

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.3	Average percentage of courses having focus on employability/ entrepreneurship/ skill Development offered by the Biotechnology

DEPARTMENT OF BIOTECHNOLOGY

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

S. No.	Programme Name
i.	Bachelor of Technology(Biotechnology)(Full Time)

2. Syllabus of the courses as per the list.

Legend :	Words highlighted with Blue Color	-	Entrepreneurship
	Words highlighted with Red Color	-	Employability
	Words highlighted with Green Color	-	Skill Development

Name of the Course	Course Code	Year of Introduction	Activities/Content with direct bearing on Employability/ Entrepreneurship/ Skill development
	B.Tech. Biotec	chnology (Full Ti	me)
	2022-23 AC	CADEMIC YEAR	
Calculus and Linear Algebra	XMA101	2018-19	Skill development
Programming for Problem Solving	XCP102	2013-14	Skill development
Speech Communication	XGS105	2021-22	Skill development
Programming for Problem Solving Laboratory	XCP107	2013-14	Skill development
Applied Physics for Engineers Laboratory	XAP108	2018-19	Skill development
Calculus, Ordinary Differential Equations and Complex Variable	XMA201	2018-19	Skill development
Electrical and Electronic Engineering Systems	XBE202	2018-19	Skill development
Technical Communication	XGS204	2021-22	Skill development
Workshop Practices	XWP205	2018-19	Skill development
Chemical Engineering Thermodynamics	XBT206	2014-15	Employability Skill
Electrical and Electronic Engineering Systems Laboratory	XBE207	2018-19	Skill development
Applied Chemistry for Engineers Laboratory	XAC208	2018-19	Skill development
Probability and statistics	XPS301	2018-19	Skill development
Biochemistry	XBT302	2021-22	Employability Skill
Microbiology	XBT303	2021-22	Employability Skill
Material and Energy Balances	XBT304	2019-20	Employability Skill
Entrepreneurship Development	XUM306	2016-17	Employability Skill, Entrepreneurship
Biochemistry Laboratory	XBT308	2021-22	Skill development
Microbiology Laboratory	XBT309	2021-22	Skill development
In-plant Training - I	XBT310	2014-15	Employability Skill

Basic Transport	XBT401	2021-22	Employability Skill
Processes			
Cell Biology	XBT403	2021-22	Employability Skill
Immunology	XBT404	2021-22	Employability Skill
Economics for Engineers	XUM405	2016-17	Entrepreneurship
Basic Transport Processes Laboratory	XBT407	2021-22	Skill development
Cell Biology Laboratory	XBT408	2021-22	Skill development
Immunology Laboratory	XBT409	2021-22	Skill development
Bioinstrumentation	XBT501	2018-19	Employability Skill, Skill development
Molecular Biology	XBT502	2016-17	Employability Skill
Bioprocess Engineering	XBT503	2018-19	Employability Skill, Skill development
Plant biotechnology	XBT504A	2016-17	Employability Skill
Food technology	XBT504B	2016-17	Employability Skill
Chemical reaction engineering	XBT504C	2016-17	Employability Skill
Employability Skill And Report Writing	XUM506	2016-17	Employability Skill
In-Plant training-II	XBT508	2014-15	Employability Skill
Economics for Engineers	XUM601	2016-17	Entrepreneurship
Bioreactor Design	XBT602	2016-17	Employability Skill, Skill development
Recombinant DNA technology	XBT603	2016-17	Employability Skill, Skill development
Immunology	XBT604	2016-17	Employability Skill
Animal biotechnology	XBT605A	2016-17	Employability Skill
Nanobiotechnology	XBT605B	2016-17	Employability Skill
Heat transfer	XBT605C	2016-17	Employability Skill
Protein engineering	XBT701A	2016-17	Employability Skill
Pharmaceutical biotechnology	XBT701B	2016-17	Employability Skill
Bioinformatics and Computational Biology	XBT702	2016-17	Employability Skill, Skill development
Downstream processing	XBT703	2016-17	Employability Skill, Skill development
Cancer biology	XBT704A	2016-17	Employability Skill
Stem cell biotechnology	XBT704B	2016-17	Employability Skill

Metabolic engineering	XBT704C	2016-17	Employability Skill
In-plant Training – III	XBT707	2014-15	Employability Skill
Project Work (Phase- II)	XBT804	2018-19	Employability Skill, Entrepreneurship

<u>SYLLABUS FOR B.TECH Biotechnology (FT)</u> <u>ACADEMIC YEAR 2022-23</u>

COURSI	E COD	ЭE	XMA 101	L	Т	P	С						
COURS	E NAN	IE	Mathematics I (Calculus and Linear Algebra)	3	1	0	4						
С	Р	Α											
3	0.5	0.5		4	1	0	5						
PREREQUISITE: Differentiation and Integration													
	COURSE OUTCOMES:												
Course o				Dom			evel						
CO1	CO1 Apply the orthogonal transformation to reduce quadratic form Cognitive Applying to canonical forms.												
CO2		-	ver series to tests the convergence of the	Cogni	tive	App	olying						
	-		nd series and Half range Fourier sine and cosine	Psychor	notor	Gu	ided						
	series	•				Res	ponse						
CO3			erivative of composite functions and implicit uler's theorem and Jacobian	Cogni	tive	App	olying						
CO4	by fir using	nding 1 Lagra	functions of two variables by Taylor's expansion, naxima and minima with and without constraints ngian Method Directional derivatives, Gradient,	Cogni Affect			standing eiving						
CO5			vergence. ferential and Integral calculus to notions of	Cogniti	ve	Apply	ving						
	Curva	ature a	nd to improper integrals.				-						
UNIT -I		trices					12						
Cayley-H Symmetr	amilto	n Theo Orthog	- Eigen values and Eigen vectors -Properties of Eigen orem – Diagonalisation of Matrices – Real Matrices: onal Quadratic form – canonical form - Nature of Q adratic form to Canonical form (Orthogonal only).	Symmet	ric - S	kew-	ectors -						
UNIT -II	Seq	uence	s and series				12						
converge	nce: co	mparis	and examples-Series: Types and convergence- Serie son test, Integral test and D'Alembert's ratio test Fo eval's Theorem.										
UNIT -	Mu	ltivari	able Calculus: Partial Differentiation				12						
III													
		-	-Partial differentiation – Total Derivative – Partial d			-							
		-	Variables – Differentiation of an Implicit Function -		heore	m- Jaco							
UNIT - IV	Mu	ltivari	able Calculus: Maxima and Minima and Vector (Calculus			12						

Taylor's theorem for function of Two variables- Maxima, Minima of functions of two variables: with and without constraints - Lagrange's Method of Undetermined Multipliers – Directional Derivatives - Gradient, Divergence and Curl.

UNIT -V | Differential and Integral Calculus

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

12

LECTURE	TUTORIAL	TOTAL
45	15	60

Text Books:

- 1. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill New Delhi, 11th Reprint, 2015. (Unit-1, Unit-3 and Unit-4).
- 2. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2014. (Unit-2).
- B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40th Edition, 2010. (Unit-5).

Reference Books:

- 1. G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.
- 2. Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi, 2008.
- 3. D. Poole, "Linear Algebra: A Modern Introduction", 2nd Edition, Brooks/Cole, 2005.
- **4.** Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

		Graduates Attributes											
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	2			2					1		2	
CO2	3	1								1		1	
CO3	3	1								1		1	
CO4	3	2								1		1	
CO5	3	2			1					1		2	
Total	15	8	0	0	3	0	0	0	0	5	0	7	
Scaled Value	3	2			1					1			
0 - No	Relati	on, 1 ·	- Low	Relat	ion, 2-	Mediu	ım Re	lation,	3- Hig	h Relati	on		
	1 - 5 - 5	$\rightarrow 1$,		6	5 – 10 -	$\rightarrow 2$,		11	- 15 -	$\rightarrow 3$			

Cos versus GA mapping

Course Co			:	XCP102		L	Т	Р	C
Course Na	me		:	PROGRAMMING FOR PROBLEM SOLV	ING	3	0	0	3
Prerequisit	e		:	Basic Understanding Skills		L	Т	Р	Η
С	Р	Α				3	0	0	3
3	0	0							
Course Ob	jective	s							
• To learn	progra	amm	ing	g language basics and syntax					
• To ignit	e logica	al th	ink	ing					
• To unde	rstand	stru	ctui	red programming approach					
• To deal	with us	ser d	lefi	ned data types					
• To know	v about	data	a st	orage in secondary memory					
Course Out able to	come: 1	After	r th	e completion of the course, students will be	Doma	nin		Level	l
CO1	Defin		•	gramming fundamentals and <i>Solve</i> simple ing I/O statements	Cognitiv	ve	App	ply	
CO2	Expla	in		aple programs using control structures and	Cognitiv	ve	Uno	dersta	nd
CO3	arrays <i>Explo</i> pointe	in	tŀ	ne simple programs using functions and	Cognitiv	ve	Unc	lersta	nd
CO4	1		sim	ple programs using structures and unions	Cognitiv	ve	Und	lersta	nd
CO5	Expla	in		<i>nple programs</i> using files and <i>Build</i> simple			_	dersta	
COURSE	proje		г						
UNIT-I				GRAMMING FUNDAMENTALS AND I/O ST	ATEME	NTS			9
	to cor			ts of a computer system, Program–Flowchart –Pse				<u>,</u>	/
				age – Character set – Tokens: Identifiers, Keyword					ors
				re -Header files – Data Types- Variables - Output s				perate	ль
statements.	ogram	Suu	ciu	te fredder mes Data Types Variables Output	statement	5 11	pui		
UNIT -II		C	ON	TROL STRUCTURE AND ARRAYS					9
	ctures_			ionalControlstatements:Branching,Looping-Uncor	nditional	contr	ol		
				ontinue,gotostatements–Arrays:OneDimensionalAr					
				ArrayElements–Searching–Sorting–TwoDimensio	•			n_	
				ations–MultiDimensionalArrays-Declaration–Initi					
				gs: Basic operation son strings.	anzanon.	51010		10000.	
UNIT -III	1 static			CTIONS AND POINTERS					9
	Built_i			tions–User Defined Functions-Parameter passing	n method	le_Da	ceina	arras	-
				1			-	•	
				grams using arrays and functions. Pointers-Pointer					
-			-	inter arithmetic-Pointers and function-Callbyvalue		Neiel	ence-	T UIII	CI
	of Poin			elf-referential structures-Notion of linked list					•
UNIT -IV				UCTURES AND UNIONS	•				9
				ving values to members-Initializing structure-Func					
-Passing str	ucture	to el	em	ents to functions-Passing entire function of unction	n s-Array	's of s	structi	ıre-	

Structure with in a	structure and Union.		
UNIT -V	FILES		9
File management in	C-File operation function sin C-Defining	and opening a file-Clos	ing a file-The
get and put function	s-The print & scan functions-seek function	on–Files and Structures.	
L	Т	Р	Total
45	0	0	45
TEXTBOOKS			· · · ·
1. ByronGottfrie	d,"ProgrammingwithC",IIIEdition,(Indiar	AdaptedEdition), TMH	publications,2010
2. YeshwantKan	ethker, "LetusC", BPBPublications, 2008		
REFERENCEBO			
1. E.Balaguruswa	amy, Programming in ANSIC, Tata McG	raw-Hill, 7 th edition 2017	7.
2. Brian W.Kern	ighan and Dennis M.Ritchie,"TheCProgra	ammingLanguage",Pears	son
EducationInc.2	2005		
3. Johnson baugh	R. and KalinM., "ApplicationsProgramm	ningin ANSIC", III Editi	on,
Ŭ	ationIndia,2003	6	,
E-REFERENCES			
1. https://www.ir	ndiabix.com/c-programming/questions-and	d-answers/	
	watpoint.com/c-programming-language-tu		
3. https://www.w	/3schools.in/c-tutorial/		

	Mapping of CO's with PO:													
		PROGRAM OUTCOMES												
	1	2	2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2											
CO1	3	2	0	0	3	0	0	0	0	0	2	3	2	0
CO2	3	2	0	0	2	0	0	0	0	0	2	3	2	0
CO3	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO4	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO5	2	2	1	0	2	0	0	1	0	2	2	2	2	0
Total	12	10	3	4	11	0	0	1	0	2	10	12	10	0
ScaledValue	3	2	1	1	3	0	0	1	0	1	2	3	2	0
	$1-5 \Box 1$, $6-10 \Box 2$, $11-15 \Box 3$													
	0-	NoRe	latior	1,1 - L	low Re	latior	n,2-M	lediun	nRela	tion,3-	Highl	Relation	on	

2	XGS10	5				L 0	Т 0	P 3	SS 0	C 3
С	Р	Α	Speech Communication			L	Т	Р	SS	Η
2.6	0.4	0								
Cour	se Out	comes		Don	nain			Le	vel	
After	compl	etion of	the course, students will be able to	e course, students will be able to						
CO1	At	oility to	recall the types of speeches	Cognitiv	e		R	eme	mber	
CO2	Ap	oply the	techniques in public speaking	Cognitiv	e	Appl			oly	
CO3		entify eech	the common patterns in organizing a	Cognitiv	e		R	eme	mber	

CO4	Construct the r	ature and style of speaking	Cognitive	Create
CO5	Practicing the		Psychomoto r	
UNIT-I	Types o	f Speeches		9
1.1 – Fo	ur types of speed			
	alyzing the audi			
1.3 - De	veloping ideas a	nd supporting materials		
UNIT –	II Public S	Speaking		9
2.1 - Intr	roduction to Pub	lic Speaking		·
2.2 - Co	mpetencies Need	led for successful speech m	aking	
2.3 – Sp	eaking about eve	eryday life situations		
UNIT-I		ation of Speech		9
	veloping a speed			
	ganizing the spe			
3.3 – Int	roduction - deve	lopment – conclusion		
UNIT-I	V Present	ation		9
$4.2 - P_{1}$		the draft speech iques using ICT tools om different sources		
UNIT-V	Activit	ies		9
5.1 – R	eading activities			
5.2 – C	reative presentat	ions		
	ledia presentatio	*	Γ	T
LF	ECTURE	TUTORIAL	PRACTICAL	TOTAL
	0	0	45	45
00	ed Readings:			
		cal English Usage.OUP. 19		
(ii) Sanja	ay Kumar and P	ishpLata.Communication St	kills. Oxford University	Press. 2011

Mapping Of Course Outcomes with Program Outcomes

		PROGRAM OUTCOMES												
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO2	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO3	1	0	0	0	0	0	1	0	1	0	0	0	0	0
CO4	2	0	0	0	0	0	1	0	1	0	0	0	0	0
CO5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	7	0	0	0	0	0	6	0	4	0	0	0	0	0
ScaledValue	2	0	0	0	0	0	2	0	1	0	0	0	0	0
		1	-5 🗆	1,		6 -	- 10 [2,		11	- 15			
		0-No	Relati	ion,1-I	Low R	elatio	n,2-N	lediun	nRela	tion,3-	HighF	Relatio	on	

COURSE	CODE		XCP107	L	Т	Р	С
COURSE	NAME		Programming For Problem Solving Laboratory	0	0	1	1
PREREQ	UISITE	S	Basic Understanding Skills	L	Т	Р	Н
С	Р	Α		0	0	2	3
0.75	1	0.25		0	U	2	3
LEARNI	NG OBJ	ECTIV	VES				
• To leas	rn progra	amming	g language basics and syntax				
• To ign	ite logic	al think	ing				
• To uno	lerstand	structu	red programming approach				
• To dea	l with u	ser defi	ned data types				
• To kno	ow about	t data st	orage in secondary memory				
COURSE	OUTCO	OMES		DOM	AIN	LEV	'EL
CO1	Solve	simple	programs using I/O statements	Cognit	ive	App	ly
		•		Psycom	otor	Respo	
CO2	Solve	progra	ams using control structures and arrays	Cognit	ive	App	ly
				Psycom	otor	Respo	ond
CO3	Solve	progra	ms using functions and pointers	Cognit		App	ly
				Psycom	otor	Respo	ond
CO4	Solve	progra	ms using structures	Cognit		App	•
				Psycom		Respo	ond
CO5	Solve	progra	ms using files	Cognit		App	
				Psycom	otor	Respo	ond

S.No.	List of Experiments	COs
1	Program to display a Leave Letter as per proper format	CO1
2	i. Program for addition of two numbersii. Program to solve any mathematical formula.	CO1
3	Program to find greatest of 3numbers using Branching Statements	CO2
4	Programtodisplaydivisiblenumbersbetweenn1andn2usinglooping Statement	CO2
5	Program to search an array elementinanarray.	CO2
6	Program to find largest/smallest elementinanarray.	CO2
7	Program to perform string operations.	CO3
8	Program to find area of a rectangle of a given number use four function types.	CO3

9	Programs to pass and receive array and types	pointers using f	our function	CO3
10	Programs using Recursion for finding f	actorial of a nun	nber	CO3
11	Program to read and display student ma With variables	rk sheet of a stu	dent structures	CO4
12	Program to read and display student ma With arrays	rks of a class us	ing structures	CO4
13	Program to create linked list using struc	ctures with point	ers	CO4
14	Program for copying contents of one fil	e to an other file	2.	CO5
15	Program using files to store and display Structures with array	v student mark li	st of a class using	CO5
	HOURS	TUTORIAL	PRACTICAL	TOTAL
	HOURS	0	30	30

Mapping of CO with PO's

							PRC	GRA	MO	UTCO	MES)		
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	2	0	0	3	0	0	0	0	0	2	3	2	0
CO2	3	2	0	0	2	0	0	0	0	0	2	3	2	0
CO3	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO4	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO5	2	2	1	0	2	0	0	1	0	2	2	2	2	0
Total	12	10	3	4	11	0	0	1	0	2	10	12	10	0
ScaledValue	3	2	1	1	3	0	0	1	0	1	2	3	2	0
			1 – 5	□ 1,			6 –	10 🗆 1	2,		11	– 15 🛛	3	
		0-N	oRela	ation	,1-Lov	v Rela	ation,	2-Mee	dium	Relatio	n,3-H	ighRe	elation	

COUR	SE CODE	XAP108	L	Т	Р	С	
COURS	SE NAME	APPLIED PHYSICS FOR ENGINEERS	0	0	2	2	
		LABORATORY	Ŭ	Ŭ	_	_	
C	:P:A	0:2:0	L	Т	Р	H	
PRERE	QUISITE:	Basic Physics in HSC level	0	0	3	3	
COURSE	OUTCOMES	5	Don	nain		Level	
C01		he significance of elasticity in engineering technological advances.	Psychon	notor:	Me	echanism	
CO2	use and loc	ate basic applications of electromagnetic	Psychon	notor:	Mechanism		
	induction to t	echnology.	Affect	ive:	R	lespond	
CO3	<i>Describe</i> the lasers and fib	working principle and application of various re optics.	Psychon	notor:	Me	Mechanism	

CO4		<i>ise</i> ph emicon	•	-	-	s of	lates	t te	chnolo	gy	using	Psyc	homo	tor:	Mechanism		
							LAB	ORA	TORY	Y							
1.	Tors	ional Po	endulu	m - de	etern	ninatio	on of r	nome	ent of i	inerti	a and r	igidity	v mod	ulus of t	he given		
		rial of t													C		
2.	Unif	orm Be	nding	- Dete	ermir	ation	of the	e You	ng's N	Iodul	us of t	he ma	terial	of the be	eam.		
3.															he beam.		
4.	Mete	er Bridg	e - De	termin	natio	n of s	pecific	c resi	stance	of th	e mate	rial of	the w	vire.			
5.		tromete															
6.	Spec	tromete	er - De	termir	natio	n of w	vavele	ngth	of vari	ious c	colours	in Hg	sourc	ce using	grating.		
7.	Air v	vedge -	Deter	minati	ion o	f thicl	kness	of a g	given t	hin w	vire.						
8.	Lase	r - Dete	rmina	tion of	f way	veleng	gth of	giver	laser	sourc	ce and	size of	f the g	iven mi	cro particle		
		g Laser															
9.	Post	office l	Box - I	Detern	ninat	ion of	band	gap	of a gi	ven s	emico	nducto	or.				
10.	PN J	unction	Diode	e - De	term	inatio	n of V	'-I ch	aracte	ristic	s of the	e giver	given diode.				
REFE	RENO	CE BO	OKS:														
1.	Sami	r Kuma	r Ghos	sh, "A	text	book	of Ad	lvanc	ed Pra	ctical	l Physi	cs", N	ew Ce	entral Ag	gency (P)		
	Ltd, 2	2008.															
2.		a C.L.,															
3.	Uma	alSunc	ari AF	R., "Aj	pplie	d Phy	sics L	abora	atory N	Manu	al", PN	IU Pro	ess, Tl	hanjavur	; 2012.		
			LEC	ГURF	C	TUT	ORIA	4L	PR	ACT	ICA		TOT	CAL HC	OURS		
										L							
	Hour	S		0			0			30				30			
			Map	ping	Of C	Course					gram (mes				
]	PRO	GRAN	A OU	JTCO	MES					
		1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2		
CO1		3	2	2	2	1	-	-	-	1	-	-	1				
CO2		3		1		1	-	-	-		-	-	1				

Π	Semester
11	Schiester

-

-

CO3

<u>CO</u>4

Total

ScaledValue

3

3

12

3

2

2

6

2

2

2

7

2

1−5 □ 1,

2

2

6

2

1

1

4

1

-

-

-

-

6−10 □ 2,

0-NoRelation,1-Low Relation,2-MediumRelation,3-HighRelation

1

1

3

1

-

-

-

-

1

1

5

1

11 – 15 🗆 3

CO	URSE	CODE	COURSE NAME	L	Т	Р	С
XM	IA201		Calculus, Ordinary Differential Equations and Complex Variable	3	1	0	4
С	Р	Α		L	Т	Р	Η
3	0.5	0.5		3	1	0	4
PR	EREQU	U ISITE :	Mathematics I (Calculus and Linear Algebra)				

		Domain	Level
Course outcomes:CO1Find double and	triple integrals and to find line, surface and		
		Cognitive	Applying
divergence and S	integral by Applying Greens, Gauss		
	r differential equations of different types	Cognitive	Applying
	1 1	Cognitive	Applying
	le for p, y, x and Clairaut's type. order ordinary differential equations with	Cognitive	Applying
	ents using various methods.	Cognitive	Apprying
	ns to verify analytic functions and to find	Cognitive	Applying
-	ons and harmonic conjugate.	-	Guided
	ping of translation and rotation. Mobius	Psychomotor	
transformation.	ping of translation and foration. Mooras		Response
	esidue theorem to evaluate contour integrals	Cognitive	Applying
110	and cosine function and to state Cauchy	Affective	Receiving
e	Liouvilles theorem.	Anective	Receiving
	zeros of analytic functions, singularities,		
Laurent's series.			
Unit -I Multivariable C	alculus (Integration)		12
	uble integrals (Cartesian) - change of ord	ler of integration	on in double
	riables (Cartesian to polar) - Triple integ	-	
	egrals - scalar surface integrals - vector sur		
Green, Gauss and Stokes.	grais scalar surface integrals vector sur	nace integrais	Theorems o
	dinamy differential equations		12
	dinary differential equations		
	oulli's equations - Euler's equations - Ec	-	-
	equations solvable for y- equations solvable	for x and Clairau	it's type.
Unit -III Ordinary diffe	erential equations of higher orders		12
Second order linear diff	erential equations with variable coefficient	nts- method of	variation of
parameters - Cauchy-Eu	ler equation- Power series solutions- Le	gendre polynon	nials- Besse
functions of the first kind a	and their properties		
	able – Differentiation		12
Differentiation-Cauchy-Ri		harmonic func	tions-finding
· · · · · ·	entary analytic functions (exponential, trigor		
			iiii) and then
	opings- Mobius transformations and their pro-	operties	
-	able – Integration		12
Contour integrals - Cauch	ny-Goursat theorem (without proof) - Cauc		
	m (without proof)- Taylor's series- ze	eros of analyti	e functions
proof)-Liouville's theore		~	e runetions
-	ries – Residues- Cauchy Residue theorem (
singularities- Laurent's se	ries - Residues- Cauchy Residue theorem (without proof)- I	Evaluation of
singularities- Laurent's se definite integral involving		without proof)- I	Evaluation of
singularities- Laurent's se	ries - Residues- Cauchy Residue theorem (without proof)- I	Evaluation of the using the

Text Book: B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40thth Edition, 2008.

Reference Books:

1.G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.

2. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

3.W. E. Boyce and R. C. DiPrima, "Elementary Differential Equations and Boundary Value Problems", 9thEdn. Wiley India, 2009.

4. S. L. Ross, "Differential Equations", 3rd Ed., Wiley India, 1984.

5.E. A. Coddington, "An Introduction to Ordinary Differential Equations", Prentice Hall India, 1995.

6. E. L. Ince, "Ordinary Differential Equations", Dover Publications, 1958.

7.J. W. Brown and R. V. Churchill, "Complex Variables and Applications", 7th Ed., McGraw Hill, 2004.

8. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2008.

		1		Ľ		ous Or	x map	ping					
			Graduates Attributes										
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	2			2					1		2	
CO2	3	1								1		1	
CO3	3	1								1		1	
CO4	3	2								1		1	
CO5	3	2			1					1		2	
Total	15	8	0	0	3	0	0	0	0	5	0	7	
Scaled Value	3	2			1					1			
() - No]	Relatio	elation, 1 - Low Relation, 2- Medium Relation, 3- High Relation										
	1	1 – 5 –	$5 \rightarrow 1, \qquad 6-10 \rightarrow 2, \qquad 11-15 \rightarrow 3$										

Cos versus GA mapping

COURSE	CODE	COURSE NAME		L	Τ	Р	С
XBE202		ELECTRICAL AND ELECTRONICS ENGINEERING SYSTEMS		3	1	0	4
Prerequis	ites	Physics		L	Τ	Р	Η
C:P: A		3:0:0		3	1	0	4
Course O	utcomes		Dom	ain	evel		
CO1	Relate the	e fundamentals of electrical parameters and	Cognitive	U	Inder	stand	
	build an	d explain AC, DC circuits by Using					
	measuring	devices					
CO2	Explain the	ne operation of DC and AC machines.	Cognitive	gnitive Unde			
CO3	Illustrate	various semiconductor devices and their	Cognitive	U	Inder	stand	
	application	ns and displays the input output					

	characteristic	es of basic semiconductor de	evices.		
CO4	-	e number systems and e different digital circuit.	logic gates.	Cognitive	Understand
CO5		different types of micropr	ocessors and	Cognitive	Understand
	FUNDAMEN'	TALS OF DC AND AC CI	RCUITS,		9+3
	REMENTS	hen's Low Vinshhaff's L		Valtaga an	d Cumant Dalations
		Ohm's Law – Kirchhoff's L on - Fundamentals of AC –			
		or, Phasor Representation o	U U		
		Operating Principles of Mov			
		meter type meters (Watt me	-	-	Istruments (Ammeter
		AL MACHINES	ter and Energy		9 + 3
		of Operation, Basic Equation	ns Types and	Application o	
		gle-Phase Induction Motor a			
		f Single-Phase Transformer,			
		DUCTOR DEVICES	Theo phase (9+3
		onductors, Construction, Op	peration and (Characteristics	
		istors, Field Effect Transisto			
Applicatio				0011001100	••••
		ELECTRONICS			9 + 3
Basic of	Concepts of	Number Systems, Logic	Gates, Boole	an Algebra,	Adders, Subtractors
		er, encoder, decoder, Flipflo			
UNIT- V	: MICROPRO	DCESSORS			9+3
	0005 min	diagram of 8085 ALU tim	ing and contr		ers, data and addres
Architectu	ure, alas, pin	ulagram of 6065, ALC m	0		
bus, timir	ng and control	signals, Instruction types,	classification		s, addressing modes
bus, timin Interfacin	ng and control g Basics: Data	signals, Instruction types, transfer concepts – Simple 1	classification	concepts.	
bus, timin Interfacin	ng and control ag Basics: Data CTURE	signals, Instruction types, transfer concepts – Simple TUTORIAL	classification	concepts. TOTA	
bus, timin Interfacin LEC	ng and control g Basics: Data CTURE 45	signals, Instruction types, transfer concepts – Simple 1	classification	concepts.	
bus, timin Interfacin LE(ng and control ag Basics: Data CTURE 45 OOKS	signals, Instruction types, transfer concepts – Simple TUTORIAL 15	classification Programming	concepts. TOTA 60	L
bus, timin Interfacin LEC TEXT BO 1. Metha	ng and control ag Basics: Data CTURE 45 OOKS V.K, Rohit Me	signals, Instruction types, transfer concepts – Simple TUTORIAL 15 hta, 2020. Principles of Elec	classification Programming ctronics,12 th ec	concepts. TOTA 60	L blishing.
bus, timin Interfacin LE(TEXT B(1. Metha 2. Albert	ng and control ag Basics: Data CTURE 45 OOKS V.K, Rohit Me	signals, Instruction types, transfer concepts – Simple TUTORIAL 15	classification Programming ctronics,12 th ec	concepts. TOTA 60	L blishing.
bus, timin Interfacin LEC TEXT BC 1. Metha 2. Albert Delhi.	ng and control ag Basics: Data CTURE 45 OOKS V.K, Rohit Me Malvino, David	signals, Instruction types, transfer concepts – Simple 1 TUTORIAL 15 hta, 2020. Principles of Elec d J.Bates., 2017. Electronics	classification Programming ctronics,12 th ec Principles. 7t	toncepts. TOTA 60 I, S Chand Pul h ed, Tata Mc	L blishing. Graw-Hill. New
bus, timin Interfacin LEC TEXT BO 1. Metha 2. Albert Delhi. 3. Rajaka	ng and control ag Basics: Data CTURE 45 OOKS V.K, Rohit Me Malvino, David mal, 2014. Dig	signals, Instruction types, transfer concepts – Simple 1 TUTORIAL 15 hta, 2020. Principles of Elec d J.Bates., 2017. Electronics ital System-Principle & Des	classification Programming ctronics,12 th ec Principles. 7t	toncepts. TOTA 60 I, S Chand Pul h ed, Tata Mc	L blishing. Graw-Hill. New
bus, timin Interfacin LEC TEXT BC 1. Metha 2. Albert Delhi. 3. Rajakar 4. Morris	ng and control ag Basics: Data CTURE 45 OOKS V.K, Rohit Me Malvino, David mal, 2014. Dig Mano, 2015. E	signals, Instruction types, transfer concepts – Simple 1 TUTORIAL 15 hta, 2020. Principles of Elec d J.Bates., 2017. Electronics ital System-Principle & Des Digital Design. Prentice Hall	classification Programming ctronics,12 th ec Principles. 7t ign. 2nd ed. P of India.	toncepts. TOTA 60 I, S Chand Pul h ed, Tata Mct earson educati	L blishing. Graw-Hill. New
bus, timin Interfacin LEC TEXT BC 1. Metha 2. Albert Delhi. 3. Rajakat 4. Morris 5. Rames	ng and control ag Basics: Data CTURE 45 OOKS V.K, Rohit Me Malvino, David mal, 2014. Dig Mano, 2015. E h, S. Gaonkar,	signals, Instruction types, transfer concepts – Simple 1 TUTORIAL 15 hta, 2020. Principles of Elec d J.Bates., 2017. Electronics ital System-Principle & Des Digital Design. Prentice Hall 2013, Microprocessor Archi	classification Programming ctronics,12 th ec Principles. 7t sign. 2nd ed. P of India. itecture, Progra	toncepts. TOTA 60 I, S Chand Pul h ed, Tata Mct earson educati	L blishing. Graw-Hill. New
bus, timin Interfacin LEC TEXT BO 1. Metha 2. Albert Delhi. 3. Rajakat 4. Morris 5. Ramesl the 8085,	ng and control ag Basics: Data CTURE 45 OOKS V.K, Rohit Me Malvino, David mal, 2014. Dig Mano, 2015. I h, S. Gaonkar, 6 th ed , India: P	signals, Instruction types, transfer concepts – Simple 1 TUTORIAL 15 hta, 2020. Principles of Elect d J.Bates., 2017. Electronics ital System-Principle & Des Digital Design. Prentice Hall 2013, Microprocessor Archi enram International Publica	classification Programming ctronics,12 th ec Principles. 7t sign. 2nd ed. P of India. itecture, Progra	toncepts. TOTA 60 I, S Chand Pul h ed, Tata Mct earson educati	L blishing. Graw-Hill. New
bus, timin Interfacin LEC TEXT BC 1. Metha 2. Albert Delhi. 3. Rajakat 4. Morris 5. Ramesl the 8085, REFERE	ng and control ag Basics: Data CTURE 45 OOKS V.K, Rohit Me Malvino, David mal, 2014. Dig Mano, 2015. I h, S. Gaonkar, 6 th ed , India: P ENCE BOOKS	signals, Instruction types, transfer concepts – Simple 1 TUTORIAL 15 hta, 2020. Principles of Elect d J.Bates., 2017. Electronics ital System-Principle & Des Digital Design. Prentice Hall 2013, Microprocessor Archi Penram International Publica	classification Programming ctronics,12 th ed Principles. 7t ign. 2nd ed. P of India. itecture, Progra tions.	toncepts. TOTA 60 I, S Chand Pul h ed, Tata Mce earson educati amming and it	L blishing. Graw-Hill. New
bus, timin Interfacin LEC TEXT BC 1. Metha 2. Albert Delhi. 3. Rajakan 4. Morris 5. Ramesl the 8085, REFERE 1. Corton	ng and control ng Basics: Data CTURE 45 OOKS V.K, Rohit Me Malvino, David mal, 2014. Dig Mano, 2015. E h, S. Gaonkar, 6 th ed , India: P ENCE BOOKS , H.,2004 Elect	signals, Instruction types, transfer concepts – Simple 1 TUTORIAL 15 hta, 2020. Principles of Elec d J.Bates., 2017. Electronics ital System-Principle & Des Digital Design. Prentice Hall 2013, Microprocessor Archi cenram International Publica Srical Technology. CBS Publica	classification Programming ctronics,12 th ec Principles. 7t sign. 2nd ed. P of India. tecture, Progra tions.	toncepts. TOTA 60 I, S Chand Pul h ed, Tata Mce earson educati amming and it	L blishing. Graw-Hill. New
bus, timin Interfacin LEC TEXT BC 1. Metha 2. Albert Delhi. 3. Rajakar 4. Morris 5. Ramesl the 8085, REFERE 1. Corton 2. Syed, A	ng and control ag Basics: Data CTURE 45 OOKS V.K, Rohit Me Malvino, David mal, 2014. Dig Mano, 2015. I h, S. Gaonkar, 6 th ed , India: P ENCE BOOKS , H.,2004 Elect A. Nasar, 1998,	signals, Instruction types, transfer concepts – Simple 1 TUTORIAL 15 hta, 2020. Principles of Elec d J.Bates., 2017. Electronics ital System-Principle & Des Digital Design. Prentice Hall 2013, Microprocessor Archi enram International Publica S rical Technology. CBS Publi Electrical Circuits. Schaum	classification Programming ctronics,12 th ec Principles. 7t Sign. 2nd ed. P of India. tecture, Progrations.	toncepts. TOTA 60 I, S Chand Pul h ed, Tata Mct earson educati amming and it	L blishing. Graw-Hill. New ion. s Applications with
bus, timin Interfacin LEC TEXT BC 1. Metha 2. Albert Delhi. 3. Rajakat 4. Morris 5. Ramesl the 8085, REFERE 1. Corton 2. Syed, A 3. Jacob M	ng and control ag Basics: Data CTURE 45 OOKS V.K, Rohit Me Malvino, David mal, 2014. Dig Mano, 2015. I h, S. Gaonkar, 6 th ed , India: P ENCE BOOKS , H.,2004 Elect A. Nasar, 1998, Millman and Cl	signals, Instruction types, transfer concepts – Simple 1 TUTORIAL 15 hta, 2020. Principles of Elect d J.Bates., 2017. Electronics ital System-Principle & Des Digital Design. Prentice Hall 2013, Microprocessor Archi Penram International Publica S rical Technology. CBS Publ Electrical Circuits. Schaum hristos, C. Halkias, 1967, Electrical Circuits.	classification Programming ctronics,12 th ed Principles. 7t ign. 2nd ed. P of India. tecture, Progra tions. lishers & Distr Series. ectronics Devi	toncepts. TOTA 60 I, S Chand Pul h ed, Tata Mc earson educati amming and it ibutors. ces, New Dell	L blishing. Graw-Hill. New ion. s Applications with hi: McGraw-Hill.
bus, timin Interfacin LEC TEXT BC 1. Metha 2. Albert Delhi. 3. Rajakat 4. Morris 5. Ramesl the 8085, REFERE 1. Corton 2. Syed, A 3. Jacob M 4. Millma	ng and control ng Basics: Data CTURE 45 OOKS V.K, Rohit Me Malvino, David mal, 2014. Dig Mano, 2015. E h, S. Gaonkar, 6 th ed , India: P ENCE BOOKS , H.,2004 Elect A. Nasar, 1998, Millman and Cl un, J. and Halki	signals, Instruction types, transfer concepts – Simple 1 TUTORIAL 15 hta, 2020. Principles of Elec d J.Bates., 2017. Electronics ital System-Principle & Des Digital Design. Prentice Hall 2013, Microprocessor Archi enram International Publica S rical Technology. CBS Publi Electrical Circuits. Schaum	classification Programming ctronics,12 th ed Principles. 7t ign. 2nd ed. P of India. tecture, Progra tions. lishers & Distr Series. ectronics Devi	toncepts. TOTA 60 I, S Chand Pul h ed, Tata Mc earson educati amming and it ibutors. ces, New Dell	L blishing. Graw-Hill. New ion. s Applications with hi: McGraw-Hill.
bus, timin Interfacin LEC TEXT BC 1. Metha 2. Albert Delhi. 3. Rajakar 4. Morris 5. Ramesl the 8085, REFERE 1. Corton 2. Syed, A 3. Jacob M 4. Millma Systems,	ng and control ag Basics: Data CTURE 45 OOKS V.K, Rohit Me Malvino, David mal, 2014. Dig Mano, 2015. I h, S. Gaonkar, 6 th ed , India: P ENCE BOOKS , H.,2004 Elect A. Nasar, 1998, Millman and Cl an, J. and Halki Tokyo: McGra	signals, Instruction types, transfer concepts – Simple 1 TUTORIAL 15 hta, 2020. Principles of Elec d J.Bates., 2017. Electronics ital System-Principle & Des Digital Design. Prentice Hall 2013, Microprocessor Archi cenram International Publica Frical Technology. CBS Public Electrical Circuits. Schaum hristos, C. Halkias, 1967, El- as, C. C., 1972. Integrated E	classification Programming ctronics,12 th ec Principles. 7t dign. 2nd ed. P of India. tecture, Progrations. lishers & Districtions. Series. ectronics Devi Electronics: Ar	toncepts. TOTA 60 I, S Chand Pul h ed, Tata Mcu earson educati amming and it ibutors. ces, New Dell halog and Digi	L blishing. Graw-Hill. New ion. is Applications with hi: McGraw-Hill. tal Circuits and

E-REFERENCES

1. NTPEL, Basic Electrical Technology (Web Course), Prof. N. K. De, Prof. T. K. Bhattacharya and Prof. G.D. Roy, IIT Kharagpur.

2. Prof.L.Umanand, http://freevideolectures.com/Course/2335/Basic-Electrical-Technology#, IISc Bangalore.

3. http://nptel.ac.in/Onlinecourses/Nagendra/, Dr. NagendraKrishnapura, IIT Madras.

