

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.3	Average percentage of courses having focus on employability/ entrepreneurship/ skill Development offered by the Department of Aerospace Engineering.

DEPARTMENT OF AEROSPACE ENGINEERING

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

S. No.	Programme Name
1.	Bachelor of Technology (Aerospace Engineering) (Full Time)

2. Syllabus of the courses as per the list.

Legend :	Words highlighted with Blue Color	-	Entrepreneurship
	Words highlighted with Red Color	-	Employability
	Words highlighted with Green Color	-	Skill Development

1. LIST OF COURSES

Name of the Course	Course Code	Year of Introduction	Activities/Content with direct bearing on Employability/ Entrepreneurship/ Skill development
Calculus and Linear Algebra	XMA101	2018-19	Skill Development- Test, Quiz, Problem solving
Electrical and Electronic Engineering Systems	XBE102	2015-16	Skill development, Employability- Assignment, Class Test, Seminar
Applied Physics for Engineers	XAP103	2018-19	Skill development, Employability- Test, Assignment, Seminar
Engineering Graphics and Design	XEG104	2018-19	Employability, Skill development- Problem solving, Assignment, Seminar
Speech Communication	XGS105	2021-22	Skill develoment- Group Discussion, Oral Presentation, Quiz
Constitution of India	XUM106	2018-19	Skill Develoment- Test, Quiz, Assignment
Electrical and Electronic Engineering Systems Lab	XBE107	2015-16	Skill development, Employability- Record Writing, Observation, Mini project
Applied Physics for Engineers Lab	XAP108	2018-19	Employability- Record Writing, Observation, Mini project
Calculus, Ordinary Differential Equations and Complex Variable	XMA201	2018-19	Skill development- Test, Quiz, Tutorial
Programming for Problem Solving	XCP202	2018-19	Skill development, Employability- Assignment, Class Test, Seminar
Applied Chemistry for Engineers	XAC203	2018-19	Skill development, Employability, Entrepreneurship- Problem solving, Assignment, Quiz, Test
Technical Communication	XGS204	2021-22	Skill development- Group discussion, Presentation, Assignment
Workshop Practices	XWP205	2018-19	Skill development- Record Writing, Observation, Mini project
Engineering Mechanics	XEM206	2015-16	Employability, Skill Development- Assignment, Attendance, Seminar, Case study
Programming for Problem Solving Lab	XCP207	2018-19	Skill development, Employability- Record Writing, Observation, Mini project
Applied Chemistry for Engineers Lab	XAC208	2018-19	Employability- Record Writing, Observation, Mini project

Transforms and Partial Differential Equations	XMA301	2018-19	Skill Development- Assignment, Quiz, Test, Applications
Introduction to Aerospace Engineering	XAS302	2022-23	Employability, Skill Development- Assignment, Seminar, Case study
Strength of Materials	XAS303	2022-23	Employability, Skill Development- Assignment-I,II, Seminar, Case study, Quiz
Fluid Mechanics	XAS304	2022-23	Employability, Skill Development - Assignment- I & II, Seminar, Class work
Aero Engineering Thermodynamics	XAS305	2015-16	Employability, Skill Development- Assignment, Seminar, Slip Test
Entrepreneurship Development	XUM306	2022-23	Employability, Skill Development, Entrepreneurship- Business Plan, Case Study, Assignment, Slip Test
Universal Human Values 2: Understanding Harmony	HSMC (H- 102)	2022-23	Skill Development- Group Discussion, Test, Assignment, Seminar, Quiz
Strength of Materials Lab	XAS308	2022-23	Skill development, Employability- Record Writing, Observation, Mini project
Fluid Mechanics Lab	XAS309	2022-23	Skill development, Employability- Record Writing, Observation, Mini project
In-Plant Training-I	XAS310	2015-16	Employability, Skill Development- Work Diary, Report, Presentation, Attendance, Feedback from industry
Probability and Statistics	XPS401	2022-23	Skill Development- Assignment, Test, Quiz
Aerodynamics- I	XAS402	2015-16	Employability, Skill Development- Assignment,Seminar, Slip test, Attendance
Aircraft Structures- I	XUM403	2015-16	Skill Development, Employability - Assignment-1,2, Class work note, Attendance
Air-Breathing Propulsion	XAS404	2015-16	Skill Development, Employability- Assignment, Seminar, Case Study, Attendance
Economics for Engineers	XUM405	2015-16	Skill Development- Assignment, Seminar, Attendance
Disaster Management	XUM406	2015-16	Skill Development- Assignment I & II, Class Test, Seminar, Case Study
Aerodynamics Lab	XAS407	2015-16	Skill development, Employability- Record Writing, Observation, Mini

			project
Thermal and Propulsion Lab	XAS408	2015-16	Skill development, Employability- Record Writing, Observation, Mini project
CAD Lab	XAS409	2022-23	Skill development, Employability- Record Writing, Observation, Mini project
Aerodynamics-II	XAS501	2018-19	Skill Development, Employability- Assignment, Case Study, Seminar, Slip Test
Aircraft Structures- II	XAS502	2018-19	Employability, Skill Development- Assignment, Seminar, Case study, Attendance
Aerospace Propulsion	XAS503	2018-19	Employability, Skill Development- Assignment, Seminar, Slip test
Elements of Satellite Technology	XAS504	2015-16	Employability, Skill Development- Assignment, Seminar, Case study, Attendance
Navigation Systems	XAS505C	2015-16	Skill Development, Employability- Assignment, Test, Seminar, Case study
Open Elective Course – I	X**OE*	2015-16	****
Aircraft Structures Lab	XAS507	2018-19	Skill development, Employability- Record Writing, Observation, Mini project
Aircraft Design Project	XAS508	2023-24	Skill development, Employability- Record Writing, Observation, PPT, Mini project
In-Plant Training – II	XAS509	2015-16	Employability, Skill Development- Work Diary, Report, Presentation, Attendance, Feedback from industry
Finite Element Analysis	XAS601	2015-16	Employability, Skill Development- Assignment I & II, Seminar, Class work
Flight Dynamics	XAS602	2018-19	Employability, Skill Development- Assignment, Seminar, Poster Presentation, Slip Test
Space Mechanics	XAS603C	2018-19	Employability, Skill Development - Assignment, Online quiz, Seminar, Attendance
Open Elective Course – II	X**OE*	2015-16	****
Professional Skills	XGS605	2023-24	Employability, Skill Development- Assignment, Seminar, Quiz, Slip

			Test
Cyber Security	XUM606	2015-16	Skill Development- Assignment, Quiz, Seminar
Machine Dynamics Lab	XAS607	2023-24	Skill development, Employability- Record Writing, Observation, Mini project
Aeromodelling Lab	XAS608	2018-19	Skill development, Employability- Record Writing, Observation, Mini project
Computational Fluid Dynamics	XAS701	2015-16	Employability, Skill Development- Assignment, Seminar, Case study, Slip test, Record Writing, Observation, Mini project
Aircraft Engine Maintenance	XASE17	2015-16	Employability, Skill Development- Assignment, Seminar, Case study
Rockets and Missiles	XASE21	2015-16	Employability, Skill Development- Assignment, Seminar, Case study
Open Elective-III	X**OE*	2015-16	****
Project Phase-I	XAS705	2015-16	Employability, Skill Development, Entrepreneurship- Review, PPT Presentation, Fabrication, Report submission
Cyber Security	XUM706	2015-16	Skill Development, Entrepreneurship- Assignment, Seminar, Test
In-Plant Training-III	XAS707	2015-16	Skill Development -Work Diary, Report, Presentation, Attendance, Feedback from industry
Aero and Space Modeling	XASM03	2018-19	****
Cryogenics	XASE28	2015-16	Employability, Skill Development- Assignment, Seminar, Casestudy-
Open Elective-IV	X**OE*	2015-16	****
Open Elective-V	X**OE*	2015-16	****
Project Phase- II	XAS804	2015-16	Employability, Skill Development, Entrepreneurship- Review, PPT Presentation, Fabrication, Report submission
Elements of UAV	XASH01	2022-23	Employability- Assignment, Seminar, Q&A
UAV Design, Control, & Meteorology	XASH02	2022-23	Employability- Assignment, Seminar, Q&A

UAV Business and Operational Industrial Aspects	XASH03	2023-24	Employability- Assignment, Seminar, Group Discussion, Q&A
Design and Development of UAV	XASH04	2023-24	Employability- Record Writing, Observation, Mini project, Field Training
Remote Pilot Training	XASH05	2023-24	Employability- Record Writing, Observation, Mini project, Field Training
Project Work	XASH06	2023-24	Employability, Skill Development, Entrepreneurship- Review, PPT Presentation, Fabrication, Report submission

SYLLABUS

COUR	RSE CODE	XMA101		L	Τ	Р	С	
COUR	RSE NAME	CALCULUS AND LINEAR ALGEB	BRA	3	1	0	4	
	EQUISITES	NIL		L	Τ	Р	Н	
	= 3:0.5:0.5		3	1	0	4		
COURSE OBJECTIVES								
• Un	derstand the ap	plication of calculus and linear algebra in	n engineering	z .				
COUR	RSE OUTCOM	ES	DOMAIN		LEV	EL		
CO1	<i>Apply</i> orthogo form to canonic	nal transformation to reduce quadratic ical forms.	Cognitive	e		memt Apply	bering ing	
CO2		series to tests the convergence of the l series. Half range Fourier sine and	Cognitive			Applying Remembering Guided Response		
CO3		<i>t</i> the derivative of composite functions and Cognitive icit functions. Euler's theorem and Jacobian. Psychomotor				Remembering Guided Response		
CO4	<i>Explain</i> the functions of two variables by Taylor's expansion, by finding maxima and minima with and				Remembering Understanding Receiving		inding	
CO5	Curvature and	ntial and Integral calculus to notions of to improper integrals.	Cognitive A _I				pplying	
	UNIT I MATRICES 12L+3'							
		n - Eigen values and Eigen vectors -Pr						
vectors - Cayley-Hamilton Theorem - Diagonalisation of Matrices - Real Matrices: Symmetric -								
Skew-Symmetric and Orthogonal Quadratic form – canonical form - Nature of Quadratic form and								
		adratic form to Canonical form (Orthogo	onal only).					
UNIT	II SEQUE	NCES AND SERIES]	2L+3T	

Sequences:	Definiti	on and examples-Serie	es: Types and convergence	e- Series of positi	ve terms –				
	Tests of convergence: comparison test, Integral test and D'Alembert's ratio test-Fourier series:								
	•	cosine series- Parseval	6						
UNIT III			ULUS: PARTIAL DIFFI	ERENTIATION	12L+3T				
Limits and	continu	ity –Partial differenti	ation - Total Derivative	- Partial differe	ntiation of				
Composite 1	Function	ns: Change of Variabl	es – Differentiation of an	Implicit Function	n - Euler's				
Theorem- Ja	cobian.								
UNIT IV	INIT IVMULTIVARIABLE CALCULUS: MAXIMA AND MINIMA AND12L+3T								
	VECT	FOR CALCULUS							
Taylor's the	orem fo	or function of Two var	iables- Maxima, Minima o	of functions of two	variables:				
with and w	ithout c	constraints - Lagrange	's Method of Undetermin	ed Multipliers -	Directional				
Derivatives	- Gradie	ent, Divergence and Cu	rl.						
UNIT V	DIFF	ERENTIAL AND INT	FEGRAL CALCULUS		12L+3T				
Evolutes and	d involu	tes; Evaluation of defin	nite and improper integrals	s; Beta and Gamm	a functions				
and their pr	operties	; Applications of defin	nite integrals to evaluate s	surface areas and v	volumes of				
revolutions.									
TEXT BOC									
1. Rama	na B.V.	, "Higher Engineering	Mathematics", Tata McGra	aw Hill New Delhi	, 11th				
		5. (Unit-1, Unit-3 and							
2. N.P. I	Bali and	Manish Goyal, "A text	t book of Engineering Matl	hematics", Laxmi					
		Reprint, 2014. (Unit-2							
3. B.S. C	Grewal,	"Higher Engineering N	Iathematics", Khanna Publ	lishers, 40 th Edition	n, 2010.				
(Unit	-5)								
REFEREN									
		•	culus and Analytic geomet	ry", 9 th Edition, Pe	arson,				
	nt, 2002								
	-	., "Engineering Mathen	natics for first year", Tata N	McGraw-Hill, New	/ Delhi,				
	2008.								
2006.									
E-REFER									
1. <u>http://</u>	nptel.ac.	in/faq/110101010/Prof.In	drajitMukherjee,IIT,Bombay	and Prof. TapanP	.Bagchi,				
	haragp								
LECTURE	: 60	TUTORIAL: 15	PRACTICAL: 0	TOTAL	:75				

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	2	1	1	2	2	8	2
PO ₃	0	0	0	0	0	0	0

XMA101 - Mapping of CO with PO

PO ₄	0	0	0	0	0	0	0
PO ₅	2	0	0	0	1	3	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0
PO ₁₀	1	1	1	1	1	5	1
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	2	1	1	1	2	7	2
PSO ₁	0	0	0	0	0	0	0
PSO ₂	1	1	1	1	1	5	1
TOTAL	11	7	7	8	10	_	_

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURS	SE CODE	XBE102		L	Т	P	С	
COURS	SE NAME	ELECTRICAL AND ELECTRONIC		3	1	0	4	
ENGINEERING SYSTEMS								
PRERE		L	Т	P	Η			
C:P:A= 3:0:0						0	4	
COURSE OUTCOMES DOMAIN						VE	Ĺ	
CO1Define and Relate the fundamentals of electrical parameters and build and explain AC, DC circuits by Using measuring devicesCognitive					Understand			
CO2	Define and Explain the operation of DC and AC					Understand		
CO3	Recall and Illustrate various semiconductor devices and				Understand			
CO4	CO4 <i>Relate and Explain</i> t he number systems and logic gates. Construct the different digital circuit.Cognitive				Understand			
CO5	Label and	Outline the different types of	Cognitive		Und	ersta	nd	

	microprocessors and their applications.						
UN	IT I FUNDAMENTALS OF DC AND AC CIRCUITS, MEASUREMENTS 9+3						
Fun	damentals of DC- Ohm's Law - Kirchhoff's Laws - Sources - Voltage and Current Relations						
	ar/Delta Transformation - Fundamentals of AC- Average Value, RMS Value, Form Factor -						
	power and Power Factor, Phasor Representation of sinusoidal quantities, Simple Series,						
	allel, Series Parallel Circuit- Operating Principles of Moving coil and Moving Iron						
	ruments (Ammeter, Voltmeter) and Dynamometer type meters (Watt meter and Energy						
met							
	IT II ELECTRICAL MACHINES 9+3 Intrustion Drinsiple of Opportion Design Types and Application of DC Constraints						
	nstruction, Principle of Operation, Basic Equations, Types and Application of DC Generators, motors- Basics of Single-Phase Induction Motor and Three Phase Induction Motor-						
	istruction, Principle of Operation of Single-Phase Transformer, Three phase transformers,						
	to transformer.						
	IT III SEMICONDUCTOR DEVICES 9+3						
Clas	ssification of Semiconductors, Construction, Operation and Characteristics: PN Junction						
Dio	de - Zener Diode, PNP, NPN Transistors, Field Effect Transistors and Silicon Controlled						
	tifier – Applications						
	IT IV DIGITAL ELECTRONICS 9+3						
	ic of Concepts of Number Systems, Logic Gates, Boolean Algebra, Adders, Subtractors,						
	tiplexer, demultiplexer, encoder, decoder, Flipflops, Up/Down counters, Shift Registers.						
	IT V MICROPROCESSORS 9+3						
	hitecture, 8085, pin diagram of 8085, ALU timing and control unit, registers, data and address, timing and control signals, Instruction types, classification of instructions, addressing modes,						
	erfacing Basics: Data transfer concepts – Simple Programming concepts.						
	CTURE: 45 TUTORIAL: 15 PRACTICAL:0 TOTAL: 60						
	XT BOOK						
1.	Metha V.K, Rohit Mehta, 2020. Principles of Electronics,12 th ed, S Chand Publishing.						
2.	Albert Malvino, David J.Bates., 2017. Electronics Principles. 7th ed, Tata McGraw-Hill. New Delhi.						
3.	Rajakamal, 2014. Digital System-Principle & Design. 2nd ed. Pearson education.						
4.	Morris Mano, 2015. Digital Design. Prentice Hall of India.						
5.	Ramesh, S. Gaonkar, 2013, Microprocessor Architecture, Programming and its Applications with the 8085, 6 th ed, India: Penram International Publications.						
RE	FERENCE BOOKS:						
1.	Cotton, H.,2005 Electrical Technology. CBS Publishers & Distributors Pvt Ltd.						
2.	Syed, A. Nasar, 1998, Electrical Circuits. Schaum Series.						
3.	Jacob Millman and Christos, C. Halkias, 1967, Electronics Devices, New Delhi: Tata						
	McGraw-Hill.						
4.	Millman, J. and Halkias, C. C., 1972. Integrated Electronics: Analog and Digital Circuits and Systems, Tokyo: McGray, Hill, Kogskycha I td						
	Systems, Tokyo: McGraw-Hill, Kogakusha Ltd.						
5.	Mohammed Rafiquzzaman, 1999. Microprocessors - Theory and Applications: Intel and						

E-REFERENCES:

- **1.** NTPEL, Basic Electrical Technology (Web Course), Prof. N. K. De, Prof. T. K. Bhattacharya and Prof. G.D. Roy, IIT Kharagpur.
- **2.** Prof.L.Umanand,http://freevideolectures.com/Course/2335/Basic-Electrical-Technology#, IISc Bangalore.
- **3.** http://nptel.ac.in/Onlinecourses/Nagendra/, Dr. Nagendra Krishnapura, IIT Madras.
- **4.** Dr.L.Umanand, http://www.nptelvideos.in/2012/11/basic-electrical-technology.html, IISC Bangalore.

CO/GA	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	3	1	1	1	1			1	1	1	
CO 2	3	3	1	1	1	1			1	1	1	
CO 3	2	2	2	1	2	2	1	1	1	1	1	
CO 4	2	2	1	1	1	1	1	1	1	1	1	
CO 5	2	2	1	1	1	1	1	1	1	1	1	
Total	12	12	6	5	6	6	3	3	5	5	5	
Scaled	3	3	2	1	2	2	1	1	1	1	1	

XBE102- Mapping of COs with GAs

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE		XAP103	LT			P	С
COU	RSE NAME	APPLIED PHYSICS FOR ENGINEERS	3	1		0	4
	C:P:A	2.8:0.8:0.4	L	Т		Р	Н
PREI	REQUISITE	BASIC PHYSICS IN HSC LEVEL	3	1		0	4
COUF	COURSE OUTCOMES					L	evel
CO1	<i>Identify</i> the	C	ognit	ive:	Reme	mber,	
	elasticity and <i>determine</i> its significance in engineering					Under	rstand
	systems and te	echnological advances.	Psychomotor:			Mech	anism
CO2	<i>Illustrate</i> the	e laws of electrostatics, magneto-statics and	Cognitive:			Remember,	
	electromagnet	ic induction; <i>use</i> and <i>locate</i> basic applications of				Analy	vze,
	electromagnet	ic induction to technology.	Psychomotor:		otor:	Mechanism	
			A	Affect	tive:	Respond	
CO3	Understand	the fundamental phenomena in optics by	C	ognit	ive:	Under	rstand,
	measurement	and <i>describe</i> the working principle and				Apply	/

	application of various lasers and fibre optics.	Psychomotor:	Mechanism	
		Affective:	Receive	
CO4	Analyse energy bands in solids, discuss and use physics	Cognitive:	Understand,	
	principles of latest technology using semiconductor devices.	C	Analyze	
		Psychomotor:	-	
		Affective:	Receive	
CO5	Develop Knowledge on particle duality and solveSchrodinger	Cognitive:	Understand,	
	equation for simple potential.	Cognitive.	Apply	
UNIT	- I MECHANICS OF SOLIDS		9+3	
Mech	anics:Force - Newton's laws of motion - work and energy - impu	ulse and momen	tum - torque	
law of	f conservation of energy and momentum- Friction.			
Elasti	icity: Stress - Strain - Hooke's law - Stress strain diagram - Clas	sification of ela	stic modulus	
Mome	ent, couple and torque - Torsion pendulum - Applications of to	rsion pendulum	- Bending o	
beams	s - Experimental determination of Young's modulus: Uniform	m bending and	non-uniforn	
bendir	0			
UNIT	-II ELECTROMAGNETIC THEORY		9+3	
			. D'1	
	of electrostatics - Electrostatic field and potential of a dipole; Die	electric Polarisat	ion, Dielectri	
Laws	of electrostatics - Electrostatic field and potential of a dipole; Die ant, internal field - Clausius Mossotti Equation - Laws of magnetic			
Laws consta Lenz's	ant, internal field - Clausius Mossotti Equation - Laws of magnetics law - Maxwell's equation - Plane electromagnetic waves; their	ism - Ampere's transverse natu	Faraday's law re- expression	
Laws consta Lenz's	ant, internal field - Clausius Mossotti Equation - Laws of magneti	ism - Ampere's transverse natu	Faraday's law re- expression	
Laws consta Lenz's for pla detect	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light.	ism - Ampere's transverse natu	Faraday's law re- expression	
Laws consta Lenz's for pla detect	ant, internal field - Clausius Mossotti Equation - Laws of magnetics s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half	ism - Ampere's transverse natu	Faraday's law re- expression	
Laws consta Lenz's for pla detect UNIT	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light.	ism - Ampere's transverse natu wave plates - p	Faraday's law re- expression production and 9+3	
Laws consta Lenz's for pla detect UNIT Optic	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS	ism - Ampere's transverse natu wave plates - p tion of refracti	Faraday's law re- expression production and 9+3 ve index and	
Laws consta Lenz's for pla detect UNIT Optic disper	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS es: Dispersion- Optical instrument: Spectrometer - Determination	ism - Ampere's transverse natu wave plates - p tion of refracti e - Diffraction:	Faraday's law re- expression production and 9+3 ve index and grating.	
Laws consta Lenz's for pla detect UNIT Optic disper LASE	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS s: Dispersion- Optical instrument: Spectrometer - Determinant rsive power of a prism- Interference of light in thin films: air wedg	ism - Ampere's transverse natu wave plates - p tion of refracti e - Diffraction:	Faraday's law re- expression production and 9+3 ve index and grating.	
Laws consta Lenz's for pla detect UNIT Optic disper LASE Applic	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS s: Dispersion- Optical instrument: Spectrometer - Determinant rsive power of a prism- Interference of light in thin films: air wedg CR : Introduction - Population inversion -Pumping - Laser action	ism - Ampere's transverse natu wave plates - p tion of refracti e - Diffraction: g - Nd-YAG laser	Faraday's law re- expression production and 9+3 ve index and grating. $- CO_2$ laser	
Laws consta Lenz's for pla detect UNIT Optic disper LASE Applic Fibre	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS s: Dispersion- Optical instrument: Spectrometer - Determinant resive power of a prism- Interference of light in thin films: air wedg CR : Introduction - Population inversion -Pumping - Laser action cations	ism - Ampere's transverse natu wave plates - p tion of refracti e - Diffraction: g - Nd-YAG laser erical aperture a	Faraday's law re- expression production and 9+3 ve index and grating. $- CO_2$ laser	
Laws consta Lenz's for pla detect UNIT Optic disper LASE Applic Fibre angle	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS s: Dispersion- Optical instrument: Spectrometer - Determinant resive power of a prism- Interference of light in thin films: air wedge CR: Introduction - Population inversion -Pumping - Laser action cations Optics:Principle and propagation of light in optical fibre- Nume	ism - Ampere's transverse natu wave plates - p tion of refracti e - Diffraction: g - Nd-YAG laser erical aperture a	Faraday's law re- expression production and 9+3 ve index and grating. $- CO_2$ laser	
Laws consta Lenz's for pla detect UNIT Optic disper LASE Applid Fibree angle UNIT	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C -III OPTICS, LASERS AND FIBRE OPTICS s: Dispersion- Optical instrument: Spectrometer - Determinant resive power of a prism- Interference of light in thin films: air wedg ER : Introduction - Population inversion -Pumping - Laser action cations Optics: Principle and propagation of light in optical fibre- Nume - Types of optical fibre - Fibre optic communication system (Bloc	ism - Ampere's transverse natu wave plates - p tion of refracti e - Diffraction: g - Nd-YAG laser erical aperture a k diagram).	Faraday's law re- expression production and 9+3 ve index and grating. $- CO_2$ laser nd acceptance 9+3	
Laws consta Lenz's for pla detect UNIT Optic disper LASE Applic Fibre angle UNIT Semic	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS s: Dispersion- Optical instrument: Spectrometer - Determinant resive power of a prism- Interference of light in thin films: air wedge CR : Introduction - Population inversion -Pumping - Laser action cations Optics: Principle and propagation of light in optical fibre- Nume - Types of optical fibre - Fibre optic communication system (Bloc C-IV SEMICONDUCTOR PHYSICS	ism - Ampere's i transverse natu wave plates - p tion of refracti e - Diffraction: g - Nd-YAG laser erical aperture a k diagram).	Faraday's law re- expression production and 9+3 ve index and grating. $- CO_2$ laser nd acceptance 9+3 insulators and	
Laws consta Lenz's for pla detect UNIT Optic disper LASE Applic Fibre angle UNIT Semic semic	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS s: Dispersion- Optical instrument: Spectrometer - Determinant rsive power of a prism- Interference of light in thin films: air wedg ER: Introduction - Population inversion -Pumping - Laser action cations Optics:Principle and propagation of light in optical fibre- Nume - Types of optical fibre - Fibre optic communication system (Bloc C-IV SEMICONDUCTOR PHYSICS conductors: Energy bands in solids - Energy band diagram of go	ism - Ampere's transverse natu wave plates - p tion of refracti e - Diffraction: g - Nd-YAG laser erical aperture a k diagram).	Faraday's law re- expression production and 9+3 ve index and grating. $- CO_2$ laser nd acceptance 9+3 insulators and	
Laws consta Lenz's for pla detect UNIT Optic disper LASE Applic Fibre angle UNIT Semic Semic Extrin	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS s: Dispersion- Optical instrument: Spectrometer - Determinant rsive power of a prism- Interference of light in thin films: air wedge ER : Introduction - Population inversion -Pumping - Laser action cations Optics: Principle and propagation of light in optical fibre- Nume - Types of optical fibre - Fibre optic communication system (Bloc C-IV SEMICONDUCTOR PHYSICS conductors: Energy bands in solids - Energy band diagram of go onductors - Concept of Fermi level - Intrinsic semiconductors-	ism - Ampere's transverse natu wave plates - p tion of refracti e - Diffraction: g - Nd-YAG laser erical aperture a k diagram).	Faraday's law re- expression production and 9+3 ve index and grating. $- CO_2$ laser and acceptance 9+3 insulators and les - doping	
Laws consta Lenz's for pla detect UNIT Optic disper LASE Applic Fibre angle UNIT Semic semic Extrin Diode	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS s: Dispersion- Optical instrument: Spectrometer - Determinant rsive power of a prism- Interference of light in thin films: air wedg ER: Introduction - Population inversion -Pumping - Laser action cations Optics:Principle and propagation of light in optical fibre- Nume - Types of optical fibre - Fibre optic communication system (Bloc C-IV SEMICONDUCTOR PHYSICS conductors : Energy bands in solids - Energy band diagram of go onductors - Concept of Fermi level - Intrinsic semiconductors- nsic semiconductors- P type and N type semiconductors - Hall effe	ism - Ampere's transverse natu wave plates - p tion of refracti e - Diffraction: g - Nd-YAG laser erical aperture a k diagram). ood conductors, Concept of ho ct. e bias - Rectifica	Faraday's law re- expression production and 9+3 ve index and grating. $- CO_2$ laser and acceptance 9+3 insulators and les - doping ation action o	
Laws consta Lenz's for pla detect UNIT Optic disper LASE Applid Fibre angle UNIT Semic Semic Extrin Diode diode	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS s: Dispersion- Optical instrument: Spectrometer - Determinant rsive power of a prism- Interference of light in thin films: air wedg CR: Introduction - Population inversion -Pumping - Laser action cations Optics:Principle and propagation of light in optical fibre- Nume - Types of optical fibre - Fibre optic communication system (Bloc C-IV SEMICONDUCTOR PHYSICS conductors: Energy bands in solids - Energy band diagram of go onductors - Concept of Fermi level - Intrinsic semiconductors- nsic semiconductors- P type and N type semiconductors - Hall effe es and Transistors: P-N junction diode- Forward bias and reverse	ism - Ampere's i transverse natu wave plates - p tion of refracti e - Diffraction: g - Nd-YAG laser erical aperture a k diagram). Dod conductors, Concept of ho ct. e bias - Rectifica P and NPN trans	Faraday's law re- expression production and 9+3 we index and grating. $- CO_2$ laser and acceptance 9+3 insulators and les - doping ation action o sistors - Three	
Laws consta Lenz's for pla detect UNIT Optic disper LASE Applic Fibre angle UNIT Semic semic Extrin Diode differe	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS s: Dispersion- Optical instrument: Spectrometer - Determinant resive power of a prism- Interference of light in thin films: air wedge CR : Introduction - Population inversion -Pumping - Laser action cations Optics: Principle and propagation of light in optical fibre- Nume - Types of optical fibre - Fibre optic communication system (Bloc C-IV SEMICONDUCTOR PHYSICS conductors : Energy bands in solids - Energy band diagram of go onductors - Concept of Fermi level - Intrinsic semiconductors- nsic semiconductors- P type and N type semiconductors - Hall effe es and Transistors : P-N junction diode- Forward bias and reverse - Working of full wave rectifier using P N junction diodes - PNI	ism - Ampere's i transverse natu wave plates - p tion of refracti e - Diffraction: g - Nd-YAG laser erical aperture a k diagram). Dod conductors, Concept of ho ct. e bias - Rectifica P and NPN trans	Faraday's law re- expression production and 9+3 we index and grating. $- CO_2$ laser and acceptance 9+3 insulators and les - doping ation action o sistors - Three	
Laws consta Lenz's for pla detect UNIT Optic disper LASE Applid Fibree angle UNIT Semic Semic Extrin Diode differe as an a	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS s: Dispersion- Optical instrument: Spectrometer - Determinant resive power of a prism- Interference of light in thin films: air wedge CR : Introduction - Population inversion -Pumping - Laser action cations Optics: Principle and propagation of light in optical fibre- Nume - Types of optical fibre - Fibre optic communication system (Bloc C-IV SEMICONDUCTOR PHYSICS conductors : Energy bands in solids - Energy band diagram of geo onductors - Concept of Fermi level - Intrinsic semiconductors- nsic semiconductors- P type and N type semiconductors - Hall effe es and Transistors : P-N junction diode- Forward bias and reversed - Working of full wave rectifier using P N junction diodes - PNI ent configurations - Advantages of common emitter configuration	ism - Ampere's i transverse natu wave plates - p tion of refracti e - Diffraction: g - Nd-YAG laser erical aperture a k diagram). Dod conductors, Concept of ho ct. e bias - Rectifica P and NPN trans	Faraday's law re- expression production and 9+3 ve index and grating. $- CO_2$ laser and acceptance 9+3 insulators and les - doping ation action o sistors - Three NPN transisto	
Laws consta Lenz's for pla detect UNIT Optic disper LASE Applic Fibre angle UNIT Semic semic Extrin Diode differe as an a UNIT	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS s: Dispersion- Optical instrument: Spectrometer - Determinant resive power of a prism- Interference of light in thin films: air wedge CR : Introduction - Population inversion -Pumping - Laser action cations Optics: Principle and propagation of light in optical fibre- Nume - Types of optical fibre - Fibre optic communication system (Bloc C-IV SEMICONDUCTOR PHYSICS conductors : Energy bands in solids - Energy band diagram of geo onductors - Concept of Fermi level - Intrinsic semiconductors- nsic semiconductors- P type and N type semiconductors - Hall effe es and Transistors : P-N junction diode- Forward bias and reverse - Working of full wave rectifier using P N junction diodes - PNI ent configurations - Advantages of common emitter configuration amplifier in common emitter configuration.	ism - Ampere's i transverse natu wave plates - p tion of refracti e - Diffraction: g - Nd-YAG laser erical aperture a k diagram). Dod conductors, Concept of ho ct. e bias - Rectifica P and NPN trans n - working of N	Faraday's lawre- expressionroduction and $9+3$ ve index andgrating.c - CO2 lasernd acceptance $9+3$ insulators andles - dopingation action osistors - ThreeNPN transisto $9+3$	
Laws consta Lenz's for pla detect UNIT Optic disper LASE Applic Fibred angle UNIT Semic Semic Extrin Diode differed as an a UNIT Introd	ant, internal field - Clausius Mossotti Equation - Laws of magnetic s law - Maxwell's equation - Plane electromagnetic waves; their ane, circularly and elliptically polarized light - quarter and half ion of plane, circularly and elliptically polarized light. C-III OPTICS, LASERS AND FIBRE OPTICS s: Dispersion- Optical instrument: Spectrometer - Determinant resive power of a prism- Interference of light in thin films: air wedge CR : Introduction - Population inversion -Pumping - Laser action cations Optics:Principle and propagation of light in optical fibre - Nume - Types of optical fibre - Fibre optic communication system (Bloc C-IV SEMICONDUCTOR PHYSICS conductors : Energy bands in solids - Energy band diagram of geo onductors - Concept of Fermi level - Intrinsic semiconductors- nsic semiconductors- P type and N type semiconductors - Hall effe es and Transistors : P-N junction diode- Forward bias and reversed - Working of full wave rectifier using P N junction diodes - PNI ent configurations - Advantages of common emitter configuration amplifier in common emitter configuration. C-V QUANTUM PHYSICS	ism - Ampere's i transverse natu wave plates - p tion of refracti e - Diffraction: g - Nd-YAG laser erical aperture a k diagram). Dod conductors, Concept of hol ct. e bias - Rectifica P and NPN trans n - working of N	Faraday's law re- expression production and 9+3 ve index and grating. $- CO_2$ laser and acceptance 9+3 insulators and les - doping ation action o sistors - Three NPN transisto 9+3 pothesis, wave	

TE	XT BOOK	KS								
		LECTURE	TUTORIAL	PRACTICAL	TOTAL					
	Hours	45	15		60					
TEX	KT BOOK	KS								
1.	Gaur R. K. and Gupta S. L., "Engineering Physics", Dhanpat Rai Publications, 2009.									
2.	Avadhanulu M. N. "Engineering Physics" (Volume I and II), S. Chand & Company Ltd., New									
	Delhi, 2010.									
RE	FERENCI	E BOOKS								
1.	Palanisar	ny P. K., "Engineering	g Physics", Scitech P	ublications (India)	Pvt. Ltd, Chennai.					
2.	Arumuga	am M., "Engineering P	hysics" (Volume I a	nd II), Anuradha Pu	ublishers, 2010.					
3.	Senthil K	Kumar G., " Engineerir	ng Physics", 2nd Enla	arged Revised Edit	on, VRB Publishers,					
	Chennai,	2011.								
4.	Mani P.,	"Engineering Physics"	', Dhanam Publication	ons, Chennai, 2007						
E R	ESOURC	ES								
1.	NPTEL,	Engineering Physics,	Prof. M. K. Srivasta	va, Department of	Physics, IIT, Roorkee.					

