

think • innovate • transform

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.3	Average percentage of courses having focus on employability/ entrepreneurship/ skill Development offered by the Electrical and Electronics engineering

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

S. No.	Programme Name
i.	Bachelor of Technology (Electrical and Electronics Engineering) (Full Time)
ii.	Bachelor of Technology (Electrical and Electronics Engineering) (Part Time)
iii.	Master of Technology (Power Electronics and Drives) (Full Time)

2. Syllabus of the courses as per the list.

Legend: Words highlighted with **Blue Color** - Entrepreneurship

Words highlighted with **Red Color** - Employability

Words highlighted with **Green Color** - Skill Development

1. List of Courses

Name of the Course	Course Code	Year of introduction	Activities/Content with direct bearing on Employability/ Entrepreneurship/ Skill development
	B.Tec	h -EEE-FT	-
Calculus and Linear Algebra	XMA101	2007-08	****
Electrical and Electronics Engineering Systems	XBE102	2007-08	Entrepreneurship-Assignment, Seminar, Poster Presentation
Applied Chemistry for Engineers	XAC 103	2007-08	Entrepreneurship-Assignment, Seminar, Poster Presentation
Engineering Graphics and Design	XEG 104	2007-08	Employability-Drawing Assignment, Model Making
Speech Communication	XGS 105	2007-08	Skill Development- Quiz, Test, Assignment Seminar
Constitution of India	XUM 106	2007-08	Skill Development- Quiz, Test, Assignment Seminar
Electrical and Electronics Engineering Systems Laboratory	XBE107	2007-08	Entrepreneurship-Assignment, Seminar, Poster Presentation
Applied Chemistry for Engineers Laboratory	XAC 108	2007-08	Entrepreneurship-Assignment, Seminar, Poster Presentation
Calculus, Ordinary Differential Equations and Complex Variable	XMA 201	2007-08	****
Programming for Problem Solving	XCP 202	2018-19	Entrepreneurship-Test, Assignment, Problem Solving Exercises
Applied Physics for Engineers	XAP 203	2007-08	Entrepreneurship-Assignment, Seminar, Poster Presentation
Technical Communication	XGS 204	2007-08	Skill Development- Quiz, Test, Assignment, Seminar
Workshop Practices	XWP 205	2007-08	Entrepreneurship-Machining Processes, Model Making
Engineering Mechanics	XEM 206	2007-08	Employability-Drawing Assignment, Model Making
Programming for Problem Solving Laboratory	XCP 207	2007-08	Entrepreneurship-Test, Assignment, Problem Solving Exercises
Applied Physics for Engineers Laboratory	XAP 208	2007-08	Entrepreneurship-Test, Assignment, Problem Solving Exercises
Transforms and Partial Differential Equations	XMA301	2007-08	****
Electromagnetic Fields	XEE302	2007-08	Employability-Quiz, Test, Problem Solving Assignment

Digital Logic Circuits	XEE303	2007-08	Employability-Quiz, Test, Problem Solving Assignment
Electrical Circuit Analysis	XEE304	2007-08	Employability -Quiz, Test, Problem Solving Assignment
Electrical Machines – I	XEE305	2007-08	Employability -Problem Solving Assignment, Test, Seminar
Entrepreneurship Development	XUM306	2007-08	Entrepreneurship-Assignment, Seminar, Poster Presentation
Universal Human Values 2: Understanding Harmony and Gender	XUM307	2021-22	Employability-Assignment, Test, Seminar
Electrical Circuit Analysis Laboratory	XEE308	2007-08	Entrepreneurship- Mini Project, Viva Voce
Electrical Machines - I Laboratory	XEE309	2007-08	Entrepreneurship- Mini Project, Viva Voce
In-plant Training – I	XEE310	2007-08	Employability -Industrial visit, Viva Voce
Probability and Statistics	XMA401	2007-08	****
Analog Electronics	XEE402	2007-08	Employability-Assignment, Test, Seminar
Control Systems	XEE403	2007-08	Employability-Assignment, Test, Seminar, Problem Solving Assignment
Electrical Machines – II	XEE404	2007-08	Employability-Quiz, Test, Problem Solving Assignment
Economics for Engineers	XUM405	2013-14	Entrepreneurship-Quiz, Test, Assignment, Seminar, Group Discussion
Disaster Management	XUM406	2015-16	Employability -Assignment, Test, Seminar
Analog Electronics Laboratory	XEE407	2007-08	Employability- Mini Project, Viva Voce
Control Systems Laboratory	XEE408	2007-08	Employability- Mini Project, Viva Voce
Electrical Machines – II Laboratory	XEE409	2007-08	Employability- Mini Project, Viva Voce
Power Systems - I (Apparatus and Modelling)	XEE501	2007-08	Employability -Quiz, Test, Problem Solving Assignment
Control Systems	XEE502	2007-08	Employability-Quiz, Test, Problem Solving Assignment
Microprocessors and Microcontrollers	XEE503	2007-08	Employability-Assignment, Test, Seminar
Professional Elective - 1	XEEE11	2007-08	Employability-Quiz, Test, Problem Solving Assignment
Open Elective - 1	X** OE*	2007-08	****
Constitution of India	XUM506	2007-08	Skill Development- Quiz, Test, Assignment Seminar

In-plant Training - II	XEE507	2015-16	Employability -Industrial visit, Viva Voce
Minor Course - I	XEEM01	2019-20	Employability -Test
Economics for Engineers	XUM601	2013-14	****
Power Systems - II (Operation and Control)	XEE602	2007-08	Employability -Assignment, Test, Seminar
Measurement and Instrumentation	XEEE21	2007-08	Employability -Assignment, Test, Seminar
Industrial Automation	XEEE31	2007-08	Employability -Quiz, Test, Problem Solving Assignment
Open Elective - 2	X**OE*	2013-14	****
Disaster Management	XUM606	2015-16	Employability-Assignment, Test, Seminar
Minor Course - II	XEEM02	2019-20	Employability-Test
High Voltage Engineering	XEEE41	2013-14	Employability-Assignment, Test, Seminar
Electrical Drives	XEE E51	2013-14	Employability-Assignment, Test, Seminar
Human Ethics, Values, Rights and Gender Equality	XEE703	2007-08	Employability-Quiz, Test, Problem Solving Assignment
Open Elective – I *****	X**OE*	2013-14	****
Open Elective – II	X**OE*	2013-14	****
Project Phase – I	XEE706	2013-14	Employability-Presentation, Viva Voce
In-plant Training – III	XEE707	2015-16	Skill Development- Presentation, Mock Interviews Group Discussion
Minor Course – II	XEE708	2007-08	Employability -Industrial visit, Viva Voce
Cyber Security	XUM 801	2013-14	Employability-Assignment, Test, Seminar
Electrical and Hybrid Vehicles	XEEE51	2013-14	Employability-Assignment, Test, Seminar
Open Elective (Intellectual Property Rights)	X**OE*	2013-14	****
Project Phase – II	XEE 804	2013-14	Employability -Assignment, Test, Seminar
	B.Tec	h -EEE-PT	
Transmission and Distribution	PEE 301	2007-08	Employability-Assignment, Test, Seminar
Entrepreneurship Development	PEE 302	2007-08	Entrepreneurship-Test, Assignment, Seminar
Digital Electronics	PEE 303	2007-08	Employability-Quiz, Test, Problem Solving Assignment
Electrical Machines-II	PEE 304	2007-08	Employability-Assignment, Test, Seminar, Problem Solving Assignment
Electrical Machines-II Laboratory	PEE 305	2007-08	Employability - Mini Project, Viva Voce

Microprocessors and Microcontrollers	PEE401	2007-08	Employability -Quiz, Test, Problem Solving Assignment
Economics for Engineers	PEE402	2007-08	Employability-Assignment, Test, Seminar
Professional Elective - 1	PEEE1*	2007-08	Employability-Assignment, Test, Seminar
Control Systems	PEE404	2007-08	Employability-Assignment, Test, Seminar
Microprocessors & Control Systems Laboratory	PEE405	2007-08	Employability-Quiz, Test, Assignment, Mini Project, Viva Voce
Power system – I (Apparatus and Modelling)	PEE 501	2007-08	Employability-Assignment, Test, Seminar
Bio Medical Instrumentation	PEE E31	2007-08	Employability -Assignment, Test, Seminar
Industrial Economics and Foreign Trade	PEE 503	2007-08	Employability -Assignment, Test, Seminar
Control Systems	PEE 504	2007-08	Employability-Quiz, Test, Assignment, Mini Project, Viva Voce
Power System -II (Operation and Control)	PEE 601	2007-08	Employability-Assignment, Test, Seminar
E-Waste Management	PEE 602	2007-08	Employability-Quiz, Test, Problem Solving Assignment
Disaster Management	PEE 603	2007-08	Employability-Assignment, Test, Seminar
Microprocessors and Microcontrollers	PEE 604	2007-08	Employability-Quiz, Test, Assignment, Mini Project, Viva Voce
Power Plant Engineering	PEE E41	2015-16	Employability-Assignment, Test, Seminar
Electrical Drives	PEE E51	2007-08	Employability -Assignment, Test, Seminar
HVDC Transmission Systems	PEE E61	2007-08	Employability -Assignment, Test, Seminar
Main Project	PEE 704	2007-08	Employability -Presentation, Viva Voce
	M.Tec	h -PED -FT	
Analysis of Electrical Machines	YPE101	2022-23	Employability-Case Study, Viva Voce
Analysis of Power Converters	YPE102	2022-23	Employability-Case Study, Viva Voce
Modeling and Design of SMPS	YPE103	2022-23	Employability- Case Study, Viva Voce
Elective - I	YPEE11	2022-23	Employability-Case Study, Viva Voce
Elective - II	YPEE21	2022-23	Employability- Case Study, Viva Voce

English for Research Paper Writing	YEGOE1	2022-23	Skill Development- Assignment, Seminar, Case Study
Research Methodology and IPR	YRM107	2022-23	Employability-Case Study, Viva Voce
Design and Simulation of Power Electronic Circuits Laboratory	YPE108	2022-23	Employability-Mini Project, Viva Voce
Modeling of Electrical Machines Laboratory	YPE109	2022-23	Employability- Mini Project, Viva Voce
Analysis of Electrical Drives	YPE201	2022-23	Employability-Case Study, Viva Voce
Special Electrical Machines	YPE202	2022-23	Employability-Case Study, Viva Voce
Electric Vehicles and Power Management	YPE203	2022-23	Employability-Case Study, Viva Voce
Elective - III	YPEE31	2022-23	Employability-Case Study, Viva Voce
Elective – IV	YPEE41	2022-23	Employability-Case Study, Viva Voce
Power Electronics and Drives Laboratory	YPE206	2022-23	Employability- Mini Project, Viva Voce
Mini Project	YPE207	2022-23	Employability-Presentation, Viva Voce
Constitution of India	YPSOE1	2022-23	Skill Development- Assignment, Seminar, Case Study

SYLLABUS FOR B.TECH EEE (FT) ACADEMIC YEAR 2022-23

	URSE DDE	COURSE NAME		L	Т	P	С	
XM	A 101	CALCULUS AND LINEAR ALC	GEBRA	3	1	0	4	
Prereq	uisites	Differentiation and Integration	L	T	P	Н		
C:	C: P: A				1	0	4	
3: 0.:	5: 0.5						<u> </u>	
Course	Course Outcomes: Domain				Le	vel		
CO1	Apply quadrat	orthogonal transformation to reduce ic form to canonical forms.	Cognitive	R	emen Appl		_	
CO2		power series to tests the convergence of the ces and series. Half range Fourier sine and series.	Cognitive Psychomotor	R G	pplyi emen uided espor	nberii	ng	
CO3	Find the derivative of composite functions and implicit functions. Euler's theorem and Jacobian. Cognitive Psychomotor					Remembering Guided Response		
CO4	expansion, by finding maxima and minima with and without constraints using Lagrangian Method. Directional derivatives, Gradient, Curl and Affective					Remembering Understanding Receiving		
CO5	Apply	Divergence. Apply Differential and Integral calculus to notions of Curvature and to improper integrals. Cognitive					5	
UNIT	NIT - I: MATRICES					9+3		
Linear Transformation - Eigen values and Eigen vectors - Properties of Eigen values and Eigen vectors - Cayley-Hamilton Theorem - Diagonalisation of Matrices - Real Matrices: Symmetric - SkewSymmetric and Orthogonal Quadratic form - canonical form - Nature of Quadratic form and Transformation of Quadratic form to Canonical form (Orthogonal only).							tric -	
Sequer	UNIT - II: SEQUENCES AND SERIES Sequences: Definition and examples-Series: Types and convergence- Series of positive terms – T of convergence: Comparison test, Integral test and D'Alembert's ratio test Fourier series: Half ra sine and cosine series- Parseval's Theorem.						Tests	
UNIT - III: MULTIVARIABLE CALCULUS: PARTIAL DIFFERENTIATION					9+3			
Limit and continuity —Partial differentiation — Total Derivative — Partial differentiation of Composite Functions: Change of Variables — Differentiation of an Implicit Function - Euler's Theorem-Jacobian.								
UNIT		ULTIVARIABLE CALCULUS: MAXIMA IDVECTOR CALCULUS	AND MINIMA			9+3	3	

Taylor's theorem for function of Two variables- Maxima, Minima of functions of two variables: with and without constraints - Lagrange's Method of Undetermined Multipliers – Directional Derivatives Gradient, Divergence and Curl.