4. Dr.L.Umanand, http://www.nptelvideos.in/2012/11/basic-electrical-technology.html, IISC Bangalore.

		PROGRAM OUTCOMES												
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	3	1	1	1	1			1	1	1		3	3
CO2	3	3	1	1	1	1			1	1	1		3	3
CO3	2	2	2	1	2	2	1	1	1	1	1		3	3
CO4	2	2	1	1	1	1	1	1	1	1	1		3	3
CO5	2	2	1	1	1	1	1	1	1	1	1		3	3
Total	12	12	6	5	6	6	3	3	5	5	5		15	15
ScaledValue	3	3	2	1	2	2	1	1	1	1	1		5	5
		1 -	-5 🗆	1,		6	6 – 10	□ 2,			11 –	15 🗆	3	
		0-NoF	Relati	on,1-	Low	Relati	on,2-	Mediu	umRe	lation,	3-Hig	hRela	tion	

Mapping of COs with Pos

						L	Τ	Р	SS	С	
2	XGS	204				2	0	0	0	2	
				Technical Communication							
С	F)	Α			L	Т	Р	SS	Η	
3	0)	0								
	Course Outcomes Domain Lev								evel		
After	com	pleti	ion of	the course, students will be able to							
CO1	CO1 Associate the basic principles of Technical writing. Cognitive Unde									nd	
CO2										pply	
CO3		Exp	lain tl	he communicative styles of writing.	Cognitiv	ve		Ev	valuat	aluate	
CO4		Clas	sify t	he nature of Report writing.	Cognitiv	ve		Un	dersta	erstand	
Cour	se C	onte	ent						Ho	Hours	
UNIT	Γ -Ι		Ba	sic Principles						8	
1.1 –	Basi	ic Pri	incipl	es of Technical Writing							
1.2 –	Styl	es us	sed in	Technical Writing							
1.3 –	Lang	guag	e and	Tone							
UNIT –II Techniques										8	
2.1 – Special Techniques used in writing											
2.2 -	Defi	initio	on & I	Description of mechanism2.3 – Description- C	Classificatio	n-In	terpr	etati	on		
UNIT				mmunication						7	

3.1 – Modern development in style of writing 3.2 - New letter writing formats										
UNIT-IV	NIT-IV Report writing 7									
4.1 - Types of H	4.1 – Types of Report writing 4.2 – Project writing formats									
LECTUR	E	TUTORIAL	PRACTICAL	TOTAL						
<u> </u>										

TEXT BOOKS: Suggested Readings:

- (i) John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009
- (ii) Williams K.S, Communicating Business. Engage Learning India Pvt Ltd, 2012

Mapping of COs with POs														
			PROGRAM OUTCOMES											
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	2	0	0	3	0	0	0	0	0	2	3	2	0
CO2	3	2	0	0	2	0	0	0	0	0	2	3	2	0
CO3	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO4	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO5	2	2	1	0	2	0	0	1	0	2	2	2	2	0
Total	12	10	3	4	11	0	0	1	0	2	10	12	10	0
ScaledValue	3	2	1	1	3	0	0	1	0	1	2	3	2	0
		1 –	$1-5 \square 1$, $6-10 \square 2$, $11-15 \square 3$											
	(0-NoRelation,1-Low Relation,2-MediumRelation,3-HighRelation												