		•			CO5	Total	Scaled
CO Vs PO	CO1	CO2	CO3	CO4			to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	2	0	2	2	0	6	2
PO ₃	2	1	2	2	2	9	2
PO ₄	2		2	2	0	6	2
PO ₅	1	1	1	1	0	4	1
PO ₆	0	0	0	0	0	0	
PO ₇	0	0	0	0	0	0	
PO ₈	0	0	0	0	0	0	
PO ₉	1		1	1	0	3	1
PO ₁₀	0	0	0	0	0	0	
PO ₁₁	0	0	0	0	0	0	
PO ₁₂	1	1	1	1	1	5	1
PSO ₁	0	0	0	0	0	0	
PSO ₂	0	0	0	0	0	0	
TOTAL	12	6	12	12	6	-	-

XAP103 Mapping of CO's with PO

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUF	RSE CODE	XEG104		L	Т	P	С
COUF	COURSE NAME ENGINEERING GRAPHICS AND DESIGN						3
PRER	EQUISITES	NIL		L	Т	P	Н
C:P:A	= 3:0:0			1	0	2	5
COUF	RSE OBJECTI	VES					
• To	prepare the stu	ident to design a system, component, o	r process to 1	neet	desir	ed no	eeds within
rea	listic constraint	ts such as economic, environmental, soc	ial, political,	ethi	cal, he	ealth	and safety
ma	nufacturability,	and sustainability					
• To	prepare the stu	dent to communicate effectively					
		ident to use the techniques, skills, and i	nodern engin	eeri	ng too	ols ne	ecessary fo
	gineering practi	-		••••		10 110	, , , , , , , , , , , , , , , , , , ,
	01		DOMAIN		LEV	ET.	
COUR	RSE OUTCOM						
001	11.5	ational and international standards,	Cognitive Psychomoto		Appl	У	Guided
CO1	constructandpractice various curves Psychol Affee					-	Respond
	<i>Interpret, construct</i> and <i>practice</i> orthographic Cogniti						
CO2	- /	points, straight lines and planes.	Psychomoto				erstand
	FJ	F F F	Affective		Mech	nanis	m Respond
	Construct Sk	etch and Practice projection of solids	Cognitive		Annl		0.110
CO3	in various po	ositions and true shape of sectioned	Psychomoto	or	Appl		over e Respond
	solids.		Affective		Тезропзе Кезр		Respond
~~ .		etch and Practice the development of	Cognitive		Understand	nd Over	
CO4	lateral surfaces of simple and truncated solids, Psychomo intersection of solids. Affective						Respond
		<i>ketch</i> and <i>practice</i> isometric and	Affective Cognitive		-		-
CO5		ews of simple and truncated solids.	Psychomoto		Appl	•	Over
		ews of simple and truncated solids.	Affective		resp	onse	e Respond
UNIT	I INTRO	DUCTION, FREE HAND SKETCHIN					6L+12
		TS AND CONSTRUCTION OF PLAN					
Import	ance of graphic	es in engineering applications - use of d	rafting instrur	nent	(s - B)	IS sp	ecification
	nventions as pe						
	+	n of engineering objects - representation				•	
		need for multiple views- developing	visualization	ski	lls thr	ough	free han
		ensional objects.					
		sed in engineering practice – methods o					-
		bla by eccentricity method – cycloida		e ci	ırves	- co	onstruction
	0	the above curves. Practice on basic tool		CE	C		(T 1)
UNIT		CTION OF POINTS, LINES AND PL					6L+12
		orthographic projection – first angle proj	•			-	•
-	-	located in the first quadrant –determina		-			
		nes of projection– traces – projection of		rtac	es and	I CITC	ular lamin
		anes of projection-CAD practice on poin					
UNIT	III PROJE	CTION OF SOLIDS AND SECTIONS	S OF SOLID	S			6L+12

	on of simple solids like prism, pyramid, cylinder and cone when the axis is incl f projection– change of position & auxiliary projection methods – sectioning of abo							
-	vertical positions by cutting plane inclined to one reference plane and perpendic							
	other and above solids in inclined position with cutting planes parallel to one reference plane - true							
shapes	of sections-CAD practice on solid models.							
UNIT I		6L+12P						
	SOLIDS							
	or development of surfaces - development of lateral surfaces of simple and trunca							
	pyramids, cylinders and cones- development of lateral surfaces of the above							
	and circular cutouts perpendicular to their axes - intersection of solids and							
	tion -prism with cylinder, cylinder & cylinder, cone & cylinder with normal inter-	ersection of						
-	d with no offset-CAD practice on intersection of solids.							
UNIT		6L+12P						
1	les of isometric projection – isometric scale – isometric projections of simple solid							
· ·	pyramids, cylinders and cones- principles of perspective projections - projection	-						
	ds and cylinders by visual ray and vanishing point methods-CAD practice on isome	tric view.						
	BOOKS							
1.	Natarajan,K.V, "A Textbook of Engineering Graphics", Dhanalakshmi Publisher 2006.	rs, Chennai,						
2.	Dr. P.K. Srividhya, P. Pandiyaraj, "Engineering Graphics", PMU Publications, Val	llam, 2013.						
REFE	RENCE BOOKS							
1.	Luzadder and Duff, "Fundamentals of Engineering Drawing" Prentice Hall of In XI Edition- 2001.	dia PvtLtd,						
2.	Venugopal,K. and Prabhu Raja, V., "Engineering Graphics", New Age Internatio 2008	nal(P) Ltd.,						
3.	Gopalakrishnan K.R. "Engineering Drawing I & II" Subhas Publications, 1998.							
4.	Shah. M.B and Rana B.C "Engineering Drawing" Pearson Education, 2005.							
E-REF	ERENCES							
1.	http:// periyarnet/e-content							
2.	Http://nptel.ac.in/courses/112103019/							
LECT	URE: 15 TUTORIAL: 0 PRACTICAL: 30 TOTAL:45							

XEG104 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	3	3	3	3	3	15	3
PO ₃	3	3	3	3	3	15	3

PO ₄	2	1	1	1	1	6	2
PO ₅	3	3	3	3	3	15	3
PO ₆	2	1	1	1	1	6	2
PO ₇	3	3	3	3	3	15	3
PO ₈	1	1	1	1	1	5	1
PO ₉	1	1	1	1	1	5	1
PO ₁₀	2	1	1	1	1	6	2
PO ₁₁	3	2	2	2	2	11	3
PO ₁₂	3	3	3	3	3	15	3
PSO ₁	0	0	0	0	0	0	0
PSO ₂	1	1	1	1	1	5	1
TOTAL	30	26	26	26	26	_	-

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE	COURSE CODE XGS105				Т	Р	SS	С	
COURSE	E NAME	SPEECH COMMUNICATION		0	1	2	0	3	
PRE-RE	QUISITES	NIL			Т	Р	SS	Η	
C:2.6	P:0.4 A:0	•			1	4	0	5	
COURSE OUTCOMES		ES	DO	MA]	IN	LEVEL			
CO1	Ability to rea	Cog	gniti	ve	Re	memb	er		
CO2	<i>Apply</i> the techniques in public speaking Co					Apply			
CO3	<i>Identify</i> the c	Cog	Cognitive			Remember			
CO4	<i>Construct</i> th	e nature and style of speaking	Cognitive			Create			
CO5	Practicing th	espeaking skills	Psychomotor			Guided			
		soperating states				Response			
UNIT I	TYPES OF	SPEECHES						9	
1.1 – Four	1.1 – Four types of speeches								
1.2 – Analyzing the audience									
1.3 - Deve	eloping ideas	and supporting materials							

UNIT II	PUBLIC SPEAKING	9						
2.1 - Introdu	action to Public Speaking							
2.2 - Compe	etencies Needed for successful speech making							
2.3 – Speak	ing about everyday life situations							
UNIT III	UNIT III ORGANIZATION OF SPEECH							
3.1 – Develo	oping a speech out line							
3.2 - Organ	izing the speech							
3.3 – Introdu	uction - development – conclusion							
UNIT IV	PRESENTATION	9						
4.1 - Tips fo	r preparing the draft speech							
4.2 – Presen	tation techniques using ICT tools							
4.3 – Using	examples from different sources							
UNIT V A	ACTIVITIES	9						
5.1 – Readin	ng activities							
5.2 – Creativ	ve presentations							
5.3 – Media	presentation techniques							
SUGGEST	ED READINGS							
1. Sanjay	Kumar and Pushp Lata. Communication Skills. Oxford University Press. 2011							
2. Michae	el Swan. Practical English Usage. OUP. 1995							

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	0	0	0	0	0	0	0
PO ₂	0	0	0	0	0	0	0
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	0	0	0	0
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	1	1	1	1	1	5	1
PO ₉	3	3	2	2	2	12	2
PO ₁₀	3	3	3	3	3	15	3
PO ₁₁	0	0	0	0	0	0	0

PO ₁₂	2	2	2	2	2	10	2
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	E CODE XUM106							
COURSE NAME	CONSTITUTION OF IN	DIA		0	0	0	0	
PREREQUISITE:	NIL			L	Т	Р	Η	
C:P:A	3:0:0			0	0	0	3	
COURSE OUTCOM		LE	VEI					
CO1 Understand	the Constitutional History		Cognitive	U	nder	stand	ling	
CO2 Understand	the Powers and Functions		Cognitive	U	nder	stand	ling	
CO3 Understand	the Legislature		Affective	R	emer	nber	ing	
CO4 Understand	the Judiciary		Affective	R	emer	nberi	ing	
CO5 Understand	the Centre State relations		Cognitive	U	nders	stand	ling	
UNIT I							08	
Duties- Directive prin UNIT II	 The Constitutional Rights- ciples of State Policy. The President of India (pow 						09	
UNIT III	ters-Prime Minister- Powers		·				10	
	tructure and Functions of L ocedure in India- Important							
UNIT IV							09	
	y- Powers of the Supren y Jurisdiction- Judicial review		ginal Jurisc	lictio	on-	App	elete	
UNIT V							09	
Centre State relation	s- Political Parties- Role of	of governor, pov	vers and fu	incti	ons	of C	Chief	
Minister-Legislative A	Assembly- State Judiciary- Po	owers and Function	ons of the H	ligh	Cour	ts.		
LECTURE TUTORIAL PRACTICAL TO								
45 0 0								
REFERENCES								

1.	W.H.Morris Shores- Government and politics of India, NewDelhi, B.1. Publishers, 1974.
2.	M.V.Pylee- Constitutional Government in India, Bombay, Asia Publishing House, 1977.
3.	R.Thanker- The Government and politics of India, London:Macmillon, 1995.
4.	A.C.Kapur- Select Constitutions S,Chand& Co.,NewDelhi, 1995
5.	V.D.Mahajan- Select Modern Governments, S, Chand&Co, NewDelhi, 1995.
6.	B.C.Rout- Democractic Constitution of India.
7.	Gopal K.Puri- Constitution of India, India 2005.

XUM106- Mapping of COs with POs

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
<u> </u>	2			1					
CO 1	2			1					
CO 2	2			1					
CO 3	2			1					1
CO 4	2			1				1	1
CO 5	2	2		1				1	1
Total	10	2		5				2	3
Scaled to	2	1		1				1	1
0,1,2,3									

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 – No Relation, 1- Low Relation, 2- Medium Relation, 3- High Relation

COU	IRSE CODE	XBE107	L	Т	Р	С	
COU	RSE NAME	ELECTRICAL AND ELECTRONIC	0	0	1	1	
		ENGINEERING SYSTEMS LAB					
	C:P:A	1.5:1:0.5	L	Τ	Р	Н	
PRER	REQUISITE:	BASIC PHYSICS IN HSC LEVEL	0	0	1	2	
COUH	RSE OUTCOM	IES	Domain			Level	
CO1	Annlythe fun	damental electrical concepts and <i>differentiate</i>	Cogr	nitiv	e	Understand	
		ectronic components.	Psychomotor			Set	
	the various en	ectionic components.	Affective			Valuing	
CO2	Imploment a	and <i>execute</i> the different types of wiring	Cogr	nitiv	e	Understand	
	-	Psycho	omo	tor	Set		
	connections.		Affective			Valuing	
CO3	Demonstrate	Cognitive			Understand		

		Psychomotor Affective	Set Valuing
CO4	<i>Characterize</i> and <i>display</i> the basic knowledge on the working of PN junction and Zener diode.	Cognitive Psychomotor Affective	Understand Set Valuing
CO5	<i>Implement</i> and <i>execute</i> the various digital electronic circuits such as Adders and Subtractors.	Cognitive Psychomotor Affective	Understand Set Valuing
OBJE	CTIVES		
a.	Durse helpsto Learn the basic concepts of electrical and electronics compone Understand the basic wiring methods and connection.	nts.	

- c. Study the characteristics of diodes, Zener diodes, NPN transistors.
- d. Verify the working of simple logic gates, adders and subtractors.

LIST OF EXPERIMENTS

Ex. No	Experiments	COs							
1.	Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies.	-							
2.	Study of Active and Passive elements – Resistors, Inductors and Capacitors, Bread Board.	-							
3.	Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter.								
4.	Fluorescent lamp connection with choke.	-							
5.	Staircase Wiring								
6.	Forward and Reverse bias characteristics of PN junction diode.	-							
7.	Forward and Reverse bias characteristics of zener diode.	-							
8.	Input and Output Characteristics of NPN transistor.	-							
9.	Construction and verification of simple logic gates.	-							
10.	Construction and verification of adders and subtractors.	-							
LECUR	E:0 TUTORIAL: 0 PRACTICAL: 30 TOTAL:30								
TEXT B	OOKS								
1.	Laboratory Manual "Electrical and Electronic Engineering SystemsLab", Departm	nent of							
	Electrical and Electronics Engineering, PMIST, Thanjavur.								

		1			11 0				1	1		
CO/GA	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	3	1	1	1	1			1	1	1	
CO 2	3	3	1	1	1	1			1	1	1	
CO 3	2	2	2	1	2	2	1	1	1	1	1	
CO 4	2	2	1	1	1	1	1	1	1	1	1	
CO 5	2	2	1	1	1	1	1	1	1	1	1	
Total	12	12	6	5	6	6	3	3	5	5	5	

XBE107- Mapping of COs with GAs

Scaled Value	3	3	2	1	2	2	1	1	1	1	1	
$1 5 \rightarrow 1 6 10 \rightarrow 2 11 15 \rightarrow 2$												

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COU	IRSE CODE	Σ	XA.	P108	3									L	Т	P		С	
COU	IRSE NAME	A	۱PF	PLIE	D P	PHY	SICS	S FOI	R EN	NGI	INEE	RS LAB		0	0	1		1	
C:P:A		0:1.5:0.5						L	Т	P		Η							
PRER	REQUISITE:	I	BAS	SIC	PH	YSI	ICS	IN H	ISC	LE	VEL			0	0	1		2	
COU	RSE OUTCON	M	ES											Domain				Level	
CO1	CO1 <i>Identify</i> the basics of mechanics, and <i>determine</i> its significance in engineering systems and technological advances.					Psycl	nome	Mechanism	1										
CO2					2	Psychomotor: Affective:				Analyze, Mechanism Respond	1								
CO3	<i>describe</i> the lasers and fib			<u> </u>	pri	ncip	ole a	ind a	pplio	cati	ion of	f variou	8	Psychomotor: Affective:			N	Apply Mechanism Receive	1
CO4	Analyse ener principles of	<u> </u>	·									1 .		Psychomotor: Affective:				Analyze Mechanism Receive	1

LIST OF EXPERIMENTS

Ex.	Experiments	COs						
No								
1.	Torsional Pendulum - determination of moment of inertia and rigidity							
	modulus of the given material of the wire.							
2.	Uniform Bending - Determination of the Young's Modulus of the material of							
	the beam.							
3.	Non-Uniform Bending - Determination of the Young's Modulus of the							
	material of the beam.							
4.	Meter Bridge - Determination of specific resistance of the material of the wire.							
5.	Spectrometer - Determination of dispersive power of the give prism.							
6.	Spectrometer - Determination of wavelength of various colours in Hg source							
	using grating.							
7.	Air wedge - Determination of thickness of a given thin wire.							
8.	Laser - Determination of wavelength of given laser source and size of the							
	given micro particle using Laser grating.							
9.	Post office Box - Determination of band gap of a given semiconductor.							
10.	PN Junction Diode - Determination of V-I characteristics of the given diode.							
LECU	RE:0 TUTORIAL: 0 PRACTICAL: 30 TOTAL:30							
TEXT	BOOKS							
1.	Laboratory Manual "PhysicsLab", Department of Physics, PMIST, Thanjavur.							

REFEI	RENCE BOOKS
1.	Samir Kumar Ghosh, "A text book of Advanced Practical Physics", New Central Agency
	(P) Ltd, 2008.
2.	Arora C.L., "Practical Physics", S. Chand & Company Ltd., New Delhi, 2013.
3.	UmayalSundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	2		2	2	0	6	2
PO ₃	2	1	2	2	2	9	2
PO ₄	2		2	2	0	6	2
PO ₅	1	1	1	1	0	4	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0
PO ₉	1		1	1	0	3	1
PO ₁₀	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	1	1	1	1	1	5	1
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
	12	6	12	12	6	-	-

XAP108 - Mapping of CO with PO

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUR	RSE CODE	XMA201		L			С
	RSE NAME	CALCULUS, ORDINARY DIFFE EQUATIONS AND COMPLEX VA		3	1	0	4
	EQUISITES	NIL		L	Т	P	H
	= 3:0.5:0.5			3	1	0	4
	RSE OBJECTI						
• Un	derstand the app	plication of Calculus, Ordinary Different	ial Equations	s and	Com	plex V	Variabl
in e	engineering.						
COUF	RSE OUTCOM	ES	DOMAIN		LEV	ΈL	
CO1	surface and	and triple integrals and to find line, volume of an integral by Applying is divergence and Stokes theorem.	Cognitive	e	Rem	embei	r, Appl
CO2	Solve first or	der differential equations of different are solvable for p, y, x and Clairaut's	Cognitive	e		App	ly
CO3	Solve Second	order ordinary differential equations coefficients using various methods.	Cognitive	e		Appl	У
CO4	find harmonic	ions to verify analytic functions and to functions and harmonic conjugate. happing of translation and rotation. formation.	Cognitive Psychomot		Remember, Aj Guided Respo		
CO5	integrals invo state Cauchy i Taylor's ser	y residue theorem to evaluate contour lving sine and cosine function and to ntegral formula, Liouvilles theorem. ies, zeros of analytic functions, Laurent's series.	Cognitive Affective]	App Receiv	•
UNIT		VARIABLE CALCULUS (INTEGRA	TION)				9L+3
integra integra <u>Green,</u> UNIT Exact	Is - Change of Is - vector line Gauss and Stok II FIRST - linear and B	Double integrals (Cartesian) - change f variables (Cartesian to polar) - Tripl integrals - scalar surface integrals - vec ces. DRDER ORDINARY DIFFERENTIA ernoulli's equations - Euler's equation p - equations solvable for y- equations so	le integrals (ctor surface i LEQUATIONS - Equation	(Cart integ ONS ns n	rals -), Sca Theo first	llar lin rems o 9L+3 degree
	d order linear	ARY DIFFERENTIAL EQUATIONS differential equations with variable co	pefficients- r	neth	od of	varia	
-	•	Euler equation- Power series solution ind and their properties.	ns- Legendre	e po	olynor	nıals-	Besse
	IV COMPI	LEX VARIABLE – DIFFERENTIATI					9L+3
UNIT			· · · · · · · · · · · · · · · · · · ·		-		
Differe harmor	nic conjugate-	y-Riemann equations- analytic fun elementary analytic functions (exponent primal mappings- Mobius transformations	ntial, trigono	metr	ic, lo		
Differe harmor	nic conjugate- roperties- Confo		ntial, trigono	metr	ic, lo		

proof)-Liouville's theorem (without proof)- Taylor's series- zeros of analytic functionssingularities- Laurent's series- Residues- Cauchy Residue theorem (without proof)- Evaluation of definite integral involving sine and cosine- Evaluation of certain improper integrals using the Bromwich contour.

TEXT BOOKS

-

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40thth Edition, 2008.

REFERENCE BOOKS

LECTURE: 45	TUTORIAL: 15	PRACTICAL: 0	TOTAL :60

							Scaled to
CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	0,1,2 and
							3
PO ₁	3	3	3	3	3	15	3
PO ₂	2	1	1	2	2	8	2
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	2	0	0	0	1	3	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0
PO ₁₀	1	1	1	1	1	5	1
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	2	1	1	1	2	7	2
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
TOTAL	10	6	6	7	9	-	-
$1-6 \rightarrow 1, 7-12 \rightarrow 2,$ 0 - No Relation, 1 -		ion, 2 – Me	edium Rela	tion, 3 – H	igh Relat	ion	11
COURSE CODE	XCP202			,	U	LT	P C

XMA201 - Mapping of CO with PO

COUF	RSE NAME	PROGRAMMING FOR PROBLEM SOLVING		3	0	0	3	
PRER	EQUISITES	BASIC UNDERSTANDING SKILLS		L	Т	Р	Н	
C:P:A	= 3:0:0			3	0	0	3	
COU	RSE OBJECTI	VES						
• To	learn programm	ning language basics and syntax						
• To	ignite logical tl	ninking						
• To	understand stru	ctured programming approach						
		defined data types						
		ta storage in secondary memory						
	RSE OUTCOM		DOMAIN	1		LEVI	EL	
	[mming fundamentals and <i>Solve</i> simple	Cognitive			Remei	nher	
CO1	• • •	g I/O statements	Coginuve	,		Under		
001	programs usin	g i o statements				Appl		
	Define syntax	x and write simple programs using	Cognitive	;		Remei		
CO2	control structu	ires and arrays	C		Understand			
002						Appl	y	
	Explain and v	write simple programs using functions	Cognitive	Unc		Remember		
CO3	and pointers						derstand	
					Apply			
	-	write simple programs using structures	Cognitive	;		Remei		
CO4	and unions				1	Under		
	Englain and a	with simple ano answer using files and	Comitivo			App	•	
CO5	Build simple p	write simple programs using files and	Cognitive	ve Rememb Understar				
COS		nojeets			C	Appl		
UNIT	I PROGR	AMMING FUNDAMENTALS AND I	O STATE	ME	NTS		<u> </u>	
		nents of a computer system, Program – F				de - S	oftware	
		anguage – Character set – Tokens: Ide						
Operat	ors – sample pr	ogram structure-Header files – Data Typ	es- Variables	s - C	Jutpu	t state	ments –	
-	tatements.							
UNIT		COL STRUCTURES AND ARRAYS	. .		1.	. 1	9	
		Conditional Control statements: Branchin reak, continue, goto statements – Ar						
		ation – Accessing Array Elements – Sear	•				•	
		Initialization – Matrix Operations – Mult	-	-				
		e classes: auto – extern – static. Strings: 1						
UNIT	-	IONS AND POINTERS					9	
Function	ons: Built in t	functions –User Defined Functions- Par	ameter passi	ing	metho	ods -	Passing	
		- Recursion - Programs using arrays						
		operator - Pointer expressions & pointer						
		Reference - Pointer to arrays - Use of Po	ointers in sel	f-ref	erent	ial stru	actures-	
Notion	of linked list.							
UNIT		TURES AND UNIONS					9	

Struc	tures and Unions - Giving values to members - Initializing structure- Functions and structures									
- Pas	ssing structure to elements to functions - Passing entire function to functions - Arrays of									
struct	ture - Structure within a structure and Union.									
UNI	ΓV FILES 9									
File r	nanagement in C - File operation functions in C- Defining and opening a file - Closing a file -									
The getw and putw functions - The fprintf&fscanf functions - fseek function - Files and										
Struc	tures.									
TEX	TEXT BOOKS									
1.	Byron Gottfried, "Programming with C", III Edition, (Indian Adapted Edition), TMH									
	publications, 2010									
2.	YeshwantKanethker, "Let us C", BPB Publications, 2008									
REF	ERENCE BOOKS									
1.	E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill, 7 th edition 2017.									
2.	Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson									
	Education Inc. 2005									
3.	Johnson baugh R. and Kalin M., "Applications Programming in ANSI C", III Edition,									
	Pearson Education India, 2003									
E-R	EFERENCES									
1.	https://www.indiabix.com/c-programming/questions-and-answers/									
2.	https://www.javatpoint.com/c-programming-language-tutorial									
3.	https://www.w3schools.in/c-tutorial/									
LEC	TURE: 45TUTORIAL: 0PRACTICAL: 0TOTAL :45									

CO Vs PO	C01	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	2	2	2	12	3
PO ₂	2	2	2	2	2	10	2
PO ₃	0	0	1	1	1	3	1
PO ₄	0	0	2	2	0	4	1
PO ₅	3	2	2	2	2	11	3
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	1	1	1
PO ₉	0	0	0	0	0	0	0
PO ₁₀	0	0	0	0	2	2	1

XCP202 - Mapping of CO with PO

PO ₁₁	2	2	2	2	2	10	2
PO ₁₂	3	3	2	2	2	12	3
PSO ₁	2	2	2	2	2	10	2
PSO ₂	0	0	0	0	0	0	0
TOTAL	15	14	15	15	16	-	-

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUR	RSE CODE	XAC203		L	Т	Р	С				
COUF	RSE NAME	APPLIED CHEMISTRY FOR ENG	INEERS	3	1	0	4				
PRER	EQUISITES	NIL		L	Т	Р	Н				
C:P:A	= 2.5:1:0.5			3	1	0	4				
COUR	RSE OBJECTI	VES									
• Understand the application of chemistry in engineering.											
COUR	RSE OUTCOM	ES	DOMAI	N		LEV	EL				
CO1	energy, electro negativity. D	eriodic properties such as ionization on affinity, oxidation states and electro <i>escribe</i> the various water quality e hardness and alkalinity.	Cognitive Psychomot		Remembering Perception						
CO2	-	<i>Measure</i> microscopic chemistry in atomic, molecular orbitals and forces.	Cognitive Psychomot		Understanding Set						
CO3		k properties and processes using c and kinetic considerations.	Cognitive Psychomot Affective	tor			nism				
CO4	/	<i>ustrate</i> and Discuss the chemical are used in the synthesis of molecules.	Cognitive Psychomot Affective	tor	Analyzing Perception		Remembering Analyzing Perception Responding				
CO5	electromagnet molecular ene techniques	<i>re</i> and <i>Distinguish</i> the ranges of the ic spectrum used for exciting different ergy levels in various spectroscopic	Cognitive Psychomot			ering, ing nism					
UNIT	I PERIOI	DIC PROPERTIES AND WATER CH	IEMISTRY				8L+3T				

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries. Water Chemistry-Water quality parameters-Definition and explanation of hardness, determination of hardness by EDTA method-Introduction to alkalinity.

UNIT IIUSE OF FREE ENERGY IN CHEMICAL EQUILIBRIA12L+3TThermodynamic functions: energy, entropy and free energy. Estimations of entropy and free
energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base,
oxidation reduction and solubility equilibria. Corrosion-Types, factors affecting corrosion rate and
Control methods. Use of free energy considerations in metallurgy through Ellingham diagrams.
Advantages of electroless plating, electroless plating of nickel and copper on Printed Circuit Board
(PCB).

UNIT III ATOMIC AND MOLECULAR STRUCTURE

10L+3T

Schrodinger equation. Particle in a box solution and their applications for conjugated molecules and nanoparticles.. Molecular orbitals of diatomic molecules and plots of the multicenter orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic molecules. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

Intermolecular forces and potential energy surfaces

Ionic, dipolar and Vander waals interactions. Equations of state of real gases and critical phenomena. Potential energy surfaces of H_3 , H_2F and HCN and trajectories on these surfaces.

UNIT IVSPECTROSCOPIC TECHNIQUES AND APPLICATIONS7L+3TPrinciplesofspectroscopyandselectionrules.Electronicspectroscopy-chromophore,auxochromes, typesofelectronictransitionandapplication.Fluorescenceanditsapplicationsinmedicine.Vibrationalspectroscopy-typesofvibrations,Instrumentationandapplications.Rotationalspectroscopy ofdiatomicmolecules.Nuclearmagneticresonancespectroscopy-conceptofchemicalshiftandapplications-magneticresonanceimaging.Diffractionandscattering.

UNIT V STEREOCHEMISTRY AND ORGANIC REACTIONS 8L+3T

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization reactions and ring opening reactions. Synthesis of a commonly used drug molecule-Aspirin and paracetamol.

TEXT BOOKS

1.	Puri B.R. Sharma, L.R., Kalia K.K. Principles of Inorganic Chemistry, (23 rd edition), New
	Delhi, Shoban Lal Nagin Chand & Co., 1993.
_	

- 2. Lee. J.D. Concise Inorganic Chemistry, UK, Black well science, 2006.
- **3.** Trapp. C, Cady, M. Giunta. C, Atkins's Physical Chemistry, 10th Edition, Oxford publishers, 2014.
- **4.** Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd, 1983.
- 5. Morrison R.T. and Boyd R.N. Organic Chemistry (6th edition), New York, Allyn

	& Bacon Ltd.	, 1976.						
6.	Banwell. C.N	, Fundamentals of Mo	elecular Spectroscopy, (3	th Edition), McGraw-Hill Book				
	Company, Europe 1983.							
7.	Bahl B.S. an	d Arun Bahl, Advan	ced Organic Chemistry,	(4 th edition), S./ Chand &				
	Company Ltd	l. New Delhi, 1977.						
8.	P. S. Kalsi, St	tereochemistry: Confo	rmation and mechanism,	(9 th Edition), New Age				
	International	Publishers, 2017.						
REFE	RENCES							
1.	Puri B R Sl	harma L R and Mac	lan S Pathania, "Princi	ples of Physical Chemistry",				
	Vishalpublish	ning Co., Edition 2004						
2.	Kuriocose, J	C and Rajaram, J, "Er	ngineering Chemistry", V	Volume I/II, Tata McGraw-Hill				
	Publishing Co	o. Ltd. New Delhi, 200	0.					
E- RE	FERENCES							
1.	http://www.mc	ooc-list.com/course/chem	nistry-minor-saylororg					
2.	https://www.c	anvas.net/courses/explo	oring-chemistry					
3.	http://freevideolectures.com/Course/2263/Engineering-Chemistry-I							
4.	http://freevideolectures.com/Course/3001/Chemistry-I							
5.	http://freevide	eolectures.com/Course/	3167/Chemistry-II					
6.	http://ocw.mit.	edu/courses/chemistry/						
LECI	TURE:45	TUTORIAL:15	PRACTICAL:0	TOTAL:60				

XAC203 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2
		02	005	004	COS	Totai	and 3
PO ₁	3	2	3	3	3	13	3
PO ₂	0	0	0	0	0	0	0
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	0	0	0	0
PO ₆	0	0	0	0	0	0	0
PO ₇	2	1	2	3	2	10	2
PO ₈	3	2	3	3	2	13	3
PO ₉	3	2	3	3	3	14	3
PO ₁₀	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0

PO ₁₂	0	0	0	0	0	0	0
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE NAMETECHNICAL COMMUNICATION20002PRE-REQUISITESNILLTPSSHC:3 P:0 A:0-20002COURSE OUTCOMESDOMAINLEVELCOAbility to understand the basic principlesDOMAINLEVELCO1Ability to understand the basic principlesCognitiveRememberCO2Apply the techniques in writingCognitiveRememberCO3Identifycommunicative stylesCognitiveRememberCO4Construct the nature of writingCognitiveCreateUNT I - Basic Principles91.1 - Basic Principles of Technical Writing91.3 - Language and ToneUNT II - Techniques92.1 - Special Techniques used in writing92.2 - Definition & Description of mechanism93.1 - Modern development in style of writing93.2 - New letter writing formats93.1 - Types of Report Writing94.1 - Types of Report Writing94.1 - Types of Report Writing formats91.John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	COURS	SE CODE	XGS204	L	Τ	Р	SS	С	
C:3 P:0 A:0-2002COURSE OUTCOMESDOMAINLEVELCO1Ability to understand the basic principlesCognitiveRememberCO2Apply the techniques in writingCognitiveApplyCO3Identifycommunicative stylesCognitiveRememberCO4Construct the nature of writingCognitiveCreateUNIT I - Basic Principles991.1 - Basic Principles of Technical Writing2.91.2 - Styles used in Technical Writing92.1 - Special Techniques used in writing92.2 - Definition & Description of mechanism92.3 - Description- Classification-Interpretation93.1 - Modern development in style of writing93.2 - New letter writing formats94.1 - Types of Report Writing94.1 - Types of Report Writing formats94.1 - Types Of Report Writing formats94.1 - Types Of Report Writing formats94.1 - Types Of Report Writing formats9	COURS	SE NAME	TECHNICAL COMMUNICATION	2	2 0		0	2	
COURSE OUTCOMESDOMAINLEVELCO1Ability to understand the basic principlesCognitiveRememberCO2Apply the techniques in writingCognitiveApplyCO3Identifycommunicative stylesCognitiveRememberCO4Construct the nature of writingCognitiveCreateUNIT I – Basic Principles91.1 – Basic Principles of Technical Writing91.2 – Styles used in Technical Writing1.3 – Language and Tone9UNIT II – Techniques92.1 – Special Techniques used in writing92.2 – Definition & Description of mechanism2.3 – Description- Classification-Interpretation93.1 – Modern development in style of writing93.1 – Modern development in style of writing94.1 – Types of Report Writing94.1 – Types of Report Writing94.1 – Types of Report Writing formatsSUGGESTED READINGS91.John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	PRE-R	EQUISITES	NIL	L	Τ	Р	SS	Η	
CO1Ability to understand the basic principlesCognitiveRememberCO2Apply the techniques in writingCognitiveApplyCO3Identifycommunicative stylesCognitiveRememberCO4Construct the nature of writingCognitiveCreateUNIT I – Basic Principles991.1 – Basic Principles of Technical Writing91.2 – Styles used in Technical Writing92.3 – Language and Tone9UNIT II – Techniques92.1 – Special Techniques used in writing92.2 – Definition & Description of mechanism93.1 – Modern development in style of writing93.1 – Modern development in style of writing93.1 – Types of Report Writing94.1 – Types of Report Writing94.1 – Types of Report writing formats9SUGGESTED READINGS11John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	C:	3 P:0 A:0	-	2	0	0	0	2	
CO2Apply the techniques in writingCognitiveApplyCO3Identifycommunicative stylesCognitiveRememberCO4Construct the nature of writingCognitiveCreateUNIT I - Basic Principles91.1 - Basic Principles of Technical Writing91.1 - Basic Principles of Technical Writing1.2 - Styles used in Technical Writing91.3 - Language and Tone9UNIT II - Techniques92.1 - Special Techniques used in writing92.2 - Definition & Description of mechanism92.3 - Description - Classification-Interpretation93.1 - Modern development in style of writing93.2 - New letter writing formats9UNIT IV - Report Writing94.1 - Types of Report writing94.2 - Project writing formatsSUGGESTED READINGS1.John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	COURS	SE OUTCOME	S	DOMA	IN	L	EVE	L	
CO3Identifycommunicative stylesCognitiveRememberCO4Construct the nature of writingCognitiveCreateUNIT I – Basic Principles91.1 – Basic Principles of Technical Writing1.2 – Styles used in Technical Writing91.2 – Styles used in Technical Writing92.3 – Language and Tone92.1 – Special Techniques used in writing92.2 – Definition & Description of mechanism92.3 – Description- Classification-Interpretation93.1 – Modern development in style of writing93.2 - New letter writing formats94.1 – Types of Report Writing94.1 – Types of Report writing formats9SUGGESTED READINGS1.1.John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	CO1	Ability to unde	rstand the basic principles	Cognit	ive	Re	memt	ver	
CO4Construct the nature of writingCognitiveCreateUNIT I – Basic Principles91.1 – Basic Principles of Technical Writing91.2 – Styles used in Technical Writing91.3 – Language and Tone9UNIT II – Techniques92.1 – Special Techniques used in writing92.2 – Definition & Description of mechanism92.3 – Description- Classification-Interpretation9UNIT II – Communication93.1 – Modern development in style of writing93.2 - New letter writing formats9UNIT IV – Report Writing94.1 – Types of Report writing94.2 – Project writing formatsSUGGESTED READINGS1.John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	CO2	Apply the tech	niques in writing	Cognit	ive	1	Apply		
UNIT I - Basic Principles91.1 - Basic Principles of Technical Writing91.2 - Styles used in Technical Writing91.3 - Language and Tone9UNIT II - Techniques92.1 - Special Techniques used in writing92.2 - Definition & Description of mechanism92.3 - Description- Classification-Interpretation9UNIT III - Communication93.1 - Modern development in style of writing93.2 - New letter writing formats9UNIT IV - Report Writing94.1 - Types of Report writing94.2 - Project writing formats9SUGGESTED READINGS1.1.John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	CO3	Identifycommu	inicative styles	Cognit	ive	Re	memb	ver	
1.1 - Basic Principles of Technical Writing1.2 - Styles used in Technical Writing1.3 - Language and ToneUNIT II - TechniquesUNIT II - Techniques used in writing2.2 - Definition & Description of mechanism2.3 - Description- Classification-InterpretationUNIT III - Communication3.1 - Modern development in style of writing3.2 - New letter writing formatsUNIT IV - Report Writing4.1 - Types of Report writing4.2 - Project writing formatsSUGGESTED READINGS1.John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	CO4	Construct the 1	nature of writing	Cognit	ive	(Create	,	
1.2 – Styles used in Technical Writing1.3 – Language and Tone9UNIT II – TechniquesUNIT II – Techniques used in writing2.2 – Definition & Description of mechanism2.3 – Description- Classification-InterpretationUNIT III – Communication93.1 – Modern development in style of writing3.2 - New letter writing formatsUNIT IV – Report Writing94.1 – Types of Report writing4.2 – Project writing formatsSUGGESTED READINGS1.John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	UNIT I	– Basic Princip	les				9	•	
1.3 - Language and Tone9UNIT II - Techniques92.1 - Special Techniques used in writing 2.2 - Definition & Description of mechanism 2.3 - Description- Classification-Interpretation9UNIT III - Communication93.1 - Modern development in style of writing 3.2 - New letter writing formats9UNIT IV - Report Writing 4.1 - Types of Report writing 4.2 - Project writing formats9SUGGESTED READINGS 1.John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	1.1 – Ba	sic Principles of	Technical Writing						
UNIT II - Techniques92.1 - Special Techniques used in writing2.2 - Definition & Description of mechanism2.2 - Definition & Description of mechanism2.3 - Description- Classification-InterpretationUNIT III - Communication93.1 - Modern development in style of writing 3.2 - New letter writing formats9UNIT IV - Report Writing94.1 - Types of Report writing 4.2 - Project writing formats9SUGGESTED READINGS1.John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	$1.2 - St_{2}$	yles used in Tech	nnical Writing						
2.1 - Special Techniques used in writing 2.2 - Definition & Description of mechanism 2.3 - Description- Classification-Interpretation UNIT III - Communication 9 3.1 - Modern development in style of writing 9 3.2 - New letter writing formats 9 UNIT IV - Report Writing 9 4.1 - Types of Report writing formats 9 SUGGESTED READINGS 1. John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	1.3 – La	nguage and Ton	e						
2.2 - Definition & Description of mechanism 2.3 - Description- Classification-Interpretation UNIT III - Communication 3.1 - Modern development in style of writing 3.2 - New letter writing formats UNIT IV - Report Writing 4.1 - Types of Report writing 4.2 - Project writing formats SUGGESTED READINGS 1. John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	UNIT I	I – Techniques					9)	
2.3 - Description- Classification-Interpretation 9 UNIT III - Communication 9 3.1 - Modern development in style of writing 3.2 3.2 - New letter writing formats 9 UNIT IV - Report Writing 9 4.1 - Types of Report writing 9 4.2 - Project writing formats 9 SUGGESTED READINGS 1. John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009									
UNIT III - Communication93.1 - Modern development in style of writing 3.2 - New letter writing formats9UNIT IV - Report Writing94.1 - Types of Report writing 4.2 - Project writing formats9SUGGESTED READINGS 1.John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	2.2 - De	efinition & Descr	ription of mechanism						
3.1 – Modern development in style of writing 3.2 3.2 - New letter writing formats 9 4.1 – Types of Report Writing 9 4.2 – Project writing formats 9 SUGGESTED READINGS 1. John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	2.3 - De	escription- Class	ification-Interpretation						
3.2 - New letter writing formats 9 UNIT IV - Report Writing 9 4.1 - Types of Report writing 4.2 - Project writing formats SUGGESTED READINGS 9 1. John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	UNIT I	II – Communica	ation				9)	
UNIT IV - Report Writing 9 4.1 - Types of Report writing 4.2 - Project writing formats SUGGESTED READINGS 1. John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009	3.1 – M	odern developme	ent in style of writing						
 4.1 - Types of Report writing 4.2 - Project writing formats SUGGESTED READINGS 1. John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009 	3.2 - No	ew letter writing	formats						
 4.1 - Types of Report writing 4.2 - Project writing formats SUGGESTED READINGS 1. John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009 	UNIT I	V – Report Wri	ting				9	•	
4.2 – Project writing formats SUGGESTED READINGS 1. John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009			•						
SUGGESTED READINGS 1. John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009									
	1.	John Sealy, W	riting and Speaking Author; Oxford Univer	sity Press,	New	[,] Delhi	, 2009)	
2. Williams K.S, Communicating Business. Engage Learning India Pvt Ltd, 2012	2.	Williams K.S,	Communicating Business. Engage Learning	g India Pv	t Ltd,	2012			

XGS204 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
----------	-----	-----	-----	-----	-----	-------	-----------------------------

PO ₁	0	0	0	0	0	0	0
PO ₂	0	0	0	0	0	0	0
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	0	0	0	0
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	1	1	1	1	1	5	1
PO ₉	3	3	2	2	2	12	2
PO ₁₀	3	3	3	3	3	15	3
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	2	2	2	2	2	10	2
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
TOTAL							

 $1 \overrightarrow{-6 \rightarrow 1, 7} \overrightarrow{-12 \rightarrow 2, 13} \overrightarrow{-18 \rightarrow 3}$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COU	RSE CODE	XWP205		L	Т	Р	С	
COU	RSE NAME		1	0	2	3		
PRER	REQUISITES	NIL		L	Т	Р	Η	
C:P:A	= 1:3:0			1	0	2	5	
COU	RSE OBJECTI	VES						
• To	obtain skills in	machining methods, casting process, mo	oulding method	ods a	and w	elding	etc.	
COURSE OUTCOMES DOMAIN						LEVEL		
CO1	Summarize the machining ope	ne machining methods and <i>Practice</i> eration.	Cognitive Psychomot			erstan Resp	dGuide onse	
CO2	0	casting process, moulding methods sting and Smithy applications.	Cognitive Psychomot			Remen Percep		
CO3		carpentry and fitting operation and ntry and fitting operations.	Cognitive Psychomot		Guid	Appl led Re	y sponse	
CO4	Summarize n welding operat	netal joining operation and <i>Practice</i> tion.	Cognitive Psychomot			erstan Resp	dGuide onse	

C O 5		ratethe, electrical and electronics basics and s appropriate connections.Cognitive PsychomotorU C					
COU	RSE C	ONTENT					
	KP.NO	TITLE		COs			
	1	Introduction to machining process		CO1			
	2	Plain turning using lathe operation		CO1			
	3	Introduction to CNC		CO1			
	4	Demonstration of plain turning using CNC		CO1			
	5	Study of metal casting operation		CO2			
	6	Demonstration of moulding process		CO2			
	7	Study of smithy operation		CO2			
	8	Study of carpentry tools		CO3			
	9	Half lap joint – Carpentry		CO3			
	10	Mortise and Tenon joint – Carpentry		CO3			
	11	Study of fitting tools		CO3			
	12	Square fitting		CO3			
	13	Triangular fitting		CO3			
	14	Study of welding tools		CO4			
	15	Square butt joint – welding		CO4			
	16	Tee joint – Welding		CO4			
	17	Introduction to house wiring		CO5 CO5			
	18	One lamp controlled by one switch					
	19	Two lamps controlled by single switch		CO5			
	20	Staircase wiring		CO5			
	CORY:		L:30 TO	OTAL:45			
1.	Ν	Vorkshop Technology I,II,III, by S K Hajra, Iedia Promoters and Publishers Pvt. Ltd., Bomb	ay				
2. REFI		Vorkshop Technology by Manchanda Vol. alandhar. CES	1,11,111 India Pu	onsning House			
1.		nual on Workshop Practice by K Venkata Rec	ldy, KL Narayana	etal; MacMilla			
2.		ic Workshop Practice Manual by T Jeyapoo .,New Delhi	ovan; Vikas Publis	shing House (P			
3.	Wo	rkshop Technology by B.S. Raghuwanshi, Dhar	pat Rai and Co., N	ew Delhi.			
4.	Wo	rkshop Technology by HS Bawa, Tata McGraw	Hill Publishers, No	ew Delhi.			
E RE	SOUR	CES					
1.	http						

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	2	2	2	2	2	10	2
PO ₂	1	1	1	1	1	5	1
PO ₃	2	2	2	2	2	10	2
PO ₄	2	2	2	2	2	10	2
PO ₅	1	1	1	1	1	5	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	1	1	1	1	1	5	1
PO ₉	1	1	1	1	1	5	1
PO ₁₀	0	0	0	0	0	0	0
PO ₁₁	1	1	1	1	1	5	1
PO ₁₂	2	2	2	2	2	10	1
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
TOTAL	13	13	13	13	13	-	-

XWP205 - Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	XEM206	L	Т	Р	С			
COURSE NAME	ENGINEERING MECHANICS	0	0	3	3			
PREREQUISITES	NIL	L	Т	Р	Η			
C:P:A= 3.5:0.25:0.25		0	0	3	3			
COURSE OBJECTIVES								

Upon successful completion of the course, student will have:

- Ability to apply mathematics, science, and engineering.
- Ability to design and conduct experiments, as well as to analyze and interpretdata.
- Ability to identify, formulate, and solve engineeringproblems.
- Ability to apply modern engineering tools, techniques and resources to solve complex mechanical engineering activities with an understanding of thelimitations.
- Ability to comprehend the thermodynamics and their corresponding processes that influence the behavior and response of structural components.
- Ability to apply principles of engineering, basic science, and mathematics (including multivariate calculus and differential equations) and thermodynamics to model, analyze, design, and realize physical systems, components, orprocesses.