UNIT - V: DIFFERENTIAL AND INTEGRAL CALCULUS

9 + 3

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions andtheir properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS:

- **1.** Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill New Delhi, 11th Reprint,2015. (Unit-1, Unit-3 and Unit-4).
- **2.** N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2014. (Unit-2).
- **3.** B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40th Edition,2010. (Unit-5).

REFERENCE BOOKS:

- 1. G.B.Thomas and R.L.Finney, "Calculus and Analytic geometry", 9th Edition, Pearson Reprint,02
- 2. Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi, 2008.
- 3. D. Poole, "Linear Algebra: A Modern Introduction", 2nd Edition, Brooks/Cole, 2005.
- 4. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

Mapping of COs with GAs

	GA											
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3	2	0	0	2	0	0	0	0	1	0	2
CO 2	3	2	0	0	0	0	0	0	0	1	0	1
CO 3	3	2	0	0	0	0	0	0	0	1	0	1
CO 4	3	2	0	0	0	0	0	0	0	1	0	1
CO 5	3	2	0	0	1	0	0	0	0	1	0	2
Total	15	10	0	0	3	0	0	0	0	5	0	7
Scaled	3	2	0	0	1	0	0	0	0	1	0	2

 $1-5 \rightarrow 1, 6-\overline{10} \rightarrow 2, 11-15 \rightarrow 3$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	COURSE NAME	L	Т	P	C
XBE 102	ELECTRICAL AND ELECTRONICS ENGINEERING SYSTEMS	3	1	0	4
Prerequisites	Physics	L	T	P	Н
C:P:A		3	1	0	4
3:0:0			I	1	1
Course Outcome	os: Domain		Le	vel	

CO1	Define and Relate the fundamentals of electrical parameters and build and explain AC, DC circuits by Using measuring devices	Cognitive	Understand
CO2	Define and Explain the operation of DC and AC machines.	Cognitive	Understand
CO3	Recall and Illustrate various semiconductor devices and their applications and displays the input output characteristics of basic semiconductor devices.	Cognitive	Understand
CO4	Relate and Explain the number systems and logic gates. Construct the different digital circuit.	Cognitive	Understand
CO5	Label and Outline the different types of microprocessors and their applications.	Cognitive	Understand

UNIT - I: FUNDAMENTALS OF DC AND AC CIRCUITS, MEASUREMENTS 9 + 3

Fundamentals of DC- Ohm's Law – Kirchhoff's Laws - Sources - Voltage and Current Relations – Star/Delta Transformation - Fundamentals of AC – Average Value, RMS Value, Form Factor - AC power and Power Factor, Phasor Representation of sinusoidal quantities, Simple Series, Parallel, Series Parallel Circuit - Operating Principles of Moving coil and Moving Iron Instruments (Ammeter, Voltmeter) and Dynamometer type meters (Watt meter and Energy meter).

UNIT - II: ELECTRICAL MACHINES

9 + 3

Construction, Principle of Operation, Basic Equations, Types and Application of DC Generators, DC motors - Basics of Single-Phase Induction Motor and Three Phase Induction Motor- Construction, Principle of Operation of Single-Phase Transformer, Three phase transformers, Auto transformer.

UNIT - III: SEMICONDUCTOR DEVICES

9 + 3

Classification of Semiconductors, Construction, Operation and Characteristics: PN Junction Diode – Zener Diode, PNP, NPN Transistors, Field Effect Transistors and Silicon Controlled Rectifier – Applications

UNIT - IV: DIGITAL ELECTRONICS

9+3

Basic of Concepts of Number Systems, Logic Gates, Boolean Algebra, Adders, Subtractors, multiplexer, demultiplexer, encoder, decoder, Flipflops, Up/Down counters, Shift Registers.

UNIT - V: MICROPROCESSORS

9 + 3

Architecture, 8085, pin diagram of 8085, ALU timing and control unit, registers, data and address bus, timing and control signals, Instruction types, classification of instructions, addressing modes, Interfacing Basics: Data transfer concepts – Simple Programming concepts.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS:

- 1. Metha V.K, Rohit Mehta, 2020. Principles of Electronics, 12th ed, S Chand Publishing.
- 2. Albert Malvino, David J.Bates., 2017. Electronics Principles. 7th ed, Tata McGraw-Hill. New Delhi.
- 3. Rajakamal, 2014. Digital System-Principle & Design. 2nd ed. Pearson education.
- 4. Morris Mano, 2015. Digital Design. Prentice Hall of India.
- 5. Ramesh, S. Gaonkar, 2013, Microprocessor Architecture, Programming and its Applications with the 8085, 6th ed, India: Penram International Publications.

REFERENCE BOOKS:

- 1. Cotton, H., 2005 Electrical Technology. CBS Publishers & Distributors Pvt Ltd.
- 2. Syed, A. Nasar, 1998, Electrical Circuits. Schaum Series.
- 3. Jacob Millman and Christos, C. Halkias, 1967, Electronics Devices, New Delhi: Tata McGraw-Hill.
- 4. Millman, J. and Halkias, C. C., 1972. Integrated Electronics: Analog and Digital Circuits and Systems, Tokyo: McGraw-Hill, Kogakusha Ltd.
- 5. Mohammed Rafiquzzaman, 1999. Microprocessors Theory and Applications: Intel and Motorola. Prentice Hall International.

E-REFERENCES:

- 1. NTPEL, Basic Electrical Technology (Web Course), Prof. N. K. De, Prof. T. K. Bhattacharya and Prof. G.D. Roy, IIT Kharagpur.
- 2. Prof.L.Umanand, http://freevideolectures.com/Course/2335/Basic-Electrical-Technology#, IISc Bangalore.
- 3. http://nptel.ac.in/Onlinecourses/Nagendra/, Dr. Nagendra Krishnapura, IIT Madras.
- 4. Dr.L.Umanand, http://www.nptelvideos.in/2012/11/basic-electrical-technology.html, IISC Bangalore.

Mapping of COs with GAs

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	3	1	1	1	1	0	0	1	1	1	0
CO 2	3	3	1	1	1	1	0	0	1	1	1	0
CO 3	2	2	2	1	2	2	1	1	1	1	1	0
CO 4	2	2	1	1	1	1	1	1	1	1	1	0
CO 5	2	2	1	1	1	1	1	1	1	1	1	0
Total	12	12	6	5	6	6	3	3	5	5	5	0
Scaled	3	3	2	1	2	2	1	1	1	1	1	0

 $1-5 \rightarrow 1, 6-101-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 30 - No$

Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

	, , , , , , , , , , , , , , , , , , ,				
COURSE CODE	COURSE NAME	L	T	P	C
XAC 103	APPLIED CHEMISTRY FOR ENGINEERS	3	1	0	4
Prerequisites	Physics	L	T	P	Н
C:P:A		3	1	0	4
2.5:1:0.5					

Course	Outcomes:	Domain	Level
	Identify the periodic properties such as ionization		
CO1	energy, electron affinity, oxidation states and electro	Cognitive	Remembering
COI	negativity. Describe the various water quality	Psychomotor	Perception
	parameters like hardness and alkalinity.		

CO2	Interpret the types of corrosion, use and measure its control by various methods including protective techniques. Relate the Nernst equation to determine cell potentials under nonstandard conditions.	Cognitive Psychomotor	Understanding Set			
CO3	Interpret bulk properties and processes using thermodynamic and kinetic considerations. Explain and Measure microscopic chemistry in terms of atomic, molecular orbitals and intermolecular forces.	Cognitive Psychomotor Affective	Applying Mechanism Receive			
CO4	Apply, Measure and Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques. Infer the properties of complexes in terms of splitting of the d orbitals into different energy levels of coordination compounds.	Cognitive Psychomotor Affective	Remembering Analyzing Perception Responding			
CO5	Describe and Illustrate the chemical reactions that are used in the synthesis of molecules. Discuss the different kinds of isomers, identify stereogenic centres in organic molecules, aware of structural, geometric, optical isomerism concepts	Cognitive Psychomotor	Remembering, Applying Mechanism			
UNIT -	UNIT - I: PERIODIC PROPERTIES AND WATER CHEMISTRY					

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries. **Water Chemistry**-Water quality parametersDefinition and explanation of hardness, determination of hardness by EDTA method-Introduction to alkalinity.

UNIT - II: USE OF FREE ENERGY IN CHEMICAL EQUILIBRIA 12L + 3T

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Corrosion-Types, factors affecting corrosion rate and Control methods. Use of free energy considerations in metallurgy through Ellingham diagrams. Advantages of electroless plating, electroless plating of nickel and copper on Printed Circuit Board (PCB).

UNIT - III: ATOMIC AND MOLECULAR STRUCTURE 10L + 3T

Schrodinger equation. Particle in a box solution and their applications for conjugated molecules and nanoparticles. Molecular orbitals of diatomic molecules and plots of the multicenter orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic molecules. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

Intermolecular forces and potential energy surfaces

Ionic, dipolar and Vander waals interactions. Equations of state of real gases and critical phenomena. Potential energy surfaces of H₃, H₂F and HCN and trajectories on these surfaces.

UNIT - IV: SPECTROSCOPIC TECHNIQUES AND APPLICATIONS 7L + 3T
--

Principles of spectroscopy and selection rules. Electronic spectroscopy-chromophore, auxochromes, types of electronic transition and application. Fluorescence and its applications in medicine. Vibrational spectroscopy-types of vibrations, Instrumentation and applications. Rotational spectroscopy of diatomic molecules. Nuclear magnetic resonance spectroscopy-concept of chemical shift and applications-magnetic resonance imaging. Diffraction and scattering.