C	OUF	RSE CODE	COURSE NAME	1	L	Т	Р	C			
	X	WP205	Workshop Practice	es	1	0	2	3			
С	P	Α	<u></u>		L	Т	Р	H			
1.0	2.0	0			1	1 0 3 4					
PRE	RE	QUISITE: NIL									
		Cour	Domain		Ι	Level					
CO1	:	Summarize the	machining methods and	Cognitive	U	nderst	anding	5			
		Practice machin	ing operation.	Psychomotor	r G	uided	respon	se			
CO2			al casting process, moulding	Cognitive			bering				
			relates Casting and Smithy	Psychomotor	r Pe	Perception					
~~~		applications.		<i>a</i>							
CO3		-	bentry and fitting operation and	Cognitive	Applying						
		Practice carpent	try and fitting operations.	Psychomotor	<b>*</b>						
<b>CO4</b>	<b>:</b>	Summarize met	al joining operation and <i>Practice</i>	Cognitive	Cognitive Understan						
		welding operation	on.	Psychomotor	r G	uided	respon	se			
CO5	5:	Illustrate the, o	electrical and electronics basics	Cognitive	U	nderst	anding	r			
		and <i>Makes</i> appr	opriate electrical connections.	Psychomotor	r R	emem	bering				
				-	G	uided	respon	se			
COU	JRSI	E CONTENT		-							
EX	P.NC	)		CC	) REL	ATIO	N				
	1	Introduction	to machining process		CO1						
	2	Plain turning	g using lathe operation		CO1						

3	Introduction about CNC machining and machines	CO1
4	Demonstration of plain turning using CNC	CO1
5	Study of metal casting operation	CO2
6	Demonstration of moulding process	CO2
7	Study of smithy operation	CO2
8	Study of carpentry tools	CO3
9	Half lap joint – Carpentry	CO3
10	Mortise and Tenon joint – Carpentry	CO3
11	Study of fitting tools	CO3
12	Square fitting	CO3
13	Triangular fitting	CO3
14	Study of welding tools	CO4
15	Square butt joint - welding	CO4
16	Tee joint – Welding	CO4
17	Introduction to house wiring	CO5
18	One lamp controlled by one switch	CO5
19	Two lamps controlled by single switch	CO5
20	Staircase wiring	CO5
TEXT BO	OOKS	

1. Workshop Technology I,II,III, by S K Hajra, Choudhary and A K Chaoudhary. Media Promoters and Publishers Pvt. Ltd., Bombay

2. Workshop Technology by Manchanda Vol. I,II,III India Publishing House, Jalandhar.

## REFERENCES

1. Manual on Workshop Practice by K Venkata Reddy, KL Narayana et al; MacMillan India Ltd.

2. Basic Workshop Practice Manual by T Jeyapoovan; Vikas Publishing House (P) Ltd., New Delhi

3. Workshop Technology by B.S. Raghuwanshi, DhanpatRai and Co., New Delhi.

4. Workshop Technology by HS Bawa, Tata McGraw Hill Publishers, New Delhi.

E RESOURCEShttp://nptel.ac.in/courses/112107145/

			PROGRAM OUTCOMES											
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	2	1	1	1	1	1	-	1	1	-	1	2	0	0
CO2	2	1	1	1	1	1	-	1	1	-	1	2	0	0
CO3	2	1	1	1	1	1	-	1	1	-	1	2	0	0
CO4	2	1	1	1	1	1	-	1	1	-	1	2	0	0
CO5	2	1	1	1	1	1	-	1	1	-	1	2	0	0
Total	10	5	5	5	5	5	-	5	5	-	5	10	0	0
ScaledValue	2	1	1	1	1	1	-	1	1	-	1	2	0	0
		1 -	-5 🗆	1,		6	- 10	□ 2,			11 – 1	5 🗆 .	3	
	(	)-NoF	NoRelation,1-Low Relation,2-MediumRelation,3-HighRelation											

#### Mapping of CO's with PO'S:

XBT2	BT206 CHEMICAL ENGINEERING THERMODYNAMICS										
C P	Α			L	Т	P	Н				
<b>3</b> 0	0			2	1	0	3				
		Course Outcomes	Domain	L		Lev	vel				
After co	mplet	ion of the course, students will be able to									
CO1	Stat	te the basic laws of thermodynamics and the	Cognitiv	e	F	leme	mber				
		lamentals of thermodynamics.			U	Inder	stand				
CO2	Inte	erpret the PVT relationship for various systems.	Cognitiv	e	Int	terpro	etation				
CO3	Esti	matethe thermodynamic relations and the	Cognitiv	e	F	leme	mber				
thermodynamic properties.											
CO4 Apply the phase equilibrium in various systems like Cognitive Apply miscible and immiscible systems.											
CO5											
CO6		<b>culate</b> required free energy, equilibrium rate stant and conversion.				App	oly				
Course	Cont	ent					Hours				
UNIT-I		Fundamentals Of Thermodynamics					6+3				
Intensiv	e and	f System, Surroundings and Processes, Open and C Extensive Properties, State and Path functions, eq d Irreversible processes, Overall view on laws of the	uilibrium	state	e and	-	<b>1</b>				
UNIT –		<b>PVT Relationships for Gases and Liquids</b>	intodynai	mes.	•		6+3				
PVT be	havio ses –	ur of pure fluids-Equations of state and the concept of Equation of state for real gases -Compressibility of					nvolving				
UNIT-I	II	Solution Thermodynamics					6+3				
of Jacob	oians - on c	of thermodynamic properties –relationship on thern – Fugacity – properties of solution – chemical poten chemical potential - fugacity in solutions –Activity	ntial – Eff	ect o	ofter	npera	ature and				
UNIT-I		Phase Equilibria					6+3				
Criteria	of p ting s	bhase equilibria, phase equilibria in multi-composite stems, Vapour-Liquid Equilibria, P-xy, T-xy and VI or ideal binary or ternary component systems, N	LE for ide Ion-Ideal	al sy solu	stem	s; Bu s: az	rule for bble and eotropes,				
Dew Po Calculat	ion o	f activity coefficients using Van laar and Margules l Equilibrium diagrams.	equation	and	aze	otrop	oic data -				

Reaction stoichiometry - Criteria of chemical Reaction Equilibrium - Equilibrium Constant -Equilibrium constant and standard free Energy change – Effect of temperature on equilibrium constant - Effect of pressure on equilibrium - Factors affecting equilibrium conversion - Liquid phase reactions - Ligand binding - Membrane potential - Energetics of metabolic pathways, Oxidation and reduction reactions.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
30	15		45

#### **TEXT BOOKS:**

- 2. Smith, J.M., Van Ness HC and Abbott MM.2005. Introduction to Chemical Engineering Thermodynamics, 7th Edition, McGraw-Hill International Edition, 2005

#### **REFERENCES**:

- 1. S.I.Sandler, Chemical, Biochemical and Engineering Thermodynamics, 4th Edition, Wiley India, 2006.
- 2. Rao., Y.V.C., Chemical engineering Thermodynamics, University Press, Hyderabad, 2005.
- 3. Lehninger Principles of Biochemistry, David L. Nelson and Michael M. Cox, W. H. Freeman; 6th edition (13 February 2013), 1158 pages ISBN-10: 1464109621, ISBN-13:978-1464109621.

**EREFERENCES:**ThermodynamicsofBiomolecularSystems:

http://ocw.mit.edu/courses/biologicalengineering/20-110j-thermodynamics-of-biomolecularsystems-fall-2005/

#### Mapping of COs with POs

						PF	ROG	RAM	OUT	ГСОМ	ES			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	2	0	0	0	0	0	0	0	0	2	2	0	2
CO2	3	3	2	2	1	0	2	0	0	0	2	2	3	2
CO3	3	3	2	2	1	0	2	0	0	0	2	2	3	2
CO4	3	3	2	3	1	1	2	0	0	0	2	2	2	2
CO5	3	3	3	3	1	1	2	1	1	0	2	3	3	3
CO6	1	1	1		1	1		1			1	1	1	1
Total	16	15	10	10	5	3	8	2	1	0	11	12	12	12
ScaledValue	3	3	2	2	1	1	2	1	1	0	3	3	3	3
		1 –	5 🗆	1,		6	- 10	□ 2,			11 – 1	5 🗆 🔅	3	
	(	)-NoR	lelatio	n,1-I	Low R	elatio	n,2-N	Mediu	mRel	lation,3	8-High	nRelat	ion	

COU COI		COURSE NAME		L	Т	Р	C
XBE	207	ELECTRICAL AND ELECTRO ENGINEERING SYSTEMS LABOR		0	0	1	1
Prereq	uisite	Physics		L	Т	Р	Η
<b>C</b> : <b>P</b>	: A			0	0	3	3
1.5 : 1	: 0.5						-
a. U: b. St	se helps to nderstand udy the c	<b>CTIVES:</b> oLearn the basic concepts of electrical and ele d the basic wiring methods and connection. characteristics of diodes, Zener diodes, NPN t working of simple logic gates, adders and sub-	ransistors.	onents			
Course C			Domair	1		Leve	el
CO1	Apply t	he fundamental electrical concepts and <b>ntiate</b> the various electronic components.	Cognitive Psychomo Affective	e, tor		Jnders Set,Val	tand
CO2	-	<b>tent</b> and <b>execute</b> the different types of connections.	Cognitiv Psychomo Affectiv	tor		Jnders et, Val	
CO3	<b>Demons</b> with cho	strate the Fluorescent lamp connection oke.	Cognitiv Psychomo Affectiv	tor		Jnders et, Val	
CO4		<b>terize</b> and <b>display</b> the basic knowledge on king of PN junction and Zener diode.	Cognitiv Psychomo Affectiv	tor		Jnders et, Val	
CO5	electron	<b>tent</b> and <b>execute</b> the various digital ic circuits such as Adders and Subtractors.	Cognitiv Psychomo Affectiv	tor		Jnders et, Val	
<ol> <li>St</li> <li>Te</li> <li>Te</li> <li>Te</li> <li>Fe</li> <li>F</li></ol>	udy of El udy of A esting of eadboard uorescen orward ar orward ar put and C onstructio	lectrical Symbols, Tools and Safety Precautic ctive and Passive elements – Resistors, Induc DC Voltage and Current in series and par I by using Voltmeter, Ammeter and Multimet t lamp connection with choke. Staircase Wiri and Reverse bias characteristics of PN junction and Reverse bias characteristics of zener diode Dutput Characteristics of NPN transistor. on and verification of simple logic gates.	etors and Capaci allel resistors v er. ng diode.	itors, l			
9. C	onstructio	on and verification of adders and subtractors					

					Co	os versu	is GA i	mapping	5				
						(	Gradua	tes Attr	ibutes				
	1	2	3	4	5	6	7	8	9	10	11	L	12
CO1	3	3	1	1	1	1			1	1	1		
CO2	3	3	1	1	1	1			1	1	1		
CO3	2	2	2	1	2	2	1	1	1	1	1		
CO4	2	2	1	1	1	1	1	1	1	1	1		
CO5	2	2	1	1	1	1	1	1	1	1	1		
Total	12	12	6	5	6	6	3	3	5	5	5		
Scaled Value	3	3	2	1	2	2	1	1	1	1	1		
	(	) - No	Relati	on, 1 -	Low F	Relation	, 2- Me	edium Re	elation,	3- High Re	lation	l	
			1 – 5 –	→1,		6 –	$10 \rightarrow 2$	2,	11	$-15 \rightarrow 3$			
COUR	SE CO	)DE	X	AC20	8					L	Т	P	С
COUR	SE NA	ME				nistry I	For En	gineers		0	0	1	1
				aborat	ory								
PRERI	EQUIS	SITES		lil						L	Т	P	Н
C:P:A			3	.5:1.0:	0.5					0	0	3	3
COUR	SE OU	JTCO	MES							DOMAIN	J	LEV	EL
CO1								zation e		Cogniti	ve	Unde	erstand
								tro nega		Psychom	otor	Perc	eption
				ous wa	ter qua	lity par	ameter	s like ha	rdness				
000		kalini			•		1			Caraciti		II. J.	
CO2								ry in ter forces.	ms of	Cogniti Psychom			erstand Set
CO3	Inter		bulk		perties			cesses	using	Cogniti			oply
005	-				-	siderati	-		using	Psychom			nanism
	unerin	ouynu	iiiie ui		001	biueiuu	10115.			Affectiv			ceive
CO4	Descr	ibe, Il	lustra	te and	Discus	s the cl	nemica	l reaction	ns that	Cogniti			erstand
		,				ecules.				Psychom			alyze
										Affectiv	ve		5
CO5						0		anges o		Cogniti			oply
		0		-				ting dif		Psychom	otor	Mech	nanism
			nergy	levels	in vari	ous spe	ctrosco	pic techr	niques				
Labora	tory I	Part										30 hrs	

3.http:			PRACTICAL		- <u>2011</u>
				es	-2011
3.	2. http://freevideo	Diectures.com/Course/2		Inemistry-Pan-	-2011
3.	r		941/Chemistry-1A-General-	-	
3.	1.http://freevideo	lectures.com/Course/23	80/Chemistry-Laboratory-Te	echniques	
_	E Resources - M	· · ·			
		l: New York, 2003.	· <u>1</u>	-	<i>,</i>
2.	-	•	er, D. P. "Experiments in Ph		ry", 8t
			ition, Pearson Education, 20	-	con (
			and Thomas N.J.K., "	Vogel's Textb	ook a
DEEE	RENCE BOOKS				
10	. Saponification/ad	ciu value of off.			CO5
	Synthesis of a pol	· ·			CO5
		n by colorimetric metho	a.		CO4
		the rate constant of a re			
	-	etic acid by charcoal.			CO4
		surface tension and vis	cosity.		CO3
	•	etermination of redox p			CO3
		cell constant and condu			CO2
	EDTA method.				
2.		total, temporary and	permanent hardness of wate	er sample by	CO2
2	method.				CO1
2		emonde ion present	in the water sample by A	rgentometric	CO1

# Mapping of CO's with PO's:

						P	ROG	RAM	OUT	COM	ES			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	0	0	0	0	0	2	3	3	0	0	0	0	0
CO2	2	0	0	0	0	0	1	2	2	0	0	0	0	0
CO3	3	0	0	0	0	0	2	3	3	0	0	0	0	0
CO4	3	0	0	0	0	0	3	3	3	0	0	0	0	0
CO5	3	0	0	0	0	0	2	2	3	0	0	0	0	0
Total	14	0	0	0	0	0	10	13	14	0	0	0	0	0
ScaledValue	3	0	0	0	0	0	2	3	3	0	0	0	0	0
		1 -	$1-5 \Box 1$ , $6-10 \Box 2$ , $11-15 \Box 3$											
	(	)-NoF	-NoRelation,1-Low Relation,2-MediumRelation,3-HighRelation											

## **III Semester**

COU	RSE C	CODE	XPS301		L	T	P	С
COU	RSE N	IAME	PROBABILITY AND STATISTICS		3	0	0	3
С	P	Α			L	Τ	Р	H
2.5	0.5	0			3	0	0	3
	<u> </u>	ISITE:						
1.	Appr		s the importance of probability and statistics in compu- the in presenting quantitative data using appropriate c			anc	1	
3.	sumr Inter unde	naries and pret and rstandat	nd to use appropriate statistical method in the analysic clearly present output from statistical analyses in a ble manner.	sis of simple dat clear concise an	asets d	•		and
	statis mode	tical and eling, cli	alysis mostly used in varied applications in engineer mate prediction and computer networks etc.					unu
		DUTCO	MES:					
		comes:		Domain		-	vel	
CO1	expe		nditional probability, independent events; <b>find</b> ues and Moments of Discrete random variables es.	Cognitive	Un	ders	tandi	ing
CO2	Find cond cond	distri itional itional	bution function, Marginal density function, density function, <b>Define</b> density function of distribution functions normal, exponential and butions.	Cognitive	Re	men	nberi	ng
CO3	Find Bino Corr	l measu mial, Po	res of central tendency, statistical parameters of bisson and Normal, correlation, regression. Rank coefficient of two variables. Moments, Skewness	Cognitive	Rei	men	nberi	ng
CO4	prop	ortion, s	e sample test for single proportion, difference of single mean, difference of means and difference eviations with simple problems.	Cognitive	Un	ders	tandi	ing
CO5	mean	n and c	all sample test for single mean, difference of orrelation coefficients, variance test, chi-square ple Problems.	Cognitive	Un	ders	tandi	ing

UNIT I: Basic Probability	9
Probability spaces, conditional probability, independence, Discrete random variable	s, Independent
random variables, the multinomial distribution, Poisson approximation to the binom	ial distribution,
infinite sequences of Bernoulli trials, sums of independent random variables; Expectat	tion of Discrete
Random Variables, Moments, Variance of a sum, Chebyshev's Inequality.	
UNIT II: Continuous Probability Distributions & Bivariate Distributions	9
UNIT II: Continuous Probability Distributions & Bivariate Distributions	9

Continuous random variables and their properties, distribution functions and densities, normal, exponential and gamma densities. Bivariate distributions and their properties, distribution of sums and quotients, conditional densities.

#### **UNIT III: Basic Statistics**

Measures of Central tendency: Moments, Skewness and Kurtosis - Probability distributions: Binomial, Poisson and normal - evaluation of statistical parameters for these three distributions, Correlation and regression – Rank correlation.

#### **UNIT IV: Applied Statistics**

Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations.

#### **UNIT V: Small Samples**

Test for single mean, difference of means and correlation coefficients, test for ratio of variances - Chisquare test for goodness of fit and independence of attributes.

LECTURE	TUTORIAL	TOTAL
45	-	45

9

9

#### TEXTBOOKS

1.VeerarajanT.,"Probability, Statistics and Random Processes", Tata McGraw-Hill, New Delhi, 2010.

2. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2015.

#### REFERENCES

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.
- 2. P. G. Hoel, S. C. Port and C. J. Stone, "Introduction to Probability Theory", Universal Book Stall, 2003 (Reprint).
- 3. S. Ross, "A First Course in Probability", 6th Ed., Pearson Education India, 2002.
- 4. W. Feller, "An Introduction to Probability Theory and its Applications", Vol. 1, 3rd Ed., Wiley, 1968.
- 5. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2010.

## E – REFERENCE

Probability and Statistics by Prof.Someshkumar, Department of Mathematics, IIT Kharagpur. (http://nptel.ac.in/noc/noc_courselist.php)

		-			Cos vei	rsus G	A ma	pping				
						Grae	luates	s Attrik	outes			
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1						1	1		1
CO2	3	2	1						1	1		1
CO3	3	2	1	1					1	1		1
<b>CO4</b>	3	2	1	1	1	1			1	1	1	1
CO5	3	2	1	1	1	1	1		1	1	1	1
Total	15	10	5	3	2	2	1		5	5	2	5
Scaled Value	3	2	1	1	1	1	1		1	1	1	1
(	) - No	Relati	on, 1 -	Low	/ Relati	on, 2-	Mediu	um Rela	ation,	3- High	Relati	on
 [		1 – 5 -	$\rightarrow 1$ ,		6	- 10 -	$\rightarrow 2$ ,		11	$-15 \rightarrow$	3	

	KBT3		BIOCHEMISTRY		L 2	T 1	P 0	C 3
C	P	A			L	T	P	H
3	0.	0			3	1	0	4
		site: -	•					
		<b>Object</b>						
			<b>n of this course, the students</b> ve learn the fundamentals of biomolecules.					
•								
•	vv	ould ha	ve learn the functions of proteins and biosignalling. Course Outcomes	Domain	n	т	Level	
After	• the (	romnlet	ion of the course, students will be able to	Doman	L	1	Jever	
	Ev	_	bout the structure and properties of water, amino	Cognitiv	7e	Und	lerstan	d
CO1		-	proteins	Cognitiv		UIIC	ici stall	u
CO2			the functions of proteins and enzymes.	Cognitiv	/e	Unc	lerstan	d
	Id		the types of carbohydrates and its role in	Cognitiv				
CO3			functions	0	-	Rer	nembe	r
CO4	Fi	0	characteristics of different types Nucleotides and	Cognitiv	/e	A	pply	
CO5	Ev	aluate	the types of transport can be applicable for ypes of biomolecules across the cell membrane	Cognitiv	/e	Ev	aluate	
CO6	De	emonstr	<b>rate</b> the lipds, carbohydrates and proteins for vel functions.	Cognitiv	/e	A	pply	
I – V			o acids and Proteins				6+3	
			eractions in Aqueous Systems, Ionization of Wat	er, Weak	Acids			ases.
			pH changes in biological systems. Water as a react			,		,
			ctures of 20 common acids and properties, Peptides		Gene	etic codo	n.	
Struc	ture	of Pro	teins- Primary, Secondary, Tertiary structure and	l Quaterna	ry S	tructures	– Fil	orous
Prote					-			
			ction and Enzymes				6+3	
Rever	sible	Bindin	g of a Protein to a Ligand: Oxygen-Binding Pro	teins: Cor	npler	nentary	Interac	tions
			and Ligands: Protein Interactions Modulated by Ch					
			s: An Introduction to Enzymes: How Enzymes	Work, M	lecha	nism, E	xample	es of
			ons, Regulatory Enzymes.					
			ates and Glycobiology				6+3	<u> </u>
and	Glyc	olipids	and Disaccharides: Polysaccharides: Glycoconjug Carbohydrates as Informational Molecules:		0.		· •	
		rates.	and Nucleic acids		I		612	
			and Nucleic acids	mo. Nucles			6+3	)thar
			nucleotides and nucleic acids: Nucleic Acid Struct	ire: inuciei	ic Ac	iu Chem	istry: (	Juner
			gical membranes and transport		ſ		6+3	
	_		tructural Lipids in Membranes: Lipids as Signals,	Cofactors	and			rking
			plogical membranes and transport: Composition					
L	1			-				,

Lecture				Tut	orial				Prac	ctical			Tot	al
30				1	15				(	)			45	5
xt Books:														
1. Lehninger	Prine	ciples	of Bi	oche	mistr	y, Dav	vid L	. Nels	on ar	nd Mich	nael N	1. Co	к, W. H.	Freem
6th edition														
2. Biochemis	try, ]	Donal	d Vo	et, Ju	dith (	G. Vo	pet $4^{t}$	^h Edit	ion,	2011, 1	1520	pages	ISBN:	978-0-4
91410-6.														
3. Branden (					Introd	uctior	n to	Prote	in St	ructure	ed, Se	econd	Edition	", Garla
Publishing		<u>, USA</u>	<u>, 199</u>	9.										
eference Books							~ .	-					1 15	100
1. Introductio					,							,	rland Pr	ess, 199
2. Structure a									,		·			
3. Protein en	0	0	n Indu	istria	l biote	chnol	logy,	Ed. L	ilia A	lberghi	ina, H	arwoo	od Acade	emic
Publishers	·													
4. Creighton	T.E.	Protei	ins, Fr	eema	an WI	H, Sec	ond I	Editio	n, 199	93.				
<b>References:</b>														
1. http://vlab														
2. https://ww				chan	nel/U	CbWI	mSK	The second se	/19kR	ZAdfy	_gyg			
Mapping of C	<u>Os w</u>	<u>ith P</u>	Os						0					
						PI	ROG	RAM	OU	ГСОМ	ES			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	1	1	2	0	1	0	0	1	1	1	1	3	2	3
CO2	1	1	2	0	1	0	0	1	1	1	1	0	3	2
CO3	1	1	2	0	1	0	0	1	1	1	1	2	2	1
	1	1	2	0	1	0	0	1	1	1	1	0	1	0
CO4	1	1	2	0	1	0	0	1	1	1	1	2	0	0
CO5	1		1	1	2	1	1	1	1		1	1	1	1
	1	1	1	1			1	1	-		-	-	1	1
CO5		1 6	1 11	1 1	2 7	1 1 1	1	6	6 2	5	6 2	8	9 2	1 7

				L	Т	Р	С
X	BT 3	)3		3	0	0	3
			MICROBIOLOGY				
С	Р	Α		L	Τ	Р	Η
3	0	0		3	0	0	3
DDI	FDFO	TITCT	FE: Biology				

## Learning Objectives:

Upon completion of this course, the students will be able to understand the existence of microbial world through the study of the characteristics of microorganisms, their classification, their interaction with various environments, growth in different media and their control.

	(	Course Outcomes	Domain	Level
After t	the completion of th	ne course, students will be able to	·	
CO1	<i>Explain</i> the fundation functioning of a p	amental concepts in the structure and rokaryotic cell	Cognitive	Understand
CO2	<i>Illustrate</i> microbi methods	al taxonomy and microbial classification	Cognitive	Understand
CO3	<i>Analyze</i> microbia different environm	al ecosystem and their interactions in nents	Cognitive	Analyze
<b>CO4</b>	<i>Apply</i> the bacteria nutritional require	al growth, growth curve and microbial ements,	Cognitive	Apply
CO5	drugs against path	mechanisms of various antimicrobial nogens applications of microorganisms,	Cognitive	Apply
CO6	production	referable method for microbial	Cognitive	Understand
		DUCTION TO MICROBIOLOGY		7
Cytopl	lasmic matrix, Cel	Microbiology – Overview of Prokaryo l wall, Flagella, Capsule – Study of mic , electron), Staining techniques (simple and	crobial structure:	
	II CLASS	<b>IFICATION OF MICROORGANISMS</b>		9
Classif charac	fication: Morpholo	<ul> <li>Three Domain classification system: Bac gical characteristics, Physiological and me cal characteristics, Molecular character</li> </ul>	etabolic character	ristics, Biochemical
]	III MICRO INTER	DBIAL ECOLOGY AND ACTIONS	MICROBIA	L 11
		croorganisms in Marine Ecosystems, I Interactions: Microbe-Microbe interactions		
]	IV MICRO	<b>DBIAL GROWTH AND NUTRITION</b>		11
cell m	ass), Factors influe bial Nutrition: Cul	th curve (lag, exponential, stationary, death encing growth (water activity, pH, temper ture media (defined, complex), Culture te	ature, oxygen, pi	ressure, radiation) -
		IOTICS AND ANTIMICROBIAL RESI		7
		l, Antifungal, Antiviral, Antiprotozoan, A of resistance, Prevention of resistance.	ntihelminthic dru	ıgs – Antimicrobial
	LECTURE	TUTORIAL		TOTAL
	45	0		45
1.	Education, 2005.	arley, J. P., and Klein, D. A. Microbiology	. 5th. McGrawJ I	Hill Higher
	CRENCES: Morcello I A N		anual and workh	olt in
1.		Iizer, H. E., & Granato, P. A. Laboratory m plication to patient care, 2003	anual and workd	JOK III

- 2. Prescott, L. M., Harley, J. P., & Klein, D. A. Laboratory exercises in microbiology, 2002.
- 3. Black, Jacquelyn G. Microbiology: principles and explorations. John Wiley & Sons, 2008.
- 4. Tortora, Gerard J., Berdell R. Funke, Christine L. Case, and Ted R. Johnson. *Microbiology: an introduction*. Vol. 9. San Francisco, CA: Benjamin Cummings, 2004.

## **E-REFERENCES:**

- 1. http://www.austincc.edu/rohde/noteref.htm
- 2. http://www.uwyo.edu/molb2210_lect/lecture/lectures.html
- 3. http://nptel.ac.in/courses/102103012/

### Mapping of COs with POs

						PF	ROG	RAM	OUT	ГСОМ	ES			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	3	1	1	1	0	1	0	1	1	1	1	0	0
CO2	3	3	1	1	1	2	2	1	1	1	1	1	0	0
CO3	3	1	2	3	1	2	1	0	1	1	1	1	2	0
CO4	3	3	2	0	1	0	2	0	1	1	1	1	0	2
CO5	3	2	2	3	1	2	2	1	1	0	1	1	2	2
CO 6	1	2	1	2	1	2					1	1	1	1
Total	16	14	9	10	6	8	8	2	5	4	6	6	5	5
ScaledValue	3	3	2	2	2	2	2	1	1	1	2	2	1	1
		1 -	5 🗆	1,		6	- 10	□ 2,			11 – 1	5 🗆 🕄	3	
	(	)-NoR	elatio	on,1-l	Low R	elatio	on,2-1	Mediu	mRe	lation,3	B-High	nRelat	tion	

XBT304       2       1       0       3         MATERIAL AND ENERGY BALANCES       I       I       0       3         Image: Constraint of the state of					L	Т	Р	С
C         P         A           3         0         0	2	XBT3(	)4		2	1	0	3
C         P         A           3         0         0				MATERIAL AND ENERGY BALANCEs				
	С	P	Α		L	Т	Р	Η
	3	0	0		2	1	0	3

	Course Outcomes	Domain	Level
After t	he completion of the course, students will be able to		
CO1	<i>Interpret</i> different unit systems and composition of unit process	Cognitive	Understand
CO2	<i>Compute</i> the material balances across different unit operations	Cognitive	Apply
CO3	<b>Compute</b> the material balances across chemical reactors	Cognitive	Apply
CO4	<i>Explain</i> the energy balance calculations for systems with and without chemical reactions	Cognitive	Understand
CO5	Describe the Biotechnology stoichiometry system	Cognitive	Understand
<b>CO6</b>	Calculate the theoretical oxygen demand	Cognitive	Apply
	Course Content		Hours
Unit-I	Stoichiometric Principles and Basic Calculations		6+3
Introdu	ctory concepts of units, physical quantities in chemical engine	ering, dimension	less groups, "basis"
of calcu	ulations - Methods of expression, compositions of mixture	and solutions.	Gases, Vapors and

Liquids: Equations of state, Vapor pressure, Clausius-Clapeyron equation, Cox chart, Duhring's plot, Raoult's law.

Raoult Slaw.			6		<b>D</b>		<b>.</b> .							
	rial B													6+3
Material balances														
nixing, drying, ci	-		_					nd abs	orpti	on, Ma	terial	balan	ce for m	ultiple un
	rial B													6+3
Material balance	es witl	h cher	mical	reac	tion -	- Lim	iting	and	exces	ss reac	tants	- Co	ombustic	n – Yiel
conversion and s	electiv	ity ca	lculati	ons,	Mater	ial ba	lance	for m	ultip	le unit				
Unit-IV Ener	gy Bal	ances												6+3
Heat capacity of	f solid	s, liqu	iids, g	gases	and s	olutio	ons, i	ise of	mea	n heat	capa	city i	n heat c	alculation
problems involv	ing se	nsible	heat	and	latent	heats	s. En	ergy ł	balan	ces wi	th ch	emica	l reaction	on: Heat
reaction, Heat of	comb	ustion												
Unit-V Biolo	gical S	Stoich	iomet	ry										6+3
Stoichiometry g	rowth	and	produ	ct fo	ormati	on, I	Degre	e of	reduc	ction, 1	Electi	ron b	alance,	Theoretic
Oxygen demand							-							
Lecture				Tute	orial			]	Prac	tical			Tot	al
30				1	5				0				45	5
Text Books:														
<ol> <li>B. I. Bhy</li> <li>Edition, 2</li> <li>Richard 1</li> </ol>	2004. M. Fel	lder a	nd Ro	nald	W. R	lousse	eau, I							
John Wil		ons, 1	NC. 3	Ed	1tion,	2000.								
Reference Book			r <b>A</b>			. 1	D.		N	M. 4	<u>01. '</u>	<u>((, p</u>	~ ~ ~	-11
1. V. Venka Prentice	uaram	ani, N	$a^{nd} \tau$	ntnai	raman,	, and	вegu	ım, K	. IVI.	wieera	Snerii	ira, Pi	cocess C	aculation
2. D. C. Sik						lation	. <b>D</b>	ntica	<b>U</b> _11	ofInd	0			
													2004	
3. Bailey an		s, <b>D</b> 100	chenne		ngmee	ering .	runua	ament	ais, n	AcGrav	и пш	I, CO.	2004.	
E-References:	-1 i-	• /ar 11 a	h	0210	(076)									
1. <u>http://npt</u>				0510	00/0/									
Mapping of (			JS			рг					FC			
							UG	<b>XAIVI</b>		COM	E9			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	3	2	3	2	0	2	0	0	0	0	0	2	2
CO2	3	3	2	3	2	0	2	0	0	0	0	0	2	2
GOA				_	•		-	0	0	-	0	0		

						PR	ROGE	RAM	OUT	COM	ES			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	3	2	3	2	0	2	0	0	0	0	0	2	2
CO2	3	3	2	3	2	0	2	0	0	0	0	0	2	2
CO3	3	3	2	3	2	0	2	0	0	0	0	0	2	2
CO4	3	3	2	3	2	0	2	0	0	0	0	0	2	2
CO5	3	3	2	3	2	0	2	0	0	0	0	0	2	2
CO 6	2	2	1	2	1		1						1	2
Total	17	17	11	17	11	0	11	0	0	0	0	0	11	11
ScaledValue	3	3	3	3	3	0	3	0	0	0	0	2	3	3
		1 -	5	1,		6-	- 10 [	2,		1	1 - 1	5 🗆 🔅	3	
	(	)-NoR	Relatio	n,1-I	Low R	elatio	n,2-N	lediu	nRel	ation,3	-High	nRelat	ion	

Subj	ject Co	de	XUM 306	L	Т	P	)	С
	ect Na			2	0	0		2
С	P	Α	Entrepreneurship Development	L	Т	P	SS	Η
2.7	0	0.3		2	0	0	0	2
Prere	quisite	,	NIL					•
Course	e Obje	ective	s Through this course the students will					
•Un	ndersta	nd the	e Entrepreneurial motivation and inclination					
• Ide	ea abou	it the	market assessment					
• To	get fai	milia	r in government policies and global opportuni	ities fo	r Entre	preneu	rship	
De	evelopn	nent						
Cours	se Out				nain		Leve	
CO1			and <i>describe</i> the role of innovation and for an entrepreneur.	Cogi	nitive	K2	Unde	erstand
CO2			s and <i>appraise</i> your entrepreneurship th your chosen entrepreneur.	Cog	nitive	K2	Unde	erstand
CO3	Outli	ne th	e importance of generation of new ideas for urship and <i>illustrate</i> market assessment.	Cog	nitive	K2	Unde	erstand
<b>CO4</b>	Expl		the competition in business and	Cogr	itive/	K2	Unde	erstand
	sketc	h/den	nonstrate/comply business model for	U U		K3	A	oply
	dealii	ng wi	th competition.	Affe	ctive	A3	Va	alue
						A2	Res	ponse
CO5			and <i>Explain</i> venture creation and launching	Cogi	nitive	K1		ember
			usiness and its management.			K2		erstand
CO6			and Discuss various government policies	Cogr	nitive/	K1		ember
	and	glob	11 1 1			K2	Unde	erstand
UNIT	Deve		ent OVATION AND ENTREPRENEURSHIP					
UNII	-1							5
		entre traits and	nition of Innovation, Creativity and Entrep epreneurship development - Entrepreneuria s of an entrepreneur -Role of Family and So its role in national development	l moti ciety; l	vation Entrepr	- Con reneurs	npetenc hip as a	ies and
UNIT	'–II	SEL	F ASSESSMENT OF ENTREPRENEURI	AL IN	CLIN	INATI	ON	4
	ſ	Self-	assessment of entrepreneurial inclination -	Presen	tation	by stu	dents o	on their
			epreneurial inclination rating -Case study of s			<u> </u>	urs	
UNIT	-III		V IDEA GENERATION TO MARKET AS					9
TINITA	1 157	Desc state Tech TAN	ortance of Idea generation-filtering-refiner cription of chosen idea - value proposi ment -benefits; development status; IP mology/ user/decision makers/ partners -m <u>A,SAM and SOM -case study on market segn</u>	sition, owne arket nentatio	custor rship need; s on by p	ner-pro -Marko segmen	oblem-S et Val tation	Solution idation- -market nies
UNIT	- <b>I</b> V		STOMER – COMPETITION- BUSINESS					9
			omer-Target primary customer research, De market; Cost of Customer Acquisition - C					

	competitive advantages-; -Business mod and presentation	del -Fin	ancial j	plannin	g -Pitch	docum	entation
UNIT – V	VENTURE CREATION AND LAUN AND ITS MANAGEMENT	ICHIN	GOF	SMAL	L BUS	INESS	9
	New enterprise creation - organizationa and distribution plan - Accounting - raising and management -Profile of a sta	Team	recruitn	nent a			
UNIT– VI	GOVERNMENT INITIATIVES ANI OPPORTUNITIES						9
	Incubators and accelerators - capacity Support for MSME; GeM Portal. F Bilateral programmes by Govt. of India entrepreneurship (1)	unding-	-nation	al and	interna	tional	sources-
		L	Т	Р	SS	To	otal
		30			15	4	15

#### **REFERENCE BOOKS**

- 1. A.P.Aruna, "Lecture Notes on Entrepreneurship Development", available as softcopy @ www.brain.net
- 2. Thomas W. Zimmerer, Norman M. Scarborough, "Essentials of Entrepreneurship and Small Business Management", Pearson; 3rd edition, 2001.
- 3. John Burnett, "Introducing Marketing", Open Text Book available at http://solr.bccampus.ca:8001/bcc/file/ddbe3343-9796-4801-a0cb-7af7b02e3191/1/Core%20Concepts%20of%20Marketing.pdf
- 4. Toubia, Olivier. "Idea Generation, Creativity, and Incentives", Marketing Science. Vol. 25. pp.411-425. 10.1287/mksc.1050.0166, 2006.
- 5. Alexander Osterwalder and Yves Pigneur, "Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers", Wiley; 1st edition, 2010.
- 6. Gerardus Blokdyk,"3C's model The Ultimate Step-By-Step Guide"5starcooks, 2018.

		PROGRAM OUTCOMES														
	1	2	3	4	5	6	7	8	9	10	11	12	PSO 1	PS O2		
CO1	1	0	1	0	1	1	1	0	0	0	0	0	1	02		
CO2	1	0	1	0	1	1	1	0	0	0	0	0	1	0		
CO3	1	0	1	0	1	1	1	0	0	0	0	0	1	0		
CO4	1	0	1	0	1	1	1	0	0	0	0	0	1	0		
CO5	1	0	1	0	1	1	1	0	0	0	0	0	1	0		
CO 6	1	0	1	0	1	1	1	0	0	0	0	0	1	0		
Total	6	0	6	0	6	6	6	0	0	0	0	0	6	0		
Scaled Value	2	0	2	0	2	2	2	0	0	0	0	0	2	0		
			1 – :	5 🗆 🗄	1,	•	6 - 10	0 □ 2,	•	11	– 15	□ 3	•	•		
		0	-NoRe	elatio	n,1-Lo	w Rela	tion,2	-Mediu	ımRel	ation,3-	HighR	elatio	n			

C	COURSECO	DE		<b>XBT308</b>		L	Т	Р	C	
С	OURSE NAM	ME				Δ	Δ	2	2	
P	REREQUISI	TE	D*1	· · · · · · · · · · · · · · · · · · ·		0	0	2	2	
С	P	Α	BIOCI	nemistry Laborato	ory	L	Т	Р	Н	
0.5	2	0.5				0	0	2	6	
COUI	RSE OBJEC	<b>FIVES</b> 1	The course will pr	ovide						
Hands	on experienc	e in usin	g Biochemistry L	ab						
Practic	ce on handling	g chemic	als, Will help to n	nake understanding	on research.					
			<b>E OUTCOMES</b>		DOMA	IN	]	LEVI	EL	
CO1	Prepare a	buffer a	and Calculate the	e molar extinction	Cogniti	ve,		App	ly	
	coefficient				Psychome	otor,	M	echar	iism	
					Affecti	ve	I	Respo	ond	
CO2	<b>Practice</b> of	n the	Thin Layer Ch	romatography by	Cogniti	ve,		App	ly	
	separating th	e amino	acids.		Psychome	otor,	M	echar	nism	
					Affecti	ve	I	Respo	ond	
CO3	Perform the	e qualita	tive/qualitative an	nalysis of proteins.	-			App	-	
	Carbohydrat	es and se	erum cholesterol.		Psychome			echar		
					Affecti	Respond				
CO4		e purity	of DNA and Sapo	nification Value of	-		Apply Mechanism Respond			
	Fats/Oils.				Psychome					
						Affective				
CO5	<b>Determine</b> t	he β-ca	rotene, Flavonoid		Cogniti			Apply Mechanis		
					Psychom					
~ ~ ~					Affecti			Respo		
CO6	<b>Plot</b> the titra	tion curv	ves of amino acids	5.	Cogniti			App	-	
					Psychom			echar		
1			1 1 1 4	1	Affecti	ve		Respo	ond	
1.				nolar extinction co						
2.	<b>•</b>		•	ayer Chromatograp	ny					
3. 4.		-	ve analysis of prov ve analysis of Car							
			arotene, Flavonoi							
	Estimation a			u						
7.				amylase on starch						
8.	Detection of		•	uniyiuse on staren						
	Titration Cu									
				esterol by Zak's me	thod					
			fication Value of	-						
				-1	TUTORIAI		то	TAL		
	HOURS		<u>LECTURE</u> 0	PRACTICAL 30	1010KIAI 0	-		<u>1 AL</u> 30	1	
	<b>RENCE BO</b>			ry, David L. Ne		ael M				
1.	0	-	edition (13 Febr							

## Mapping of COs with POs

						PI	ROG	RAM	OUT	ГСОМ	ES			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	1	1	2	0	1	0	0	1	1	1	1	3	2	3
CO2	1	1	2	0	1	0	0	1	1	1	1	0	3	2
CO3	1	1	2	0	1	0	0	1	1	1	1	2	2	1
CO4	1	1	2	0	1	0	0	1	1	1	1	0	1	0
CO5	1	1	2	0	1	0	0	1	1	1	1	2	0	0
CO 6	1	2	2		1	1	2					2	2	1
Total	6	7	12	0	6	1	2	5	5	5	5	9	9	7
ScaledValue	2	2	3	0	2	1	1	1	1	1	1	2	2	2
		1 -	$1-5 \Box 1$ , $6-10 \Box 2$ , $11-15 \Box 3$											
		0-Nol	Relatio	on,1-	Low I	Relation	on,2-1	Mediu	mRe	lation,3	8-Higl	nRelat	ion	

COURSE CODE	XBT 309	L	Т	Р	С
COURSE NAME	Missishish and takened	0	0	2	2
PREREQUISITES	Microbiology Laboratory	L	Т	Р	Η
C:P:A:0.5:1:0.5	-	0	0	2	6

## **LEARNING OBJECTIVES**

Upon completion of this course, the students will be able to apply their knowledge of microbiology to demonstrate aseptic microbiological techniques in the laboratory

	COURSE OUTCOMES	DOMAIN	LEVEL
After th	he completion of course the students will be able to	·	
CO1	<i>Demonstrate</i> media preparation and sterilization techniques	Cognitive, Psychomoto, Affective	Apply Mechanism Respond
CO2	<i>Perform</i> staining techniques, antimicrobial and cell counting assays	Cognitive, Psychomoto, Affective	Apply Mechanism Respond
CO3	<i>Practice</i> the different culturing techniques	Cognitive, Psychomoto, Affective	Apply Mechanism Respond
CO4	Determine the characteristics of bacteria	Cognitive, Psychomoto, Affective	Apply Mechanism Respond
CO5	<i>Experiment</i> on isolation of microbes for metabolites production	Cognitive, Psychomoto, Affective	Apply Mechanism Respond
CO 6	<i>Apply</i> the preferable method for microbial application	Cognitive, Psychomoto, Affective	Apply Mechanism Respond

S.No	List of Experiments											
1	Media preparation and Sterilization											
2	Preparation of slants /plates and aseptic transfer of microbial cultures											
3	Staining and identification of microbes using si	imple and differ	ential staining									
4	Isolation of microbes using spread plate method	d										
5	Isolation of microbes using streak plate method	l										
6	Isolation of microbes using pour plate method											
7	Microbial growth control using Kirby-Bauer m	ethod										
8	Cell counting											
9	Biochemical characterization of microbes											
10	Screening of microorganisms for enzyme produ	uction										
	HOURS	TUTORIAL	PRACTICAL	TOTAL								
	noons	0	30	30								

# Mapping Of Course Outcomes with Program Outcomes

			PROGRAM OUTCOMES											
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	3	1	1	1	0	1	0	1	1	1	1	0	0
CO2	3	3	1	1	1	2	2	1	1	1	1	1	0	0
CO3	3	1	2	3	1	2	1	0	1	1	1	1	2	0
CO4	3	3	2	0	1	0	2	0	1	1	1	1	0	2
CO5	3	2	2	3	1	2	2	1	1	0	1	1	2	2
CO 6	1	2	1	2	1	2					1	1	1	1
Total	16	14	9	10	6	8	8	2	5	4	6	6	5	5
ScaledValue	3	3	2	2	2	2	2	1	1	1	2	2	1	1
		1 –	5 🗆	1,		6	- 10	□ 2,		-	11 - 1	5 🗆 🕄	3	
	(	)-NoR	elatio	on,1-1	Low R	elatio	$\overline{n,2-1}$	Mediu	mRe	lation,3	8-High	nRelat	ion	

			L	Τ	Р	SS	C
XBT 310			0	0	0	0	1
	<b>INPLANT TRAINING - I</b>						
C P A			L	Т	Р	SS	Η
1 1 1			0	0	0	0	0
PREREQUISITE: N	Vil						
COURSE OUTCOM	AES:						
	nain		J	Level			
After the completion	of the course, students will be able to						

<b>CO1:</b> <i>Relate</i> classroom theory with workplace practice	Cognitive	Understand
<b>CO2:</b> <i>Comply with</i> Factory discipline, management and business practices.	Affective	Respond
CO3:Demonstrates teamwork and time management	Affective	Value
<b>CO4:</b> <i>Describe</i> and <i>Display</i> hands-on experience on practical skills obtained during the programme.	Psychomotor	Perception Set
<b>CO5</b> : <i>Summarize</i> the tasks and activities done by technical documents and oral presentations.	Cognitive	Evaluate
<b>CO6:</b> <i>Display</i> the experience on practical skills obtained during the IPT	Cognitive	Evaluate

## Mapping COs with POs

ppm	8													
	РО	PO	РО	PO	PO	PO	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	2													
CO2							1	3			1		1	1
CO3									3	1	3		3	3
CO4		1	2	1	3								1	1
CO5				3						3			1	1
CO6	1		1		1		1	1	1		1	1	1	1
Total	2	1	3	4	4	0	2	4	4	4	5	1	7	7
Scaled	1	1	2	1	1	0	1	1	1	1	1	1	2	2

## **IV Semester**

2	XBT	401		L 2	T 1	P 0	C 3				
		- 1	<b>Basic Transport Processes</b>	Basic Transport Processes							
C	P	Α		L	Т	P	Η				
3	0	0		2	1	0	3				
			Course Outcomes D	omain		Leve	1				
Afte	er the	e comple	etion of the course, students will be able to								
CO	1	Apply the	he fluid transport properties in flow of fluids Co	Cognitive			and				
CO	2	Apply th	he particle transport properties in flow of fluids Co	Cognitive			Apply				
CO	3	Describ	e the heat and mass transfer equipments Co	Cognitive			and				
CO	4	Compu	<i>te</i> the heat transport properties in flow of fluids Co	Cognitive			у				
CO	5	<b>Determ</b> fluids	ine the mass transport properties in flow of Co	Cognitive			у				
Uni	t-I			6+3							
Units	Unit-IFluid Transport6+3Jnits and Dimensions, Newtonian and non-Newtonian Fluids, Laminar and turbulent flow, Continuity										

equation, Bernoulli equation, Hagen-Poiseuille equation,

Unit-IIParticle Transport6+3Characterization of particles shape and size, Size reduction, settling and sedimentation. Agitation and Mixing<br/>- power consumption in mixing, Mixing in bioreactors, Mixing time, Centrifugation, Filtration theory.6+3Unit-IIIHeat Transport6+3Conductive and convective heat transfer, LMTD, Overall heat transfer coefficient, Heat exchangers.6+3Unit-IVMass Transport6+3Molecular diffusion and film theory, Mass transfer coefficients, Oxygen transfer and uptake in bioreactor,<br/>kLa and its measurement, Mass transfer operations.6+3

- Unit-V Computational Tools for the Transport Process
- Introduction to Computation Excel MATLAB Rprogram RStudio

Lecture	Tutorial	Practical	Total
30	15	-	45
Text Books:			

6+3

# 1. McCabe, Warren L., Julian C. Smith, and Peter Harriott, Unit Operations of Chemical Engineering,McGraw-Hill, 2010.

- 2. Warren, L. M., C. S. Julian, and H. Peter, Unit operations of chemical engineering, McGraw Hill Book Company, 2005.
- 3. Geankoplis, Christie John, Allen H. Hersel, and Daniel H. Lepek, Transport processes and separation process principles, prentice hall, 2018.
- 4. Welty J, Rorrer GL, Foster DG.,Fundamentals of Momentum, Heat, and Mass Transfer, Wiley, Revised 6th Edition; 2014.

## **Reference Books:**

- 1. Benitez, Jaime, Principles and modern applications of mass transfer operations, John Wiley & Sons, 2016.
- Ravi, R., R. Vinu, and Sathyanarayana N. Gummadi, eds. Coulson and Richardson's Chemical Engineering: Volume 3A: ,Chemical and Biochemical Reactors and Reaction Engineering, Butterworth-Heinemann, 2017.

## **E-References:**

- 1. https://nptel.ac.in/courses/103/103/103103037/
- 2. http://ce-iitb.vlabs.ac.in/List%20of%20experiments.html?domain=Chemical%20Engineering
- 3. http://uorepc-nitk.vlabs.ac.in/#
- 4. http://iitg.vlab.co.in/?sub=58

## Mapping of COs with POs

	PO	PO8	PO	PO	PO	PO	PS	PS						
	1	2	3	4	5	6	7	PUð	9	10	11	12	01	02
CO 1	3	3	1	1	2	2	2	0	0	0	1	3	0	0
CO 2	3	3	2	2	1	2	2	0	0	0	2	2	1	1
CO 3	3	3	2	3	1	2	2	0	0	0	2	3	2	3
<b>CO 4</b>	3	3	2	3	1	2	2	0	0	0	2	2	2	2
CO 5	3	3	2	3	1	2	2	0	0	0	2	3	3	3

15	15	9	12	6	10	10	0	0	0	9	13	8	9

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

# Mapping of Subjects with POs

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
Origin al Value	15	15	9	12	6	10	10	0	0	0	9	13	8	9
Scaled Value	3	3	2	3	2	2	2	0	0	0	2	3	2	2

$1-5 \rightarrow 1$ ,	$6-10 \rightarrow 2$ ,	$11 - 15 \rightarrow 3$
0 - No Relation,	1 - Low Relation, 2- Me	dium Relation, 3- High Relation

v					L	Т	P	С
Ă.	BT 4(	)2			2	1	0	3
			BIOENERGETICS AND METABOLISM	ſ				
C	P	Α			L	Т	Р	Η
3	0	0			2	1	0	3
Prer	requis	site: -						
Lear	rning	Obje	ctives:					
Upor	n con	npletio	on of this course, the students					
•	We	ould h	ave learn various metabolic pathways.					
•	W	ould h	ave learn how all the metabolic pathways related to e	ach other.				
			Course Outcomes	Domai	in	]	Level	
After	r the c	comple	etion of the course, students will be able to					
CO1	Dis	scuss 1	the fundamental and metabolism pathways	Cogniti	ve	Un	derstar	nd
<b>CO2</b>	2 Ide	entify	the mechanism offatty acid and cholesterol	Cogniti	ve	Remember		
	Sy	nthesis	s in <i>in-vivo</i>					
CO3		plain	oxidative phosphorylation and	Cogniti	ve	Un	derstar	nd
			osphorylation					
<b>CO4</b>	l Illı	ustrate	biosynthesis of amino acids and nucleotides	Cogniti	ve	Un	derstar	nd
CO5	5 Inf	f <b>er</b> abo	but the metabolic disorder and disease	Cogniti	ve	А	nalyze	
CO6	S Su	mmar	<i>ize</i> the oxidation process of fatty acids	Cogniti	ve	Un	derstar	nd
			Course content			]	Hours	
I – B	Bioene	ereget	ics and Glycolytic pathways				6+3	
	0		d Thermodynamics, Phosphoryl Group Transfers			0		
Reduc	ction	React	ions, metabolic pathways: Glycolysis, Gluconeoge	nesis, and	the l	Pentose	Phos	phate
Pathw	vay, T	'he Cit	ric Acid Cycle.					
			Cholestrol, Lipid and amino acid metabolism				6+3	
-			atty acids, Oxidation of fatty acid – beta oxidation an	-				
Biosy	nthes	is of (	Cholesterol, Biosynthesis of phospholipids and glyc	olipids, M	[etabol	ic Fates	s of A	mino

roups, Pathways of I <b>II – Oxidative ph</b> e				0			hor	vlatio	n					6+3
Electron-Transfer R										ulation	of O	xidativ	L ze Phosn	
General Features of							-		-	and the second	01 02	induti		inor y rath
IV – Biosynthesis		-	-											6+3
Overview of Nitro								amino	o acio	ds, bio	synth	esis a	ind deg	
nucleotides – De I														
Nucleotide-Nucleot	tide	Mon	ophos	phate	es-Rib	osoma	al –	Purin	e and	l Pyrin	nidine	base	s are re	stricted
Salvage Pathways.			-	-										
V – Metabolic diso	orde	rs an	d dise	eases										6+3
Overall view on en	neget	tics of	f meta	abolic	c path	ways	- Qu	alitativ	ve an	d quant	titativ	e ana	lysis of 1	netaboli
involving in disease	e and	d diso	orders.	Repo	ort wr	iting c	on me	etabol	ic dis	orders	or dis	eases.		
Lecture					orial				Prac	tical			Tot	
30				1	5				0				45	5
6th edition 1464109621 2. Biochemistr 91410-6.	edi 1. ry, I	tion Donal	(13 F d Voe	ebrua et, Ju	ary 20 dith C	013), G. Vo	1158 et 4 ^{tl}	8 pag [.] ^h Edit	es IS ion, 2	BN-10 2011, 1	: 146 520	41096 pages	21, ISB ISBN:	978-0-47
1464109621 2. Biochemistr	edi 1. ry, I . an	tion Donal d To	(13 F d Voe poze J	ebrua et, Jua J., "I	ary 20 dith C	013), G. Vo	1158 et 4 ^{tl}	8 pag [.] ^h Edit	es IS ion, 2	BN-10 2011, 1	: 146 520	41096 pages	21, ISB ISBN:	N-13: 97 978-0-47
1464109621 2. Biochemistr 91410-6. 3. Branden C. Publishing, <b>Reference Books:</b>	edi 1. ry, I . an NY,	tion Donal d To USA	(13 F d Voe boze J <u>A, 1999</u>	Februa et, Ju J., "I 9.	ary 20 dith C Introdu	013), G. Vo uction	1158 et 4 ^{tl} to	8 pag ^h Edit Protei	es IS ion, 2 in St	BN-10 2011, 1 ructure	: 146 520 d, Se	41096 pages econd	21, ISB ISBN: Edition	N-13: 97 978-0-47 ", Garla
1464109621 2. Biochemistr 91410-6. 3. Branden C. Publishing, <b>Reference Books:</b> 1. Introduction	edi 1. ry, I . an <u>NY</u> , n to l	tion Donal d To USA Protei	(13 F d Voe boze J a, 1999	ebrua et, Jua J., "I 9. cture	ary 20 dith C Introdu	013), G. Vo uction Ed by	1158 et 4 th to Carl	8 pag ^h Edit Protei	es IS ion, 2 in St den au	BN-10 2011, 1 ructure nd Johr	: 146 520 d, Se	41096 pages econd ze, Ga	21, ISB ISBN: Edition	N-13: 97 978-0-47 ", Garla
1464109621 2. Biochemistr 91410-6. 3. Branden C. Publishing, <b>Reference Books:</b> 1. Introduction 2. Structure an	edi 1. ry, I . an <u>NY</u> , n to l nd M	tion Donal d To <u>, USA</u> Protei	(13 F d Voe boze J <u>A, 1999</u> in stru nism i	ebrua et, Ju I., "I 9. cture n Pro	ary 20 dith C Introdu , 2nd 1 otein S	013), G. Vou uction Ed by cience	1158 et 4 th to Carl e, Ala	8 pag ^h Edit Protei Branc an Fer	es IS ion, 2 in St den ar	BN-10 2011, 1 ructure nd Johr	: 146 520 d, Se <u>n Too</u> n, 199	41096 pages econd ze, Ga	21, ISB ISBN: Edition rland Pr	N-13: 97 978-0-47 ", Garla ess, 1999
1464109621 2. Biochemistr 91410-6. 3. Branden C. Publishing, <b>Reference Books:</b> 1. Introduction 2. Structure an 3. Protein engi	edi 1. ry, I . an NY, n to l nd M ineer	tion Donal d To USA Protei lechar ring in	(13 F d Voe boze J <u>A, 1999</u> in stru nism i	ebrua et, Ju I., "I 9. cture n Pro	ary 20 dith C Introdu , 2nd 1 otein S	013), G. Vou uction Ed by cience	1158 et 4 th to Carl e, Ala	8 pag ^h Edit Protei Branc an Fer	es IS ion, 2 in St den ar	BN-10 2011, 1 ructure nd Johr	: 146 520 d, Se <u>n Too</u> n, 199	41096 pages econd ze, Ga	21, ISB ISBN: Edition rland Pr	N-13: 97 978-0-47 ", Garla ess, 1999
1464109621 2. Biochemistr 91410-6. 3. Branden C. Publishing, <b>Reference Books:</b> 1. Introduction 2. Structure an 3. Protein engi Publishers, 2	edi 1. ry, I . an <u>NY,</u> n to l nd M ineer 2002	tion Donal d Tc USA Protei techai ring ii 2.	(13 F d Voe boze J a, 1999 in stru nism in n Indu	Yebrua et, Ju J., "I 9. cture n Pro istrial	ary 20 dith C Introdu , 2nd 1 otein S I biote	013), G. Vou uction Ed by icience chnole	1158 et 4 th to Carle, Alaogy,	8 pag ^h Edit Protei Branc an Fer Ed. Li	es IS ion, 2 in St den an rsht, F ilia A	BN-10 2011, 1 ructure nd Johr Treeman Iberghi	: 146 520 d, Se <u>n Too</u> n, 199	41096 pages econd ze, Ga	21, ISB ISBN: Edition rland Pr	N-13: 97 978-0-47 ", Garla ess, 1999
1464109621 2. Biochemistr 91410-6. 3. Branden C. Publishing, <b>Reference Books:</b> 1. Introduction 2. Structure an 3. Protein engi Publishers, 2 4. Creighton T	edi 1. ry, I . an <u>NY,</u> n to l nd M ineer 2002	tion Donal d Tc USA Protei techai ring ii 2.	(13 F d Voe boze J a, 1999 in stru nism in n Indu	Yebrua et, Ju J., "I 9. cture n Pro istrial	ary 20 dith C Introdu , 2nd 1 otein S I biote	013), G. Vou uction Ed by icience chnole	1158 et 4 th to Carle, Alaogy,	8 pag ^h Edit Protei Branc an Fer Ed. Li	es IS ion, 2 in St den an rsht, F ilia A	BN-10 2011, 1 ructure nd Johr Treeman Iberghi	: 146 520 d, Se <u>n Too</u> n, 199	41096 pages econd ze, Ga	21, ISB ISBN: Edition rland Pr	N-13: 97 978-0-47 ", Garla ess, 1999
1464109621 2. Biochemistr 91410-6. 3. Branden C. Publishing, <b>Reference Books:</b> 1. Introduction 2. Structure an 3. Protein engi Publishers, 2 4. Creighton T <b>E-References:</b>	edi 1. ry, I . an NY, n to I nd M ineer 2002 C.E. I	tion Donal d To USA Protei lechar ring in 2. Protei	(13 F d Voe ooze J a, 1999 in stru nism in n Indu	ebrua et, Jua J., "I 9. cture n Pro ustrial eema	ary 20 dith C Introdu , 2nd 1 otein S I biote an WH	013), G. Vou uction Ed by cience chnole	1158 et 4 th to Carle, Alaogy,	8 pag ^h Edit Protei Branc an Fer Ed. Li	es IS ion, 2 in St den an rsht, F ilia A	BN-10 2011, 1 ructure nd Johr Treeman Iberghi	: 146 520 d, Se <u>n Too</u> n, 199	41096 pages econd ze, Ga	21, ISB ISBN: Edition rland Pr	N-13: 97 978-0-47 ", Garla ess, 1999
1464109621 2. Biochemistr 91410-6. 3. Branden C. Publishing, <b>Reference Books:</b> 1. Introduction 2. Structure an 3. Protein engi Publishers, 2 4. Creighton T	edi 1. ry, I . an NY, n to I nd M ineer 2002 C.E. I	tion Donal d To USA Protei lechar ring in 2. Protei	(13 F d Voe ooze J a, 1999 in stru nism in n Indu	ebrua et, Jua J., "I 9. cture n Pro ustrial eema	ary 20 dith C Introdu , 2nd 1 otein S I biote an WH	013), G. Vou uction Ed by cience chnole	1158 et 4 th to Carle, Alaogy,	8 pag ^h Edit Protei Branc an Fer Ed. Li	es IS ion, 2 in St den an rsht, F ilia A	BN-10 2011, 1 ructure nd Johr Treeman Iberghi	: 146 520 d, Se <u>n Too</u> n, 199	41096 pages econd ze, Ga	21, ISB ISBN: Edition rland Pr	N-13: 97 978-0-47 ", Garla ess, 1999
1464109621 2. Biochemistr 91410-6. 3. Branden C. Publishing, <b>Reference Books:</b> 1. Introduction 2. Structure an 3. Protein engi Publishers, 2 4. Creighton T <b>E-References:</b>	edi 1. ry, I . an NY, n to I nd M ineer 2002 <u>C.E. I</u> <u>I.ac.i</u>	tion Donal d To USA Protei lechan ring in 2. Protei <u>n/cou</u>	(13 F d Voe ooze J a, 1999 in stru nism in n Indu ans, Fr urses/1	ebrua et, Jua J., "I 9. cture n Pro ustrial eema	ary 20 dith C Introdu , 2nd 1 otein S I biote an WH	013), G. Vou uction Ed by cience chnole	1158 et 4 th to Carle, Alaogy,	8 pag ^h Edit Protei Branc an Fer Ed. Li	es IS ion, 2 in St den an rsht, F ilia A	BN-10 2011, 1 ructure nd Johr Treeman Iberghi	: 146 520 d, Se <u>n Too</u> n, 199	41096 pages econd ze, Ga	21, ISB ISBN: Edition rland Pr	N-13: 97 978-0-47 ", Garla ess, 1999
1464109621 2. Biochemistr 91410-6. 3. Branden C. Publishing, <b>Reference Books:</b> 1. Introduction 2. Structure an 3. Protein engi Publishers, 2 4. Creighton T <b>E-References:</b> 1. <u>https://nptel</u>	edi 1. ry, I . an NY, n to I nd M ineer 2002 <u>C.E. I</u> <u>I.ac.i</u>	tion Donal d To USA Protei lechan ring in 2. Protei <u>n/cou</u>	(13 F d Voe ooze J a, 1999 in stru nism in n Indu ans, Fr urses/1	ebrua et, Jua J., "I 9. cture n Pro ustrial eema	ary 20 dith C Introdu , 2nd 1 otein S I biote an WH	013), G. Vou uction Ed by cience chnolo I, Seco	1158 et 4 ^d to Carl e, Ala ogy, ond H	8 pag ^h Edit Protei Brand an Fer Ed. Li Edition	es IS ion, 2 in St den an rsht, F ilia A n, 199	BN-10 2011, 1 ructure nd Johr Treeman Iberghi	: 146 520 d, Se n Toon n, 199 na, H	41096 pages econd ze, Ga	21, ISB ISBN: Edition rland Pr	N-13: 97 978-0-47 ", Garla ess, 1999
14641096212.Biochemistr 91410-6.3.Branden C. Publishing,Reference Books:1.Introduction2.Structure an3.Protein engi Publishers, 24.Creighton TE-References:1.https://nptel	edi 1. ry, I . an NY, n to I nd M ineer 2002 <u>C.E. I</u> <u>I.ac.i</u>	tion Donal d To USA Protei lechan ring in 2. Protei <u>n/cou</u>	(13 F d Voe ooze J a, 1999 in stru nism in n Indu ans, Fr urses/1	ebrua et, Jua J., "I 9. cture n Pro ustrial eema	ary 20 dith C Introdu , 2nd 1 otein S I biote an WH	013), G. Vou uction Ed by cience chnolo I, Seco	1158 et 4 ^d to Carl e, Ala ogy, ond H	8 pag ^h Edit Protei Brand an Fer Ed. Li Edition	es IS ion, 2 in St den an rsht, F ilia A n, 199	BN-10 2011, 1 ructure nd Johr Freeman Iberghi	: 146 520 d, Se n Toon n, 199 na, H	41096 pages econd ze, Ga	21, ISB ISBN: Edition rland Pr	N-13: 97 978-0-47 ", Garla ess, 1999