COUR	SE OUTCOMES	DOMAIN	LEVEL				
CO1	<i>Explain</i> the principles forces, laws and theirapplications.	Cognitive	Understanding, Apply				
CO2	<i>Classification</i> of friction, and <i>apply</i> the forces in Trusses and beams.	Cognitive	Understanding, Apply				
CO3	<i>Explain</i> and <i>Apply</i> moment of Inertia and Virtual work	Cognitive	Understanding, Apply				
CO4	Outline and Examine Dynamics	Cognitive	Understanding, Apply				
CO5	<i>Explain</i> free and forced vibration	Cognitive	Remember, Understanding				
UNIT			9L+3T				
	Systems Basic concepts, Particle equilibrium in 2-I	-					
•	of Forces, Coplanar Concurrent Forces, Componen	-					
	and its Application; Couples and Resultant of Force	• •	•				
	Free body diagrams, Equations of Equilibrium of Co	planar Systems	s and Spatial Systems;				
	ndeterminacy.						
UNIT			9L+3T				
	of friction, Limiting friction, Laws of Friction, Stati	· · · · · · · · · · · · · · · · · · ·					
	Bodies, wedge friction, screw jack & differential screw jack; Equilibrium in three dimensions;						
	d of Sections; Method of Joints; How to determi						
-	ession; Simple Trusses; Zero force members; Bear	ns & types o	of beams; Frames &				
Machin							
UNIT	III CENTROID, CENTRE OF GRAVITY AND	VIRTUAL W	/ORK 9L+3T				

AND ENERGY METHOD

Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.

Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom. Active force diagram, systems with friction, mechanical efficiency. Conservative forces and potential energy (elastic and gravitational), energy equation for equilibrium. Applications of energy method for equilibrium. Stability of equilibrium.

UNIT IVREVIEW OF PARTICLE DYNAMICS AND INTRODUCTION TO
KINETICS OF RIGID BODIES9L+3T

Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3-D curvilinear motion; Relative and constrained motion; Newton's 2nd law (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique). Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D'Alembert's principle and its applications in plane motion and connected bodies; Work energy principle and its application in plane motion of connected bodies; Kinetics of rigid bodyrotation.

UNIT VMECHANICAL VIBRATIONS9L+3TBasic terminology, free and forced vibrations, resonance and its effects; Degree of freedom;
Derivation for frequency and amplitude of free vibrations without damping and single degree of
freedom system, simple problems, types of pendulum, use of simple, compound and torsion
pendulums.

TEXT BOOKS

Hisrich, 2016, Entrepreneurship, Tata McGraw Hill, New Delhi. 1. S.S.Khanka, 2013, Entrepreneurial Development, S.Chand and Company Limited, New 2. Delhi. **REFERENCE BOOKS** Mathew Manimala, 2005, Entrepreneurship Theory at the Crossroads, Paradigms & Praxis, 1. Biztrantra ,2nd Edition. Prasanna Chandra, 2009, Projects – Planning, Analysis, Selection, Implementation and 2. Reviews, Tata McGraw-Hill. P.Saravanavel, 1997, Entrepreneurial Development, Ess Pee kay Publishing House, Chennai. 3. Arya Kumar, 2012, Entrepreneurship: Creating and Leading an Entrepreneurial organisation, 4. Pearson Education India. Donald F Kuratko, T.V Rao, 2012, Entrepreneurship: A South Asian perspective, Cengage 5. Learning India. 6. Dinesh Awasthi, Raman Jaggi, V.Padmanand, Suggested Reading / Reference Material for Entrepreneurship Development Programmes (EDP/WEDP/TEDP), EDI Publication, Entrepreneurship Development Institute of India, Ahmedabad. **E-REFERENCES** Jeff Hawkins, "Characteristics of a successful entrepreneur", ALISON Online 1. entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills

 2.
 Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education, https://www.udemy.com/entrepreneurship-from-idea-to-launch/

 LECTURE: 45
 TUTORIAL: 15

 PRACTICAL: 0
 TOTAL:60

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3	
PO ₁	1	1	1	1	1	5	1	
PO ₂	2	2	2	2	3	11	3	
PO ₃	3	3	3	3	3	15	3	
PO ₄	1	1	1	1	1	5	1	
PO ₅	0	0	0	0	0	0	0	
PO ₆	3	3	3	3	3	15	3	
PO ₇	1	1	1	1	1	5	1	
PO ₈	0	3	0	1	3	7	2	
PO ₉	3	3	3	3	3	15	3	
PO ₁₀	1	1	1	3	3	9	2	
PO ₁₁	2	2	2	3	3	12	3	
PO ₁₂	2	2	2	3	3	12	3	
PSO ₁	2	2	2	3	3	12	3	
PSO ₂	2	2	2	3	3	12	3	
$\begin{array}{c c} TOTAL \\ \hline 1.6 \ 1.7 \ 12 \ 2.1 \end{array}$	23	26	23	30	33	-	-	

XEM206 - Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUR	SE CODE	XCP207		L	Т	Р	С	
COURSE NAME PROGRAMMING FOR PROBLEM		PROGRAMMING FOR PROBLEM		0	0	1	1	
		SOLVING LAB						
PREREQUISITES		BASIC UNDERSTANDING SKILLS		L	Т	P	Н	
C:P:A		0.75:0.25:0		0	0	2	2	
LEAR	LEARNING OBJECTIVES							
•	To learn progra	mming language basics and syntax						
• To ignite logical thinking								
To understand structured programming approach								
• To deal with user defined data types								
• To know about data storage in secondary memory								
COUR	COURSE OUTCOMES		DC	OMAIN		LEVEL		
CO1 Solve simple p		rograms using I/O statements		gnitive		Apply		
				ycomotor		Responding		
CO2 <i>Solve</i> programs using control structures and arrays		Cog	nitive Apply		pply			
			Psyc	comoto	or R	espond	ing	
CO3	CO3 <i>Solve</i> programs using functions and pointers		Cog	nitive	A	Apply		
			Psyc	comoto	or R	espond	ing	
CO4	CO4 <i>Solve</i> programs using structures		0	nitive		Apply		
				comoto	or R	espond	ing	
CO5	CO5 Solve programs using files		-	nitive		Apply		
			Psyc	comoto	or R	espond	ing	

LIST OF EXPERIMENTS

Ex.	Experiments	COs		
No				
1.	Program to display a Leave Letter as per proper format			
2.	i. Program for addition of two numbers	CO1		
	ii. Program to solve any mathematical formula.			
3.	Program to find greatest of 3 numbers using Branching Statements	CO2		
4.	Program to display divisible numbers between n1 and n2 using looping Statement	CO2		
5.	Program to search an array element in an array.	CO2		
6.	Program to find largest / smallest element in an array.	CO2		
7.	Program to perform string operations.	CO3		
8.	Program to find area of a rectangle of a given number use four function types.	CO3		
9.	Programs to pass and receive array and pointers using four function types	CO3		
10.	Programs using Recursion for finding factorial of a number	CO3		
11.	Program to read and display student mark sheet of a student structures with variables	CO4		
12.	Program to read and display student marks of a class using structures with arrays	CO4		
13.	Program to create linked list using structures with pointers	CO4		

	Program for copying contents of one file to another file.						
15.	Program using files to store and display student mark list of a class using C structures with array						
TUTORIAL:0 PRACTICAL:30 TOTAL:30							

XCP207 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	2	2	2	12	3
PO ₂	2	2	2	2	2	10	2
PO ₃	0	0	1	1	1	3	1
PO ₄	0	0	2	2	0	4	1
PO ₅	3	2	2	2	2	11	3
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	1	1	1
PO ₉	0	0	0	0	0	0	0
PO ₁₀	0	0	0	0	2	2	1
PO ₁₁	2	2	2	2	2	10	2
PO ₁₂	3	3	2	2	2	12	3
PSO ₁	2	2	2	2	2	10	2
PSO ₂	0	0	0	0	0	0	0
TOTAL	15	14	15	15	16	-	-

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

COURSE	CODE	XAC208		L	Т	P	С	
COURSE	' NAME	APPLIED CHEMISTRY FOR	ENGINEERS	0	0	1	C 1	
		LAB						
	UISITES	NIL		L	L T P H			
$\mathbf{C:P:A=0}$				0	0	1	2	
COURSE	OBJECTI	VES						
COURSE	OUTCOM	ES	DOMAIN			LE	VEL	
		to Identify the principles of	Cognitive			Rem	ember	
CO1		yrelevant to the study of science	Psychomotor				eption	
	and engin	-	rsychomotor		-		option	
	•	and <i>Measure</i> molecular/system	~		τ	Unde	rstand	
000		ssuch as surface tension, viscosity,	Cognitive				alyze	
CO2		nce of solutions, redox potentials,	Psychomotor]		eption	
		hardness, chloride content ofwater,	Affective			Rec	ceive	
	etc.	the synthetic procedure and rate	Carritian					
CO3	-	s of reactions from concentration of	Cognitive			Apply		
005		/products as afunction of time				Aŀ	pry	
LIST OF	EXPERIM							
Ex. No	Experimen						COs	
1.		ion of chloride ion present in the wa	ter sample by Ar	gent	ome	tric		
	method.	1	1 2	U			CO1	
2.	Determinat	ion of total, temporary and permane	nt hardness of w	vater	sam	ple	CO1	
	by EDTA r						COI	
3.	Determinat	ion of cell constant and conductance of	of solutions.				CO2	
4.	Potentiome	etry - determination of redox potential	s and emfs.				CO2	
5.		ion of surface tension and viscosity.					CO3	
6.		of acetic acid by charcoal.					CO3	
7.		ion of the rate constant of a reaction.					CO3	
8.		of iron by colorimetric method.					<u>CO3</u>	
9.		f a polymer/drug.					CO3	
<u>10.</u>		ion/acid value of oil.			20		CO3	
LECURE		UTORIAL: 0 PRACTICA	L: 30 TOT	AL:	30			
TEXT BO	1	Manual "Chamister Lah" Danaster an	t of Chamister D	MIC	<u>т т</u>	hone		
1.	Laboratory	Manual "ChemistryLab", Departmen	t of Chemistry, P	14112	1, 1	nanja	avur.	
REFERF	NCE BOOK	3						
<u>1.</u>		Denney R.C,. Barnes J.D and T	homas NJK '	'Voo	el's	Ter	thook o	
		e Chemical Analysis", 6th Edition, Pe		-	-			
2.	-	. W.; Nibler, J. W.; Shoemaker, D. F				al Cl	nemistrv"	
		cGraw-Hill: New York, 2003.			<i></i>		y	
		/						

	8th Ed.; McGraw-Hill: New York, 2003.
E-RESOU	URCES- MOOC's
1.	http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques
2.	http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques
3.	http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011

CO Vs PO	CO1	CO2	CO3	Total	Scaled to 0,1,2 and 3
PO ₁	3	2	2	7	2
PO ₂	3	2	2	7	2
PO ₃	3	2	2	7	2
PO ₄	3	2	2	7	2
PO ₅	2	1	1	4	1
PO ₆	3	2	2	7	2
PO ₇	3	2	2	7	2
PO ₈	0	1	0	1	0
PO ₉	1	1	1	3	1
PO ₁₀	1	1	1	3	1
PO ₁₁	1	1	0	2	1
PO ₁₂	0	1	0	1	0
PSO ₁	0	1	0	1	0
PSO ₂	0	1	0	1	0

XAC208 - Mapping of CO with PO

 $1 \overline{-5 \rightarrow 1, 6 \overline{-10 \rightarrow 2, 11 \overline{-15 \rightarrow 3}}$

COU	RSE CODE	XMA301		L	Т	Р	С	
COU	RSE NAME	TRANSFORMS AND PARTIAL		3	3	3		
		DIFFERENTIAL EQUATIONS				0 1 P 1 0 1 neering. 1 /EL Apply Imitation Apply Remember, Inderstand, Imitation Apply Receiving Apply Receiving Apply Remember, Apply Remember, Apply Remember, Apply Remember, Apply		
PRER	REQUISITES	CALCULUS AND LINEAR ALGEB	BRA	L	Τ	P	H	
C:P:A	A= 3:0:0			3	0 0			
COU	RSE OBJECTI	VES						
• Ur	nderstand the ap	plication of transforms and partial different	ential equation	ons in	engin	eerin	g.	
	RSE OUTCOM		DOMAIN		LEV		-	
	Solvestandard	types of first order differential						
		to solve linear partial differential	Cognitive	-		Annl	V	
CO1	-	econd order with constant coefficients.	-		I			
	-		rsycholiot	.01	1	iiiitati	on	
		arbitrary constants and functions.						
		t's condition. <i>Explain</i> general Fourier	Constitution		Re	emem	ber,	
CO2		urve $y = f(x)$ in the interval $(0,2\pi)$ (- π ,	-		Ur	nderst	and,	
	π), (0, 2 ℓ), (- ℓ		Pential equations in eng DOMAIN LE Cognitive Psychomotor Cognitive Psychomotor Cognitive Psychomotor Cognitive Affective Cognitive Cognitive Cognitive Cognitive Cognitive of arbitrary constants differential equations cond and higher order n functions – Half ranges problems ntial equations – Socondion – Steady state set	I	mitati	on		
	Perform harm							
		ndard Partial Differential Equations,						
	arising in en		Cognitive	<u>م</u>	Apply			
CO3		Vave equation and Heat flow equation					-	
	-	es method in Cartesian coordinates.	1 mootive				B	
		d order quasi PDE.						
	Find the Four	ier transform and Fourier sine and			D.	mam	hor	
CO4	cosine transf	forms of simple functions using	Cognitive	<u>د</u>				
	definition and	its properties.				Appi	у	
	Apply the pro	perties of Z transform to <i>Find</i> the Z						
005	transform and	inverse Z transform of sequence and			Re	emem	ber,	
CO5	functions, and	to solve the difference equation using	Cognitive	5		Appl	У	
	them.							
UNIT	I PARTIA	AL DIFFERENTIAL EQUATIONS	•				9	
Forma	tion of partial	differential equations by elimination of	of arbitrary of	const	ants a	ind a	bitrary	
functio	ons – Solution	of standard types of first order partial	differential e	equat	ions -	- Lag	range's	
linear	equation - Line	ear partial differential equations of sec	ond and high	ner o	rder v	vith c	onstan	
coeffic	cients.		U					
UNIT	II FOURI	ER SERIES					9	
Dirich		- General Fourier series - Odd and ever	functions –	Half	range	sine s	series -	
		es –Parseval's identity – Harmonic Anal			0-			
	0		~					
UNIT	III APPLIC	CATIONS OF BOUNDARY VALUE I	PROBLEMS	5			9	
Classi	fication of second	ond order quasi linear partial differer	tial equation	ns –	Solut	ions	of one	
		uation – One dimensional heat equati						
		ation (Insulated edges excluded) - Fo						
coordi								
UNIT		ER TRANSFORM					9	
		m (without proof) – Fourier transform p	airs – Fourier	r Sin	e and (Cosin		
Fourie	a mugiai moore	μ (when our proof) i our or man storm p	uns round		c and v	COSIII	<u> </u>	
	orms – propertie	s – Transforms of simple functions – Co	nvolution the	oren	$1 - P_{21}$	seval	's	

identit	у.	
UNIT	V TRANSFORM AND DIFFERENCE EQUATIONS	9
Z-trans	sform – Elementary properties – Inverse Z – transform – Convolution theorem –	Initial and
	value theorems - Formation of difference equations – Solution of difference equation	
Z-trans	sform.	
TEXT	BOOKS	
1.	Grewal, B.S., "Higher Engineering Mathematics", 42 nd Edition, Khanna Publish	hers, New
	Delhi (2012).	
2.	Narayanan, S., ManicavachagomPillay, T.K. and Ramaniah, G., "Advanced Ma	thematics
	for Engineering Students", Volumes II and III, S.Viswanathan (Printers and P	ublishers)
	Pvt. Ltd., Chennai (2002).	
3.	Veerarajan. T., "Transforms and Partial Differential Equations", Second reprint, 7	Гata
	McGraw Hill Education Pvt. Ltd., New Delhi, 2012.	
REFE	RENCE BOOKS	
1.	Churchill, R.V. and Brown, J.W., "Fourier Series and Boundary Value Problem	s", Fourth
	Edition, McGraw Hill Book Co., Singapore (1987).	ŕ
2.	Kandasamy, P., Thilagavathy, K., and Gunavathy, K., "Engineering Mathematic	s Volume
	III", S. Chand & Company Ltd., New Delhi (1996).	
3.	Bali N.P. and Manish Goyal, "A Text Book of Engineering Mathematics" 7	th Edition
	Lakshmi Publications (P) Limited, New Delhi (2007).	
4.	Erwin Kreyszig, "Advanced Engineering Mathematics", 8 th Edition, Wiley India	a, 2007.
5.	Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McG	aw Hill
	Education Pvt Ltd, Sixth Edition, New Delhi, 2012.	
LECT	URE: 45 TUTORIAL: 0 PRACTICAL: 0 TOTAL:4	5

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	0	0	2	2	2	6	2
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	1	1	2	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0

XMA301 - Mapping of CO with PO

PO ₈	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0
PO ₁₀	1	1	1	1	1	5	1
PO ₁₁	0	0	1	1	1	3	1
PO ₁₂	1	1	2	1	1	6	2
PSO ₁	0	0	0	0	0	0	0
PSO ₂	1	1	1	1	1	5	1
TOTAL	6	6	10	10	10	-	-

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURS	SE CODE	XAS302		L	Т	Р	С	
COURS	SE NAME	INTRODUCTION TO AEROSPACE		3	0	0	3	
		ENGINEERING						
PRERE	QUISITES	NIL		L	Т	P	Η	
C:P:A=	3:0:0	-		3	0	0	3	
COUR	SE OBJECTI	VES						
• '	To understand	I the history and basics of aircraft structur	es, propulsio	n, a	erod	ynar	nics,	
	performance, o	controls and various aircraft systems.				-		
COURS	SE OUTCOM	ΈS	DOMAIN		LF	VE	L	
CO1		he historical background of air vehicles and t forces and moments acting in an airplane.	Cognitive Underst			ersta	rstand	
CO2		ortant physical properties of atmosphere n of Lift and Drag.	Cognitive		Und	ersta	nd	
CO3		various Fuselage constructions and d in air vehicles.	Cognitive		А	pply		
CO4	<i>Classify</i> the taerospace ve	ypes of power plants used in aircraft and hicles.	Cognitive Underst			ersta	nd	
CO5	Be able to <i>ap</i>	<i>ply</i> basic principles of aircraft systems.	Cognitive Appl					
CO6	Discuss the p	performance of aircraft.	Cognitive Underst				nd	
UNIT I	HISTOR	ICAL EVOLUTION		•			9	
History	of aviation- A	Aviation and Aerospace milestone - Compon	ents of an air	rplaı	ne -	Diffe	erent	
		Forces and Moments acting in an airplane- T						
UNIT I		PLES OF ATMOSPHERIC FLIGHT	**				9	

Physical properties and structure of the atmosphere - Temperature, pressure and altitude relationships - Evolution of lift and drag -Mach number - Airfoil and Wings- Basic flying Instruments. 9

UNIT III | STRUCTURES AND MATERIALS

General types of fuselage construction - Typical wing structure - Metallic and non-metallic materials - Composite materials.

9

9

UNIT IV POWER PLANTS

Basic ideas about piston and jet engines – Piston engine - Turbofan engine – Turboprop engine – Turbojet engine – Ramjet engine – Scramjet engine- Types of Propulsion-Types of propellants.

UNIT V AIRCRAFT SYSTEMS & PERFORMANCE

Types of systems- Hydraulics, Pneumatics, Landing Gear, Anti icing- Deicing- Fuel systems-Absolute Ceiling – Service Ceiling, Basics of –Climbing, Gliding, Range & Endurance.

LECTURE: 45	TUTORIAL: 0	PRACTICAL:0	TOTAL: 45
TEXT BOOK			

XAS302 - Manning of CO with PO

1. Anderson, J.D., "Introduction to Flight", 7th Edition, McGraw-HILL, 2011.

2. Kermode, A.C., "Flight without Formulae", 5th edition, Pearson Education, 2008.

3. Shevell.R.S "Fundamentals of Flights", Pearson education 2004

	1	AA53	02 -Map	ping of C	U with I	PU		1
								Scaled to
CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	0,1,2 and
								3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	1	1	1	1	1	1	6	1
PO ₃	2	2	2	2	2	2	12	2
PO ₄	0	0	0	0	2	2	4	1
PO ₅	2	2	2	2	2	2	12	2
PO ₆	0	1	2	3	3	2	11	2
PO ₇	1	1	1	1	2	2	8	2
PO ₈	0	0	0	0	0	0	0	0
PO ₉	1	1	1	1	2	3	9	2
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	2	3	5	1
PO ₁₂	2	2	2	2	3	3	14	3
PSO ₁	3	2	3	2	3	3	16	3

PSO ₂	0	0	0	0	0	0	0	0
TOTAL	15	15	17	17	25	26	-	-

 $1 - 6 \rightarrow 1, 7 - 12 \rightarrow 2, 13 - 18 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XAS303	L	Т	Р	С			
COURSE NAME	STRENGTH OF MATERIALS	3	0	0	3			
PREREQUISITES	ENGINEERING MECHANICS	L	Т	Р	Н			
C:P:A= 3:0:0		3	0	0	3			
COURSE OBJECTIVES								

• To give brief descriptions on the behaviour of materials due to axial, bending and torsional and combined loads.

	COURS	E OUTCOMES	DOMAIN	LEVEL				
	CO1	<i>Describe</i> the concepts of stress and strain at a point and <i>express</i> the stress-strain relationship for homogenous, isotropic materials.	Cognitive	Remember, Understand				
	CO2	<i>Explain</i> shear force and bending moment diagrams for cantilever, simply supported beams. <i>Calculate</i> bending stress and shear stress in beams.	Cognitive	Understand, Apply				
	CO3	<i>Calculate</i> deflection for beams.	Cognitive	Apply				
	CO4	Measure rotation of rod due to torsion.	Cognitive	Remember, Understand				
	CO5	<i>Explain</i> the stresses, strains associated with thin-wall spherical and cylindrical pressure vessels.	Cognitive	Understand				
	CO6	<i>Explain</i> about the Mohr's circle and principal stresses.	Cognitive	Understand				
U	NIT I	BASICS OF STRESS AND STRAIN OF SOLIDS		9				
R	igid and c	leformable bodies - Stress and Strain - Hooke's Law - Stress	-Strain relatio	onship –Bars				
	with varying cross sections - Elastic constants and their relationship –Composite bar - Thermal							
St	resses – S	tresses due to freely falling weight.						
TT								

UNIT II STRESSES IN BEAMS

9

Shear force and bending moment in beams – Cantilever, Simply supported and Overhanging beams-Bending stresses in straight beams-Shear stresses in bending of beams with rectangular, I & T cross sections.

UN	IT III	DEFL	ECTION	OF BEA	MS					9
Dou	uble integ	gration n	nethod -	McCaule	y's meth	od - Are	a mom	ent method	1 – Conjug	gate beam
met	thod-Prin	ciple of s	uper posit	ion-Castig	gliano's tl	neorem.				
UN	IT IV	TORS	ION							9
Tor	Torsion of circular shafts - Shear stresses and twist in solid and hollow circular shafts - Closely									
coiled helical springs.										
UN	IT V	BI AX	IAL STR	ESSES A	ND APP	LICATIO	ONS OF	THIN SH	ELLS	9
Bia	xial state	of stresse	es - Stress	es in thin	circular o	cylinder ar	nd spher	ical shell u	nder intern	al pressure
and	its appli	cations –	Volumetr	ric Strain	- Combir	ned loadin	g and its	s applicatio	ons – Princi	ipal planes
and	Stresses	– Mohr's	circle.							
LE	CTURE:	45		TUTOR	AL:0	PRAC	TICAL	.:0	Т	OTAL:45
TE	XT BOO	KS			I					
1.	. Rajp	ut R K, E	dition -V	["Strengt]	h of Mate	erials" Pub	lisher, S	Chand, 20	15.	
2.				R, "Mecl	nanics of	Materials'	' McGra	w – Hill B	ook Co, Th	ird
3.		on, 2002 Hulse, Ko		vin & Jack	c Cain, "S	Solid Mech	nanics",	Palgrave A	NE Books	, 2004.
RE	FEREN(CE BOO	KS					-		
1.	. Time 1997		S. P, "Ele	ments of S	Strength o	of Materia	ls", Tata	McGraw -	- Hill, New	Delhi,
2.			Theory an ll Book C	-		-	aterials"	, Schaum C	Outline Seri	es,
				XAS303	3 - Mapp	ing of CO	with P	0		
	CO Vs	s PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
	РО	1	3	2	1	1	3	2	12	2
	РО	2	2	1	3	3	2	2	13	2
PO ₃				2	2	2	2	2	11	2
PO ₄			0	1	2	2	2	2	9	2

PO₅

PO₆

PO ₇	0	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	1	1	0
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	1	1	2	1
PO ₁₂	0	0	0	0	0	1	1	0
PSO ₁	0	0	0	2	2	2	6	1
PSO ₂	0	0	0	0	0	0	0	0
TOTAL	6	7	11	13	16	15	-	-

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XAS304	L	Т	Р	С
COURSE NAME	FLUID MECHANICS	3	1	0	4
PREREQUISITES	NIL	L	Т	Р	Η
C:P:A= 3:1:0		3	1	0	4
COURSE OBJECTIV	ES				

• To introduce and explain fundamentals of Fluid Mechanics, which is used in the applications of Aerodynamics.

ricioayn							
COURSE (DUTCOMES	DOMAIN	LEVEL				
CO1 I	Describe fluid properties.	Cognitive	Remember				
CO2 I	<i>Express</i> the ideas of fluid statics and kinematics.	Cognitive	Understand				
CO3 1	Explain about the fluid dynamics.	Cognitive	Understand				
CO4 1	Explain about boundary layer.	Cognitive	Understand				
CO5 A	Analyze flow through pipes.	Cognitive	Analyze				
	<i>Compare and describe</i> the performance of centrifugal and reciprocating pump.	Cognitive	Evaluate, Remember				
UNIT I	DEFINITIONS AND FLUID PROPERTIES		9+3				
Introduction	to fluid - distinction between solid and fluid - basic de	efinition - class	ification of fluids				
- dimensions and units - system of units - fluid properties - continuum concept of system and control volume.							
UNIT IIFLUID STATICS AND KINEMATICS9+3							

Pascal	Pascal's law - centre of pressure - forces on curved surfaces - buoyance and floatation - pressure								
measu	measurement by manometers - fluid kinematics - flow visualization - lines of flow - types of fluid								
flow -	flow - flow net - velocity measurements.								
UNIT	III	FLUID D	DYNAMICS			9+3			
Euler's equation - Bernoulli's equation - venturimeter - orifice meter - pitot tubes - Coefficient of									
discha	urge - 1	nouth piec	e - Hagen poiseulli's equ	ation - Darcy's equa	tion for loss of head	due to			
frictio	n in pi	pe.							
UNIT	' IV	BOUNDA	ARY LAYER AND FLO	W THROUGH PIP	ES	9+3			
Lamin	nar bou	ndary laye	er - turbulent boundary lay	ver - boundary layer	separation - developr	nent of			
lamina	ar and	turbulent fl	lows in circular pipes - hyd	lraulic grade line - lo	sses in pipes - pipes i	n series			
and pa	arallel -	equivalen	t pipes - pipes in network -	- power transmission	through pipes.				
UNIT V HYDRAULIC MACHINES									
Centr	ifugal _l	oumps - co	mponents - heads and effic	ciencies of centrifuga	l pump - reciprocating	g pump			
- sing	le actir	ig - double	acting - slip - discharge an	nd power requiremen	t - delivery - perform	ance of			
pump	s - non	convention	nal pumping system – Intro	oduction to water turl	bines.				
LECT	TURE:	45	TUTORIAL:15	PRACTICAL:0	ТОТА	L: 60			
TEXT	Г ВОО	KS							
1.	Ban	sal, R.K., '	'Fluid Mechanics and Hyd	traulics Machines", 1	Laxmi Publications (I	?) Ltd.,			
	New	Delhi, 20	13.						
2.	Don	nkundwar.V	V.M., "Fluid mechanics	& Hydraulic mach	nines: with Introduc	tion to			
	fluic	lics", Dhar	npat Rai & Co. Pvt.Limit	ed, Educational and	Technical publisher	s,India,			
	2012	2.							
REFE	ERENG	CE BOOK	S						
1.	Ratha	krishnan. I	E, "Fluid Mechanics", Prer	ntice Hall of India (II	Ed.), 2007.				
2.	Kuma	ar. K.L., "I	Engineering Fluid Mechan	ics" (VII Ed.) Eurasi	ia Publishing House(l	P) Ltd.,			
	New	Delhi, 1993	5.						