UNIT - V: STEREOCHEMISTRY AND ORGANIC REACTIONS

8L + 3T

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization reactions and ring opening reactions. Synthesis of a commonly used drug molecule- Aspirin and paracetamol.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS:

- 1. Puri B.R. Sharma, L.R., Kalia K.K. Principles of Inorganic Chemistry, (23rdedition), New Delhi, Shoban Lal Nagin Chand & Co., 1993.
- 2. Lee. J.D. Concise Inorganic Chemistry, UK, Black well science, 2006.
- 3. Trapp. C, Cady, M. Giunta. C, Atkins's Physical Chemistry, 10th Edition, Oxford publishers, 2014.
- 4. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd, 1983.
- 5. Morrison R.T. and Boyd R.N. Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., 1976.
- 6. Banwell. C.N, Fundamentals of Molecular Spectroscopy, (3th Edition), McGraw-Hill Book Company, Europe 1983.
- 7. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (4th edition), S./ Chand & Company Ltd. New Delhi, 1977.
- 8. P. S. Kalsi, Stereochemistry: Conformation and mechanism, (9th Edition), New Age International Publishers, 2017.

REFERENCE BOOKS:

- 1. Puri B R Sharma L R and Madan S Pathania, "Principles of Physical Chemistry", Vishalpublishing Co., Edition 2004.
- 2. Kuriocose, J C and Rajaram, J, "Engineering Chemistry", Volume I/II, Tata McGraw-Hill Publishing Co. Ltd. New Delhi, 2000.

E-REFERENCES:

- 1. http://www.mooc-list.com/course/chemistry-minor-saylororg
- 2. https://www.canvas.net/courses/exploring-chemistry
- 3. http://freevideolectures.com/Course/2263/Engineering-Chemistry-I
- 4. http://freevideolectures.com/Course/3001/Chemistry-I
- 5. http://freevideolectures.com/Course/3167/Chemistry-II
- 6. http://ocw.mit.edu/courses/chemistry/

Table 1: Mapping of CO with GA

CO Vs GA	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
GA ₁	2	2	2	2	2	10	2

GA ₂	2	2	2	2	2	10	2			
GA ₃	2	0	2	1	1	6	1			
GA ₄	2	1	1	2	3	9	2			
GA ₅	1	1	1	1	1	5	1			
GA ₆	2	0	2	2	2	8	2			
GA ₇	1	0	0	1	0	2	0		0	
GA8	1	0	0	1	0	2	0			
GA9	1	0	0	1	0	2	0			
GA ₁₀	0	0	0	0	0	0	0			
GA ₁₁	1	0	0	1	1	3	1			
GA ₁₂	1	1	1	1	1	5		1		
COURSE CODE	COURSE NAME					L	Т	P	C	
XEG 104	ENGINEERING GRAPHICS AND DESIGN					2	0	1	3	
Prerequisites	NIL						L	T	P	Н
C:P:A							2	0	2	4

1.75:1:0.25

Course O	utcomes:	Domain	Level
	Apply the national and international standards,	Cognitive,	Applying, Guided
CO1	construct and practice various curves	Psychomotor	response and Responds
		and Affective	to Phenomena
	Interpret, construct and practice orthographic	Cognitive,	Understanding,
CO2	projections of points, straight lines and planes.	Psychomotor	Mechanism and
CO2		and Affective	Responds to
			Phenomena

	Construct Sketch and Practice projection of	Cognitive,	Applying, Complex				
CO3	solids in various positions and true shape of	Psychomotor	Overt Response and				
COS	sectioned solids.	and Affective	Responds to				
			Phenomena				
	Interpret, Sketch and Practice the development	Cognitive,	Understanding,				
	of lateral surfaces of simple and truncated	Psychomotor	Complex Overt				
CO4	solids, intersection of solids.	and Affective	Response and				
			Responds to				
			Phenomena				
	Construct sketch and practice isometric and	Cognitive,	Applying, Complex				
CO5	perspective views of simple and truncated	Psychomotor	Overt Response and				
COS	solids.	and Affective	Responds to				
			Phenomena				
UNIT -	: INTRODUCTION, FREE HAND SKETCHI	NG OF ENGG	12 + 6				
	OBJECTS AND CONSTRUCTION OF PLANE CURVE						

Importance of graphics in engineering applications – use of drafting instruments – BIS specifications and conventions as per SP 46-2003.

Pictorial representation of engineering objects – representation of three dimensional objects in two dimensional media – need for multiple views – developing visualization skills through free hand sketching of three dimensional objects.

Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves – construction – drawing of tangents to the above curves. Practice on basic tools of CAD

UNIT - II: PROJECTION OF POINTS, LINES AND PLANE SURFACES 1

General principles of orthographic projection – first angle projection – layout of views – projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclinations to the planes of projection – traces – projection of polygonal surfaces and circular lamina inclined to both the planes of projection-CAD practice on points and line.

UNIT - III: PROJECTION OF SOLIDS AND SECTIONS OF SOLIDS 12 + 6

Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to one plane of projection – change of position & auxiliary projection methods – sectioning of above solids in simple vertical positions by cutting plane inclined to one reference plane and perpendicular to the other and above solids in inclined position with cutting planes parallel to one reference plane – true shapes of sections-CAD practice on solid models.

UNIT - IV: DEVELOPMENT OF SURFACES AND INTERSECTION OF SOLIDS 12 + 6

Need for development of surfaces – development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders and cones – development of lateral surfaces of the above solids with square and circular cutouts perpendicular to their axes – intersection of solids and curves of intersection –prism with cylinder, cylinder & cylinder, cone & cylinder with normal intersection of axes and with no offset-CAD practice on intersection of solids.

UNIT - V: ISOMETRIC AND PERSPECTIVE PROJECTIONS 12 + 6

Principles of isometric projection – isometric scale – isometric projections of simple solids, truncated prisms, pyramids, cylinders and cones – principles of perspective projections – projection of prisms, pyramids and cylinders by visual ray and vanishing point methods-CAD practice on isometric view.

THEORY	PRACTICAL	TOTAL
30	60	90

TEXT BOOKS:

- 1. Bhatt, N.D, "Engineering Drawing", Charotar Publishing House, 46th Edition-2003.
- 2. Natarajan, K.V, "A Textbook of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2006
- 3. Dr. P.K. Srividhya, P. Pandiyaraj, "Engineering Graphics", PMU Publications, Vallam, 2013

REFERENCE BOOKS:

- 1. Luzadder and Duff, "Fundamentals of Engineering Drawing" Prentice Hall of India PvtLtd, XI Edition 2001.
- 2. Venugopal, K. and Prabhu Raja, V., "Engineering Graphics", New Age International (P) Ltd., 2008
- 3. Gopalakrishnan.K.R,. "Engineering Drawing I & II", Subhas Publications, 1998. Shah,M.B and Rana,B.C., "Engineering Drawing", Pearson Education,2005.

E-RESOURCES:

- 1. http://periyarnet/Econtent
- 2. http://nptel.ac.in/courses/112103019/

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	3	3	2	3	2	3	1	1	2	3	3	3	-
CO2	3	3	3	1	3	1	3	1	1	1	2	3	3	-
CO3	3	3	3	1	3	1	3	1	1	1	2	3	3	-
CO4	3	3	3	1	3	1	3	1	1	1	2	3	3	-
CO5	3	3	3	1	3	1	3	1	1	1	2	3	3	-
Total	15	15	15	6	15	6	15	5	5	6	11	3	3	-
Scaled	3	3	3	2	3	2	3	1	1	2	3	3	3	-

1-5 >1, 6-10 >2, 11-15 > 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	COURSE NAME	L	Т	P	C
XGS105	SPEECH COMMUNICATION	0	1	2	3
Prerequisite	Basic Understanding Skills	L	T	P	Н
C:P:A		0	1	4	5
26.04.0		•	•		

Course	Outcomes:	Domain	Level
CO1	Ability to recall the types of speeches.	Cognitive	Remembering
CO2	Apply the techniques in public speaking.	Cognitive	Applying
CO3	Identify the common patterns in organizing a speech.	Cognitive	Remembering
CO4	Construct the nature and style of speaking.	Cognitive	Remembering
CO5	Practicing the speaking skills.	Psychomotor	Guided Response
UNIT – I	TYPES OF SPEECHES	•	9

- 1.1 Four types of speeches
- 1.2 Analyzing the audience
- 1.3 Developing ideas and supporting materials

UNIT – II: PUBLIC SPEAKING

- 2.1 Introduction to Public Speaking
- 2.2 Competencies Needed for successful speech making
- 2.3 Speaking about everyday life situations

UNIT - III: ORGANIZATION OF SPEECH

- 3.1 Developing a speech out line
- 3.2 Organizing the speech
- 3.3 Introduction development conclusion

UNIT – IV: PRESENTATION

9

- 4.1 Tips for preparing the draft speech
- 4.2 Presentation techniques using ICT tools
- 4.3 Using examples from different sources

UNIT – V: ACTIVITIES

9

- 5.1 Reading activities
- 5.2 Creative presentations
- 5.3 Media presentation techniques

TOTAL
45

SUGGESTED READINGS:

- 1. Michael Swan. Practical English Usage. OUP. 1995.
- 2. Sanjay Kumar and Pushp Lata. Communication Skills. Oxford University Press. 2011.

Mapping of COs with POs

					144 9 111	_			_					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO2	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO3	1	0	0	0	0	0	1	0	1	0	0	0	0	0
CO4	2	0	0	0	0	0	1	0	1	0	0	0	0	0
CO5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	7	0	0	0	0	0	6	0	4	0	0	0	0	0
Scaled Value	2	0	0	0	0	0	2	0	1	0	0	0	0	0
	1	0	0	0	0	0	1	0	1	0	0	0	0	0

COURSE CODE	COURSE NAME	L	T	P	С
XAC 103	APPLIED CHEMISTRY FOR ENGINEERS	3	1	0	4
Prerequisites	Physics	L	T	P	Н
C:P:A		3	1	0	4
25.1.05					

2.5:1:0.5

C	Course O	outcomes:	Domain	Level
		Identify the periodic properties such as ionization		
	CO1	energy, electron affinity, oxidation states and electro	Cognitive	Remembering
	COI	negativity. Describe the various water quality	Psychomotor	Perception
		parameters like hardness and alkalinity.		

CO2	Interpret the types of corrosion, use and measure its control by various methods including protective techniques. Relate the Nernst equation to determine cell potentials under nonstandard conditions.	Cognitive Psychomotor	Understanding Set
CO3	Interpret bulk properties and processes using thermodynamic and kinetic considerations. Explain and Measure microscopic chemistry in terms of atomic, molecular orbitals and intermolecular forces.	Cognitive Psychomotor Affective	Applying Mechanism Receive
CO4	Apply, Measure and Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques. Infer the properties of complexes in terms of splitting of the d orbitals into different energy levels of coordination compounds.	Cognitive Psychomotor Affective	Remembering Analyzing Perception Responding
CO5	Describe and Illustrate the chemical reactions that are used in the synthesis of molecules. Discuss the different kinds of isomers, identify stereogenic centres in organic molecules, aware of structural, geometric, optical isomerism concepts	Cognitive Psychomotor	Remembering, Applying Mechanism
UNIT - I			08

Constitutional History-The Constitutional Rights- Preamble- Fundamental Rights-Fundamental Duties Directive principles of State Policy.

UNIT - II:

The Union Executive- The President of India (powers and functions)- Vice-President of India-The Council of Ministers-Prime Minister-Powers and Function.

UNIT - III:

Union Legislature- Structure and Functions of Lok Sabha- Structure and Functions of Rajya SabhaLegislative Procedure in India- Important Committee of LokSabha- Speaker of the LokSabha.

UNIT - IV: 09

The Union Judiciary-Powers of the Supreme Court-Original Jurisdiction-Appeletejurisdictions Advisory Jurisdiction-Judicial review.

UNIT - V: 09

Centre State relations- Political Parties- Role of governor, powers and functions of Chief MinisterLegislative Assembly-State Judiciary-Powers and Functions of the High Courts.