14641096212.Biochemistr 91410-6.3.Branden C. Publishing,Reference Books:1.Introduction2.Structure an3.Protein engi Publishers, 24.Creighton TE-References:1.https://nptel	edi 1. ry, I . an <u>NY</u> , n to I nd M ineer 2002 <u>C.E. I</u> <u>Lac.i</u>	tion Donal d To USA Protei lechar ring in 2. Protei <u>n/cou</u> i <b>th P</b> (	(13 F d Voe ooze J <u>A, 1999</u> in stru nism in n Indu ins, Fr <u>urses/1</u> <b>Ds</b>	ebrua et, Jua J., "I 9. cture n Pro istrial <u>0210</u>	ary 20 dith C Introdu , 2nd 1 otein S I biote an WH	013), G. Vou uction Ed by cience chnolo I, Seco	1158 et 4 ^d to Carl e, Ala ogy, ond H	8 pag ^h Edit Protei Brand an Fer Ed. Li Edition RAM	es IS ion, 2 in St den an sht, F ilia A n, 199 <b>OU</b> T	BN-10 2011, 1 ructure nd Johr Freeman Iberghi 93.	: 146 520 d, Se n Toon n, 199 na, H	41096 pages cond ze, Ga 9. arwoo	21, ISB ISBN: Edition rland Pr od Acade	N-13: 97 978-0-47 ", Garla ess, 1999 emic
1464109621 2. Biochemistr 91410-6. 3. Branden C. Publishing, <b>Reference Books:</b> 1. Introduction 2. Structure an 3. Protein engi Publishers, 2 4. Creighton T <b>E-References:</b> 1. <u>https://nptel</u> Mapping of CO	edi 1. ry, I . an <u>NY</u> , n to l nd M ineer 2002 <u>C.E. 1</u> <u>I.ac.i</u> <u>1</u>	tion Donal d Te USA Protei lechan ring in 2. Protei <u>n/cou</u> ith P(	(13 F d Voe boze J $\Delta_{1}$ 1999 in stru nism in n Indu $\Delta_{1}$ S $\Delta_{2}$ S $\Delta_{3}$ S $\Delta_{3}$ S $\Delta_{3}$ S	ebrua et, Jua J., "I 9. cture n Pro istrial <u>o210</u> 4	ary 20 dith C (ntrodu , 2nd 1 otein S l biote an WH <u>04063/</u> 5	013), G. Vou uction Ed by cience chnole I, Seco PR	1158 et 4 th to Carl e, Ala ogy, ond H	8 pag ^h Edit Protei Branc an Fer Ed. Li Edition RAM 8	es IS ion, 2 in St den ar sht, F ilia A n, 199 <b>OUT</b>	BN-10 2011, 1 ructure nd Johr Treeman Iberghi 93.	: 146 520 d, Se n Too n, 199 na, H ES 11	41096 pages econd ze, Ga 99. arwoo	21, ISB ISBN: Edition Irland Pr od Acade	N-13: 97 978-0-47 ", Garla ess, 1999 emic PSO2

CO3

**CO4** 

CO5

**CO 6** 

Total

ScaledValue

 $1-5 \Box 1$ ,

<u>6</u>−10 □ 2,

0-NoRelation,1-Low Relation,2-MediumRelation,3-HighRelation

11 – 15 🗆 3

			Ι		Т	Р	C
XB	T 403				0	0	3
		CELL BIOLOGY					
С	P A		Ι		Т	Р	H
3	0 0			3	0	0	3
Prere	quisite:-						
	ning Obje						
Upon	-	on of this course, the students					
•		levelop a deeper understanding of cell structure and h					
•		understand how cells grow, divide, and die and h	now these imp	orta	nt pro	ocesse	s a
	regulate						
•	Would u	inderstand cell signaling and how it regulates cellular					
A. C.	.1 1	Course Outcomes	Domain			Level	
After	the compl	etion of the course, students will be able to					
CO1	<i>Explain</i> specializ		Cognitive		Unc	derstar	ıd
CO2		the fundamental concepts in the structure and ing of a eukaryotic cell.	Cognitive		Rei	nembe	er
CO3	Analyze compart	the transport of proteins between intracellular ments	Cognitive		Analyze		
CO4	Describe	the types of cell division and its importance	Cognitive		Understand		ıd
CO5	Describe	cellular signaling and types of signaling receptors	Cognitive		Unc	lerstar	nd
CO6	<i>Explain</i> function	the types of ionic pumps and its role in cellular s	Cognitive		Unc	lerstar	ıd
I – Ce	ells and T	issues				7	
	elia, Conn	rsity of Cells – Origin of Eukaryotic cells – Plant c aective tissue, Nervous tissue, Muscle – Cells as e					
II – C	Cellular O	rganization and Membrane Transport				11	
Mitoc Active systen	hondria, C e transpor n.	ukaryotic cell structure: Cytoplasmic matrix, Endop Chloroplast, Nucleus – Functions of cell organelles – t – Sodium/potassium pumps, Ca2+, ATPase pum	- Membrane T	rans	port: I	Passive nd Ant	e ar
		lar Protein Trafficking			-	11	
-	-	d from the Nucleus – Transport Across Membranes –	Vesicular Traf	tick:	ing Be	etween	
		mpartments ion and Control				0	
1 V - (		- General description and different stages of mitosis	and maiorie (	Intor	mhaaa	9 Prop	hac
The		phase, Telophase) – Cell Growth Control: Apoptosis		inter	phase	, гтор	nas
	$haca \Lambda mc$						
Metap						7	
Metap V – C	ell Signal		Signaling De	Cont	tore in	7 Signe	lin

Lecture	Tutorial	Practical	Total
45	0	0	45
Text Books:		·	
1 0 1 0 0	Charlend E. A. William H		111.1 1 1

1. Bolsover, S. R., Shephard, E. A., White, H. A., and Hyams, J. S. *Cell biology: a short course*. John Wiley & Sons, 2011.

## **References:**

- 2. Sadava, D. E. Cell biology: organelle structure and function. Jones & Bartlett Learning, 1993.
- 3. Alberts, Bruce, Dennis Bray, Karen Hopkin, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. *Essential cell biology*. Garland Science, 2013.
  Julio E. Celis. *Cell biology: A Laboratory Handbook*. 3rd Edition, Vol. 1, Elsevier Academic
- Press, 2006.

#### **E-References:**

- 1. http://nptel.ac.in/courses/102103012/
- 2. https://cellbiology.med.unsw.edu.au/cellbiology/index.php/Cell_Biology_Introduction

#### Mapping of COs with POs

						P	ROG	RAM	OU	ГСОМ	ES			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	0	0	0	1	0	0	0	0	0	1	1	0	0
CO2	3	1	0	1	1	1	0	0	1	1	0	0	0	0
CO3	3	1	0	0	1	0	0	0	0	0	1	1	0	0
CO4	1	1	0	1	1	1	0	0	1	1	1	1	0	0
CO5	3	1	0	1	1	1	0	0	1	1	1	1	0	0
CO 6	2	1	1	1	1	2					1	1	2	1
Total	15	5	1	4	6	5	0	0	3	3	5	5	2	1
ScaledValue	3	1	1	1	2	1	0	0	1	1	1	1	1	1
		1 -	$1-5 \square 1$ , $6-10 \square 2$ , $11-15 \square 3$											
	(	)-NoF	Relatio	on,1-	Low I	Relation	on,2-1	Mediu	ımRe	lation,3	8-Higl	nRelat	ion	

		L	Т	Р	С						
XBT 404		3	0	0	3						
	IMMUNOLOGY										
C P A		L	Т	P	Η						
3 0 0		3	0	0	3						
Prerequisite:	Prerequisite: Genetics										
Learning Ob	jectives:										
Upon comple	tion of this course, the students										
Would	be able to explain role of immune cells and their me	echanism in prev	enting	the b	oody from						
foreigr	n attack and infectious disease, cancer and other disea	ase development.			-						
Would	apply the knowledge of immune associated me	chanisms in me	edical	biote	echnology						
researc	ch.										
	Course Outcomes	Domain		Lev	vel						

001	<u> </u>		ts will be able to	0	
CO1	0	eneral concepts of imm	•	Cognitive	Remember
CO2		e properties of antige ctions via various tests.	ns and antibodies and	Cognitive	Understand
CO3	<i>Describe</i> va MHC.	urious mechanisms of a	ntigen presentation and	Cognitive	Understand
CO4	<i>Compare</i> th	ne different types of hyperent	persensitive reactions	Cognitive	Understand
CO5	Summarize techniques	various types vaccin	nes and immunization	Cognitive	Understand
CO6	Explain the	e autoimmune diseases.		Cognitive	Understand
I- Imr	nune Systen	1			9
Cutano II- An Antigo	eous associat tigens and A ens: Immuno	ed Lymphoid tissue (M Antibodies	ns: Bone marrow, Spleen, IALT & CALT). r, Epitope, haptens and	Adjuvants –	9
Precip	otics,Monoclitation and		igen-antibody reaction: ons. Immunotechniques	Cross-Reactivi	
III- N	<b>IHC and Ar</b>	ntigen Presentation			9
	siveness to	MHC – Antigen proce	ucture, Function and cl ssing and presentation: l		
Pathw		bus antigens (The Endo Hypersensitivity and			9
Pathw IV- Construction Regulation	omplement, ation of im ation of con	<b>Hypersensitivity and</b> mune response; Com mplement system –	Autoimmunity plement System: Funct Allergy and hypersensit	tivity: Types of	ents, Activation and of hypersensitivity -
Pathw IV- Co Regula Regula Autoin	omplement, ation of im ation of con nmunity, Au	<b>Hypersensitivity and</b> mune response; Com mplement system – A to immune disorders; in	Autoimmunity plement System: Funct	tivity: Types of	ents, Activation and of hypersensitivity -
Pathw IV- C Regula Regula Autoin V- Va Vaccin Immu	omplement, ation of im ation of con mmunity, Au accines and on mes: Active a mes, Recomb me System - 7	Hypersensitivity and mune response; Com mplement system – A to immune disorders; in Cancer Immunology and Passive Immunizat binant-Vector Vaccines Fumor Antigens - Immu	Autoimmunity plement System: Funct Allergy and hypersensit mmune tolerance; Graft v ion, Whole-Organism V s, DNA and Multivalen une Response to Tumors	tivity: Types of rersus host react accines, Purifie t Subunit Vaco	ents, Activation and of hypersensitivity - ion. 9 d Macromolecules as cines. Tumors of the notheraphy.
Pathw IV- Co Regula Regula Autoin V- Va Vaccin Vaccin Immu	omplement, ation of im ation of con mmunity, Au accines and nes: Active a nes, Recomb ne System - 7 ecture	Hypersensitivity and mune response; Com mplement system – A to immune disorders; in Cancer Immunology and Passive Immunizat pinant-Vector Vaccines Fumor Antigens - Immu Tutorial	Autoimmunity plement System: Funct Allergy and hypersensit nmune tolerance; Graft v ion, Whole-Organism V s, DNA and Multivalen ine Response to Tumors Practical	tivity: Types of rersus host react accines, Purifie t Subunit Vaco	ents, Activation and of hypersensitivity - ion. 9 d Macromolecules as cines. Tumors of the notheraphy. Total
Pathw IV- Co Regula Autoin V- Va Vaccin Vaccin Immun Lo Text I 1. Jan	omplement,ation of imation of connmunity, Auaccines and ones: Active andnes: Active andnes, RecombineSystem - 7ecture45Books:nes Kuby., Imtt, I., Essentia	Hypersensitivity and mune response; Com mplement system – A to immune disorders; in Cancer Immunology and Passive Immunizate binant-Vector Vacciness Fumor Antigens - Immu Tutorial 0	Autoimmunity plement System: Funct Allergy and hypersensit mmune tolerance; Graft v ion, Whole-Organism V s, DNA and Multivalen une Response to Tumors	tivity: Types of rersus host react accines, Purifie t Subunit Vaco – Cancer immu ork.,7th Edition,	ents, Activation and of hypersensitivity - ion. 9 d Macromolecules as cines. Tumors of the notheraphy. Total 45 2013.

#### **E** - References:

- 1. http://www.raymondcheong.com/Year1/immuno.html
- 2. http://ocw.mit.edu/courses/health-sciences-and-technology/hst-176-cellular-andmolecular immunology-fall-2005/lecture-notes/
- 3. http://www.umich.edu/~bmsteach/lopatin/Immunology/Immunology.html

#### **Mapping of COs with POs PROGRAM OUTCOMES** PSO PS **CO1 CO2 CO3 CO4 CO5 CO 6** Total Scaled Value 11 – 15 🗆 3 $6 - 10 \Box 2$ , $1 - 5 \Box 1$ , 0-NoRelation,1-Low Relation,2-MediumRelation,3-HighRelation

COURSE (	CODE	XUM405	L	Т	Р	С			
COURSE N	NAME	ECONOMICS FOR ENGINEERS	3	0	0	3			
PREREQU	ISITES	NIL	L	Т	Р	Н			
C:P:A		2.64:0.24:0.12	3	0	0	3			
COURSE (	DOM	AIN	LEVEL						
CO1	Cogn	itive	Und	erstand					
	identify eler	ment of cost to prepare cost sheet	Psycho	motor	Perc	ception			
CO2	Calculate a	nd Explain the Break-even point and	Cogn	itive	Und	erstand			
	marginal co	sting	Psycho	motor	&A	Apply			
					Perception				
CO3	Summarize	and Use value engineering procedure for	Cogn	itive	Understand				
	cost analysi	8	Affec	ctive	Re	ceive			
CO4	Estimate re	placement problem	Cogn	itive	Und	erstand			
CO5	Compute, E	Explain and make Use of different methods	Cogn	itive	Under	rstand &			
	of depreciat	ion	_		А	pply			
UNIT I I	NTRODUC'	ΓΙΟΝ ΤΟ ΕCONOMICS				8			
Flow in an	economy, La	w of supply and demand, Concept of Engin	neering I	Econom	ics – En	gineering			
	efficiency, Economic efficiency, Scope of engineering economics- types of costing, element of costs,								
preparation	of cost sheet	and estimation, Marginal cost, Marginal Rev	enue, Su	nk cost,	Opportu	inity cost			
UNIT IIBR	REAK-EVEN	ANALYSIS&SOCIAL COST BENEFIT	ANALY	SIS		12			

				· · · 1.01	<i>/</i> D 1 '
0	•		analysis-Product Mix de		VP analysis,
	,		of Marginal costing, Limitation		·
		•	erent project alternatives, C	alculate direct,	indirect and
			social cost benefit analysis.		10
		GINEERING & COST			10
	<u> </u>		ineering procedure - Make of		
			osts, Equipment operating cos	sts	
		IENT ANALYSIS			7
			problem, determination of	economic life	of an asset,
		t with a new asset.			1
	DEPRECIAT				8
-			ethod of depreciation, dec	U	
-			l of depreciation, sinking fu	ind method of	depreciation,
Annuity n	nethod of depr	eciation, service output	method of depreciation.		
LECTUR	E:45	<b>TUTORIAL:0</b>	PRACTICAL:0	TO	ГАL:45
TEXT BO	OOKS				
1.		Ajay Sharma & Satish Iaryana, 2012.	Ahuja, "Cost Accounting"	, V K Global 1	Publications,
2.	S.P.Jain&Na Calcutta, 201		- Principles and Practice", H	Kalyani Publishe	ers,
3.			conomics", Prentice Hall of I	ndia Ltd. New D	Delhi.
	2001.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,	,
4.		ullivan, James A.Bonta	delli&ElinM.Wicks, "Engine	eering Economy	"
		ll International, New Yo	, E	5	
REFERE		, ,	*		
1.		eb / Brian T Mccann. '	"Managerial Economics – A	problem solvir	g approach"
-	Thomson lea	-		1	Corr enter
2.			mics- Analysis, problems	& cases "Wile	v India 8th
-•	edition 2004	, e			
3.			eering Economics", Prentice	Hall of India 20	002
<u> </u>			elle, "Engineering Economic		
т.	Texas, 2002	r		5 and analysis	1.166. 11035,
	10/103, 2002		og of CO with PO		

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	1	2	2	1	2	8	2
PO ₂	1	2	2	1	3	9	2
PO ₃	1	1	2	1	2	7	2
PO ₄	1	1	2	0	1	5	1
PO ₅	1	2	2	1	2	8	2
PO ₆	1	2	2	1	3	9	2
PO ₇	1	1	2	1	2	7	2

PO ₈	1	1	2	0	1	5	1
PO ₉	1	2	2	1	2	8	2
<b>PO</b> ₁₀	1	2	2	1	3	9	2
<b>PO</b> ₁₁	1	1	2	1	2	7	2
<b>PO</b> ₁₂	1	1	2	0	1	5	1
PSO ₁	1	2	2	1	2		2
1501						8	
DCO	1	2	2	1	3		2
PSO ₂						9	
ТОТАТ	14	22	28	11	29		-
TOTAL						-	

 $^{1-5 \}rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

COUR	SE CODE	XBT407		L	Т	Р	С	
COUR	SE NAME	BASIC TRANSPORT PROCESSES		0	0	1	1	
		LABORATORY						
PRER	EQUISITES	-		L	Т	Р	Н	
C:P:A		0:0.5:0.5		0	0	1	4	
LEAR	NING OBJEC	ΓΙVES						
•	experiments of	the existence of transport processes involved the characteristics of fluid mechanics, particle pcess control system.						
COUR	SE OUTCOM	ES	DO	MAI	N	LEV	EL	
CO1	Calculate the	co efficient of discharge the various flow	Cog	gnitiv	'e	App	ly	
	meters.	C	-	-		Mecha		
			Psychomotor Affective			Respo	ond	
CO2	Perform the c	haracteristics curve of the pumps	Cognitive			Apply		
			Psych			Mecha	nism	
				ectiv	-	Respo		
CO3		e minimum area required for thickener	-	gnitiv		App	•	
	process and p	ower calculation by mixing process	Psych	nomo	otor	Mechar Respo		
<b>CO4</b>	Determine th	e thermal conductivity and heat transfer	Cog	gnitiv	'e	App	ly	
	coefficient by	heat transfer equipments.	Psych	nomo	otor	Mecha	nism	
						Respo	ond	
CO5		rption isotherm equilibria and identify the		gnitiv		App		
	suitable solver	nt for solvent extraction process	Psych					
				ectiv	-	Respo		
CO6		cess control system and of MATLAB in	-	gnitiv		App		
	Unit operation		Psych	nomo	otor	Mecha	nism	

													tive		espond		
S.No	List of	Expe	erime	nts									(30	) hours	)		
1	I.					low m		(U tul	be ma	nom	eter, O	rifice	meter				
				,		ube me								CO	1 &CO2		
	II.					procati				teris	tics						
2	I.					tation			cles								
	II.	-				fugati	-		_						~ ~ ~		
	III.					ing po						_	~ .		CO3		
	IV.					Prum				ter,	Filter	Press	, Siz	e			
						t and S											
3	I.					ductio	n, Co	nvect	ion						CO4		
	II.	Heat															
4	I.	-	Simple Extraction Batch Adsorption												CO5		
	II.	Batch Adsorption Introduction to MATLAB													05		
_																	
McCab	I. nce: e, Warre	Introc	ductio	on to N	MAT		Peter I	Harrio	tt, Ur	nit Oj	peratio	ons of	Chem	nicalEng	CO6 gineering		
<b>Refere</b> McCab McGra	I. nce:	Introd en L., 2010.	ductic Juliar	n to N	MAT	, and P				nit Oj <b>FOR</b>			Chem CTIC		gineering		
Refere McCab McGra Any To all CO:	I. nce: be, Warre w-Hill, 2 en Expe s	Introd en L., 2010. rimen	ductic Juliar nts ma	n C. S ay ch	MAT	, and P		Harrio URS							CO6 gineering TOTAL 30		
Refere McCab McGra Any To All CO:	I. nce: be, Warre w-Hill, 2 en Expe	Introd en L., 2010. rimen	ductic Juliar nts ma	n C. S ay ch	MAT	, and P	НО	URS	TU	ГОR 0	IAL	PRA	CTIC		gineering TOTAL		
Refere McCab McGra Any To All CO:	I. nce: be, Warre w-Hill, 2 en Expe s	Introd en L., 2010. rimen	ductic Juliar nts ma	n C. S ay ch	MAT	, and P	НО	URS	TU	ГОR 0		PRA	CTIC		gineering TOTAL		
Refere AcCab AcGra Any To Ill CO:	I. nce: be, Warre w-Hill, 2 en Expe s	Introd en L., 2010. rimen	ductic Juliar nts ma	n C. S ay ch	MAT	, and P	НО	URS	TU	ГОR 0	IAL	PRA	CTIC		gineering TOTAL 30		
Refere AcCab AcGra Any To Ill CO:	I. nce: be, Warre w-Hill, 2 en Expe s	Introd en L., 2010. rimen Os wi	ductic Juliar nts ma th PC	on to M n C. S ay ch Ds	MAT mith, oose	, and F from	HO	URS OGR		ГОR 0 OUT	IAL COM	PRA ES	CTIC 30		gineering TOTAL 30		
Refere McCab McGra Any To all CO Mappi	I. nce: be, Warre w-Hill, 2 en Expe s	Introd en L., 2010. rimer Os wi	ductic Juliar nts ma th PC	on to M n C. S ay ch Ds 3	MAT	, and F from 5	HO PR 6	URS OGR 7	TU: AM ( 8	FOR 0 OUT 9	IAL COM 10	PRA ES 11	CTIC 30	PSO1	gineering TOTAL 30 PSO2		
Refere McCab McGra Any To All CO Mappi CO1	I. nce: be, Warre w-Hill, 2 en Expe s	Introc en L., 2010. rimen Os wi 1 3	ductic Juliar nts ma th PC 2 3	n to N n C. S ay ch Ds 3 1	MAT oose 4 1 2 2	, and F from 5 2	<b>HO</b> <b>PR</b> <u>6</u> 2	URS OGR 7 2	<b>TU</b> 2 <b>AM</b> ( <u>8</u> 0	ГО <b>R</b> 0 ОUT 9 0	IAL COM 10 0	PRA ES 11 1	CTIC 30	<b>PSO1</b> 0	gineering <b>TOTAL</b> <b>30</b> <b>PSO2</b> 0 1 3		
Refere McCab McGra Any To All CO Mappi CO1 CO2	I. nce: be, Warre w-Hill, 2 en Expe s	Introd en L., 2010. rimer Os wi 1 3 3	ductic Juliar nts ma th PC 2 3 2 2 3	$\frac{1}{2}$	MAT mith, oose 4 1 2	, and F from 5 2 1	HO PR 6 2 2	URS OGR 7 2 2	<b>TU</b> <b>AM</b> <b>8</b> 0 0	ГО <b>R</b> 0 ОUТ 9 0 0	<b>IAL COM 10</b> 0 0	<b>PRA</b> <b>ES</b> 11 1 2	<b>CTIC</b> 30 12 3 2 1 2	<b>PSO1</b> 0 1	gineering <b>TOTAL</b> <b>30</b> <b>PSO2</b> 0 1		
Refere McCab McGra Any To all CO Mappi CO1 CO2 CO3	I. nce: be, Warre w-Hill, 2 en Expe s	Introd en L., 2010. rimer Os wi 1 3 3 3 3	ductic Juliar nts ma th PC 2 3 2 2	on to M n C. S ay ch Ds 3 1 2 2	MAT oose 4 1 2 2	, and F from 5 2 1 1	HO PR 6 2 2 2 2	URS OGR 7 2 2 2 2	<b>TU</b> : <b>AM</b> ( <b>8</b> 0 0 0	<b>FOR</b> <b>0</b> <b>OUT</b> <b>9</b> 0 0 0	IAL           COM           10           0           0           0           0	PRA ES 11 1 2 2	CTIC 30	<b>PSO1</b> 0 1 2	gineering <b>TOTAL</b> <b>30</b> <b>PSO2</b> 0 1 3		
Refere McCab McGra Any To All CO Mappi CO1 CO2 CO3 CO4	I. nce: w-Hill, 2 en Expe s ing of C	Introd en L., 2010. rimen 0s wi 1 3 3 3 2	ductic Juliar nts ma th PC 2 3 2 2 3	n to N n C. S ay ch Ds 3 1 2 2 2	MAT mith, oose 4 1 2 2 3	, and F from 5 2 1 1 1	HO PR 6 2 2 2 2 2 2	URS OGR 7 2 2 2 1	<b>AM</b> <b>8</b> 0 0 0 0 0	<b>FOR</b> <b>0</b> <b>OUT</b> <b>9</b> 0 0 0 0	IAL           COM           10           0           0           0           0           0           0           0           0           0           0           0	PRA ES 11 2 2 1	<b>CTIC</b> 30 12 3 2 1 2	CAL         1           0         1           2         2	gineering <b>TOTAL</b> <b>30</b> <b>PSO2</b> 0 1 3 2		
Refere McCab McGra Any To All CO Mappi CO1 CO2 CO3 CO4 CO5	I. nce: w-Hill, 2 en Expe s ing of C	Introd en L., 2010. rimer Os wi 1 3 3 3 2 2 1 1 1 4	ductic Juliar nts ma th PC 2 3 2 2 3 3 1 1 14	n to N n C. S ay ch Ds 3 1 2 2 2 2 1 1 10	MAT mith, oose 4 1 2 2 3 3 1 1 12	, and F from 5 2 1 1 1 1 1 6	HO PR 6 2 2 2 2 2 1	URS 0GR 7 2 2 2 1 2 1 1 10	<b>TU</b> '. <b>AM</b> <b>8</b> 0 0 0 0 0 0 0 0 0 0 0	<b>FOR</b> <b>0</b> <b>0</b> <b>0</b> <b>0</b> <b>0</b> <b>0</b> <b>0</b> <b>0</b>	IAL           COM           10           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0	PRA ES 11 1 2 2 1 2 1 2 1 9	CTIC 30 12 3 2 1 2 3 1 13	CAL     1       0     1       2     2       1     8	gineering <b>TOTAL</b> <b>30</b> <b>PSO2</b> 0 1 3 2 2 1 <b>9</b>		
Refere McCab McGra Any To All CO Mappi CO1 CO2 CO3 CO4 CO5 CO 6 Total	I. nce: w-Hill, 2 en Expe s ing of C	Introd en L., 2010. rimen 0s wi 1 3 3 3 2 2 1	ductic Juliar nts ma th PC 2 3 2 2 3 3 1 1 14 3	on to N n C. S ay ch Ds 3 1 2 2 2 2 1 10 2	4 1 2 3 3 1	, and F from 5 2 1 1 1 1 1	HO PR 6 2 2 2 2 2 1 1 1 10 2	URS OGR 7 2 2 2 1 2 1 1 2 1	<b>AM</b> <b>8</b> 0 0 0 0 0 0 0 0 0	<b>FOR</b> <b>0</b> <b>0</b> <b>0</b> <b>0</b> <b>0</b> <b>0</b> <b>0</b> <b>0</b>	IAL           COM           10           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0	PRA ES 11 2 2 1 2 1 2 1	CTIC 30 12 3 2 1 2 3 1 2 3 1 13 3	PSO1       0       1       2       2       1       8       2	gineering TOTAL 30 PSO2 0 1 3 2 2 1		

0-NoRelation,1-Low Relation,2-MediumRelation,3-HighRelation

COUR	SECO	DE	XBT408	L	Т	Р	С
COUR	SE NA	ME		0	0	2	2
PRERI	EQUIS	SITE		U	v	4	4
С	Р	Α	Cell Biology Laboratory	L	Т	Р	Η
0	1	1		0	0	2	8

#### **COURSE OBJECTIVES**

Upon completion of this course, the students

• Would develop a deeper understanding of cell structure and how it relates to cell functions.

• Would understand how cells grow, divide, and die and how these important processes are

	regulated.						
٠	Would understand cell signaling a	nd how it regulate	s cellular fi	unctio	ons.		
	COURSE OUTCO	MES		D	OMAIN	L	EVEL
CO1	<i>Perform</i> the staining technique to	identify the type of	of cells	С	ognitive	Une	derstand
				Psy	chomotor	Mee	chanism,
				A	ffective	Re	espond
CO2	<i>Identify</i> the cell viability by prefer	able staining meth	nod	С	ognitive	A	Apply
		-		Psy	chomotor	Mee	chanism,
				Ă	ffective	Re	espond
CO3	Practice the feasible staining techn	nique for acquire t	he	С	ognitive	A	Apply
	knowledge about the stages of mit				chomotor		chanism,
					ffective	Re	espond
CO4	Apply the mechanism of SDS –PA	GE electrophores	is	С	ognitive	A	Apply
	technique by separate the proteins	1			chomotor		chanism,
					ffective		espond
CO5	Apply the feasible method to separ	rate the lipds and p	oroteins	С	ognitive		Apply
	from tissues			Psy	chomotor		chanism,
				•	ffective	Re	espond
CO6	Study the different stages of cells			С	ognitive	Une	derstand
					chomotor	Mee	chanism,
					ffective	Re	espond
List C	of Practical Experiments						
1.	Staining and observation of eukary	yotic cells					
2.	Cell viability assay by trypan blue	exclusion method	l.				
3.	Isolation of chloroplasts from spin	ach leaves					
4.	Osmosis and Tonicity						
5.	Extraction of lipids from tissues						
6.	Extraction of proteins from tissues	5					
7.	Separation of proteins by SDS-PA	GE electrophores	is				
8.	Study of different stages of mitosi	s in onion root tip	cells.				
9.	Study of different stages of meiosi	s in grasshopper t	estis cells				
	HOURS	LECTURE	PRACT:	ICA	TUTORIA	L	TOTAL
		0	30		0		30
REFE	<b>CRENCE BOOK</b> 1. Julio E. Celis. <i>Cell biology: A I</i> Press, 2006.	Laboratory Handb	book. 3 rd Ec	lition,	Vol. 1, Else	vier A	Academic

			PROGRAM OUTCOMES											
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	0	0	0	1	0	0	0	0	0	1	1	0	0
CO2	3	1	0	1	1	1	0	0	1	1	0	0	0	0
CO3	3	1	0	0	1	0	0	0	0	0	1	1	0	0

CO4	2	1	0	1	1	1	0	0	1	1	1	1	0	0
CO5	3	1	0	1	1	1	0	0	1	1	1	1	0	0
CO 6	1	1	1	1			0	0			1	1		
Total	15	5	1	4	5	3	0	0	3	3	5	5	0	0
ScaledValue	3	1	1	1	1	1	0	0	1	1	1	1	0	0
		1 -	5 🗆	1,		6	- 10	□ 2,		-	11 - 1	5 🗆 🕄	3	
	0-NoRelation,1-Low Relation,2-MediumRelation,3-HighRelation													

COUR	RSE CODE	XBT 409	L	Т	Р	С
COUR	RSE NAME	IMMUNOLOGY LABORATORY	0	0	1	1
PRER	EQUISITES		L	Т	Р	Н
C:P:A	= 0:1:1		0	0	1	4
LEAR	NING OBJECT	TIVES		•		
•		e different types of qualitative and quantitative	immunoas	ssays.		
•	-	tudents to various immunological terms.				
•		alytical ability to interpret the real time experim				
	RSE OUTCOM		DOMA		LEV	
CO1		eparation of different components of whole	Cognit		App	
	blood using der	sity gradient centrifugation.	Psychom Affecti		Mecha Resp	· ·
CO2	<b>Practice</b> the co	unting of blood cells	Cognit		App	
002	Tructice the co		Psychomotor		Mecha	
			Affective		Resp	
CO3	Demonstrate t	he ABO blood grouping system and blood	Cognit	ive	App	
	group.		Psychom		Mecha	
			Affecti		Resp	
CO4	•	coupling technique to label the Antibody with	Cognit		App	
	Enzyme HRP.		Psychom Affecti		Mecha Resp	
CO5	Demonstrate	qualitative and quantitative assays for	Cognit		App	
000		reaction pattern, similarity pattern, unknown	Psychon		Mecha	
		eparation of desired antigen.	Affecti		Resp	
CO6	Interpret the ag	glutination reaction	Cognit		App	
			Psychom		Mecha	,
	1		Affecti	ve	Resp	ond
S.No		List of Experiments				
1	Collection of S	Serum from Blood				
2	Isolation of ly	nphocytes from whole blood				
3		eukocyte count				
4	Total Leukocy	te count				
5	Total and diffe	erential count of RBC				
6	Blood Groupir	ng Experiment				

7	Antibody Labelling with HRP			
8	Ouchterlony double diffusion			
9	Single radial immunodifussion			
10	Immunoelectrophoresis			
11.	DIRECT Elisa			
12.	Widal test			
13.	Latex Agglutination			
Referen	nce:1. Abbas, K. A., Litchman, A. H. and Pober,	J. S. (2007). Ce	ellular and Molecu	lar
Imm	unology, 4th Edn., W. B. Saunders Co., Pennsyl	lvania, USA.		
	HOURS	TUTORIAL	PRACTICAL	TOTAL
	HOURS	0	30	30

						P	ROG	RAM	OUT	ГСОМ	ES			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	2	2	2	1	1	1	1				1	1	3	3
CO2	2	1	1	1		1	1				1	1	1	2
CO3	2				1								1	1
CO4	2	1	1										1	2
CO5	2	2	1	1	1	1	1				1	1	1	1
CO 6	2	2	2	1	1	1	1				1	1	1	1
Total	12	9	7	4	4	4	4				4	4	8	10
ScaledValue	3	2	2	1	1	1	1	0	0	0	1	1	2	2
		1 -	- 5 🗆	1,		6	- 10	□ 2,			11 - 1	5 🗆 🕄	3	
	(	)-NoF	Relatio	on,1-	Low I	Relation	on,2-1	Mediu	mRe	lation,3	8-High	nRelat	ion	

# **V** Semester

				L	Т	Р	C
Х	BT :	501		3	0	1	4
			BIOINSTRUMENTATION				
C	Р	Α		L	Т	P	H
1	0.5	0.5		3	0	2	5
Pre	requ	isite: 1	Physics, Applied Physics				
Lea	rnin	g Obj	ectives:				
Up	on co	omplet	on of this course, the students				
	• \	Will be	able to identify the different techniques used in the experimen	ts in bi	otechnol	ogy.	
	• \	Will be	able to distinguish various techniques involved in the processi	ing of v	arious b	iologic	al
	S	ystems		•		•	
			Course Outcomes Dom	ain	I	.evel	
Aft	er the	e comp	letion of the course, students will be able to				
CO		Explain	the basics and fundamentals of analytical Cogni	tive	Under	rstandi	ng
$\mathbf{U}$	L   +	ochnia	ues and <i>describe</i> the various calibration techniques. Affec	tivo	Do	spond	

		psychomotor	Guided response
		Cognitive	Understanding
<b>CO2</b>	Describe the spectrophotometric methods and perform the	Affective	Respond
	experiments related to spectroscopy.	psychomotor	Guided response
		Cognitive	Understanding
CO3	Understand the electrochemical techniques and applyit in	Affective	Respond
	various applications in biotechnology.	psychomotor	Guided response
	Know the principle of instrumentation and purficultions of	Cognitive	Understanding
<b>CO4</b>	<b>Know</b> the principle of instrumentation and <b>applications</b> of	Affective	Respond
	various imaging techniques in biological field.	psychomotor	Guided response
	<i>Distinguish</i> the various separation and sequencing	Cognitive	Understanding
<b>CO5</b>	techniques	Affective	Respond
	teeninques	psychomotor	Guided response
	Course content		Hours
	troduction		9+6
	fication of instrumental methods; Concepts of accuracy, precise		
Types	of errors: random and systematic; Calibration of instrume	ental methods:	Comparison with
standaı	rds, external and internal standard addition methods; Introduc	ction and signif	icance of signal to
noise r	ratio		
			9+6
$\Pi - S$	Spectroscopic Techniques		
	Spectroscopic Techniques ns and properties of electromagnetic radiation, Absorption, tra	ansmittance and	their relationship,
Region	ns and properties of electromagnetic radiation, Absorption, tra		
Region Beer 1	ns and properties of electromagnetic radiation, Absorption, tra lamberts law and its limitations, Deviations (Real, chem	ical and instru	mental; Principle,
Region Beer l Instrun	ns and properties of electromagnetic radiation, Absorption, tra- lamberts law and its limitations, Deviations (Real, chem- nentation and applications of UV-Visible, IR & FTIR and (	ical and instru Circular Dichro	mental; Principle, ism Spectroscopy.
Region Beer l Instrun Geiger	ns and properties of electromagnetic radiation, Absorption, tra- lamberts law and its limitations, Deviations (Real, chem- mentation and applications of UV-Visible, IR & FTIR and C r-Muller counter, Solid & Liquid scintillation counters (Ba	ical and instru Circular Dichro	mental; Principle, ism Spectroscopy.
Region Beer 1 Instrun Geiger technic	ns and properties of electromagnetic radiation, Absorption, tra- lamberts law and its limitations, Deviations (Real, chem- mentation and applications of UV-Visible, IR & FTIR and C r-Muller counter, Solid & Liquid scintillation counters (Ba	ical and instru Circular Dichro	mental; Principle, ism Spectroscopy.
Region Beer l Instrun Geiger technic III – l	ns and properties of electromagnetic radiation, Absorption, tra- lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and ( r-Muller counter, Solid & Liquid scintillation counters (Ba que). Electrochemical	ical and instru Circular Dichro asic principle,	mental; Principle, ism Spectroscopy. instrumentation & 9+6
Region Beer 1 Instrun Geiger technic III – 1 Basic	ns and properties of electromagnetic radiation, Absorption, tra- lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and or r-Muller counter, Solid & Liquid scintillation counters (Ba que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e	ical and instru Circular Dichro asic principle, lectrode and gl	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion
Region Beer 1 Instrun Geiger technic III – 1 Basic select	ns and properties of electromagnetic radiation, Absorption, tra- lamberts law and its limitations, Deviations (Real, chemi- nentation and applications of UV-Visible, IR & FTIR and ( r-Muller counter, Solid & Liquid scintillation counters (Ba que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e tive electrodes – Conductometry-Electrochemical cells and bat	ical and instru Circular Dichro asic principle, lectrode and gl	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion
Region Beer 1 Instrun Geiger technic III – 1 Basic selecti electro	ns and properties of electromagnetic radiation, Absorption, tra- lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and or r-Muller counter, Solid & Liquid scintillation counters (Ba que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e	ical and instru Circular Dichro asic principle, lectrode and gl	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion
Region Beer l Instrum Geiger technic III – l Basic select electro IV – l	ns and properties of electromagnetic radiation, Absorption, tra- lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and or r-Muller counter, Solid & Liquid scintillation counters (Ba- que). Electrochemical concept of indicators, Principle of pH meter- hydrogen en- tive electrodes – Conductometry-Electrochemical cells and bat- rode cell. Case study of blood glucose meter.	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6
Region Beer 1 Instrum Geiger technic III – 1 Basic select IV – 1 Mass	ns and properties of electromagnetic radiation, Absorption, tra- lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and or r-Muller counter, Solid & Liquid scintillation counters (Ba que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e tive electrodes – Conductometry-Electrochemical cells and bat rode cell. Case study of blood glucose meter. Bioimaging	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6
Region Beer 1 Instrum Geiger technic III – 1 Basic select electro IV – 1 Mass NMR	ns and properties of electromagnetic radiation, Absorption, tra- lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and or r-Muller counter, Solid & Liquid scintillation counters (Ba- que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e- tive electrodes – Conductometry-Electrochemical cells and bat rode cell. Case study of blood glucose meter. Bioimaging spectrometry and MALDI – TOF Analysis – Crystalline s , Scanning Electron Microscope, Transmission Electron Micro	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6
Region Beer 1 Instrum Geiger technic III – 1 Basic selectric IV - 1 Mass NMR V - S	ns and properties of electromagnetic radiation, Absorption, tra- lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and ( r-Muller counter, Solid & Liquid scintillation counters (Ba- que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e tive electrodes – Conductometry-Electrochemical cells and bat rode cell. Case study of blood glucose meter. Bioimaging spectrometry and MALDI – TOF Analysis – Crystalline s t, Scanning Electron Microscope, Transmission Electron Micro Geparation and Sequencing Techniques	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi scope.	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6 s using XRD and 9+6
Region Beer 1 Instrum Geiger technic III - 1 Basic select electro IV - 1 Mass NMR V - S Impor	ns and properties of electromagnetic radiation, Absorption, tra- lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and or r-Muller counter, Solid & Liquid scintillation counters (Ba- que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e tive electrodes – Conductometry-Electrochemical cells and bat rode cell. Case study of blood glucose meter. Bioimaging spectrometry and MALDI – TOF Analysis – Crystalline s , Scanning Electron Microscope, Transmission Electron Micro eparation and Sequencing Techniques rtance and challenge of separations. Mass spectromet	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi scope. try. Affinity-b	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6 s using XRD and 9+6 ased separations.
Region Beer 1 Instrum Geiger technic III – 1 Basic selectre electre IV - I Mass NMR V – Se Impor Chron	ns and properties of electromagnetic radiation, Absorption, tra- lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and or r-Muller counter, Solid & Liquid scintillation counters (Ba- que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e- tive electrodes – Conductometry-Electrochemical cells and bat rode cell. Case study of blood glucose meter. Bioimaging spectrometry and MALDI – TOF Analysis – Crystalline s , Scanning Electron Microscope, Transmission Electron Micro eparation and Sequencing Techniques rtance and challenge of separations. Mass spectrome matography. Gas chromatography (GC). High-performance	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi scope. try. Affinity-b liquid chroma	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6 s using XRD and 9+6 ased separations. tography (HPLC).
Region Beer l Instrum Geiger technic III – l Basic selectic electro IV - l Mass NMR. V - SoImporChronThin-l	ns and properties of electromagnetic radiation, Absorption, tra lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and ( r-Muller counter, Solid & Liquid scintillation counters (Ba que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e tive electrodes – Conductometry-Electrochemical cells and bat rode cell. Case study of blood glucose meter. Bioimaging spectrometry and MALDI – TOF Analysis – Crystalline s c, Scanning Electron Microscope, Transmission Electron Micro Eleparation and Sequencing Techniques rtance and challenge of separations. Mass spectrome matography. Gas chromatography (GC). High-performance layer chromatography (TLC). Electrophoresis. Electroosmoti	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi scope. try. Affinity-b liquid chroma	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6 s using XRD and 9+6 ased separations. tography (HPLC).
Region Beer 1 Instrum Geiger technic III - 1 Basic select electro IV - 1 Mass NMR V - S Impor Chrom Thin-1 seque	ns and properties of electromagnetic radiation, Absorption, tra lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and or r-Muller counter, Solid & Liquid scintillation counters (Ba- que). <b>Electrochemical</b> concept of indicators, Principle of pH meter- hydrogen e- tive electrodes – Conductometry-Electrochemical cells and bat rode cell. Case study of blood glucose meter. <b>Bioimaging</b> spectrometry and MALDI – TOF Analysis – Crystalline s A, Scanning Electron Microscope, Transmission Electron Micro <b>Equation and Sequencing Techniques</b> rtance and challenge of separations. Mass spectrome matography. Gas chromatography (GC). High-performance layer chromatography (TLC). Electrophoresis. Electroosmoti encing.	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi scope. try. Affinity-b liquid chroma	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6 s using XRD and 9+6 ased separations. tography (HPLC).
Region Beer l Instrum Geiger technic III – l Basic selectri electro IV - I Mass NMR V – S Impor Chrom Thin-l sequer Bioins	ns and properties of electromagnetic radiation, Absorption, tra lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and ( r-Muller counter, Solid & Liquid scintillation counters (Ba- que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e- tive electrodes – Conductometry-Electrochemical cells and bat rode cell. Case study of blood glucose meter. Bioimaging spectrometry and MALDI – TOF Analysis – Crystalline s , Scanning Electron Microscope, Transmission Electron Micro Eleparation and Sequencing Techniques rtance and challenge of separations. Mass spectrome matography. Gas chromatography (GC). High-performance layer chromatography (TLC). Electrophoresis. Electroosmoti encing.	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi scope. try. Affinity-b liquid chroma	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6 s using XRD and 9+6 ased separations. tography (HPLC).
Region Beer l Instrum Geiger technic III - l Basic selecti electro IV - l Mass NMR V - S Impor Chron Thin-l sequer Bioins	ns and properties of electromagnetic radiation, Absorption, tra- lamberts law and its limitations, Deviations (Real, chem- mentation and applications of UV-Visible, IR & FTIR and G r-Muller counter, Solid & Liquid scintillation counters (Ba- que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e- tive electrodes – Conductometry-Electrochemical cells and bat rode cell. Case study of blood glucose meter. Bioimaging spectrometry and MALDI – TOF Analysis – Crystalline s A, Scanning Electron Microscope, Transmission Electron Micro ceparation and Sequencing Techniques rtance and challenge of separations. Mass spectrome matography. Gas chromatography (GC). High-performance layer chromatography (TLC). Electrophoresis. Electroosmoti encing. strumentation Lab of Practical Experiments:	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi scope. try. Affinity-b liquid chroma c flow. DNA s	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6 s using XRD and 9+6 ased separations. tography (HPLC). equencing. Sanger
Region Beer 1 Instrum Geiger technic III - 1 Basic select electro IV - 1 Mass NMR V - S Impor Chrom Thin-1 sequen Bioins List o 1.	ns and properties of electromagnetic radiation, Absorption, tra lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and G r-Muller counter, Solid & Liquid scintillation counters (Ba que). <b>Electrochemical</b> concept of indicators, Principle of pH meter- hydrogen e- tive electrodes – Conductometry-Electrochemical cells and bat rode cell. Case study of blood glucose meter. <b>Bioimaging</b> spectrometry and MALDI – TOF Analysis – Crystalline s , Scanning Electron Microscope, Transmission Electron Micro <b>Geparation and Sequencing Techniques</b> rtance and challenge of separations. Mass spectrome matography. Gas chromatography (GC). High-performance layer chromatography (TLC). Electrophoresis. Electroosmoti- encing. <b>strumentation Lab</b> <b>of Practical Experiments:</b> Precision, accuracy and validation in an experiment using ab	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi scope. try. Affinity-b liquid chroma c flow. DNA s	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6 s using XRD and 9+6 ased separations. tography (HPLC). equencing. Sanger
Region Beer 1 Instrum Geiger technic III - 1 Basic select electro IV - 1 Mass NMR V - S Impor Chrom Thin-1 seque Bioins List o 1.	ns and properties of electromagnetic radiation, Absorption, tra lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and G r-Muller counter, Solid & Liquid scintillation counters (Ba que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e tive electrodes – Conductometry-Electrochemical cells and bat ode cell. Case study of blood glucose meter. Bioimaging spectrometry and MALDI – TOF Analysis – Crystalline s , Scanning Electron Microscope, Transmission Electron Micro eparation and Sequencing Techniques rtance and challenge of separations. Mass spectrome matography. Gas chromatography (GC). High-performance layer chromatography (TLC). Electrophoresis. Electroosmoti encing. strumentation Lab of Practical Experiments: Precision, accuracy and validation in an experiment using ab Analysis of sample size and surface through SEM and AFM	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi scope. try. Affinity-b liquid chroma c flow. DNA s	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6 s using XRD and 9+6 ased separations. tography (HPLC). equencing. Sanger
Region Beer 1 Instrum Geiger technic III - 1 Basic selectric electric IV - 1 Mass NMR V - ScienceImporChronThin-1sequerBioinsList o1.2.	ns and properties of electromagnetic radiation, Absorption, tra lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and G r-Muller counter, Solid & Liquid scintillation counters (Ba que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e tive electrodes – Conductometry-Electrochemical cells and bat ode cell. Case study of blood glucose meter. Bioimaging spectrometry and MALDI – TOF Analysis – Crystalline s A, Scanning Electron Microscope, Transmission Electron Micro Eparation and Sequencing Techniques rtance and challenge of separations. Mass spectrome matography. Gas chromatography (GC). High-performance layer chromatography (TLC). Electrophoresis. Electroosmoti encing. Strumentation Lab of Practical Experiments: Precision, accuracy and validation in an experiment using ab Analysis of sample size and surface through SEM and AFM instrument).	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi scope. try. Affinity-b liquid chroma c flow. DNA s sorption spectro analysis. (Demo	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6 s using XRD and 9+6 ased separations. tography (HPLC). equencing. Sanger
Region Beer 1 Instrum Geiger technic III - 1 Basic select electro IV - 1 Mass NMR V - S Impor Chrom Thin-1 sequen <b>Bioins</b> List o 1. 2.	ns and properties of electromagnetic radiation, Absorption, tra lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and G r-Muller counter, Solid & Liquid scintillation counters (Ba- que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e- tive electrodes – Conductometry-Electrochemical cells and bat ode cell. Case study of blood glucose meter. Bioimaging spectrometry and MALDI – TOF Analysis – Crystalline s , Scanning Electron Microscope, Transmission Electron Micro Eparation and Sequencing Techniques rtance and challenge of separations. Mass spectrome matography. Gas chromatography (GC). High-performance layer chromatography (TLC). Electrophoresis. Electroosmoti- encing. strumentation Lab of Practical Experiments: Precision, accuracy and validation in an experiment using ab Analysis of sample size and surface through SEM and AFM instrument). Isolation of pigments from leaf extract through column chror	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi scope. try. Affinity-b liquid chroma c flow. DNA s sorption spectro analysis. (Demo	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6 s using XRD and 9+6 ased separations. tography (HPLC). equencing. Sanger
Region Beer 1 Instrum Geiger technic III – 1 Basic selectri electro IV – 1 Mass NMR V – S Impor Chrom Thin-1 sequer Bioins List o 1. 2. 3. 4.	ns and properties of electromagnetic radiation, Absorption, tra lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and G r-Muller counter, Solid & Liquid scintillation counters (Ba- que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e- tive electrodes – Conductometry-Electrochemical cells and bat ode cell. Case study of blood glucose meter. Bioimaging spectrometry and MALDI – TOF Analysis – Crystalline s , Scanning Electron Microscope, Transmission Electron Micro Eparation and Sequencing Techniques rtance and challenge of separations. Mass spectrome matography. Gas chromatography (GC). High-performance layer chromatography (TLC). Electrophoresis. Electroosmoti- mencing. strumentation Lab of Practical Experiments: Precision, accuracy and validation in an experiment using ab Analysis of sample size and surface through SEM and AFM instrument). Isolation of pigments from leaf extract through column chror Absorption spectra for KMnO ₄	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi scope. try. Affinity-b liquid chroma c flow. DNA s sorption spectro analysis. (Demo	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6 s using XRD and 9+6 ased separations. tography (HPLC). equencing. Sanger
Region Beer 1 Instrum Geiger technic III - 1 Basic selectric electro IV - 1 Mass NMR V - S Impor Chron Thin-1 sequer Bioins List o 1. 2. 3. 4. 5.	ns and properties of electromagnetic radiation, Absorption, tra lamberts law and its limitations, Deviations (Real, chemi- mentation and applications of UV-Visible, IR & FTIR and G r-Muller counter, Solid & Liquid scintillation counters (Ba- que). Electrochemical concept of indicators, Principle of pH meter- hydrogen e- tive electrodes – Conductometry-Electrochemical cells and bat ode cell. Case study of blood glucose meter. Bioimaging spectrometry and MALDI – TOF Analysis – Crystalline s , Scanning Electron Microscope, Transmission Electron Micro Eparation and Sequencing Techniques rtance and challenge of separations. Mass spectrome matography. Gas chromatography (GC). High-performance layer chromatography (TLC). Electrophoresis. Electroosmoti- encing. strumentation Lab of Practical Experiments: Precision, accuracy and validation in an experiment using ab Analysis of sample size and surface through SEM and AFM instrument). Isolation of pigments from leaf extract through column chror	ical and instru Circular Dichro asic principle, lectrode and gl teries. Standard tructure analysi scope. try. Affinity-b liquid chroma c flow. DNA s sorption spectro analysis. (Demo	mental; Principle, ism Spectroscopy. instrumentation & 9+6 ass electrode, Ion electrodes. Three- 9+6 s using XRD and 9+6 ased separations. tography (HPLC). equencing. Sanger

- 7. Extraction of caffeine using HPLC and analysis of chromatogram.
- 8. Analysis of amino acids using TLC.
- 9. Analysis of amino acids using ethanol using GC.
- 10. Compositional analysis of by XRD

Lecture	Tutorial	Practical	Total
45	0	30	75

#### **Text Books:**

- 1. Willard, H.H., Merritt. I.I., Dean J.a., and Settle, F.A.,"Instrumental methods of analysis", Sixth edition, CBS publishers, 1986.
- 2. Skoog D.A. and West D.M., "Fundamentals of Analytical Chemistry", Saunders college Publishing, 1982.

#### **Reference Books:**

- 1. A.I.Vogel., "Qualitative Inorganic analysis ", V.Edition, Prentice-Hall of India (P) Ltd., New Delhi, 1991.
- 2. Sharma, B.K., "Instrumental Methods of Analysis ", Goel publishing House, 1995.
- 3. Parikh V.M., "Absorption spectroscopy of organic molecules ", Addison Wesley Publishing Company, 1974.

#### **E-References:**

1. http://www.ncbi.nlm.nih.gov/books/NBK26851/

#### Mapping of COs with POs

	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	3	2	2	1	0	0	1	0	0	0	0	2	0	1
1														
CO	3	3	2	2	0	0	1	0	0	0	0	0	0	1
2														
CO	3	2	2	1	0	0	1	0	0	0	0	0	0	1
3														
CO	2	3	2	2	0	0	0	0	0	0	0	1	0	1
4														
CO	3	2	3	1	0	0	1	0	0	0	0	1	0	1
5														
	14	12	11	7	0	0	4	0	0	0	0	4	0	5

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

#### Mapping of Subjects with POs

	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Original Value	14	12	11	7	0	0	4	0	0	0	0	4	0	5
Scaled Value	3	3	3	2	0	0	2	0	0	0	0	2	0	2
			1 – 5	$\rightarrow 1$ ,		6 -	$-10 \rightarrow$	· 2,		11 – 1	$5 \rightarrow 3$			

XBT 502       MOLECULAR BIOLOGY       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I <th>[</th> <th></th> <th></th> <th></th> <th>L</th> <th>Т</th> <th>Р</th> <th>С</th>	[				L	Т	Р	С						
C       P       A         C       P       A         C       P       A         C       P       A         C       P       A         C       P       A         C       P       A         C       P       A         C       P       A         C       P       A         C       P       A         C       P       A         C       P       A         C       P       A         Componentition of this course, the students       Image: Course Outcomes         After the completion of the course, students will be able to       Cognitive         CO1       Relate and Interpret DNA and RNA structure and its role       Cognitive & Analyzing         Modifications       Cognitive at Analyzing       Analyzing         modifications       Analyzing       Analyzing         rodifications       Cognitive at Analyzing       Analyze         CO4       Classify and Develop transcription and post translational post translational Cognitive at Analyzing       Analyze         CO5       List and respond gene regulations       Cognitive at Analyze         Cope and History. Structure of DNA-N	XB	Т 502												
C       P       A         3       0       0       0       3         Prerequisite: Biochemistry, Genetics.		1 502	MOLECULAR BIOLOGY			-	0	U						
3       0       0       2       1       0       3         Prerequisite: Biochemistry, Genetics.         Learning Objectives:         Upon completion of this course, the students         •       Would have learnt structures of DNA, RNA and its replication and repair         •       Would have learnt gene regulations         Course Outcomes         After the completion of the course, students will be able to         Course Outcomes         Domain         Level         After the completion of the course, students will be able to         Course Outcomes         Domain         Level         After the completion of the course, students will be able to         Contraction of the course, students will be able to         Contraction of the course, students and repair         Cognitive & Remember, Understanding, Applying         Contraction of Develop transcription and post translational processing         Cognitive & Cognitive & Analyzing Analyzing Anteciving         Cognitive & List and respond gene regulations         Cognitive & List and respond gene regulations         Cost List and respond ge	CI	P A			L	Т	Р	Η						