XAS304- Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	2	1	1	3	2	12	2
PO ₂	2	1	3	3	2	2	13	2
PO ₃	1	2	2	2	2	2	11	2
PO ₄	0	1	2	2	2	2	9	2
PO ₅	0	1	2	2	3	1	9	2
PO ₆	0	0	1	1	1	1	4	1
PO ₇	0	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	1	1	0
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	1	1	2	1
PO ₁₂	0	0	0	0	0	1	1	0
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	0	0	2	1	1	1	5	1
TOTAL	6	7	13	12	15	14	-	-

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

	LT	Ρ	C			
	3 1	0	4			
	LT	Р	Η			
	3 1					
COURSE OBJECTIVES						
• To give a brief background of application of various laws of thermodyna		and	its			
application in heat transfer, refrigeration and air-conditioning, jet propulsion systemeters						
COURSE OUTCOMES DOMAIN	LE	VEI	_			
CO1 <i>Describe</i> the laws of thermodynamics and their application to a wide range of systems. Cognitive	Ren	emb	er			
Analyze the work and heat interactions associated with a						
prescribed process path and to perform thermodynamic						
CO2 analysis of a flow system. An ability to evaluate entropy Cognitive	An	alyze	a			
changes and familiarity with calculations of the efficiencies of	1 11	ur y 20	2			
heat engines and other related engineering devices.						
Assess the efficiency and mean effective pressure of different						
thermodynamic air standard cycles.	Eva	aluat	e			
Describe the pure substance (an ideal gas) and its applications	e Remember					
CO4 in various flow and non flow process, and ability to evaluate Cognitive			er			
the efficiencies.						
CO5 Describe the construction and working principle of different Cognitive	Remember					
types of compressors.						
Cognitive	Eva	aluat	e			
CO6 systems and able to calculate the COP /cooling load for various applications.						
UNIT I BASIC THERMODYNAMICS		0)+3			
Systems, Zeroth, First and Second laws - concept of entropy change in non-flow pro	cesses					
equations [steady flow energy equation] – Heat engines – Refrigerators and heat p						
thermodynamic relations.	r - r					
UNIT II AIR STANDARD CYCLES AND IC ENGINES		9)+3			
Otto, Diesel, Dual and Brayton cycles - Air standard efficiency -Mean effective p	pressur	e –T	wo			
and four stroke IC Engines – P-V & T-S diagrams.						
UNIT III GAS TURBINES)+3			
Introduction to aero-engine cycles: ramjets, turbojets, turbofans and turboprop	ps/turb	osha	fts,			
Velocity diagram - Application of gas turbines in aviation.						
UNIT IV AIR COMPRESSORS	<u> </u>)+3			
Positive displacement compressors – Construction and working principle of centrif (mixed flow) and axial compressors.	ugal, c	nago	nai			
UNIT V REFRIGERATION AND AIR CONDITIONING)+3			
Principles of refrigeration, Air conditioning - Heat pumps - Vapour compression	ion –					
absorption types - Coefficient of performance, Properties of refrigerants - Ba		-				
difference between refrigeration and air conditioning – Various methods of producin						
effects (RE).	2 -7		0			
	'AL:60					
TEXT BOOKS						

1.	Nag P K, "Basic and Applied Engineering Thermodynamics". Tata McGraw Hill, New Delhi, 2012.
2.	Cengel&Boles, "Thermodynamics – An Engineering Approach" " 7th Ed., McGraw Hill, 2011.
REFE	RENCE BOOKS
1.	Rogers and Mayhew, "Engineering Thermodynamics – Work and Heat Transfer", Addision Wesley, New Delhi, 1999.
2.	Eastop and McConkey, "Applied Thermodynamics", Addision Wesley, New Delhi, 1999.
3.	Sankaar B K, "Thermal Engineering", Tata McGraw Hill, New Delhi, 1998.
E – Re	ferences
1.	https://nptel.ac.in/courses/101104069/21

XAS305 - Mapping of CO with PO

	-	AA530	5 - Mapp	ing of CC	with r	0		
CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	3	3	3	3	3	3	18	3
PO ₃	0	2	0	0	2	2	6	1
PO ₄	1	1	1	1	1	1	6	1
PO ₅	0	0	0	0	0	0	0	0
PO ₆	1	1	1	1	1	1	6	1
PO ₇	2	2	2	2	2	2	12	2
PO ₈	0	0	0	0	0	0	0	0
PO ₉	2	2	2	2	2	2	12	2
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0	0
PO ₁₂	1	1	1	1	1	1	6	1
PSO ₁	1	1	1	1	1	1	6	1

PSO ₂	0	0	0	0	0	0	0	0
TOTAL	14	16	14	14	16	16	-	-
1 = 1 = 1 = 10	<u> </u>							

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE	CODE		L	Т	Р	С		
COURSE	NAME	ENTREPRENEURSHIP DEVELOPM	IENT	2	0	0	2	
PREREQ	UISITES	NIL		L	Т	SS	Η	
C:P:A= 2.	7:0:0.3			2	0	1	3	
COURSE	OUTCOMES		DOMAIN		L	EVEI	L	
CO1	-	nd <i>describe</i> the role of innovation and r an entrepreneur.	Cognitive	U	Understanding			
CO2	interest with your chosen entrepreneur. Affective					aluate 'erify	e/	
CO3		mportance of generation of new ideas eneurship and <i>illustrate</i> market	Cognitive		An	alyzin	a D	
CO4	<i>Explain</i> the competition in business and Cognitive/ skatch/damonstrate/comply business model for Affective					rstand pply/ alue, spons	-	
CO5		<i>Explain</i> venture creation and launching ness and its management.	Cognitive		Remembering, Understanding			
CO6	<i>Describe</i> and and global Development	11 1 1	Cognitive/ Affective		Inde	ember rstand gratir	ing/	
UNIT I	INNOV	ATION AND ENTREPRENEURSHIP					5	
developme Role of Far UNIT II	ent (2)- Entrepr mily and Socie SELF A	Creativity and Entrepreneurship; role of reneurial motivation (1)-Competencies ar ty; Entrepreneurship as a career and its ro SSESSMENT OF ENTREPRENEURI trepreneurial inclination (1)-Presentat	nd traits of an ole in nationa AL INCLIN	n en l de INA	trepr veloj TIC	eneur oment DN	(1)-	
entreprene	urial inclinatio	n rating (2)-Case study of successful entre	epreneurs (1)				9	
UNIT IIINEW IDEA GENERATION TO MARKET ASSESSMENTImportance of Idea generation-filtering-refinement (1)-opportunity recognition (1)- Description chosen idea - value proposition, customer-problem-Solution statement) (1)-benefits; developm status; IP ownership (1)-Market Validation- Technology/ user/decision makers/ partners market need; segmentation (1)-market TAM,SAM and SOM (1)-case study on market segmentation by popular companies (1)								
UNIT IV	CUSTO	MER – COMPETITION- BUSINESS N	MODEL				9	

Cue	tomor Toro	tot primory	austomor re	esearch, Decis	sion makin	a unit/ nr	ocoss I	Pooch hood	markat
				ompetition- co					
		-	• •	nning (1)-Pitc	-	•	-		untages-,
	IT V			TION AN			-	SMALL	9
UN	11 V			S MANAGE		CHING	Or	SWALL	9
No	u ontornrig			onal and lega		(1) Opera	tional	plan(1)	alac and
				-Team recruit					
	-		-	case studies (managen	ient (1)-l'ullu Tals	ang anu
ma			a startup –	case studies ((2)				
UN	IT VI	GOVERN		INITIAT	FIVES	AND	(GLOBAL	9
		OPPORT	UNITIES						
Inc	ubators and	accelerator	s- capacity	building (2)-	-Startup po	licies- Sta	rtup In	dia (2)-Sur	port for
		Portal(2) Fu							
			inding–natio	onal and inte	ernational s	Ources(Z)		iai Diografi	
Go			-					iai piografi	lines of
	vt. of India	-Global read	ch for prom	oting cross-cu	ultural entre	epreneursl			-
LE	vt. of India CTURE: 4	-Global read	-	oting cross-cu		epreneursl			-
LE RE	vt. of India CTURE: 4 FERENCE	-Global read 5 /	ch for prome TUTORIA	oting cross-cu L: 0 I	ultural entre	epreneursh AL:0	nip (1)	TO	ГАL: 45
LE	vt. of India CTURE: 4 FERENCE A.P.Aruna	-Global read 5 / 2 a, " Lecture	ch for prome TUTORIA	oting cross-cu	ultural entre	epreneursh AL:0	nip (1)	TO	ГАL: 45
LE RE 1.	vt. of India CTURE: 4 FERENCE A.P.Aruna www.brain	-Global read 5 / 2 a, " Lecture <u>n.net</u>	ch for prome TUTORIA Notes on	oting cross-cu L: 0 I Entrepreneurs	ultural entre PRACTIC	epreneursl AL:0 opment"	nip (1)	TO:	ГАL: 45 сору @
LE RE	vt. of India CTURE: 4 FERENCE A.P.Aruna www.brai Thomas V	-Global read 5 7 2 a, " Lecture <u>n.net</u> V. Zimmere	ch for prome TUTORIA e Notes on r, Norman I	oting cross-cu L: 0 I Entrepreneurs M. Scarborou	ultural entre PRACTIC	epreneursl AL:0 opment"	nip (1)	TO:	FAL: 45
LE RE 1. 2.	vt. of India CTURE: 4 FERENCE A.P.Aruna <u>www.brain</u> Thomas V Business I	-Global read 5 / 2 a, " Lecture <u>n.net</u> V. Zimmere Managemen	ch for prome TUTORIA e Notes on r, Norman I t", Pearson;	oting cross-cu L: 0 F Entrepreneurs M. Scarborou ; 3rd edition, 2	ultural entre PRACTIC	epreneursl AL:0 opment" tials of En	nip (1) , availa	TO: able as soft	TAL: 45 copy @ nd Small
LE RE 1.	vt. of India CTURE: 4 FERENCE A.P.Aruna <u>www.brain</u> Thomas V Business I John B	-Global read 5 / / 2 a, " Lecture <u>n.net</u> V. Zimmere Managemen burnett, "I	ch for prome TUTORIA e Notes on r, Norman I t", Pearson; Introducing	oting cross-cu L: 0 F Entrepreneurs M. Scarborou ; 3rd edition, 2 Marketing	PRACTIC ship Devel ugh, "Essen 2001. g", Open	epreneursl AL:0 opment" tials of En	nip (1)	TO: able as soft	TAL: 45 copy @ nd Small
LE RE 1. 2.	vt. of India CTURE: 4 FERENCE A.P.Aruna www.brain Thomas V Business M John B http://solr.	-Global read 5 / / 2 a, " Lecture <u>n.net</u> V. Zimmere <u>Managemen</u> burnett, "I .bccampus.c	ch for prome TUTORIA e Notes on r, Norman I t", Pearson; Introducing ca:8001/bcc/	oting cross-cu L: 0 I Entrepreneurs M. Scarborou ; 3rd edition, 2 Marketing /file/ddbe334	ultural entre PRACTIC ship Devel 1gh, "Essen 2001. g", Open 3-9796-480	aL:0 opment" tials of En Text)1-a0cb-	nip (1) , availa	TO: able as soft	TAL: 45 copy @ nd Small
LE RE 1. 2. 3.	vt. of India CTURE: 4 FERENCE A.P.Aruna www.brain Thomas V Business M John B http://solr. 7af7b02e3	-Global read 5 / / 2 a, " Lecture <u>n.net</u> W. Zimmere Managemen Jurnett, "I .bccampus.c 3191/1/Core	ch for prome TUTORIA P Notes on r, Norman I t", Pearson; Introducing ca:8001/bcc/ %20Concep	oting cross-cu L: 0 I Entrepreneurs M. Scarborou ; 3rd edition, 2 Marketing /file/ddbe334 pts%20of%20	PRACTICA Ship Devel 1gh, "Essen 2001. g", Open 3-9796-480 OMarketing	epreneursl AL:0 opment" tials of En Text)1-a0cb- .pdf	nip (1) , availa ntrepre Boo	TO able as soft neurship ar k availa	FAL: 45 copy @ ad Small ble at
LE RE 1. 2.	vt. of India CTURE: 4 FERENCE A.P.Aruna <u>www.brain</u> Thomas V Business N John B http://solr. 7af7b02e3 Toubia, O	-Global read 5 / / 2 a, " Lecture <u>n.net</u> V. Zimmere Managemen Jurnett, "I .bccampus.c 3191/1/Core Divier. "Idea	ch for prome TUTORIA e Notes on r, Norman I t", Pearson; Introducing ca:8001/bcc/ %20Concep a Generatio	oting cross-cu L: 0 F Entrepreneurs M. Scarborou ; 3rd edition, 2 Marketing /file/ddbe334 pts%20of%20 n, Creativity,	PRACTICA Ship Devel 1gh, "Essen 2001. g", Open 3-9796-480 OMarketing	epreneursl AL:0 opment" tials of En Text)1-a0cb- .pdf	nip (1) , availa ntrepre Boo	TO able as soft neurship ar k availa	FAL: 45 copy @ ad Small ble at
LE RE 1. 2. 3.	vt. of India CTURE: 4 FERENCE A.P.Aruna www.brain Thomas V Business M John B http://solr. 7af7b02e3 Toubia, O pp.411-42	-Global read 5 7 2 a, " Lecture <u>n.net</u> W. Zimmere Managemen Surnett, "I .bccampus.c 3191/1/Core Divier. "Idea 25. 10.1287/1	ch for prome TUTORIA e Notes on r, Norman I t", Pearson; Introducing ca:8001/bcc/ %20Concep a Generation mksc.1050.	oting cross-cu L: 0 I Entrepreneurs M. Scarborou ; 3rd edition, 2 Marketing /file/ddbe334 pts% 20of% 20 n, Creativity, 0166, 2006.	ultural entro PRACTIC ship Devel 1gh, "Essen 2001. g", Open 3-9796-480 OMarketing , and Incen	aL:0 AL:0 opment" tials of En Text 1-a0cb- .pdf tives", Ma	nip (1) , availa ntrepre Boo arketin	TO: able as soft neurship ar k availa g Science.	TAL: 45 copy @ ad Small ble at Vol. 25.
LE RE 1. 2. 3.	vt. of India CTURE: 4 FERENCE A.P.Aruna <u>www.brain</u> Thomas V Business N John B http://solr. 7af7b02e3 Toubia, O pp.411-42 Alexander	-Global read 5 / / a, " Lecture <u>n.net</u> V. Zimmere Managemen Jurnett, "I .bccampus.c 3191/1/Core Divier. "Idea 25. 10.1287/1 r Osterwald	ch for prome TUTORIA e Notes on r, Norman I t", Pearson; Introducing ca:8001/bcc/ %20Concep a Generation mksc.1050.0 er and Yve	oting cross-cu L: 0 F Entrepreneurs M. Scarborou ; 3rd edition, 2 Marketing /file/ddbe334 pts%20of%20 n, Creativity, 0166, 2006. es Pigneur, "I	ultural entre PRACTIC ship Devel ugh, "Essen 2001. g", Open -3-9796-480 OMarketing , and Incen Business M	epreneursl AL:0 opment" tials of En tials of En Text 01-a0cb- .pdf tives", Ma Iodel Gen	nip (1) , availa ntrepre Boo arketin	TO: able as soft neurship ar k availa g Science.	TAL: 45 copy @ ad Small ble at Vol. 25.
LE RE 1. 2. 3.	vt. of India CTURE: 4 FERENCE A.P.Aruna www.brain Thomas V Business I John B http://solr. 7af7b02e3 Toubia, O pp.411-42 Alexander Visionarie	-Global read 5 / / / / / / / / / / / / / / / / / / /	ch for prome TUTORIA e Notes on r, Norman I t", Pearson; Introducing ca:8001/bcc/ %20Concep a Generation mksc.1050.4 er and Yve hangers, and	oting cross-cu L: 0 I Entrepreneurs M. Scarborou ; 3rd edition, 2 Marketing /file/ddbe334 pts% 20of% 20 n, Creativity, 0166, 2006.	ultural entre PRACTIC ship Devel 1gh, "Essen 2001. g", Open 3-9796-480 OMarketing , and Incen Business M ", Wiley; 15	a L:0 a L:0 a Dependent tials of End tials of End a Text 01-a0cb- .pdf tives", Ma lodel Gend st edition,	nip (1) , availa ntrepre Boo arketin neration 2010.	TO able as soft neurship ar k availa g Science. n: A Handt	TAL: 45 copy @ ad Small ble at Vol. 25.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	0	0	0	0	0	0	0	0
PO ₂	1	1	1	1	1	1	6	1
PO ₃	0	0	1	1	1	1	4	1
PO ₄	0	0	0	0	0	0	0	0
PO ₅	1	1	1	1	1	1	6	1
PO ₆	0	0	0	0	0	0	0	0

XUM306 - Mapping of CO with PO

PO ₇	1	1	1	1	1	1	6	1
PO ₈	1	1	1	1	1	1	6	1
PO ₉	2	2	2	2	2	2	12	3
PO ₁₀	1	1	1	1	1	1	6	1
PO ₁₁	2	2	2	2	2	2	12	2
PO ₁₂	2	2	2	2	2	2	12	2
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0	0
TOTAL	11	11	12	12	12	12	70	13

$1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

COURS	E CODE	XAS308		L	Т	Р	C
COURS	E NAME	STRENGTH OF MATERIALS LAB		0	0	1	1
PREREC	QUISITES	NIL		L	Т	Р	Η
C:P:A= 0:1:0 0							
COURSE OBJECTIVES							
• T	he objective	of the lab is to perform experiments w	hich are r	elate	d to	Sol	lid
Ν	lechanics cours	se in order to understand the practical's related	l to theories	of th	ie cou	rse.	
COURSE OUTCOMES DOMAIN							
CO1	Explain the p	procedure about the hardness test	Psychomo	tor	Set		
CO2	Measure stre	ss limits of specimen using tension test	Psychomo	otor	or Guideo Respon		
CO3	<i>Measure</i> the	deflection of specimen	Psychomo	tor	Mec	nanis	sm
CO4	Choose the s	pecimen and conduct impact test	Psychomo	tor	Perc	cepti	on
CO5	<i>Measure</i> straction	resses of specimen using torsion and test	Psychomo	otor	Co	mple	ex
CO6Measure testMeasure stresses of specimen using block compression PsychomotorPsychomotor							ism
LIST OF	EXPERIMEN	TS		•			
Ex. No	Experiments				(COs	

1.	Brinell Hardness Test		CO1						
2.	Rockwell Hardness Test								
3.	Tension Test								
4.	Beam Deflection Test		CO3						
5.	Izod Impact Test								
6.	Charpy Impact Test		CO4						
7.	Torsion Test		CO5						
8.	Block Compression Test		CO6						
LECUR									
TEXT B	TEXT BOOKS								
1.	Laboratory Manual, "Strength of Materials"., Dept. of Ae	rospace Engineerin	g, PMIST.						

CO Vs PO	C01	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	2	2	2	2	2	2	10	2
PO ₂	1	1	1	1	1	1	5	1
PO ₃	2	2	2	2	2	2	10	2
PO ₄	2	2	2	2	2	2	10	2
PO ₅	1	1	1	1	1	1	5	1
PO ₆	1	1	1	1	1	1	5	1
PO ₇	0	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0	0
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0	0
PO ₁₂	0	0	0	0	0	0	0	0
PSO ₁	1	1	1	1	1	1	5	1

XAS308- Mapping of CO with PO

PSO ₂	0	0	0	0	0	0	0	0
TOTAL	10	10	10	10	10	10	-	-
$1 \in \mathbb{N}$ 1 $\in 10 \times 0.11 = 1$	~ ` `							

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUR	SE CODE	XAS309					L	Τ	P	С
COUR	SE NAME	FLUID MEC	CHANI	CS LAB			0	0	1	1
PRERE	EQUISITES	NIL					Р	Τ	Р	Η
C:P:A=							0	0	1	2
	SE OBJECTI									
• ′	To determine the	ne various para	meters r	related to	fluid flow	in pipes	and in	open	chann	els.
COUR	SE OUTCOM	ES				D	OMA	IN	LE	VEL
CO1	CO1 <i>Calibrate</i> the venturimeter.		Psy	chom	otor	Con	nplex			
CO2	CO2 <i>Measure</i> the pressure using pitot static tube.			Psy	chom	otor		ided oonse		
CO3	Explain the p	ipe flow losses	and Be	rnoulli's	theorem.	Psy	chome	otor	S	et
CO4		the performative trifugal pump.	ances b	between	reciprocati	^{ng} Psy	chom	otor	Perce	eption
CO5	<i>Measure</i> visc	osity of fluid.				Psy	Psychomotor			ided oonse
CO6	<i>Measure</i> visc	osity of fluid.				Psy	sychomotor			ided oonse
LIST O	F EXPERIME	NTS								
Ex. No									CC)s
1.	Calibration	of venturimeter							CC)1
2.		asurement with	1	tatic tube					CC	
3.		on of pipe flow							CC	
4.		of Bernoulli's							CC	
5.		zation by Hele		11					CC	
6.		test on centrif	<u> </u>	-					CC	
7.		test on recipro							CC	
8.		on of Viscosity				- 1-			CC)6
LECU		UTORIAL: 0		PRAC	TICAL: 3	0 T(DTAL	:30		
	BOOKS	· · · · · · · ·		·	2.4					
1.	Laboratory I	Aanual, "Fluid	Mechar	nıcs"., De	pt. of Aerc	space Ei	nginee	rıng,	PMIST	ľ.

XAS309- Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	2	2	2	2	2	2	10	2
PO ₂	1	1	1	1	1	1	5	1
PO ₃	2	2	2	2	2	2	10	2
PO ₄	2	2	2	2	2	2	10	2
PO ₅	1	1	1	1	1	1	5	1
PO ₆	1	1	1	1	1	1	5	1
PO ₇	0	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0	0
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0	0
PO ₁₂	0	0	0	0	0	0	0	0
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	1	1	1	1	1	0	5	1
TOTAL	10	10	10	10	10	9	-	-

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUR	SE CODE	XAS310		L	Т	Р	С
COUR	SE NAME	IN PLANT TRAINING – I		0	0	0	1
PRER	EQUISITES	NIL		L	Т	Р	Η
C:P:A=	= 0.25:0.25:0.5		0	0	0	0	
COUR	SE OBJECTIVE						
•	To enable students	s to learn the basic concepts of Project	& Productio	n Ma	anage	ment.	
	To enable studen Project work.	ts to implement Project Planning in	their Industr	rial I	in-pla	nt Tra	aining
COUR	SE OUTCOMES		DOMAIN	LEVE		L	
CO1	Relate classroom	theory with workplace practice	Cognitive	e	Unders		and
CO2	<i>Comply</i> with fa business practice	actory discipline, management and s.	Affective	;	R	lespon	se
CO3	<i>Demonstrates</i> te	amwork and time management.	Affective	;	Value		e
CO4	Describe and practical skills of	Psychomet			n, Set		
CO5		asks and activities done by technical ral presentations.	Cognitive	e	E	Evalua	te

XAS310 - Mapping of CO with PO

PRACTICAL: 30

TOTAL :30

TUTORIAL: 0

LECTURE: 0

		11		mapp			U		
CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	CO7	Total	Scaled to 0,1,2 and 3
PO ₁	3	2	1	2	1	0	1	10	2
PO ₂	3	2	1	2	1	0	1	10	2
PO ₃	0	0	1	3	1	0	0	5	1
PO ₄	0	1	2	3	1	2	2	11	3
PO ₅	0	0	2	3	1	0	0	6	2
PO ₆	1	0	1	1	0	3	3	10	2
PO ₇	1		1	1	0	1	0	4	1
PO ₈	1	0	1	1	0	3	0	6	2
PO ₉	0	0	0	0	2	3	1	6	2

PO ₁₀	0	0	0	0	3	3	3	9	2
PO ₁₁	0	0	0	0	2	2	2	6	2
PO ₁₂	1	0	0	0	3	3	1	8	2
PSO ₁	1	1	1	1	1	0	1	1	1
PSO ₂	2	2	2	3	2	3	2	16	2
TOTAL	13	8	13	20	18	23	17	-	-

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XPS401	L	Т	P	С
COURSE NAME	PROBABILITY AND STATISTICS	3	0	0	3
PREREQUISITE	NIL	L	Τ	Р	Η
C:3.5P:0.25A:0.25		3	0	0	3
I FADNINC OB IEC	TIVES		•		

LEARNING OBJECTIVES

- Appreciate the importance of probability and statistics in computing and research.
- Develop skills in presenting quantitative data using appropriate diagrams, tabulations and summaries and to use appropriate statistical method in the analysis of simple datasets.
- Interpret and clearly present output from statistical analyses in a clear concise and understandable manner.
- The main objective of this course is to provide students with the foundations of probabilities and statistical analysis mostly used in varied applications in engineering and science like disease modeling, climate prediction and computer networks etc.

	RSE OUTCOMES		
-		DOMAIN	LEVEL
CO1	Explain conditional probability, independent events;	Cognitive	Understanding
	find expected values and Moments of Discrete		Remembering
	random variables with properties.		
CO2	Find distribution function, Marginal density function,	Cognitive	Remembering
	conditional density function, <i>Define</i> density function		
	of conditional distribution functions normal,		
	exponential and gamma distributions.		
CO3	Find measures of central tendency, statistical	Cognitive	Remembering
	parameters of Binomial, Poisson and Normal,		
	correlation, regression. Rank Correlation coefficient		Guided Response
	of two variables.	Psychomotor	

CO4	difference of proportion, single mean, difference of means and difference of standard deviations with simple problems.							
CO5		coefficients, variance test,	Cognitive Affective	Understanding Receiving				
UNIT	I BASIC PROBABILITY			9				
randon distrib	bility spaces, conditional prob n variables, the multinon ution, infinite sequences o tation of Discrete Random Va	nial distribution, Poisson f Bernoulli trials, sums c	approximation of independent	n to the binomial t random variables;				
UNIT	II CONTINUOUS PRO	DBABILITY DISTRIBUT	IONS & BIV	ARIATE 9				
	RIBUTIONS							
Contin expone	nuous random variables and ential and gamma densities. I otients, conditional densities	Bivariate distributions and the						
UNIT	III BASIC STATISTICS			9				
Measu	res of Central tendency: M	Ioments, Skewness and K	urtosis - Prob	ability distributions:				
Binom	nial, Poisson and normal - ev	valuation of statistical parar						
Binom Correla		valuation of statistical parar						
Binom Correla UNIT Curve more g	ial, Poisson and normal - evation and regression – Rank of	valuation of statistical parameters correlation. CS et squares- fitting of straight ficance: Large sample test	lines, second of for single prop	e three distributions, 9 degree parabolas and portion, difference of				
Binom Correla UNIT Curve more g propor	ial, Poisson and normal - ev ation and regression – Rank of IV APPLIED STATISTIC fitting by the method of leas general curves. Test of signi	valuation of statistical parameters correlation. CS et squares- fitting of straight ficance: Large sample test	lines, second of for single prop	e three distributions, 9 degree parabolas and portion, difference of				
Binom Correla UNIT Curve more g propor UNIT Test for	ial, Poisson and normal - evation and regression – Rank of IV APPLIED STATISTIC fitting by the method of lease general curves. Test of signitions, single mean, difference	valuation of statistical param correlation. CS st squares- fitting of straight ficance: Large sample test to e of means, and difference of means and correlation coef	lines, second of for single prop f standard devia	e three distributions, 9 degree parabolas and ortion, difference of ations. 9				
Binom Correla UNIT Curve more g propor UNIT Test fo Chi-sq	iial, Poisson and normal - ev ation and regression – Rank of IV APPLIED STATISTIC fitting by the method of leas general curves. Test of signi- tions, single mean, difference V SMALL SAMPLES or single mean, difference of	valuation of statistical param correlation. CS st squares- fitting of straight ficance: Large sample test to e of means, and difference of means and correlation coef	lines, second of for single prop f standard devis ficients, test fo es.	e three distributions, 9 degree parabolas and ortion, difference of ations. 9				
Binom Correla UNIT Curve more g propor UNIT Test for Chi-sq LECT	iial, Poisson and normal - ev ation and regression – Rank of IV APPLIED STATISTIC fitting by the method of leas general curves. Test of signi- tions, single mean, difference V SMALL SAMPLES or single mean, difference of uare test for goodness of fit a	valuation of statistical parameter correlation. CS at squares- fitting of straight ficance: Large sample test e of means, and difference of means and correlation coeffi- and independence of attribute	lines, second of for single prop f standard devis ficients, test fo es.	e three distributions, 9 degree parabolas and ortion, difference of ations. 9 r ratio of variances -				
Binom Correla UNIT Curve more g propor UNIT Test for Chi-sq LECT	hial, Poisson and normal - evation and regression – Rank of IV APPLIED STATISTIC fitting by the method of lease general curves. Test of signitions, single mean, difference of V SMALL SAMPLES for single mean, difference of fuare test for goodness of fit a TURE:45 BOOKS Veerarajan T., "Probability Delhi, 2010.	valuation of statistical parameter correlation. CS at squares- fitting of straight ficance: Large sample test to e of means, and difference of means and correlation coeff and independence of attributer TUTORIAL: , Statistics and Random Proc	lines, second of for single prop f standard devis ficients, test fo es. 0	9 degree parabolas and ortion, difference of ations. 9 r ratio of variances - TOTAL:45 IcGraw-Hill, New				
Binom Correla UNIT Curve more g propor UNIT Test fo Chi-sq LECT TEXT	hial, Poisson and normal - evation and regression – Rank of IV APPLIED STATISTIC fitting by the method of lease general curves. Test of signitions, single mean, difference of V SMALL SAMPLES for single mean, difference of fuare test for goodness of fit a TURE:45 BOOKS Veerarajan T., "Probability Delhi, 2010.	valuation of statistical param correlation. CS st squares- fitting of straight ficance: Large sample test to e of means, and difference of means and correlation coeff and independence of attribute TUTORIAL:	lines, second of for single prop f standard devis ficients, test fo es. 0	9 degree parabolas and ortion, difference of ations. 9 r ratio of variances - TOTAL:45 IcGraw-Hill, New				
Binom Correla UNIT Curve more g propor UNIT Test for Chi-sq LECT TEXT 1. 2.	hial, Poisson and normal - evation and regression – Rank of IV APPLIED STATISTIC fitting by the method of lease general curves. Test of signitions, single mean, difference of V SMALL SAMPLES for single mean, difference of fuare test for goodness of fit a TURE:45 BOOKS Veerarajan T., "Probability Delhi, 2010.	valuation of statistical parameter correlation. CS at squares- fitting of straight ficance: Large sample test to e of means, and difference of means and correlation coeff and independence of attributer TUTORIAL: , Statistics and Random Proc	lines, second of for single prop f standard devis ficients, test fo es. 0	9 degree parabolas and ortion, difference of ations. 9 r ratio of variances - TOTAL:45 IcGraw-Hill, New				
Binom Correla UNIT Curve more g propor UNIT Test fo Chi-sq LECT TEXT 1. 2.	hial, Poisson and normal - evation and regression – Rank of IV APPLIED STATISTIC fitting by the method of lease general curves. Test of signitions, single mean, difference of V SMALL SAMPLES for single mean, difference of fuare test for goodness of fit a CURE:45 BOOKS Veerarajan T., "Probability Delhi, 2010. B.S. Grewal, "Higher Engine ERENCES Erwin Kreyszig, "Advance 2006.	valuation of statistical parameterization. CS at squares- fitting of straight ficance: Large sample test is e of means, and difference of means and correlation coeffi- and independence of attributer TUTORIAL: , Statistics and Random Proc meering Mathematics", Khan ed Engineering Mathematics	neters for these lines, second of for single prop f standard devis ficients, test for es. 0 cesses", Tata M ma Publishers, ", 9 th Edition,	9 degree parabolas and ortion, difference of ations. 9 r ratio of variances - TOTAL:45 IcGraw-Hill, New 43 rd Edition, 2015. John Wiley & Sons,				
Binom Correla UNIT Curve more g propor UNIT Test fc Chi-sq LECT TEXT 1. 2. REFE	iial, Poisson and normal - ev ation and regression – Rank of IV APPLIED STATISTIC fitting by the method of lease general curves. Test of signi- tions, single mean, difference of V SMALL SAMPLES or single mean, difference of juare test for goodness of fit a VRE:45 CBOOKS Veerarajan T., "Probability Delhi, 2010. B.S. Grewal, "Higher Engine CRENCES Erwin Kreyszig, "Advance 2006. P. G. Hoel, S. C. Port and G Book Stall, 2003 (Reprint).	valuation of statistical parameterization. CS et squares- fitting of straight ficance: Large sample test if e of means, and difference of means and correlation coeffi- and independence of attributer TUTORIAL: , Statistics and Random Proce- neering Mathematics", Khan ed Engineering Mathematics C. J. Stone, "Introduction to I	lines, second of for single prop f standard devia ficients, test for es. 0 cesses", Tata M ma Publishers, ", 9 th Edition, Probability The	9 degree parabolas and cortion, difference of ations. 9 r ratio of variances - TOTAL:45 IcGraw-Hill, New 43 rd Edition, 2015. John Wiley & Sons, cory", Universal				
Binom Correla UNIT Curve more g propor UNIT Test fo Chi-sq LECT TEXT 1. 2. REFE 1.	iial, Poisson and normal - ev ation and regression – Rank of IV APPLIED STATISTIC fitting by the method of lease general curves. Test of signi- tions, single mean, difference of V SMALL SAMPLES or single mean, difference of juare test for goodness of fit a VRE:45 C BOOKS Veerarajan T., "Probability Delhi, 2010. B.S. Grewal, "Higher Engine CRENCES Erwin Kreyszig, "Advance 2006. P. G. Hoel, S. C. Port and C Book Stall, 2003 (Reprint).	valuation of statistical parar correlation. CS at squares- fitting of straight ficance: Large sample test is e of means, and difference of means and correlation coeff and independence of attribute TUTORIAL: , Statistics and Random Proc neering Mathematics", Khan ed Engineering Mathematics	lines, second of for single prop f standard devia ficients, test for es. 0 cesses", Tata M ma Publishers, ", 9 th Edition, Probability The	9 9 degree parabolas and cortion, difference of ations. 9 r ratio of variances - TOTAL:45 IcGraw-Hill, New 43 rd Edition, 2015. John Wiley & Sons, cory", Universal				

	Publications, Reprint, 2010.
5.	W. Feller, "An Introduction to Probability Theory and its Applications", Vol. 1, 3 rd Ed.,
	Wiley, 1968.
$\mathbf{E} - \mathbf{R}$	EFERENCE
1.	NPTEL
	Probability and Statistics by Prof. Someshkumar, Department of Mathematics, IIT
	Kharagpur.(http://nptel.ac.in/noc/noc_courselist.php)

CO Vs PO	C01	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	3	3	3	3	3	15	3
PO ₃	2	2	2	2	2	10	2
PO ₄	2	2	2	2	2	10	2
PO ₅	0	0	0	0	0	0	0
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0
PO ₉	1	1	1	1	1	5	1
PO ₁₀	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	1	1	1	1	1	5	1
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
$\frac{\text{TOTAL}}{1.6 \times 1.7 \times 12 \times 2}$	12	12	12	12	12	60	12

XPS401- Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

COURSE CODE	XAS402	L	Т	Р	С
COURSE NAME	AERODYNAMICS –I	3	0	0	3
PREREQUISITES	FLUID MECHANICS, INTRODUCTION TO AEROSPACE ENGINEERING	L	Т	Р	Н
C:P:A= 3:0:0		3	0	0	3

COL	IRSE OBJECTIVES									
		vior of airflow over bo	dies with partic	cular em	phasis on airfoil					
S	ections in the incompress	sible flow regime.	-		-					
	IRSE OUTCOMES		DOM	AIN	LEVEL					
CO	Study of basicof aero	odynamics and airfoil.	Cogni	itive	Remember Understand					
CO	CO2 Explain various flows Cognitive Understand Analyze									
CO	3 <i>Express</i> combinati various flows	onal stream functions	for Cogni	itive	Understand Analyze					
CO	4 <i>Explain</i> about transf	formations of various shap	pes Cogni	itive	Understand Analyze					
CO	<i>Explain</i> Lifting line to real time problem	theory and Present solutions.	on Cogni	itive	Understand Analyze					
CO	6 <i>Display</i> the Boundar and Discuss Navier s	y Layer Flow over model stokes's Equation.	s Cogni	tive	Remember Understand					
UNI	Γ I BASICS OF AE	CRODYNAMICS			9					
Revi	ew of governing equa	tions- Bernoulli's- Eule	er's- Continuity	– Mor	nentum- Energy,					
Aero	dynamic Forces and Mo	ments- Characteristics of	Airfoil.							
UNI	Γ II TWO DIMENS	IONAL INCOMPRESS	SIBLE FLOWS		9					
Elen	entary flows – uniform	flow, source, sink, vor	tex and their co	mbinatio	ons, Pressure and					
velo	city distributions on bodi	es with and without circu	lation in ideal an	d real flu	uid flows.					
	Γ III CONFORMAL				9					
		sification of aerofoil - Tra								
		ideal and real flow - Mag	gnus effect – D'	Alember						
	Γ IV AIRFOIL AND				9					
		applications- concept o		Vortex	line, Horse shoe					
		ng line theory and its limi	tations.							
UNI					9					
		Effect of pressure gradi	ent- displacement	nt, Mome	entum thickness -					
	over a flat plate-Navier	Stokes's Equation.								
	T BOOKS									
-	998.	entals of Aerodynamics"	, McGraw-Hill E	Book Co.	, New York,					
	Clancey, L.J., "Aerodyna	mics", Pitman, 1986.								
	ERENCE BOOKS		·							
1	Arnold Publishers Ltd., L		-	-	ents", Edward					
		Theoretical aerodynamics'	", Macmillan, 19	85.						
	References									
1.	https://nptel.ac.in/course	s/101105059/								
1	LECTURE:45 TUTORIAL:0 PRACTICAL:0 TOTAL:45									

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	15	2
PO ₂	2	3	3	3	3	3	16	3
PO ₃	1	2	2	3	3	3	11	2
PO ₄	3	3	3	3	3	3	15	2
PO ₅	0	2	2	2	3	3	9	1
PO ₆	0	3	3	3	2	2	13	2
PO ₇	1	2	2	2	2	2	9	1
PO ₈	0	2	2	0	0	0	4	1
PO ₉	0	3	3	0	0	0	6	1
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0	0
PO ₁₂	3	3	3	3	2	2	16	3
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	2	2	2	2	1	1	10	2
TOTAL	15	28	28	24	22	22	-	-

XAS402 - Mapping of CO with PO

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

XAS403	L	Т	Р	С
AIRCRAFT STRUCTURES-I	3	1	0	4
STRENGT OF MATERIALS	L	Т	Р	Η
	3	1	0	4
	AIRCRAFT STRUCTURES-I	AIRCRAFT STRUCTURES-I 3	AIRCRAFT STRUCTURES-I31	AIRCRAFT STRUCTURES-I310

COURSE OBJECTIVES

• To study the behaviour of various aircraft structural components under different types of loads.

COUR	RSE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Recall</i> engineering mechanics and <i>explain</i> stresses and wing structures.	Cognitive	Remember, Understand

CO2	Draw as structure	nd <i>explain</i> statically determinate and indeterminate es.	Cognitive	Remember, Understand							
CO3		and <i>analyze</i> the behavior of elastic structures d to combined loads, including bending, torsion and ids.	Cognitive	Understand , Analyze							
CO4	find ou	and <i>Use</i> Euler's formula for various columns to t critical load. <i>Distinguish</i> Euler's formula and 's formula.	Cognitive	Understand , Apply							
CO5	Explain	the real time application of columns.	Cognitive	Understand							
CO6	<i>List</i> the theories of failure and <i>explain</i> themand then <i>utilize</i>										
UNIT	Ι	BASICS OF STRESSES AND STRAIN		8							
Classif	rication o	f loads and beams- Stress, Strain and types- Three	-dimensional	Hook's Law-							
Princip	al stresse	s- Mohr's Circle.									
UNIT	II	STATICALLY DETERMINATE AND INDE	TERMINAT	E 10+4							
		STRUCTURES									
Analys	is of pla	ne truss using method of joints - Propped Cantil	ever- Fixed-Fi	xed beams -							
	_	ee Moment Equation.									
UNIT	III	ENERGY METHODS		8+3							
Strain	Energy of	lue to axial, bending and Torsional loads - Castigli	ano's theorem	ns- Maxwell's							
Recipr	ocal theor	em - Unit load method.									
Recipio											
UNIT	IV	COULMNS		11+4							
UNIT		COULMNS arious end conditions – Euler's Column curve – Ranki	ne's formula -								
UNIT Column	ns with v			Column with							
UNIT Column	ns with v curvature	arious end conditions – Euler's Column curve – Ranki		Column with							
UNIT Colum initial o UNIT	ns with v curvature V	arious end conditions – Euler's Column curve – Ranki - Eccentric loading – South well plot – Beam column FAILURE THEORIES	– application o	Column with of columns.							
UNIT Column initial c UNIT Types	ns with v curvature V of failure	arious end conditions – Euler's Column curve – Ranki - Eccentric loading – South well plot – Beam column	– application c eory – Shear s	Column with of columns. 8+3 tress theory –							
UNIT Column initial c UNIT Types of Shear s	ns with v curvature V of failure	arious end conditions – Euler's Column curve – Ranki - Eccentric loading – South well plot – Beam column FAILURE THEORIES theories – Principal stress theory – Principal strain th rgy theory – Strain energy theory –Fatigue and Creep	– application c eory – Shear s	Column with of columns. 8+3 tress theory –							
UNIT Column initial of UNIT Types of Shear s LECT	ns with v curvature V of failure strain ene	arious end conditions – Euler's Column curve – Ranki - Eccentric loading – South well plot – Beam column FAILURE THEORIES theories – Principal stress theory – Principal strain th rgy theory – Strain energy theory –Fatigue and Creep I PRACTICAL:0 TUTORIAL: 15	– application c eory – Shear s	Column with of columns. 8+3 tress theory – s.							
UNIT Colume initial of UNIT Types Shear s LECT TEXT	ns with v curvature V of failure strain ene URE: 45 BOOKS	arious end conditions – Euler's Column curve – Ranki - Eccentric loading – South well plot – Beam column FAILURE THEORIES theories – Principal stress theory – Principal strain th rgy theory – Strain energy theory –Fatigue and Creep I PRACTICAL:0 TUTORIAL: 15	– application c eory – Shear s Failure analysi	Column with of columns. 8+3 tress theory – s. TOTAL: 60							
UNIT Colum initial c UNIT Types Shear s LECT TEXT 1. R	ns with v curvature V of failure strain ene URE: 45 BOOKS ajput R K	arious end conditions – Euler's Column curve – Ranki - Eccentric loading – South well plot – Beam column FAILURE THEORIES theories – Principal stress theory – Principal strain th rgy theory – Strain energy theory –Fatigue and Creep I PRACTICAL:0 TUTORIAL: 15	 application of eory – Shear s Failure analysi Chand Publication 	Column with of columns. 8+3 tress theory – s. TOTAL: 60							

REFERENCE BOOKS

- Bruhn.E.F. "Analysis and design of flight vehicle structures" Tri set of offset company, USA, 1973.
- 2. Timoshenko S., "Strength of Materials", Vol. I and II, Princeton D. Von Nostrand Co, 1990.