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT BOOKS:

- 1.W.H.Morris Shores- Government and politics of India, New Delhi, B.1. Publishers, 1974.
- 2.M.V.Pylee- Constitutional Government in India, Bombay, Asia Publishing House, 1977.
- 3.R.Thanker-The Government and politics of India, London: Macmillon, 1995.
- 4.A.C.Kapur-Select Constitutions S,Chand & Co.,NewDelhi,1995
- 5.V.D.Mahajan-Select Modern Governments, S, Chand & Co, New Delhi, 1995.
- 6.B.C.Rout- Democractic Constitution of India.
- 7. GopalK. Puri-Constitution of India, India 2005.

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5		PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	0	0	1	0	0	0	0	0	0	0	0	0	0
CO2	2	0	0	1	0	0	0	0	0	0	0	0	0	0
CO3	2	0	0	1	0	0	0	0	1	0	0	0	0	0
CO4	2	0	0	1	0	0	0	1	1	0	0	0	0	0
CO5	2	2	0	1	0	0	0	1	1	0	0	0	0	0
Total	10	2	0	5	0	0	0	2	3	0	0	0	0	0
Scaled Value	2	1	0	1	0	0	0	1	1	0	0	0	0	0

1-5 > 1, 6-10 > 2, 11-15 > 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	COURSE NAME	L	T	P	C
XBE107	ELECTRICAL AND ELECTRONICS ENGINEERING SYSTEMS LABORATORY	0	0	1	1
Prerequisite	Physics	L	T	P	Н
C:P:A		0	0	2	2
1.5:1:0.5					

COURSE OBJECTIVES:

The course helps to

- a. Learn the basic concepts of electrical and electronics components.
- b. Understand the basic wiring methods and connection.
- c. Study the characteristics of diodes, Zener diodes, NPN transistors.
- d. Verify the working of simple logic gates, adders and subtractors.

Course	Outcomes:	Domain	Level
CO1	Apply the fundamental electrical concepts and differentiate the various electronic components.	Psychomotor	Set
CO2	Implement and execute the different types of wiring connections.	Psychomotor	Set
CO3	Demonstrate the Fluorescent lamp connection with choke.	Psychomotor	Set
CO4	Characterize and display the basic knowledge on the working of PN junction and Zener diode.	Psychomotor	Set
CO5	Implement and execute the various digital electronic circuits such as Adders and Subtractors.	Psychomotor	Set

List of Experiments:

- 1. Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies.
- 2. Study of Active and Passive elements Resistors, Inductors and Capacitors, Bread Board.
- 3. Testing of DC Voltage and Current in series and parallel resistors which are connected inbreadboard by using Voltmeter, Ammeter and Multimeter.
- 4. Fluorescent lamp connection with choke.
- 5. Staircase Wiring
- 6. Forward and Reverse bias characteristics of PN junction diode.
- 7. Forward and Reverse bias characteristics of zener diode.
- 8. Input and Output Characteristics of NPN transistor.
- 9. Construction and verification of simple logic gates.
- 10. Construction and verification of adders and subtractors.

PRACTICAL	TOTAL
30	30

Mapping of COs with GAs

					FF8 -							
	GA	GA	GA	GA	GA	GA	GA	GA	GA	GA	GA	GA
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3	3	1	1	1	1	0	0	1	1	1	0
CO 2	3	3	1	1	1	1	0	0	1	1	1	0
CO 3	2	2	2	1	2	2	1	1	1	1	1	0
CO 4	2	2	1	1	1	1	1	1	1	1	1	0
CO 5	2	2	1	1	1	1	1	1	1	1	1	0
Total	12	12	6	5	6	6	3	3	5	5	5	0
Scaled Value	3	3	2	1	2	2	1	1	1	1	1	0

1-5 > 1, 6-10 > 2, 11-15 > 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	COURSE NAME	L	T	P	C
XAC108	APPLIED CHEMISTRY FOR ENGINEERS LABORATORY	3	1	1	5
Prerequisite	Physics	L	T	P	Н
C:P:A		3	1	3	7
3.5:1.0:0.5					

Course	Outcomes:	Domain	Level
CO1	Understand the address of the electron and know the trend of	Cognitive	Remember
771	periodic properties; Recall the water treatment methods.	Psychomotor	Perception

CO2	Understand the laws of chemical thermodynamics;	Cognitive	Understand
COZ	Classify the compounds as acids and bases	Psychomotor	Set
CO3	Determine the stability and reactions of co-ordination	Cognitive	Apply
	compounds;	Psychomotor	Mechanism
	Explain and Measure microscopic chemistry in terms of	Affective	Receive
	atomic, molecular orbitals and intermolecular forces		
CO4	Apply, Measure and Distinguish the ranges of the	Cognitive	Remember
	electromagnetic spectrum used for exciting different		Analyze
	molecular energy levels in various spectroscopic techniques;	Psychomotor	Perception
	Construct the MO theory to diatomic molecules.	Affective	Respond
CO5	Knowledge about aliphatic and aromatic substitution	Cognitive	Remember
	reactions, oxidation and reduction, addition and elimination	Psychomotor	Apply
	reactions will kindle the mind for proposing the new		Mechanism
	reactions and mechanisms.		

List of Experiments:

- 1. Determination of chloride ion present in the water sample by Argentometric method.
- 2. Determination of total,temporary and permanent hardness of water sample by EDTA method.
- 3. Determination of cell constant and conductance of solutions.
- 4. Potentiometry determination of redox potentials and emfs.
- 5. Determination of surface tension and viscosity.
- 6. Adsorption of acetic acid by charcoal.
- 7. Determination of the rate constant of a reaction.
- 8. Estimation of iron by colorimetric method.
- 9. Synthesis of a polymer/drug.

REFERENCE BOOKS

- 1. Mendham, Denney R.C,. Barnes J.D and Thomas N.J.K., "Vogel's Textbook of Chemical Analysis", 6th Edition, Pearson Education, 2004.
- 2. Garland, C. W.; Nibler, J. W.; Shoemaker, D. P. "Experiments in Physical Chemistry", 8th Ed.; McGraw-Hill: New York, 2003. **E Resources MOOCs:**
 - 1.http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques.
 - 2. http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011.
 - 3.http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques.

PRACTICAL TOTAL
30 30

Table 1:Mapping of CO's with PO's:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	0	0	0	0	0	2	3	3
CO2	2	0	0	0	0	0	1	2	2
CO3	3	0	0	0	0	0	2	3	3
CO4	8	0	0	0	0	0	3	3	3
CO5	3	0	0	0	0	0	2	2	3

 $1 - 5 \rightarrow 1, 6 - 10 \rightarrow 2, 11 - 15 \rightarrow 3$

No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURSE	COURSE NAME	T	Т	D	C
CODE	COURSE NAME	L	I	r	C

XMA 201	CALCULUS, ORDINARY DIFFERENTIAL EQUATIONS AND COMPLEX VARIABLE	3	1	0	4	
Prerequisite	Mathematics - I (Calculus and Linear Algebra)	L	T	P	Н	
C:P:A		3	1	0	4	
3:0:0					l	
Course Outcomes:						

Course C	Outcomes:	Domain	Level
CO1	Find double and triple integrals and to find line, surface and volume of an integral by Applying Greens, Gauss divergence and Stokes theorem.	Cognitive	Applying Remembering
CO2	Solve first order differential equations of different types which are solvable for p, y, x and Clairaut's type.	Cognitive	Applying
CO3	Solve Second order ordinary differential equations with variable coefficients using various methods.	Cognitive	Remembering
CO4	Use CR equations to verify analytic functions and to find harmonic functions and harmonic conjugate. Conformal mapping of translation and rotation. Mobius transformation.	Cognitive Psychomotor	Understanding Remembering Guided Response
CO5	Apply Cauchy residue theorem to evaluate contour integrals involving sine and cosine function and to state Cauchy integral formula, Liouvilles theorem. Taylor'sseries, zeros of analytic functions, singularities, Laurent's series.	Cognitive Affective	Applying Receiving
IINIT I	• MIII TIVADIADI E CALCIII US (INTECDATION)	1111001110	۷

UNIT - I: MULTIVARIABLE CALCULUS (INTEGRATION)

9 + 3

Multiple Integration: Double integrals (Cartesian) - change of order of integration in double integrals Change of variables (Cartesian to polar) - Triple integrals (Cartesian), Scalar line integrals - vector line integrals - scalar surface integrals - vector surface integrals - Theorems of Green, Gauss and Stokes.

UNIT - II: FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

9+3

Exact - linear and Bernoulli's equations - Euler's equations - Equations not of first degree: equations solvable for p - equations solvable for y- equations solvable for x and Clairaut's type.

UNIT - III: ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDERS

9 + 3

Second order linear differential equations with variable coefficients- method of variation of parameters Cauchy-Euler equation- Power series solutions- Legendre polynomials- Bessel functions of the first kind and their properties.

UNIT - IV: COMPLEX VARIABLE - DIFFERENTIATION

9 + 3

Differentiation – Cauchy - Riemann equations - analytic functions - harmonic functions - finding harmonic conjugate - elementary analytic functions (exponential, trigonometric, logarithm) and their properties - Conformal mappings - Mobius transformations and their properties.

UNIT - V: COMPLEX VARIABLE - INTEGRATION

9 + 3

Contour integrals - Cauchy-Goursat theorem (without proof) - Cauchy Integral formula (without proof)Liouville's theorem (without proof)- Taylor's series- zeros of analytic functions- singularities-Laurent's

series – Residues- Cauchy Residue theorem (without proof)- Evaluation of definite integral involving sine and cosine- Evaluation of certain improper integrals using the Bromwich contour.

	LECTURE	TUTORIAL	TOTAL
	45	15	60
TEVT DOOLG			

TEXT BOOKS:

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40thth Edition, 2008.

REFERENCE BOOKS:

- 1. G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.
- 2. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.
- 3. W. E. Boyce and R. C. DiPrima, "Elementary Differential Equations and Boundary Value Problems", 9th Edn. Wiley India, 2009.
- 4. S. L. Ross, "Differential Equations", 3rd Ed., Wiley India, 1984.
- 5. E. A. Coddington, "An Introduction to Ordinary Differential Equations", Prentice Hall India, 1995.
- 6. E. L. Ince, "Ordinary Differential Equations", Dover Publications, 1958.
- 7. J. W. Brown and R. V. Churchill, "Complex Variables and Applications", 7th Ed., McGraw Hill, 2004.
- 8. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2008.

Mapping of COs with GAs GA CO₁ CO₂ **CO3 CO4 CO5 Total Scaled**

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURSE CODE	COURSE NAME	L	T	P	C
XCP 202	PROGRAMMING FOR PROBLEM SOLVING	3	0	0	3
Prerequisites	Basic Understanding Skills	L	T	P	Н
C:P:A		3	0	0	3
3:0:0					

Course Outcomes :	Domain	Level

	Define programming fundamentals and Solve simple	Cognitive	Applying
CO1	programs using I/O statements		
	Define syntax and write simple programs using	Cognitive	Applying
CO2	control structures and arrays		
	Explain and write simple programs using functions	Cognitive	Applying
CO3	and pointers		
	Explain and write simple programs using structures	Cognitive	Applying
CO4	and unions		

	Explain and write simple programs using files and	Cognitive	Applying
CO5	Build simple projects		
TINITE T	0		

UNIT - I: PROGRAMMING FUNDAMENTALS AND I/O STATEMENTS

Introduction to components of a computer system, Program – Flowchart – Pseudo code – Software – Introduction to C language – Character set – Tokens: Identifiers, Keywords, Constants, and Operators – sample program structure -Header files – Data Types- Variables - Output statements – Input statements.

UNIT - II: CONTROL STRUCTURE AND ARRAYS

9

Control Structures – Conditional Control statements: Branching, Looping - Unconditional control structures: switch, break, continue, goto statements – Arrays: One Dimensional Array – Declaration – Initialization – Accessing Array Elements – Searching – Sorting – Two Dimensional arrays Declaration – Initialization – Matrix Operations – Multi Dimensional Arrays - Declaration – Initialization. Storage classes: auto – extern – static. Strings: Basic operations on strings.