Learning Objectives:         Upon completion of this course, the students         Would have learnt gene regulations         Course Outcomes       Domain       Level         After the completion of the course, students will be able to         Conse Outcomes       Domain       Level         After the completion of the course, students will be able to         Conset the completion of the course, students will be able to         Conset the completion of the course, students will be able to         Conset the completion of the course, students will be able to         Conset the completion of the course, students will be able to         Conset the completion of the course, students will be able to         Conset the completion of the course, students will be able to         Conset the completion of the course, students and repair       Cognitive & Cognitive & Caussify and Develop transcription and post translational processing       Cognitive & Cognitive & Cognitive & List and respond gene regulations         Cost is at a respond gene regulations       Cost Classify and Dissect translation and post translational processing       Cognitive & Cognitive & Cognitive & List and respond gene regulations         Course content       Ho		) ()			2	1	0	3						
Upon completion of this course, the students         Would have learnt structures of DNA, RNA and its replication and repair         Would have learnt structures of DNA, RNA and its replication and repair         Would have learnt gene regulations         Course Outcomes       Domain       Level         After the completion of the course, students will be able to       Cognitive       Remember, Understanding, Applying         C01       Relate and Interpret DNA and RNA structure and its role       Cognitive       Remember, Understanding, Applying         C03       classify and Develop transcription and post transcriptional processing       Cognitive       Analyzing Analyzing         C04       Classify and Dissect translation and post translational processing       Cognitive       Manalyzing Analyze         C05       List and respond gene regulations       Cognitive & Affective       Remember (Respond)         I - Introduction to Molecular Biology - DNA and RNA       6+3         Scope and History. Structure of DNA-Nucleoside, Nucleotide, Base pairing, Base stacking, Double Helix, features of NA- A, B, Z. Structure and function of mRNA, rRNA, tRNA. Secondary structures in RNA.       6+3         II - Replication and Repair       6+3         Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Proof reading activity, 5'A: 3' exonuclease activity, topoisomerase activity, tolonereactivation, recombination repair and SOS r	Prere	quisite: ]	Biochemistry, Genetics.											
Would have learnt structures of DNA, RNA and its replication and repair     Would have learnt gene regulations     Course Outcomes     Domain     Level     After the completion of the course, students will be able to     Relate and Interpret DNA and RNA structure and its role     Cognitive     Remember,     Understanding,     CO2     Explain and Applyand its replication and repair     Cognitive     C	Learn	ning Obj	ectives:											
<ul> <li>Would have learnt gene regulations         <ul> <li>Course Outcomes</li> <li>Domain</li> <li>Level</li> </ul> </li> <li>After the completion of the course, students will be able to         <ul> <li>CO1</li> <li>Relate and Interpret DNA and RNA structure and its role</li> <li>Cognitive</li> <li>Remember, Understanding</li> <li>CO2</li> <li>Explain and Applyand its replication and repair</li> <li>Cognitive &amp; Analyzing Modifications</li> <li>Classify and Develop transcription and post transcriptional modifications</li> <li>Cognitive &amp; Analyzing Affective</li> <li>Receiving</li> <li>Cognitive &amp; Analyze</li> <li>Cognitive and transcription and post translational processing</li> <li>Cognitive &amp; Cognitive &amp; Analyze</li> <li>Cognitive analyze</li> <li>Cognitive &amp; Cognitive &amp; Analyze</li> <li>Cognitive &amp; Cognitive &amp; Analyze</li> <li>Cognitive and respond gene regulations</li> <li>Cognitive &amp; Cognitive &amp; Analyze</li> <li>Cognitive Socosing</li> <li>Course content</li> <li>Hours</li> <li>I - Introduction to Molecular Biology - DNA and RNA</li> <li>G+3</li> <li>Scope and History. Structure of DNA-Nucleoside, Nucleotide, Base pairing, Base stacking, Double Helix, features of Watson and Crick model, major and minor groove, Supercoiling- twist, writhe and linking number. Forms of DNA - A, B, Z. Structure and function of mRNA, rRNA, tRNA. Secondary structures in RNA.</li> <li>I – Replication and Repair</li> <li>G+3</li> </ul> <ul> <li>Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Proof reading activity, 5' Æ 3' exonuclease activity, topoisomerase activity, relomeric DNA r</li></ul></li></ul>	Upon	-												
Course Outcomes         Domain         Level           After the completion of the course, students will be able to          Remember, Understanding,           CO1         Relate and Interpret DNA and RNA structure and its role         Cognitive         Remember, Understanding, Applying           CO2         Explain and Applyand its replication and repair         Cognitive & Affective         Amalyzing Affective         Analyzing Receiving           CO3         Classify and Develop transcription and post transcriptional processing         Cognitive & Affective         Analyze           CO4         Classify and Dissect translation and post translational processing         Cognitive & Affective         Manalyze           CO5         List and respond gene regulations         Cognitive & Affective         Remember (Respond)           Course content         Hours         Hours           I – Introduction to Molecular Biology - DNA and RNA         6+3           Scope and History. Structure of DNA-Nucleoside, Nucleotide, Base pairing, Base stacking, Double Helix, features of Watson and Crick model, major and minor groove, Supercoiling- twist, writhe and linking number. Forms of DNA - A, B, Z. Structure and function of mRNA, rRNA, tRNA. Secondary structures in RNA.           II – Replication and Repair         6+3           Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Proof reading activity, 5' & 3' exonuclease activity, topoisomerase	•			n and repai	r									
After the completion of the course, students will be able to       Remember,         CO1       Relate and Interpret DNA and RNA structure and its role       Cognitive       Remember,         CO2       Explain and Applyand its replication and repair       Cognitive       Understanding,         CO3       Classify and Develop transcription and post transcriptional modifications       Cognitive & Analyzing       Affective       Receiving         CO4       Classify and Dissect translation and post translational processing       Cognitive & Analyzing       Receiving         CO5       List and respond gene regulations       Cognitive & Affective       Remember (Respond)         CO5       List and respond gene regulations       Cognitive & Affective       Remember (Respond)         I - Introduction to Molecular Biology - DNA and RNA       6+3       Scope and History. Structure of DNA-Nucleoside, Nucleotide, Base pairing, Base stacking, Double Helix, features of Watson and Crick model, major and minor groove, Supercoiling- twist, writhe and linking number. Forms of DNA - A, B, Z. Structure and function of mRNA, rRNA, tRNA. Secondary structures in RNA.       6+3         Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Replication and Repair       6+3         Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Repair- Nucleotide excision repair, base exci	•	Would				1								
CO1         Relate and Interpret DNA and RNA structure and its role         Cognitive         Remember, Understanding,           CO2         Explain and Applyand its replication and repair         Cognitive         Applying           CO3         Classify and Develop transcription and post transcriptional modifications         Cognitive & Affective         Analyzing Receiving           CO4         Classify and Dissect translation and post translational processing         Cognitive & Affective         Analyzing Remember           CO5         List and respond gene regulations         Cognitive & Affective         Remember (Respond)           I - Introduction to Molecular Biology - DNA and RNA         6+3           Scope and History. Structure of DNA-Nucleoside, Nucleotide, Base pairing, Base stacking, Double Helix, features of Watson and Crick model, major and minor groove, Supercoiling- twist, writhe and linking number. Forms of DNA- A, B, Z. Structure and function of mRNA, rRNA, tRNA. Secondary structures in RNA.         6+3           Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Proof reading activity, 5'AE 3' exonuclease activity, topoisomerase activity, Telomeric DNA replication and Post Transcriptional Modifications         6+3           Fine structure of prokaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote, types and function. Transcription of mRNA, rRNA, and tRNA genes in Prokaryote and eukaryote. Post transcriptional processing of mRNA - 5'capping, splicing (including different types				Domai	in	]	Level							
CO1       Relate and Interpret DNA and RNA structure and its role       Cognitive       Understanding, Applying         CO2       Explain and Applyand its replication and post transcriptional modifications       Cognitive & Affective       Understanding, Applying         CO3       Classify and Develop transcription and post transcriptional processing       Cognitive & Affective       Analyzing Receiving         CO4       Classify and Dissect translation and post translational processing       Cognitive & Affective       Understanding Analyze         CO5       List and respond gene regulations       Cognitive & Affective       Remember (Respond)         I - Introduction to Molecular Biology - DNA and RNA       6+3         Scope and History. Structure of DNA-Nucleoside, Nucleotide, Base pairing, Base stacking, Double Helix, features of Watson and Crick model, major and minor groove, Supercoiling- twist, writhe and linking number. Forms of DNA- A, B, Z. Structure and function of mRNA, rRNA, tRNA. Secondary structures in RNA.       6+3         II - Replication and Repair       6+3         Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and replication and Plasmid Replication-theta model, strand displacement model and rolling circle model.         DNA Repair- Nucleotide excision repair, base excision repair, mismatch repair, photo-reactivation, recombination repair and SOS repair.       6+3         Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA	After	the comp	letion of the course, students will be able to			5								
CO2       Explain and Applyand its replication and repair       Cognitive       Applying         CO3       Classify and Develop transcription and post transcriptional modifications       Cognitive & Analyzing Receiving       Affective       Receiving         CO4       Classify and Dissect translation and post translational processing       Cognitive & Analyze       Manalyze         CO5       List and respond gene regulations       Cognitive & Affective       Remember (Respond)         CO5       List and respond gene regulations       Cognitive & Affective       Remember (Respond)         CO5       List and respond gene regulations       Cognitive & Affective       Remember (Respond)         CO5       List and respond gene regulations       Cognitive & Affective       Remember (Respond)         CO5       List and respond gene regulations       Cognitive & Affective       Remember (Respond)         CO5       List and respond gene regulations       Cognitive & Affective       Remember (Respond)         CO5       List and respond gene regulations       Cognitive & Affective       Remember (Respond)         CO5       List and respond gene regulations       Cognitive & Affective       Remember (Respond)         CO5       List and respond gene regulations       Gotton Sole DNA and RNA       Gotton Sole DNA Agene DNA and RNA       Gotton Sole DNA - A, B, Z. Structure and f	CO1	Relate a	and <i>Interpret</i> DNA and RNA structure and its role	Cogniti	ve	Unde	erstand	ling						
CO3         modifications         Affective         Receiving           CO4         Classify and Dissect translation and post translational processing         Cognitive         Understanding Analyze           CO5         List and respond gene regulations         Cognitive & Affective         Remember (Respond)           CO5         List and respond gene regulations         Cognitive & Affective         Remember (Respond)           I - Introduction to Molecular Biology - DNA and RNA         6+3           Scope and History. Structure of DNA-Nucleoside, Nucleotide, Base pairing, Base stacking, Double Helix, features of Watson and Crick model, major and minor groove, Supercoiling- twist, writhe and linking number. Forms of DNA - A, B, Z. Structure and function of mRNA, rRNA, tRNA. Secondary structures in RNA.         6+3           II - Replication and Repair         6+3           Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Proof reading activity, 5'Æ 3' exonuclease activity, topoisomerase activity, Telomeric DNA replication and Plasmid Replication-theta model, strand displacement model and rolling circle model. DNA Repair- Nucleotide excision repair, base excision repair, mismatch repair, photo-reactivation, recombination repair and SOS repair.         6+3           III - Transcription and Post Transcriptional Modifications         6+3           Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, and tRNA genes in Prokaryote and eukaryote. Post transcription of mRNA, rRNA, and tRNA genes in Proka	CO2	-		-		A	oplying	g						
CO4       processing       Cognitive Analyze         CO5       List and respond gene regulations       Cognitive & Affective       Remember (Respond)         I - Introduction to Molecular Biology - DNA and RNA       6+3         Scope and History. Structure of DNA-Nucleoside, Nucleotide, Base pairing, Base stacking, Double Helix, features of Watson and Crick model, major and minor groove, Supercoiling- twist, writhe and linking number. Forms of DNA- A, B, Z. Structure and function of mRNA, rRNA, tRNA. Secondary structures in RNA.       6+3         II - Replication and Repair       6+3         Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Proof reading activity, 5'Æ 3' exonuclease activity, topoisomerase activity, Telomeric DNA eplication-theta model, strand displacement model and rolling circle model. DNA Repair- Nucleotide excision repair, base excision repair, mismatch repair, photo-reactivation, recombination repair and SOS repair.       6+3         III - Transcription and Post Transcriptional Modifications       6+3         Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote, types and function. Transcription of mRNA, rRNA, and tRNA genes in Prokaryote and eukaryote. Post transcriptional processing of mRNA, rRNA, and tRNA genes in Prokaryote and eukaryote. Post transcriptional processing of mRNA - 5'capping, splicing (including different types), polyadenylation and RNA editing.         IV - Translation and Post Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and	CO3	modifications Affective Receiving												
CO5       List and respond gene regulations       Cognitive & Affective       Cognitive & Affective       (Respond)         I - Introduction to Molecular Biology - DNA and RNA       6+3         Scope and History. Structure of DNA-Nucleoside, Nucleotide, Base pairing, Base stacking, Double Helix, features of Watson and Crick model, major and minor groove, Supercoiling- twist, writhe and linking number. Forms of DNA- A, B, Z. Structure and function of mRNA, rRNA, tRNA. Secondary structures in RNA.       6+3         II - Replication and Repair       6+3         Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Proof reading activity, 5'Æ 3' exonuclease activity, topoisomerase activity, Telomeric DNA replication and Plasmid Replication-theta model, strand displacement model and rolling circle model. DNA Repair- Nucleotide excision repair, base excision repair, mismatch repair, photo-reactivation, recombination repair and SOS repair.       6+3         III - Transcription and Post Transcriptional Modifications       6+3         Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote. Post transcriptional of mRNA - 5' capping, splicing (including different types), polyadenylation and RNA editing.       IV - Translation and Post Translational Processing         IV - Translation and Post Translational Processing       6+3         Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,	CO4	CO4 Classifyand Dissect translation and post translational processing Cognitive Understanding Analyze												
I - Introduction to Molecular Biology - DNA and RNA6+3Scope and History. Structure of DNA-Nucleoside, Nucleotide, Base pairing, Base stacking, Double Helix, features of Watson and Crick model, major and minor groove, Supercoiling- twist, writhe and linking number. Forms of DNA- A, B, Z. Structure and function of mRNA, rRNA, tRNA. Secondary structures in RNA.6+3II - Replication and Repair6+3Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Proof reading activity, 5'Æ 3' exonuclease activity, topoisomerase activity, Telomeric DNA replication and Plasmid Replication-theta model, strand displacement model and rolling circle model. DNA Repair- Nucleotide excision repair, base excision repair, mismatch repair, photo-reactivation, recombination repair and SOS repair.6+3III - Transcription and Post Transcriptional Modifications6+3Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote. Post transcriptional processing of mRNA - 5'capping, splicing (including different types), polyadenylation and RNA editing.IV - Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria, modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,	CO5	List and	l respond gene regulations											
Scope and History. Structure of DNA-Nucleoside, Nucleotide, Base pairing, Base stacking, Double Helix, features of Watson and Crick model, major and minor groove, Supercoiling- twist, writhe and linking number. Forms of DNA- A, B, Z. Structure and function of mRNA, rRNA, tRNA. Secondary structures in RNA.II - Replication and Repair6+3Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Proof reading activity, 5'Æ 3' exonuclease activity, topoisomerase activity, Telomeric DNA replication and Plasmid Replication-theta model, strand displacement model and rolling circle model. DNA Repair- Nucleotide excision repair, base excision repair, mismatch repair, photo-reactivation, recombination repair and SOS repair.6+3III - Transcription and Post Transcriptional Modifications6+3Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote. Post transcription of mRNA, rRNA, and tRNA genes in Prokaryote and eukaryote. Post transcriptional processing of mRNA – 5'capping, splicing (including different types), polyadenylation and RNA editing.IV - Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,		•	Course content			I	Iours							
Helix, features of Watson and Crick model, major and minor groove, Supercoiling- twist, writhe and linking number. Forms of DNA- A, B, Z. Structure and function of mRNA, rRNA, tRNA. Secondary structures in RNA. <b>II - Replication and Repair 6+3</b> Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Proof reading activity, 5'Æ 3' exonuclease activity, topoisomerase activity, Telomeric DNA replication and Plasmid Replication-theta model, strand displacement model and rolling circle model. DNA Repair- Nucleotide excision repair, base excision repair, mismatch repair, photo-reactivation, recombination repair and SOS repair. <b>II - Transcription and Post Transcriptional Modifications 6+3</b> Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote. Post transcriptional processing of mRNA – 5' capping, splicing (including different types), polyadenylation and RNA editing. <b>IV – Translation and Post Translational Processing 6+3</b> Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. <b>6+3</b>														
linking number. Forms of DNA- A, B, Z. Structure and function of mRNA, rRNA, tRNA. Secondary structures in RNA.II - Replication and Repair6+3Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Proof reading activity, 5'Æ 3' exonuclease activity, topoisomerase activity, Telomeric DNA replication and Plasmid Replication-theta model, strand displacement model and rolling circle model. DNA Repair- Nucleotide excision repair, base excision repair, mismatch repair, photo-reactivation, recombination repair and SOS repair.III - Transcription and Post Transcriptional Modifications6+3Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote. Post transcriptional processing of mRNA - 5'capping, splicing (including different types), polyadenylation and RNA editing.IV - Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,														
structures in RNA.II - Replication and Repair6+3Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Proof reading activity, 5'Æ 3' exonuclease activity, topoisomerase activity, Telomeric DNA replication and Plasmid Replication-theta model, strand displacement model and rolling circle model. DNA Repair- Nucleotide excision repair, base excision repair, mismatch repair, photo-reactivation, recombination repair and SOS repair.6+3III - Transcription and Post Transcriptional Modifications6+3Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote. Post transcriptional processing of mRNA - 5'capping, splicing (including different types), polyadenylation and RNA editing.IV - Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,														
II - Replication and Repair6+3Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Proof reading activity, 5'Æ 3' exonuclease activity, topoisomerase activity, Telomeric DNA replication and Plasmid Replication-theta model, strand displacement model and rolling circle model. DNA Repair- Nucleotide excision repair, base excision repair, mismatch repair, photo-reactivation, recombination repair and SOS repair.6+3III - Transcription and Post Transcriptional Modifications6+3Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote. Post transcriptional processing of mRNA - 5'capping, splicing (including different types), polyadenylation and RNA editing.IV - Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,				f mRNA, i	'RNA,	tRNA.	Secor	ndary						
Types and functions of DNA polymerases in Prokaryote and Eukaryote. Replication in prokaryote and Eukaryote. Proof reading activity, 5'Æ 3' exonuclease activity, topoisomerase activity, Telomeric DNA replication and Plasmid Replication-theta model, strand displacement model and rolling circle model. DNA Repair- Nucleotide excision repair, base excision repair, mismatch repair, photo-reactivation, recombination repair and SOS repair.III – Transcription and Post Transcriptional Modifications6+3Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote. Post transcriptional processing of mRNA – 5'capping, splicing (including different types), polyadenylation and RNA editing.IV – Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,							612							
Eukaryote. Proof reading activity, 5'Æ 3' exonuclease activity, topoisomerase activity, Telomeric DNA replication and Plasmid Replication-theta model, strand displacement model and rolling circle model. DNA Repair- Nucleotide excision repair, base excision repair, mismatch repair, photo-reactivation, recombination repair and SOS repair.III – Transcription and Post Transcriptional Modifications6+3Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote. Post transcriptional processing of mRNA – 5'capping, splicing (including different types), polyadenylation and RNA editing.IV – Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,		-		vote Renli	cation	in prol		and						
replication and Plasmid Replication-theta model, strand displacement model and rolling circle model.DNA Repair- Nucleotide excision repair, base excision repair, mismatch repair, photo-reactivation, recombination repair and SOS repair.6+3III – Transcription and Post Transcriptional Modifications6+3Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote, types and function. Transcription of mRNA, rRNA, and tRNA genes in Prokaryote and eukaryote. Post transcriptional processing of mRNA – 5' capping, splicing (including different types), polyadenylation and RNA editing.IV – Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,						-	-							
DNA Repair- Nucleotide excision repair, base excision repair, mismatch repair, photo-reactivation, recombination repair and SOS repair.III - Transcription and Post Transcriptional Modifications6+3Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote, types and function. Transcription of mRNA, rRNA, and tRNA genes in Prokaryote and eukaryote. Post transcriptional processing of mRNA - 5' capping, splicing (including different types), polyadenylation and RNA editing.IV - Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,	2		0 11 1											
recombination repair and SOS repair.III – Transcription and Post Transcriptional Modifications6+3Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote, types and function. Transcription of mRNA, rRNA, and tRNA genes in Prokaryote and eukaryote. Post transcriptional processing of mRNA – 5'capping, splicing (including different types), polyadenylation and RNA editing.IV – Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,	-					-								
Fine structure of prokaryotic and eukaryotic gene, structure and function of the promoters in mRNA, rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote, types and function. Transcription of mRNA, rRNA, and tRNA genes in Prokaryote and eukaryote. Post transcriptional processing of mRNA – 5'capping, splicing (including different types), polyadenylation and RNA editing.IV – Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,		-			•									
rRNA, tRNA genes. RNA polymerases in prokaryote and eukaryote, types and function. Transcriptionof mRNA, rRNA, and tRNA genes in Prokaryote and eukaryote. Post transcriptional processing ofmRNA – 5'capping, splicing (including different types), polyadenylation and RNA editing.IV – Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,	III – T	III – Transcription and Post Transcriptional Modifications6+3												
of mRNA, rRNA, and tRNA genes in Prokaryote and eukaryote. Post transcriptional processing of mRNA – 5'capping, splicing (including different types), polyadenylation and RNA editing.IV – Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,	Fine s	structure	of prokaryotic and eukaryotic gene, structure and fu	nction of t	he pro	omoters	in mF	RNA,						
mRNA – 5'capping, splicing (including different types), polyadenylation and RNA editing.IV – Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,				• •				-						
IV – Translation and Post Translational Processing6+3Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,					-	-	ocessii	ng of						
Genetic code and Wobble hypothesis. Translation in prokaryote and eukaryote. Post translational modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,	-	-		ition and R	NA ed	liting.								
modifications. Principles protein sorting and targeting into endoplasmic reticulum, mitochondria,				1 1				• •						
			•••••••••••••••••••••••••••••••••••••••		•									
				opiasmic i	encul	um, m	locnor	iuria,						
	CIIIOIO	piast, and												

V – Gene Regulation			6+3
Principles of gene regula	ation- Transcriptional and	post transcriptional gene	regulation-activators, co-
activators, suppressors, c	o-suppressors, moderators,	silencers, insulators, enha	incers. Operon-lac operon,
trp operon, ara operon an	d gal operon.		
Lecture	Tutorial	Practical	Total
30	15	0	45
Text Books:			
1. Verma P.S. (Auth	or), Agarwal V.K. Molecul	ar Biology, 2010.	
2. Principles and Teo	chniques of Biochemistry an	nd Molecular Biology, Car	mbridge University
Press; Eighth edit	ion, 2018.		
<b>Reference Books:</b>			
1. Molecular Biolog	y of the Gene, James D.	Watson, A. Baker Tani	a, P. Bell Stephen, Gann
Alexander, Levine	e Michael, Losick Richard,	Pearson Education; Seven	nth edition, 2017.
	gy Made Simple and Fun	, David P. Clark (Auth	or), Lonnie Dee Russell
(Author), 2010.			
<b>E-References:</b>			
1. https://nptel.ac.in/	courses/102106025/		
2. https://www.embl	.de/training/e-learning/		
3. https://swayam.go	v.in/course/5065-molecular	-biology	
1	.uk/admissions/undergradua	ate/courses-listing/biocher	mistry-molecular-and-
cellular?wssl=1			
5. https://vlab.amrita	.edu/?sub=3&brch=77		
6. https://www.yout	ube.com/watch?v=V4CRCQ	ofXUrg	

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	1	1	2	0	1	0	0	1	1	1	1	3	3	2
CO 2	1	1	2	0	1	0	0	1	1	1	1	2	2	3
CO 3	1	1	2	0	1	0	0	1	1	1	1	1	2	2
CO 4	1	1	2	0	1	0	0	1	1	13	1	1	1	2
CO 5	1	1	2	0	1	0	0	1	1	1	1	1	1	2
	5	5	10	0	5	0	0	5	5	5	5	8	9	10

# Mapping of Subjects with POs

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Original Value	5	5	10	0	5	0	0	5	5	5	5	8	9	11
Scaled Value	1	1	2	0	1	0	0	1	1	1	1	2	2	3

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

LTPCXBT 503BIOPROCESS ENGINEERINGLTPC31115CPALTPH10.50.5LTPHLearning Objectives:Upon completion of this course, the studentsWould be able to identify the parts of a fermenterWould be able to select the parts of a bioreactor for designing a particular production process.Would be able to design the scale up procedure of a bioreactor.Course OutcomesDomainLevelAfter the completion of the course, students will be able toCourse OutcomesDomainLevelAfter the completion of the course, students will be able toCourse OutcomesDomainLevelAfter the completion of the course, students will be able toCourse OutcomesDomainLevelAfter the completion of the course, students will be able toCognitive PsychomotorRecall and identify the basic parts of a fermentor and its components involved in a fermentation process.Identify,reproduce, and demonstratecognitive PsychomotorAffective PsychomotorPreception Preception <td colsp<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td>	<th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
BIOPROCESS ENGINEERING         C       P       A         1       0.5       0.5         Prerequisite: Microbiology, Biochemistry, Bioenergetics and Metabolism         Learning Objectives:       Upon completion of this course, the students       Image: Completion of this course, the students         •       Would be able to identify the parts of a fermenter       •       Would be able to select the parts of a bioreactor for designing a particular production process.         •       Would be study the rheological properties of media.       •       •         •       Would be able to design the scale up procedure of a bioreactor.       •       •         Course Outcomes       Domain       Level         After the completion of the course, students will be able to       •       •         operations.       •       Valuing process.       Psychomotor         Plantify,reproduce, and demonstrate the different media components involved in a fermentation process.       •       Valuing Affective Psychomotor         Psychomotor       Phenomena Perception       •       •       •         CO1       Recognize, discuss and measure the various control systems involved in bioprocesses.       •       Cognitive Psychomotor       Applying Psychomotor         CO3       Interpret, describe and differentiate various transport phenomena in					L	Т	Р	С	
CPA10.50.5Iterrequisite: Microbiology, Biochemistry, Bioenergetics and MetabolismLearning Objectives:Upon completion of this course, the students•Would be able to identify the parts of a fermenter•Would be able to identify the parts of a bioreactor for designing a particular production process.•Would be able to select the parts of a bioreactor for designing a particular production process.•Would be able to design the scale up procedure of a bioreactor.•Course OutcomesCourse OutcomesDomainColRecall and identify the basic parts of a fermentor and its operations.ColRecall and identify the basic parts of a fermentor and its components involved in a fermentation process.ColIdentify,reproduce, and demonstrate the different media components involved in a fermentation process.ColdRecognize, discuss and measure the various control systems involved in bioprocesses.ColdRecognize, discuss and measure the various transport phenomena involved in bioprocesses.Coldunderstanding MechanismColdunderstanding MechanismColdRecognize, discuss and measure the various transport phenomena involved in bioprocesses.Coldunderstanding MechanismColdunderstanding MechanismColdRecognize, discuss and measure the various transport phenomena involved in bioprocesses.Coldunderstanding Kective phenomena involved in bioprocesses.Coldunderstanding Kective phenomena involved in bioprocesses.	XB	Т 503			3	1	1	5	
10.50.53126Prerequisite: Microbiology, Biochemistry, Bioenergetics and MetabolismLearning Objectives:Upon completion of this course, the students•Would be able to identify the parts of a fermenter•Would be able to select the parts of a bioreactor for designing a particular production process.•Would be able to select the parts of a bioreactor for designing a particular production process.•Would be able to design the scale up procedure of a bioreactor.Course OutcomesDomainLevelAfter the completion of the course, students will be able tocourse outcomesOrginitive PsychomotorRecall and identify the basic parts of a fermentor and its operations.Cognitive PsychomotorIdentify,reproduce, and demonstrate components involved in a fermentation process.Cognitive PsychomotorInterpret, describe systems involved in bioreactor.Cognitive PsychomotorCO4Recognize, discuss and measure henomena involved in bioprocesses.Cognitive PsychomotorCO5understandthe scale up procedure of mixing ,aeration and know the applications to develop a bio product.Cognitive PsychomotorCO5understandthe scale up procedure of mixing ,aeration and know the applications to develop a bio product.Cognitive Psychomotor			<b>BIOPROCESS ENGINEERING</b>						
Prerequisite: Microbiology, Biochemistry, Bioenergetics and Metabolism         Learning Objectives:         Upon completion of this course, the students         • Would be able to identify the parts of a fermenter         • Would be able to identify the parts of a forments for fermentation process.         • Would be able to select the parts of a bioreactor for designing a particular production process.         • Would be able to design the scale up procedure of a bioreactor.         Course Outcomes       Domain       Level         After the completion of the course, students will be able to         col1       Recall and identify the basic parts of a fermentor and its operations.       Cognitive Psychomotor       Remembering Understanding         C01       Recall and identify the basic parts of a fermentor and its operations.       Cognitive Psychomotor       Remembering Understanding         C02       Identify,reproduce, and demonstrate the different media components involved in a fermentation process.       Cognitive Applying       Receiving Psychomotor         Systems involved in bioreactor.       Psychomotor       Preception       Cognitive Receiving Phenomena Perception         C04       Recognize, discuss and measure the various transport phenomena involved in bioprocesses.       Cognitive Affective Psychomotor       Understanding Mechanism Psychomotor         C05       understandthe scale up procedure of mixing ,aeration and know the					L	Т	P	Η	
Learning Objectives:Upon completion of this course, the studentsWould be able to identify the parts of a fermenterWould be knowing about the media components for fermentation process.Would be knowing about the media components for fermentation process.Would be sudy the rheological properties of media.Would be study the rheological properties of media.Would be study the rheological properties of media.Would be able to design the scale up procedure of a bioreactor.Course OutcomesAfter the completion of the course, students will be able toCO1Recall and identify the basic parts of a fermentor and its operations.Cognitive PsychomotorRemembering UnderstandingCO2Identify,reproduce, and demonstrate tomponents involved in a fermentation process.Cognitive Affective PsychomotorRemembering Valuing PsychomotorCO3Interpret, describe and differentiate various control systems involved in bioreactor.Cognitive Affective PsychomotorUnderstanding Mechanism PsychomotorCO4Recognize, discuss and measure henomena involved in bioprocesses.Cognitive PsychomotorUnderstanding Affective PsychomotorCO5understand the scale up procedure of mixing ,aeration and know the applications to develop a bio product.Cognitive Cognitive PsychomotorUnderstanding Creating					3	1	2	6	
Upon completion of this course, the students• Would be able to identify the parts of a fermenter• Would be knowing about the media components for fermentation process.• Would be able to select the parts of a bioreactor for designing a particular production process.• Would be study the rheological properties of media.• Would be able to design the scale up procedure of a bioreactor.• Would be able to design the scale up procedure of a bioreactor.• Would be able to design the scale up procedure of a bioreactor.• Would be able to design the scale up procedure of a bioreactor.• Course OutcomesDomainAfter the completion of the course, students will be able tofor the course, students will be able tofor an interpret, and identify the basic parts of a fermentor and its operations.Cognitive Affective Psychomotorconse involved in a fermentation process.Cognitive Affective PsychomotorRemembering Valuing PsychomotorconsInterpret, describe and differentiate systems involved in bioreactor.Cognitive Affective PsychomotorUnderstanding MechanismcodRecognize, discuss and measure the nomena involved in bioprocesses.Cognitive Affective PsychomotorUnderstanding Mechanismcodunderstandthe scale up procedure of mixing ,aeration and know the applications to develop a bio product.Cognitive PsychomotorUnderstanding Creating	Prere	quisite: 1	Microbiology, Biochemistry, Bioenergetics and Metab	olism					
<ul> <li>Would be able to identify the parts of a fermenter</li> <li>Would be knowing about the media components for fermentation process.</li> <li>Would be able to select the parts of a bioreactor for designing a particular production process.</li> <li>Would be study the rheological properties of media.</li> <li>Would be able to design the scale up procedure of a bioreactor.</li> <li>Course Outcomes</li> <li>Domain</li> <li>Level</li> <li>After the completion of the course, students will be able to</li> <li>Contain and identify the basic parts of a fermentor and its operations.</li> <li>Identify,reproduce, and demonstrate the different media components involved in a fermentation process.</li> <li>Interpret, describe and differentiate various control systems involved in bioreactor.</li> <li>Contain a ferentiate the various transport phenomena involved in bioprocesses.</li> <li>Recognize, discuss and measure the various transport phenomena involved in bioprocesses.</li> <li>Contain a function of the phenomena involved in bioprocesses.</li> <li>Contain a ferentiation process.</li> <li>Contain a ferentiate of the various transport phenomena involved in bioprocesses.</li> <li>Contain a ferentiate of the various transport phenomena involved in bioprocesses.</li> <li>Contain a ferentiate of the various control know the applications to develop a bio product.</li> </ul>		0 0							
<ul> <li>Would be knowing about the media components for fermentation process.</li> <li>Would be able to select the parts of a bioreactor for designing a particular production process.</li> <li>Would be study the rheological properties of media.</li> <li>Would be able to design the scale up procedure of a bioreactor.</li> <li>Course Outcomes</li> <li>After the completion of the course, students will be able to</li> <li>Conal and identify the basic parts of a fermentor and its operations.</li> <li>Cognitive approach of the course, students will be able to</li> <li>Conal control in the course, students will be able to</li> <li>Conal and identify the basic parts of a fermentor and its operations.</li> <li>Cognitive approach of the course, students will be able to</li> <li>Conal control in the course, and demonstrate the different media components involved in a fermentation process.</li> <li>Conal Interpret, describe and differentiate various control systems involved in bioreactor.</li> <li>Conation and the bioreactor.</li> <li>Conation a ference the various transport phenomena involved in bioprocesses.</li> <li>Conation a ference of mixing aeration and know the applications to develop a bio product.</li> </ul>	Upon	-							
<ul> <li>Would be able to select the parts of a bioreactor for designing a particular production process.</li> <li>Would be study the rheological properties of media.</li> <li>Would be able to design the scale up procedure of a bioreactor.</li> <li>Course Outcomes</li> <li>After the completion of the course, students will be able to</li> <li>Con and identify the basic parts of a fermentor and its operations.</li> <li>Cognitive accomposition of the course, students will be able to</li> <li>Con and identify the basic parts of a fermentor and its operations.</li> <li>Cognitive accomposition of the course, students will be able to</li> <li>Con and identify reproduce, and demonstrate the different media components involved in a fermentation process.</li> <li>Cognitive and differentiate various control systems involved in bioreactor.</li> <li>Cognitive and differentiate various control systems involved in bioreactor.</li> <li>Cognitive and measure the various transport phenomena involved in bioprocesses.</li> <li>Cognitive and measure the various transport phenomena involved in bioprocesses.</li> <li>Cognitive and components involved in bioprocesses.</li> <li>Cognitive and components involved in bioprocesses.</li> <li>Cognitive and an antipation processes.</li> <li>Cognitive and antipation processes.</li> <li>Cognitive and the scale up procedure of mixing aeration and know the applications to develop a bio product.</li> </ul>	•		· 1						
<ul> <li>Would be study the rheological properties of media.</li> <li>Would be able to design the scale up procedure of a bioreactor.</li> <li>Course Outcomes</li> <li>After the completion of the course, students will be able to</li> <li>Co1 Recall and identify the basic parts of a fermentor and its operations.</li> <li>Co2 Identify,reproduce, and demonstrate the different media components involved in a fermentation process.</li> <li>Co3 Interpret, describe and differentiate various control systems involved in bioreactor.</li> <li>C04 Recognize, discuss and measure the various transport phenomena involved in bioprocesses.</li> <li>C05 Understand the scale up procedure of mixing ,aeration and know the applications to develop a bio product.</li> </ul>	•		<b>č</b>	-					
<ul> <li>Would be able to design the scale up procedure of a bioreactor.         <ul> <li>Course Outcomes</li> <li>Domain</li> <li>Level</li> </ul> </li> <li>After the completion of the course, students will be able to         <ul> <li>coul and <i>identify</i> the basic parts of a fermentor and its operations.</li> <li>Recall and <i>identify</i> the basic parts of a fermentor and its operations.</li> <li>Cognitive Psychomotor</li> <li>Remembering Understanding</li> </ul> </li> <li>Co2 <i>Identify,reproduce,</i> and <i>demonstrate</i> the different media components involved in a fermentation process.</li> <li>Cognitive Psychomotor</li> <li>Affective Valuing Psychomotor</li> <li>Affective Psychomotor</li> <li>Affective Receiving Psychomotor</li> <li>Affective Psychomotor</li> <li>Affective Psychomotor</li> <li>Affective Psychomotor</li> <li>Affective Psychomotor</li> <li>Affective Receiving Psychomotor</li> <li>Phenomena Perception</li> </ul> <li>Co3 <i>Recognize, discuss</i> and <i>measure</i> the various transport phenomena involved in bioprocesses.</li> <li>Cognitive Psychomotor</li> <li>Cognitive Psychomotor</li> <li>Cognitive Psychomotor</li> <li>Cognitive Psychomotor</li> <li>Cosnomena involved in bioprocesses.</li> <li>Cognitive Psychomotor</li> <li>Cognitive Psychomotor</li> <ul> <li>Cognitive Psychomotor</li> <li>Cognitive Psychomotor</li> </ul> <ul> <li>Cognitive Psychomotor</li> <li>Cognitive Phenomena involved in bioprocesses.</li> <li>Cognitive Psychomotor</li> <li>Cognitive Psychomotor</li> </ul> <ul> <li>Cognitive Psychomotor</li> <li>Cognitive Psychomotor</li> <li>Cognitive Psychomotor</li></ul>	٠			g a particula	ır produ	uction p	rocess.		
Course OutcomesDomainLevelAfter the completion of the course, students will be able toCO1Recall and identify the basic parts of a fermentor and its operations.Cognitive PsychomotorRemembering UnderstandingCO2Identify,reproduce, and demonstrate the different media components involved in a fermentation process.Cognitive PsychomotorRemembering Valuing PsychomotorCO3Interpret, describe and differentiate systems involved in bioreactor.Cognitive PsychomotorReceiving PsychomotorCO4Recognize, discuss and measure phenomena involved in bioprocesses.Cognitive PsychomotorUnderstanding MechanismCO5understand know the applications to develop a bio product.Cognitive PsychomotorUnderstanding Cognitive Psychomotor	٠								
After the completion of the course, students will be able toCO1Recall and identify the basic parts of a fermentor and its operations.Cognitive PsychomotorRemembering UnderstandingCO2Identify,reproduce, and demonstrate the different media components involved in a fermentation process.Cognitive PsychomotorRemembering Valuing PsychomotorCO3Interpret, describe and differentiate systems involved in bioreactor.Cognitive PsychomotorReceiving PsychomotorCO4Recognize, discuss and measure henomena involved in bioprocesses.cognitive at measure phenomena involved in bioprocesses.Cognitive Affective PsychomotorUnderstanding MechanismCO5understand know the applications to develop a bio product.Cognitive a bio product.Cognitive a fermentation and Affective PsychomotorUnderstanding Cognitive Affective PsychomotorCO5understand know the applications to develop a bio product.Cognitive mixing aeration and Affective PsychomotorUnderstanding Cognitive Affective Psychomotor	•	Would	<b>e 1 1</b>						
CO1Recall and identify the basic parts of a fermentor and its operations.Cognitive PsychomotorRemembering UnderstandingCO2Identify,reproduce, and demonstrate the different media components involved in a fermentation process.Cognitive PsychomotorRemembering Valuing PsychomotorCO3Interpret, describe and differentiate various control systems involved in bioreactor.Cognitive PsychomotorRemembering Valuing PsychomotorCO4Recognize, discuss and measure the various transport phenomena involved in bioprocesses.Cognitive PsychomotorUnderstanding MechanismCO5understand know the applications to develop a bio product.Cogniting aeration and Know the applications to develop a bio product.Cognitive PsychomotorUnderstanding Cognitive PsychomotorCO5understand know the applications to develop a bio product.Cognitive phenomena PsychomotorUnderstanding Cognitive Psychomotor				Domai	n	]	Level		
CO1operations.PsychomotorUnderstandingCO2Identify,reproduce, and demonstrate the different media components involved in a fermentation process.Cognitive Affective PsychomotorRemembering Valuing ApplyingCO3Interpret, describe and differentiate various control systems involved in bioreactor.Cognitive PsychomotorUnderstanding Affective PsychomotorCO4Recognize, discuss and measure the various transport phenomena involved in bioprocesses.Cognitive PsychomotorUnderstanding MechanismCO5understandmeasure of mixing ,aeration and know the applications to develop a bio product.Cognitive PsychomotorUnderstanding Cognitive Psychomotor	After	the comp	letion of the course, students will be able to						
operations.PsychomotorUnderstandingCO2Identify,reproduce, and demonstrate the different media components involved in a fermentation process.Cognitive Affective PsychomotorRemembering Valuing PsychomotorCO3Interpret, describe and differentiate various control systems involved in bioreactor.Cognitive Affective PsychomotorUnderstanding Receiving Phenomena PerceptionCO4Recognize, discuss and measure the various transport phenomena involved in bioprocesses.Cognitive Affective PsychomotorUnderstanding MechanismCO5understand know the applications to develop a bio product.Cognitive PsychomotorUnderstanding Cognitive Cognitive Psychomotor	CO1	Recall	and <i>identify</i> the basic parts of a fermentor and its	Cogniti	ve	Rem	emberi	ng	
CO2Identify, reproduce, and demonstrate the different media components involved in a fermentation process.Affective PsychomotorValuing ApplyingCO3Interpret, describe and differentiate various control systems involved in bioreactor.Cognitive PsychomotorUnderstanding PerceptionCO4Recognize, discuss and measure the various transport phenomena involved in bioprocesses.Cognitive PsychomotorUnderstanding PerceptionCO5understand the scale up procedure of mixing ,aeration and know the applications to develop a bio product.Cognitive PsychomotorUnderstanding Cognitive Psychomotor	COI	operatio	ons.	Psychom	otor	Unde	erstandi	ng	
CO2CO3AffectiveValuingcomponents involved in a fermentation process.PsychomotorApplyingCO3Interpret, describe and differentiate various control systems involved in bioreactor.CognitiveUnderstandingCO4Recognize, discuss and measure the various transport phenomena involved in bioprocesses.CognitiveUnderstandingCO5understand the scale up procedure of mixing ,aeration and know the applications to develop a bio product.Cognitive PsychomotorUnderstanding Cognitive Affective Psychomotor		Idontify	ranraduas and domonstrate the different modie	Cogniti	ve	Rem	emberi	ng	