E – **References**

1. https://nptel.ac.in/courses/101104069/21

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	2	3	3	2	16	3
PO ₂	2	1	1	2	2	3	11	2
PO ₃	2	1	1	2	2	3	11	2
PO ₄	2	1	1	3	3	3	13	3
PO ₅	3	0	0	3	3	3	12	2
PO ₆	0	0	0	0	0	3	3	1
PO ₇	0	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	2	2	1
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	1	1	2	4	1
PO ₁₂	0	0	0	0	0	1	1	0
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	1	1	0
TOTAL	12	6	5	14	14	23	-	-

XAS403 - Mapping of CO with PO

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUF	RSE CODE	XAS404		L	Т	P	С					
COUF	RSE NAME	AIR-BREATHING PROPULSION		3	0	0	3					
PRFR	EQUISITES	AERO ENGINEERING		L	Т	Р	Н					
		THERMODYNAMICS										
C:P:A	= 3:0:0			3	0	0	3					
COUR	RSE OBJECTI	VES										
• Understand the working principles of gas turbine and ramjet propulsion systems, the												
design principles of inlets, combustion chambers, nozzles used in them.												
 Learn the operation of compressors and turbines in gas turbine propulsion systems. 												
COUR	RSE OUTCOM		DON		-		VEL					
		~			_							
CO1	Describe the co	Cog	nitiv	'e	Rem	ember						
CO2	<i>Predict</i> the per	Cog	nitiv	ve	Unde	erstand						
CO3	<i>Classify</i> the performance of	Cog	ognitive		Understand Analyze							
CO4		e and efficiency of compressor and turbine	Cog	nitiv	ve	Evaluate						
CO5	<i>Compare</i> the turbo jet engine	operations of ramjet, scramjet engine with	Cog	nitiv	ve	Remember						
CO6		cessity of thrust reverser and thrust vector	Cog	nitiv	ve	Unde	erstand					
UNIT	-	UCTION TO AIRCRAFT PROPULSION					9					
	· · · · · ·	r plants-Piston prop -turbojet engine - turbopro		ine -	turb	ofan e	ngine –					
		rust equation- Factors affecting Thrust and Pov	ver.									
UNIT		DIFFUSERS AND NOZZLES					9					
		nic inlets -Modes of inlet operation - interna										
		ession intakes - stability of intake operation- (
		ed, under and optimum expansion in nozzles	s - fixe	ed g	eom	etry n	ozzle -					
UNIT		zle - nozzle cooling.					0					
• = · = =		STION CHAMBER bustion chambers - combustion mechanism - ::	factors	offe	otin	a	9 bustion					
		and design – Afterburner- Flame tube cooling				-						
injectio	-		, 114		laon	iizatio	ii iuci					
UNIT		ESSOR AND TURBINE					9					
		bine blade shapes- Cascade theory- Radial	equili	briu	m t	heory	-					
		gal compressor - Axial flow turbine - radial										
		cooling techniques - lubrication systems.										
UNIT V JET PROPULSION												

Ramjet engine- scramjet engine-Pulse jet engines- attachment of jet pipe- types of thrust reverser - types of thrust vectoring.

LECTURE: 45	TUTORIAL: 0	PRACTICAL: 0	TOTAL: 45
TEXT BOOKS			

- 1. Hill, P.G. and Peterson, C.R. "Mechanics and Thermodynamics of Propulsion" Addison Wesley Longman INC, 1999.
- 2. Saravanamuttoo, H.I.H, Rogers, G. F. C.,et al. "Gas Turbine Theory", ISBN 978-0130158475, 5th Ed, Prentice Hall, 2001
- **3.** Oates, G.C., "Aero thermodynamics of Aircraft Engine Components", AIAAEducation Series, New York, 1985
- **4.** Mathur, M.L. and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers & Distributors, Delhi, 1999.

REFERENCE BOOKS

1. "Rolls Royce Jet Engine" – Third Edition – 1983.

2. Roy, B., Aircraft Propulsion: "Science of Making Thrust to Fly", 1st Ed., Elsevier India, 2011

		XAS40	4 - Mapp	ping of C	O with I	20	1	
CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	1	1	1	1	1	1	6	1
PO ₃	1	2	2	1	2	1	9	1
PO ₄	1	1	1	1	1	1	6	1
PO ₅	1	3	3	1	0	0	8	1
PO ₆	1	1	1	1	1	1	6	1
PO ₇	1	2	2	2	2	2	11	2
PO ₈	0	0	0	0	0	0	0	0
PO ₉	2	2	2	3	3	2	14	2
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	1	1	1	1	1	5	1
PO ₁₂	1	1	1	1	1	1	6	1
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	3	3	3	3	3	3	3	3
TOTAL	15	20	20	18	18	16	-	-

XAS404 - Mapping of CO with PO

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

COURS	E CODE	XUM405		L	Т	Р	C		
COURS	E NAME	ECONOMICS FOR ENG	INEERS	3	0	0	3		
PRERE	QUISITES	NIL		L	Т	Р	Н		
C:P:A		2.64:0.24:0.12		3	0	0	3		
COURS	E OUTCOM	IES		DOMA	IN	LEV	EL		
CO1	Explain the	e concepts of economics in en	gineering and	Cogniti	ve	Unde	erstand		
	identify ele	ment of cost to prepare cost s	heet	Psycho	motor	Perce	Perception		
CO2	Calculate a	and Explain the Break-even p	oint and	Cogniti	ve	Understand			
	marginal co	osting				&Apply			
				Psycho	motor	Perce	eption		
CO3	Summarize	and Use value engineering p	procedure for	Cogniti	ve	Unde	erstand		
	cost analysi	S		Affectiv	ve	Rece	ive		
CO4	<i>Estimate</i> re	placement problem		Cogniti	ve	Unde	erstand		
CO5	Compute, 1	Explain and make Use of diff	erent	Cogniti	ve	Unde	erstand		
-		depreciation		0		&Ap			
UNIT I	INTRODI	JCTION TO ECONOMICS				8			
		y, Law of supply and dem		of Engi	neering	-			
		y, Economic efficiency, Scop							
		paration of cost sheet and e							
	st, Opportunit		sumation, wai	gillar CO	st, Margi	nai Ke	evenue,		
	<u> </u>	EN ANALYSIS&SOCIAL	COST DENEL		TVCIC		12		
		ofit, Cost & Quantity analys				VP ar	iarysis,		
		P/V Ratio), Application of M					1		
		Analysis: compare different				irect, i	ndirect		
		Ionetizing effects; Result of a			lysis.		0		
		NGINEERING &COST AC				1	0		
		unction, aims, Value enginee				cision			
		sts, Business overhead costs,	Equipment ope	erating co	osts				
		MENT ANALYSIS			0	. 110	7		
		-Types of replacement pro	oblem, determi	nation of	t econom	nic life	e of an		
· · · · · ·	*	an asset with a new asset.							
	DEPRECIA						8		
.		ction, Straight line method	±		0				
		the year's digits method					nod of		
		method of depreciation, serv							
LECTU	RE:45	TUTORIAL:0	PRACTICAL:	0	TOTAI	L :45			
TEXT B	SOOKS				I				
		Ajay Sharma & Satish	Ahuja, "Cost	Accourt	ting", V	/ K	Global		
		Faridabad, Haryana, 2012.	J /		<u> </u>				
		ang, "Cost accounting – Prin	ciples and Prac	tice". Ka	lyani Puł	olisher	s,		
	Calcutta, 201		r	,	<i></i>		- 1		
	201								
3.	PanneerSelva	m, R, "Engineering Economi	cs" Prentice H	all of Ind	lia Ltd N	lew De	lhi		
	2001.		••• , i tenuce II		<i>i</i> u <i>L</i> u, I		····,		
	2001.								

4.	William G.Sullivan, James A.Bontadelli& Elin M.Wicks, "Engineering Economy",									
	Prentice Hall International, New York, 2001.									
REFERENCES										
1.	Luke M Froeb / Brian T Mccann, "Managerial Economics – A problem solving									
	approach" Thomson learning 2007									
2.	Truett&Truett, "Managerial economics- Analysis, problems & cases "Wiley India 8th									
	edition 2004.									
3.	Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2002.									
4.	Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg.									
	Press, Texas, 2002									

XUM405 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	1	2	2	1	2	8	2
PO ₂	1	2	2	1	3	9	2
PO ₃	1	1	2	1	2	7	2
PO ₄	1	1	2	0	1	5	1
PO ₅	1	2	2	1	2	8	2
PO ₆	1	2	2	1	3	9	2
PO ₇	1	1	2	1	2	7	2
PO ₈	1	1	2	0	1	5	1
PO ₉	1	2	2	1	2	8	2
PO ₁₀	1	2	2	1	3	9	2
PO ₁₁	1	1	2	1	2	7	2
PO ₁₂	1	1	2	0	1	5	1
PSO ₁	1	2	2	1	2	8	2
PSO ₂	1	2	2	1	3	9	2
TOTAL	14	22	28	11	29	-	-

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

COURSE CODE	XUM406	L	Т	Р	С
COURSE NAME	DISASTER MANAGEMENT	0	0	0	3
PREREQUISITES	NIL	L	Т	Р	Н

C:P: <i>A</i>	A= 3:0:0		0	0	0						
COU	RSE OUTCOMES	DOMAIN		LEV	EL						
CO1	<i>Understand</i> the concepts of disasters, their significance and types	Cognitive	e	U	nders	tand					
CO2	Understand the relationship between vulnerability, Cognitive Understand disasters, disaster prevention and risk reduction Cognitive Understand										
CO3	Able to understanding of preliminary approaches of Disaster Risk Reduction (DRR) Cognitive Understanding										
CO4	<i>Develop</i> awareness of institutional processes in the country	Cognitive	e	A	pplica	ation					
CO5	Develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity	Cognitive	e	Aj	pplica	ation					
UNII						6					
Impor	rtance & Significance, Types of Disasters, Climate Chang	e, DM cycle									
	IIRISK ASSESSMENT Vulnerability, Types of Risk, Risk identification, Euge Assessment, Risk modeling.	merging Ri	sks,	Risk	Asse	12 ssment,					
UNIT	TIII DISASTER MANAGEMENT					10					
Phase Plan, Monit	s, Cycle of Disaster Management, Institutional Framewo Community Based DM, Community health and sat toring, Disaster Communication, Role of GIS and Re	fety, Early	War	ning a	and I	em, DM Disaster					
Phase Plan, Monit variou	es, Cycle of Disaster Management, Institutional Framewo Community Based DM, Community health and sat toring, Disaster Communication, Role of GIS and Re us disasters.	ety, Early mote Sensin	War	ning a	and I	em, DM Disaster on'ts in					
Phase Plan, Monit variou UNIT	es, Cycle of Disaster Management, Institutional Framewo Community Based DM, Community health and sat toring, Disaster Communication, Role of GIS and Re as disasters.	ety, Early mote Sensin	Warn ng, E	ning a Do's ai	and I nd D	em, DM Disaster on'ts in 10					
Phase Plan, Moniti variou UNIT Hazar Sanita and I progra	 Ass, Cycle of Disaster Management, Institutional Framework Community Based DM, Community health and sate toring, Disaster Communication, Role of GIS and Re as disasters. IV DISASTER RISK MANAGEMENT IN INDIA and Vulnerability profile of India, Components ation, Shelter, Health, Waste Management, Institutional a Preparedness), Disaster Management Act and Policy ammes and legislation 	ety, Early mote Sensin of Disaster arrangements	Warning, E Rel	ning a Do's an ief: V itigatio	and I nd D Vater, on, Re	em, DM Disaster on'ts in 10 Food, esponse plans,					
Phase Plan, Monit variou UNIT Hazar Sanita and I	 Assession of Disaster Management, Institutional Framework Community Based DM, Community health and satter toring, Disaster Communication, Role of GIS and Reasters. TV DISASTER RISK MANAGEMENT IN INDIAted and Vulnerability profile of India, Components ation, Shelter, Health, Waste Management, Institutional a Preparedness), Disaster Management Act and Policy ammes and legislation V DISASTER MANAGEMENT: APPLICATIO 	Tety, Early mote Sensin of Disaster arrangements – Other r	Warn ng, D Rel s (Mi relate	ning a Do's an ief: V itigatio	and I nd D Vater, on, Re	em, DM Disaster on'ts in <u>10</u> Food, esponse					
Phase Plan, Monitivariou UNIT Hazar Sanita and I progra UNIT	 Ass, Cycle of Disaster Management, Institutional Framework Community Based DM, Community health and sate toring, Disaster Communication, Role of GIS and Results disasters. TV DISASTER RISK MANAGEMENT IN INDIA and Vulnerability profile of India, Components ation, Shelter, Health, Waste Management, Institutional a Preparedness), Disaster Management Act and Policy ammes and legislation V DISASTER MANAGEMENT: APPLICATIO STUDIES 	Tety, Early mote Sensin of Disaster arrangements – Other r NS AND CA	Warn ng, I Rel s (Mi relate	ning a Do's an ief: V itigatio	and I nd D Vater, on, Ro licies,	em, DM Disaster on'ts in 10 Food, esponse plans, 7					
Phase Plan, Monit variou UNIT Hazar Sanita and I progra UNIT Lands	 Ass, Cycle of Disaster Management, Institutional Framework Community Based DM, Community health and sate toring, Disaster Communication, Role of GIS and Results disasters. TV DISASTER RISK MANAGEMENT IN INDIA and Vulnerability profile of India, Components ation, Shelter, Health, Waste Management, Institutional a Preparedness), Disaster Management Act and Policy ammes and legislation V DISASTER MANAGEMENT: APPLICATIO STUDIES 	Tety, Early mote Sensin of Disaster arrangements – Other r NS AND CA Assessmen	Warn ng, I Rel s (Mi relate ASE nt c	ning a Do's an ief: V itigation ed pol	and I nd D Vater, on, Ro licies,	em, DM Disaster on'ts in 10 Food, esponse plans, 7 gs and					
Phase Plan, Monit variou UNIT Hazar Sanita and I progra UNIT Lands Infras	 Ass, Cycle of Disaster Management, Institutional Framework Community Based DM, Community health and safe toring, Disaster Communication, Role of GIS and Resisters. TV DISASTER RISK MANAGEMENT IN INDIA and Vulnerability profile of India, Components ation, Shelter, Health, Waste Management, Institutional a Preparedness), Disaster Management Act and Policy ammes and legislation V DISASTER MANAGEMENT: APPLICATIO STUDIES Slide Hazard Zonation, Earthquake Vulnerability 	Tety, Early mote Sensin of Disaster arrangements – Other r NS AND CA Assessment t Fire, Man	Warn ng, I Rel s (Mi relate ASE nt c	ning a Do's an ief: V itigation ed pol	and I nd D Vater, on, Ro licies,	em, DM Disaster on'ts in 10 Food, esponse plans, 7 gs and					
Phase Plan, Monit variou UNIT Hazar Sanita and I progra UNIT Lands Infras Based TEXT	 Assession of Disaster Management, Institutional Framework Community Based DM, Community health and safe toring, Disaster Communication, Role of GIS and Reasters. TV DISASTER RISK MANAGEMENT IN INDIAted and Vulnerability profile of India, Components ation, Shelter, Health, Waste Management, Institutional a Preparedness), Disaster Management Act and Policy ammes and legislation TV DISASTER MANAGEMENT: APPLICATIO STUDIES Bilde Hazard Zonation, Earthquake Vulnerability structure, Drought Assessment, Coastal Flooding, Forest Inputs for Disaster Mitigation and Management, Cast St T BOOKS 	Tety, Early mote Sensin of Disaster arrangements – Other r NS AND CA Assessmen t Fire, Man udy	Warn ag, L Rel s (Mi relate ASE at Mac	ning a Do's an ief: V itigation ed pol of Bu le disa	and I nd D Vater, on, Ro licies, iilding	em, DM Disaster on'ts in 10 Food, esponse plans, 7 gs and Space					
Phase Plan, Monit variou UNIT Hazar Sanita and I progra UNIT Lands Infras Based	 Ass, Cycle of Disaster Management, Institutional Framework Community Based DM, Community health and sate toring, Disaster Communication, Role of GIS and Resisters. IV DISASTER RISK MANAGEMENT IN INDIA and Vulnerability profile of India, Components ation, Shelter, Health, Waste Management, Institutional a Preparedness), Disaster Management Act and Policy ammes and legislation V DISASTER MANAGEMENT: APPLICATIO STUDIES Slide Hazard Zonation, Earthquake Vulnerability structure, Drought Assessment, Coastal Flooding, Fores 	Tety, Early mote Sensin of Disaster arrangements – Other r NS AND CA Assessmen t Fire, Man udy	Warn ag, L Rel s (Mi relate ASE at Mac	ning a Do's an ief: V itigation ed pol of Bu le disa	and I nd D Vater, on, Ro licies, iilding	em, DM Disaster on'ts in 10 Food, esponse plans, 7 gs and Space					
Phase Plan, Monit variou UNIT Hazar Sanita and I progra UNIT Lands Infras Based TEXT	 Assession of Disaster Management, Institutional Framework Community Based DM, Community health and safe toring, Disaster Communication, Role of GIS and Reast disasters. TV DISASTER RISK MANAGEMENT IN INDIAted and Vulnerability profile of India, Components attion, Shelter, Health, Waste Management, Institutional a Preparedness), Disaster Management Act and Policy ammes and legislation TV DISASTER MANAGEMENT: APPLICATIO STUDIES Slide Hazard Zonation, Earthquake Vulnerability structure, Drought Assessment, Coastal Flooding, Forest Inputs for Disaster Management, Laxmi Publication 	Tety, Early mote Sensin of Disaster arrangements – Other r NS AND CA Assessment t Fire, Man udy ons, 2010.	Warn ag, I Rel s (Mr relate ASE at c Mac ISB1	ning a Do's an ief: V itigation ad pol of Bu le disa	and I nd D Vater, on, Ro licies, iilding sters, 9380	em, DM Disaster on'ts in 10 Food, esponse plans, 7 gs and Space 9386427					
Phase Plan, Monit variou UNIT Hazar Sanita and I progra UNIT Lands Infras Based TEXT 1.	 S, Cycle of Disaster Management, Institutional Framewor Community Based DM, Community health and safe toring, Disaster Communication, Role of GIS and Re as disasters. TV DISASTER RISK MANAGEMENT IN INDIA rd and Vulnerability profile of India, Components ation, Shelter, Health, Waste Management, Institutional a Preparedness), Disaster Management Act and Policy ammes and legislation TV DISASTER MANAGEMENT: APPLICATIO STUDIES Slide Hazard Zonation, Earthquake Vulnerability structure, Drought Assessment, Coastal Flooding, Fores Inputs for Disaster Mitigation and Management, Cast St TBOOKS Singhal J.P. Disaster Management, Laxmi Publication ISBN-13: 978-9380386423 Tushar Bhattacharya, Disaster Science and Management 	Tety, Early mote Sensin of Disaster arrangements – Other r NS AND CA Assessment t Fire, Man udy ons, 2010.	Warn ag, I Rel s (Mi relate ASE at c Mac ISBN	ning a Do's an ief: V itigatic ed pol of Bu le disa	and I nd D Vater, on, Ro licies, hilding asters, 9380 ducat	em, DM Disaster on'ts in 10 Food, esponse plans, 7 gs and Space 9386427 ion Pvt.					
Phase Plan, Monit variou UNIT Hazar Sanita and I progra UNIT Lands Infras Based TEXT 1. 2.	 S, Cycle of Disaster Management, Institutional Framewo Community Based DM, Community health and saft toring, Disaster Communication, Role of GIS and Re as disasters. TV DISASTER RISK MANAGEMENT IN INDIA rd and Vulnerability profile of India, Components ation, Shelter, Health, Waste Management, Institutional a Preparedness), Disaster Management Act and Policy ammes and legislation TV DISASTER MANAGEMENT: APPLICATIO STUDIES Bilde Hazard Zonation, Earthquake Vulnerability structure, Drought Assessment, Coastal Flooding, Foress Inputs for Disaster Mitigation and Management, Cast St TBOOKS Singhal J.P. Disaster Management, Laxmi Publication ISBN-13: 978-9380386423 Tushar Bhattacharya, Disaster Science and Management Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259 Gupta Anil K, Sreeja S. Nair. Environmental Knowled 	Tety, Early mote Sensin of Disaster arrangements – Other r NS AND CA Assessment t Fire, Man udy ons, 2010. t, McGraw H 007361) lge for Disa	Warn ag, I Rel s (Mi relate ASE ASE ISBN fill Ir ster	ning a Do's an ief: V itigatic ed pol of Bu le disa N-10: ndia Ed Risk M	and I nd D Vater, on, Ro licies, iilding asters, 9380 ducat	em, DM Disaster on'ts in 10 Food, esponse plans, 7 gs and Space 0386427 ion Pvt. gement,					

	New Delhi, 2	2010								
REF	ERENCE BO	OKS								
1.		Gautam and K Leelak sta International Pub Ho	-	anagement Programmes and						
2.	Arun Kumar,	Arun Kumar, "Global Disaster Management", SBS Publishers, 2008								
3.	Pardeep Sahni, Alka Dhameja and Uma medury, "Disaster mitigation: Experiences and reflections", PHI, 2000.									
4.	Govt. of Indi	a: Disaster Managemen	t Act, Government of Indi	a, New Delhi, 2005						
5.	Government	of India, National Disas	ster Management Policy, 20	009						
E –R	REFERENCES	8								
1.										
2.		-	http://www.emdat.be , http v.ini http://www.imd.gov.i							
LEC	TURE: 45	TUTORIAL: 0	PRACTICAL: 0	TOTAL :45						

CO/PO											Η			
0/10	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od) 10	1) 12	PSO1	PSO2
	Ρ	ł	d	Р	P	Р	d	Р	d	ЬО	Od	ЬО	Ы	P
CO 1			2	1	1		1		1		1	1		
CO 2	1	1	3	2	3		1	1						
CO 3					2		1		1					
CO 4	1	1	2	2	2		1				1	1		
CO 5	2	3		2	3		1	2	1			2		
Total	4	5	7	7	11		5	3	3		2	4		
Scaled Value	1	1	2	2	3		1	1	1		1	1		

XUM406 - Mapping of CO with PO

 $1 \text{-} 6 \rightarrow 1, 7 \text{-} 12 \rightarrow 2, 13 \text{-} 18 \rightarrow 3$

COURSE CODE	XAS407	L	Т	Р	С		
COURSE NAME	AERODYNAMICS LAB	0	0	1	1		
PREREQUISITES	FLUID MECHANICS LAB	L	Т	Р	Н		
C:P:A= 0:1:0		0	0	1	2		
COURSE OBJECTIVES							
• To study about the pressure difference, Forces acting over various models placed inside the							

wine	d tunnel.						
COUR	SE OUTCOMES	DOMAIN	LEVEL				
CO1	<i>Illustrate</i> the flow patterns over the model Psychomotor Une						
CO2	<i>Study</i> the components and working of subsonic wind tunnel	Psychomotor	Understand				
CO3	<i>Illustrate</i> the rotor speed vs velocity	Psychomotor	Evaluate				
CO4	<i>Determine</i> the pressure distribution over various models placed in wind tunnel	Psychomotor	Evaluate				
CO5	<i>Study</i> of Schlieren method	Psychomotor	Understand				
CO6	<i>Study</i> of Shadowgraph method	Psychomotor	Understand				
LIST OF	EXPERIMENTS						
Ex. No	Experiments						
1.	Flow visualization in water flow channel.						
2.	Flow visualization in smoke tunnel						
3.	Study of Low speed subsonic wind tunnel						
4. Plot of rotor speed Vs velocity in a subsonic wind tunnel.							
5.	5. Find the Pressure distribution over circular cylinder and plot it.						
6.	6. Enumerate and plot Pressure distribution over Symmetrical airfoil and CO4 estimation of C_L and C_D .						
7. Enumerate and plot Pressure distribution over Un Symmetrical airfoil and estimation of C_L and C_D .							
8. Enumerate and plot Pressure distribution over Cambered airfoil and estimation of C_L and C_D .							
9.	Study of Schlieren system to visualize shock.						
10.	Study of Shadow graph system to visualize shock.		CO5				
LECURE:0 TUTORIAL: 0 PRACTICAL: 30 TOTAL:30							
TEXT	BOOKS	· ·					
1.	Laboratory Manual, "Aerodynamics Lab"., Dept.	of Aerospace Engi	neering, PMIST.				

XAS407 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	1	1	1	1	1	1	6	2
PO ₃	3	3	3	3	1	3	16	3
PO ₄	3	3	3	3	3	2	17	3
PO ₅	0	0	0	0	0	0	0	0

PO ₆	3	3	3	3	3	3	18	3
PO ₇	1	1	1	1	1	0	5	1
PO ₈	0	0	0	0	0	0	0	0
PO ₉	3	3	3	3	3	3	18	3
PO ₁₀	1	1	1	2	0	2	0	0
PO ₁₁	0	0	0	0	0	0	0	0
PO ₁₂	2	2	2	2	2	2	12	3
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	3	3	3	3	3	3	18	3
TOTAL	23	23	23	24	20	22	-	-

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	XAS408	L	Τ	Р	С
COURSE NAME	THERMAL AND PROPULSION LAB	0	0	1	1
PREREQUISITES	FLUID MECHANICS LAB	L	Т	Р	Н
C:P:A= 0:1:0		0	0	1	2

COURSE OBJECTIVES

• Understand the working principle of SI and CI engine

• Analyze the thermal efficiency of diesel engine with different load conditions

- Understand the concept of heat transfer in a flat plate
- Study the functions of Aircraft Piston and Jet engines components

COURSE C	DUTCOMES	DOMAIN	LEVEL	
CO1	<i>Sketch</i> the valve and Port timing diagram of SI engine & CI engine	Psychomotor	Mechanism	
CO2	<i>Detects</i> the flash point and fire point of various fuels	Psychomotor	Perception	

	Measures the IHP,BHP and Brake thermal	Psychomotor	Guided	
CO3	efficiency of 4-stroke diesel engine		Response	
	Describes the working principle of piston and jet	Psychomotor	Democratica	
CO4	engine components		Perception	
	Detects the different node temperatures of			
CO5	Aluminum flat plate using free and forced	Psychomotor	Perception	
	convection apparatus			
CO6	Measures the pressure and velocity of the jet in	Psychomotor	Guided	
	different axis		Response	
	EXPERIMENTS			
Ex. No	Experiments		COs	
1.	Valve Timing Diagram for single cylinder four stroke D	v	CO1	
2.	Port Timing Diagram for single cylinder two stroke Petr	· · · · · · · · · · · · · · · · · · ·	CO1	
3.	Determination of Flash point and Fire point (Open cup)		CO2	
4.	Determination of Flash point and Fire point (Closed cup)	CO2	
5.	Retardation test to find frictional power of a single cylin	nder Diesel engine.		
6.	Study of an aircraft piston engine		CO4	
7.	Study of an aircraft jet engine		CO4	
8.	Study of forced convection and free convection heat tra	nsfer over a flat	CO5	
	plate.			
9.	Study of free jet		CO6	
10.	Study of wall jet		CO6	
LECUR		TOT	AL:30	
TEXT B				
1.		nd Propulsion".,	Dept. of	
	Aerospace/Mechanical Engineering, PMIST.			
	XAS408 - Mapping of CO with P	0		

XAS408 - Mapping of CO with PO											
CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3			
PO ₁	3	3	3	3	3	3	18	3			
PO ₂	1	1	1	1	1	1	6	2			
PO ₃	1	1	1	1	1	1	6	2			
PO ₄	1	1	0	0	1	1	4	1			
PO ₅	0	0	0	0	0	0	0	0			
PO ₆	3	3	3	3	3	3	18	3			
PO ₇	0	0	0	0	0	0	0	0			

PO ₈	0	0	0	0	0	0	0	0
PO ₉	2	2	2	2	2	2	12	3
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0	0
PO ₁₂	2	2	2	2	2	2	12	3
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	3	3	3	3	3	3	18	3
TOTAL	16	16	15	15	16	16	-	-

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUR	RSE CODE	XAS409		L		Т	P	С			
COUR	RSE NAME	CAD LAB		0		0	1	1			
PRER	EQUISITES	NIL		L		Т	P	Η			
C:P:A	= 0:1:0			0		0	1	2			
COURSE OBJECTIVES											
	• To make students to obtain skills in design software and designing various components of										
	aircraft and spacecraft.										
COUR	COURSE OUTCOMESDOMAINLEVEL										
CO1	Describe sketc	her tools	Psychomotor			Pere	ception	n			
CO2	Construct 3D	models using part design	Psychomotor			Mec	hanisı	n			
CO3	Assemble the 3	3D parts	Psychomotor		G	uided	Resp	onse			
CO4	Display 3 view	vs using drafting	Psychomotor			Mec	hanisı	n			
CO5	Sketch parts u	singwireframe and surface design	Psychomotor		G	uided	Resp	onse			
CO6	Construct 3D	struct 3D models usingsurface design. Psychomotor Mechanism						n			
LIST O	F EXPERIME	NTS									
Ex. No	o Experiment	s				(COs				

1.	Practice different sketcher tools	CO1						
2.	2. Draw 2D sketch for the given geometry							
3.	Draw 3D components for the given sketches							
4.	Assemble the parts of piston engine	CO3						
5.	Display 3 views using drafting	CO4						
6.	Draw airframe components using wireframe design	CO5						
7.	Draw fuselage surface design	CO6						
LECUR	E:0 TUTORIAL: 0 PRACTICAL: 30 TOTAL: 30							
TEXT I	BOOKS							

1. Laboratory Manual, "CAD Lab"., Dept. of Aerospace Engineering, PMIST. XAS409 - Mapping of CO with PO

XAS409 - Mapping of CO with PO												
CO Vs PO	C01	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3				
PO ₁	1	1	1	1	1	1	6	1				
PO ₂	1	1	1	1	1	1	6	1				
PO ₃	3	3	3	3	3	3	18	3				
PO ₄	0	0	0	0	0	0	0	0				
PO ₅	3	3	3	3	3	3	18	3				
PO ₆	0	0	0	0	0	0	0	0				
PO ₇	0	0	0	0	0	0	0	0				
PO ₈	0	0	0	0	0	0	0	0				
PO ₉	0	0	0	0	0	0	0	0				
PO ₁₀	0	0	0	0	0	0	0	0				
PO ₁₁	1	1	1	1	1	1	6	1				
PO ₁₂	1	1	1	1	1	1	6	1				
PSO ₁	1	1	1	1	1	1	6	1				
PSO ₂	0	0	0	0	0	0	0	0				

	DTAL 1, 6-10→2, 11	11	11	11	11	11	11		-		-
	Relation, $1 - \frac{10}{2}$, $11 - \frac{10}{2}$		lation, 2	– Medi	um Relati	on, 3 –	High Relation	n			
	,		,			,	0				
COUL	RSE CODE	XAS5	01					L	Т	Р	C
	RSE NAME		DYNA	MICSI	T			L 3	0	0	
	EQUISITES	_	DYNA					L	T	P	H
	= 3:0:0							3	0	0	3
COU	RSE OBJJEC	TIVES									1
•	To introduce	the con	cepts of	compre	essibility,	to mal	ke the student	t unde	erstar	nd the	theor
							Supersonic flo				
•					-		ersonic flows				
COUF	RSE OUTCO						DOMAIN		LF	EVEL	
									Ren	nembe	er
CO1	Recall the		-		•		Cognitive				
	<i>Explain</i> com	pressibl	e flow fo	or variou	us conditi	ons	U	Analysis			
CO2	Con angliza ti		nte of N	ormal d	hool		Comitivo	Understand			
02	<i>Generalize</i> t	lie colice	pis of N	ormar s	HOCK		Cognitive	Analysis			
CO3	Analyze abo		ue shock	and flo	ow past tl	rough	Cognitive	Understand			
005	various shap						coginare	Analysis			
CO4	Analyze diff					steady	Cognitive	Understand			
	compressible Interpret v				ero foil	and		Analysis Remember			
CO5	<i>Explain</i> its cl		0	OI A		s and	Cognitive			erstan	
	-				ala and T					nembe	
CO6	<i>Infer</i> the var study of flow	• -				iscuss	Cognitive			erstan	
TINITT	5				RESSIL						0
UNIT Specifi	c Heat ratios-							tions	FI	ow th	9
-	ging, divergin	-				-	· · · · ·				_
Mach a		5 pussue	,00 10		ee anaer	, and a	, ouch pressu				00 uii
UNIT	II NORM	AL, OB	LIQUE	SHOC	KS AND	EXPA	NSION WAY	/ES			9
Prandt	l equation a	nd Ran	kine-H	ıgonoit	relation	- No	rmal shock-	Obliq	ue s	shocks	s an
corresp	onding equation	ons –sh	ock pola	ar – Flo	w past w	edges a	and concave of	corner	s −R	ayleig	gh an
	Flow – Flow p										
UNIT	III DIFFE COMP			-	ONS O	F MO'	FION FOR	AS	STEA	ADY	9
Small	perturbation	potentia	l theory	– solu	utions fo	r subso	onic flows-	Prand	tl-Gla	auert	affin
	rmation relation	-									
UNIT	IV AIRFO	IT INITI		DEED E							9

wings -Effects of thickness,camber and aspect ratio of wings - Transonic area rule - Super Critical Aerofoils - Tip effects.

9

UNIT V HIGH SPEED WIND TUNNELS

Blow down, In-draft and induction tunnel layouts and their design features - Transonic, supersonic and hyper sonic tunnels and their peculiarities – Helium and gun tunnels - Shock tubes - Optical methods of flow visualization.

LECTURE:45	TUTORIAL:0	PRACTICAL:0	TOTAL:45
TEXT BOOKS			
1 I1 DA 1	WALL C 111 T		I D 11 1000

1. John.D.Anderson, "Modern Compressible Flows". Tata McGraw Hill, New Delhi, 1999.

2. Rathakrishnan, E., "Gas Dynamics", Prentice Hall of India, 2003.

REFERENCE BOOKS

1. McCornick.W., "Aerodynamics, Aeronautics and Flight Mechanics", John Wiley, 1979

2. Zcrow and J.D.Anderson, "Elements of Gas dynamics" Tata McGraw Hill, New Delhi, 1999.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	15	3
PO ₂	2	3	3	3	3	3	16	3
PO ₃	1	2	2	3	3	3	11	2
PO ₄	3	3	3	3	3	3	15	3
PO ₅	0	2	2	2	3	3	9	1
PO ₆	0	3	3	3	2	2	13	2
PO ₇	1	2	2	2	2	2	9	1
PO ₈	0	2	2	0	0	0	4	1
PO ₉	0	3	3	0	0	0	6	1
PO ₁₀	1	1	1	1	1	1	6	1
PO ₁₁	1	1	1	1	1	1	6	1
PO ₁₂	3	3	3	3	2	2	16	3
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	2	2	2	2	1	1	10	2
TOTAL	17	30	30	26	24	24	-	-

XAS501 - Mapping of CO with PO

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XAS502	L	Τ	Р	С
COURSE NAME	AIRCRAFT STRUCTURES – II	3	1	0	4
PREREQUISITES	STRENGTH OF MATERIALS, AIRCRAFT STRUCTURES	L	Т	Р	Η
C:P:A= 3:1:0		3	1	0	4

- **COURSE OBJECTIVES**
 - To understand the behavior of various aircraft structural components under different types of loads.
 - To study the concepts of shear flow.
 - To understand buckling stress of thin-walled sections.

COURS	E OUTCOMES	DOMAIN	LEVEL							
CO1	<i>Express</i> the flexure formula and <i>apply</i> it to symmetrical and unsymmetrical sections of beams.	Cognitive	Understand, Apply							
CO2	<i>Describe</i> stresses in beams and <i>compute</i> shear flow in open sections.	Cognitive	Remember, Understand, Apply							
CO3	<i>Discuss</i> shear flow in closed sections and <i>distinguish</i> single cell and multi-cell structures.	Cognitive	Understand, Analyze							
CO4	<i>Explain</i> bucking of plates; <i>calculate</i> crippling stresses by Needham's and Gerard's methods.	Cognitive	Understand, Apply							
CO5	<i>Explain</i> and <i>analyze</i> the stresses in wing and fuselage structures of an aircraft.	Cognitive	Apply, Analyze							
CO6	<i>Choose</i> the specimen and <i>measure</i> the deflection; <i>explain</i> structural repair works.	Cognitive	Understand, Evaluate							
UNIT I	BENDING OF BEAMS		9+3							
Introduc	tion to semi-monocoque structures - Stresses in beams	of symmetrical	and unsymmetrical							
sections	-Box beams – General formula for bending K-method –	stresses princip	al axes method.							
UNIT II	JNIT II SHEAR FLOW IN OPEN SECTIONS									

Shear stresses in beams – Shear flow in stiffened panels - Shear flow in thin-walled open tubes – Shear centre – Shear flow in open sections with stiffeners.

UNIT III SHEAR FLOW IN CLOSED SECTIONS

10+3

Shear flow in closed sections with stiffeners– Angle of twist - Shear flow in two flange and three flange box beams – Shear centre - Shear flow in thin-walled closed tubes - Bredt-Batho theory –

Torsic	onal shear f	low in	multi cell tubes - Flexura	ll shear flow in multi ce	ll stiffened structure	es.		
UNIT	' IV	BUC	KLING OF PLATES			8+3		
Recta	ngular shee	ts und	er compression - Local b	ouckling stress of thin-	walled sections - Cr	ippling		
stresse	es by Needl	nam's	and Gerard's methods - T	Thin walled column stre	ength-Sheet stiffener	panels		
- Effe	ctive width	, inter	rivet and sheet wrinkling	failures.				
UNIT	JNIT V STRESS ANALYSIS IN WING AND FUSELAGE							
Proce	dure–Shear	and b	ending moment distribut	tion for semi cantileven	r and other types of	wings		
and fu	uselage, thi	in web	bed beam with parallel	and non-parallel flan	<mark>ges</mark> – Shear resista	nt web		
beams	s - Tension	field w	veb beams (Wagner's).					
LECI	FURE:45		TUTORIAL:15	PRACTICAL:0	TOTAL:60			
TEXT	F BOOKS				·			
1.	E.F. Bruh	n, "An	alysis and Design of Flig	ht Vehicle Structures",	Tristate Offset Co.,	1980.		
2.	Megson T	ſ.M.G,	"Aircraft Structures for I	Engineering Students",	Edward Arnold, 199	95.		
REFF	ERENCE E	BOOK	S					
1.	Peery, D.	J. and A	Azar, J.J., "Aircraft Struc	tures", 2nd Edition, Mc	Graw-Hill, New Yo	rk,		
	1993.							
2.	Stephen F	P. Tinn	oshenko&S.woinowsky	Krieger, Theory of Plat	tes and Shells, 2nd	Edition,		
	McGraw-	Hill, S	ingapore, 1990.					
3.	Rivello, F	R.M., T	heory and Analysis of Fl	ight structures, McGrav	v-Hill, N.Y., 1993.			