UNIT - III: FUNCTIONS AND POINTERS

9

Functions: Built in functions – User Defined Functions - Parameter passing methods - Passing a functions – Recursion - Programs using arrays and functions. Pointers - Pointer declaration - Address - Pointer expressions & pointer arithmetic - Pointers and function - Call by value - Call by Reference to arrays - Use of Pointers in self-referential structures-Notion of linked list.

UNIT - IV: STRUCTURES AND UNIONS

9

Structures and Unions - Giving values to members - Initializing structure - Functions and structures Passing structure to elements to functions - Passing entire function to functions - Arrays of structure - Structure within a structure and Union.

UNIT - V: FILES

File management in C - File operation functions in C - Defining and opening a file - Closing a file The getw and putw functions - The fprintf & fscanf functions - fseek function - Files and Structures.

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT BOOKS:

- 1. Byron Gottfried, "Programming with C", III Edition, (Indian Adapted Edition), TMH publications, 2010.
- 2. Yeshwant Kanethker, "Let us C", BPB Publications, 2008.

REFERENCE BOOKS:

- 1. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill, 7th edition 2017.
- 2. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education Inc. 2005.
- 3. Johnson baugh R. and Kalin M., "Applications Programming in ANSI C", III Edition, Pearson Education India, 2003.

E-REFERENCES:

- 1. https://www.indiabix.com/c-programming/questions-and-answers/
- 2. https://www.javatpoint.com/c-programming-language-tutorial
- 3. https://www.w3schools.in/c-tutorial/

Mapping of COs with GAs

11 0													
	GA 1					GA 6					GA 11		
CO 1	3					0							
CO 2	3	2	0	0	2	0	0	0	0	0	2	3	

CO 3	2	2	1	2	2	0	0	0	0	0	2	2
CO 4	2	2	1	2	2	0	0	0	0	0	2	2
CO 5	2	2	1	0	2	0	0	1	0	2	2	2
Total	12	10	3	4	11	0	0	1	0	2	10	12
Scaled	3	2	1	1	3	0	0	1	0	1	2	3

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURSE CODE	COURSE NAME	L	Т	P	C
XAP 203	APPLIED PHYSICS FOR ENGINEERS	3	1	0	4
Prerequisite	Basic Physics in HSC Level	L	T	P	Н
C:P:A		3	1	0	4

2.8:0.8:0.4

Course	Outcomes:	Domain	Level							
CO1	Identify the basics of mechanics, explain the principles of elasticity and determine its significance in engineering systems and technological advances.	Cognitive Psychomotor	Remember Understand Mechanism							
CO2	Illustrate the laws of electrostatics, magneto-statics and electromagnetic induction; use and locate basic applications of electromagnetic induction to technology.	omagnetic induction; use and locate basic Psychomotor ations of electromagnetic induction to technology. Affective								
CO3	Understand the fundamental phenomena in optics by measurement and describe the working principle and application of various lasers and fiber optics.	Cognitive Psychomotor Affective	Understand Apply Mechanism Receive							
CO4	Analyze energy bands in solids, discuss and use physics principles of latest technology using semiconductor devices.	Cognitive Psychomotor Affective	Understand Analyze Mechanism Receive							
CO5	Develop Knowledge on particle duality and solve Schrodinger equation for simple potential.	Cognitive	Understand Apply							
UNIT -	UNIT – I: MECHANICS OF SOLIDS									

Mechanics: Force - Newton's laws of motion - work and energy - impulse and momentum - torque lawof conservation of energy and momentum - Friction.

Elasticity: Stress - Strain - Hooke's law - Stress strain diagram - Classification of elastic modulus -Moment, couple and torque - Torsion pendulum - Applications of torsion pendulum Bending of beams -Experimental determination of Young's modulus: Uniform bending and nonuniform bending.

UNIT – I	II: ELE	CTROMA	GNETIC	THEORY
----------	---------	--------	--------	--------

9+3

Laws of electrostatics - Electrostatic field and potential of a dipole; Dielectric Polarization, Dielectric constant, internal field - Clausius Mossotti Equation - Laws of magnetism - Ampere's Faraday's law; Lenz's law - Maxwell's equation - Plane electromagnetic waves; their transverse nature - expression for plane, circularly and elliptically polarized light - quarter and half wave plates - production and detection of plane, circularly and elliptically polarized light.

UNIT – III: OPTICS, LASERS AND FIBRE OPTICS

9 + 3

Optics: Dispersion- Optical instrument: Spectrometer - Determination of refractive index and dispersive power of a prism- Interference of light in thin films: air wedge - Diffraction: grating.

LASER: Introduction - Population inversion - Pumping - Laser action - Nd-YAG laser - CO₂ laser - Applications.

Fibre Optics: Principle and propagation of light in optical fibre - Numerical aperture and acceptanceangle - Types of optical fibre - Fibre optic communication system (Block diagram).

UNIT – IV: SEMICONDUCTOR PHYSICS

9 + 3

Semiconductors: Energy bands in solids - Energy band diagram of good conductors, insulators and semiconductors - Concept of Fermi level - Intrinsic semiconductors - Concept of holes - doping Extrinsic semiconductors - P type and N type semiconductors - Hall effect.

Diodes and Transistors: P-N junction diode - Forward bias and reverse bias - Rectification action of diode - Working of full wave rectifier using P N junction diodes - PNP and NPN transistors - Three different configurations - Advantages of common emitter configuration - working of NPN transistor as anamplifier in common emitter configuration.

UNIT - V: QUANTUM PHYSICS

9 + 3

Introduction to quantum physics, black body radiation, Compton effect, de Broglie hypothesis, wave –particle duality, uncertainty principle, Schrodinger wave equation (Time dependent and Time independent), particle in a box, Extension to three dimension - Degeneracy.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS:

- 2. Gaur R. K. and Gupta S. L., "Engineering Physics", Dhanpat Rai Publications, 2009.
- 3. Avadhanulu M. N. "Engineering Physics" (Volume I and II), S. Chand & Company Ltd., New Delhi.2010.

REFERENCE BOOKS:

- 1. Palanisamy P. K., "Engineering Physics", Scitech Publications (India) Pvt. Ltd, Chennai.
- 2. Arumugam M., "Engineering Physics" (Volume I and II), Anuradha Publishers, 2010.
- 3. Senthil Kumar G., "Engineering Physics", 2nd Enlarged Revised Edition, VRB Publishers, Chennai, 2011.
- 4. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2007.

E-RESOURCES:

1. NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

Mapping of COs with GAs

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO1	3	2	2	2	1	0	0	0	1	0	0	1
CO2	3	0	1	0	1	0	0	0	0	0	0	1
CO3	3	2	2	2	1	0	0	0	1	0	0	1

CO4	3	2	2	2	1	0	0	0	1	0	0	1
CO5	3	0	2	0	0	0	0	0	0	0	0	1
Total	15	6	9	6	4	0	0	0	3	0	0	5
Scaled	3	2	2	2	1	0	0	0	1	0	0	1

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

		No Relation, 1-Low Relation, 2-Medi	um Relation, 3	-High	Relatio	n			
COU CO		COURSE NAME		L	Т	P	C		
XGS	204	TECHNICAL COMMUNICATION		2	0	0	2		
Prereq	uisite	Basic English in HSC level		L	T	P	Н		
C:1	P:A			2	0	0	2		
3:0	0:0					<u> </u>			
Course	Outcor	nes:		Domai	in	L	evel		
CO1	Ability	to understand the basic principles.		Cognit	ive	Rem	nembering		
CO2	Apply 1	the techniques in writing.		Cognit	ive	A	pplying		
CO3	Identif	y communicative styles.		Cognit	ive	Rem	nembering		
CO4	Constr	uct the nature of writing.		Cognit	ive	Rem	nembering		
UNIT -	- I: BAS	SIC PRINCIPLES					9		
1.2 - S	tyles use	nciples of Technical Writing ed in Technical Writing e and Tone							
UNIT -	- II: TE	CHNIQUES					9		
2.2 - D	efinition	echniques used in writing n & Description of mechanism on- Classification-Interpretation							
UNIT -	· III: CO	OMMUNICATION					6		
		levelopment in style of writing er writing formats							
UNIT -	- IV: RE	CPORT WRITING					6		
	• 1	Report writing riting formats							
			LECTURE	E	,	ГОТА	L		
			30				30		

SUGGESTED READINGS

- John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009.
- Williams K.S, Communicating Business. Engage Learning India Pvt Ltd, 2012.

Mapping of COs with POs

	PO	P	P	P										
	1	2	3	4	5	6	7	8	9	10	11	O	S	S
												12	О	O
													1	2
CO1	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO2	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO3	1	0	0	0	0	0	1	0	1	0	0	0	0	0
CO4	2	0	0	0	0	0	1	0	1	0	0	0	0	0
CO5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	7	0	0	0	0	0	6	0	4	0	0	0	0	0
Scaled	2	0	0	0	0	0	2	0	1	0	0	0	0	0

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURSE CODE		CODE	COURSE NAME	L	T	P	C
XWP205			Workshop Practices	1	0	2	3
C	P	A		L	T	P	Н
1	3	0		1	0	4	5

PREREQUISITE:

	Course outcomes:	Domain	Level			
CO1:	Summarize the machining methods and Practice machining operation.	Cognitive Psychomotor	Understanding Guided response			
CO2:	Defining metal casting process, moulding methods and relates Casting and Smithy applications.	Cognitive Psychomotor	Remembering Perception			
CO3:	Plan basic carpentry and fitting operation and Practice carpentry and fitting operations.	Cognitive Psychomotor	Applying Guided response			
CO4:	Summarize metal joining operation and Practice welding operation.	Cognitive Psychomotor	Understanding Guided response			
CO5:	Illustratethe, electrical and electronics basics and Makes appropriate connections.	Cognitive Psychomotor	Understanding Origination			
	COURSE CONTENT					
EXP.NO	EXP.NO TITLE					
1	Introduction to machining process	CO1				
2	Plain turining using lathe operation					
3	Introduction to CNC	CO1				

4	Demonstration of plain turning using CNC	CO1
5	Study of metal casting operation	CO2
6	Demonstration of moulding process	CO2
7	Study of smithy operation	CO2
8	Study of carpentry tools	CO3
9	Half lap joint – Carpentry	CO3
10	Mortise and Tenon joint – Carpentry	CO3
11	Study of fitting tools	CO3
12	Square fitting	CO3
13	Triangular fitting	CO3
14	Study of welding tools	CO4
15	Square butt joint – welding	CO4
16	Tee joint – Welding	CO4
17	Introduction to house wiring	CO5
18	One lamp controlled by one switch	CO5
19	Two lamps controlled by single switch	CO5
20	Staircase wiring	CO5

TEXT BOOKS

- 1. Workshop Technology I,II,III, by S K Hajra, Choudhary and A K Chaoudhary. Media Promoters and Publishers Pvt. Ltd., Bombay
- 2. Workshop Technology by Manchanda Vol. I,II,III India Publishing House, Jalandhar.

REFERENCES

- 1. Manual on Workshop Practice by K Venkata Reddy, KL Narayana et al; MacMillan India Ltd.
- 2. Basic Workshop Practice Manual by T Jeyapoovan; Vikas Publishing House (P) Ltd., New Delhi
- 3. Workshop Technology by B.S. Raghuwanshi, Dhanpat Rai and Co., New Delhi.
- 4. Workshop Technology by HS Bawa, Tata McGraw Hill Publishers, New Delhi.