CO3Interpret, describe and differentiate various control systems involved in bioreactor.Cognitive Affective PsychomotorUnderstanding Receiving Phenomena PerceptionCO4Recognize, discuss and measure the various transport phenomena involved in bioprocesses.Cognitive Mechanism PsychomotorUnderstanding MechanismCO5understand know the applications to develop a bio product.Cognitive mixing aeration and Affective PsychomotorUnderstanding Mechanism Cognitive Psychomotor	CO2	••					U		
CO3Interpret, describe and differentiate various control systems involved in bioreactor.Affective PsychomotorReceiving Phenomena PerceptionCO4Recognize, discuss and measure the various transport phenomena involved in bioprocesses.Cognitive PsychomotorUnderstanding MechanismCO4Image: Complex com		compon	ients involved in a termentation process.						
CO3Systems involved in bioreactor.PsychomotorPhenomena PerceptionCO4Recognize, discuss and measure the various transport phenomena involved in bioprocesses.Cognitive Affective PsychomotorUnderstanding MechanismCO5understand the scale up procedure of mixing ,aeration and know the applications to develop a bio product.Cognitive PsychomotorUnderstanding Cognitive Affective Psychomotor									
Systems involved in bioreactor.PsychomotorPhenomena PerceptionCO4Recognize, discuss and measure the various transport phenomena involved in bioprocesses.Cognitive Affective PsychomotorUnderstanding MechanismCO5understand know the applications to develop a bio product.Cognitive PsychomotorUnderstanding Cognitive Affective Psychomotor	CO3	-						-	
CO4Recognize, discuss and measure the various transport phenomena involved in bioprocesses.Cognitive Affective PsychomotorUnderstanding MechanismCO5understand the scale up procedure of mixing ,aeration and know the applications to develop a bio product.Cognitive Affective PsychomotorUnderstanding Mechanism		systems	involved in bioreactor.	Psychom	otor				
CO4 <i>Recognize, discuss</i> and <i>measure</i> the various transport phenomena involved in bioprocesses.Affective PsychomotorMechanismCO5 <i>understand</i> the scale up procedure of mixing ,aeration and know the applications to <i>develop</i> a bio product.Cognitive Affective PsychomotorUnderstanding Creating				Constitu			1		
CO4phenomena involved in bioprocesses.AffectiveMechanismCO5understand the scale up procedure of mixing ,aeration and know the applications to develop a bio product.Cognitive Affective PsychomotorUnderstanding Creating	CO4	Recogn	<i>ize, discuss</i> and <i>measure</i> the various transport					0	
CO5understand the scale up procedure of mixing ,aeration and know the applications to develop a bio product.Cognitive Affective PsychomotorUnderstanding Creating	004	phenom	ena involved in bioprocesses.			Ivie	CHAIIISI	11	
CO5 <i>Understand</i> the scale up procedure of mixing ,aeration and know the applications to <i>develop</i> a bio product.Affective PsychomotorUnderstanding Creating									
know the applications to <i>develop</i> a bio product. Creating	CO5							ng	
		know th	ne applications to <i>develop</i> a bio product.			$\mathbf{C}_{1}$	reating		
I – Introduction to Bioprocesses 9+3+6	I – In	troductio	on to Bioprocesses			9	9+3+6		
Introduction and need for bioprocess Engineering- Biologist and Engineers differ in their approach				Engineers	differ	in thei	r appr	oach	
of research- general requirements of fermentation processes – basic configuration of fermenter and									

ancillaries, main parameters to be monitored and controlled – operation of fermentation processes. **II** – Media Formulation and Fermentation Process Design 9+3+6 Sterilization of media, Composition of medium, medium requirements for fermentation processes, carbon, nitrogen, minerals, vitamins and other complex nutrients, oxygen requirements, medium formulation of optimal growth and product formation, examples of simple and complex media, design of various commercial media for industrial fermentations – medium optimization methods - factorial designs, Plackett- Burmann screening designs. Process Optimization experiments: Response surface methodology – concepts & methods, design considerations, central composite designs and Box-Behnken response surface design. **III – Bioreactor Instrumentation and Control** 9+3+6 Instrumentation, measurement and control of the bioprocess parameter such as temperature, pressure, pH, dissolved oxygen, redox, microbial biomass, flow measurement-Agitation and aeration-Detection and prevention of foam. Bioreactor controlling probes-manual control and automatic control system- Exhaust gas analysis and computation of oxygen transfer rate and carbon dioxide production rates-Online, offline and real time monitoring of process parameters. **IV – Transport Phenomena in Bioreactors** 9+3+6 Flow properties of Fermentation Broths, Factors affecting broth viscosity. Mixing in a Bioreactor – Flow regimes - Power Requirements for Mixing, Un gassed Newtonian Fluids, Gassed Fluids, Improving Mixing in Fermenters, and Effect of Rheological Properties on Mixing. Application of heat transfer in bioprocessing, Heat transfer in Bioreactors, Oxygen requirements of microbial cultures .Determination of oxygen mass transfer coefficient by various methods. V – Applications to Biological Systems 9+3+6 Scale up consideration for constant K₁a, shear forces, mixing time-Bioprocess considerations in using Animal and Plant cell cultures. Case studies on Single Cell protein Production, Bioethanol - Case studies on Applications of Bioprocess Engineering. **Bioprocess Engineering Lab List of Practical Experiments** 1. Study of Fermenter. 2. Determination of thermal death rate constant for a fermentation process. 3. Comparison of bioprocess efficiencies in synthetic and complex industrial media. 4. Medium formulation and optimization studies. 5. Estimation of biomass concentration for microbial production. 6. Determination of oxygen mass transfer coefficient by Sulphite oxidation method. 7. Determination of oxygen mass transfer coefficient by Dynamic Gassing out method 8. Residence time distribution studies. 9. Production of Single cell proteins. 10. Various product assay techniques. Lecture Tutorial **Practical** Total 90 45 15 30 **Text Books:** 1. Schuler and Kargi, Bioprocess engineering. Prentice Hall 2. Najafpour, Ghasem. Biochemical engineering and biotechnology. Elsevier, 2015. 3. Bailey and Ollis, Biochemical Engineering Fundamentals, McGraw Hill, Co. 2004. **References:** 

- 1. Pauline Doran, Bioprocess Principles, Academic press, 2004.
- 2. Neilson J and Villadsen J, Biochemical Engineering Principles I ed, Plenum Press, 2000.
- 3. Stanbury P F Whitaker, A and Hall S.J, Principles of Fermentation Technology 2nd ed, Aditya Book Pvt Ltd, 2001.
- 4. Lee J.M, Biochemical Engineering 2nd ed, Prentice Hall, 2000.

## **E-References:**

- 1. http://www.nptel.ac.in/syllabus/syllabus.php?subjectId=102107029
- 2. http://users.ox.ac.uk/~dplb0149/publication/NPRBiocatalysisRev.pdf
- 3. http://link.springer.com/book/10.1007%2F978-1-4684-0324-4

# Mapping of COs with POs

	P 0 1	P 0 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO 1	3											1	2	2
CO 2	2	3	2		1		1		1		3	2	3	3
CO 3	1	2	2	1					1			1	0	0
CO 4	1	3	2	3								1	0	0
CO 5	1	3	2	3	1		1		2		2		1	1
	8	1 1	8	7	2	0	2	0	4	0	5	5	6	6

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

## Mapping of Subjects with POs

	PO 1	PO 2	<b>PO</b> 3	<b>PO</b> 4	<b>PO</b> 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
Origin al Value	8	11	8	7	2	0	2	0	4	0	5	5	6	6
Scaled Value	2	3	2	2	1	0	1	0	1	0	1	1	2	2

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

					т	т	D	C
VD	T 5	04A			L 3	<u>Т</u> 0	P 0	C 3
AD	013	04A	PLANT BIOTECHNOLOGY		3	U	U	3
C	Р	A	FLANT BIOTECHNOLOGI		L	Т	P	H
2.5	<b>I</b>	0.5			<u> </u>	0	0	3
	-		Cell biology, Genetics and Molecular biology		5	U	U	5
			ectives:					
		0 0	ion of this course, the students					
• • • •			have understand the fundamentals of plant cells.					
•			have learn the techniques in Plant Tissue Culture.					
•			have understood various techniques of gene transfer in	n plants.				
•			have learn production of Biomolecules from plants for	-	plicat	ions.		
			Course Outcomes	Domai			Level	
			After the completion of the course, students w	ill be able	to			
COL	l	Describ	ethe plant tissue culture and knowsvarious media			Rem	ember	ing
COI			e culture.	Cogniti	ve	Un	derstar	ıd
	(	omna	<i>re</i> the various gene transfer methods in plants and	Cogniti	VA	Org	ganizir	ıg
CO2			ch other with its pros and cons.	Affecti			ponds	
				meen			enome	
CO3	6	-	the various tissue culture techniques and <i>describes</i>	Cogniti	ve		ember	0
	t	-	oplast isolation techniques	8			erstand	-
CO4			and <i>analyze</i> various plant breeding and related	Cogniti	ve		erstand	0
		echniqu Thoose					alyzin	-
COS			and <b>apply</b> the plant genetics to develop cially important products.	Cogniti	ve		erstand pplying	-
		ommer	Course content			-	Hours	5
I – I	ntra	oductio	on to Plant Tissue Culture			-	<u>6+3</u>	
			piotechnology – Plasticity and totipotency - History	of plant ti	ssue ci	ulture –		s and
			tissue culture media – Role of plant growth regulate					
			ssue culture – Measurement of growth and viability in					
			opagation				6+3	
Types	s of	plant	tissue culture - Organogenesis and somatic embryog	enesis - Cu	ilture	types: C	Callus,	cell-
suspe	nsic	on cultu	re, shoot and root tip culture, hairy root culture, Mer	istem cultu	re, pol	len cult	ure, A	nther
		-	loid production - protoplast culture: isolation, fusio	on and rege	enerati	on of p	orotopl	ast –
	<u> </u>		servation and cryopreservation.					
			eeding Techniques				6+3	
			nplex inheritance - back cross - Molecular Markers: F					
			d selection, Hybrid seeds production - Herbicide to	· ·			<u> </u>	
			gy to generate glyphosate tolerant plants and their	related pr	oblem	s - Pro	oductio	on of
-			nsgenic plants. Transformation of Plants				6+3	
			mediated gene transfer – Crown gall disease, Ge	nes involu	ed in	DNA		r Ti
-			smid - Binary vector system - Plant viruses and differ					
-		-	ower mosaic virus – Direct gene transfer metho	• •				
		oration		P. P.	E	, 201		
	1							

V – Applications of Plan	nt Biotechnology		6+3
Molecular farming/Pharr	ning of proteins – Bioreacto	rs for recombinant protei	n, Secondary metabolite
production using plant ce	ell culture. Antisense technologi	ogy in crop improvement	- Therapeutic/Industrial
applications of plant proc	lucts - Plant vaccines, custon	n-made antibodies, Transg	genic plants - their issues
and solutions.			
Lecture	Tutorial	Practical	Total
30	15	0	45
Text Books:			
1. Slater A., Nigel V	V., Scott, and Fowler MR., Pl	ant biotechnology: The G	enetic Manipulation of
Plants, Oxford Ur	niversity Press, London, 2nd I	Edition, 2008.	-
2. Neal Stewart, Jr.,	Plant Biotechnology and Ger	netics: Principles, Techniq	ues, and Applications.
John Wiley & Sor	ns Inc. USA, 2008.		
<b>Reference Books:</b>			
1. Chawla HS. Intro	duction to Plant Biotechnolo	ogy, Oxford & IBH Publi	shing Co. Pvt. Ltd. New
Delhi, 2nd Edition	n, 2003.		C
2. Neumann, Karl-H	Iermann, Ashwani Kumar, a	und Sudhir K. Sopory. Re	ecent Advances in Plant
Biotechnology a	nd Its Applications: Prof.	Dr. Karl-Hermann Ner	umann Commemorative
	national Pvt Ltd, 2008.		
3. Hammond, John,	Peter McGarvey, and Vidad	iYusibov, eds. Plant biote	echnology: new products
	Vol. 240. Springer Science &		
E-References:		•	
1 http://www.nahir	Im nih any/haalsa/NDV2695	1 /	

1. http://www.ncbi.nlm.nih.gov/books/NBK26851/

# Mapping of COs with POs

	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	0	1	1	2	1	0	0	1	1	1	3	3	3
<b>CO 2</b>	3	2	2	2	3	2	1	1	2	1	1	2	2	2
CO 3	2	1	3	1	2	2	1	0	2	2	1	2	2	2
<b>CO 4</b>	3	2	2	2	2	2	1	1	1	1	0	3	2	2
CO 5	3	3	3	2	3	2	3	2	2	2	2	3	1	1
	13	8	11	8	14	9	5	4	8	7	5	13	10	10

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

#### Mapping of Subjects with POs

mappin	gub	unjeei	SWILL	1105										
	PO	PO	PO	PO	PO	PO	PO	PO	PO	<b>PO1</b>	<b>PO1</b>	<b>PO1</b>	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
Origin														
al	13	8	11	8	14	9	5	4	8	7	5	13	10	10
Value														
Scaled	3	2	2	2	3	2	1	1	2	2	1	2	2	2
Value	3	2	3	2	3	2	1	1	2	2	1	3	2	2
	•	. 1	_ 5 _	<b>→</b> 1	•	6-	$-10 \rightarrow$	2	•	11 -	$15 \rightarrow$	3	•	•

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

					L	Т	P	С
XBT	⁻ 504I	3			3	0	0	3
			FOOD TECHNOLOGY		-			
С	P	Α			L	Т	P	H
3	0	0		-	3	0	0	3
Prerequ	isite:	Micro	biology, Biochemistry, Bioprocess Engineering					
Learnin	g Obj	ective	s:					
			f this course, the students					
• V	Vould	be ab	le to describe to modify foods using biotechnology					
• V	Vould	be ab	le to know the role of bacteria, yeast and mould in fo	od processi	ng an	d ferr	nenta	atio
0	f food	s		1	U			
• V	Vould	be al	ble to explain the role of functional foods and nut	aceuticals i	in the	e pror	notio	on c
h	uman	health	n and nutrition.					
• V	Vould	be ab	le to know packaging materials, their need accordin	g to differen	nt foo	ods an	d to	foo
<u>q</u>	uality	paran	neters and their maintenance during storage.					
			Course Outcomes	Domain		Ι	<b>Level</b>	
			After the completion of the course, students will b	e able to				
	0	outline	the scope and importance of food biotechnology			And	alyziı	<u> </u>
CO1	a	nd <i>de</i>	scribe the biotechnological approaches to modify	Cognitive	e	Unde	•	-
	tł	ne foo	ds			Unde	Istan	um
<b>GO</b> •	D	iscus	s on the fermentation strategies for different	a		Ana	alyziı	ng
CO2			ted foods and their microbiology aspects	Cognitive	e	Under	rstan	din
			i different biotechnological approaches to produce			Ans	alyziı	nσ
CO3			ally modified foods	Cognitive	e	Unde	•	-
			<i>be</i> the techniques adapted to preserve different				alyziı	
CO4			f foods	Cognitive	e	Unde		
			the guidelines and regulations given for food				alyziı	
CO5			and analysis	Cognitive	e	Unde		
	5.		Course content				ours	
I- Intro	ductio	n					9	,
			ood Technology: Conventional and nonconvention	onal foods	s. Bi	iotech		gica
			ove nutritional quality and shelf life of foods, S					-
		-	re Foods	1	ľ			
	•••		Fermented Foods				9	
			with food products - Yeasts, bacteria, moulds - Ferr	nented Food	ls: Yo	oghur		ees
			Wine, Beer – Cocoa, tea and coffee fermentation.			U		
•			ods and Genetically Modified Foods				9	
			ategories of functional foods, role of biotechnology	in functio	nal fo	oods,	Nutr	itio
			d relevant functional foods: cardiovascular disease					
modified	food	s: Fast	er maturation- Coho Salmon, Modification of poultry	and egg.				
			ion and Packaging				9	
			spoilage- Food preservation by low-temp: Refrigera	tion, freezin	g and	l freez	e-dr	yin
			by heating: drying, osmotic dehydration, blanc		<b>U</b>		•	
гооа рі	COUL !!			0,	0.	1		

V- Food Quality and S	Safety Analysis		9						
· · · · · · · · · · · · · · · · · · ·	· · · · ·	different factors inside and o							
	•	for food quality assessment. d Safety and Standards Autho	<b>U</b>						
Lecture	Tutorial	Practical	Total						
45	45 0 0 45								
Text Books:		•							
1. Shetty, K., Plaiy	ath, G., Pometto A. and	Levin, R.E., Food Biotechnol	ogy, CRC press, 2005.						
2. M. ShafiurRahr	nan, Handbook of food	preservation, 2nd edition, CH	C Press, Taylor & Francis						
Group, NW. 20									
3. Richard Coles,	Derek McDowell and M	ark J. Kirwan, Food Packagin	ng Technology, CRC Press,						
Blackwell publi	shing ltd. 2004.								
References:									
1. Jean-Richard N	eeser, and J. Bruce Gerr	nan, eds. Bioprocesses and b	viotechnology for functional						
foods and nutra	ceuticals. CRC Press, 20	04.							
2. Fortin ND. 200	8. Food Regulation: Law	, Science, Policy and Practice	e. Wiley, USA. ISBN: 978-						
0470409695.									
3. Food Safety and	l Standards Act and Regu	alations by FSSAI.							
4. Byong H. Lee, I	Fundamentals of Food B	iotechnology, 2nd Edition, Wi	ileyBlackwell. 2014						
E - References:									
L References.									
1. https://nptel.ac.	n/courses/103103029/34 n/courses/126105015/								

	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	PO11	PO12	PSO1	PSO2
CO 1	2	2	1	3	1	2						3	3	3
CO 2	2	1	3	2	2	2						2	2	2
CO 3	2		3	2	3	1					2	2	2	2
CO 4	2		2	2	3	1					3	3	2	2
CO 5	2		3		3	3						3	1	1
	10	3	12	9	12	9					5	13	10	10

# Mapping of Subjects with POs

	PO	PO1	<b>PO1</b>	<b>PO1</b>	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
Origin al Value	10	3	12	9	12	9	0	0	0	0	5	13	10	10
Scaled Value	2	1	3	2	3	2	0	0	0	0	1	3	2	2

 $1-5 \rightarrow 1, \qquad \qquad 6-10 \rightarrow 2, \qquad \qquad 11-15 \rightarrow 3$ 

XI	BT 5	04C	a	L 3	Т 0	P 0	C 3		
C	Р	Α	CHEMICAL REACTION ENGINEERIN	J	L	Т	P	H	
3	0	0			3	0	0	3	
Pre	requ	isite: 1	Nil						
Lea	rnin	g Obj	ectives:						
Upo	on co	mplet	ion of this course, the students						
			have understood the concepts of reaction kinetics, the nance equations	types of re	actors	and the	ir		
			Course Outcomes	Domai	in		Level		
			After the completion of the course, students w	ill be able	to				
со	1 <i>R</i>	ecall a	and <i>explain</i> the kinetics of a chemical reaction	Cogniti	ve		ember erstand	0	
со	2 I	<i>Interpret</i> and <i>modify</i> the batch reactor data Cognitive							
со	4	-	<i>re</i> and <i>evaluate</i> the performance of batch, PFR and eactors.	Cogniti	ve		nembering, lerstanding		
СО		<i>dentify</i> eaction	and <i>discuss</i> the designs for single and multiple us.	Cogniti	ve		erstano nalyzir	0	
СО	5 D	escrit	e characteristics of RTD curves.	Cogniti	ve		ember pplyin	0,	
			Course content			]	Hours		
<b>I</b> – ]	Reac	tion K	linetics				9		
mech	nanis	m, def	mogeneous Reactions. Elementary, non-elementary inition of reaction rate, rate law. Temperature-dependency and transition state theory Concentration dependency	dency of a	rate -	Arrher	nius th		
-			ntion of Batch Reactor Data	po			9		
			ferential methods of analysis – Half-life method – Z	ero-order	reactio	n – En	pirica	l rate	
	tion		order - Irreversible first and second order reactions						
		sign of	f reactors				9		

Ideal Reactors – Batch reactor, plug flow reactor, mixed flow reactor– Space time, space velocity – Performance equations and their graphical representation.

9

9

#### **IV – Design of reactor for single & multiple reactions**

Single reactions – Size comparison of single reactors – Auto catalytic reactions – Multiple reactions – Irreversible reactions in series and parallel.

#### V – RTD Studies

General characteristics- Residence time distribution Function-Measurement of the RTD –pulse input experiment- step tracer experiment –Characteristics of the RTD –RTD in ideal Reactors – E the age distribution of fluid in RTD- Relationship between the F and E curves.

Lecture	Tutorial	Practical	Total
45	0	0	45
Tart Daalan			

#### **Text Books:**

- 1. Gavhane K. A. Chemical Reaction Engineering I NiraliPrakashan, Educational Publishers, 13th Edition 2013.
- 2. Scott Fogler, H., "Elements of Chemical Reaction Engineering", 4th Edition, Prentice Hall of India, 2006.
- 3. Levenspiel, O. Chemical Reaction Engineering, 3rd Edition, 3/e, John Wiley & Sons, New York, 1999.

#### **Reference Books:**

- 1. Smith, J. M. Chemical Engineering Kinetics, 3/e, McGraw-Hill International, New York, 1981.
- 2. S.D.Dawande, "Principles of Reaction Engineering", 1st Edition, Central Techno Publications, 2001.
- 3. Richardson, J.F. and Peacock, D.G., "Coulson Richardson's Chemical Engineering." Vol III, 3rd Edition, Asian Books (P) Ltd, 2000.

#### **E-References:**

1. http://nptel.ac.in/courses/103101001/

#### Mapping of COs with POs

	PO1			PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3										1	3	1	1
CO 2	2	3		1					1			2	1	1
CO 3		1	3									3	1	1
CO 4		1	2									2	1	1
CO 5	1	2	3	1								1	1	1
	6	7	8	2	0	0	0	0	1	0	1	11	5	5

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

# Mapping of Subjects with POs

mappin	Mapping of Bubjeets with 1 Os													
	PO	PO	PO	PO	PO	PO	PO	PO	PO	<b>PO1</b>	<b>PO1</b>	<b>PO1</b>	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
Origin														
al	6	7	8	2	0	0	0	0	1	0	1	11	5	5
Value														
Scaled	2	2	2	1	0	0	0	0	1	0	1	3	1	1
Value	2	2	2	1	0	0	0	0	1	0	1	5	1	1

$1-5 \rightarrow 1$ ,	$6-10 \rightarrow 2$ ,	$11 - 15 \rightarrow 3$
0 - No Relation, 1 - Low	Relation, 2- Medium I	Relation, 3- High Relation

						L	Т	Р	С
X	UM5	506				3	0	0	3
		1	EMPL	OYABILITY SKILL AND REPORT V	RITING		r	1	
С	Р	Α		OTABILITT SKILL AND KLIOKT V		L	Т	P	Η
0. 5	1	1.5				3	0	0	3
Pre	requ	isite: 1	Nil						
			ectives:						
Upo		_		course, the students					
				t to convert learning process into employa					
	• V	Vould		te scientific article, research and review p			1		
				Course Outcomes	Doma			Level	
				fter the completion of the course, students			1		
CO		-	how to for an inte	face an interview and to learn how to erview	Cognit	ive	Un	derstar	nd
CO			dge on a c erent form	areer related communication and learning ats of CV	g Affecti	ve	Re	espons	e
CO				th the group of people in discussion	Affecti	ve		Value	
CO	<b>4</b> L	earn to	search re	search papers, prepare seminars.	Psychom	notor	Perc	eption	set
CO	5 E	xecute	the learni	ng by writing scientific papers	Cognit	ive	E	valuate	e
				Course content			]	Hours	
I – '	Tech	nical S	Skills					9	
and	dress	s code		arious types of interviews. Types of que view, interview mistakes, telephonic in					
		Writin		•				9	
CV V	Writi	ng; dif	ference be	tween resume and CV; characteristics of cs in resume and CV; forms and functions			sic elen	nents o	f CV
		orksho		is in resulte and every forms and functione				9	
				hop on CV writing – Group Discussion			I		
IV -	-Wri	ting a	nd Readii	ng Activity Topics				9	
				and presentation; Entrepreneurship and P	roject Prepar	ation			
		ort W			<u> </u>			9	
				esearch paper and book chapter writing.					
	Ι	Lectur	e	Tutorial Prac	tical		Tot	tal	
		45		0	)		4	5	
Tex	t Bo								
	1. B	lusines	s Correspo	ondence & Report Writing by R.C. Sharm	a and K. Mo	han, T	MH		

- 2. How to prepare for Group Discussion & Interview (With Audio Cassette) by Prasad, TMH
- 3. Mary Ellen Guffey, Dana Loewy Essentials of Business Communication, Cengage Learning, 2012
- 4. Michael Spiropoulos, Interview Skills that win the job: Simple techniques for answering all the tough questions, Allen &Unwin, 2005

#### **Reference Books:**

- 1. Paul McGee, How To Write a CV That Really Works: A Concise, Clear and Comprehensive Guide to Writing an Effective CV, Hachette UK, 2014
- 2. William L. Fleisher, Effective Interviewing and Interrogation Techniques, Nathan J. Gordon, Academic Press, 2010.

#### **E-References:**

- 1. https://nptel.ac.in/noc/individual_course.php?id=noc18-hs29
- 2. https://nptel.ac.in/courses/109104031/
- 3. https://nptel.ac.in/courses/109106094/26
- 4. https://www.coursera.org/browse/personal-development
- 5. https://nptel.ac.in/courses/110105034/SM_Web/Ch14%20revised.pdf
- 6. http://www.utsa.edu/careercenter/PDFs/Interviewing/Types%20of%20Interviews.pdf
- 7. http://www.amu.apus.edu/career-services/interviewing/types.htm
- 8. http://www.careerthinker.com/interviewing/types-of-interview/

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	0	0	0	0	0	0	0	0	0	0	0	2	0
CO 2	0	0	0	0	0	0	1	3	0	0	1	0	0	0
CO 3	0	0	0	0	0	0	0	0	3	1	3	1	0	0
CO 4	0	1	2	1	3	0	0	0	0	0	0	3	0	0
CO 5	0	0	0	3	0	0	0	0	0	3	0	1	0	0
	2	1	2	4	3	0	1	3	3	4	4	5	2	0

## Mapping of COs with POs

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

### Mapping of Subjects with POs

	PO	<b>PO</b>	<b>PO</b>	<b>PO</b>	PO	PO	<b>PO</b>	PO	PO	PO1	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
Origin al Value	2	1	2	4	3	0	1	3	3	4	4	5	2	0

Scale Valu		1	1	1	1	0	1	1	1	1	1	1	1	0
		] 0 - No	l – 5 – Relatio	· ·	Low I		- 10 — on, 2- 1	/	m Rela		- 15 → - High I	-	n	
2	XBT 5(	8			I	NPLA	NT T	RAIN	ING	- 11		-	L T 0 0	P     0       0     1
C	Р	Α											LT	P H
0.66	0.66	0.66											0 0	0 (
		SITE:-												
				rse Ou	itcom	es				Dor	nain		Leve	1
On th	e succe	essful co	omplei	tion of	the co	ourse,	studer	nts wil	l be al	ole to		T		
<b>CO1</b>	Rela	ate class	sroom	theory	with	workp	lace p	ractice		С	og	1	Underst	and
CO2		nply wi		•	discip	oline, 1	manag	gement	and	A	ſf		Respon	ise
<b>CO3</b>	Der	nonstrat	es tea	mwork	and t	ime m	anagei	ment.		A	ſf		Value	e
<b>CO4</b>		cribe ctical sk					-		e on	P	hy		Percept Set	ion
<b>CO5</b>		nmarize uments					done t	by tech	inical	С	og		Evalua	ite

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2													
CO2							1	3			1		1	1
CO3									3	1	3		3	3
CO4		1	2	1	3								1	1
CO5				3						3			1	1
Total	2	1	2	4	3	0	1	3	3	4	4		6	6
Scale d	1	1	2	1	1	0	1	1	1	1	1	1	2	2

1 - Low, 2 – Medium, 3 – High

	SE CODE	XUM601			L	Т	P	C	1 -
	SE NAME	<b>ECONOMICS FOR EN</b>	GINEERS		3	0	0	3	
	QUISITES				L	Т	Р	H	[
C:P:A	C	2.64:0.24:0.12			3	0	0	3	
COURS	SE OUTCOM	IES			DO	MAIN	]	LE	VEL
CO1	<i>Explain</i> th	e concepts of economics in	n engineering	and	Cog	gnitive	U	nde	rstand
	identify ele	ement of cost to prepare cost	sheet		Psycł	omotor	Р	erce	eption
CO2	Calculate	and Explain the Break-	even point	and		nitive		nde	rstand
	marginal c	osting			Psych	nomotor		&A	pply
									eption
CO3		eandUsevalue engineering p	procedure for	cost		nitive			rstand
	analysis					ective			eive
CO4		eplacement problem			Cog	gnitive	U		rstand
UNIT I		JCTION TO ECONOMIC						80	
		y, Law of supply and de							
		y, Economic efficiency, Sco							
		aration of cost sheet and est	imation, Mar	ginal c	ost, M	larginal	Reve	enue	e, Sunl
	portunity cost							1	
		EN ANALYSIS&SOCIAL						12	
0		ofit, Cost & Quantity anal	•				CVF	<b>P</b> ar	nalysis
		P/V Ratio), Application of N							
		Analysis: compare differen	nt project alt	ernativ	es, Ca	alculate	direc	rt, i	ndirec
								· ·	
		Ionetizing effects; Result of	a social cost	benefi					
UNIT I	II VALUE E	Aonetizing effects; Result of NGINEERING & COST A	a social cost	benefi G:	analy	/sis.		10	
UNIT I Value er	II VALUE El ngineering – F	Annetizing effects; Result of NGINEERING &COST A Function, aims, Value engine	a social cost CCOUNTIN ering procedu	benefit G: ure - M	analy ake o	vsis. r buy de		10	
UNIT II Value er Business	<b>II VALUE E</b> ngineering – F s operating co	Annetizing effects; Result of NGINEERING &COST A Function, aims, Value engine sts, Business overhead costs	a social cost CCOUNTIN ering procedu	benefit G: ure - M	analy ake o	vsis. r buy de		10 1	)
UNIT II Value er Business UNIT I	II VALUE E ngineering – F s operating co V REPLACE	Annetizing effects; Result of NGINEERING &COST A Junction, aims, Value engine sts, Business overhead costs MENT ANALYSIS	a social cost CCOUNTIN ering procedu , Equipment	benefit G: ure - M operati	analy ake or ng cos	vsis. r buy de sts	cisio	10 1 07	)
UNIT I Value er Business UNIT I Replace	II VALUE E ngineering – F s operating co V REPLACE ment analysis	Annetizing effects; Result of NGINEERING &COST A Sunction, aims, Value engine sts, Business overhead costs MENT ANALYSIS –Types of replacement prob	a social cost CCOUNTIN ering procedu , Equipment	benefit G: ure - M operati	analy ake or ng cos	vsis. r buy de sts	cisio	10 1 07	)
UNIT II Value er Business UNIT I Replacer Replacer	II VALUE El agineering – F s operating co V REPLACE ment analysis ment of an ass	Annetizing effects; Result of <b>NGINEERING &amp;COST A</b> Function, aims, Value engine sts, Business overhead costs <b>MENT ANALYSIS</b> —Types of replacement prob set with a new asset.	a social cost CCOUNTIN ering procedu , Equipment	benefit G: ure - M operati	analy ake or ng cos	vsis. r buy de sts	cisio	<b>10</b> 1 <b>07</b> f ar	) 7 n asset
UNIT II Value er Business UNIT I Replacer UNIT V	II VALUE E ngineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA	Annetizing effects; Result of NGINEERING &COST A Sunction, aims, Value engine sts, Business overhead costs MENT ANALYSIS –Types of replacement prot set with a new asset. TION	a social cost CCOUNTIN ering procedu , Equipment blem, determ	benefit G: ure - M operation	analy ake on ng cos of eco	vsis. r buy de sts	cision life o	10 1 07 f ar 08	) 7 1 asset
UNIT II Value er Business UNIT I Replacer UNIT V Deprecia	II VALUE El agineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA ation- Introdu	Annetizing effects; Result of <b>NGINEERING &amp;COST A</b> Function, aims, Value engine sts, Business overhead costs <b>MENT ANALYSIS</b> —Types of replacement prob set with a new asset. <b>TION</b> action, Straight line method	a social cost CCOUNTIN ering procedu , Equipment blem, determ	benefit G: ure - M operati ination	ake or ake or ng cos of eco eclini	vsis. r buy de sts onomic ng bala	cision life o	10 1 07 of ar 08 met	7 n asset 3 hod o
UNIT II Value er Business UNIT I Replacer Replacer UNIT V Deprecia	II VALUE E ngineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA ation- Introdu tion-Sum of t	Annetizing effects; Result of NGINEERING &COST A Junction, aims, Value engine sts, Business overhead costs MENT ANALYSIS —Types of replacement prob set with a new asset. TION action, Straight line method he year's digits method of de	a social cost CCOUNTIN ering procedu , Equipment blem, determ l of deprecia epreciation, s	benefit G: ure - M operati ination ttion, c inking	analy ake or ng cos of eco eclini fund t	vsis. r buy de sts onomic ng bala	cision life o	10 1 07 of ar 08 met	7 n asset 3 hod o
UNIT II Value er Business UNIT I Replacer Replacer UNIT V Deprecia	II VALUE E ngineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA ation- Introdu tion-Sum of t	Annetizing effects; Result of <b>NGINEERING &amp;COST A</b> Function, aims, Value engine sts, Business overhead costs <b>MENT ANALYSIS</b> —Types of replacement prob set with a new asset. <b>TION</b> action, Straight line method he year's digits method of de preciation, service output method	a social cost <b>CCOUNTIN</b> tering procedu , Equipment blem, determ d of deprecia epreciation, s ethod of depr	benefit G: ure - M operati ination attion, d inking eciatio	analy ake or ng cos of ecc eclini fund n	vsis. t buy de ts onomic ng bala method	life o nce 1	<b>10</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>	7 n asset 3 hod o
UNIT II Value er Business UNIT I Replacer Replacer UNIT V Deprecia	II VALUE E ngineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA ation- Introdu tion-Sum of t	Annetizing effects; Result of <b>NGINEERING &amp;COST A</b> Function, aims, Value engine sts, Business overhead costs <b>MENT ANALYSIS</b> —Types of replacement prob set with a new asset. <b>TION</b> action, Straight line method he year's digits method of de preciation, service output method	a social cost CCOUNTIN ering procedu , Equipment blem, determ l of deprecia epreciation, s	benefit G: ure - M operati ination ttion, c inking	analy ake or ng cos of ecc eclini fund n	vsis. t buy de ts onomic ng bala method	cision life o	<b>10</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>	7 n asset 3 hod o
UNIT II Value er Business UNIT I Replacer Replacer UNIT V Deprecia deprecia Annuity	II VALUE E ngineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA ation- Introdu tion-Sum of t method of de	Aonetizing effects; Result of NGINEERING & COST A Function, aims, Value engine sts, Business overhead costs MENT ANALYSIS –Types of replacement prob set with a new asset. ATION action, Straight line method he year's digits method of de preciation, service output method L	a social cost CCOUNTIN ering procedu , Equipment blem, determ d of deprecia epreciation, s ethod of depr ECTURE	benefit G: ure - M operati ination attion, d inking eciatio TUTC	analy ake or ng cos of ecc eclini fund n	r buy de ts onomic ng bala nethod	cision life o nce 1 of dej	<b>10</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>07</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>	7 n asset 3 hod o
UNIT II Value er Business UNIT I Replacer Replacer UNIT V Deprecia deprecia Annuity	II VALUE E ngineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA ation- Introdu tion-Sum of t method of de	Aonetizing effects; Result of NGINEERING &COST A Function, aims, Value engine sts, Business overhead costs MENT ANALYSIS —Types of replacement prob set with a new asset. ATION Interior, Straight line method he year's digits method of de preciation, service output method A A A A A A A A A A A A A A A	a social cost CCOUNTIN ering procedu , Equipment blem, determ d of deprecia epreciation, s ethod of depr LECTURE 5	benefit G: ure - M operati ination ination inking eciatio TUTC	analy ake or ng cos of eco eclini fund n <b>DRIA</b>	vsis. r buy de ts onomic ng bala nethod L T( 45	cision life o nce n of dej	10 07 f ar 08 metl prec	7 n asset 3 hod o
UNIT II Value er Business UNIT I Replacer UNIT V Deprecia deprecia Annuity HOURS 1. Sp Gu	II VALUE E ngineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA ation- Introdu tion-Sum of t method of de S upta, Ajay Sha	Aonetizing effects; Result of NGINEERING &COST A Sunction, aims, Value engine sts, Business overhead costs MENT ANALYSIS —Types of replacement prob set with a new asset. TION action, Straight line method he year's digits method of de preciation, service output med L arma & Satish Ahuja, "Cost A	a social cost CCOUNTIN ering procedu , Equipment blem, determ d of deprecia epreciation, s ethod of depr LECTURE 5	benefit G: ure - M operati ination ination inking eciatio TUTC	analy ake or ng cos of eco eclini fund n <b>DRIA</b>	vsis. r buy de ts onomic ng bala nethod L T( 45	cision life o nce n of dej	10 07 f ar 08 metl prec	7 n asset 3 hod o
UNIT II Value er Business UNIT I Replacer Replacer UNIT V Deprecia deprecia Annuity HOURS 1. Sp Gu Faridaba	II VALUE E ngineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA ation- Introdu tion-Sum of t method of de S 1pta, Ajay Sha ad, Haryana, 2	Aonetizing effects; Result of NGINEERING &COST A Sunction, aims, Value engine sts, Business overhead costs MENT ANALYSIS –Types of replacement prob set with a new asset. TION Iction, Straight line method he year's digits method of de preciation, service output method he year's digits method of de preciation, service output method arma & Satish Ahuja, "Cost A 012	a social cost CCOUNTIN ering procedu , Equipment blem, determ d of deprecia epreciation, s ethod of depr ECTURE 5 Accounting",	benefit G: ure - M operati ination ination inking eciatio TUTC 0 V K C	analy ake or ng cos of eco eclini fund n <b>DRIA</b> lobal	vsis. t buy de sts onomic ng bala nethod L T( 45 Publica	cision life o nce 1 of dej <b>DTA</b> l	10 07 f ar 08 metl prec	7 n asset 3 hod o
UNIT II Value er Business UNIT I Replacer UNIT V Deprecia deprecia Annuity HOURS 1. Sp Gu Faridaba 2. S.P.Ja	II VALUE E ngineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA ation- Introdu tion-Sum of t method of de S upta, Ajay Sha ad, Haryana, 2 un&Narang, "	Aonetizing effects; Result of NGINEERING &COST A Sunction, aims, Value engine sts, Business overhead costs MENT ANALYSIS —Types of replacement prob set with a new asset. TION action, Straight line method he year's digits method of de preciation, service output med L arma & Satish Ahuja, "Cost A	a social cost CCOUNTIN ering procedu , Equipment blem, determ d of deprecia epreciation, s ethod of depr ECTURE 5 Accounting",	benefit G: ure - M operati ination ination inking eciatio TUTC 0 V K C	analy ake or ng cos of eco eclini fund n <b>DRIA</b> lobal	vsis. t buy de sts onomic ng bala nethod L T( 45 Publica	cision life o nce 1 of dej <b>DTA</b> l	10 07 f ar 08 metl prec	7 n asset 3 hod o
UNIT II Value er Business UNIT I Replacer Replacer UNIT V Deprecia deprecia Annuity HOURS 1. Sp Gu Faridaba 2. S.P.Ja Calcutta	II VALUE E ngineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA ation- Introdu tion-Sum of t method of de S upta, Ajay Sha ad, Haryana, 2 un&Narang, " , 2012	Aonetizing effects; Result of NGINEERING &COST A Junction, aims, Value engine sts, Business overhead costs MENT ANALYSIS —Types of replacement prob set with a new asset. TION action, Straight line method he year's digits method of de preciation, service output med 4 arma & Satish Ahuja, "Cost A 012 Cost accounting – Principles	a social cost CCOUNTIN ering procedu , Equipment blem, determ l of deprecia epreciation, s ethod of depr ECTURE 5 Accounting", s and Practice	benefit G: ure - M operati ination ution, c inking eciatio TUTC 0 V K C e", Kal	analy ake or ng cos of ecc eclini fund n <b>PRIA</b> lobal	vsis. t buy de sts conomic ng bala nethod L T( 45 Publica ublisher	cision life o nce 1 of de <b>DTAI</b> tions,	10 07 f ar 08 metl prec	7 n asset 3 hod o
UNIT II Value er Business UNIT I Replacer Replacer UNIT V Deprecia deprecia Annuity HOURS 1. Sp Gu Faridaba 2. S.P.Ja Calcutta 3. Panne	II VALUE E ngineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA ation- Introdu tion-Sum of t method of de S upta, Ajay Sha ad, Haryana, 2 un&Narang, " , 2012	Aonetizing effects; Result of NGINEERING &COST A Sunction, aims, Value engine sts, Business overhead costs MENT ANALYSIS –Types of replacement prob set with a new asset. TION Iction, Straight line method he year's digits method of de preciation, service output method he year's digits method of de preciation, service output method arma & Satish Ahuja, "Cost A 012	a social cost CCOUNTIN ering procedu , Equipment blem, determ l of deprecia epreciation, s ethod of depr ECTURE 5 Accounting", s and Practice	benefit G: ure - M operati ination ution, c inking eciatio TUTC 0 V K C e", Kal	analy ake or ng cos of ecc eclini fund n <b>PRIA</b> lobal	vsis. t buy de sts conomic ng bala nethod L T( 45 Publica ublisher	cision life o nce 1 of de <b>DTAI</b> tions,	10 07 f ar 08 metl prec	7 n asset 3 hod o
UNIT II Value er Business UNIT I Replacer Replacer UNIT V Deprecia deprecia Annuity HOURS 1. Sp Gu Faridaba 2. S.P.Ja Calcutta 3. Panne 2001.	II VALUE El ngineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA ation- Introdu tion-Sum of t method of de S npta, Ajay Sha ad, Haryana, 2 nin&Narang, " , 2012 perSelvam, R,	Aonetizing effects; Result of NGINEERING &COST AG Junction, aims, Value engine sts, Business overhead costs MENT ANALYSIS —Types of replacement prob set with a new asset. TION action, Straight line method he year's digits method of de preciation, service output me L arma & Satish Ahuja, "Cost A 012 Cost accounting – Principles "Engineering Economics", I	a social cost         CCOUNTIN         ering procedu         ering procedu         , Equipment         blem, determand         blem, determand         a of deprecia         epreciation, s         ethod of deprecia <b>5</b> Accounting",         s and Practice         Prentice Hall	benefit G: ure - M operati ination ination tion, c inking eciatio TUTC 0 V K C e", Kal of Indi	analy ake on ng cos of eco eclini fund n <b>DRIA</b> lobal yani P a Ltd,	vsis. t buy de ts onomic ng bala nethod L T( 45 Publica ublisher New D	cision life o nce n of dej <b>DTA</b> I tions, s, elhi,	10 07 f ar 08 metl prec	7 n asset 3 hod o
UNIT II Value er Business UNIT I Replacer Replacer UNIT V Deprecia deprecia Annuity HOURS 1. Sp Gu Faridaba 2. S.P.Ja Calcutta 3. Panne 2001. 4. Willia	II VALUE E ngineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA ation- Introdu tion-Sum of t method of de S upta, Ajay Sha ad, Haryana, 2 uin&Narang, " , 2012 perSelvam, R, am G.Sullivan	Aonetizing effects; Result of NGINEERING &COST AG Junction, aims, Value engine sts, Business overhead costs MENT ANALYSIS —Types of replacement prob- set with a new asset. TION action, Straight line method he year's digits method of de preciation, service output med- function, Straight line method he year's digits method of de preciation, service output med- function, service output med	a social cost         CCOUNTIN         ering procedu         ering procedu         , Equipment         blem, determand         blem, determand         a of deprecia         epreciation, s         ethod of deprecia <b>5</b> Accounting",         s and Practice         Prentice Hall	benefit G: ure - M operati ination ination tion, c inking eciatio TUTC 0 V K C e", Kal of Indi	analy ake on ng cos of eco eclini fund n <b>DRIA</b> lobal yani P a Ltd,	vsis. t buy de ts onomic ng bala nethod L T( 45 Publica ublisher New D	cision life o nce n of dej <b>DTA</b> I tions, s, elhi,	10 07 f ar 08 metl prec	7 n asset 3 hod o
UNIT II Value er Business UNIT I Replacer Replacer UNIT V Deprecia deprecia Annuity HOURS 1. Sp Gu Faridaba 2. S.P.Ja Calcutta 3. Panne 2001. 4. Willia Prentice	II VALUE E ngineering – F s operating co V REPLACE ment analysis ment of an ass V DEPRECIA ation- Introdu tion-Sum of t method of de S upta, Ajay Sha ad, Haryana, 2 uin&Narang, " , 2012 perSelvam, R, am G.Sullivan	Aonetizing effects; Result of NGINEERING &COST AG Junction, aims, Value engine sts, Business overhead costs MENT ANALYSIS —Types of replacement prob set with a new asset. TION action, Straight line method he year's digits method of de preciation, service output me L arma & Satish Ahuja, "Cost A 012 Cost accounting – Principles "Engineering Economics", I	a social cost         CCOUNTIN         ering procedu         ering procedu         , Equipment         blem, determand         blem, determand         a of deprecia         epreciation, s         ethod of deprecia <b>5</b> Accounting",         s and Practice         Prentice Hall	benefit G: ure - M operati ination ination tion, c inking eciatio TUTC 0 V K C e", Kal of Indi	analy ake on ng cos of eco eclini fund n <b>DRIA</b> lobal yani P a Ltd,	vsis. t buy de ts onomic ng bala nethod L T( 45 Publica ublisher New D	cision life o nce n of dej <b>DTA</b> I tions, s, elhi,	10 07 f ar 08 metl prec	7 n asset 3 hod o

1.	Luke M Froeb / Brian T Mccann, "Managerial Economics - A problem solving approach"
	Thomson learning 2007

- 2. Truett&Truett, "Managerial economics- Analysis, problems & cases " Wiley India 8th edition 2004.
- 3. Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2002.
- 4. Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2002

# Table 1: Mapping of CO's with POs

	<b>PO</b> ₁	<b>PO</b> ₂	PO ₃	PO ₄	PO ₅	PO ₆	<b>PO</b> ₇	PO ₈	PO ₉	<b>PO</b> ₁₀	<b>PO</b> ₁₁	<b>PO</b> ₁₂
CO1	1	2	0	1	0	0	1	1	1	2	2	3
CO2	2	2	1	2	0	0	2	1	1	2	3	3
CO3	2	2	1	3	0	0	2	2	1	2	2	3
<b>CO4</b>	1	2	1	2	0	0	0	1	1	1	2	3
CO5	1	2	0	1	0	0	1	1	0	1	2	3
Scaled	1	2	1	2	0	0	1	1	1	2	2	3

0 - No relation

1- Low relation

2- Medium relation 3 – High relation

				L	Т	Р	С
X	BT 602			3	1	1	5
		BIOREACTOR DESIGN					
С	P A			L	Т	Р	Η
1	0.5 0.5			3	1	2	6
	-	e ·	ign Lab,	Chen	nical E	Engine	ering
	•	ics, Bioprocess Engneering.					
	rning Obj						
Upo	-	tion of this course, the students					
		able to known about the basics of biochemical process	5.				
		have understood the concepts of enzyme kinetics.					
	• Would	have knowledge on the kinetic model for biochemical	reactions.				
	• Would	able to design a bioreactor for a particular biochemica	l process.				
		Course Outcomes	Domair		]	Level	
		After the completion of the course, students w					
	Unders	tand and describe the fundamentals of enzyme	Cognitiv			ember	0
CO		ed reaction and its kinetics.	Affectiv	e		ceivin	0
	-		Psychomo			enome	
со		the cell kinetics and <i>choose</i> an appropriate method	Cognitiv			erstand	0
0	For fine	ding the parameters for growth.	Psychomo			rceptio	
со	<b>4</b>	nize, perform and detect various immobilization	Cognitiv			erstand	0
	techniq	ues for a biochemical process.	Psychomo	otor		rceptio	
			Cognitiv	re.		erstand	0
СО	/	y and <i>select</i> a kinetic model and design a bioreactor	Affectiv			ponds	
	accordi	ng to a biochemical process	Psychomo		Phe	enome	na
1			rsycholito	101	Per	rceptio	n

plant down V - B Ideal B reactor Monod List of 1. 2. 3. 4. 5. 6. 7. 8. 9.	ioreactors ioreactors-Type of s-trickle bed reactor model for a chemo Practical Experim Study of M-M kin Extraction of enzy Effect of temperat Effect of pH on E Effect of substrate Enzyme immobili Study of Production Study of Microbia	netics and determination of M-M constants. Tyme from fruits and vegetable. Ture on Enzyme Activity.	products. d parameters.	<b>9+3+6</b> ors—Fluidized bec
plant down V - B Ideal B reactor Monod List of 1. 2. 3. 4. 5. 6. 7. 8. 9.	ioreactors ioreactors-Type of s-trickle bed reactor model for a chemo Practical Experim Study of M-M kin Extraction of enzy Effect of temperat Effect of pH on E Effect of substrate Enzyme immobili Enzyme immobili Study of Productio Study of Microbia	bioreactor-Airlift bioreactors-Airlift press ors-loop reactor-Stirred tank reactors-Bub ostat- Temperature effect on rate constant. nents netics and determination of M-M constants. yme from fruits and vegetable. ture on Enzyme Activity. nzyme Activity. e concentration on Enzyme Activity. zation by physical adsorption. zation by Gel Entrapment. on of growth and/or non-growth associated al Growth kinetics and estimation of Monoo ohol concentration in wine production.	products.	9+3+6 ors—Fluidized bec eter -Heat transfer
plant down V – B deal B eactor Monod List of 1. 2. 3. 4. 5. 6. 7. 8. 9.	ioreactors ioreactors-Type of s-trickle bed reactor model for a chemo Practical Experim Study of M-M kin Extraction of enzy Effect of temperat Effect of pH on E Effect of substrate Enzyme immobili Study of Production Study of Microbia	bioreactor-Airlift bioreactors-Airlift pressions-loop reactor-Stirred tank reactors-Bubliostat-Temperature effect on rate constant. Tents metics and determination of M-M constants. The from fruits and vegetable. The on Enzyme Activity. Inzyme Activity. The concentration on Enzyme Activity. Tation by physical adsorption. Tation by Gel Entrapment. Son of growth and/or non-growth associated al Growth kinetics and estimation of Monool	products.	<b>9+3+6</b> ors—Fluidized bec
plant down V – B deal B eactor Monod List of 1. 2. 3. 4. 5. 6. 7. 8.	ioreactors ioreactors-Type of s-trickle bed reactor model for a chemo Practical Experim Study of M-M kin Extraction of enzy Effect of temperat Effect of pH on E Effect of substrate Enzyme immobili Enzyme immobili Study of Production	bioreactor-Airlift bioreactors-Airlift presso ors-loop reactor-Stirred tank reactors-Bub ostat- Temperature effect on rate constant. nents netics and determination of M-M constants. yme from fruits and vegetable. ture on Enzyme Activity. nzyme Activity. e concentration on Enzyme Activity. zation by physical adsorption. zation by Gel Entrapment. on of growth and/or non-growth associated	products.	9+3+6 ors—Fluidized bec
plant down V - B deal B eactor Monod List of 1. 2. 3. 4. 5. 6. 7.	ioreactors ioreactors-Type of s-trickle bed reactor model for a chemo <b>Practical Experim</b> Study of M-M kin Extraction of enzy Effect of temperat Effect of pH on E Effect of substrate Enzyme immobili Enzyme immobili	bioreactor-Airlift bioreactors-Airlift pressions-loop reactor-Stirred tank reactors-Bubliostat- Temperature effect on rate constant.	are cycle bioreact ble column ferme	9+3+6 ors—Fluidized bec
plant down V - B deal B eactor Monod List of 1. 2. 3. 4. 5. 6.	ioreactors ioreactors-Type of s-trickle bed reactor model for a chemo Practical Experim Study of M-M kin Extraction of enzy Effect of temperat Effect of pH on E Effect of substrate Enzyme immobili	bioreactor-Airlift bioreactors-Airlift pressions-loop reactor-Stirred tank reactors-Bubliostat-Temperature effect on rate constant. Thents metics and determination of M-M constants. The from fruits and vegetable. The from fruits and vegetable. The on Enzyme Activity. In a concentration on Enzyme Activity. The concentration on Enzyme Activity. The physical adsorption.	ure cycle bioreact ble column ferme	9+3+6 ors—Fluidized bec
plant down V – B deal B eactor Monod List of 1. 2. 3. 4. 5.	ioreactors ioreactors-Type of s-trickle bed reactor model for a chemo Practical Experim Study of M-M kin Extraction of enzy Effect of temperat Effect of pH on E Effect of substrate	bioreactor-Airlift bioreactors-Airlift pressu ors-loop reactor-Stirred tank reactors-Bub ostat- Temperature effect on rate constant. nents netics and determination of M-M constants. yme from fruits and vegetable. ture on Enzyme Activity. nzyme Activity. e concentration on Enzyme Activity.	ure cycle bioreact ble column ferme	<b>9+3+6</b> ors—Fluidized bec
plant down V - B deal B eactor Monod List of 1. 2. 3. 4.	ioreactors ioreactors-Type of s-trickle bed reacto model for a chemo <b>Practical Experim</b> Study of M-M kin Extraction of enzy Effect of temperat Effect of pH on E	bioreactor-Airlift bioreactors-Airlift press ors-loop reactor-Stirred tank reactors-Bub ostat- Temperature effect on rate constant. nents netics and determination of M-M constants. yme from fruits and vegetable. ture on Enzyme Activity. nzyme Activity.	ure cycle bioreact ble column ferme	<b>9+3+6</b> ors—Fluidized bec
plant down V – B deal B eactor Monod List of 1. 2. 3.	ioreactors ioreactors-Type of s-trickle bed reacto model for a chemo Practical Experin Study of M-M kin Extraction of enzy Effect of temperat	bioreactor-Airlift bioreactors-Airlift press ors-loop reactor-Stirred tank reactors-Bub ostat- Temperature effect on rate constant. nents netics and determination of M-M constants. yme from fruits and vegetable. ture on Enzyme Activity.	ure cycle bioreact ble column ferme	<b>9+3+6</b> ors—Fluidized bec
plant down V - B deal B reactor Monod List of 1. 2.	ioreactors ioreactors-Type of s-trickle bed reacto model for a chemo Practical Experin Study of M-M kin Extraction of enzy	bioreactor-Airlift bioreactors-Airlift pressu ors-loop reactor-Stirred tank reactors-Bub ostat- Temperature effect on rate constant. nents netics and determination of M-M constants. yme from fruits and vegetable.	ure cycle bioreact ble column ferme	<b>9+3+6</b> ors—Fluidized bec
plant down V - B deal B reactor Monod List of 1.	ioreactors ioreactors-Type of s-trickle bed reacto model for a chemo <b>Practical Experin</b> Study of M-M kin	bioreactor-Airlift bioreactors-Airlift press ors-loop reactor-Stirred tank reactors-Bub ostat- Temperature effect on rate constant.	ure cycle bioreact ble column ferme	<b>9+3+6</b> ors—Fluidized bec
plant down V – B deal B eactor √Ionod	ioreactors ioreactors-Type of s-trickle bed reacto model for a chemo Practical Experin	bioreactor-Airlift bioreactors-Airlift presso ors-loop reactor-Stirred tank reactors-Bub ostat- Temperature effect on rate constant.	ure cycle bioreact ble column ferme	<b>9+3+6</b> ors—Fluidized bec