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	3	3	3	3	3	3	18	3
PO ₃	0	2	0	0	2	2	6	1
PO ₄	1	1	1	1	1	1	6	1
PO ₅	0	0	0	0	0	0	0	0
PO ₆	1	1	1	1	1	1	6	1

XAS502- Mapping of CO with PO

PO ₇	2	2	2	2	2	2	12	2
PO ₈	0	0	0	0	0	0	0	0
PO ₉	2	2	2	2	2	2	12	2
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0	0
PO ₁₂	1	1	1	1	1	1	6	1
PSO ₁	1	1	1	1	1	1	6	1
PSO ₂	0	0	0	0	0	0	0	0
Total	14	16	14	14	16	16	90	15

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURS	SE CODE	XAS503		L	Т	Р	С			
COURS	SE NAME	AEROSPACE PROPULSION		3	0	0	3			
		AERO ENGINEERING		L	Т	Р	Η			
PRERE	QUISITES	THERMODYNAMICS								
		AIRCRAFT PROPULSION								
C:P:A=	3:0:0	-		3 0 0 3						
COURS	SE OBJJECTI	VES								
• 7	To understand t	he principles of operation and design	of rocket and sp	acecr	aft pi	opuls	ion.			
• 7	Fo study about	the Non-Air breathing Engines.								
• 1	Γo understand t	he concepts of cryogenic propulsion								
COURS	SE OUTCOMI	ES	DOMAIN		LI	EVEL				
CO1	<i>Illustrate</i> soli space	d, liquid and hybrid technology in	Cognitive		Ren	nembe	er			
CO2	-	performance of propellant tank, n and cooling systems	Cognitive		Aı	nalyze				
CO3	<i>Explain</i> the types in space	operation of nuclear rocket and its	Cognitive	Understand						
CO4	Classify vario	us electric propulsion techniques in	Cognitive		Und	lerstan	d			

	space		
	<i>Discuss</i> the importance of cryogenic systems and		
CO5	its applications.	Cognitive	Understand
	<i>Explain</i> the need of rocket and spacecraft		
CO6		Cognitive	Understand
	propulsion		
UNIT I	I INTRODUCTION		9
•	and scramjet: basic principle - geometry - diffuser -		÷
	- testing difficulties - thrust to weight ratio - comb	oustion mechanis	m - propellant usage -
	iges and disadvantages.		
UNIT I			9
	s propulsive devices used for aerospace applications		
	ation - Grain composition- Design of Grains- Solid	· · · · · · · · · · · · · · · · · · ·	U
	stem - pump feed system - propellant tanks - h	ybrid rockets -	performance analysis
	stion instability –Cryogenic propulsion.		
UNIT I	III NUCLEAR PROPULSION		9
Nuclear	r power in space - Nuclear pulse propulsion - Nuclea	ar thermal rocket	- direct nuclear rocket
	ar electric rocket - solid core - liquid core - gas		
- nucle	1 0		0
- nuclea	ons.		
			9
limitation UNIT I	IV ELECTRIC PROPULSION	ermal electric through	-
limitatio UNIT I Ideal fli	IV ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the		usters - optimum flight
limitatio UNIT I Ideal fli	IVELECTRIC PROPULSIONight performance - electrothermal thrusters - non the nance - mission applications - electric space power		usters - optimum flight
limitation UNIT I Ideal flip perform systems UNIT	IVELECTRIC PROPULSIONight performance - electrothermal thrusters - non the nance - mission applications - electric space pov s.S.VAPPLICATIONS	wer supplies an	usters - optimum flight d power conditioning 9
limitation UNIT I Ideal flip perform systems UNIT	IVELECTRIC PROPULSIONight performance - electrothermal thrusters - non the nance - mission applications - electric space pov s.S.VAPPLICATIONS	wer supplies an	usters - optimum flight d power conditioning 9
limitation UNIT I Ideal flip perform systems UNIT V Rocket	ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space powers.	wer supplies an missiles - spaces	usters - optimum flight d power conditioning 9
limitation UNIT I Ideal flip perform systems UNIT Rocket satellite	IVELECTRIC PROPULSIONight performance - electrothermal thrusters - non the nance - mission applications - electric space poves.VAPPLICATIONSpropulsion - rocket boosters - military operations - providence	wer supplies an missiles - spaces	usters - optimum flight d power conditioning 9
limitation UNIT I Ideal flip perform systems UNIT V Rocket satellite LECTU	IV ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space poves. V APPLICATIONS propulsion - rocket boosters - military operations - re e propulsion - application in research - future concept	wer supplies an missiles - spaces	usters - optimum flight d power conditioning 9 hips - reentry vehicle -
limitation UNIT I Ideal flip perform systems UNIT Rocket satellite LECTU	IV ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space poves. V APPLICATIONS propulsion - rocket boosters - military operations - recept e propulsion - application in research - future concept URE:45 TUTORIAL:0 PRACTI	wer supplies an missiles - spaces ts. CAL:0	usters - optimum flight d power conditioning 9 hips - reentry vehicle - TOTAL:45
limitation UNIT Ideal file perform systems UNIT Rocket satellite LECTU TEXT 1.	IV ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space poves. V APPLICATIONS propulsion - rocket boosters - military operations - repropulsion - application in research - future concept URE:45 TUTORIAL:0 PRACTI BOOKS	wer supplies an missiles - spaces ts. CAL:0	usters - optimum flight d power conditioning 9 hips - reentry vehicle - TOTAL:45
limitation UNIT Ideal flip perform systems UNIT Rocket satellite LECTU TEXT 1. G py	V ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space poves. V APPLICATIONS propulsion - rocket boosters - military operations - record e propulsion - application in research - future concept URE:45 TUTORIAL:0 BOOKS eorge P.Sutton, Oscar Biblarz, "Rocket Propulsion F	wer supplies an missiles - spaces ts. CAL:0 Elements", seven	usters - optimum flight d power conditioning 9 hips - reentry vehicle - TOTAL:45
m	IV ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space poves. V APPLICATIONS propulsion - rocket boosters - military operations - re e propulsion - application in research - future concept URE:45 TUTORIAL:0 PRACTI BOOKS eorge P.Sutton, Oscar Biblarz, "Rocket Propulsion H vt.Ltd , 2014.	wer supplies an missiles - spaces is. CAL:0 Elements", seven 2nd Ed., 2014.	usters - optimum flight d power conditioning 9 hips - reentry vehicle - TOTAL:45
$\frac{ \text{imitation}}{ \text{Ideal flipperform}}$ $\frac{ \text{Ideal flipperform}}{ \text{systems}}$ $\frac{ \text{UNIT V} }{ \text{Rocket} }$ $\frac{ \text{Rocket} }{ \text{Ideal flipperform}}$ $\frac{ \text{Ideal flipperform}}{ \text{Ideal flipperform}}$	IV ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space poves. V APPLICATIONS propulsion - rocket boosters - military operations - record e propulsion - application in research - future concept URE:45 TUTORIAL:0 BOOKS eorge P.Sutton, Oscar Biblarz, "Rocket Propulsion F vt.Ltd , 2014. arokhi, Saeed, Aircraft Propulsion, Wiley-Blackwell	wer supplies an missiles - spaces is. CAL:0 Elements", seven 2nd Ed., 2014. d , 2013.	usters - optimum flight d power conditioning 9 hips - reentry vehicle - TOTAL:45 th edition, Wiley India
m	V ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space poves. V APPLICATIONS propulsion - rocket boosters - military operations - record propulsion - rocket boosters - military operations - record URE:45 TUTORIAL:0 PRACTI BOOKS eorge P.Sutton, Oscar Biblarz, "Rocket Propulsion For the state of th	wer supplies an missiles - spaces ts. CAL:0 Elements", seven 2nd Ed., 2014. d , 2013. d Rocket Propuls	usters - optimum flight d power conditioning 9 hips - reentry vehicle - TOTAL:45 th edition, Wiley India
limitatioUNITIdeal flipperformsystemsUNITRocketsatelliteLECTUTEXT1.G $2.$ Fa3.T4.O5.SS	IV ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space poves. V APPLICATIONS propulsion - rocket boosters - military operations - repropulsion - application in research - future concept URE:45 TUTORIAL:0 PRACTI BOOKS eorge P.Sutton, Oscar Biblarz, "Rocket Propulsion Feature, 2014. arokhi, Saeed, Aircraft Propulsion, Wiley-Blackwell .W.Lee, "Aerospace Propulsion", Wiley India pvt.Ltd ates, G. C., Aerothermodynamics of Gas Turbine and	wer supplies an missiles - spaces ts. CAL:0 Elements", seven 2nd Ed., 2014. d , 2013. d Rocket Propuls	usters - optimum flight d power conditioning 9 hips - reentry vehicle - TOTAL:45 th edition, Wiley India
limitation UNIT Ideal file perform systems UNIT Rocket satellite LECTU TEXT 1. G 9V 2. Fa 3. T 4. O 5. SS REFEH	V ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space power s. V APPLICATIONS propulsion - rocket boosters - military operations - ne e propulsion - application in research - future concept URE:45 TUTORIAL:0 PRACTI BOOKS eorge P.Sutton, Oscar Biblarz, "Rocket Propulsion House, 2014. arokhi, Saeed, Aircraft Propulsion, Wiley-Blackwell .W.Lee, "Aerospace Propulsion", Wiley India pvt.Ltd ates, G. C., Aerothermodynamics of Gas Turbine and S Thipse Cryogenics, Narosa Publishing House, 2013	wer supplies an missiles - spaces ts. CAL:0 Elements", seven 2nd Ed., 2014. d , 2013. d Rocket Propuls 3.	usters - optimum flight d power conditioning 9 hips - reentry vehicle - TOTAL:45 th edition, Wiley India ion, AIAA, 1988
m	V ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space poveling N APPLICATIONS propulsion - rocket boosters - military operations - ne propulsion - rocket boosters - military operations - ne propulsion - application in research - future concept URE:45 TUTORIAL:0 PRACTI BOOKS eorge P.Sutton, Oscar Biblarz, "Rocket Propulsion F vt.Ltd , 2014. arokhi, Saeed, Aircraft Propulsion, Wiley-Blackwell .W.Lee, "Aerospace Propulsion", Wiley India pvt.Ltd ates, G. C., Aerothermodynamics of Gas Turbine and S Thipse Cryogenics, Narosa Publishing House, 2013 RENCE BOOKS	wer supplies an missiles - spaces is. CAL:0 Elements", seven 2nd Ed., 2014. d , 2013. d Rocket Propuls 3.	usters - optimum flight d power conditioning 9 hips - reentry vehicle - TOTAL:45 th edition, Wiley India ion, AIAA, 1988
limitationUNITRocketsystemsUNITRocketsatelliteLECTUTEXT1.G2.Fa3.T.GREFEN1.GREFEN1.CREFEN1.CREFEN1.CR	IV ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space poves. V APPLICATIONS propulsion - rocket boosters - military operations - re e propulsion - application in research - future concept URE:45 TUTORIAL:0 PRACTI BOOKS eorge P.Sutton, Oscar Biblarz, "Rocket Propulsion For the states, G. C., Aerothermodynamics of Gas Turbine and S Thipse Cryogenics, Narosa Publishing House, 2013 RENCE BOOKS .D.Brown, "spacecraft propulsion", AIAA Education	wer supplies an missiles - spaces is. CAL:0 Elements", seven 2nd Ed., 2014. d , 2013. d Rocket Propuls 3. n series, 81ashing Hill book compar	usters - optimum flight d power conditioning 9 hips - reentry vehicle - TOTAL:45 th edition, Wiley India ion, AIAA, 1988 ton, DC,1996 hy, New York, 1968
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space pows. V APPLICATIONS propulsion - rocket boosters - military operations - ne propulsion - application in research - future concept URE:45 TUTORIAL:0 PRACTI BOOKS eorge P.Sutton, Oscar Biblarz, "Rocket Propulsion For the transmitter of the transmitter	wer supplies an missiles - spaces is. CAL:0 Elements", seven 2nd Ed., 2014. d , 2013. d Rocket Propuls 3. n series, 81ashing Hill book compar	usters - optimum flight d power conditioning 9 hips - reentry vehicle - TOTAL:45 th edition, Wiley India ion, AIAA, 1988 ton, DC,1996 hy, New York, 1968
limitatioUNITIdeal flipperformsystemsUNITRocketsatelliteLECTUTEXT1.G2.Fa3.T.4.O5.SSREFEH1.C2.R3.Ba3.Ba5.SS	IV ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space power N APPLICATIONS propulsion - rocket boosters - military operations - ne e propulsion - application in research - future concept URE:45 TUTORIAL:0 PRACTI BOOKS eorge P.Sutton, Oscar Biblarz, "Rocket Propulsion F vt.Ltd , 2014. arokhi, Saeed, Aircraft Propulsion, Wiley-Blackwell .W.Lee, "Aerospace Propulsion", Wiley India pvt.Ltd ates, G. C., Aerothermodynamics of Gas Turbine and S Thipse Cryogenics, Narosa Publishing House, 2013 RENCE BOOKS .D.Brown, "spacecraft propulsion", AIAA Education .G.Jahn, "Physics of electric propulsion", McGraw-F arrere, M., Jaumotte, A., de Veubeke, B. F., Ve	wer supplies an missiles - spaces is. CAL:0 Elements", seven 2nd Ed., 2014. d , 2013. d Rocket Propuls 3. series, 81ashing Hill book companendenkerchove, J	usters - optimum flight d power conditioning 9 hips - reentry vehicle - TOTAL:45 th edition, Wiley India ion, AIAA, 1988 ton, DC,1996 ny, New York, 1968 J., Rocket Propulsion,
limitationUNIT IIdeal flipperformsystemsUNIT IRocketsatelliteTEXT1.G2.Fa3.T.4.O5.SSREFEH1.C2.R3.B6.E4.M	IV ELECTRIC PROPULSION ight performance - electrothermal thrusters - non the nance - mission applications - electric space pows. V APPLICATIONS propulsion - rocket boosters - military operations - re propulsion - application in research - future concept URE:45 TUTORIAL:0 PRACTI BOOKS eorge P.Sutton, Oscar Biblarz, "Rocket Propulsion F vt.Ltd , 2014. arokhi, Saeed, Aircraft Propulsion, Wiley-Blackwell .W.Lee, "Aerospace Propulsion", Wiley India pvt.Ltd ates, G. C., Aerothermodynamics of Gas Turbine and S Thipse Cryogenics, Narosa Publishing House, 2013 RENCE BOOKS .D.Brown, "spacecraft propulsion", AIAA Education .G.Jahn, "Physics of electric propulsion", McGraw-F arrere, M., Jaumotte, A., de Veubeke, B. F., Ve lsevier Publishing Company, Amsterdam, 1960.	wer supplies an missiles - spaces is. CAL:0 Elements", seven 2nd Ed., 2014. d , 2013. d Rocket Propuls 3. series, 81ashing Hill book companendenkerchove, J	usters - optimum flight d power conditioning 9 hips - reentry vehicle - TOTAL:45 th edition, Wiley India ion, AIAA, 1988 ton, DC,1996 ny, New York, 1968 J., Rocket Propulsion,

XAS503 - Mapping of CO with PO

CO Vs PO CO1 CO	2 CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2	
-----------------	-------	-----	-----	-----	-------	--------------------	--

								and 3
	2	2	2	2	2	2	10	
PO ₁	3	3	3	3	3	3	18	3
PO ₂	3	3	3	3	2	2	16	3
PO ₃	0	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0	0
PO ₅	0	0	0	0	0	0	0	0
PO ₆	2	2	2	2	2	2	12	3
PO ₇	1	1	1	1	1	2	5	1
PO ₈	0	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0	0
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	1	0	0
PO ₁₂	3	2	2	2	3	3	14	3
PSO ₁	0	0	0	0	2	2	4	1
PSO ₂	3	3	3	3	3	3	18	3
TOTAL	15	14	14	14	16	18	-	-

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XAS504	L	Т	P	С					
COURSE NAME	ELEMENTS OF SATELLITE TECHNOLOGY	3	0	0	3					
PREREQUISITES	NIL	L	Т	Р	Η					
C:P:A= 3:0:0	-	3	0	0	3					
COURSE OBJECTI	COURSE OBJECTIVES									
• To develop a b	pasic knowledge about the solar system									

• To develop a basic knowledge about the solar system.

• To learn the different cases of satellite orbit transfer, different satellite injection errors.

COU	RSE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Describe</i> the basic satellite network systems.	Cognitive	Remember
CO2	<i>Estimate</i> the orbital maneuver with help of orbit equation and satellite trajectories.	Cognitive	Understand
CO3	<i>Explain</i> the structural configuration and need of thermal control in satellite.	Cognitive	Apply
CO4	<i>Differentiate</i> the different control methods and systems of satellite.	Cognitive	Analyze
CO5	<i>Judge</i> the power system and bus electronics requirements for the satellite operation.	Cognitive	Evaluate
CO6	<i>Explain</i> the telemetry and telecommand systems.	Cognitive	Apply
UNIT		-	9
Satelli	non satellite applications and missions – Satellite types ite sub systems and their functions.	– Orbit types –	
UNIT			9
	and coordinate system- Orbit determination and prediction lite trajectories.	on – Orbital equa	ation – GPS system
- Satel			
- Satel UNIT		CONTROL	9
UNIT	6		
UNIT Satelli	III SATELLITE STRUCTURES & THERMAL (al materials and	fabrication – The
UNIT Satelli need o	III SATELLITE STRUCTURES & THERMAL (te mechanical and structural configuration – Structura	al materials and ment – Internall	fabrication – The y induced therma
UNIT Satelli need o	III SATELLITE STRUCTURES & THERMAL (te mechanical and structural configuration – Structura of thermal control: externally induced thermal environ onment - Heat transfer mechanism – Thermal control sys	al materials and ment – Internall	y induced therma
UNIT Satelli need c enviro UNIT Contro stabiliz	IIISATELLITE STRUCTURES & THERMAL (te mechanical and structural configuration – Structural of thermal control: externally induced thermal environ onment - Heat transfer mechanism – Thermal control systemIVSPACECRAFT CONTROL ol requirements: attitude control - type of control maneu zation, gravity gradient methods, 3 axis stabilization –	al materials and ment – Internall stems: active and vers – Stabilizat	fabrication – The y induced therma passive methods. tion schemes: spin
UNIT Satelli need c enviro UNIT Contro stabiliz mass e	IIISATELLITE STRUCTURES & THERMAL OnIte mechanical and structural configuration – StructuralIte mechanical and structural configuration – StructuralIte mechanical control: externally induced thermal environIte mechanism – Heat transfer mechanism – Thermal control systemIVSPACECRAFT CONTROLInterpretent of the systems:Ite mechanism – Thermal control maneutIte mechanism – Thermal control systemIte mechanism – Thermal control system <td>al materials and ment – Internall stems: active and vers – Stabilizat Commonly used</td> <td>fabrication – The y induced therma passive methods. tion schemes: spin d control systems:</td>	al materials and ment – Internall stems: active and vers – Stabilizat Commonly used	fabrication – The y induced therma passive methods. tion schemes: spin d control systems:
UNIT Satelli need c enviro UNIT Contro stabiliz mass e UNIT	IIISATELLITE STRUCTURES & THERMAL (ate mechanical and structural configuration – Structural of thermal control: externally induced thermal environ onment - Heat transfer mechanism – Thermal control systemIVSPACECRAFT CONTROLol requirements: attitude control - type of control maneu zation, gravity gradient methods, 3 axis stabilization – expulsion systems, momentum exchange systems.VPOWER SYSTEM AND BUS ELECTRONIC	al materials and ment – Internall atems: active and vers – Stabilizat Commonly used	fabrication – The y induced therma passive methods. tion schemes: spin d control systems:
UNIT Satelli need c enviro UNIT Contro stabiliz mass e UNIT Solar and eff Telem Onboa	IIISATELLITE STRUCTURES & THERMAL (te mechanical and structural configuration – Structural of thermal control: externally induced thermal environ onment - Heat transfer mechanism – Thermal control systemIVSPACECRAFT CONTROLol requirements: attitude control - type of control maneu zation, gravity gradient methods, 3 axis stabilization – expulsion systems, momentum exchange systems.VPOWER SYSTEM AND BUS ELECTRONIC panels: Silicon and Ga-As cells – Space battery syste ficiency parameters – Power electronics. netry and telecommand systems: Tm & TC f unication bands (UHF/VHF, S, L, Ku, Ka etc), their ard computer.	al materials and ment – Internall atems: active and ivers – Stabilizat Commonly used S ms – battery typ	fabrication – The y induced thermal passive methods. tion schemes: spin d control systems: pes, characteristics herally employed
UNIT Satelli need c enviro UNIT Contro stabiliz mass e UNIT Solar and eff Telem Onboa TEXT	IIISATELLITE STRUCTURES & THERMAL (ite mechanical and structural configuration – Structural of thermal control: externally induced thermal environ onment - Heat transfer mechanism – Thermal control systemIVSPACECRAFT CONTROLold requirements: attitude control - type of control maneu zation, gravity gradient methods, 3 axis stabilization – expulsion systems, momentum exchange systems.VPOWER SYSTEM AND BUS ELECTRONIC panels: Silicon and Ga-As cells – Space battery syste ficiency parameters – Power electronics. netry and telecommand systems: Tm & TC f unication bands (UHF/VHF, S, L, Ku, Ka etc), their ard computer.T BOOKS	al materials and ment – Internall atems: active and ivers – Stabilizat Commonly used S ms – battery typ functions - gen characteristics a	fabrication – The y induced therma passive methods. () tion schemes: spin d control systems: () () () () () () () () () () () () ()
UNITSatellineedenviroUNITControstabilizmasseUNITSolarand effTelemcommonOnboaTEXT1.	IIISATELLITE STRUCTURES & THERMAL On the mechanical and structural configuration – Structurate of thermal control: externally induced thermal environed on the mechanism – Thermal control systems and the transfer mechanism – Thermal control systems and telecommand systems: The telecommand systems	al materials and ment – Internall atems: active and ivers – Stabilizat Commonly used S ms – battery typ functions - gen characteristics a	fabrication – The y induced therma passive methods. tion schemes: spin d control systems: bes, characteristics herally employed and applications -
UNITSatellineed cenviroUNITControstabilizmass eUNITSolarand effTelemOnboaTEXT1.1.2.	IIISATELLITE STRUCTURES & THERMAL (te mechanical and structural configuration – Structural of thermal control: externally induced thermal environ onment - Heat transfer mechanism – Thermal control systemIVSPACECRAFT CONTROLOI requirements: attitude control - type of control maneu zation, gravity gradient methods, 3 axis stabilization – expulsion systems, momentum exchange systems.VPOWER SYSTEM AND BUS ELECTRONIC panels: Silicon and Ga-As cells – Space battery syste ficiency parameters – Power electronics. netry and telecommand systems: Tm & TC f unication bands (UHF/VHF, S, L, Ku, Ka etc), their ard computer.T BOOKSRilay, FF , "Space Systems Engineering", McGraw Hill, Vertregt.M., "Principles of Astronautics", Elsvier Publish	al materials and ment – Internall atems: active and ivers – Stabilizat Commonly used S ms – battery typ functions - gen characteristics a 1982.	fabrication – The y induced therma passive methods. () tion schemes: spin d control systems: () () () () () () () () () () () () ()
UNIT Satelli need c enviro UNIT Contro stabiliz mass e UNIT Solar and eff Telem Commo Onboa TEXT 1. H 2. V 3. H 4. N	IIISATELLITE STRUCTURES & THERMAL On the mechanical and structural configuration – Structurate of thermal control: externally induced thermal environed on the mechanism – Thermal control systems and the transfer mechanism – Thermal control systems and telecommand systems: The telecommand systems	al materials and ment – Internall atems: active and ivers – Stabilizat Commonly used S ms – battery typ functions - gen characteristics a 1982. ing Company, 19	fabrication – The ly induced therma passive methods. tion schemes: spin d control systems: oes, characteristics herally employed and applications –
UNITSatellineed cenviroUNITControstabilizmass eUNITSolarand effTelemOnboaTEXT1.1.4.1.	IIISATELLITE STRUCTURES & THERMAL On the mechanical and structural configuration – Structural of thermal control: externally induced thermal environor on the methods in the mechanism – Thermal control systems and the mechanism – Thermal control systems is stabilization – expulsion systems, momentum exchange systems.VPOWER SYSTEM AND BUS ELECTRONICpanels:Silicon and Ga-As cells – Space battery system ficiency parameters – Power electronics.metry and telecommand systems:Tm & TC function bands (UHF/VHF, S, L, Ku, Ka etc), their ard computer.BOOKSRilay, FF , "Space Systems Engineering", McGraw Hill, Vertregt.M., "Principles of Astronautics", Elsvier Publish Francis J. "Introduction Space Flight" Hale Prentice Hall Michael D. Griffin and James R. "Space Vehicle Desig	al materials and ment – Internall atems: active and ivers – Stabilizat Commonly used S ms – battery typ functions - gen characteristics a 1982. ing Company, 19	fabrication – The ly induced therma passive methods. tion schemes: spin d control systems: oes, characteristics herally employed and applications –
UNIT Satelli need enviro UNIT Contro stabiliz mass mass UNIT Solar and eff Telem Onboa TEXT 1. H 2. N 3. H 4. M REFE	III SATELLITE STRUCTURES & THERMAL (ite mechanical and structural configuration – Structuralof thermal control: externally induced thermal environonment - Heat transfer mechanism – Thermal control systemIVSPACECRAFT CONTROLol requirements: attitude control - type of control maneuzation, gravity gradient methods, 3 axis stabilization –expulsion systems, momentum exchange systems.VPOWER SYSTEM AND BUS ELECTRONICpanels: Silicon and Ga-As cells – Space battery systeficiency parameters – Power electronics.netry and telecommand systems:T M & TC funication bands (UHF/VHF, S, L, Ku, Ka etc), theirard computer.T BOOKSRilay, FF , "Space Systems Engineering", McGraw Hill,Vertregt.M., "Principles of Astronautics", Elsvier PublishFrancis J. "Introduction Space Flight" Hale Prentice HallMichael D. Griffin and James R. "Space Vehicle Desig1991.CRENCE BOOKS	al materials and ment – Internall atems: active and ivers – Stabilizat Commonly used S ms – battery typ functions - gen characteristics a 1982. ing Company, 19 1, 1994. n" French, AIAA	fabrication – The y induced thermal passive methods. tion schemes: spin d control systems: bes, characteristics herally employed and applications - 985.
UNIT Satelli need enviro UNIT Contro stabiliz mass mass UNIT Solar and eff Telem Comboa TEXT 1. I 2. V 3. I 4. N I I REFE 1. 1. I	III SATELLITE STRUCTURES & THERMAL (ite mechanical and structural configuration – Structuralof thermal control: externally induced thermal environonment - Heat transfer mechanism – Thermal control systemof requirements: attitude control - type of control maneuzation, gravity gradient methods, 3 axis stabilization –expulsion systems, momentum exchange systems.VPOWER SYSTEM AND BUS ELECTRONICpanels: Silicon and Ga-As cells – Space battery systeficiency parameters – Power electronics.netry and telecommand systems: Tm & TC funication bands (UHF/VHF, S, L, Ku, Ka etc), theirard computer.T BOOKSRilay, FF , "Space Systems Engineering", McGraw Hill,Vertregt.M., "Principles of Astronautics", Elsvier PublishFrancis J. "Introduction Space Flight" Hale Prentice HallMichael D. Griffin and James R. "Space Vehicle Desig1991.	al materials and ment – Internall atems: active and ivers – Stabilizat Commonly used S ms – battery typ functions - gen characteristics a 1982. hing Company, 19 l, 1994. n" French, AIAA	fabrication – The y induced therma passive methods. () tion schemes: spin d control systems: () pes, characteristics herally employed and applications - () 985. () AEducation Series

4.	Hughes, P.C.	Space Craft Altitude	Dynamics, Wilsey, 19	986.
----	--------------	----------------------	----------------------	------

5.	Gebmart, H	Heat	Transfer,	McGraw	Hill,	Martin	J.	"Communication	Satellite	Systems",
	McGraw H	ill, 19	978.							

LECTURE: 45	T	UTORIA			CTICAL:		TOTAL: 45			
CO Vs PO	CO1	CO2	504 - Ma	pping of CO4	CO with H	PO CO6	Total	Scaled to 0,1,2 and 3		
PO ₁	3	3	3	3	3	3	18	3		
PO ₂	3	2	2	3	2	2	14	3		
PO ₃	2	3	3	3	2	1	14	3		
PO ₄	2	2	2	2	2	2	12	2		
PO ₅	0	0	0	0	0	0	0	0		
PO ₆	1	1	1	2	2	2	9	1		
PO ₇	2	2	2	2	2	2	12	2		
PO ₈	0	0	0	0	0	0	0	0		
PO ₉	2	2	2	2	2	2	12	2		
PO ₁₀	0	0	0	0	0	0	0	0		
PO ₁₁	1	1	1	1	1	1	6	1		
PO ₁₂	2	2	2	2	2	2	12	2		
PSO ₁	2	2	2	2	2	2	12	2		
PSO ₂	3	3	3	3	3	2	17	3		
TOTAL	23	23	23	25	23	21	-	-		

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURS	E CODE		L	Τ	Р	C		
	E NAME	XAS507 AIRCRAFT STRUCTURES L	AB	0	0	1	1	
	QUISITES	STRENGTH OF MATERIAL		Ľ	Ť	P	H	
C:P:A=		•		0	0	1	2	
	E OBJECTI	VES						
		stand the concepts of Aircraft s	structures loading	cond	ition	s and	l their	
	eactions	I	8					
	E OUTCOM	ES	DOMAIN		LEVEL			
coens					Do	rcept	ion	
		ne specimen and <i>measure</i> the	Psychomotor			t, Gu		
CO1	deflection		r sychomotor			espor		
						rcept		
CO2		the end conditions and Measure	Psychomotor			t, Gu		
	the deflect	ion of beam	5			espor		
	Alters the	load and <i>measures</i> the stresses				laptat		
CO3	Auers the	toad and medsures the stresses	Psychomotor		Guided		ed	
							nse	
CO4	Selects the	material and <i>construct</i> the repair	Davahomotor		Perception and			
04	work		Psychomotor		Complex			
CO5	Choose the	e material and <i>construct</i> the patch	Psychomotor		Perception,			
		k using welding	-			ompl		
CO6		e material and <i>construct</i> the patch	Psychomotor		Perception,			
		k using welding	1 sjenomotor		С	ompl	ex	
	EXPERIMEN						<u></u>	
Ex. No	Experiments					C	Os	
1.		n of Young's modulus of Steel or						
2.		Beams with various end condition	ns.					
3.		of Maxwell's Reciprocal theorem.						
<u>4.</u> 5.	Column – Te	n of Membrane stresses ina thin c	ulindar undar inter	<u></u>				
э.	pressure.	ii or wiemorane stresses ma thin c	ymder under mitern	ai				
6.	1	Riveted joints & repair work.						
7.		composites & repair work.						
8.		idwich panels.						
<u>9.</u>		welding using TIG.						
10.		welding using MIG.						
LECUR		UTORIAL: 0 PRACTIC	CAL: 30	T	OTA	L:30		
TEXT B			I			- *		
1.		Ianual, "Aircraft Structures Lab" I	Dept. of Aerospace	Engi	neeri	ng, P	MIST.	

XAS507 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	2	3	2	16	3
PO ₂	1	2	3	2	3	3	14	3
PO ₃	2	2	2	0	0	1	7	2
PO ₄	2	2	2	3	3	3	15	3
PO ₅	0	0	0	0	0	0	0	0
PO ₆	2	2	2	3	3	2	14	3
PO ₇	1	1	1	3	3	2	11	2
PO ₈	0	0	0	0	0	0	0	0
PO ₉	3	3	3	3	3	3	18	3
PO ₁₀	2	2	2	2	2	2	12	2
PO ₁₁	3	3	3	2	2	2	15	3
PO ₁₂	0	0	0	2	2	2	6	1
PSO ₁	3	3	3	1	1	1	12	3
PSO ₂	0	0	0	2	2	2	6	1
TOTAL	22	23	24	25	27	25	-	-

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	L	Т	Р	С				
COURSE NAME	0	0	1	1				
PREREQUISITES	L	Т	Р	Н				
C:P:A= 0:1:0		0	0	1	2			
COURSE OBJECTIVES								
• To make the	student work in groups and understand the	Conc	cepts	invo	lved in			

	airplanes	1							
COUR	RSE OUTCOMES	DOMAIN	LEVE	L					
CO1	Describe sketcher tools.	Psychomotor	Percepti	on					
CO2	Construct 3D models using part design.	Psychomotor	Mechani	sm					
CO3	Assemble the 3D parts	Psychomotor	Guided Res	ponse					
CO4	Display 3 views using drafting.	Psychomotor	Mechani	sm					
CO5	<i>Sketch</i> parts usingwireframe and surface design.	Psychomotor	Guided Res	ponse					
CO6	<i>Explain</i> stability analysis calculations.	Psychomotor	Set	-					
IST O	F EXPERIMENTS								
Ex. No	Experiments			COs					
1.	Comparative studies of different types of airplanes and their specifications and								
	performance details with reference to the design work under taken.								
	performance details with reference to the design	work under take	n.						
2.	Preliminary weight estimation, Selection of de			CO2,					
2.		esign parameters,	power plant	CO2, CO3					
2.	Preliminary weight estimation, Selection of de selection, aerofoil selection, fixing the geometry	esign parameters, of Wing, tail, co	power plant ntrol surfaces	,					
-	Preliminary weight estimation, Selection of de selection, aerofoil selection, fixing the geometry Landing gear selection. Preparation of layout drawing, construction	esign parameters, of Wing, tail, co of balance and	power plant ntrol surfaces	CO3					
3.	Preliminary weight estimation, Selection of de selection, aerofoil selection, fixing the geometry Landing gear selection. Preparation of layout drawing, construction diagrams of the airplane under consideration.	esign parameters, of Wing, tail, co of balance and	power plant ntrol surfaces	CO3					
3.	 Preliminary weight estimation, Selection of de selection, aerofoil selection, fixing the geometry Landing gear selection. Preparation of layout drawing, construction diagrams of the airplane under consideration. Drag estimation, Performance calculations, diagram. 	esign parameters, of Wing, tail, co of balance and Stability analys	power plant ntrol surfaces	CO3 CO4 CO5,					
3. 4. LECU	 Preliminary weight estimation, Selection of de selection, aerofoil selection, fixing the geometry Landing gear selection. Preparation of layout drawing, construction diagrams of the airplane under consideration. Drag estimation, Performance calculations, diagram. 	esign parameters, of Wing, tail, co of balance and Stability analys	power plant ntrol surfaces	CO3 CO4 CO5, CO6					

XAS508 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	1	1	1	1	1	1	5	1
PO ₂	1	1	1	1	1	1	5	1
PO ₃	2	2	2	2	2	2	10	2
PO ₄	0	0	0	0	0	0	0	0
PO ₅	3	3	3	3	3	2	15	3
PO ₆	0	0	0	0	0	0	0	0

PO ₇	0	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0	0
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	1	1	1	1	1	1	5	1
PO ₁₂	1	1	1	1	1	1	5	1
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	1	1	1	1	1	1	5	1
TOTAL	10	10	10	10	10	9	-	-

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	XAS509	L	Т	Р	С							
COURSE NAME	IN PLANT TRAINING – II	0	0	0	1							
PREREQUISITES	NIL	L	Т	Р	Н							
C:P:A= 0.25:0.25:0.5		0	0	0	0							
COURSE OBJECTIV	ES		COURSE OBJECTIVES									

• To enable students to learn the basic concepts of Project & Production Management.

• To enable students to implement Project Planning in their Industrial In-plant Training Project work.

COUR	RSE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Relate</i> classroom theory with workplace practice	Cognitive	Understand
CO2	<i>Comply</i> with factory discipline, management and business practices.	Affective	Response
CO3	Demonstrates teamwork and time management.	Affective	Value

CO4	<i>Describe</i> practical sk	and <i>display</i> tills obtained d	hands-on uring the pr	experience rogramme.	on	Psyc	hometer	Perception, Set
CO5		<i>Summarize</i> the tasks and activities done by technical documents and oral presentations.						Evaluate
LECTURE: 0 TUTORIA			L:0	PRACT	ICAI	L: 30	J	FOTAL :30

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	CO7	Total	Scaled to 0,1,2 and 3
PO ₁	3	2	1	2	1	0	1	10	2
PO ₂	3	2	1	2	1	0	1	10	2
PO ₃	0	0	1	3	1	0	0	5	1
PO ₄	0	1	2	3	1	2	2	11	3
PO ₅	0	0	2	3	1	0	0	6	2
PO ₆	1	0	1	1	0	3	3	10	2
PO ₇	1		1	1	0	1	0	4	1
PO ₈	1	0	1	1	0	3	0	6	2
PO ₉	0	0	0	0	2	3	1	6	2
PO ₁₀	0	0	0	0	3	3	3	9	2
PO ₁₁	0	0	0	0	2	2	2	6	2
PO ₁₂	1	0	0	0	3	3	1	8	2
PSO ₁	1	1	1	1	1	0	1	1	1
PSO ₂	2	2	2	3	2	3	2	16	2
TOTAL	13	8	13	20	18	23	27	-	-
$1-6 \rightarrow 1, 7-12$ 0 - No Relation			ion 1	Madium	Dalatio	m 2 II:	ah Dalati		

XAS509 - Mapping of CO with PO

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COU	RSE CODE	XAS601		L	Т	Р	С	
COUI	RSE NAME	FINITE ELEMENT ANALYSIS		3	1	0	4	
PRER	REQUISITES	AIRCRAFT STRUCTURES		L	Т	Р	Н	
C:P:A	A= 3:1:0	-		3	1	0	4	
COU	RSE OBJECTIV	TES						
٠	To introduce i	mportance and applications of Finite	Element Met	thod.	Sim	ple	one-	
	dimensional pro	oblem, analysis of beams and simplified	ed modeling o	of two	o-din	nens	ional	
	problems were	discussed. The analysis of one-dimensi	onal steady st	ate he	eat ti	ransf	fer is	
	elaborated.							
COUI	RSE OUTCOME	ES	DOMAIN		LE	VEL		
CO1	Differentiate va	U	Jnde	rstan	d			
CO2	<i>Compute</i> stiffne	<i>mpute</i> stiffness matrix for bar elements. Cognitive						
CO3	<i>Compute</i> stiffne	<i>compute</i> stiffness matrix for beam elements. Cognitive						
CO4	Analyze continu	um elements.	Cognitive	Analyse				
CO5	Explain iso-par	ametric elements.	Cognitive	Understand				
CO6	Interpret field p	problems.	Cognitive	Evaluate				
UNIT							9+3	
Review	w of various ap	pproximate methods - Raleigh Ritz's,	Galerkin and	d fin	ite c	liffer	ence	
metho	ds- Governing eq	uation and convergence criteria of finite	element metho	d.				
UNIT		TE ELEMENTS					9+3	
Bar el	ements, uniform	section, mechanical and thermal loading,	, varying section	on, tru	isses	anal	lysis.	
Beam	element - problem	ms for various loadings and boundary co	onditions - long	gitudii	nal a	nd la	teral	
vibrati	ion. Use of local a	and natural coordinates.						
UNIT		UUM ELEMENTS					9+3	
Plane	stress, Plane str	ain and axisymmetric problems, const	tant and linear	r stra	in, t	rian	gular	
eleme	nts, stiffness matr	ix, axisymmetric load vector.						
UNIT		METRIC ELEMENTS					9+3	
Defini	tions, Shape fun	ction for 4, 8 and 9 nodal quadrilatera	al elements, St	tiffnes	s m	atrix	and	
consis	tent load vector, (Gaussian integration.						
	V FIELD PH					1	9+3	

LE	CTURE: 45	TUTORIAL: 15	PRACTICAL:0	TOTAL: 60							
TEXT BOOKS											
1. Tirupathi.R. Chandrapatha and Ashok D. Belegundu – "Introduction to FiniteElements in											
	Engineering" – Printice Hall India, Third Edition, 2003.										
2.	Rao. S.S., Finite E	lement Methods in Eng	gineering, Butterworth and	d Heinemann, 2001.							
RE	FERENCE BOOK	S									
1.	Reddy J.N. – "An	Introduction to Finite E	Element Method" – McGr	aw Hill – 2000.							
2.	Krishnamurthy, C	S., "Finite Element An	alysis", Tata McGraw Hi	11, 2000.							
3.	Bathe, K.J. and Wilson, E.L., "Numerical Methods in Finite Elements Analysis", Prentice										
	Hall of India, 198	5.									