E RESOURCES

1. http://nptel.ac.in/courses/112107145/

Mapping of COs with POs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	2	1			1	1		1	2
CO2	2	1	2	2	1			1	1		1	2
CO3	2	1	2	2	1			1	1		1	2
CO4	2	1	2	2	1			1	1		1	2
CO5	2	1	2	2	1			1	1		1	2
Total												
Scaled												

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURSE CODE	XEM206	L	T	P	C
COURSE NAME	ENGINEERING MECHANICS	3	0	0	3
PREREQUISITES	NIL	L	T	P	Н
C:P:A= 3:0:0		3	0	0	3

COURSE OBJECTIVES

Upon successful completion of the course, student will have:

- Ability to apply knowledge of mathematics, science, and engineering.
- Ability to design as well as to analyse and inter pre-data.
- Ability to identify, formulates, and solves engineering problems.
- Ability to apply techniques and resources to solve complex mechanical engineering activities with an understanding of the limitations.

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	Explain the principles forces, laws and their applications.	Cognitive	Applying
CO2	Classification of friction, and apply the forces in Trusses and beams.	Cognitive	Applying
CO3	Explain and Apply moment of Inertia and Virtual work	Cognitive	Applying
CO4	Outline and Examine Dynamics	Cognitive	Applying
CO5	Explain free and forced vibration	Cognitive	Understanding

UNIT I INTRODUCTION TO ENGINEERING MECHANICS

Force Systems Basic concepts, Particle equilibrium in 2-D & 3-D; Rigid Body equilibrium; System of Forces, Coplanar Concurrent Forces, Components in Space – Resultant- Moment of Forces and its Application; Couples and Resultant of Force System, Equilibrium of System of Forces, Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial Systems; Static indeterminacy.

UNIT II FRICTION AND BASIC STRUCTURAL ANALYSIS

9

Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack; Equilibrium in three dimensions; Method of Sections; Method of Joints; How to determine if a member is in tension or compression; Simple Trusses; Zero force members; Beams & types of beams; Frames & Machines.

UNIT III CENTROID, CENTRE OF GRAVITY AND VIRTUAL WORK AND ENERGY METHOD 9

Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.

Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom. Active force diagram, systems with friction, mechanical efficiency. Conservative forces and potential energy (elastic and gravitational), energy equation for equilibrium. Applications of energy method for equilibrium. Stability of equilibrium.

UNIT IV REVIEW OF PARTICLE DYNAMICS AND INTRODUCTION TO KINETICS OF RIGID BODIES

Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3-D curvilinear motion; Relative and constrained motion; Newton's 2nd law (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique). Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D'Alembert's principle and its applications in plane motion and connected bodies; Work energy principle and its application in plane motion of connected bodies; Kinetics of rigid body rotation.

Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedom; Derivation for frequency and amplitude of free vibrations without damping and single degree of freedom system, simple problems, types of pendulum, use of simple, compound and torsion pendulums.

TEXT BOOKS

- 1. Hisrich, 2016, Entrepreneurship, Tata McGraw Hill, New Delhi.
- 2. S.S.Khanka, 2013, Entrepreneurial Development, S.Chand and Company Limited, New Delhi.

REFERENCE BOOKS

- 1. Mathew Manimala, 2005, Entrepreneurship Theory at the Crossroads, Paradigms & Praxis, Biztrantra, 2nd Edition.
- **2.** Prasanna Chandra, 2009, Projects Planning, Analysis, Selection, Implementation and Reviews, Tata McGraw-Hill.
- 3. P.Saravanavel, 1997, Entrepreneurial Development, Ess Pee kay Publishing House, Chennai.
- **4.** Arya Kumar,2012, Entrepreneurship: Creating and Leading an Entrepreneurial organisation, Pearson Education India.
- **5.** Donald F Kuratko, T.V Rao, 2012, Entrepreneurship: A South Asian perspective, Cengage Learning India.
- 6. Dinesh Awasthi, Raman Jaggi, V.Padmanand, Suggested Reading / Reference Material for Entrepreneurship Development Programmes (EDP/WEDP/TEDP), EDI Publication, Entrepreneurship Development Institute of India, Ahmedabad.

E-REFERENCES

- 1. Jeff Hawkins, "Characteristics of a successful entrepreneur", ALISON Online entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills
- 2. Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education, https://www.udemy.com/entrepreneurship-from-idea-to-launch/

LECTURE: 45 | TUTORIAL: 0 | PRACTICAL: 0 | TOTAL:45

Mapping of COs with GAs

		PROGRAM OUTCOMES											
	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	
										10	11	12	
CO1	3	2	1	1	3	1	1	2	3	2	1	3	
CO2	3	2	1	1	3	1	1	2	3	2	1	3	
CO3	3	2	1	1	3	1	1	2	3	2	1	3	
CO4	3	2	1	1	3	1	1	2	3	2	1	3	
CO5	2	2	2	1	3	1	1	3	3	3	1	3	

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURSE CODE	COURSE NAME	L	Т	P	C
XCP 207	PROGRAMMING FOR PROBLEM SOLVING LABORATORY	0	0	1	1

Prerequisites	Basic Understanding Skills	L	T	P	Н
C:P:A		0	0	2	2
0.75:0.25:0					

COURSE OBJECTIVES:

- To learn programming language basics and syntax.
- To ignite logical thinking.
- To understand structured programming approach.
- To deal with user defined data types.

 To know about data storage in second

•	 To know about data storage in secondary memory. 								
Course	Outcomes:	Domain	Le	vel					
CO1	Solve simple programs using I/O statements.	Psychomotor	Respond	ding					
CO2	Solve programs using control structures and arrays.	Psychomotor	Respond	ding					
CO3	Solve programs using functions and pointers.	Psychomotor	Respond	nding					
CO4	Solve programs using structures.	Psychomotor	Respond	ding					
CO5	Solve programs using files.	Psychomotor	Respond	ding					
Sl. No.	List of Experiments			COs					
1	Program to display a Leave Letter as per proper format								
2	i. Program for addition of two numbers ii.								
	Program to solve any mathematical								
	formula. Program to find greatest of 3 numbers using Branching Statements								
3	Program to find greatest of 3 numbers using Branching Statements								
4	Program to display divisible numbers between n1 and n2 using looping Statement								
5	Program to search an array element in an array.			CO2					
6	Program to find largest / smallest element in an array.			CO2					
7	Program to perform string operations.			CO3					
8	Program to find area of a rectangle of a given number use f	our function typ	es.	CO3					
9	Programs to pass and receive array and pointers using four	function types		CO3					
10	Programs using Recursion for finding factorial of a number	•		CO3					
11	Program to read and display student mark sheet of a studen Variables			CO4					
12	Program to read and display student marks of a class using	structures with a	arrays	CO4					
13	Program to create linked list using structures with pointers								
14	Program for copying contents of one file to another file.								
15	Program using files to store and display student mark list of a class using structures with array								
		PRAC	ΓICAL	TOTAL					
			30	30					

Mapping of COs with GAs

		112mpp	<u>-</u>	000 1112	CII G 115							
	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	2	0	0	3	0	0	0	0	0	2	3

CO 2	3	2	0	0	2	0	0	0	0	0	2	3
CO 3	2	2	1	2	2	0	0	0	0	0	2	2
CO 4	2	2	1	2	2	0	0	0	0	0	2	2
CO 5	2	2	1	0	2	0	0	1	0	2	2	2
Total	12	10	3	4	11	0	0	1	0	2	10	12
Scaled	3	2	1	1	3	0	0	1	0	1	2	3

 $1-5 \to 1, 6-10 \to 2, 11-15 \to 3$

No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

	, , ,				
COURSE CODE	COURSE NAME	L	T	P	C
XAP 208	APPLIED PHYSICS FOR ENGINEERS LABORATORY	0	0	1	1
Prerequisite	Basic Physics in HSC level	L	T	P	Н
C:P:A		0	0	2	2
0.15.05		•	•	•	

0:1.5:0.5

Course	Outcomes:	Domain	Level
CO1	Identify the basics of mechanics, and determine its significance in engineering systems and technological		
	advances.	Psychomotor	Mechanism
CO2	Use and locate basic applications of electromagnetic induction to technology.	Psychomotor	Mechanism
CO3	Describe the working principle and application of various lasers and fibre optics.	Psychomotor	Mechanism
CO4	Analyze energy bands in solids, discuss and use physics principles of latest technology using semiconductor devices.	Psychomotor	Mechanism

List of Experiments:

- 1. Torsional Pendulum Determination of moment of inertia and rigidity modulus of the given material of the wire.
- 2. Uniform Bending Determination of the Young's Modulus of the material of the beam.
- 3. Non-Uniform Bending Determination of the Young's Modulus of the material of the beam.
- 4. Meter Bridge Determination of specific resistance of the material of the wire.
- 5. Spectrometer Determination of dispersive power of the give prism.
- 6. Spectrometer Determination of wavelength of various colours in Hg source using grating.
- 7. Air wedge Determination of thickness of a given thin wire.
- 8. Laser Determination of wavelength of given laser source and size of the given micro particle using Laser grating.
- 9. Post office Box Determination of band gap of a given semiconductor.
- 10. PN Junction Diode Determination of V-I characteristics of the given diode.

PRACTICAL	TOTAL	
30	30	

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	2	2	2	1	0	0	0	1	0	0	1
CO 2	3	0	1	0	1	0	0	0	0	0	0	1
CO 3	3	2	2	2	1	0	0	0	1	0	0	1
CO 4	3	2	2	2	1	0	0	0	1	0	0	1
CO 5	3	0	2	0	0	0	0	0	0	0	0	1
Total	15	6	9	6	4	0	0	0	3	0	0	5
Scaled	3	2	2	2	1	0	0	0	1	0	0	1

 $1 - 5 \rightarrow 1, 6 - 10 \rightarrow 2, 11 - 15 \rightarrow 3$

No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURSE CODE	XMA 301	L	T	P	C
COURSE NAME	Transforms and Partial Differential Equations	3	0	0	3
PREREQUISITES	Algebra, Calculus and Laplace Transforms	L	T	P	C
C:P:A	2.5:0: 0.5	3	0	0	3

Learning Objectives

- 1. Introduction of methods to solve linear partial differential equations of second order and higher order.
- 2. Find the solutions of pde's are determined by conditions at the boundaries of the spatial domain and initial conditions at time zero.
- **3.** Provide sufficient knowledge to engineering students in the specific mathematical tools and techniques such as Fourier series, Fourier transform and Z transform.
- **4.** To enable students to use Fourier series method both in the solution of pde and other wider context.

COURS	E OUTCOMES	DOMAIN	LEVEL
CO1	Solve standard types of first order and second order partial	Cognitive	Applying
	differential equations with constant coefficients.		
	Elimination of arbitrary constants and functions.		
CO2	State Dirichlet's condition. Explain general Fourier series of the	Cognitive	Understanding
	curve $y = f(x)$ in the interval $(0,2\pi)(-\pi,\pi)$, $(0,2 \ell)$, $(0,\pi)$	Psychomotor	Guided
	and $(0, \ell)$. Perform harmonic analysis.		Response
CO3	Solve one dimensional Wave equation and Heat flow equation by	Cognitive	Applying
	Fourier series method in Cartesian coordinates.	Affective	Receiving
	Classify second order quasi pde.		
CO4	Find the Fourier transform and Fourier sine and cosine transforms	Cognitive	Applying
	of simple functions using definition and its properties.		
CO5	Apply the properties of Z transform to find the Z transform and	Cognitive	Applying
	inverse Z transform of sequence and functions, and to solve the		
	difference equation using them.		
UNIT I	PARTIAL DIFFERENTIAL EQUATIONS		9

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solution of standard types of first order partial differential equations – Lagrange's linear equation – Linear partial differential equations of second order with constant coefficients.

UNIT II FOURIER SERIES

9

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Harmonic Analysis.

UNIT III APPLICATIONS TO BOUNDARY VALUE PROBLEMS

9

Classification of second order quasi linear partial differential equations – Solutions of one dimensional wave equation – One dimensional heat equation – Steady state conditions (zero Boundary conditions only).