plant down V – B deal B eactor	ioreactors ioreactors-Type of s-trickle bed reactor	bioreactor-Airlift bioreactors-Airlift press ors-loop reactor-Stirred tank reactors-Bub	ure cycle bioreact	<b>9+3+6</b> ors—Fluidized bec
plant down V - B deal B reactor	ioreactors ioreactors-Type of s-trickle bed reactor	bioreactor-Airlift bioreactors-Airlift press ors-loop reactor-Stirred tank reactors-Bub	ure cycle bioreact	<b>9+3+6</b> ors—Fluidized bec
plant down V – B Ideal B	ioreactors ioreactors-Type of	bioreactor-Airlift bioreactors-Airlift press	ure cycle bioreact	<b>9+3+6</b> ors—Fluidized bec
plant down		ltures, Scale up, cosiderations on aeratio	n, agitation and I	1
plant down		ltures, Scale up, cosiderations on aeratio	n, agitation and I	heat transfer, scale
	ing the cultivation	method, modifying batch and continuous r		or consideration for
	Design Considerati	· · · · · · · · · · · · · · · · · · ·		9+3+6
		ed cell reactor using Saccharomyces cerevi		
	*	al reactor systems Various immobilization zed biocatalysts and its applications – free	<u> </u>	•
		robial cells for the production of bio		
		disadvantages of immobilized cells, -me		
		c enzymes-Immobilized microbial cells,		
	mmobilized Syste			9+3+6
	1	dictions of yield coefficients		Γ
		ures Definitions and stoichiometric calcula	tions-elemental b	valances, Degree of
Quanti	fying growth kinet	ics- Unstructured non segregated models	to predict specifi	c growth rate, cel
		netics in batch culture, environmental		
		tch and continuous cell growth Batch gro		
		ant cell cultivation –growth kinetics – fac	ctors affecting the	
	ell Kinetics			9+3+6
		s: Cyanaocobalamin – Riboflavin.	or enzymes. a an	iryidse centulase
		ess- Industrial production and applications		
A_M 1	v	inhibition – enzyme stability& specificity	y factors affectiv	
I – EI	zymes Production			9+3+6
I – En		Course content	Psychomotor	Phenomena Hours
I – En	process.	John a contract of a processing	Affective	Receiving
CO5 I – En	J.)	nd <i>follow</i> a bioreactor for a particular	Cognitive	Understanding

Co, Newyork, 2010.

2. Rajiv Dutta, Fundamentals of Biochemical Engineering, First Edition, Springer, 2008.

#### **Reference Books:**

- 1. Jens Nielsen, John Villadsen and Gunnar Liden, Bioreaction Engineering Principles, Second edition, Kluwer Academic/Plenum Publishers, Newyork, 2003.
- 2. GhasemNajafpour, Biochemical Engineering and Biotechnology, Elsevier, 2007.

## **E-References:**

1. http://nptel.ac.in/courses/103105054/

### Mapping of COs with POs

PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
3										1	1	1	
2	3		1					1			1	2	
	1	3									2	3	1
	1	2									3	1	2
1	2	3	1								2	1	3
6	7	8	2	0	0	0	0	1	0	1	9	8	6
	PO1 3 2 1 6	PO1         PO2           3	PO1         PO2         PO3           3	PO1         PO2         PO3         PO4           3         -         -         -           2         3         -         1           1         3         -         -           1         2         3         1           1         2         3         1           1         2         3         1           6         7         8         2	PO1         PO2         PO3         PO4         PO5           3	PO1         PO2         PO3         PO4         PO5         PO6           3	PO1       PO2       PO3       PO4       PO5       PO6       PO7         3	PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8         3	PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9         3                 2       3        1          1         1       3            1         1       2               1       2       3       1             1       2       3       1             1       2       3       1             1       2       3       1             6       7       8       2       0       0       0       0       1	PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10         3	PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11         3             1       1         2       3        1          1       1         1       3           1           1       3                 1       3                 1       2                1       2       3       1              1       2       3       1              1       2       3       1              6       7       8       2       0       0	PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12         3             1       1         2       3        1          1       1         1       3           1        1         1       3 <td>PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01         3             1       1       1         2       3        1         1       1       1       1         2       3        1         1       1        1       1       2         1       3           1        2       3         1       2                                                    </td>	PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01         3             1       1       1         2       3        1         1       1       1       1         2       3        1         1       1        1       1       2         1       3           1        2       3         1       2

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

#### Mapping of Subjects with POs

	PO1	PO2	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
Original Value	6	7	8	2	0	0	0	0	1	0	1	9	8	6
Scaled Value	2	2	2	1	0	0	0	0	1	0	1	3	2	2
			1 - 5	$\rightarrow 1$ ,		6 -	$-10 \rightarrow$	· 2,		11 – 1:	$5 \rightarrow 3$			

 $6-10 \rightarrow 2$ ,

 $11 - 15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

			L	Т	Р	С							
XB	Г 603		3	1	1	5							
		<b>RECOMBINANT DNA TECHNOLOGY</b>				•							
CI	P A		L	Т	Р	Η							
1.5	1 0.5		3	1	2	6							
Prere	Prerequisite: Genetics, Molecular biology												

## Learning Objectives:

# Upon completion of this course, the students

- Would have learned the concepts of gene cloning and its application.
- Would have learned the various techniques involved in Recombinant DNA Technology.

	<b>Course Outcomes</b>	Domain	Level		
	After the completion of the course, students v	vill be able to			
CO1	<i>Recall</i> the basic concepts of gene cloning and various Restriction and modification enzymes	Cognitive	Remembering		
CO2	<i>Explain</i> and <i>distinguish</i> various vector systems	Cognitive Psychomotor	Understanding Perception		
<b>CO3</b>	Describes, Compares and Identifies various techniques	Cognitive	Remembering		

	45	15	30		<u> </u>
10	Lecture	Tutorial	Practi	cal	Total
9. 10		reparation- calcium chloride ction of recombinants	methou		
8. 0		ted vector and genomic DN			
7.	Purification of dig		•		
6.	Western blotting.				
5.	SDS PAGE.				
4.	Southern blotting				
	Agarose gel Elect				
2.	Restriction enzyn				
1.	-	nid and Genomic DNA.			
	f Practical Experi				
	nbinant DNA Tec				
		garding rDNA techniques.	- carry methods	and Crispi-Casy	. Transgenie platt
		ant- insulin, human growth nipulation of animal cells -			
		combinant DNA Technolog		and gong them	9+3
	· · · · · · · · · · · · · · · · · · ·	selection- Reporter gene bas		US, GFP and Luc	
	-	ation- Grunsteinhogness an			
		omic and cDNA library con			-
		cells- transformation, transf	-		
	<u> </u>	ection of Transformants			9+3+12
		ions- DNA fingerprinting (F			-
		n sequencing method)'; S			
		ve and non-radioactive meth	nod); DNA sequ	encing (Maxum	& Gilbert, Sangers
III – N	Molecular Technic	jues			9+3+12
vector	•		r in r	ľ	<b>,</b>
		l chromosomes as cloning v			
		smids, phagemids, yeast art			
		g vectors, types of bacteri	al plasmid vect	ors (pBR322 p	
	lasmids and Vecto		uipt015.		9+3+6
	_	lymerases, Polynucleotide k ing, Design of linkers and a		me phosphatases	s, DINA ligases and
		nant DNA technology- I			•
	sic Concepts Of G			1:6:	<u>9+3</u>
<b>T</b> D		Course content			Hours
000	under Biosafety g			cognitive	Applying
CO5		ly the applications of rDN	A technology	Cognitive	Remember
				Psychomotor	Perception
<b>CO4</b>	and selection met	<i>pulates</i> and <i>Describes</i> vari	ous screening	Affective	Resp. Phen.
	Dia arraga a Marti	nulates and Describes wer		Cognitive	Applying
					Perception

Genetic Engineering", Sixth Edition, Blackwell Scientific Publications, 2004.

#### **Reference Books:**

- 1. Brown T.A., "GeneCloning and DNA Analysis", Fourth Edition, Blackwell Scientific Publications, 2003.
- 2. Glick B.R. and Pasternak J.J., "Molecular Biotechnology", Third Edition, ASM Press, 2003.
- 3. Sandhu, Sardul Singh. Recombinant DNA technology. IK International Pvt Ltd, 2010.

## **E-References:**

1. http://nptel.ac.in/courses/102103013/

# Mapping of COs with POs

	P O1	P 0 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO 1	1	1	2	1	1	1	0	0	1	0	1	0	0	0
CO 2	3	0	3	2	2	1	0	0	0	0	1	0	0	0
CO 3	3	0	3	1	3	0	0	1	0	2	0	0	0	0
CO 4	3	0	3	1	3	0	0	2	0	1	0	0	0	0
CO 5	3	0	3	2	3	2	3	3	0	1	2	0	0	0
	13	1	14	7	12	4	3	6	1	4	4	0	0	0

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

# Mapping of Subjects with POs

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	<b>PO1</b>	<b>PO1</b>	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
Origin												0	0	0
al	13	1	14	7	12	4	3	6	1	4	4			
Value														
Scaled	3	1	2	2	3	1	1	C	1	1	1	0	0	0
Value	3	1	3	Z	3	1	1	Z	1	1	1			
	$1-5 \rightarrow 1$ ,						$6-10 \rightarrow 2$ ,				$11 - 15 \rightarrow 3$			

					L	Т	P	С	
X	BT	604			3	0	0	3	
			IMMUNOLOGY						
С	P	Α			L	Τ	Ρ	Η	
1.5	1	0.5			3	0	0	3	
Prer	eau	isite:	Genetics						
			ectives: on of this course, the students						
•		-	be able to explain role of immune cells and their me	chanism in r	oreve	enting	the l	body	
			reign attack and infectious disease, cancer and other d	-		U		J	
•	, v	Vould	apply the knowledge of immune associated mechan	nisms in mee	dical	biote	chno	logy	
	r	esearch	Course Outcomes						
			Domain		Ι	Level			
		0	After the completion of the course, students wil	I be able to	1	<u> </u>	•	•	
CO	1	descril	<i>e</i> the general concepts of immune system and <i>e</i> the cells and organs of the immune system	Cognitive	;		luati	ng	
CO			<i>ns</i> the properties of antigens and antibodies and y their interactions via various tests.	Cognitive Psychomot		Understandin Perception			
		Descri	be various mechanisms of antigen presentation and	·	_	Remembering			
CO			the role of MHC in Ag Presentation.	Cognitive			oonds	-	
				Affective		Phenomena			
CO	4	_	tres the different types of hypersensitive reactions	Cognitive		Analyzing			
00			<i>plain</i> the autoimmune diseases.	<u> </u>		Understanding			
CO			<b><i>rehend</i></b> the types, mechanism of vaccines and dto the various immunization techniques	Cognitive		Understanding Guid. Resp.			
		<u> </u>	<i>d</i> to the various immunization techniques	Psychomot		Gui		sp.	
		ine Sys			_		9		
			the immune system – Types of immune system: Inn						
			portant immune cells: T cell, B cell, Macrophage, s – Immune organs: Bone marrow, Spleen, Thym						
			ciated Lymphoid tissue (MALT & CALT).	us, Lymph i	lioue	, wiu	.05a1	and	
			nd Antibodies				9		
		-	unogenicity, Antigenicity, Epitope, haptens and Ad	liuvants – A	ntib	odv:	-	ture	
	-		ological Activities – Monoclonal antibodies – Antig	•					
Reac	ctivi	ty, Aff	inity, Avidity, Precipitation and agglutination reaction	ns. Immuno	tech	niques	EL:	ISA	
RIA,	, Flo	ow cyto	metry, Immunoelectrophoresis, Western Blotting						
III-	ME	IC and	Antigen Presentation				9		
Majo	or H	listoco	npatibility Complex: Structure, Function and classe	es of MHC i	mole	cules,	Imn	nune	
-			to MHC – Antigen processing and presentation: Ende	ogenous antig	gens	(The	Cyto	solic	
			genous antigens (The Endocytic Pathway)						
			nt, Hypersensitivity and Autoimmunity	1.1. 2			9		
	-		ystem: Functions, Components, Activation and Regu		-		•		
Allei	rgy a	and hy	persensitivity: Types of hypersensitivity – Autoimmu	nity, Auto in	ımuı	ne diso	order	S	

V- Vaccines and C	Cancer Immunology		9
as Vaccines, Recon	binant-Vector Vaccines	on, Whole-Organism Vaccine s, DNA and Multivalent Subu ne Response to Tumors – Can	nit Vaccines. Tumors of the
Lecture	Tutorial	Practical	Total
45	0	0	45
Text Books:			
2. Janes Kuby., Im	munology, WH Freemar	n and Company, Newyork.,7tl	n Edition, 2013.
2. Roitt, I., Essentia	l Immunology, Blackwe	ell Scientific Publications, Ox	ford, 12 th Edition, 2011.
<b>References:</b>			
3. Abbas, K. A., Li	tchman, A. H. and Pober	r, J. S. (2007). Cellular and M	olecular
Immunology, 4th	n Edn., W. B. Saunders O	Co., Pennsylvania, USA.	
4. Tizard, R.I. (200	7). Immunology: An Int	roduction 1st Edition (English	n) 4th Edition,
Brooks/Cole put	olishers.		
<b>E</b> - References:			
4. http://www.rayr	nondcheong.com/Year1	/immuno.html	
5. http://ocw.mit.e	du/courses/health-scienc	ces-and-technology/hst-176-ce	ellular-andmolecular
immunology-fal	ll-2005/lecture-notes/		
6. http://www.umi	ch.edu/~bmsteach/lopati	in/Immunology/Immunology.	html

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO 1	3	2	2	1	1	1	1				1	1	3	3
CO 2	3	2	2	1		1	1				1	1	2	2
CO 3	2				1								2	1
CO 4	3	2	1										1	2
CO 5	3	2	2	1	1	1	1				1	1	1	1
	14	8	7	3	3	3	3				3	3	9	9

Mapping of Subjects with POs

	PO 1	PO 2	PO 2	PO	PO	PO	PO 7	PO	PO 9	PO1	PO1	PO1	PSO 1	PSO
	1		3	4	5	0	/	ð	9	0	1		1	
Origin														
al	14	8	7	3	3	3	3				3	3	9	9
Value														
Scaled	2	2	2	0	0	0	0	0	0	0	0	0	2	2
Value	3	2	2	0	0	0	0	0	0	0	0	0	2	2

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

XBT 605 A				<u>Т</u> 0	<u>Р</u> 0	<u>C</u> 3
AD I 003 A	ANIMAL BIOTECHNOLOGY	-	3	V	U	3
C P A	ANIMAL BIOTECHNOLOGI		L	Т	P	Н
$\frac{C}{2.5}$ 0 0.5				0	<u> </u>	<u>11</u> 3
	Cell biology, Genetic engineering		0	U	U	U
Learning Obj						
0 0	ion of this course, the students					
	have learnt animal cell culturing techniques.					
• Would	have learnt techniques for production of transgenic ar	nimals and cl	oning	5.		
	Course Outcomes	Domain		Lev	vel	
	After the completion of the course, students will	be able to				
CO1: <i>Explain</i> techniques.	animal cell culture media and animal cell culture	Cognitive	Une	derst	and	ing
CO2: Describe	various gene transfer methods in animal cells.	Cognitive	E	valu	atin	g
CO3:Analyze	various micromanipulation techniques and	Cognitive	I	Appl	ying	5
reproduce the	m in fertilization technology.	Affective		esp.		-
-	<i>ish</i> various methods and techniques for production nimals and cloning.	Cognitive	Une	derst	and	ing
CO5: Describ	<i>e</i> manipulation strategies to improve livestock uding meat and milk production	Cognitive	E	valu	atin	g
production inc						
I- Cell Cultur	e Techniques	sed for cell c	cultur	9 e - F		ary
I- Cell Cultur Types and com and secondary Types, establis cell culture- M	e Techniques position of media – Culture vessels and substrates us cell lines – Monolayer culture – Suspension culture – hment and characterization of cell lines; Differentiati easurement of cell death, viability and cytotoxicity; In	- 3D cell cult ion and Scali	ure (s ing uj	e - F spher p of	Prim roid anir	s) -
I- Cell Cultur Types and com and secondary Types, establis cell culture- M II- Gene Tran	e Techniques position of media – Culture vessels and substrates us cell lines – Monolayer culture – Suspension culture – hment and characterization of cell lines; Differentiati easurement of cell death, viability and cytotoxicity; In sfer Techniques	- 3D cell cult ion and Scali nmobilized c	ure (s ing uj cultur	e - F spher p of res.	Prim roid anir 9	s) - nal
I- Cell Cultur Types and com and secondary Types, establis cell culture- M II- Gene Tran Types of Gene viral vectors lil	e Techniques position of media – Culture vessels and substrates us cell lines – Monolayer culture – Suspension culture – hment and characterization of cell lines; Differentiati easurement of cell death, viability and cytotoxicity; In sfer Techniques transfer methods - Micromanipulation technology; se SV40, adenovirus, and adeno associated virus, Tran	- 3D cell cult ion and Scali mmobilized c Biology and section me	ure (s ing uj cultur Cons thods	e - F spher p of res. struc ; stal	Prim roid anir 9 tion	s) - nal
I- Cell Cultur Types and com and secondary Types, establis cell culture- M II- Gene Tran Types of Gene viral vectors lil transient metho	e Techniques position of media – Culture vessels and substrates us cell lines – Monolayer culture – Suspension culture – hment and characterization of cell lines; Differentiati easurement of cell death, viability and cytotoxicity; In sfer Techniques transfer methods - Micromanipulation technology; ce SV40, adenovirus, and adeno associated virus, Tran ods – Cloning techniques and strategies, gene therapy	- 3D cell cult ion and Scali mmobilized c Biology and section me	ure (s ing uj cultur Cons thods	e - F spher p of res. struc ; stal	Prim roid anir 9 tion ble a	s) - nal
I- Cell Cultur Types and com and secondary Types, establis cell culture- M II- Gene Tran Types of Gene viral vectors lil transient metho III- Invitro Fe	e Techniques position of media – Culture vessels and substrates us cell lines – Monolayer culture – Suspension culture – hment and characterization of cell lines; Differentiati easurement of cell death, viability and cytotoxicity; In sfer Techniques transfer methods - Micromanipulation technology; ce SV40, adenovirus, and adeno associated virus, Tran ods – Cloning techniques and strategies, gene therapy rtilization and Embryo Transfer	- 3D cell cult ion and Scali nmobilized c Biology and isfection me for animal d	ure (s ing uj cultur Cons thods isease	e - F spher p of es. struc ; stal es.	Prim roid anir 9 tion ble a 9	s) - nal
<b>I-</b> Cell Cultur Types and com and secondary Types, establis cell culture- M <b>II-</b> Gene Tran Types of Gene viral vectors lil transient metho <b>III-</b> Invitro Fe Invitro fertiliz splitting, Biop	e Techniques position of media – Culture vessels and substrates us cell lines – Monolayer culture – Suspension culture – hment and characterization of cell lines; Differentiati easurement of cell death, viability and cytotoxicity; In sfer Techniques transfer methods - Micromanipulation technology; te SV40, adenovirus, and adeno associated virus, Tran- ods – Cloning techniques and strategies, gene therapy rtilization and Embryo Transfer ation and its limitations - Artificial insemination sy and Sexing of embryos and Embryo transfer	- 3D cell cult ion and Scali mmobilized of Biology and sfection mer for animal d	ure (sing uj cultur Cons thods isease	e - F spher p of es. struc ; stal es. n, F	Prim roid anir 9 tion ble a 9 Emb	s) - mal of and ryo
<b>I-</b> Cell Cultur Types and con and secondary Types, establis cell culture- M <b>II-</b> Gene Tran Types of Gene viral vectors lil transient metho <b>III-</b> Invitro Fe Invitro fertiliz splitting, Biop techniques – L	e Techniques position of media – Culture vessels and substrates us cell lines – Monolayer culture – Suspension culture – hment and characterization of cell lines; Differentiati easurement of cell death, viability and cytotoxicity; In sfer Techniques transfer methods - Micromanipulation technology; ce SV40, adenovirus, and adeno associated virus, Tran- ods – Cloning techniques and strategies, gene therapy rtilization and Embryo Transfer ation and its limitations - Artificial insemination sy and Sexing of embryos and Embryo transfer imitations in embryo transfer - Breeding of farm anim-	- 3D cell cult ion and Scali mmobilized of Biology and sfection mer for animal d	ure (sing uj cultur Cons thods isease	e - F spher p of es. struc ; stal es. n, F	Prim roid anir 9 tion ble a 9 Emb rvat	s) - mal of and ryo
I- Cell Cultur Types and com and secondary Types, establis cell culture- M II- Gene Tran Types of Gene viral vectors lil transient metho III- Invitro Fe Invitro fertiliz splitting, Biop techniques – L IV- Manipulation Probiotics as g Manipulation of	e Techniques position of media – Culture vessels and substrates us cell lines – Monolayer culture – Suspension culture – hment and characterization of cell lines; Differentiati easurement of cell death, viability and cytotoxicity; In sfer Techniques transfer methods - Micromanipulation technology; ce SV40, adenovirus, and adeno associated virus, Tran- ods – Cloning techniques and strategies, gene therapy rtilization and Embryo Transfer ation and its limitations - Artificial insemination sy and Sexing of embryos and Embryo transfer imitations in embryo transfer - Breeding of farm anim- tions for Product Improvement of Growth hormone; Role of Somatotropic and Th- growth promoters; Ideal characteristics, Mode of ac of lactation – Lactogenesis and galactopoiesis, wool	- 3D cell cult ion and Scali mmobilized of Biology and asfection mer for animal d a, Super ovu r- Embryo nals.	ure (sing up cultur Consthods isease alatio cryop	e - F spher p of es. struc ; stai es. n, F rrese n gr prol	Prim roid anir 9 tion ble a 9 Emb rvat 9 owt bioti	s) - mal of and ryo ion h - ics;
I- Cell Cultur Types and com and secondary Types, establis cell culture- M II- Gene Tran Types of Gene viral vectors lil transient metho III- Invitro Fe Invitro fertiliz splitting, Biop techniques – L IV- Manipulation Probiotics as g Manipulation of digestive system	e Techniques position of media – Culture vessels and substrates us cell lines – Monolayer culture – Suspension culture – hment and characterization of cell lines; Differentiati easurement of cell death, viability and cytotoxicity; In sfer Techniques transfer methods - Micromanipulation technology; ce SV40, adenovirus, and adeno associated virus, Tran- ods – Cloning techniques and strategies, gene therapy rtilization and Embryo Transfer ation and its limitations - Artificial insemination sy and Sexing of embryos and Embryo transfer imitations in embryo transfer - Breeding of farm anim- tions for Product Improvement of Growth hormone; Role of Somatotropic and The growth promoters; Ideal characteristics, Mode of action of lactation – Lactogenesis and galactopoiesis, wool m.	- 3D cell cult ion and Scali mmobilized of Biology and asfection mer for animal d a, Super ovu r- Embryo nals.	ure (sing up cultur Consthods isease alatio cryop	e - F spher p of es. struc ; stai es. n, F rrese n gr prol	Prim roid anir 9 tion ble a 9 Emb rvat 9 owt bioti crot	s) - mal of and ryo ion h - ics;
I- Cell Cultur Types and com and secondary Types, establis cell culture- M II- Gene Tran Types of Gene viral vectors lil transient metho III- Invitro Fe Invitro fertiliz splitting, Biop techniques – L: IV- Manipulation Probiotics as g Manipulation of digestive system V- Transgenic Scope and imp	e Techniques position of media – Culture vessels and substrates us cell lines – Monolayer culture – Suspension culture – hment and characterization of cell lines; Differentiati easurement of cell death, viability and cytotoxicity; In sfer Techniques transfer methods - Micromanipulation technology; ce SV40, adenovirus, and adeno associated virus, Tran- ods – Cloning techniques and strategies, gene therapy rtilization and Embryo Transfer ation and its limitations - Artificial insemination sy and Sexing of embryos and Embryo transfer imitations in embryo transfer - Breeding of farm anim- tions for Product Improvement of Growth hormone; Role of Somatotropic and The growth promoters; Ideal characteristics, Mode of action of lactation – Lactogenesis and galactopoiesis, wool m.	- 3D cell cult ion and Scali mmobilized of Biology and sfection mer for animal d sfection for sfection sfection and use for animal sfection for sfection for animal sfection for sfection for animal sfection for an	ure (sing up cultur Const thods isease ulatio cryop one i es of rumer he pr	e - F spher p of es. struc ; stal es. n, F prese n gr prol n mi	Prim roid anir 9 tion ble a 9 Emb rvat 9 Owt bioti crob	s) - mal of and ryo ion h - ics; bial

Lecture	Tutorial	Practical	Total
45	0	0	45
Tart Daalaa			

#### **Text Books:**

- 1. Freshney, R. I., Culture of Animal Cells: A manual of Basic technique, John , Wiley and sons, 6th Edition, 2010.
- 2. Ramadoss, P., Animal Biotechnology: Recent Concepts and Developments, MJb Publishers, Chennai, 1st Edition, 2008.

#### **References:**

- 1.Masters, J.R.W., Animal Cell Culture: Practical Approach, Oxford University Press, New York, 3rd Edition, 2000.
- 2.Holland, A. and Johnson, A., Animal Biotechnology and Ethics, Springer Verlag, New York,1st Edition, 1998.

#### **E References:**

1. http://www.biotechnology4u.com/question_bank_question_answer.html

### COs Vs POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	1	2	2	0	1	1	2	1	1	2	1	2
CO 2	3	1	2	1	2	0	0	1	0	2	1	3	2	1
CO 3	3	1	2	3	3	2	2	1	2	2	2	3	3	3
CO 4	3	2	2	2	3	1	1	1	1	2	2	2	1	2
CO 5	3	2	3	1	2	2	1	1	1	2	2	2	1	1
	15	8	10	9	12	5	4	5	6	9	8	12	8	9

## **Subject Versus POs**

	PO 1	PO 2	<b>PO</b> 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
Origin al value	15	8	10	9	12	5	4	5	6	9	8	12	8	9
Scaled to 0,1,2,3 scale	3	2	2	2	3	1	1	1	2	2	2	3	2	2

XBT 605B           C         P         A           2.5         0         0.5	NANOBIOTECHNOLOGY	-	L         T         P         C           3         0         0         3           L         T         P         H           3         0         0         3
Prerequisite: 1	Bioinstrumentation		
• Would	<b>Ion of this course, the students</b> be able to learn fundamentals of nano technology be able to learn the nano particle synthesis and it	s application in b	
	Course Outcomes	Domain	Level
	After the completion of the course, students e basic concepts characterization techniques ne methods of nanoparticles synthesis.	Cognitive Affective	Remembering Understanding
CO2:Construct advantages.	t microfluidic devices and relate its	Cognitive	Creating Understanding
CO3:Design a	nd <i>Develop</i> theranostics nanoparticles	Cognitive	Creating
CO4:Outlines nanoparticles	the environmental applications of	Cognitive	Understanding
	<i>nds</i> the Fundamentals of Nanocarriers and elivery system.	Cognitive Affective	Receiving Phenomena Creating
I- Introductio	n to Nanoparticles Synthesis and Characteriz	ation	9
vaporization, Nanomaterials: Characterizatio	physical, chemical and biological properties- S laser Pyrolysis, ion implantation. Chemic sol-gel method. Biological synthesis: using n techniques: UV- Spectroscopy, Dynamic I sive X-Ray Analysis (EDX), Selected Area D	al methods for microorganisms Light Scattering	or synthesis o s, plant extracts , Zeta potential
TEM, AFM.	ics Meets Nano: Lah-on-a-Chin Devices		
TEM, AFM. II- Microfluid	ics Meets Nano: Lab-on-a-Chip Devices	neport Stackin	-
TEM, AFM. II- Microfluid Concepts and	advantages of microfluidic devices – Fluid transmethods for the manufacture of microfluidic com	1	ng and sealing
TEM, AFM. II- Microfluid Concepts and Materials and r modifications.	advantages of microfluidic devices – Fluid tra	1	ng and sealing -
TEM, AFM. II- Microfluid Concepts and Materials and r modifications. III- Nanoparti Theranostic ag across Blood H	advantages of microfluidic devices – Fluid tra nethods for the manufacture of microfluidic com	ponent, fluidic s	ng and sealing - tructures, surface 9 ability to cros

Role of iron oxide, biopolymers and metal nanoparticles in Waste water treatment- heavy metal removal, nanofilter devices. Role of antimicrobial coating in infectious disease prevention. Nanobiosensors for environmental monitoring.

### V- Nanoparticles and Novel Drug Delivery Systems

9

Fundamentals of Nanocarriers - Size, Surface, Magnetic and Optical Properties, Pharmacokinetics and Pharmacodynamics of Nano drug carriers. Drug delivery systemsmicrocapsules and microspheres- hydrogels- Polymers - Dendrimers- Dendritic Nanoscafold system. pH based targeted delivery- chitosan and alginate. Copolymers- PLA, PLGA. Lipid Based Nanocarriers - Liposomes, niosomes- Cubosomes. Hydrophobic drug delivery.

Lecture	Tutorial	Practical	Total
45	0	0	45

### **Text Books:**

- 1. Niemeyer, Christof M., and Chad A. Mirkin. Nanobiotechnology: concepts, applications and perspectives. Vol. 1. John Wiley & Sons, 2004.
- 2. Mirkin, Chad A., and Christof M. Niemeyer, eds. Nanobiotechnology II: more concepts and applications. John Wiley & Sons, 2007.

### **References:**

- 1. Goodsell, David S. Bionanotechnology: lessons from nature. John Wiley & Sons, 2013.
- 2. Freitas Jr. R.A., "Nanomedicine", First Edition, Volume IIA, Landes Biosciences, 2004.

### **E- References:**

- 1. http://www.chem.latech.edu/~ramu/msnt505/lec_notes/Ji/MSNT505_Ji_notes.htm
- 2. http://nptel.ac.in/courses/118107015/

# Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO 5	PO 6	<b>PO7</b>	PO 8	PO 9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	3	2		2		2					2	1	2
CO 2	2	2	2	2	2	2	2				2	3	2	1
CO 3	1	2			3	3					2	3	3	3
<b>CO 4</b>	2	3	3	3	2	3	3				1	2	1	2
CO 5	1	2			3	2		1				2	1	1
	8	12	7	5	12	10	7	1			5	12	8	9

### Mapping of Subject Vs Pos

	PO 1	PO 2	P 0 3	РО 4	P O 5	PO 6	P O 7	P O 8	P O 9	PO1 0	P 0 11	PO1 2	PSO 1	PSO 2
Origina l value	8	12	7	5	12	10	7	2			5	12	8	9

Scaled to			2	1	2			1			1		3	2	
0,1,2,3 scale	2	3	2	1	3	2	2	1			1				
			Scale	e: 3- hi	igh, 2	– Mec	lium,	1 - Lo	ow, 0-	– not rel	lated				
												L	Т	P	С
KBT 605C												3	0	0	3
				Η	EAT	TRAN	<b>NSFE</b>	R					1	-	1
C P A												L	Τ	Р	Η
00 Pre-requis												3	0	0	3
thei	pletion facilitate r applica	of this the le ations.	arners	under	rstand	the b		1			ples o	of he	eat tr	ansfe	er and
Course Ou vill be able		: Alle	r the c	comple	etion	or the	cours	se, su	idents	Doi	nain			Leve	l
CO1:Calcu		therma	al resis	stance	and c	compu	te the	cond	uction	Cog	nitive	•	Un	derst	and
neat transfe						1							and	Anal	ysing
C <b>O2:</b> Com	oute the	heat tra	ansfer	rate ir	n any	convec	ction s	ysten	1.	Cog	nitive			derst	
													and	Anal	ysing
CO3:under	standing	g of	heat	exc	hang	ers e	quipn	nents	and	Cog	nitive	<b>)</b>	Un	derst	and
pplication															ysing
CO4:Calcu		ne heat			peffici	ients a	and he	eat tr	ansfer	Cog	nitive			derst	
ates for a g	-														ysing
C <b>05:</b> Coi	npute	the ke	ey pa	ramet	ers f	or an	y sir	ıgle	effect	Cog	nitive		-	derst	
evaporator.													and		ysing
- Conduct										44.00				9 h	
Heat Trans coefficient, low of el conduction	heat co ectricity through	nduction nduction	on thro therma	ough s al con	eries ducti	and pa vity; e	arallel effect	resist of te	tances emper	. Analog	gy be	twe	en fl	ow o	f heat tivity,
Convective		nsfer -	natura	al and	force	d conv	ectior	n; Din	nensio	nal ana	lysis:	The	erma		
ayer; Anal								,			5 ,				5
II- Heat E	0													9 h	rs
Types of he shell and tu trea calcula	be heat	-	-						-		_	-			-
V- Radiat														9	hrs
	f therma	al radia	ation.	absorp	tivity	, reflec	ctivity	trans	micci	vity Co	ncent	of 1	olack		

V-	Evaporation					9 hrs
Ty	pes of evaporators; si	ngle-effect e	vaporator - cap	acity; economy	y, the effect of	of boiling-point
ele	vation; Duhring's rule.	Material &	energy balance i	n single-effect o	evaporator.	
Le	cture	Tutorial		Practical	Τα	otal
45		0		0	45	,
Te	xt Books:					
1.	Holman JP "Heat Tra	ansfer (SI uni	ts)" 9 th Edition,	McGraw Hill c	ompanies, 20	10.
2.	Gavhane K A "Heat T	ransfer (SI u	nits)" 10 th Edition	on NiraliPrakasl	han, 2010.	
3.	Frank Kreith Mark S.	Bohn "Princ	iples of Heat T	ransfer" 6 th Edi	tion, Cengage	e Learning india
	private limited, 2009.		-			-
Re	ferences:					
1.	McCabe, W. L., J.C.	Smith and	P. Harriott, Uni	t Operations of	f Chemical E	ngineering, 7/e,
	McGraw-Hill Internat	tional Editior	n, 2005.			
	Nag P K Heat Transfe					
3.	Donald Q.Kern Proce	ess Heat Trai	nsfer 20 th Editi	on, Tata McGra	aw-Hill Editi	on, New Delhi
	,1997					

# Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	1	3	2	1	2	1	1	0	2	2	3	3
CO 2	3	3	1	3	2	1	2	1	1	0	2	2	3	3
CO 3	3	3	1	3	2	1	2	1	1	0	2	2	3	3
CO 4	2	1	1	1	1	1	1	1	1	0	1	1	1	1
CO 5	3	3	1	1	1	1	1	1	1	0	1	1	1	1
	14	13	5	11	8	5	8	5	5	0	8	8	11	11

# Mapping of Subject VsPos

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
Origin al value	14	13	5	11	8	5	8	5	5	0	8	11	11	11
Scaled to 0,1,2,3 scale	3	3	1	2	2	1	2	1	1	0	2	3	3	3

			L	Τ	Р	С
XBT 701 A		_	3	0	0	3
	PROTEIN ENGINEERING	_				
C P A	-	_	L	T	P	H
2.5 0 0.5			3	0	0	3
	iochemistry, Molecular Biology					
Learning Obje						
	on of this course, the students					
	earn to make up of proteins, structure and function.					
	ble to give mechanism of protein build up and functi					
Would le	earn the strategy to engineer proteins for benefits of h		gs.			
	Course Outcomes	Domain			Level	
	After the completion of the course, students will	be able to		r <b>7</b> 1		1.
	d understand the aminoacid characteristics and	Cognitive		Unde	erstan	ding
primary structur	e of proteins	Cognitive				
CO2:Explain	and <i>analyze</i> the secondary and super secondary		1	Unde	erstan	ding
structural featur		Cognitive			alyzi	- C
CO3. Deseribe	and <i>compare</i> the different level of protein structure				embe	-
and their folding		Cognitive			alyzi	- U
	the protein structure its function al relationship and	Cognitive			plyii	
<i>relate</i> that in va		Affective			aniza	
	e protein engineering concepts and <i>assist</i> that in	7 meetive		-	plyii	
-	red protein production.	Cognitive		-	pond	-
various engineer		cognicite			nome	
T CL · ·	d Functional Aspects of Amino acids				9 + 3	
1- Structure an					- Pe	ntid
	erties of amino acids - Stereochemical representati	ions of amin	no s	acias		
Acid-base prop	erties of amino acids - Stereochemical representati					
Acid–base prop bonds - chemi	cal and physical properties of amino acids -	Detection,	ider	ntific	ation	an
Acid–base prop bonds - chemi quantification c	cal and physical properties of amino acids - f amino acids and proteins – Stereoisomerism -	Detection, Non-standa	ider rd a	ntific amin	ation o aci	an ds -
Acid–base prop bonds - chemi quantification o Primary structu	cal and physical properties of amino acids -	Detection, Non-standa	ider rd a	ntific amin	ation o aci	an ds -
Acid–base prop bonds - chemi quantification of Primary structu method.	cal and physical properties of amino acids - f amino acids and proteins – Stereoisomerism - re of proteins – peptide mapping and peptide sequ	Detection, Non-standa	ider rd a	ntific amin an de	ation o aci	an ds -
Acid–base prop bonds - chemi quantification c Primary structu method. <b>II- Protein Arc</b>	cal and physical properties of amino acids - f amino acids and proteins – Stereoisomerism - re of proteins – peptide mapping and peptide sequ chitecture	Detection, Non-standa Jencing – E	ider rd a dma	ntific amin an de	ation o aci egrad 9 + 3	and ds - ation
Acid–base prop bonds - chemi quantification o Primary structu method. <b>II- Protein Aro</b> Ramachandran	cal and physical properties of amino acids - f amino acids and proteins – Stereoisomerism - re of proteins – peptide mapping and peptide sequ chitecture plot – Tertiary structure – Interactions that stab	Detection, Non-standa lencing – E	ider rd a dma	ntific amin an de ry s	ation o aci egrad 9 + 3 tructu	and ds ation
Acid–base prop bonds - chemi quantification of Primary structu method. <b>II- Protein Aro</b> Ramachandran Organization of	cal and physical properties of amino acids - f amino acids and proteins – Stereoisomerism - re of proteins – peptide mapping and peptide sequence thitecture plot – Tertiary structure – Interactions that stab Domains – Quaternary structure – Importance of c	Detection, Non-standauencing – E	ider rd a dma dma rtia truc	ntific amin an de ry s tures	ation o aci egrad 9 + 3 ructu in g	an ds atio
Acid–base prop bonds - chemi quantification of Primary structu method. <b>II- Protein Aro</b> Ramachandran Organization of family – haemo	cal and physical properties of amino acids - f amino acids and proteins – Stereoisomerism - re of proteins – peptide mapping and peptide sequent chitecture plot – Tertiary structure – Interactions that stab Domains – Quaternary structure – Importance of co oglobin and allosteric regulation – Methods to det	Detection, Non-standauencing – E	ider rd a dma dma rtia	ntific amin an de ry s tures	ation o aci egrad 9 + 3 ructu in g	and ds ation ation
Acid–base prop bonds - chemi quantification of Primary structu method. <b>II- Protein Aro</b> Ramachandran Organization of family – haemo structure of prot	cal and physical properties of amino acids - f amino acids and proteins – Stereoisomerism - re of proteins – peptide mapping and peptide sequent chitecture plot – Tertiary structure – Interactions that stab Domains – Quaternary structure – Importance of co oglobin and allosteric regulation – Methods to det	Detection, Non-standauencing – E	ider rd a dma dma rtia	ntific amin an de ry s tures ee-di	ation o aci egrad 9 + 3 ructu in g	and ds - ation ire - lobin iona
Acid–base prop bonds - chemi quantification c Primary structu method. <b>II- Protein Arc</b> Ramachandran Organization of family – haemo structure of prot <b>III- Protein Fo</b>	cal and physical properties of amino acids - f amino acids and proteins – Stereoisomerism - re of proteins – peptide mapping and peptide sequent chitecture plot – Tertiary structure – Interactions that stab Domains – Quaternary structure – Importance of co oglobin and allosteric regulation – Methods to det eins. Iding and Assembly	Detection, Non-standa Jencing – E bilize the te juaternary st termine the	ider rd a dma dma ertia truc thre	ntific amin an de ry s tures ee-di	ation o aci egrad 9 + 3 ructu in g mens 9 + 3	and ds - ation ure - lobin iona
Acid–base prop bonds - chemi quantification of Primary structur method. <b>II- Protein Aro</b> Ramachandran Organization of family – haemo structure of prot <b>III- Protein Fo</b> Protein folding:	cal and physical properties of amino acids - f amino acids and proteins – Stereoisomerism - re of proteins – peptide mapping and peptide sequent chitecture plot – Tertiary structure – Interactions that stab Domains – Quaternary structure – Importance of co oglobin and allosteric regulation – Methods to det eins.	Detection, Non-standa Jencing – E pilize the te Juaternary st termine the dues in fold	ider rd a dma dma ertia truc thre ding	tific amin an de ry s tures ee-di	ation o acies egrad 9 + 3 ructu in g mens 9 + 3 Single	and ds ation ire lobin iona
Acid–base prop bonds - chemi quantification of Primary structu method. <b>II- Protein Ard</b> Ramachandran Organization of family – haemo structure of prot <b>III- Protein Fo</b> Protein folding: multiple protein	cal and physical properties of amino acids - f amino acids and proteins – Stereoisomerism - re of proteins – peptide mapping and peptide sequent chitecture plot – Tertiary structure – Interactions that stab Domains – Quaternary structure – Importance of co oglobin and allosteric regulation – Methods to det eins. Iding and Assembly Molten globule state – Role of hydrophobic resi	Detection, Non-standauencing – E bilize the te quaternary st termine the dues in fold otein foldin	ider rd a dma dma ertia truc thre ding g –	$\frac{1}{2}$	ation o acie grad 9 + 3 ructu in g mens 9 + 3 Single vo pr	and ds ation ure lobin iona and otein
Acid–base prop bonds - chemi quantification of Primary structur method. <b>II- Protein Arc</b> Ramachandran Organization of family – haemo structure of prot <b>III- Protein Fo</b> Protein folding: multiple protein folding: Structu	cal and physical properties of amino acids - f amino acids and proteins – Stereoisomerism - re of proteins – peptide mapping and peptide sequent this of proteins – peptide mapping and peptide sequent the plot – Tertiary structure – Interactions that stab Domains – Quaternary structure – Importance of co- oglobin and allosteric regulation – Methods to det eins. Iding and Assembly Molten globule state – Role of hydrophobic resi folding pathway – Role of disulphide bonds in pr	Detection, Non-standa Jencing – E bilize the te quaternary st termine the dues in fold otein folding –	ider rd a dma ertia truc three ding g – osr	tific amin an de ry s tures ee-di $\overline{5} - S$ Invi noly	ation o aciegrad 9 + 3 tructu in g mens 9 + 3 lingle vo pr se ass	and ds - ation ire - lobin iona
Acid–base prop bonds - chemi quantification of Primary structur method. <b>II- Protein Aro</b> Ramachandran Organization of family – haemo structure of prot <b>III- Protein Fo</b> Protein folding: multiple protein folding: Structur protein folding	cal and physical properties of amino acids - f amino acids and proteins – Stereoisomerism - re of proteins – peptide mapping and peptide sequence thitecture plot – Tertiary structure – Interactions that stab Domains – Quaternary structure – Importance of co oglobin and allosteric regulation – Methods to det eins. Iding and Assembly Molten globule state – Role of hydrophobic resi folding pathway – Role of disulphide bonds in protei	Detection, Non-standa Jencing – E bilize the te quaternary st termine the dues in fold otein folding –	ider rd a dma ertia truc three ding g – osr	tific amin an de ry s tures ee-di $\overline{5} - S$ Invi noly	ation o aciegrad 9 + 3 tructu in g mens 9 + 3 lingle vo pr se ass	an ds atio iona iona iona an otei iste
Acid–base prop bonds - chemi quantification of Primary structu method. <b>II- Protein Ard</b> Ramachandran Organization of family – haemo structure of prot <b>III- Protein Fo</b> Protein folding: multiple protein folding: Structu protein folding folding – Protein	cal and physical properties of amino acids - f amino acids and proteins – Stereoisomerism - re of proteins – peptide mapping and peptide sequent chitecture plot – Tertiary structure – Interactions that stab Domains – Quaternary structure – Importance of co oglobin and allosteric regulation – Methods to det eins. Iding and Assembly Molten globule state – Role of hydrophobic resi folding pathway – Role of disulphide bonds in pr re of Molecular chaperones and their role in protei - Amide exchange and measurement of protein	Detection, Non-standa Jencing – E bilize the te quaternary st termine the dues in fold otein folding –	ider rd a dma ertia truc three ding g – osr	ry s tures z – S Invi nolyn	ation o aciegrad 9 + 3 tructu in g mens 9 + 3 lingle vo pr se ass	and ds - ation ation re - lobin iona and otein ister otein
Acid–base prop bonds - chemi quantification of Primary structu method. <b>II- Protein Arc</b> Ramachandran Organization of family – haemo structure of prote <b>III- Protein Fo</b> Protein folding: multiple protein folding: Structu protein folding folding – Protein <b>IV - Protein St</b>	cal and physical properties of amino acids - f amino acids and proteins – Stereoisomerism - re of proteins – peptide mapping and peptide sequentiates and allosteric regulation – Interactions that stab periods and allosteric regulation – Methods to determine and allosteric regulation – Methods to determine and the sequentiates and the diseased state: amyloidosis.	Detection, Non-standa Jencing – E pilize the te juaternary st termine the dues in fold otein folding – folding – 1	ider rd a dma dma ertia truc three ding g – osr Men	tific amin an de ry s tures ee-di $\frac{1}{5} - \frac{5}{2}$ Invi nolyn	ation o acie grad 9 + 3 ructu in g mens 9 + 3 Single vo pr se ass ne pr 9 + 3	and ds - ation inte - lobin iona e and otein ister otein

bacteriorhodopsin -	Structure	function	relationship	in	Immunoglobulin	—	Enzymes:	Serine
proteases mechanism	of action.							

#### **V- Protein Engineering**

9 + 3

Strategies for protein engineering: Effect of Disulfide bridges, Dipoles of  $\alpha$  helices - Random and site-directed mutagenesis in protein engineering - Role of low-fidelity enzymes in protein engineering – SNP –Production of Peptide Vaccines – Protein microarray and its role on disease diagnosis.

Lecture	Tutorial	Practical	Total
45	15	0	60

#### **Text Books:**

- 1. Voet D., Voet G. Biochemistry, 4th edition, John Wiley & Sons, 2010.
- 2. Branden, C. and Tooze, R., Introduction of Protein structure, Garland, 2nd Edition, 1999.
- 3. Alan Fersht. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. 3rd revised edition, W.H.Freeman& Co Ltd, 1999.

#### **References:**

- 1. Creighton T.E. Proteins: Structure and Molecular Properties, , 2nd Edition, Freeman, WH, 1992.
- 2. Creighton T.E. Protein Structure: A Practical Approach, 2nd Edition, Oxford University Press, 1997.
- 3. Lilia Alberghina. Protein Engineering in Industrial Biotechnology, CRC press, Harwood Academic Publishers, 2003.

### **E- References:**

- 1. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763986/
- 2. www.niscair.res.in/sciencecommunication/ResearchJournals/rejour/ijbt/ijbt2k6/ijbt_july06.as p
- 3. http://books.google.co.in/books?id=x0UyTLIhWSAC&pg=PA227&source=gbs_toc_r&cad= 3#v=onepage&q&f=false

	PO	PO	PO	PO	PO	PO	PO	PO	PO	<b>PO1</b>	DO1	<b>PO1</b>	PS	PS	<b>PO1</b>
	rU 1										PO1				
	l	2	3	4	5	6	7	8	9	0	1	2	01	02	2
CO 1	1	1	0	1	2	2	1	1	0	2	2	3	1	1	3
CO 2	2	3	2	2	2	1	1	0	1	0	0	2	1	1	2
CO 3	3	1	2	1	2	0	0	0	1	1	1	3	2	3	3
CO 4	1	3	2	3	2	1	2	1	1	2	1	2	2	2	2
CO 5	3	2	3	3	3	2	2	2	3	2	2	3	3	3	3
	10	10	9	10	11	6	6	4	5	7	6	13	9	10	13

# Mapping of COs with POs

# Mapping of Subject Vs POs

	PO	<b>PO1</b>	<b>PO1</b>	<b>PO1</b>	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
Origin	10	10	9	10	11	6	6	4	5	7	6			
al												13	9	10
value														
Scaled	2	2	2	2	3	2	2	1	1	2	2	3	2	2
to														
0,1,2,3														
scale														

C ]	701B P A 0 0	PHARMACEUTICAL BIOTECHNOLOG	GY	L 3 L 3	T 0 T 0	P 0 P 0	C 3 H 3
Prereq	uisite: H	Biochemistry, Immunology, r-DNA technology	I	_		-	_
Upon c	Would a developr Would a	on of this course, the students ble to understand principles of biotechnology in phar	developme	nt		d	
	steroius	Course Outcomes	Domain	1	L	evel	
		After the completion of the course, students will	be able to	- I			
CO1	biotech	the potential avenues and requirements from the nologists in pharmaceutical industries and ethe scope and applications of biotechnology in	Cognitiv	e	Ana Undei	lyziı stan	0
CO2	Outline	thepharmacodynamics, pharmacokinetics of drugs	Cognitiv	e	Ana Under	lyziı stan	<u> </u>
CO3	Describ	<i>e</i> various adverse effects of drugs	Cognitiv	e	Ana Undei	lyziı stan	
CO4	-	<i>t</i> the manufacturing process for various utical products including vaccines, enzymes, kins, hormones	Cognitiv	e	Ana Undei	lyziı stan	0
CO5	-	<i>chend</i> the methods applied to test the quality of nd other biopharmaceuticals	Cognitiv	e	Ana Undei	lyzii stan	
	oduction					7	
		Pharmaceutical industry & development of drugs; tarmaceutical Biotechnology and Drug discovery					

	S.			10
II- Drugs and The				10
	roperties of drugs, f nd drug metabolism.	factors modifying drug a	ction. Pha	rmacodynamics,
*				10
III- Drugs and Th		vialezzy Denneductive ter	riaitry and	
		xicology: Reproductive to	•	
<b>.</b>		ance, Drug intolerance, drug drug abuse and drug depende		ug maucea side
V1 V		drug abuse and drug depende	ence.	11
	Biopharmaceuticals	land la marca de Manager		
		development, Manufacturi		
· ·		binant growth hormones, g	·	ors, therapeutic
		s and their application in heal	in care.	
V- Testing and An	alysis of Biopharmaceu	iticals		7
Pharmaceutical Tes	ting, Analysis and Contr	ol: Analysis of pharmaceutic	als using ph	ysical, chemical
and biological meth	ods, quality assurance an	nd control, stability of pharma	aceutical pro	oducts
Lecture	Tutorial	Practical		Total
		0		
45	0	0		45
45 Text Books:	0	U		45
Text Books:			os publisher	
<b>Text Books:</b> 1. Purohit,Kul	karni,Saluja—Pharmace	utical biotechnology, Agrobic	-	s, 2003
Text Books: 1. Purohit,Kul 2. Pharmaceut	karni,Saluja—Pharmace		-	s, 2003
Text Books: 1. Purohit,Kul 2. Pharmaceut References:	karni,Saluja—Pharmace ical biotechnology editio	utical biotechnology, Agrobic on2 by crommel, Freeman put	olishers, 200	s, 2003 )4
Text Books: 1. Purohit,Kull 2. Pharmaceut References: 5. Crommelin.	karni,Saluja—Pharmacer ical biotechnology editio D.J.A, Robert D. Sind	utical biotechnology, Agrobio on2 by crommel, Freeman pub lela, Bernd Meibohm "Phar	olishers, 200	s, 2003 )4
Text Books:         1. Purohit,Kull         2. Pharmaceut         References:         5. Crommelin.         fundamenta	karni,Saluja—Pharmacer ical biotechnology editio D.J.A, Robert D. Sind ls and applications", Info	utical biotechnology, Agrobio on2 by crommel, Freeman pub lela, Bernd Meibohm "Phar orma Healthcare, 2008.	blishers, 200	s, 2003 04 Biotechnology:
Text Books:         1. Purohit,Kull         2. Pharmaceut         References:         5. Crommelin. fundamenta         6. Pharmaceut	karni,Saluja—Pharmacer ical biotechnology editio D.J.A, Robert D. Sind ls and applications", Info ical biotechnology:drug	utical biotechnology, Agrobio on2 by crommel, Freeman pub lela, Bernd Meibohm "Phar	blishers, 200	s, 2003 04 Biotechnology:
Text Books:         1. Purohit,Kull         2. Pharmaceut         References:         5. Crommelin. fundamenta         6. Pharmaceut         publishers,	karni,Saluja—Pharmacer ical biotechnology editio D.J.A, Robert D. Sind ls and applications", Info ical biotechnology:drug 1st edition 2007	utical biotechnology, Agrobio on2 by crommel, Freeman pub lela, Bernd Meibohm "Phar orma Healthcare, 2008. discovery and clinical app	maceutical	s, 2003 )4 Biotechnology: y Kayser,Wiley
Text Books:1.Purohit,Kull2.PharmaceutReferences:5.Crommelin. fundamenta6.Pharmaceut publishers,	karni,Saluja—Pharmacer ical biotechnology editio D.J.A, Robert D. Sind ls and applications", Info ical biotechnology:drug 1st edition 2007	utical biotechnology, Agrobio on2 by crommel, Freeman pub lela, Bernd Meibohm "Phar orma Healthcare, 2008.	maceutical	s, 2003 )4 Biotechnology: y Kayser,Wiley

# Mapping Of COs and POs

		Program Outcomes													
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	
CO1	2	-	1	1	2	2	-	-	1	1	1	1	0	0	
CO2	1	1	1	1	2	2	1	2	1	2	2	2	1	0	
CO3	2	2	2	2	1	2	2	-	2	2	1	1	2	0	
<b>CO4</b>	2	1	3	2	2	3	2	-	1	1	-	-	3	0	
CO5	2	3	2	2	3	3	2	2	2	2	1	1	3	0	
	9	7	9	8	10	12	7	4	7	8	5	5	9	0	

# Mapping of Subject Vs POs

	PO	<b>PO1</b>	<b>PO1</b>	<b>PO1</b>	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
Origin														
al	9	7	9	8	10	12	7	4	7	8	5	5	9	0
value														
Scaled	2	2	2	2	2	3	2	0	2	2	0	0	2	0
to														
0,1,2,3														
scale														

					L	Т	Р	С
X	BT 70	)2	<b>BIOINFORMATICS AND COMPUTATIO</b>	NAL.	1	0	2	3
	1		BIOLOGY					-
С	P	Α	Diologi		L	Τ	Р	Η
1	0.5	0.5			2	0	2	4
			omputer programming, biochemistry					