XAS601 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	3	2	2	3	2	2	14	3
PO ₃	2	3	3	3	2	2	15	3
PO ₄	2	3	3	3	2	2	15	3
PO ₅	3	3	3	3	3	2	15	3
PO ₆	1	1	1	2	2	2	9	2
PO ₇	2	2	2	2	2	2	12	2
PO ₈	0	0	0	0	0	0	0	0
PO ₉	2	2	2	2	2	2	12	2
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0	0

PO ₁₂	2	2	2	2	2	2	12	2
PSO ₁	3	3	3	3	3	3	18	3
PSO ₂	2	2	2	2	2	2	12	2
TOTAL	25	26	26	28	25	24	-	-

 $1 \text{-} 6 \rightarrow 1, 7 \text{-} 12 \rightarrow 2, 13 \text{-} 18 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUR	SE CODE	XAS602		L	Τ	P	С				
COUR	SE NAME	FLIGHT DYNAMICS		3	1	0	4				
PRER	EQUISITES	INTRODUCTION TO AEROSPACE ENGINEERING		L	Т	Р	H				
C:P:A	= 3:1:0			3	1	0	4				
COUR											
•	• To study the performance of airplanes under various operating conditions and the static and dynamic response of aircraft for both voluntary and involuntary changes in flight conditions.										
COUR	SE OUTCOM	ES	DOMAIN		LE	VEL					
CO1	<i>Express</i> the equipart	uation of motion and performance of	Cognitive	Rem	emb	er, A	pply				
CO2	<i>Express</i> the per a maneuvering	rformance parameters of an airplane for glight	Cognitive	Understand, Apply							
CO3	-	fluence of forces and moments on the mic stability of aircraft for stick fixed	Cognitive	Understand, Apply		1,					
CO4	<i>Explain</i> the air	craft stability for stick free condition	Cognitive	Understand, Apply		1,					
CO5	directional stat		Cognitive	U		stano ply	1,				
CO6		namics and control of flight vehicles.	Cognitive	U	Indei Ap	rstand ply	1,				
UNIT		ISING FLIGHT PERFORMANCE					12				
Equation of motion of a rigid flight vehicle - Different types of drag - Drag polar of vehicles fromlow speed to high speeds - Variation of thrust, power with velocity and altitudes for air breathingengines. Performance of airplane in level flight - Power available and power required curves.Maximum speed in level flight - Conditions for minimum drag and power required.UNIT IIMANOEUVERING FLIGHT PERFORMANCE12											

Range and endurance - Climbing and gliding flight --Turning performance - Bank angle and load factor – limitations on turn - V-n diagram and load factor.

12

12

12

UNIT III STATIC LONGITUDINAL STABILITY

Degree of freedom of rigid bodies in space - Static and dynamic stability - Purpose of controls in airplanes–Static, Longitudinal stability - Stick fixed stability - Basic equilibrium equation - Stability criterion - Influence of CG location - Power effects - Stick fixed neutral point - Stick free stability-Hinge moment coefficient - Stick free neutral points – Symmetric maneuvers - Stick force gradients - Stick force per 'g' - Aerodynamic balancing.

UNIT IV LATERAL AND DIRECTIONAL STABILITY

Dihedral effect - Lateral control - Coupling between rolling and yawing moments - Adverse yaw effects - Aileron reversal - Static directional stability - Weather cocking effect - Rudder requirements - One engine inoperative condition - Rudder lock.

UNIT V DYNAMIC STABILITY

Introduction to dynamic longitudinal stability: - Modes of stability, effect of freeing the stick -Brief description of lateral and directional dynamic stability - Spiral, divergence, Dutch roll, autorotation and spin.

TEXT BOOKS

- 1. Perkins, C.D., and Hage, R.E., "Airplane Performance stability and Control", Son:,Inc, NY, 1988.
- 2. Mc Cornick. W., "Aerodynamics, Aeronautics and Flight Mechanics", John Wiley, NY,

3. R.C. "Flight Stability and Automatic Control", McGraw-Hill Book Co., 2004.

REFERENCES

1. Etkin, B., "Dynamics of Flight Stability and Control", Edn. 2, John Wiley, NY, 1982.

2.Babister, A.W., "Aircraft Dynamic Stability and Response", Pergamon Press, Oxford, 1980.

3.Dommasch, D.O., Sherby, S.S., and Connolly, T.F., "Aeroplane Aero dynamics", Third Edition, Issac Pitman, London, 1981.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	1	3	13	2
PO ₂	3	3	3	3	3	3	18	3
PO ₃	3	3	3	3	3	3	18	3
PO ₄	2	3	2	2	1	2	12	2

XAS602 - Mapping of CO with PO

PO ₅	3	0	3	3	3	3	15	3
PO ₆	1	2	2	2	1	1	9	1
PO ₇	1	1	1	1	1	3	8	1
PO ₈	1	1	1	1	1	1	6	1
PO ₉	1	2	2	2	2	1	10	2
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	1	1	1	1	1	1	6	1
PO ₁₂	2	2	2	2	3	2	13	2
PSO ₁	0	0	1	1	1	1	4	1
PSO ₂	3	3	3	3	3	3	18	3
TOTAL	24	24	27	27	27	24	-	-

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUI	RSE CODE	XGS605		LT	P C
COUI	RSE NAME	PROFESSIONAL SKILLS	1 0	2 3	
PRER	REQUISITES	NIL		LT	P H
C:P:A	A= 2.6:0.4:0	-		1 0	4 5
COURSE OUTCOMES DOM		DOMAIN	LEVEL	ı	
CO1	Ability to understand communications		Cognitive	Remembe	er
CO2	Apply the known	skills for career	Cognitive	Apply	
CO3	Identifyinner stre	ngth	Cognitive	Remember	
CO4	Construct the atti	tude as a professional	Cognitive	Create	
CO5 <i>Practicing</i> Etiquet		tes	Guided Resp	onse	
UNIT	I COMMUN	ICATION			9

UNIT II	CAREER	SKILLS		
2.1 – Resu	me & CV pre	eparing Skills		
2.2 - Inter	view Skills			
2.3 - Expl	oring Career	Opportunities		
UNIT III	TEAM SK	KILLS		
3.1 – Liste	ning as a Tea	ım Skill		
3.2 – Tean	n Building at	work place		
UNIT IV	PROFESS	SIONAL SKILLS		
4.1 - Attitute	ude and Goal	Setting		
4.2 – Verb	al and Non V	erbal Communication	IS	
UNIT V	PROFESS	SIONAL ETIQUETT	TES	
5.1 - Socia	l Etiquettes			
5.2 - Cultu	ral Ethics at	work place		
LECTUR	F. 45	TUTORIAL: 0	PRACTICAL:0	TOTAL: 4

- Er. A. K. Jain, Dr. Pravin S. R. Bhatia, Dr. A. M. Sheikh Professional Communication Skills S. Chand Publications, 2015
 Alan Pannett. *Key Skills for Professionals: How to Succeed in Professional Services*, Kogan Page; 1st
- 2. Alan Pannett. *Key Skills for Professionals: How to Succeed in Professional Services*, Kogan Page; 1st edition, 2013

	XGS605 - Mapping of CO with PO											
CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3					
PO ₁	0	0	0	0	0	0	0					
PO ₂	0	0	0	0	0	0	0					
PO ₃	0	0	0	0	0	0	0					
PO ₄	0	0	0	0	0	0	0					
PO ₅	0	0	0	0	0	0	0					
PO ₆	0	0	0	0	0	0	0					
PO ₇	0	0	0	0	0	0	0					
PO ₈	3	3	3	3	3	12	3					

PO ₉	2	2	2	2	2	10	2
PO ₁₀	3	3	3	3	3	12	3
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	0	0	0	0	0	0	0
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
TOTAL	8	8	8	8	8	34	8

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XUM606		L	Т	P	С		
COURSE NAME	CYBER SECURITY		0	0	0	0		
PREREQUISITES	NIL		L	Т	P	Η		
C:P:A= 3:0:0	-		3	0	0	3		
COURSE OBJECTIVES								
• To give knowled	ge on the cyber space and its security.							
• To understand the	e cyber security structure of organizatio	n						
• To Understand th	e security policy of Organization							
• To aware of the C	Cyber security initiatives and IT Act.							
• To make the students to know cyber security ractices.								
COURSE OUTCOMES	5	DOMAIN	LF	EVE	L			

	-	
CO1 Understand the fundamentals of Cyber Security and the technologies.	Cognitive	Understand
CO2 Understand the organizational structure of Cyber security	Cognitive	Understand
CO3 Understand the Cyber Security policy development	Cognitive	Understand
CO4 Understand the Indian IT act and the initiatives	Cognitive	Understand
CO5 Understand and Apply the Cyber security practices	Cognitive	Understand and
		Apply
UNIT I INTRODUCTION	han Caranitan 1	9
Cyber Security – Cyber Security policy – Domain of Cy		-
Regulations – Enterprise Policy – Technology Operations – Te	chnology Con	figuration - Strategy
Versus Policy - Cyber Security Evolution - Productivity - I	Internet – E c	ommerce – Counter
Measures – Challenges		
UNIT II CYBER SECURITY OBJECTIVES AND GUII		9
Cyber Security Metrics - Security Management Goals - Co	ounting Vulne	rabilities – Security
Frameworks – E Commerce Systems – Industrial Control Systems	tems – Persona	al Mobile Devices –
Security Policy Objectives – Guidance for Decision Makers	– Tone at the	e Top – Policy as a
Project- Cyber Security Management - Arriving at Goals - Cy		ocumentation – The
Catalog Approach – Catalog Format – Cyber Security Policy Ta	xonomy.	
UNIT III CYBER SECURITY POLICY CATALOG		9
Cyber Governance Issues - Net Neutrality - Internet Name		
Trademarks – Email and Messaging - Cyber User Issues	- Malvertising	- Impersonation –
Appropriate Use – Cyber Crime – Geo location – Privacy - C	Cyber Conflict	Issues – Intellectual
property Theft - Cyber Espionage - Cyber Sabotage - Cyber	er Welfare- Co	omputer Forensics -
Steganography		
UNIT IV CYBER SECURITY INITIATIVES AND IT AC	CT	9
Counter Cyber Security Initiatives in India, Cyber Security E	Excercsie, Cyb	er Security Incident
Handling, Cyber Security Assurance, IT Act, Hackers-A	ttacker-Counter	er measures ,Web
Application Security, Digital Infrastructure Security ,Det	fensive Progra	amming. Traditional
Problems Associated with Computer Crime, Introduction to Inci	dent Response	
UNIT V SECURITY PRACTICES		9
Guidelines to choose web browsers, Securing web browser, And for setting up a Secure password, Two-steps authentic Security, Guidelines for social media security, Tips and best pra Basic Security for Windows, User Account Password Intr	ation ,Passwo ctices for safer	rd Manager ,Wi-Fi Social Networking.
Security ,Android Security ,IOS Security Online Bank	ing Security	,Mobile Banking

Sec	urity Security of [bebit and Credit Card	UPI Security	Security of	Micro ATMs	e-wallet					
			· · · · · · · · · · · · · · · · · · ·			e wanet					
	CTURE: 45 KT BOOKS	TUTORIAL: 0	PRACTIC	AL:0	10	DTAL: 45					
	AT BOOK5										
1.	Jennifer L. Bayuk, J. Healey, P. Rohmeyer, Marcus Sachs , Jeffrey Schmidt, Joseph Weis "Cyber Security Policy Guidebook" John Wiley & Sons 2012.										
2.	Rick Howard "Cyl	per Security Essentials	" Auerbach Pub	lications 20	11.						
3.	Cyber Laws & Information Technology, Jothi Rathan, VijayRathan, Bhrath Pubishers, 7 th Edition January 2019.										
4.	Modern Cyber security Practices by Pascal Ackerman, BPB Publications, 2020										
5.	Dan Shoemaker C 2011	yber security The Esse	ential Body Of K	Knowledge, 1	lst ed. Cengage	Learning					
6.	Rhodes-Ousley, M McGraw-Hill, 201	ark, "Information Sec 3.	urity: The Com	olete Referer	nce", Second Ed	lition,					
E- I	BOOKS										
1.	https://www.courser	a.org/specializations/cyl	per-security								
2.	https://us.norton.com	n/internetsecurity-how-te	o-cyber-security-l	best-practices	-for-employees.h	<u>ıtml</u>					
3.	https://www.meity.g	ov.in/content/cyber-law	<u>s</u>								
4.	www.nptel.ac.in										

XUM606 - Mapping of CO with PO

		1101010	o map	ping or			
CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	0	0	3	0	3	6	2
PO ₂	0	0	0	0	0	0	0
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	0	0	0	0
PO ₆	2	0	2	0	0	4	1
PO ₇	0	2	3	0	0	5	1
PO ₈	3	0	0	0	0	3	1

PO ₉	0	1	1	0	0	2	1
PO ₁₀	0	0	0	2	0	2	1
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	0	0	0	0	0	0	0
PSO ₁	0	0	3	0	3	6	2
PSO ₂	0	0	0	0	0	0	0
TOTAL	5	3	12	2	6	-	-

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	XAS607	L	Т	Р	С
COURSE NAME	0	0	1	1	
PREREQUISITES	L	Т	Р	Η	
C:P:A= 0:2:1	0	0	1	2	
	is of gyration, moment of inertia for different ynamic behaviour of the machine elements/ o	components	like C	-	Ĩ
COURSE OUTCOM	DOMA	OMAIN LEVE			

			1 1					
CO1	<i>Identify</i> the characteristics of Watt governor and	Psychomotor	Perception					
	Porter governor	1 sjenomotor	reception					
CO2	Detect the angular velocity using motorized	Psychomotor	Perception					
	gyroscope	Гегерноп						
	Describes the kinematics mechanism and CAM	Psychomotor	Perception					
CO3	analyzer		reiception					
	Measure the whirling of shaft velocity and	Psychomotor	Mashaniana					
CO4	dynamics balancing of rotating masses		Mechanism					
CO5	Explain the natural frequency of undamped free		Set					
0.05	vibration.	Psychomotor	~					
CO6	Identify the moment of inertia of connecting rod	Psychomotor	Guided					
	with flywheel.	response						
	Y EXPERIMENTS							
Ex.No	Experiments		COs					
1.	Determination of characteristics of Watt Governor		CO1					
2.	Determination of characteristics of Porter Governor	- CO1						
3.	Motorized Gyroscope	otorized Gyroscope						
4.	Study of Kinematic Links		CO3					
5.	Study and experiments on static and dynamic balancing of	of rotating	CO4					
	masses.		04					
6.	Whirling of shaft Determination of critical speed							
7.	Study and experiments on Cam Analyzer.		CO3					
8.	Experimental verification of natural frequency of undamp	ped free	CO5					
	vibration of equivalent spring mass system.							
9.	Determination of mass moment of Inertia of Fly wheel.		CO6					
10.	Determination of mass moment of Inertia of connecting r							
LECUE	RE:0 TUTORIAL: 0 PRACTICA	AL: 30	FOTAL:30					
TEXT I	BOOKS							
1.	Laboratory Manual, "Machine Dynamics Lab"., Dept. of	Mechanical Engir	neering,					
	PMIST.							

XAS607 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	1	1	1	1	1	1	6	2
PO ₃	3	3	3	3	1	3	16	3
PO ₄	3	3	3	3	3	2	17	3

PO ₅	0	0	0	0	0	0	0	0
PO ₆	3	3	3	3	3	3	18	3
PO ₇	1	1	1	1	1	0	5	1
PO ₈	0	0	0	0	0	0	0	0
PO ₉	3	3	3	3	3	3	18	3
PO ₁₀	1	1	1	2	0	2	0	0
PO ₁₁	0	0	0	0	0	0	0	0
PO ₁₂	2	2	2	2	2	2	12	3
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	3	3	3	3	3	3	18	3
TOTAL	23	23	23	24	20	22	-	-

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XAS608	L	Т	Р	С
COURSE NAME	AEROMODELING LAB	0	0	1	1
PREREQUISITES	NIL	L	Т	Р	Н
C:P:A=0:2:1		0	0	1	2

COURSE OBJECTIVES

• Understand Aerodynamics, Designing, Electronics and Technology

- Design, Fabricate and Fly models
- Know wood crafting and the technology of new materials

COURSE O	UTCOMES	DOMAIN	LEVEL
CO1	<i>Describes</i> the concepts of Airfoil and wing planforms	Psychomotor	Perception
CO2	Making a <i>Design</i> calculation of gliders and <i>create</i> a model of Powered and Un-Powered gliders	Psychomotor	Origination
CO3	<i>Build</i> a model of commercial and fighter Aircraft model	Psychomotor	Mechanism

	Detects the list of electronic components used in	Psychomotor	Perception,					
CO4	Aero models and <i>create</i> a RC Airplane		Origination					
	Detects the various modes transmitter channels and							
COS	<i>v</i> 1 1	Perception						
	through simulation training							
CO	Measure the range and endurance of water	Psychomotor	Guided					
	rocketry model.		response					
	EXPERIMENTS		COs					
Ex.No	Experiments							
1.	Introduction to wing planforms and Airfoil							
2.	Introduction to Gliders and its Design calculation							
3.	Design and fabrication of Powered & Un-Powered Glider	8.	CO2					
4.	Making a model of commercial Aircraft using Foam sheet		CO3					
5.	Study of electronic equipment's used in Aero models		CO4					
6.	Making a model of fighter Aircraft using foam sheet		CO3					
7.	Making/Assembly of RC aircraft flying model		CO4					
8.	Testing of 4 channel/6 channel/9 channel transmitter operation	ation using mode	1 CO5					
	and mode 2	U						
9.	Remote control simulation training		CO5					
10.	Making and Testing of a water rocketry model.		CO6					
LECU		L: 30	FOTAL:30					
TEXT	BOOKS							
1.	Laboratory Manual, "Aeromodelling Lab"., Dept. of Aero	space Engineerin	g, PMIST.					

 1.
 Laboratory Manual, "Aeromodelling Lab"., Dept. of Aerospace Engineering, PMIST.

 XAS608 - Mapping of CO with PO

AASous - Mapping of CO with PO													
CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3					
PO ₁	3	3	3	3	3	3	18	3					
PO ₂	1	1	1	1	1	1	6	2					
PO ₃	3	3	3	3	1	3	16	3					
PO ₄	3	3	3	3	3	2	17	3					
PO ₅	0	0	0	0	0	0	0	0					
PO ₆	3	3	3	3	3	3	18	3					
PO ₇	1	1	1	1	1	0	5	1					
PO ₈	0	0	0	0	0	0	0	0					

PO ₉	3	3	3	3	3	3	18	3
PO ₁₀	1	1	1	2	0	2	0	0
PO ₁₁	0	0	0	0	0	0	0	0
PO ₁₂	2	2	2	2	2	2	12	3
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	3	3	3	3	3	3	18	3
TOTAL	23	23	23	24	20	22	-	-

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSECODE	XAS701	L	Т	Р	C
COURSENAME	COMPUTATIONALFLUIDDYNAMICS	3	1	1	5
PREREQUISITES	AERODYNAMICSII	L	Т	Р	H
C:P:A=4:1:0		3	1	2	6

COURSEOBJECTIVES

- To know about mesh generation.
- To know about different modules of computation.
- To find solutions for fluid dynamics problems using different methods.

COU	RSEOUTCOMES	DOMAIN	LEVEL
CO1	<i>Describe</i> the basic definitions and governing	Cognitive	Remember
	Equations of CFD.		
CO2	<i>Explain</i> and <i>manipulate</i> the approach of finite	Cognitive	Apply Guided
	Difference method		response
CO3	<i>Illustrate</i> and <i>measure</i> the basic techniques of finite Volume method	Cognitive	Analyze Mechanism

CO4	<i>Formulate</i> and <i>measure</i> the basic techniques of finite Element method.	Cognitive	Create Overt response
CO5	Appraise the applications of CFD in various fields.	Cognitive	Evaluate
CO6	<i>Explain</i> the use of CFDin Aerospace vehicles.	Cognitive	Apply

UNITI INTRODUCTION

Governing equations- Discretization – Pressure velocity coupling – Mesh generation – Multigrid method – Consistency – Stability – Convergence – Accuracy – Efficiency – Boundaryconditions- Turbulencmodeling- Different panel methods.

UNITII FINITEDIFFERENCEMETHOD

Classification of partial differential equation - Explicit and Implicit methods – ADI methods –First order wave equation – Stability of Hyperbolic and elliptic equation -Conservative, Upwind and TransportiveProperty –Upwind Differencing and Artificial Viscosity–Hybrid scheme.

UNITIII FINITEVOLUMEMETHOD

Basic techniques–Generalized approach–Lax-Vendor off Time Stepping–Runge Kutta Time Stepping–Multistage Time Stepping-Equations with first derivatives–Equations with secondDerivatives-Vorticitytran sport formulation–Applications.

UNITIV FINITEELEMENTMETHOD

Galerkin'sweakformulation–weightedresidualwiththeanalyticalsolutionasthetrialfunction – Galerkin's weighted residual form at elemental level – Element formulation for the 2D steadystate heat transfer problem - Approximation for the thermal profile – Determination of element equations– Assembly of elements and solutions of theglobal system equations.

UNITV APPLICATIONS

CFD as a Design tool – CFD as a Research tool – Aerospace applications - Steady and unsteady Analysis - Fluid analysis over the aircrafts& rockets - Fluid analysis inside the Engine – Thermal Analysis – Re-entry Vehicle - Aerodynamic heating - Fluid structure interaction –Satellite's Thermal environment-Introductionto CFD simulation softwarepackages.

TEXTBOOKS

- 1. GautamBiswas,SomenathMukherjee,,"ComputationalFluidDynamics"AlphaScience International,2014.
- JiyuanTu,GuanHengYeoh,ChaoqunLiu,"ComputationalFluidDynamics:APracticalApproac h",Butterworth-HeinemannLtd;2ndRevisededitionedition(21September 2012).
- 3. JohnD.AndersonJr.,"ComputationalFluidDynamics",Mcgraw-HillSeries,2010.
- 4. C.A.J.Fletcher, "ComputationalTechniquesforFluidDynamics1" SpringerVerlag, 1995.
- 5. C.A.J.Fletcher, "ComputationalTechniquesforFluidDynamics2", SpringerVerlag, 1995. **REFERENCEBOOKS**
- 1. H.K.VersteegandW.Malalsekera"AnIntroductiontoComputationalFluidDynamics, TheFiniteVolumeMethod",Longman Scientific& Technical,1995.

9L +3T

9L + 3T

9L +3T

9L +3T

. 12

- 2. T.J.Chung, "ComputationalFluidDynamics", CambridgeUniversityPress, 2002.
- 3. C.Hirch, "NumericalComputationofInternalandExternalFlows" Volume-2, John Wileyand Sons, 1994.

List of Experiments

- 1. Steadyandtransientflow overAerofoil.
- 2. TurbulentflowandHeattransferin amixedElbow.
- 3. Nozzleflowforasolidpropellantrocket.
- 4. Waterand air inaspinning bowl.
- 5. ChemicalmixingandGaseouscombustion.
- 6. CombinedradiationandNaturalconvectionin asquarebox.
- 7. CombustioninJetengine'sCombustionchamber.
- 8. CombustioninLiquidrocketEngine.
- 9. Rotorandstatorinteractionusingslidingmeshes.
- 1 Turbineblade coolingtechniques.
- 0.

LECTURE:45

TUTORIAL:15

PRACTICAL:30

TOTAL:90

COVs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Total /5
PO ₁	3	3	3	3	3	3	18	3
PO ₂	3	2	2	3	2	2	14	3
PO ₃	2	3	3	3	2	2	15	3
PO ₄	2	3	3	3	2	2	15	3
PO ₅	3	3	3	3	3	2	15	3
PO ₆	1	1	1	2	2	2	9	2
PO ₇	2	2	2	2	2	2	12	2
PO ₈	0	0	0	0	0	0	0	0
PO9	2	2	2	2	2	2	12	2
PO ₁₀	0	0	0	0	0	0	0	0

XAS701--Mapping of CO with PO

PO 11	0	0	0	0	0	0	0	0
PO12	2	2	2	2	2	2	12	2
PSO ₁	2	2	2	2	2	2	12	2
PSO ₂	3	3	3	3	3	3	18	3

Semeste	er	VII								
Subject	Name	AVIONICS								
Subject	Code	XAS 702								
Prerequ	uisite	NIL								
	L-T	- P - C	C:P:A		L –T –P –H					
	3-0	-1-4	3:0.9:0.1		3-0-2-5					
Course	Outco	me:			Do	main				
					C or	P or A				
CO1	Descr	ibe, understand,	construct and repo	ort Avionics	C (Re	member,				
	system design and development					and, Apply)				
					P (Me	chanism)				
						espond)				
CO2			react and perform	the Digital	C (Remember,					
	Avior	nics Architecture			Understand)					
					P (Set)					
					A (Respond)					
CO3		· · · ·	are, reproduce and	•	C (Remember,					
	displa	ys, i/o devices an	d power in the avioni	es systems.	Understand, Evaluate)					
					P (Guided Response)					
					A (Receiving)					
CO4		· •	Aerials and Propaga	ation in the						
	avion	ics systems.				erstand)				
					· · ·	chanism)				
~~-						espond)				
CO5	0		uct and report the							
	Valid	ation and Certific	ation in the avionics s	ystems.		chanism)				
COUD					A (Respond)					
COURS	SE CO	NIENI								
UNIT-I	IN	TRODUCTION	TO AVIONICS			15hrs				
Introduction to Construction Management - Project organization – Construction Economics - Economic Decision Making - Time value of money - cash flo diagrams - Evaluation Alternatives –BOT, BOOT, BOM, DBOT Projects.						y - cash flow				

UNIT –II	15hrs	
	Basic concepts in the development of construction plans– types of work breakdown structure – planning techniques - bar charts - network diagram - critical path method -program evaluation and rev -	preparation of
UNIT-III	DISPLAYS, I/O DEVICES AND POWER	15 hrs
	Materials- inventory control: types of inventory, EOQ - different inventory controls. Equipment: Classification of construction equipment and selecting of equipment. Manpower: Classes of labour - cost of productivity.	nent- planning
UNIT -IV	AERIALS AND PROPAGATIO	15 hrs
	Tender notice-Tender document-EMD-SD-Prebid conference-Awar of contract agreement-Site meeting-Payment of bills-Breach Liquidated damages-Project closure	0 0
UNIT V	SYSTEM ASSESSMENT, VALIDATION AND CERTIFICATION	15 hrs
	Introduction to construction quality - Inspection, quality contro assurance – Quality circle - Quality management system Constru accidents and injuries - Personal protective equipments - Health and OSHAS regulations - Safety and health management system- Safety	safety act and
TEXT BOO	DKS	
 2. Myr 3. RF I 	G. Collinson, "Introduction to Avionics", Chapman & Hall Publicatio on Kayton and Walter R fried, Avionics Navigation Systems, John W Inasforde, Heywood and Company London: Radio Aids to Civil Avia	iley and Sons.
REFEREN		
	dleton, D.H., Ed., "Avionics Systems, Longman Scientific an gman Group UK Ltd., England, 1919.	d Technical",
2. Spitz 1917	zer, C.R., "Digital Avionic Systems", Prentice Hall, Englewood Clif	fs, N.J., USA.,
3. Brai 1993	n Kendal, "Manual of Avionics", The English Book House, 3rd Editio 3.	on, New Delhi,
PRACTICA	ALS	15hrs
 Stud Stud Adde Multi 	y of basic gates. y of installing and configuring of AFDX card in transmitting and rece y of Determination of gain for the given antenna. er / Subtractor tiplexer / Demultiplexer	eiving mode.
6. Enco	oder / Decoder	

- 7. Interface programming with 4 digit 7 segment display and switches and LED
- 8. Study of MIL-STD 1553B Data bus
- 9. Digital to analog converter

L-45 hrs P-30hrs Total – 75 hrs

Mapping of COs with POs

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
CO1	3	3	0	2	1	1	2	0	0	0	0	1	0	0
CO2	2	2	0	2	2	1	1	0	0	0	0	1	0	0
CO3	3	3	0	3	2	2	2	0	0	0	0	1	2	2
CO4	1	2	0	1	1	0	0	0	0	0	0	1	0	0
CO5	2	2	0	2	3	2	1	0	0	0	0	1	0	0
	11	12	0	10	9	6	6	0	0	0	0	5	2	2

1 - Low, 2 – Medium, 3 – High

COURSE CODE	XASE17	L	Т	Р	С
COURSE NAME	AERO ENGINE MAINTENANCE	3	0	0	3
PREREQUISITES	AIRCRAFT PROPULSION	L	Т	Р	Η
C:P:A= 3:0:0		3	0	0	3
COUDER OD IDOT					

COURSE OBJECTIVESTo know about aircraft engine maintenance procedures.

• To know about overhaul procedures and inspection procedures of Aircraft engine.

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Recall</i> about basis of Piston engine and <i>Describe</i> about its Maintenance Procedures.	Cognitive	Remember Understand
CO2	<i>Illustrate</i> various inspections methods of Piston Engine and <i>Explain</i> its overhaul procedures.	Cognitive	Understand Apply
CO3	<i>Explain</i> about checks and maintenance to be carried out for piston engine parts.	Cognitive	Understand Apply

CO4	<i>Recall</i> about basis of Jet engine and inspection procedures.	Cognitive	Remember Understand
CO5	Describe about Maintenance Procedures of Jet engine.	Cognitive	Understand Apply
CO6	<i>Illustrate</i> various inspections methods of Jet Engine and <i>Explain</i> its overhaul procedures.	Cognitive	Understand Apply

UNIT I CLASSIFICATION OF PISTONENGINE COMPONENTS

Typesofpistonengines–Principlesofoperation–Functionofcomponents–Materialsused– Detailsofstartingtheengines–Detailsofcarburetionandinjectionsystemsforsmalland largeengines– Ignitionsystemcomponents–Sparkplugdetails–Engineoperatingconditions at various altitudes – Maintenance and inspection check to be carried out.

UNIT II INSPECTIONS OF PISTON ENGINES

Inspectionandmaintenanceandtroubles hooting–Inspectionofallenginecomponents– Dailyandroutinechecks–Overhaulprocedures–Compressiontestingofcylinders–Special inspectionschedules–Enginefuel,controlandexhaustsystems–Enginemountandsuper charger – Checks and inspection procedures.

UNIT III INSPECTIONS OF PISTON ENGINES

Symptomsoffailure–Faultdiagnostics–Casestudiesofdifferentenginesystems–Tools andequipmentrequirementsforvariouschecksandalignmentduringoverhauling–Toolsfor inspection–Toolsforsafetyandforvisualinspection–Methodsandinstrumentsfornon destructivetestingtechniques–Equipmentforreplacementofpartandtheirrepair.Engine Engine testing procedures and schedule preparation – Online maintenance.

UNIT IV CLASSIFICATION OF JET ENGINE COMPONENTS

12Typesofjetengines–Principlesofoperation–Functionsofcomponents–Materialsused– Detailsofstartingandoperatingprocedures–Gasturbineengineinspection&checks–Useof instrumentsforonline maintenance– Specialinspectionprocedures:ForeignObjectDamage– Blade damage – Maintenanceproceduresofgasturbineengines– Troubleshootingandrectificationprocedures– Component maintenance procedures – Systems maintenance procedures.

UNIT V OVERHAUL PROCEDURES

EngineOverhaulprocedures–Inspectionsandcleaningofcomponents–Repairsschedulesfor overhaul –Balancing of Gas turbine components – Trouble Shooting - Procedures for rectification– Conditionmonitoringoftheengineongroundandataltitude–Enginehealth monitoring and corrective methods.

LECTURE: 45

TUTORIAL: 0

TOTAL: 45

TEXT BOOKS

1. Kroes &Wild, "Aircraft Power plants", 7thEdition – McGraw Hill, 1994.

5

8

10

12

10

REFERENCE BOOKS

1. Turbomeca, "Gas Turbine Engines", The English Book Store, 1993.

2. United TechnologiesPratt &Whitney, "The Aircraft Gas turbine Engine and its Operation", The English Book, 1993.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	3	3	3	3	3	3	18	3
PO ₃	0	3	3	3	3	3	15	2
PO ₄	0	3	3	3	3	3	15	2
PO ₅	0	0	0	0	0	0	0	0
PO ₆	1	1	1	1	1	1	6	1
PO ₇	0	0	0	0	0	0	0	0
PO ₈	1	2	2	1	1	2	9	2
PO ₉	0	0	0	0	0	0	0	0
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0	0
PO ₁₂	3	2	2	3	3	2	15	3
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	2	2	2	2	2	2	12	2

XASE17	-Mapping	of CO	with PO
--------	----------	-------	---------

COURSE CODE XASE21 COURSE NAME ROCKETS AND MISSILES PREREQUISITES NIL C:P:A= 3:0:0 COURSE OBJECTIVES

L	Т	Р	С
3	0	0	3
L	Т	Р	Η
3	0	0	3

- To learn about rocket systems.
 - To understand the aerodynamic behavior of rocket and missiles.
 - To know about the staging and control.

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Explain</i> the design considerations of igniters, injectors and combustion chamber used in rocket system.	Cognitive	Understand
CO2	<i>Identify</i> the elements and components of missiles and rockets.	Cognitive	Apply
CO3	Assess the forces and moments acting on rocket and missiles.	Cognitive	Evaluate

CO4	<i>Compare</i> the one dimensional and two dimensional rocket motions in free space and gravitational field.	Cognitive	Understand
CO5	<i>Inspect</i> the staging and control methods of rockets and missiles.	Cognitive	Analyze
CO6	<i>Examine</i> the performance of materials used rockets and missiles.	Cognitive	Analyze

UNIT I **ROCKETS SYSTEM**

Ignition System in rockets-Types of Igniters-Igniter Design Considerations- Design Consideration of liquid Rocket Combustion Chamber, Injector Propellant Feed Lines, Valves, Propellant Tanks Outlet and Helium Pressurized and Turbine feed Systems – Propellant Slash and Propellant Hammer - Combustion System of Solid Rockets.

UNIT II **AERODYNAMICS OF ROCKETS AND MISSILES**

Airframe Components of Rockets and Missiles- Forces Acting on a Missile - Classification of Missiles – Methods of Describing Aerodynamic Forces and Moments – Lateral Aerodynamic Moment – Lateral Damping Moment and Longitudinal Moment of a Rocket – lift and Drag Forces- Drag Estimation-Body Upwash and Downwash in Missiles - Rocket Dispersion -Numerical Problems.

UNIT III **ROCKETMOTION**

One Dimensional and Two Dimensional rocket Motions in Free Space and Homogeneous Gravitational Fields - Description of Vertical, Inclined and Gravity Turn Trajectories -Determination of range and Altitude Simple Approximations to Burnout Velocity.

UNIT IV STAGING AND CONTROL OF ROCKET VEHICLES

Rocket Vector Control-Methods - Thrust determination- SITVC- Multistage rockets- Vehicle Optimization – Stage Separation Dynamics – Separation Techniques.