UNIT IV FOURIER TRANSFORM

9

Fourier transform pairs – Fourier Sine and Cosine transforms – properties – Transforms of simple functions – Parseval's identity.

UNIT V Z TRANSFORM AND DIFFERENCE EQUATIONS

9

Z-transform – Elementary properties – Inverse Z – transform – Convolution theorem - Solution of difference equations using Z-transform.

	LECTURE	TUTORIAL	PRACTICA L	TOTAL
HOURS	45	-	-	45

TEXT BOOKS

- 1. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, New Delhi (2012).
- **2.** Veerarajan. T., "Engineering Mathematics Volume III", Second reprint, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2012.

REFERENCES

- 1. Churchill, R.V. and Brown, J.W., "Fourier Series and Boundary Value Problems", Fourth Edition, McGraw Hill Book Co., Singapore (1987).
- 2. Kandasamy, P., Thilagavathy, K., and Gunavathy, K., "Engineering Mathematics Volume III", S. Chand & Company Ltd., New Delhi (1996).
- 3. Bali N.P. and Manish Goyal, "A Text Book of Engineering Mathematics" 7th Edition Lakshmi Publications (P) Limited, New Delhi (2007).
- 4. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, Wiley India, 2007.
- 5. Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012.
- 6. Narayanan, S., ManicavachagomPillay, T.K. and Ramaniah, G., "Advanced Mathematics for Engineering Students", Volume: II and III, S.Viswanathan (Printers and Publishers) Pvt. Ltd., Chennai (2002).

E-REFERENCES

nptel:Advanced Engineering Mathematics, Prof. Jitendra Kumar, Department of Mathematics, Indian Institute of Technology, Kharagpur, India.

Table 1: Mapping of Cos with GAs:

							COS WILL					
	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO1	3	2			2					1		2
CO2	3	1								1		1
CO3	3	1								1		1
CO4	3	2								1		1
CO5	3	2			1					1		2
	15	8	0	0	3	0	0	0	0	5	0	7
scaled Value	3	2			1					1		

1 − 5 \Box 1, 6 − 10 \Box 2, 11 − 15 \Box 3 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURSE CODE	COURSE NAME	L	T	P	C
XEE302	ELECTROMAGNETIC FIELDS	3	1	0	4
C:P:A		L	T	P	Н
3:0:0		3	1	0	4

Course (Outcomes:	Domain	Level
	To understand the basics of vector and outline different		Understanding
CO1	coordinate system.	Cognitive	
CO2	To understand the concept of static electric field for simple configuration using gauss and Coulombs law.	Cognitive	Understanding
CO3	Define the knowledge of electrostatics using, boundary conditions, Poissons and Laplace equation.	Cognitive	Understanding
CO4	Recall the magnetic field configuration using Different laws and outline time varying electric and magnetic fields using Maxwell's equation.	Cognitive	Understanding
CO5	Recall the concept of magnetization and magnetic field configuration using boundary condition.	Cognitive	Understanding

UNIT - I: REVIEW OF VECTOR CALCULUS

9 + 3

Vector algebra-addition, subject traction, components of vectors, scalar and vector multiplications, triple products, three orthogonal coordinate systems (rectangular, cylindrical and spherical). Vector calculus differentiation, partial differentiation, integration, vector operator del, gradient, divergence and curl; integral theorems of vectors. Conversion of a vector from one coordinate system to another.

UNIT - II: STATIC ELECTRIC FIELD

9 + 3

Coulomb's law, Electric field intensity, Electrical field due to point charges. Line, Surface and Volume charge distributions. Gauss law and its applications. Absolute Electric potential, Potential difference, Calculation of potential differences for different configurations. Electric dipole, Electrostatic Energy and Energy density.

UNIT - III: CONDUCTORS, DIELECTRICS AND CAPACITANCE

9 + 3

Current and current density, Ohms Law in Point form, Continuity of current, Boundary conditions of perfect dielectric materials. Permittivity of dielectric materials, Capacitance, Capacitance of a two-wire line, Poisson's equation, Laplace's equation, Solution of Laplace and Poisson's equation, Application of Laplace's and Poisson's equations.

UNIT - IV: STATIC MAGNETIC FIELDS, TIME VARYING FIELDS AND MAXWELL'S EQUATIONS

9 + 3

Biot-Savart Law, Ampere Law, Magnetic flux and magnetic flux density, Scalar and Vector Magnetic potentials. Steady magnetic fields produced by current carrying conductors. Faraday's law for Electromagnetic induction, Displacement current, Point form of Maxwell's equation, Integral form of Maxwell's equations, Motional Electromotive forces. Boundary Conditions. Force on a moving charge, Force on a differential current element, Force between differential current elements, Nature of magnetic

materials, Magnetization and permeability, Magnetic circuits, inductances and mutual inductances.

UNIT - V: ELECTROMAGNETIC WAVES

9 + 3

Derivation of Wave Equation, Uniform Plane Waves, Maxwell's equation in Phasor form, Wave equation in Phasor form, Plane waves in free space and in a homogenous material. Wave equation for a conducting medium, Plane waves in lossy dielectrics, Propagation in good conductors, Skin effect. Poynting theorem.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS:

- 1. M. N. O. Sadiku, "Elements of Electromagnetics", Oxford University Publication, 2014.
- 2. A.Pramanik, "Electromagnetism Theory and applications", PHI Learning Pvt. Ltd, New Delhi, 2009.
- 3. A.Pramanik, "Electromagnetism-Problems with solution", Prentice Hall India, 2012.
- 4. G. W. Carter, "The electromagnetic field in its engineering aspects", Longmans, 1954.

REFERENCE BOOKS:

- 1. W. J. Duffin, "Electricity and Magnetism", McGraw Hill Publication, 1980.
- 2. W. J. Duffin, "Advanced Electricity and Magnetism", McGraw Hill, 1968.
- 3. E. G. Cullwick, "The Fundamentals of Electromagnetism", Cambridge University Press,1966.
- 4. B. D. Popovic, "Introductory Engineering Electromagnetics", Addison-Wesley Educational Publishers, International Edition, 1971.
- 5. W. Hayt, "Engineering Electromagnetics", McGraw Hill Education, 2012.

E-RESOURCES:

1. NPTEL: http://nptel.ac.in/courses

Mapping of COs with POs

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	-	1	-	-	-	-	-	1	-	1	1	1
CO2	1	2	-	1	-	-	-	-	-	-	1	-	2	1
CO3	1	2	-	-	-	-	-	-	-	-	-	1	1	2
CO4	1	3	-	-	-	-	-	-	-	-	-	-	2	2
CO5	1	2	1	-	-	-	-		-	-	-	1	1	1
Total	6	11	1	3	0	0	0	0	0	1	1	3	7	7
Scaled	2	3	1	1	0	0	0	0	0	1	1	1	2	2

1-5 1, 6-10 2, 11-15 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	COURSE NAME	L	T	P	C
XEE303	DIGITAL LOGIC CIRCUITS	3	0	0	3
C:P:A		L	T	P	Н
3:0:0		3	0	0	3

Course	Outcomes:	Domain	Level
CO1	Ability to design combinational and sequential Circuits.	Cognitive	Understanding

CO2	Ability to study various number systems and simplify the logical expressions using Boolean functions.	Cognitive	U iderstanding
CO3	Ability to design various synchronous and asynchronous circuits.	Cognitive	Understanding
CO4	Ability to introduce asynchronous sequential circuits and PLDs.	Cognitive	Understanding
	Ability to introduce digital simulation for development of application oriented logic circuits.	Cognitive	Understanding
TINITE	I MULEDED CHOTELES AND DICITAL I COLO DIAMILES		

UNIT – I: NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES

9

Review of number systems, binary codes, error detection and correction codes (Parity and Hamming code) - Digital Logic Families -comparison of RTL, DTL, TTL, ECL and MOS families - operation, characteristics of digital logic family.

UNIT - II: COMBINATIONAL CIRCUITS

9

Combinational logic - representation of logic functions-SOP and POS forms, K-map representations minimization using K maps - simplification and implementation of combinational logic – multiplexers and de multiplexers - code converters, adders, subtractors, Encoders and Decoders.

UNIT – III: SYNCHRONOUS SEQUENTIAL CIRCUITS

9

Sequential logic- SR, JK, D and T flip flops - level triggering and edge triggering - counters asynchronous and synchronous type - Modulo counters - Shift registers - design of synchronous sequential circuits – Moore and Melay models- Counters, state diagram; state reduction; state assignment.

UNIT – IV: ASYNCHRONOUS SEQUENTIAL CIRCUITS AND PROGRAMMABILITY LOGIC DEVICES

9

Asynchronous sequential logic circuits-Transition tability, flow tability-race conditions, hazards & errors in digital circuits; analysis of asynchronous sequential logic circuits introduction to Programmability Logic Devices: PROM – PLA –PAL, CPLD-FPGA.

UNIT – V: VHDL

RTL Design – combinational logic – Sequential circuit – Operators – Introduction to Packages – Subprograms – Test bench. (Simulation /Tutorial Examples: adders, counters, flip flops, Multiplexers & Demultiplexers).

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT BOOKS:

- 1. James W. Bignel, Digital Electronics, Cengage learning, 5th Edition, 2007.
- 2. M. Morris Mano, 'Digital Design with an introduction to the VHDL', Pearson Education, 2013.
- 3. Comer "Digital Logic & State Machine Design, Oxford, 2012.

REFERENCE BOOKS:

- 1. Mandal, "Digital Electronics Principles & Application, McGraw Hill Edu, 2013.
- 2. William Keitz, Digital Electronics-A Practical Approach with VHDL, Pearson, 2013.
- 3. Thomas L.Floyd, 'Digital Fundamentals', 11th edition, Pearson Education, 2015.
- 4. Charles H.Roth, Jr, Lizy Lizy Kurian John, 'Digital System Design using VHDL, Cengage, 2013.
- 5. D.P.Kothari, J.S.Dhillon, 'Digital circuits and Design', Pearson Education, 2016.

Mapping of COs with POs

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	2	2	-	1	-	-	-	-	-	1	-	1	1	1
CO2	1	2	-	1	-	ı	-	-	-	ı	1	ı	2	1

CO3	1	2	-	-	-	-	-	-	-	-	-	1	1	2
CO4	1	3	-	-	-	-	-	-	-	-	-	-	2	2
CO5	1	2	1	-	-	-	-		-	-	-	1	1	1
Total	6	11	1	3	0	0	0	0	0	1	1	3	7	7
Scaled	2	3	1	1	0	0	0	0	0	1	1	1	2	2

 $1-5 \square 1$, $6-10 \square 2$, $11-15 \square 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURSE CODE	COURSE NAME	L	T	P	C
XEE 304	ELECTRICAL CIRCUIT ANALYSIS	3	1	0	4
C:P:A		L	T	P	Н
3:0:0		3	1	0	4

Course	e Outcomes:	Domain	Level
CO1	Illustrate network theorems for the analysis	Cognitiv	Applying
COI	of electrical circuits.	e	
CO2	Obtaining the transient and steady-state response of R, RL and	Cognitiv	Understanding
	RLC electrical circuits.	e	
CO3	Analyze circuits in the sinusoidal steady-state (single-phase and	Cognitiv	Analyzing
	three-phase).	e	
CO4	Analysis of AC circuits using Laplace transforms.	Cognitiv	Analyzing
		e	
CO5	To Understand the behavior of one port and two port network	Cognitiv	Understanding
	functions.	e	
TINITE	I NEWWORK WITEODENG		0 . 2

UNIT - I: NETWORK THEOREMS

9 + 3

Superposition theorem, Thevenin theorem, Norton theorem, Maximum power transfer theorem, Reciprocity theorem, Compensation theorem. Analysis with dependent current and voltage sources. Node and Mesh Analysis. Concept of duality and dual networks.