	0		tives:					
Upo		-	on of this course, the students		_			~ .
•			able identify different databases and will be able to			applic	ation of	f the
	b10	onform	natics for data retrieval and for drug designing and d	<b>.</b>				
			Course Outcomes	Domai			Level	
			After the completion of the course, students v	vill be able	to			
CO1		<b>plain</b> inforn	the importance and basic concepts in natics and <b>differentiate</b> various databases.	Cogniti Psychome			erstandi rception	0
CO2	Un	dersta	ands the significance of sequence analysis and	Cogniti	ve	A	pplying	
	per	form	s sequence alignment.	Psychom	otor	Guide	ed respo	nse
CO3			and Construct phylogenetic trees to study	Cogniti	ve	Un	derstand	t
	phy	logen	etic relationships	Psychom	otor	Guide	d respo	nse
CO4	Pro	edict a	and Analysis the protein structure and molecular	Cogniti	ve	(	Create	
	doc	cking		Psychom	otor	me	chanisn	1
CO5	5 Un	dersta	and the steps involved in drug discovery process.	Affectiv	ve	Re	eceiving	
						phe	enomena	a
			to Bioinformatics				9+6	
			butions - aims and tasks of Bioinformatics - applica					
			s – Biological databases- Classification of biologica					dary
datał	bases,	Seque	ence and structure databases, Specialized databases-	retrieval sy	stem- E	Entrez-	SRS.	
II- 1	[ntroc	luctio	n to Computational Biology and Sequence Analys	is			9+6	
align	iment,		nent, Pairwise alignment, Multiple sequence alignme leman and Wunsch algorithm, Smith Waterman algo AST.					

<ul> <li>Drug designing- objectives- Rational drug design- Computer assisted drug design an Molecular docking and its applications- QSAR, In Silico drug design- role of struct drug design and development- Pharmacogenomics- prospects and uses.</li> <li>List of Experiments         <ol> <li>Accession and retrieval of data from various biological databases.</li> <li>Unix/Linux – basic operations and working with terminal.</li> <li>Perl programming - Simple programs using Operators, Control Structures, Su Creating a static HTML file by a Perl Program.</li> <li>Heuristic methods (BLAST, FASTA) of searching for homologous sequence</li> <li>Pair-wise (Needleman – Wunch Algorithm &amp; Smith waterman Algoritghm)a alignment.</li> <li>Gene prediction methods (ORF Finder).</li> <li>Phylogenetic tree building using Phylip.</li> <li>Protein Secondary structure prediction.</li> <li>Homology Modeling.</li> <li>Molecular Visualization and 3D structural studies using Chimera.</li> <li>Small molecule building, using ISIS Draw and CHEM SKETCH – Tutorial Lecture</li> </ol> </li> </ul>	Construction Methods resimony, Phylogenetic 9+3+3 ary structure prediction Homology modelin 9+3+3 and drug development ctural bioinformatics in Subroutines, Hash, res and Multiple sequence
Protein structure basics, Protein structural visualization and comparison, Secondar Chau-Fasman, GOR, Neural networks, Protein tertiary structure prediction Threading and Fold recognition.         V- Role of Bioinformatics in Drug Discovery         Drug designing- objectives- Rational drug design- Computer assisted drug design and Molecular docking and its applications- QSAR, In Silico drug design- role of struct drug design and development- Pharmacogenomics- prospects and uses.         List of Experiments         1. Accession and retrieval of data from various biological databases.         2. Unix/Linux – basic operations and working with terminal.         3. Perl programming - Simple programs using Operators, Control Structures, Succeating a static HTML file by a Perl Program.         4. Heuristic methods (BLAST, FASTA) of searching for homologous sequence         5. Pair-wise (Needleman – Wunch Algorithm & Smith waterman Algoritghm)a alignment.         6. Gene prediction methods (ORF Finder).         7. Phylogenetic tree building using Phylip.         8. Protein Secondary structure prediction.         9. Homology Modeling.         10. Molecular Visualization and 3D structural studies using Chimera.         11. Molecular Visualization and 3D structural studies using Chimera.         12. Small molecule building, using ISIS Draw and CHEM SKETCH – Tutorial Lecture	ary structure prediction Homology modelin 9+3+3 and drug development ctural bioinformatics in Subroutines, Hash, res and Multiple sequence
Chau-Fasman, GOR, Neural networks, Protein tertiary structure prediction         Threading and Fold recognition.         V- Role of Bioinformatics in Drug Discovery         Drug designing- objectives- Rational drug design- Computer assisted drug design and Molecular docking and its applications- QSAR, In Silico drug design- role of struct drug design and development- Pharmacogenomics- prospects and uses.         List of Experiments         1. Accession and retrieval of data from various biological databases.         2. Unix/Linux – basic operations and working with terminal.         3. Perl programming - Simple programs using Operators, Control Structures, Structure a static HTML file by a Perl Program.         4. Heuristic methods (BLAST, FASTA) of searching for homologous sequence         5. Pair-wise (Needleman – Wunch Algorithm & Smith waterman Algoritghm)a alignment.         6. Gene prediction methods (ORF Finder).         7. Phylogenetic tree building using Phylip.         8. Protein Secondary structure prediction.         9. Homology Modeling.         10. Molecular Visualization and 3D structural studies using Rasmol - Commands identification.         11. Molecular Visualization and 3D structural studies using Chimera.         12. Small molecule building, using ISIS Draw and CHEM SKETCH – Tutorial	Homology modelin 9+3+3 and drug development ctural bioinformatics in Subroutines, Hash, res and Multiple sequence
<ul> <li>Molecular docking and its applications- QSAR, In Silico drug design- role of struct drug design and development- Pharmacogenomics- prospects and uses.</li> <li>List of Experiments <ol> <li>Accession and retrieval of data from various biological databases.</li> <li>Unix/Linux – basic operations and working with terminal.</li> <li>Perl programming - Simple programs using Operators, Control Structures, Structures a static HTML file by a Perl Program.</li> <li>Heuristic methods (BLAST, FASTA) of searching for homologous sequence</li> <li>Pair-wise (Needleman – Wunch Algorithm &amp; Smith waterman Algoritghm)a alignment.</li> <li>Gene prediction methods (ORF Finder).</li> <li>Phylogenetic tree building using Phylip.</li> <li>Protein Secondary structure prediction.</li> <li>Homology Modeling.</li> <li>Molecular Visualization and 3D structural studies using Rasmol - Commandaridentification.</li> <li>Molecular Visualization and 3D structural studies using Chimera.</li> <li>Small molecule building, using ISIS Draw and CHEM SKETCH – Tutorial</li> </ol> </li> </ul>	and drug development ctural bioinformatics in Subroutines, Hash, res and Multiple sequence
<ol> <li>Unix/Linux – basic operations and working with terminal.</li> <li>Perl programming - Simple programs using Operators, Control Structures, Su Creating a static HTML file by a Perl Program.</li> <li>Heuristic methods (BLAST, FASTA) of searching for homologous sequence</li> <li>Pair-wise (Needleman – Wunch Algorithm &amp; Smith waterman Algoritghm)a alignment.</li> <li>Gene prediction methods (ORF Finder).</li> <li>Phylogenetic tree building using Phylip.</li> <li>Protein Secondary structure prediction.</li> <li>Homology Modeling.</li> <li>Molecular Visualization and 3D structural studies using Rasmol - Commands identification.</li> <li>Molecular Visualization and 3D structural studies using Chimera.</li> <li>Small molecule building, using ISIS Draw and CHEM SKETCH – Tutorial Lecture</li> </ol>	ctural bioinformatics in Subroutines, Hash, res and Multiple sequence
11. Molecular Visualization and 3D structural studies using Chimera.12. Small molecule building, using ISIS Draw and CHEM SKETCH – TutorialLectureTutorialPractical	
12. Small molecule building, using ISIS Draw and CHEM SKETCH – TutorialLectureTutorialPractical	
	Total
45 0 30 Text Books:	75
<ol> <li>David W. Mount Bioinformatics: Sequence and Genome Analysis, G Laboratory Press, Second Edition, 2004</li> <li>Ghosh, Zhumur, and BibekanandMallick. Bioinformatics: Principles and App University Press, 2008.</li> <li>S. Harisha , "Fundamentals of Bioinformatics", I. K. International Pvt Ltd, 20</li> <li>References:         <ul> <li>Arthur M. Lesk, Introduction to Bioinformatics by Oxford University Press, Pearson E Edition, 11th Reprint 2005</li> <li>Stephen A. Krawetz, David D. Womble, Introduction To Bioinformatics Practical Approach, Humana Press, 2003</li> </ul> </li> </ol>	pplications. Oxford 2010 ress, 2008 Education, 1st

- 1. http://nptel.ac.in/courses/102103044/40
- 2. vlab.amrita.edu/?sub=3&brch=273

### Mapping of Cos Vs PO s

	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1			1		2				2					
CO 2		2	2	1	3								1	
CO 3		2	1	1	2							3	3	1
CO 4	1	3	3	1	3						3	1	2	3
CO 5	1	2	3		3						2	1	1	1
	2	9	10	3	13				2		5	4	7	5

# Mapping of Subject Vs POs

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11
Original value	2	9	10	3	13	0	0	0	4	0	0
Scaled to 0,1,2,3 scale	1	2	2	1	3	0	0	0	1	0	0

															_		- 1	_	~
															L	Τ		Р	C
XB	BT 703														3	1		1	5
				•	DOW	NST	REA	AM PF	ROC	CESSI	NG								
С	P	Α													L	Т		Р	H
1	0.5	0.5													4	1		2	6
Prerequ	uisite:M	licrol	oiolog	y, Bio	proce	ss Er	ngine	eering	g, Bi	ochen	nical I	Eng	ineer	ing					
Learnin					•		0							0					
Upon co	0			ourse	, the s	tude	nts												
-	Will be				·			hind tl	the d	liffere	nt prod	cess	ses in	volv	ed in	the d	low	vnstre	am
	processi				p	p-					P10	0.							
Course	L	<u> </u>																	
			(	Cours	e Outo	come	s						D	oma	in		L	evel	
					e Outo			he cou	urse.	stude	nts wi	ll b			in		L	evel	
	Reco		Afte	er the	compl	etion	of th	he cou separa				l1 b	e able	e to		Re			ing
CO1	Reco		Afte	er the	compl	etion	of th	he cou separa				ll b	e able Co	e to gniti	ive		me	mber	0
	Reco		Afte	er the	compl	etion	of th					ll b	e able Co	e to	ive	1	eme Rec	mber	g
CO1		<i>ill</i> and	Afte d <i>desc</i>	er the <i>ribe</i> tl	comple ne basi	etion ics of	t of th f bios	separa	ation	proce	ess.		e able Co Af	e to gniti fecti	ive ve	I P	eme Rec her	mber eiving	g na
	Outi	ill and	Afte d <i>desc</i> and	er the ribe tl differ	comple ne basi entiate	etion ics of	t of th f bios		ation	proce	ess.		e able Co Af	e to gniti	ive ve	I P	eme Rec her	ember eiving nomer rstand	g na
CO1	Outi	ill and	Afte d <i>desc</i>	er the ribe tl differ	comple ne basi entiate	etion ics of	t of th f bios	separa	ation	proce	ess.		e able Co Af Co	e to gniti fecti	ive ve ive	I P	eme Rec her nde	ember eiving nomer rstand g	g na din
CO1	Outi	ill and	Afte d <i>desc</i> and	er the ribe tl differ	comple ne basi entiate	etion ics of	t of th f bios	separa	ation	proce	ess.		e able Co Af Co Af	e to gniti fecti gniti fecti	ive ve ive	I P Uı	eme Rec <u>her</u> nde Va	mber eiving nomer rstand g lluing	g na din
CO1 CO2	<i>Outi</i> dow	<i>ill</i> and <i>ine</i> nstrea	Afte d <i>desc</i> and am pro	er the ribe th differ ocessin	comple ne basi entiate ng.	etion ics of e th	f bios	separa lifferei	ation ent	metho	ess. ods o	f	e able Co Af Co	e to gniti fecti gniti fecti	ive ve ive	I P Uı	eme Rec <u>her</u> nde Va	ember eiving nomer rstand g	g na din
CO1	Outi dow Iden	<i>ill</i> and <i>ine</i> nstrea <i>tify</i> ,	Afte d <i>desc</i> and am pro	er the ribe th differ ocessin e and	comple ne basi entiate ng.	etion ics of e th	f bios	separa	ation ent	metho	ess. ods o	f	e able Co Af Co Af Psyc	e to gniti fecti gniti fecti	ive ve ive ve notor	I P Ui	eme Rec her nde Va Perc	mber eiving nomer rstand g lluing	g na din s
CO1 CO2	Outi dow Iden	<i>ill</i> and <i>ine</i> nstrea <i>tify</i> ,	Afte d <i>desc</i> and am pro	er the ribe th differ ocessin e and	comple ne basi entiate ng.	etion ics of e th	f bios	separa lifferei	ation ent	metho	ess. ods o	f	e able Co Af Co Af Psyc	gnit fecti gnit fecti fecti	ive ive ive notor	I P Ui	eme Rec her nde Va Perc	mber eeivin nomer rstand g lluing ceptio	g na din

		Psychomotor	Receiving
			Phenomena
			Perception
<b>CO4</b>	<i>Recognize</i> , <i>perform</i> and <i>detect</i> various separation		Understandin
	technique for a bioproduct development	Cognitive	g
		Affective	Responding
		Psychomotor	phenomena
			Perception
CO5	Identify, choose and follow the different methods for the		Understandin
	purification of a particular product.	Cognitive	g
		Affective	Receiving
		Psychomotor	Phenomena
		1 Sychomotor	Guided
			response
I- Introd	luction to Downstream Processing Processes		9+3+3
Scope an	nd overview-Economics, strategies for initiation of project,	Process Desig	n Criteria cost
	strategies, upstream and downstream processing in biotecl		
	and their biological properties, fundamentals of bioseparat		
	haracteristics of biological mixtures, Morphological features		
	f interest and impurities, physical and rheological characteristic		
•	stream Processing Methods		9+3+3
	0	le the cells and	products cell
Cell disru	uption Techniques, types of cells, location of products insid		·
Cell disru distruptio	uption Techniques, types of cells, location of products insident in Methods, Mechanical and Non mechanical methods-	Filtration, type	es of filtration
Cell disru distruptio equipmen	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nts, filter media and filter aids, basic theory of filtration, p	Filtration, type principle of rota	es of filtration ry drum filter-
Cell disru distruptio equipmen centrifuga	uption Techniques, types of cells, location of products insident on Methods, Mechanical and Non mechanical methods- nts, filter media and filter aids, basic theory of filtration, pation-principle of sedimentation, types of centrifuges, flocculat	Filtration, type principle of rota	es of filtration ry drum filter-
Cell disru distruptio equipmen centrifuga III- Proc	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- atts, filter media and filter aids, basic theory of filtration, pation-principle of sedimentation, types of centrifuges, flocculat <b>duct Identification Techniques</b>	Filtration, type principle of rota ion and sediment	es of filtration ry drum filter- tation. 9+3+3
Cell disru distruptio equipmen centrifuga III- Proc Character	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nts, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation, types of centrifuges, flocculat <b>duct Identification Techniques</b> rization of product- Electrophoresis, Principle and method	Filtration, type principle of rota ion and sediment ds-Analysis of	es of filtration ry drum filter- tation. 9+3+3 product purity-
Cell disru distruptio equipmen centrifuga III- Proc Character Chromato	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nts, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation, types of centrifuges, flocculat <b>duct Identification Techniques</b> rization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA),	Filtration, type principle of rota ion and sediment ls-Analysis of p lon exchange c	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography,
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nts, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation, types of centrifuges, flocculat <b>duct Identification Techniques</b> rization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), ohase chromatography, Affinity Ligand Technology HPLC Rac	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c lial Flow Chroma	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography.
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nts, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation, types of centrifuges, flocculat <b>duct Identification Techniques</b> rization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), ohase chromatography, Affinity Ligand Technology HPLC Rac ent No 4: Extraction of pigments from spinach and estimation by	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c lial Flow Chroma	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. matography.
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nts, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation, types of centrifuges, flocculat <b>duct Identification Techniques</b> rization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), ohase chromatography, Affinity Ligand Technology HPLC Rac	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c lial Flow Chroma	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography.
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime IV- Prod	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nets, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation, types of centrifuges, flocculat <b>duct Identification Techniques</b> rization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), bhase chromatography, Affinity Ligand Technology HPLC Rac ent No 4: Extraction of pigments from spinach and estimation by <b>uct Separation Techniques</b>	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c lial Flow Chroma y thin layer chror	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. natography. 9+3+3
Cell disru distruptio equipmen centrifuga III- Proc Character Chromato Reverse p Experime IV- Prod Distillati	uption Techniques, types of cells, location of products insident Methods, Mechanical and Non mechanical methods- its, filter media and filter aids, basic theory of filtration, pation-principle of sedimentation, types of centrifuges, flocculat <b>duct Identification Techniques</b> fization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), bhase chromatography, Affinity Ligand Technology HPLC Rac ent No 4: Extraction of pigments from spinach and estimation by <b>uct Separation Techniques</b> fon- Principle and types, Extractive distillation, Steam D	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c lial Flow Chroma y thin layer chror	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. natography. 9+3+3 um Distillation
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime IV- Prod Distillati Extractio	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nts, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation, types of centrifuges, flocculat <b>duct Identification Techniques</b> rization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), ohase chromatography, Affinity Ligand Technology HPLC Rac ent No 4: Extraction of pigments from spinach and estimation by <b>uct Separation Techniques</b> on- Principle and types, Extractive distillation, Steam D on-Solvent extraction principles, Extraction methods, modes of	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c lial Flow Chroma y thin layer chron istillation, Vacc of aqueous two-p	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. 9+3+3 um Distillation phase extraction
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime IV- Prod Distillati Extractio Super c	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nets, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation, types of centrifuges, flocculat <b>duct Identification Techniques</b> fization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), bhase chromatography, Affinity Ligand Technology HPLC Rac ent No 4: Extraction of pigments from spinach and estimation by <b>uct Separation Techniques</b> on- Principle and types, Extractive distillation, Steam D on-Solvent extraction principles, Extraction methods, modes of ritical fluid extraction -Adsorption, principle, Isotherms,	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c lial Flow Chroma y thin layer chrom istillation, Vacc of aqueous two-p different types	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. 9+3+3 um Distillation phase extraction
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime IV- Prod Distillati Extractio Super cr Evaporat	uption Techniques, types of cells, location of products insiden Methods, Mechanical and Non mechanical methods- its, filter media and filter aids, basic theory of filtration, pation-principle of sedimentation, types of centrifuges, flocculat <b>duct Identification Techniques</b> fization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), ohase chromatography, Affinity Ligand Technology HPLC Rad ent No 4: Extraction of pigments from spinach and estimation by <b>uct Separation Techniques</b> non- Principle and types, Extractive distillation, Steam D on-Solvent extraction principles, Extraction methods, modes of ritical fluid extraction -Adsorption, principle, Isotherms, tion, principle, factors influencing rate of evaporation, types of	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c lial Flow Chroma y thin layer chrom istillation, Vacc of aqueous two-p different types	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. 9+3+3 um Distillation phase extraction of adsorption
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime IV- Prod Distillati Extractio Super ci Evaporat V- Produ	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nts, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation, types of centrifuges, flocculat <b>duct Identification Techniques</b> rization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), ohase chromatography, Affinity Ligand Technology HPLC Rac ent No 4: Extraction of pigments from spinach and estimation by <b>uct Separation Techniques</b> on- Principle and types, Extractive distillation, Steam D on-Solvent extraction principles, Extraction methods, modes of ritical fluid extraction -Adsorption, principle, Isotherms, ion, principle, factors influencing rate of evaporation, types of <b>uct Purification and Resolution</b>	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c lial Flow Chroma y thin layer chron istillation, Vacc of aqueous two-p different types evaporators.	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. 9+3+3 um Distillation of adsorption 9+3+3
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime IV- Prod Distillati Extractio Super c Evaporat V- Produ Precipitat	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nets, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation , types of centrifuges, flocculat <b>duct Identification Techniques</b> rization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), base chromatography, Affinity Ligand Technology HPLC Rac ent No 4: Extraction of pigments from spinach and estimation by <b>uct Separation Techniques</b> on- Principle and types, Extractive distillation, Steam D on-Solvent extraction principles, Extraction methods, modes of ritical fluid extraction -Adsorption, principle, Isotherms, ion, principle, factors influencing rate of evaporation, types of <b>Ict Purification and Resolution</b> ion methods (with salt, organic solvents, and polymers, extraction	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c lial Flow Chroma y thin layer chrom istillation, Vacc of aqueous two-p different types evaporators.	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. 9+3+3 um Distillation phase extraction of adsorption 9+3+3 , aqueous two-
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime IV- Prod Distillati Extractio Super ci Evaporat V- Produ Precipitat phase ext	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nts, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation, types of centrifuges, flocculat <b>duct Identification Techniques</b> fization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), ohase chromatography, Affinity Ligand Technology HPLC Rac ent No 4: Extraction of pigments from spinach and estimation by <b>uct Separation Techniques</b> on- Principle and types, Extractive distillation, Steam D on-Solvent extraction principles, Extraction methods, modes of ritical fluid extraction -Adsorption, principle, Isotherms, ion, principle, factors influencing rate of evaporation, types of <b>Internet Purification and Resolution</b> ion methods (with salt, organic solvents, and polymers, extract raction)- Membrane based separation process, Types of membri	Filtration, type principle of rota ion and sediment Is-Analysis of p lon exchange c lial Flow Chroma y thin layer chron istillation, Vacc of aqueous two-p different types evaporators.	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. 9+3+3 um Distillation phase extraction of adsorption 9+3+3 , aqueous two- process, theory
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime IV- Prod Distillati Extractio Super cr Evaporat V- Produ Precipitat phase ext and types	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nts, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation , types of centrifuges, flocculat <b>duct Identification Techniques</b> rization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), ohase chromatography, Affinity Ligand Technology HPLC Race ent No 4: Extraction of pigments from spinach and estimation by <b>uct Separation Techniques</b> on- Principle and types, Extractive distillation, Steam D on-Solvent extraction principles, Extraction methods, modes of ritical fluid extraction -Adsorption, principle, Isotherms, tion, principle, factors influencing rate of evaporation, types of <b>ICT Purification and Resolution</b> ion methods (with salt, organic solvents, and polymers, extract raction)- Membrane based separation process, Types of membrase of membrane-Application of ultrafiltration- Application of :	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c dial Flow Chroma y thin layer chron istillation, Vacc of aqueous two-p different types evaporators. ctive separations anes, Membrane microfiltration -	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. 9+3+3 um Distillation phase extraction of adsorption 9+3+3 , aqueous two- process, theory Crystallization,
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime IV- Prod Distillati Extractio Super cr Evaporat V- Produ Precipitat phase ext and types theory of	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- tits, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation, types of centrifuges, flocculat <b>duct Identification Techniques</b> rization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), obase chromatography, Affinity Ligand Technology HPLC Rac ent No 4: Extraction of pigments from spinach and estimation by <b>uct Separation Techniques</b> on- Principle and types, Extractive distillation, Steam D on-Solvent extraction principles, Extraction methods, modes of ritical fluid extraction -Adsorption, principle, Isotherms, ion, principle, factors influencing rate of evaporation, types of <b>tet Purification and Resolution</b> ion methods (with salt, organic solvents, and polymers, extract raction)- Membrane based separation process, Types of membra of membrane-Application of ultrafiltration- Application of crystallization- Freeze drying- Principle, process and applica	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c dial Flow Chroma y thin layer chron istillation, Vacc of aqueous two-p different types evaporators. ctive separations anes, Membrane microfiltration -	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. 9+3+3 um Distillation phase extraction of adsorption 9+3+3 , aqueous two- process, theory Crystallization,
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime IV- Prod Distillati Extractio Super cr Evaporat V- Produ Precipitat phase ext and types theory of	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nts, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation , types of centrifuges, flocculat <b>duct Identification Techniques</b> rization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), ohase chromatography, Affinity Ligand Technology HPLC Race ent No 4: Extraction of pigments from spinach and estimation by <b>uct Separation Techniques</b> on- Principle and types, Extractive distillation, Steam D on-Solvent extraction principles, Extraction methods, modes of ritical fluid extraction -Adsorption, principle, Isotherms, tion, principle, factors influencing rate of evaporation, types of <b>ICT Purification and Resolution</b> ion methods (with salt, organic solvents, and polymers, extract raction)- Membrane based separation process, Types of membrase of membrane-Application of ultrafiltration- Application of :	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c dial Flow Chroma y thin layer chron istillation, Vacc of aqueous two-p different types evaporators. ctive separations anes, Membrane microfiltration -	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. 9+3+3 um Distillation phase extraction of adsorption 9+3+3 , aqueous two- process, theory Crystallization,
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime IV- Prod Distillati Extractio Super cr Evaporat V- Produ Precipitat phase ext and types theory of bio-proce	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nets, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation , types of centrifuges, flocculat <b>duct Identification Techniques</b> rization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), ohase chromatography, Affinity Ligand Technology HPLC Rac ent No 4: Extraction of pigments from spinach and estimation by <b>uct Separation Techniques</b> on- Principle and types, Extractive distillation, Steam D on-Solvent extraction principles, Extraction methods, modes of ritical fluid extraction -Adsorption, principle, Isotherms, ion, principle, factors influencing rate of evaporation, types of <b>tet Purification and Resolution</b> ion methods (with salt, organic solvents, and polymers, extract raction)- Membrane based separation process, Types of membras of membrane-Application of ultrafiltration- Application of crystallization- Freeze drying- Principle, process and applica	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c lial Flow Chroma y thin layer chron istillation, Vacc of aqueous two-p different types evaporators. ctive separations anes, Membrane microfiltration -	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. 9+3+3 um Distillation phase extraction of adsorption 9+3+3 , aqueous two- process, theory Crystallization,
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime IV- Prod Distillati Extractio Super cr Evaporat V- Produ Precipitat phase ext and types theory of bio-proce	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nets, filter media and filter aids, basic theory of filtration, pation-principle of sedimentation , types of centrifuges, flocculat <b>duct Identification Techniques</b> fization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), bhase chromatography, Affinity Ligand Technology HPLC Race ent No 4: Extraction of pigments from spinach and estimation by <b>uct Separation Techniques</b> on- Principle and types, Extractive distillation, Steam D on-Solvent extraction principles, Extraction methods, modes of ritical fluid extraction -Adsorption, principle, Isotherms, ion, principle, factors influencing rate of evaporation, types of <b>tet Purification and Resolution</b> tion methods (with salt, organic solvents, and polymers, extract action)- Membrane based separation process, Types of membras of membrane-Application of ultrafiltration- Application of crystallization- Freeze drying- Principle, process and applica essing- product polishing stages	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c lial Flow Chroma y thin layer chron istillation, Vacc of aqueous two-p different types evaporators. ctive separations anes, Membrane microfiltration -	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. 9+3+3 um Distillation phase extraction of adsorption 9+3+3 , aqueous two- process, theory Crystallization,
Cell disru distruptio equipmen centrifuga III- Prod Character Chromato Reverse p Experime IV- Prod Distillati Extractio Super cr Evaporat V- Produ Precipitat phase ext and types theory of bio-proce List of Ex 1: Yeast of	uption Techniques, types of cells, location of products inside on Methods, Mechanical and Non mechanical methods- nets, filter media and filter aids, basic theory of filtration, p ation-principle of sedimentation , types of centrifuges, flocculat <b>duct Identification Techniques</b> rization of product- Electrophoresis, Principle and method ography,Enzyme Linked Immuno Sorbent Assay (ELISA), ohase chromatography, Affinity Ligand Technology HPLC Rac ent No 4: Extraction of pigments from spinach and estimation by <b>uct Separation Techniques</b> on- Principle and types, Extractive distillation, Steam D on-Solvent extraction principles, Extraction methods, modes of ritical fluid extraction -Adsorption, principle, Isotherms, ion, principle, factors influencing rate of evaporation, types of <b>tet Purification and Resolution</b> ion methods (with salt, organic solvents, and polymers, extract raction)- Membrane based separation process, Types of membras of membrane-Application of ultrafiltration- Application of crystallization- Freeze drying- Principle, process and applica	Filtration, type principle of rota ion and sediment ds-Analysis of p lon exchange c lial Flow Chroma y thin layer chron istillation, Vacc of aqueous two-p different types evaporators. ctive separations ranes, Membrane microfiltration - tion of freeze du	s of filtration ry drum filter- tation. 9+3+3 product purity- hromatography, atography. 9+3+3 um Distillation phase extraction of adsorption 9+3+3 , aqueous two- process, theory Crystallization,

3: Determine the specific cake resistance of a media by filtration.

4: Centrifugation studies during the settling of E.coli cells.

5: Determination of partition coefficient and yield of yeast cells using aqueous two phase extraction.

6: High-resolution purification preparative liquid chromatographic techniques.

7: Ammonium Sulfate precipitation of protein using yeast cell suspension.

8: Crystallization of a product.

9. Determination of drying time for the given sample in vacuum tray drier.

### 10:Lyophillization

Lecture	Tutorial	Practical	Total
45	15	15	75
Text Books:			

1. Nooralabettu Krishna Prasad,Downstream Process Technology, A New Horizon in Biotechnology,PHIPvt Ltd,2nd Edition, 2012.

2. Sivasankar, B. Biosperations: Principles and Techniques. PHI Learning Pvt. Ltd., 2005..

### **References:**

- 1. Hatti-Kaul, Rajni, and Bo Mattiasson. "Downstream processing in biotechnology." Basic biotechnology. Cambridge University Press, Cambridge ,2001.
- 2. Roger G. Harrison, Paul W. Todd, Scott R. Rudge, Demetri P. Petrides1, "Bioseparations Science and Engineering, oxford University Press, 2015.
- 3. J. A. Wesselingh, Johannes Krijgsman, "Downstream Processing in Biotechnology", Delft Academic Press/VSSD, 2013.

### **E-References:**

- 1. http://vlab.amrita.edu/?sub=2&brch=191&sim=341&cnt=1
- 2. http://vlab.amrita.edu/?sub=2&brch=191&sim=1547&cnt=1
- 3. http://vlab.amrita.edu/?sub=2&brch=190&sim=606&cnt=1
- 4. vlab.amrita.edu/?sub=3&brch=273

### Mapping of Cos Vs POs

11-11-11			10 - 1											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3		2	1		1	1		1					1
CO 2	2	3	2	1		1			1			1	1	1
CO 3	2	3	1	2					1			1	1	2
CO 4	2	1	3	2			3		1			1	2	1
CO 5	2	2	3	1		2	1		1		2	2	3	3
	11	9	11	7		4	5		5		2	5	7	8

### **Mapping of Subject Vs POs**

	PO 1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
Original	11	9	11	7	0	4	5	0	5	0	2			

value caled to												5		7	
0,1,2,3 scale	3	2	3	2	0	1	1	0	1	0	1	1		2	
			Scale	: 3- hig	gh, 2 –	Mediu	m, 1 -	Low, C	) – not	related					
XBT	704 A				CAN	CER B		GV			L 3	T 0	P 0	C 3	
C I	A	-					IOLO	<b>UI</b>			L	Т	P	H	
2.5 (	0.5										3	0	0	3	
Prereq	uisite: (	Cell bio	ology n	nolecu	lar bio	logy									
•	Would I Would mechan	have lea have	arn abo learn	out carc about	cinogei	nesis.	ve ap	proach	to u	ndersta	nd the	diffe	erenc	es ii	n
					tcome					<b>Dom</b> be able			Leve	l	
CO2:E	various s	signal s and <i>con</i>	witche	s						Cogn Cogn		Unde Ar	nalyzi	nding	5
co3:11 onc	<i>lustrate</i> ogenes,							ificatio	on of	Cogn Affec		Ar Res	erstar nalyzi spond enom	ing ls to	5
CO4:E	x <i>plain</i> ision an			d its s	signific	ant cli	inical	marker	rs for	Cogn	itive	Und	erstar	nding	r >
CO5:D can	<i>escribe</i> cer, diff		-				early o	liagno	sis of	Cogn Affec			erstar spond enom	ls to	5
I- Cell	Cycle a	and Ca	ncer										9		
modul Telom	:: Cause ation of erase an es - mut	cell c d its ro	ycle in ole in c	cance ancer	r - Eff – Apoj	fects of	n recep	otor, si	gnal s	witches	, signal	ing p	athw	ays -	_
II- Car	0												9		
Theory and inc		cting c	arcino	gens,	Metab	olism	of car	cinoge	ns, C	YP450	reducta	ise m	lecha	nism	ı;

III- Molecular and	Cell Biology of Cancer	r		9
identification and de related to transformation	tection of oncogenes, on ation - epidermal growt	ases – Oncogenes - types, c- oncogenes and proto oncogene h factor (EGF), platelet deriv nyc; RAS cycle – Tumor supp	e activity - G ed growth fa	rowth factors ctor (PDGF),
IV- Invasion and N	Ietastasis			9
Epithelial- mesenc metalloproteinases in	hymal transition, str cell invasion, Ras like	ificance of proteases in basen romal signals, Role of GTPases.		nd integrin,
V- Diagnosis and T				9
diagnosis of cancer techniques. Treatment: Chemoth therapy – Antigen sp	r, Disease staging - I herapy – Topoisomerase	assays, tumor markers - M FISH, DNA microarrays, S e inhibitors – Radiotherapy – erapy – Stem cell therapy - Us comic technologies.	NPs, CGH - Gene theraj	and imaging py – Immuno
Lecture	Tutorial	Practical	T	otal
45	0	0	2	45
Text Books:				
New York, 1st Edition	on, 2007.	er, Garland Science Taylor and Biology, Pearson Education Ir		oup,

### **References:**

1. DeVitaJr, V.T., Lawrence, T.S., Rosenberg, S.A., DePinho, R.A. and Weinberg, R.A., DeVita, Hellman, and Rosenberg's Cancer: Principles and Practice of Oncology, Lippincott Williams & Wilkins Philadelphia, PA, 9th Edition, 2011.

2. Ian F.Tannock, Richard P. Hill, Robert G. Bristow and Lea Harrington., The Basic Sciences of Oncology, 4th Edition, The McGraw-Hill Companies, Inc. New Jersey, 2005.

3. PelengarisA.,and M. Khan (Eds)., The Molecular Biology of Cancer, Wiley - Blackwell Publishing, USA. 2006.

4. Gareth Thomas., Medicinal Chemistry – An Introduction, 1st Edition, John Wiley and Sons, USA, 2004.

5. Benjamin Lewin., Genes VIII, International Edition, Pearson Prentice Hall, New Delhi. 2004. **E References:** 

1. www.nhri.org.tw/NHRI_ADM/userfiles/file/1010510.pdf

## Mapping of Cos Vs POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	2	1	2	1			2	2	2	2	3	2
CO 2	2	2	2	2	3	3	2	1				3	1	1
CO 3	3	3	2	2	2				1	1	2	2	2	3
CO 4	2			3	2							1	1	2
CO 5	3	3	2	3	2	2	2	1	2	2	1	1	1	1
	13	10	8	11	11	6	4	2	5	5	5	9	8	7

# Mapping of Subject Vs POs

	PO 1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
Original value	13	10	8	11	11	6	4	2	5	5	5	9	8	7
Scaled to 0,1,2,3 scale	3	2	2	3	3	2	1	1	1	1	1	2	2	2

	Ι	Т	P	С
XBT 704 B	3	0	0	3
STEM CELL BIOTECHNOLOGY				
C P A	I	Т	P	Η
3 0 0	3	0	0	3
Prerequisite: - Cell biology, Immunology				
Learning Objective:				
Upon completion of this course, the students				
• Would able to explain about various categories of stem cells				
• Would have learned the application of stem cell technology.				
Course Outcomes	Domain	]	Level	
On the successful completion of the course, student	s will be able i	to		
<b>CO1:</b> Able to recall and interpret the biology of stem cells.	Cognitive	Rem	embe	ring
con. Able to recail and interpret the biology of stelli cens.				
con. Able to recail and interpret the biology of stell cens.	-	Unde	erstan	ding
CO2: <i>Explain</i> and <b>develop</b> the embryonic stem cell culturing.	Cognitive	Unde Unde		<u> </u>
	Cognitive	Unde		ding
	Cognitive Cognitive	Unde	erstan oplyir	ding 1g
<b>CO2:</b> <i>Explain</i> and <b>develop</b> the embryonic stem cell culturing.		Unde Ar Unde	erstan oplyir	ding ng ding
<b>CO2:</b> <i>Explain</i> and <b>develop</b> the embryonic stem cell culturing.		Unde Ar Unde	erstan oplyir erstan alyzi	ding ng ding ng

CO5: Discuss and apply	the various applications of	stem cells.	Cognitive	Understanding
I- Basics of Stem Cell				9
Adult stem cells ,Properi	m cells – embryonic stem co ies, types, clinical application bryonic and adult stem cel	ons umbilical con	rd stem cells-	Similarities and
II- Embryonic Stem Ce	ells			8
	turing of embryos-isolation ng ES cells in lab – laborat - properties of ES cells.	•		-
III - Adult Stem Cells,	iPSCs			7
	st for identification of adult asticity – different types of		ult stem cell	differentiation –
<b>IV-</b> Stem Cell in Drug	Discovery and Assay			9
stem cell based drug disc V- Applications of Ster Stem cell therapy for	Mental disabilities, Diab	toxicology. etes Mellitus –	Therapeutic	12
diabetesburns - HLA t	ological disorder – limb am typing- Alzheimer's disease ev – eves - heart – brain	<b>^</b>	-	al cord injuries –
diabetes –burns - HLA t of complete organ - kidn	typing- Alzheimer's disease ey – eyes - heart – brain.	e –tissue enginee	ering applicati	al cord injuries – ion – production
diabetesburns - HLA t	typing- Alzheimer's disease	<b>^</b>	ering applicati	al cord injuries –
diabetes –burns - HLA t of complete organ - kidn Lecture	typing- Alzheimer's disease ey – eyes - heart – brain. <b>Tutorial</b>	e –tissue enginee Practio	ering applicati	al cord injuries – ion – production Total
diabetesburns - HLA t of complete organ - kidn Lecture 45 Text Books 1. Kursad and Turksen, H 2. Dr. LogeswariSelvara	typing- Alzheimer's disease ey – eyes - heart – brain. <b>Tutorial</b>	e –tissue enginee Practio 0 nana Press; 2002	ering applicati	al cord injuries – ion – production Total
diabetes -burns - HLA t of complete organ - kidn Lecture 45 Text Books 1. Kursad and Turksen, H 2. Dr. LogeswariSelvaraj References	typing- Alzheimer's disease ey – eyes - heart – brain. Tutorial 0 Embryonic Stem Cells; Hun j, Stem Cells MJP Publisher	e –tissue enginee Practic 0 nana Press; 2002 rs,2015.	ering applicati	al cord injuries – ion – production Total
diabetes –burns - HLA t of complete organ - kidn Lecture 45 Text Books 1. Kursad and Turksen, H 2. Dr. LogeswariSelvara References 1. Mohan C. Vemuri, St 2. Stem cell and futu	typing- Alzheimer's disease ey – eyes - heart – brain. Tutorial 0 Embryonic Stem Cells; Hur j, Stem Cells MJP Publisher tem Cell Assays, Springer I re of regenerative medic	e –tissue enginee Practic 0 nana Press; 2002 rs,2015. nternational Editi ine. By commi	cal cal ion; 2010. ttee on the	al cord injuries – ion – production Total 45 Biological and
diabetes –burns - HLA t of complete organ - kidn Lecture 45 Text Books 1. Kursad and Turksen, H 2. Dr. LogeswariSelvaraj References 1. Mohan C. Vemuri, St 2. Stem cell and futu Biomedical application	typing- Alzheimer's disease ey – eyes - heart – brain. Tutorial 0 Embryonic Stem Cells; Hun j, Stem Cells MJP Publishei tem Cell Assays, Springer I	e –tissue enginee Practic 0 nana Press; 2002 rs,2015. nternational Editi ine. By commi	cal cal ion; 2010. ttee on the	al cord injuries – ion – production Total 45 Biological and
diabetes –burns - HLA t of complete organ - kidn Lecture 45 Text Books 1. Kursad and Turksen, H 2. Dr. LogeswariSelvaraj References 1. Mohan C. Vemuri, St 2. Stem cell and futu Biomedical application	typing- Alzheimer's disease ey – eyes - heart – brain. Tutorial 0 Embryonic Stem Cells; Hur j, Stem Cells MJP Publisher tem Cell Assays, Springer I re of regenerative medic	e –tissue enginee Practic 0 nana Press; 2002 rs,2015. nternational Editi ine. By commi	cal cal ion; 2010. ttee on the	al cord injuries – ion – production Total 45 Biological and

# Mapping of COs Vs POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	2	1	2	1			2	2	2	2	3	2
CO 2	2	2	2	2	3	3	2	1				3	1	1
CO3	3	3	2	2	2				1	1	2	2	2	3
CO4	2			3	2							1	1	2
CO5	3	3	2	3	2	2	2	1	2	2	1	1	1	1
	13	10	8	11	11	6	4	2	5	5	5	9	8	7

# Mapping of Subject Vs POs

	PO 1	PO 2	<b>PO</b> 3	<b>PO</b> 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
Origin	13	10	8	11	11	6	4	2	5	5	5	9	8	7
al														
value														
Scaled												2	2	2
to	3	2	2	3	3	2	0	0	0	0	0			
0,1,2,3	5	2	2	5	5	2	0	0	0	0	0			
scale														

XBT 704 C           C         P         A           3         0         0	METABOLIC ENGINEERING	-	L 3 L 3	T 0 T 0	P 0 P 0	C 3 H 3
Learning Obje	nzyme engineering, Biochemistry					
	on of this course, the students					
	ave learn about regulation of various metabolic proce	esses.				
	ave learn about Metabolic Flux Analysis and Its App					
	Course Outcomes	Domain		L	evel	
After the compl	etion of the course, students will be able to					
	d <i>understands</i> the role of transport processes in athways and material balance	Cognitive		lemei Inder		-
CO2: <i>Analyze</i> pathways	the regulation of enzymes involved in metabolic	Cognitive	A	naly	zing	
CO3: <i>Build</i> algo	orithms for biosynthesis pathways	Cognitive	A	pply	ing	
-	netabolic flux analysis and its role in manipulation e production.	Cognitive	U	Inder	stanc	ling
-	and <i>compiles</i> various strategies to manipulate the of industrially important Metabolites	Cognitive		lespo heno		
I- Introduction	1				9	
Reactions – St And Linear Ra Elemental And	Metabolic Engineering – Overview Of Cellular Metabolic Engineering – Overview Of Cellular Metabolic Model Of PenicilliumChryster Heat Balance Using Black Box Model.	s Balance -	- Yie	eld C	oeffi Mo	cient
Ii- Regulation	of Metabolic Pathways				9	

Regulation of enzyme activity: Overview of enzyme kinetics and inhibition – Feed back inhibition and Activation: Feed back control architecture in aspartate pathway – Allosteric enzyme regulation - Regulation of enzyme concentration: Control of transcription and translation – Genetic regulatory network: cholesterol synthesis and elimination - Regulation of at the whole cell level - Regulation of metabolic networks – Regulation of eukaryotes versus prokaryotes.

### **III-** Synthesis of Metabolic Pathways

9

Metabolic pathway synthesis algorithm - Overview of the algorithm - Pathway for synthesis of alanine and serine - Case study: Lysine biosynthesis

**IV-** Metabolic Flux Analysis and Its Application

9

Metabolic flux analysis - Overdetermined systems - Underdetermined systems; Linear Programming - Sensitivity analysis – Introduction to experimental determination of metabolic fluxes by isotope labeling: Distribution of TCA cycle Metabolite isotopomers from labeled pyruvate - Applications of metabolic flux analysis; Metabolic fluxes in mammalian cell culture – Determination, validation and application.

## V- Applications of Metabolic Engineering

9

Enhancement of Product yield and Productivity: Amino acids – Metabolic engineering of pentose metabolism for ethanol production – Extension of product spectrum by metabolic engineering : Antibiotics , vitamins, biopolymers – Improvement of cellular properties: Alteration of substrate uptake and maintenance of genetic stability – Xenobiotic degradation

Lecture	Tutorial	Practical	Total
45	0	0	45

# **Text Books:**

1. Gregory N. Stephanopoulos, Aristos A. Aristidou., Metabolic engineering: Principles and Methodologies, Jens Nielsen Academic Press, 1st Edition, 1998.

2. Christina D. Smolke., The Metabolic Pathway Engineering Handbook: Fundamentals, CRC Press, New York, London, 1st Edition, 2010.

# **References:**

- 1. Wang.D.I.C Cooney C.L., Demain A.L., Dunnil.P. Humphrey A.E. Lilly M.D., Fermentation and Enzyme Technology, John Wiley and sons, 1980.
- 2. Stanbury P.F and Whitaker A., Principles of Fermentation Technology, Pergamon Press, 1984.
- 3. Cortassa S., Aon M.A., Iglesias A.A and LioydDAn Introduction to Metabolic and Cellular Engineering, World Scientific Publishing Co., Singapore, 1st Edition, 2002.

# **E References:**

 $1. \ https://gcep.stanford.edu/pdfs/energy_workshops_04_04/biomass_shanmugam.pdf$ 

# Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO 1	3	2	2	1	2	1			2	2	2	2	3	2
CO 2	2	2	2	2	3	3	2	1				3	1	1
CO 3	3	3	2	2	2				1	1	2	2	2	3
CO 4	2			3	2							1	1	2
CO 5	3	3	2	3	2	2	2	1	2	2	1	1	1	1
Total	13	10	8	11	11	6	4	2	5	5	5	9	8	7

# Mapping of Subject Vs POs

	PO 1	PO 2	PO 3	Р	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
Origin al value	13	10	8	11	11	6	4	2	5	5	5	9	8	7
Scaled to 0,1,2,3 scale	3	2	2	3	3	2	1	1	1	1	1	2	2	2

				L	Т	Р	С
X	BT 707			0	0	2	2
		<b>INPLANT TRAINING - III</b>					
С	P A			L	Т	Р	Η
1.33	1.33 1.33			0	0	2	2
PRER	EQUISITE:	· Nil					
COU	RSE OUTCO	MES:					
		Course Outcomes	Doma	ain	]	Leve	l
On the	e successful co	mpletion of the course, students will be able to					
<b>CO1</b>	<b>Relate</b> class	room theory with workplace practice	Cog	5	Un	derst	and
CO2	<i>Comply</i> with practices.	th factory discipline, management and business	Aff	-	Re	espor	ise
<b>CO3</b>	Demonstrat	tes teamwork and time management.	Aff	-	``	Value	e
<b>CO4</b>	<b>Describe</b> an	d <i>display</i> hands-on experience on practical skills	Phy	/	Per	rcept	ion

	obtained during the programme.		Set
CO5	<i>Summarize</i> the tasks and activities done by technical documents and oral presentations.	Cog	Evaluate

## Mapping COs with POs

PO3

-

-

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2													
CO2							1	3			1		1	1
CO3									3	1	3		3	3
CO4		1	2	1	3								1	1
CO5				3						3			1	1
Total	2	1	2	4	3	0	1	3	3	4	4	0	6	6
Scale	1	1	2	1	1	0	1	1	1	1	1	1	2	2
d														

XB C 6	T 80 P 3	01 <u>A</u> 3			PROJEC	T WORK			L 0 L 0	T 0 T 0	P 12 P 24	C 12 H 24
PREF	REQ	UISI	re: - 1	Nil								
COU	RSE	OUT	СОМ	ES:								
				Course Ou	tcomes			Doma	in		Leve	ł
On the	e suc	cessf	ul con	pletion of	the course,	students w	rill be able	to				
<b>CO1</b>		-	the nteres	Engineering t.	g Problem	relevant	to the	Cog		1	Analy	ze
CO2	Int	erpret	and I	nfer Literati	ure survey f	for its wort	niness.	Cog			Analy Appl	
<b>CO3</b>		alyse probl		lentify an a	ppropriate t	echnique f	or solve	Cog			Analy Appl	
<b>CO4</b>	/Si	rform mulat erpret		ogramming	/Fabricatio	experime n, Collec		Phy Cog			mp. C Resp ate, A	••
CO5		cord cumer		Report th	e technica	l findings	as a	Cog			emem nderst	
Mapp	oing	of CC	s with	n Pos								
		C	01	CO2	CO3	CO4	CO5	]	Fotal			
PC	)1		3	2	1	2	1		10		1	
PC	)2		3	2	1	2	1		10		1	

3

1

5

1

PO4	-	1	2	3	1	11
PO5	-	-	2	3	1	6
PO6	1	-	1	1	-	10
PO7	1		1	1	-	4
PO8	1	-	1	1	-	6
PO9	-	-	-	-	2	6
PO10	-	-	-	-	3	9
PO11	-				2	6
PO12	1				3	8
PSO1	1	1	1	1	1	6
PSO2	1	1	1	1	1	6

1 - Low, 2 – Medium, 3 – High