	2
CO2	2	2	1	3	2	1	1
CO3	2	2	1	2	2	2	1
CO4	1	1	2	2	3	3	3
CO5	1	1	2	2	3	3	3
CO6	1	1	2	2	3	3	3
Total	9	10	11	14	15	15	13

Semester II		ш			
Course Na	ime	Dissertation Phase – I	[
Course Co	ode	YRE301			
L – Т – Р – С			C:P:A	L –T –P –H	
0-0-10-10			2:0.5:0.5	0-0-20-20	
CO Number	er CO STATEMENT				
CO1	<i>Identi</i> requir	К3			
CO2	Descr proble	К3			
CO3	Select solutio	e project work from the proposed different	К3		
CO4	U U	<i>Design</i> the project model with relevant detailed subassemblies and technical drawings with detailed action plan for implementation.			
CO5	<i>Identi</i> work	К3			
CO6	Prepa a pres	K3			

Objectives

- To collect various literatures in the research interest area, study, understand the works already prevailing in the interested project work area.
- To get the knowledge about various elements of research works, various methods in proceeding the project work and selecting suitable one with action plan
- Understand and able to apply the basics concepts of design in the role of making the project into reality.
- ◆ To prepare a project report and presentation with the collected data ,with available details

LOOK INTO THE FOLLOWING DETAILS TO MEET THE OUTCOMES

IDENTIFICATION OF PROJECT WORK AREA

Overview of various renewable energy topics for performance improvement, optimality, etc. Hydropower systems-Wind energy systems, Solar energy systems, and other systems about Project Feasibility-Literature review collections

SELECTION OF RELEVANT PROJECT TITLE

Based on the detailed literature review, Identification of gap area and formulation of suitable project title

DESIGN THE PROJECT WORK MODEL WITH DETAILED DRAWINGS / CHARECTERIZATION METHODS

Design the project model with its assemblies into sketches /technical drawings with dimensions with CAD tools. For performance and analysis characterization projects, needs to identify the characterization sequences

IDENTIFICATION OF METHODS AND MATERIALS REQUIRED TO MANUFACTURE THE PROJECT

Identification of suitable methods and bill of materials, cost involved and suitable manufacturing method, to make the design model into reality and performing the activities, Execution of the activities production and running of the system.

DATA COLLECTION, ANALYSIS, PROJECT REPORT PREPARATION

Checking the working of the system/model, Fundamental knowledge of data collection, analysis, interpretation of data with details and project report writing and making ready the power point presentation

TEXT BOOKS / REFERENCE BOOKS

- 1. Old approved project reports of our department and other department project report copies.
- 2. Refer other university and engineering college project reports.

	POI	P02	P03	P04	P05	P06	P07
CO1	2	2	1	1	1	1	1
CO2	2	2	1	1	1	1	1
CO3	2	2	1	1	1	1	1
CO4	2	2	1	1	1	1	1
CO5	2	2	1	1	1	1	1
CO6	2	2	1	1	1	1	1
Total	12	12	6	6	6	6	6
	1 1	ow 2.	Ma	dium	3. H	ah	

Mapping of COs with POs

1 - Low, 2 - Medium, 3- High

Semester IV		IV						
Course Name		Dissertation Phase – I	Dissertation Phase – II					
Course Code YRE401		YRE401						
L –T –P –	-C		C:P:A	L –T –P –H				
0 - 0 -16- 16			0:1.5:1.5	0-0-32-32				
СО	CO STATEMENT							
CO1	build	<i>build</i> individual parts or samples related to project						
CO2	Assen	ble individual parts to fi	nished assembly related to project	P5				
CO3	Perfor projec		y or design calculation on objects related to	A5				
CO4	Comp	ose the important finding	gs as scientific drawing, chart, plot and table	P7				
CO5	Prepa	re a consolidated technic	cal report of the project	A4				
CO6	Present a consolidated technical report of the project							
	s			1				

- ✤ To compose important findings as scientific data.
- ✤ To prepare and present technical report of the project.

Mapping of COs with POs							
	P01	P02	P03	P04	P05	P06	P07
CO1	2	1	2	1	1	1	1
CO2	3	2	2	2	1	1	1
CO3	2	3	2	1	1	1	1
CO4	3	3	2	2	3	1	1
CO5	3	1	3	3	2	1	1
CO6	3	1	2	3	1	1	1
Total	16	11	13	12	9	6	6
1 - Low, 2 – Medium, 3- High							

Mapping of COs with POs

OPEN ELECTIVE COURSE

Course	Name	Industrial Sa	afety			
Course	Code	YREOE1				
L –T –P –C			C:P: A	L –T –P –H		
3-0-0-3			3:0:0	3-0-0-3		
CO Numb er				Knowledge Level		
CO1	Evaluate records	e the safety p	erformance of an organization from accident	К3		
CO2	Explain	the functions a	nd activities of maintenance engineering	К3		
CO3	Identify	wear failure fo	r prevention and control	К3		
CO4	-	causes of fault	К3			
CO5	Impleme	ent periodic ma	К3			
CO6	5 Implement important preventive maintenance procedures				К3	
COURS	SE CONT	ENT				
UNIT	I INI	OUSTRIAL S	SAFETY AND ACCIDENT	9 hrs		
and pressafety,	eventive s wash roo ety color	steps/procedu ms, drinking codes. Fire pr	ts and control, mechanical and electrical ha re, describe salient points of factories act 1 water layouts, light, cleanliness, fire, guardir revention and firefighting, equipment and me	1948 for health ng, pressure vess thods	and	
respons tools u	sibility of	maintenance	ntenance engineering, Primary and second department, Types of maintenance, Types Maintenance cost & its relation with rep	and applications	s of	
UNIT I	II WE	AR AND CO	DRROSION AND THEIR PREVENTION	9 hrs		
Lubrica Pressur Side fe	ntion methe e grease g eed lubric	nods, general gun, iii. Splas ation, vii. R	s, wear reduction methods, lubricants-type sketch, working and applications, i. Screw of h lubrication, iv. Gravity lubrication, v. Wick ing lubrication, Definition, principle and fa corrosion prevention methods.	down grease cup a feed lubrication), ii. n vi.	

UNIT IV	FAULT TRACING	9hrs

Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT VPERIODIC AND PREVENTIVE MAINTENANCE9hrs

Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Lecture =45 HoursTutorial = 0 HoursTotal = 45 Hours	
---	--

TEXT BOOKS

1.Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services. 2.Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.

REFERENCE BOOK

1.Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London. 2.Maintenance Engineering, H. P. Garg, S. Chand and Company.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	3	3	3	2	3	2
CO2	2	2	1	3	2	1	1
CO3	2	2	1	2	2	2	1
CO4	1	1	2	2	3	3	3
CO5	1	1	2	2	3	3	3
CO6	1	1	2	2	3	3	3
Total	9	10	11	14	15	15	13

Mapping of COs with POs

1 - Low, 2 – Medium, 3- High