UNIT V	MATERIALS FOR ROCKETS AND MISSILES	5
Selection of	Materials – Special Requirements of Materials at Adverse conditions.	
LECTURE :	45 TUTORIAL: 0	TOTAL: 45

TEXT BOOKS

1. Sutton, G.P., et al., "Rocket Propulsion Elements", John Wiley & Sons Inc., 1993. **REFERENCE BOOKS**

1. Mathur, M., and Sharma, R.P., "Gas Turbines and Jet and Rocket Propulsion", Standard Publishers, 1998.

2. Cornelisse, J.W., "RocketPropulsionandSpaceDynamics", J.W., Freeman&Co.Ltd., 1982.

3. Parket, E.R., "Materialsfor Missiles and Spacecraft", McGraw-HillBook Co. Inc., 1982.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	2	17	3

XASE21 -Manning of CO with PO

8

11

11

10

PO ₂	3	2	2	3	2	2	14	2
PO ₃	2	3	3	3	2	2	15	3
PO ₄	3	3	3	3	2	1	15	3
PO ₅	0	0	0	0	0	1	1	0
PO ₆	1	1	1	2	2	1	8	1
PO ₇	2	2	2	2	2	2	12	2
PO ₈	0	0	0	0	0	2	2	1
PO ₉	1	1	1	1	1	1	6	1
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	1	1	1	1	1	1	6	1
PO ₁₂	2	2	2	2	3	2	12	2
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	1	1	1	1	1	2	7	2

Semeste	r	VII										
Subject	Name	CYBER SECU	RITY									
Subject	Code	XUM 706										
	L –T -	-Р -С	C:P:A	L -	-Т –Р –Н							
	0-0-	- 0- 0	3:0:0	3-	0 - 0 - 3							
Course	Outcon	ne:			Domain							
					C or P or A							
CO1		Able to understandthe Cyber Security Policy, Laws and Regulations C (Remember)										
CO2	Able to	o discuss the Cyb	per Security Management Cond	cepts	C (Understand)							
CO3	Able to	o understand the	Cyber Crime and Cyber welfa	re	C (Understand)							
CO4	Able to	o discuss on issue	es related to Information Secur	rity Concepts	C (Understand)							
CO5	Able to	o understandvarie	ous security threats		C (Understand)							
COURS	E CON	TENT										
UNIT I	INT	RODUCTION			9 hrs							
	Cyber Security – Cyber Security policy– Domain of Cyber Security Policy – Laws and Regulations – Enterprise Policy – Technology Operations – Technology Configuration - Strategy Versus Policy – Cyber Security Evolution – Productivity – Internet – E commerce – Counter Measures – Challenges											
UNIT I	CY	BER SECURIT	Y OBJECTIVES AND GUI	DANCE	9 hrs							

	Cyber Security Metrics – Security Management Goals – Countin Security Frameworks – E Commerce Systems – Industrial Control Mobile Devices – Security Policy Objectives – Guidance for Decis at the Top – Policy as a Project– Cyber Security Management – A Cyber Security Documentation – The Catalog Approach – Catalog Security Policy Taxonomy.	Systems – Personal sion Makers – Tone Arriving at Goals –
UNIT III	CYBER SECURITY POLICY CATALOG	9hrs
	Cyber Governance Issues – Net Neutrality – Internet Names Copyright and Trademarks – Email and Messaging - Cyb Malvertising- Impersonation – Appropriate Use – Cyber Crime Privacy - Cyber Conflict Issues – Intellectual property Theft – Cyber Sabotage – Cyber Welfare	er User Issues - e – Geo location –
UNIT IV	SECURITY SYSTEMS	9hrs
	Information Security Overview: Background and Current Scenario Goals for Security - E-commerce Security - Computer Forensics - S	• •
UNIT V	LEGAL ETHICS	9hrs
	Overview of Security threats -Weak / Strong Passwords and Pa Insecure Network connections - Malicious Code - Programming E and Cyber terrorism - Information Warfare and Surveillance	
	L- 45	5 hrsTotal – 45 hrs
TEXT BO	OKS	
1. Nii	a Cadhala "Information Systems Sacurity Sacurity Man	
ISE 2. The Inv	na Godbole, "Information Systems Security: Security Mana Imeworks and Best Practices, w/cd", Wiley Publications, 2008, ISB 3N 13 :9788126516926 Iomas J. Mowbray, "Cybersecurity: Managing Systems, Conduc restigating Intrusions", Wiley Publications, 2013, Kindle 2654919X, ISBN 13 :9788126549191	N 10: 8126516925, cting Testing and
ISE 2. The Inv 812 3. D.5	ameworks and Best Practices, w/cd", Wiley Publications, 2008, ISB 3N 13 :9788126516926 omas J. Mowbray, "Cybersecurity: Managing Systems, Conduct restigating Intrusions", Wiley Publications, 2013, Kindle	N 10: 8126516925, cting Testing and Edition,ISBN 10:
ISE 2. The Inv 812 3. D.S 3 rd REFERE	 Imeworks and Best Practices, w/cd", Wiley Publications, 2008, ISB ISB 13 :9788126516926 ISB J. Mowbray, "Cybersecurity: Managing Systems, Conductestigating Intrusions", Wiley Publications, 2013, Kindle 2654919X, ISBN 13 :9788126549191 ISBN 13 :9788126549191 Yadav, "Foundations of Information Technology", New Age Internet Edition, 2006, ISBN-10: 8122417620, ISBN-13: 978-8122417623 	N 10: 8126516925, cting Testing and Edition,ISBN 10: national publishers,

Insecurity", Springer Publisher, 2005 Edition.

E-REFERENCES

- 1. https://www.cryptool.org/en/
- 2. https://www.metasploit.com/
- 3. http://sectools.org/tool/hydra/
- 4. http://www.hping.org/
- 5. http://www.winpcap.org/windump/install/
- 6. http://www.tcpdump.org/
- 7. https://www.wireshark.org/
- 8. https://ettercap.github.io/ettercap/
- 9. https://www.concise-courses.com/hacking-tools/top-ten/
- 10. https://www.cirt.net/Nikto2
- 11. http://sqlmap.org/

Mapping of COs with Gas

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
CO1	3	2	0	2	0	0	1	0	0	0	0	0	0	0
CO2	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO3	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO4	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO5	2	2	0	2	0	0	1	0	0	0	0	0	0	0
CO6	1	2	0	3	0	2	2	2	2	0	2	2	0	0
	15	12	9	13	9	8	10	2	8	0	8	8	3	0

1 - Low, 2 – Medium, 3 – High

Semest	er	VII			
Subject	t Name	PROJECT	T PHASE-I		
Subject	t Code	XAS 705			
	L –T –P	-С	C:P:A	L –T –	P–H
	0 - 0 - 2	2-2	1.5:0.5:0.5	0- 0 – 2	2-4
Course	Outcon	ne:		1	Domain
					C or P or A
CO1	Identif	fy the engine	eering problem relevant to	the domain interest.	C(Analyze)
CO2	Interp	ret and infer	literature survey for its wo	orthiness.	C(Analyze&
					Apply)
CO3	Analys proble		fy an appropriate techniqu	ue for solve the	C(Analyze, Apply)
CO4		m experiment t and interpr	ntation /Simulation/Progra ret data.	mming/Fabrication,	P&C(CoR, Create, Apply)
CO5	Record	d and report	the technical findings as a	document.	C(Remember, Understand)
CO6		e oneself as to manage	a responsible member and projects.	display as a leader in	A &C(Value, Organization,
					Create)
CO7	Respo	nding of pro	ject findings among the te	chnocrats.	A(Responding)

Mapping of COs with Pos

	P01	P02	P03	PO4	P05	P06	P07	PO8	P09	P010	P011	P012	PSO 1	PSO2
CO1	3	2	0	2	0	0	1	0	0	0	0	0	0	0
CO2	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO3	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO4	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO5	2	2	0	2	0	0	1	0	0	0	0	0	0	0
CO6	1	2	0	1	0	2	2	2	2	0	2	2	0	0
	15	12	9	11	9	8	10	2	8	0	8	8	3	0

1 – Low, 2 – Medium, 3 – High

COURSECODE	XASM03	L	Τ	Р	C
COURSENAME	AERO AND SPACE MODELING	1	0	1	0
PREREQUISITES	NIL	L	Т	Р	Н
C:P:A=0:0:0		2	0	0	2

COURSEOBJECTIVES

- Toimparttheskillsthestudentstoredaerospace componentandassemblydrawing.
- Tomakestudentstoobtainskillsindesignanddesigningvariouscomponents of Aerospace Vehicles.

COUR	RSEOUT	TCOMES	DOMAIN	LEVEL	
CO1	Explain	<i>n</i> theimportanceof industrydrawing	Cognitive	Understand	b
CO2	Indicat	ethecomponentsofproductiondrawings	Cognitive	Analyze	
CO3	Predict	theconceptofassemblyprocess	Cognitive	Remember	r
CO4	Identif	vthemachine elements	Cognitive	Remember	r
CO5	Descril	be the components of Aerospace vehicles	Cognitive	Understand	t
CO6	Exercis	sedesignanddraftingoffuselageandrocket	Psychomotor	Respond	
UNIT	I	INTRODUCTION			6
-		rawingindustry;Typesofdrawings-sketches, nentandassemblydrawings;productiondrawi	U U	msand	
UNIT	· •	COMPONENTS OFPRODUCTIOND	8		6
		the production drawings- drawing tem		aterial (BOM)	-
theirin	dication	onmaindrawing;Conventionalrepresentation	ofmaterials, surfac	eroughness;No	tes,s
cale,ur	nitandma	nufacturingorassemblyprocesssheet,referen	ce;Descriptionon		their
specifi	cation,co	onvention, indicationsymbols and their location	ionwithinthedrawi	ng.	
UNIT	III	MACHINEELEMENTS			6
Termin	nology,sy	mbolicrepresentationofthread-sectionalvie	wsofthreads;Faste	ners-	L
boltand	dnutwith	washer;Keys,rivetedjoints,pulleysandcoupl	ings;Weldedjoints	;bearings,	
		• • • • • •		-	

UNI	TIV	AEROSPA	CEVEH	ICLES, CON	IPONENTSA	NDASSEMI	BLIES	6
Sket	chesandlay	outofaircraft	s,launchve	ehicleswithter	minology,andr	nainfunction	s-parachute	e, hot
air	balloons,	glider,	drone,	helicopter,	gyroplane,	propeller	plane,	stunt
plan	e,biplane,se	aplane,milit	aryjetplan	e,militarytran	sportplane,sup	ersonicaircra	ftandspace	
shut	tle.							
UNI	TV	PRACTIC	E					6
Layo	outoffuselag	geassembly a	andThreed	imensionalde	sign anddraftin	gof rocket.		<u> </u>
SOF	TWAREU	ISED						
CAI	IA							
REF	FERENCE							
1.	· ·	,		e,	earning,2009.			
2.	Narayana, tional,201		iah,P.,and`	VenkataRedd	yK.,MachineD	rawing,4thed	.,NewAge	Interna
LEC	CTURE:30	TU	TORIAL:	0 PI	RACTICAL:0	TO	OTAL: 30	

XASM03-Mapping of CO with PO

COVs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Total /5
PO ₁	1	1	1	1	1	1	6	1
PO ₂	1	1	1	1	1	1	6	1
PO ₃	3	3	3	3	3	3	18	3
PO ₄	0	0	0	0	0	0	0	0
PO ₅	3	3	3	3	3	3	18	3
PO ₆	0	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0	0
PO 10	0	0	0	0	0	0	0	0
PO 11	1	1	1	1	1	1	6	1

PO ₁₂	1	1	1	1	1	1	6	1
PSO ₁	1	1	1	1	1	1	6	1
PSO ₂	0	0	0	0	0	0	0	0

Semeste	er	VIII			
Subject	Name	PROJECT	PHASE-II		
Subject	Code	XAS 804			
	L –T –P	-С	C:P:A	L –7	Г –Р –Н
(0-0-12	- 12	6:3:3	0- 0	- 12- 24
Course	Outcom	e:			Domain
					C or P or A
CO1	Identif interes	• •	ering Problem relevant to the	e domain	C(Analyze)
CO2	Interpr	et and Infer I	iterature survey for its wort	hiness.	C(Analyze,
					Apply)
CO3	Analys proble		y an appropriate technique f	or solve the	C(Analyze, Apply)
CO4		n experiment ation/Program	ation nming/Fabrication, Collect a	and interpret	P&C(CoR, Create, Apply)
CO5	Record	l and Report (he technical findings as a de	ocument.	C(Remember, Understand)
CO6		e oneself as a a am to manage	responsible member and dis projects.	splay as a leader	A &C(Value, Organization,
		C			Create)
CO7	Respon	nding of proje	ect findings among the techr	nocrats.	A(Responding)

Mapping of COs with GAs

	CO1	CO2	CO3	CO4	CO5	CO6	CO7	Total
PO1	3	2	1	2	1	-	1	10
PO2	3	2	1	2	1	-	1	10
PO3	-	-	1	3	1	-	-	5
PO4	-	1	2	3	1	2	2	11
PO5	-	-	2	3	1	-	-	6

PO6	1	-	1	1	-	3	3	10
PO7	1		1	1	-	1		4
PO8	1	-	1	1	-	3	-	6
PO9	-	-	-	-	2	3	1	6
PO10	-	-	-	-	3	3	3	9
PO11	-				2	2	2	6
PO12	1				3	3	1	8

1 - Low, 2 – Medium, 3 – High

UAV Specialization Course Syllabus

COURSECODE	XASH01	L	Τ	Р	С
COURSENAME	ELEMENTS OF UAV	3	0	0	3
PREREQUISITES	-	L	Т	Р	H
C:P:A=3:0:0	-	0	0	0	3
UNIT I INTE	ODUCTION TO UAV				9
TAV Basic terminol	ogy - Classification – Applications – C3 system	– Differen	ce he	tween	IIA'
and Drones.	by classification reprications co system	Differen		tween	
	ANNED AERIAL VEHICLES AND SYSTEM once between UAV and UAS - Long-range, Mediur			IAV -	9 Close
	V – MUAV - MAV & NAV – UCAV - Novel hybrid	0			
-	trol UAS – UAS Operational Safety Issues – Applica			UAV	- 11
				10	
	ANNED PARTS, COMPONENTS, SYSTEMS AN	D ACCESS		5	9
	, ,	ommunicat	ions -	-Ante	nnas
JAV Hardware's - 1	JAV Hardware's Architecture - Sensors - RF C				
JAV Hardware's - 1	, ,				
UAV Hardware's - 1 Ground Equipments	JAV Hardware's Architecture - Sensors - RF C	V Software	's Ar	chitec	ture.
UAV Hardware's - Ground Equipments Fixed Wing Unma	UAV Hardware's Architecture - Sensors – RF C – Imaging – Propulsion – UAV Softwares - UA aned Aerial Vehicle – Multirotor Unmanned	V Software	's Ar	chitec	ture.
UAV Hardware's - Ground Equipments Fixed Wing Unma Difference between	UAV Hardware's Architecture - Sensors – RF C – Imaging – Propulsion – UAV Softwares - UA aned Aerial Vehicle – Multirotor Unmanned	V Software	's Ar	chitec	ture. FOL
UAV Hardware's - Ground Equipments Fixed Wing Unma Difference between V	UAV Hardware's Architecture - Sensors – RF C – Imaging – Propulsion – UAV Softwares - UA aned Aerial Vehicle – Multirotor Unmanned Vings and Rotors.	V Software I Aerial V	's Ar	chitec e- VT	ture. FOL
UAV Hardware's - Constraints Ground Equipments Fixed Wing Unma Difference between Constraints UNIT IV UAV Forces and Moments	JAV Hardware's Architecture - Sensors – RF C – Imaging – Propulsion – UAV Softwares - UA aned Aerial Vehicle – Multirotor Unmanned Vings and Rotors.	V Software I Aerial V ics – Aircraf	's Artenicle	chitec e- VT	ture. FOL
UAV Hardware's - Constraints Ground Equipments Fixed Wing Unma Difference between V UNIT IV UAV Forces and Moments UAV Kinematics on Q	 JAV Hardware's Architecture - Sensors – RF C Imaging – Propulsion – UAV Softwares - UA Ined Aerial Vehicle – Multirotor Unmanned Vings and Rotors. KINEMATICS Working Principle of Drone - Rigid Body Dynamic 	V Software I Aerial V ics – Aircraf	's Artenicle	chitec e- VT	ture. FOL 9 ables
UAV Hardware's - IGround EquipmentsFixed Wing UnmaDifference between VUNIT IVUAVForces and MomentsUAV Kinematics on QUNITVUAV	 JAV Hardware's Architecture - Sensors – RF C Imaging – Propulsion – UAV Softwares - UA aned Aerial Vehicle – Multirotor Unmanned Vings and Rotors. XINEMATICS Working Principle of Drone - Rigid Body Dynami uadcopters – Transitional Kinematics – Rotational Kinematics 	V Software I Aerial V ics – Aircraf nematics – S	's Ar ehicle t State tate E	chitec >- VT e Varia quation	ture. FOL ables n.
UAV Hardware's - IGround EquipmentsFixed Wing UnmaDifference between VUNIT IVUAVForces and MomentsUAV Kinematics on QUNITVUAVGround Control station	 JAV Hardware's Architecture - Sensors – RF C Imaging – Propulsion – UAV Softwares - UA Imed Aerial Vehicle – Multirotor Unmanned Vings and Rotors. XINEMATICS Working Principle of Drone - Rigid Body Dynami uadcopters – Transitional Kinematics – Rotational Kin 	V Software I Aerial V ics – Aircraf nematics – S JAV - Appl:	's Ar ehicle t State tate E	chitec >- VT e Varia quation	ture. FOL ables n. Remo
UAV Hardware's - IGround EquipmentsFixed Wing UnmaDifference between VUNIT IVUAVForces and MomentsUAV Kinematics on QUNITVUAVGround Control staticSensing – Applicatio	 JAV Hardware's Architecture - Sensors – RF C Imaging – Propulsion – UAV Softwares - UA Imed Aerial Vehicle – Multirotor Unmanned Vings and Rotors. XINEMATICS Working Principle of Drone - Rigid Body Dynami uadcopters – Transitional Kinematics – Rotational Kinematics – Rotatio	V Software I Aerial V ics – Aircraf nematics – S JAV - Appl Army appl	's Ar ehicle t State tate E ication	chitec >- VT e Varia quation	ture. FOL ables n. Remo
UAV Hardware's - IGround EquipmentsFixed Wing UnmaDifference between VUNIT IVUAVForces and MomentsUAV Kinematics on QUNITVUAVGround Control staticSensing – Applicatio	 JAV Hardware's Architecture - Sensors – RF C Imaging – Propulsion – UAV Softwares - UA Imed Aerial Vehicle – Multirotor Unmanned Vings and Rotors. XINEMATICS Working Principle of Drone - Rigid Body Dynamic uadcopters – Transitional Kinematics – Rotational Kinematics – Naval application, 	V Software I Aerial V ics – Aircraf nematics – S JAV - Appl Army appl	's Art ehicle it State tate E ication ication es.	chitec >- VT e Varia quation	ture. FOL ables n. Remo Ford
UAV Hardware's - UAV Hardware's - UGV Hardware's - UGV Ground Equipments Fixed Wing Unma Difference between V UNIT IV UAV Forces and Moments UAV Kinematics on Q UNITV UAV Ground Control static Sensing – Application Application, Civilian, F LECTURE:45 TEXTBOOKS	 JAV Hardware's Architecture - Sensors – RF C Imaging – Propulsion – UAV Softwares - UA Imed Aerial Vehicle – Multirotor Unmanned Vings and Rotors. KINEMATICS Working Principle of Drone - Rigid Body Dynami Uadcopters – Transitional Kinematics – Rotational Kinematics – Rotational Kinematics – Rotational Kinematics – Rotational Kinematics – Naval application, aramilitary and Commercial application, UAS future TUTORIAL:0 	V Software I Aerial V ics – Aircraf nematics – S JAV - Appl Army appl -Case Studio	's Art ehicle it State tate E ication ication es.	ehitec e- VT e Varia quation n on F	ture. FOL ables n. Remo Ford
UAV Hardware's - I Ground Equipments Fixed Wing Unma Difference between V UNIT IV UAV Forces and Moments UAV Kinematics on Q UNITV UAV Ground Control static Sensing – Application Application, Civilian, F LECTURE:45 TEXTBOOKS 1. Reg Austin., "Umbed Sensing."	 JAV Hardware's Architecture - Sensors – RF C Imaging – Propulsion – UAV Softwares - UA uned Aerial Vehicle – Multirotor Unmanned Vings and Rotors. KINEMATICS Working Principle of Drone - Rigid Body Dynamic uadcopters – Transitional Kinematics – Rotational Kinematics – Rotational	V Software I Aerial V ics – Aircraf nematics – S JAV - Appl Army appl -Case Studio	's Art ehicle it State tate E ication ication es.	ehitec e- VT e Varia quation n on F	ture. FOL ables n. Remo For
UAV Hardware's - UAV Hardware's - UGV Hardware's - UGV Ground Equipments Fixed Wing Unma Difference between V UNIT IV UAV Forces and Moments UAV Kinematics on Q UNITV UAV Ground Control static Sensing – Application Application, Civilian, F LECTURE:45 TEXTBOOKS	 JAV Hardware's Architecture - Sensors – RF C Imaging – Propulsion – UAV Softwares - UA uned Aerial Vehicle – Multirotor Unmanned Vings and Rotors. KINEMATICS Working Principle of Drone - Rigid Body Dynamic uadcopters – Transitional Kinematics – Rotational Kinematics – Rotational	V Software I Aerial V ics – Aircraf nematics – S JAV - Appl Army appl -Case Studio	's Art ehicle it State tate E ication ication es.	ehitec e- VT e Varia quation n on F	ture. FOL ables n. Remo For
UAV Hardware's - I Ground Equipments Fixed Wing Unma Difference between V UNIT IV UAV Forces and Moments UAV Kinematics on Q UNITV UAV Ground Control static Sensing – Applicatio application, Civilian, F <u>LECTURE:45</u> TEXTBOOKS 1. Reg Austin., "Um REFERENCEBO	 JAV Hardware's Architecture - Sensors – RF C Imaging – Propulsion – UAV Softwares - UA uned Aerial Vehicle – Multirotor Unmanned Vings and Rotors. KINEMATICS Working Principle of Drone - Rigid Body Dynamic uadcopters – Transitional Kinematics – Rotational Kinematics – Rotational	V Software I Aerial V ics – Aircraf nematics – S JAV - Appl Army appl -Case Studio I0.	's Art ehicle it State tate E ication ication es.	ehitec e- VT e Varia quation n on F	ture. FOL ables n. Remo
UAV Hardware's - Ground Equipments Fixed Wing Unma Difference between UNIT IV UAV Forces and Moments UAV Kinematics on Q UNITV UAV Ground Control static Sensing – Application application, Civilian, F LECTURE:45 TEXTBOOKS 1. Reg Austin., "Unit REFERENCEBOO 1. Milman&Halki	 JAV Hardware's Architecture - Sensors – RF C Imaging – Propulsion – UAV Softwares - UA Imed Aerial Vehicle – Multirotor Unmanned Vings and Rotors. KINEMATICS Working Principle of Drone - Rigid Body Dynamic Uadcopters – Transitional Kinematics – Rotational Kinematics – Rotati	V Software I Aerial V ics – Aircraf nematics – S JAV - Appl Army appl -Case Studio 10.	's Art ehicle it State tate E ication ication es.	ehitec e- VT e Varia quation n on F	ture. FOL ables n. Remo
UAV Hardware's - Ground Equipments Fixed Wing Unma Difference between V UNIT IV UAV Forces and Moments UAV Kinematics on Q UNITV UAV Ground Control static Sensing – Applicatio application, Civilian, F LECTURE:45 TEXTBOOKS 1. Reg Austin., "Unn REFERENCEBOO 1. Milman&Halki 2. Malvino& Leach	 JAV Hardware's Architecture - Sensors – RF C Imaging – Propulsion – UAV Softwares - UA uned Aerial Vehicle – Multirotor Unmanned Vings and Rotors. XINEMATICS Working Principle of Drone - Rigid Body Dynamic uadcopters – Transitional Kinematics – Rotational Kinematics – Rotati	V Software I Aerial V ics – Aircraf nematics – S JAV - Appl Army appl -Case Studio 10.	's Art ehicle it State tate E ication ication es.	ehitec e- VT e Varia quation n on F	ture. FOL ables n. Remo

COURSECODE	XASH02	L	Т	Р	С
COURSENAME	UAVDESIGN, CONTROL & METEOROLOGY	3	0	0	3
PREREQUISITES	-	L	Τ	Р	Η
C:P:A=3:0:0		0	0	0	3
UNIT I INTRO	ODUCTION TO UAV DESIGN				9
History – UAV Types	s and classification & Configurations – Design of UAV	/ – F	ixed	Wing	Dror
- Blended Wing Dr	one – Rotor Wing Drone – Basic Parts of Airfoil	– A	ngle	of att	ack
Symmetric Airfoil –	Aerodynamic Stall - Aerodynamic Drag - Selection	n of	Airfo	oil for	Ma
Wing – Flapping Win	gs Ornithopters – Design and Technical Comparison of	f UA	V's.		
	GN OF FIXED WING UAV & MULTIROTOR UA				9
Anatomy of fixed v	ving and multirotor – Airframe Structures and Me	echai	nisms	- M	ateri
Selection Parameter	- Fuselage Design - Electric Propulsion system - F	Paylo	ad C	alcula	tion
	Flight Controller Selection - ESC Selection - BE	C –	4 to	10 cl	nann
Infust Calculation –	The controller beleetion Libe beleetion DL				
	eiver calibration Techniques - Power flow in an UAV	/ - E	Ingine	e Prop	ulsi
Fransmitter and Rece	C C	/ - E	lngine	e Prop	ulsi
Transmitter and Recently System.	eiver calibration Techniques - Power flow in an UAV				
Transmitter and Rece system. UNITIII DESIG	eiver calibration Techniques - Power flow in an UAV				
Fransmitter and Recensive system. UNITIII DESIG UAV Dynamics on Q	eiver calibration Techniques - Power flow in an UAV	amic	5 – N	ewton	Eul
Fransmitter and Recent system. UNITIII DESIC JAV Dynamics on Q Equation for Quadco	eiver calibration Techniques - Power flow in an UAV GN AND CONTROL Quadcopter - Transitional Dynamics – Rotational Dyna opter – controller input – Control system Design -	amic	5 – N	ewton	Eul
Transmitter and Rece system. UNITIII DESIC JAV Dynamics on Q Equation for Quadco Difference between P UNIT IV AUTO	eiver calibration Techniques - Power flow in an UAV <u>GN AND CONTROL</u> Quadcopter - Transitional Dynamics – Rotational Dyna opter – controller input – Control system Design - PM and PWM. <u>DNOMOUS AND AUTOPILOT SYSTEMS</u>	amic: – Pl	5 – N D, P	ewton WM,	Eul PPI
Transmitter and Recently Stem. UNITIII DESIC JAV Dynamics on Q Equation for Quadeon Difference between P UNIT IV AUTO	eiver calibration Techniques - Power flow in an UAV GN AND CONTROL Quadcopter - Transitional Dynamics – Rotational Dyna opter – controller input – Control system Design - PM and PWM.	amic: – Pl	5 – N D, P	ewton WM,	Eul PPI
Transmitter and RecentUNITIIIDESIGNJAV Dynamics on QEquation for QuadedDifference between PUNIT IVAUTOAutonomous systems	eiver calibration Techniques - Power flow in an UAV <u>GN AND CONTROL</u> Quadcopter - Transitional Dynamics – Rotational Dyna opter – controller input – Control system Design - PM and PWM. <u>DNOMOUS AND AUTOPILOT SYSTEMS</u>	amica – Pl omo	s – N D, P us an	ewton WM, d Aut	Eul PPI
Transmitter and RecentUNITIIIDESIGNJAV Dynamics on QEquation for QuadedDifference between PJNIT IVAUTCAutonomous systemsSystem - Ground C	eiver calibration Techniques - Power flow in an UAV GN AND CONTROL Quadcopter - Transitional Dynamics – Rotational Dyna opter – controller input – Control system Design – PM and PWM. DNOMOUS AND AUTOPILOT SYSTEMS a – Autopilot Systems – Difference between Autonometers	amic: – PI omo	s – N D, P us an	ewton WM, d Aut er - (Eul PPI topil
Transmitter and Recently UNITIII DESIGN UAV Dynamics on Q Equation for Quaded Difference between P UNIT IV AUTC Autonomous systems System - Ground C Positioning System (eiver calibration Techniques - Power flow in an UAV <u>GN AND CONTROL</u> Quadcopter - Transitional Dynamics – Rotational Dyna opter – controller input – Control system Design – PM and PWM. <u>DNOMOUS AND AUTOPILOT SYSTEMS</u> s – Autopilot Systems – Difference between Autono ontrol Station – Gyroscope – Magnetometer – Act	amic: – Pl omo eeler C) a	s – N D, P us an comet voida	ewton WM, d Aut er - (nce sy	Eul PPI topil
Transmitter and RecensiveSystem.UNITIIIDESICUAV Dynamics on QEquation for QuadedDifference between PUNIT IVAUTOAutonomous systemsSystem - Ground CPositioning System (Way-point Navigation)	eiver calibration Techniques - Power flow in an UAV GN AND CONTROL Quadcopter - Transitional Dynamics – Rotational Dyna opter – controller input – Control system Design – PM and PWM. DNOMOUS AND AUTOPILOT SYSTEMS a – Autopilot Systems – Difference between Autono ontrol Station – Gyroscope – Magnetometer – Act GPS) – Telemetry System - Mid-air collision (MAG n System – Flight Planning - System In-flight Testing	amic: – Pl omo eeler C) a	s – N D, P us an comet voida	ewton WM, d Aut er - (nce sy	Eul PPI topil
Transmitter and Recensivem. UNITIII DESIGNATION UAV Dynamics on Q Equation for Quaded Difference between P UNIT IV AUTC Autonomous systems System - Ground C Positioning System (Way-point Navigation Challenges-Case Stud	eiver calibration Techniques - Power flow in an UAV GN AND CONTROL Quadcopter - Transitional Dynamics – Rotational Dyna opter – controller input – Control system Design – PM and PWM. DNOMOUS AND AUTOPILOT SYSTEMS a – Autopilot Systems – Difference between Autono ontrol Station – Gyroscope – Magnetometer – Act GPS) – Telemetry System - Mid-air collision (MAG n System – Flight Planning - System In-flight Testing	amic: – Pl omo eeler C) a	s – N D, P us an comet voida	ewton WM, d Aut er - (nce sy	Eul PPM topil Glob yster ts an
Transmitter and Recensivem. UNITIII DESIGN JAV Dynamics on Q Equation for Quaded Difference between P UNIT IV AUTC Autonomous systems System - Ground C Positioning System (Way-point Navigation Challenges-Case Stude UNIT V UAV I	eiver calibration Techniques - Power flow in an UAV GN AND CONTROL Quadcopter - Transitional Dynamics – Rotational Dyna opter – controller input – Control system Design – PM and PWM. DNOMOUS AND AUTOPILOT SYSTEMS a – Autopilot Systems – Difference between Autono ontrol Station – Gyroscope – Magnetometer – Act GPS) – Telemetry System - Mid-air collision (MAC n System – Flight Planning - System In-flight Testing lies.	amic: – Pl omo eeler C) a ; Futt	s – N D, P us an omet voida ure P	ewton WM, d Aut er - (nce sy cospec	Eul PPM topil Glob yster ts an
Transmitter and Recensivem. UNITIII DESIGN UAV Dynamics on Q Equation for Quaded Difference between P UNIT IV AUTC Autonomous systems System - Ground C Positioning System (Way-point Navigation Challenges-Case Stude UNIT V UAV I Aviation Meteorology	eiver calibration Techniques - Power flow in an UAV GN AND CONTROL Quadcopter - Transitional Dynamics – Rotational Dyna opter – controller input – Control system Design – PM and PWM. DNOMOUS AND AUTOPILOT SYSTEMS 5 – Autopilot Systems – Difference between Automo ontrol Station – Gyroscope – Magnetometer – Act GPS) – Telemetry System - Mid-air collision (MAC n System – Flight Planning - System In-flight Testing lies. METROLOGY SYSTEMS	amic: – Pl omov eeler C) av ; Futt	s – N D, P us an omet voida ure P	ewton WM, d Aut er - (nce sy cospec	Eul PPM topil Glob yster ts an
Transmitter and Recensistem. UNITIII DESIC UAV Dynamics on Q Equation for Quaded Difference between P UNIT IV AUTC Autonomous systems System - Ground C Positioning System (Way-point Navigation Challenges-Case Stude UNIT V UAV I Aviation Meteorology Ultrasonic Anemome	eiver calibration Techniques - Power flow in an UAV <u>GN AND CONTROL</u> Quadcopter - Transitional Dynamics – Rotational Dyna opter – controller input – Control system Design – PM and PWM. <u>DNOMOUS AND AUTOPILOT SYSTEMS</u> 5 – Autopilot Systems – Difference between Automo ontrol Station – Gyroscope – Magnetometer – Act GPS) – Telemetry System - Mid-air collision (MAC n System – Flight Planning - System In-flight Testing lies. <u>METROLOGY SYSTEMS</u> y - SOP for Aviation Meteorology - Meteodrones - N	amic: – Pl omov eeler C) av ; Futt	s – N D, P us an omet voida ure P	ewton WM, d Aut er - (nce sy cospec	Eul PPM topil Glob yster ts an
Transmitter and Recensistem. UNITIII DESIC UAV Dynamics on Q Equation for Quaded Difference between P UNIT IV AUTC Autonomous systems System - Ground C Positioning System (Way-point Navigation Challenges-Case Stude UNIT V UAV I Aviation Meteorology Ultrasonic Anemome	eiver calibration Techniques - Power flow in an UAV GN AND CONTROL Quadcopter - Transitional Dynamics – Rotational Dyna opter – controller input – Control system Design – PM and PWM. DNOMOUS AND AUTOPILOT SYSTEMS 5 – Autopilot Systems – Difference between Automon ontrol Station – Gyroscope – Magnetometer – Acc GPS) – Telemetry System - Mid-air collision (MAC in System – Flight Planning - System In-flight Testing lies. METROLOGY SYSTEMS y - SOP for Aviation Meteorology - Meteodrones - N ter – Ultrasonic Wind Sensor – Autonomous Weathe	amic: – Pl omov eeler C) av ; Futt	s – N D, P us an comet voida ure Pi orolo, ation	ewton WM, d Aut er - (nce sy cospec	Eul PPN topil Glob yster ts an usors ason

0710612575, 1999.

- 2. R. Said and H. Chayeb, "Power supply system for UAV", KTH, 2002.
- 3. Robert C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, Inc, 1998.
- Skafidas, "Microcontroller Systems for a UAV", KTH, TRITA-FYS 2002:51 ISSN 0280-316 X. 34, 2002

REFERENCEBOOKS

- 1. Kimon P. Valavanis, "Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy", Springer, 2007
- 2. P.J.Swatton, "Ground studies for pilots' flight planning", Sixth edition, 2002.
- 3. Dr. Armand J. Chaput, "Design of Unmanned Air Vehicle Systems", Lockheed Martin Aeronautics Company, 2001
- 4. Paul G Fahlstrom, Thomas J Gleason, "Introduction to UAV Systems", UAV Systems, Inc, 1998.

COURSECODE	XASH03	L	Τ	Р	С
COURSENAME	UAV BUSINESS AND OPERATIONAL	3	0	0	3
	INDUSTRIAL ASPECTS				
PREREQUISITES	-	L	Т	Р	Η
C:P:A=3:0:0		0	0	0	3
UNIT I UAVs	FOR BUSINESS				9

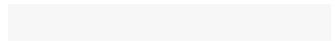
Drone for Photography – Drone for video graphy – Drone for Precision Agriculture – Drone for Survey and Mapping – Drone for Inspection – Drone for Monitoring and Object Tracking -Drones in Project Management.

UNITII UAV SOFTWARES & OPERATIONS

Introduction to Litchi software, Arducopter Software - flight Planning & Way Point setup – Drones on Property Management – Drones on Roof top Inspection – Drones on Pipeline Inspection – Drones on Thermal Inspection – Drones on Fishing – Drones on Power line Inspection – Drones on 3D Mapping outputs. –Mapping outputs and types.

UNITIII UAV ON INDUSTRIAL ASPECTS

General group – Military robotics history – Military robotics history operations– Civil robotics history – Civil robotics history operations – Design Considerations - Acquisition & Life Cycle Costs – UGV Architecture - UGV Components – Ground Vehicle concepts.


UNIT IV UAV VARIANTS AND WARFARE

9

9

9

Categories/C	lassification – Small size UGV – Large UGV – Law Enforcement Usage – Future	•			
Combat Syst	em (FCS) – FCS plan and overview – FCS current situation				
UNITV	SENSORS AND CHARACTERISTICS	9			
Sensor Acqu	isition - Optical (EO) - Infrared (IR) - Multi Spectral Imaging (MSI) - Hyper Spe	ctral			
Imaging (HS	I) - Laser Detection & Ranging (LIDAR) - Synthetic Aperture Radar (SAR) - U	JGV			
Perception c	oncept - Environmental and Weather Effects - Sensor integration - Future Se	nsor			
Trends Cont	rol Definitions - Low Level Control (LLC) - High Level Control (HLC) - Vision	and			
sensing - A	utomatic control functionality - Autonomous control functionality - Advanced	i AI			
Applications	- Intelligent Control Techniques				
LECTURE	TUTORIAL:0 TOTAL:4	5			
TEXTBO	DKS				
1. 'Unmanı	ned aircraft systems UAVs design, development and deployment' Reg Au	ıstin			
Aeronau	tical Consultant, A John Wiley and Sons, Ltd., Publication				
2. Mathematical Techniques in Multi-sensor Data Fusion (Artech House Information Warfare					
Library)	[Hardcover] David L. Hall, Sonya A. H. McMullen				
REFEREN	ICEBOOKS				
1. Handboo	ok of Multisensor Data Fusion: Theory and Practice, Second Edition (Elect	rical			
Engineering & Applied Signal Processing Series) Martin Liggins II David Hall, James					
2. P.J.Swat	ton, "Ground studies for pilots' flight planning", Sixth edition, 2002.				
3. Dr. Arm	and J. Chaput, "Design of Unmanned Air Vehicle Systems", Lockheed Martin				
Aeronautics					
Compan	y, 2001				

COURSECODE	XASH04		L	Τ	Р	С
COURSENAME	DESIGN AND DEVE	LOPMENT OF UAV	0	0	3	3
PREREQUISITES -			L	Т	Р	Н
C:P:A=0:3:0			0	0	3	3
LIST OF EXPERIM	ENTS:					L
1. Study on Types, Cla	assification and Categori	es of UAVs.				
2. Study and compare	any 3 Hybrid UAVs wit	n Technical DATA.				
3. Study on Electronic	Components used in Fix	edwing UAV/ multirotor UA	AV as	sembl	ly.	
4. Designing and Buil	ding of an Quadcopter					
5. Flight controller cal	ibration and PID Tuning	of an Quadcopter.				
6. Designing and Buil	ding of an Fixed wing ai	rplane.				
7. Hands on with Auto	onomous / Autopilot Sof	ware in Brief.				
8. Integration and test	ng Autonomous Fixed V	Ving UAV				
9. Integration and test	ng Autonomous Mutirot	or UAV				
10. Study on Future of	Artificial Intelligent AI	drones.				
LECTURE:0	TUTORIAL:0	PRACTICAL: 45		ТО	TAL	:45
TEXTBOOKS						
1. Refer Manual						
REFERENCEBOO	KS					
1 Unmanned aircr	aft systems UAVs de	sign development and der	lovm	ent'	Rea	Austi

1. 'Unmanned aircraft systems UAVs design, development and deployment' Reg Austin Aeronautical Consultant, A John Wiley and Sons, Ltd., Publication

COURSECODE	XASH05	L	Τ	Р	С
COURSENAME	REMOTE PILOT TRAINING	0	0	3	3
PREREQUISITES	-	L	Т	Р	Η
C:P:A=0:3:0		0	0	3	3

LIST OF EXPERIMENTS:

1. Study on Regulations of DGCA, Civil Aviation Requirements section on UAV / Drones.

2. Study on ATC procedures & Radio Telephony for UAV operation

3. Study on Weather and meteorology for UAV operation

4. SOP on Drone equipment maintenance and Fail safe - Emergency identification and handling

5. Flight Simulator Training on Fixed wing UAV

6. Flight Simulator Training on Multi rotor UAV.

7. Study on Flying Field mandates and prerequisites.

8. Remote Pilot Training on Fixed wing UAVs.

9. Remote Pilot Training on Multi rotor UAVs.

10. Flight Planning on Autonomous/Autopilot Systems in an Fixed Wing or Multirotor.

LECTURE:0	TUTORIAL:0	PRACTICAL: 45	TOTAL:45
TEXTBOOKS			
1 Defen Mensel			

1. Refer Manual

REFERENCEBOOKS

1. 'Unmanned aircraft systems UAVs design, development and deployment' Reg Austin Aeronautical Consultant, A John Wiley and Sons, Ltd., Publication