UNIT - II: SOLUTION OF FIRST AND SECOND ORDER NETWORKS

8 + 3

Solution of first and second order differential equations for Series and parallel R-L, R-C, RL-C circuits, initial and final conditions in network elements, forced and free response, time constants, steady state and transient state response.

UNIT - III: SINUSOIDAL STEADY STATE ANALYSIS

8+3

Representation of sine function as rotating phasor, phasor diagrams, impedances and admittances, AC circuit analysis, effective or RMS values, average power and complex power. Three-phase circuits.

Mutual coupled circuits, Dot Convention in coupled circuits, Ideal Transformer.

UNIT - IV: ELECTRICAL CIRCUIT ANALYSIS USING LAPLACE TRANSFORMS 8 + 3

Review of Laplace Transform, Analysis of electrical circuits using Laplace Transform for standard inputs, convolution integral, inverse Laplace transform, transformed network with initial conditions. Transfer function representation. Poles and Zeros. Frequency response (magnitude and phase plots), series and parallel resonances.

UNIT- V: NETWORK FUNCTIONS AND TWO PORT NETWORKS

12 + 3

Concepts of complex frequency, Transform impedance, Networks function of one port and two port networks, concepts of poles and zeros, property of driving point and transfer function. Two Port Networks, terminal pairs, Relationship of two port variables, impedance parameters, admittance parameters, transmission parameters and hybrid parameters, interconnections of two port networks.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS:

- 1. M. E. Van Valkenburg, "Network Analysis", Prentice Hall, 2019.
- 2. D. Roy Choudhury, "Networks and Systems", New Age International Publications, 2013.
- 3. W. H. Hayt and J. E. Kemmerly, "Engineering Circuit Analysis", McGraw Hill Education, 2013.

REFERENCE BOOKS:

- 1. C. K. Alexander and M. N. O. Sadiku, "Electric Circuits", McGraw Hill Education, 2013.
- 2. K. V. V. Murthy and M. S. Kamath, "Basic Circuit Analysis", Jaico Publishers, 1999.
- 3. Sudhakar.A and ShyamMohan.S.P, "Circuits and Networks Analysis and Synthesis", Fourth edition, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2010.

E-RESOURCES:

- 1. NPTEL: http://nptel.ac.in/courses/108102042/
- 2. MOODLE: http://moodle.cecs.pdx.edu/course/view.php?id=16

Mapping of COs with POs

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	0	0	0	0	0	0	0	0	1	0	1	1	1
CO2	3	0	0	0	0	0	0	0	0	1	0	1	2	1
CO3	3	2	0	0	0	0	0	0	0	1	1	2	3	1
CO4	3	2	0	0	1	0	0	0	0	1	1	1	3	3
CO5	3	2	0	0	1	0	0	0	0	1	1	1	2	2
Total	15	6	0	0	2	0	0	0	0	5	3	6	11	8
Scaled	3	2	0	0	1	0	0	0	0	1	1	2	3	2

1-5 1, 6-10 2, 11-15 3

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	COURSE NAME	L	T	P	C
XEE 305	ELECTRICAL MACHINES - I	3	1	0	4
C:P:A		L	T	P	Н
3:0:0		3	1	0	4
Course Outcon	nes:	Doma	in	Leve	1

Cours	se Outcomes:	Domain	Level
CO1	Understand the operation of DC machines.	Cognitiv	Understanding
		e	
CO2	Understand the winding concepts of DC machine.	Cognitive	Understanding
CO3	Understand the motoring and generating concepts of DC machine	Cognitiv	Understanding
		e	

CO4 Analyse single	phase and three phase transformers circuits.	Cognitiv e	Analyzing
CO5 Understand the	various loss in magnetic circuits	Cognitiv e	Understanding

UNIT - I: INTRODUCTION TO DC MACHINES

9 + 3

Basic construction of a DC machine, magnetic structure - stator yoke, stator poles, pole-faces or shoes, air gap and armature core, visualization of magnetic field produced by the field winding excitation with armature winding open, air gap flux density distribution, flux per pole, induced EMF in an armature coil.

UNIT - II: DC MACHINES – ARMATURE AND WINDING

9 + 3

Armature winding and commutation – Elementary armature coil and commutator, lap and wave windings, construction of commutator, linear commutation Derivation of back EMF equation, armature MMF wave, derivation of torque equation, armature reaction, air gap flux density distribution with armature reaction.

UNIT - III: DC MACHINE - MOTORING AND GENERATION

8+3

Armature circuit equation for motoring and generation, Types of field excitations – separately excited, shunt and series. Open circuit characteristic of separately excited DC generator, back EMF with armature reaction, voltage build-up in a shunt generator, critical field resistance and critical speed. V-I characteristics and torque-speed characteristics of separately excited, shunt and series motors. Speed control through armature voltage. Losses, load testing and back-to-back testing of DC machines.

UNIT - IV: TRANSFORMERS AND TEST

10 + 3

Principle, construction and operation of single-phase transformers, equivalent circuit, phasor diagram, voltage regulation, transformer - construction, types of connection and their comparative features, Parallel operation of single-phase and three-phase transformers, Phase conversion - Scott connection, three-phase to six-phase conversion, Tap-changing transformers losses and efficiency Testing - open circuit and short circuit tests, polarity test, back-to-back test- separation of hysteresis and eddy current losses.

UNIT - V: AUTOTRANSFORMERS

9 + 3

Autotransformers - construction, principle, applications and comparison with two winding transformer, Magnetizing current, effect of nonlinear B-H curve of magnetic core material, harmonics in magnetization current.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS:

- 1. A.E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2018.
- 2. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.

REFERENCE BOOKS:

- 1. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.
- 2. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.
- 3. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

Mapping of COs with POs

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2	1	0	0	0	1	0	0	1	1	0
CO2	3	0	2	1	0	0	0	1	0	0	0	1	0	1
CO3	3	0	0	1	0	0	0	1	0	0	1	0	0	1
CO4	3	2	2	2	1	0	1	0	0	1	0	1	0	1
CO5	3	0	0	1	0	0	0	0	0	1	0	0	0	1

	Total	15	4	6	7	2	0	1	2	1	2	1	3	1	4	ļ	
_			0 – No	Relatio	on, 1 –	1-5 Low R	1, 6- Relation		, 11-15 ledium	_	on, 3 –	High R	elation		•		
COURSI	E CODE	,	COU	RSE	NAM	Œ								-	T	P	С
XUM306							HIP I	DEVE	LOP	MEN	Γ		_	2	0	0	2
PRERE(UISITI	ES	NIL										1		T	SS	Н
C:P:A= 3												ľ	2	2	0	1	3
COURSI	E OUTC	OME	ES									DO	OMA]	IN	I	LEVE	L
CO1	Recog for an				e the	role o	f inno	vation	and 1	notiva	ition	Co	ogniti	ve	Und	erstan	ding
CO2	Self-a					ır entı	epren	eurshi	p inte	rest w	ith	С	ogniti	ve	Ev	aluati	ng
CO3	Outline	ne the	impo	rtance	of ge					or		Co	ogniti	ve	Aı	nalyzi	ng
CO4	Expla comp	in the	comp	etitio	n in b	usines	ss and	sketc	h/den		rate/	Co	ogniti	ve	Und	erstan	ding,
CO5	Descr busine	ibe ar	nd Exp	olain	ventu	re crea					mall	Co	ogniti	ve	Und	erstan	ding
CO6	Descr	ibe ar	nd Dis	cuss v	variou	s gov		-		and gl	obal	Co	ogniti	ve	Und	erstan	ding
UNIT I			OVAT							HIP				l .			
Definition developm Family an	nent (2)-	Entre	preneu	ırial n	notiva	tion (1)-Co	mpete	ncies	and tr	aits of	f an er	trepre	eneur	-	ole of	
UNIT II		•	FASS										`				
Self-asses rating (2)			_						ition b	y stuc	lents (on the	ir entr	epren	eurial	inclin	ation
UNIT III	[NEV	V IDE	A GE	ENER	ATIO)N T() MA	RKE'	ΓASS	ESSI	MENT					
Importantidea - val ownershig (1)-marke	ue propo p (1)-Ma	sition rket \	, custo /alidat	mer- _l ion- T	proble Techno	em-So ology/	lution user/	state:	ment) on ma	(1)-be kers/ ₁	nefits partne	s; deve ers (1)	lopm -mark	ent sta	ntus; I ed; seg	P gmenta	
UNIT IV			TOM											_ _			9
Customer Customer (1) -Finar	Acquisi	tion (2)-Co1	npetit	tion- c	compa	ırative	analy	sis, co	ompet							
UNIT V			NTUR D ITS					LAUN	CHI	NG O	F SM	ALL	BUSI	NESS	}		9
New ente (1)-Accor startup –	unting (1)-Tea	m recr				-			-	-	•	*				-
UNIT VI	-	GOV	ERN	MEN	T INI	TIAT	IVES	AND	GLC	BAL	OPP	ORTU	J NIT	IES			9
UNIT VI		GOV	ERNI	MEN'	ΓINI	TIAT	TIVES	AND	GLC	BAL	OPP	ORTU	JNIT	IES			

Incubators and accelerators - capacity building (2)-Startup policies- Startup India (2)-Support for MSME; GeM Portal(2) Funding—national and international sources(2)-Bilateral programmes by Govt. of India -Global reach for promoting cross-cultural entrepreneurship (1)

I F	CTURE: 45	TUTORIAL: 0	PRACTICAL:0	TOTAL: 45
		TUTORIAL: U	FRACTICAL:0	101AL: 43
REI	FERENCE			
1.	A.P.Aruna, "Lect	ture Notes on Entrepreneurship Develo	opment", available as softcopy (\widehat{a}
	www.brain.net			
2.	Thomas W. Zimm	nerer, Norman M. Scarborough, "Essen	ntials of Entrepreneurship and Si	mall Business
	Management", Pe	earson; 3rd edition, 2001.		
3.	John Burnett, "Int	troducing Marketing", Open Text Boo	k available at	
	http://solr.bccamp	ous.ca:8001/bcc/file/ddbe3343-9796-4	<u>801-</u>	
	a0cb7af7b02e319	1/1/Core%20Concepts%20of%20Mar	keting.pdf	
4.	Toubia, Olivier. "	Idea Generation, Creativity, and Incen	tives", Marketing Science. Vol. 2	25. pp.411-425.
	10.1287/mksc.105	50.0166, 2006.		
5.	Alexander Osterw	valder and Yves Pigneur, "Business Me	odel Generation: A Handbook fo	r Visionaries,
	Game Changers, a	and Challengers", Wiley; 1st edition, 2	010.	
6.	Gerardus Blokdyl	k."3C's model The Ultimate Step-By-S	Sten Guide"5starcooks 2018	

Mapping of COs with POs

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA 10	GA 11	GA 12
CO 1	0	0	0	0	0	0	0	0	3	3	3	1
CO 2	0	0	1	2	3	2	1	1	1	2	3	0
CO 3	0	0	0	0	0	1	0	2	3	3	0	2
CO 4	0	0	0	0	0	1	1	2	3	0	3	3
CO 5	0	0	0	0	0	1	1	3	0	0	0	3
Total	0	0	1	2	3	5	3	8	10	8	9	9
Scaled	0	0	1	1	1	2	1	2	3	2	2	2

1-5 1, 6-10 2, 11-15 3

 $0-No\ Relation,\, 1-Low\ Relation,\, 2-Medium\ Relation,\, 3-High\ Relation$

				L	Т	P	C
XUM307		Universal Human Values 2: Understanding Harr	nony	2	1	0	3
AUNI307		and Gender		L	T	P	Н
				2	1	0	3
Pre-requisit	es	None. Universal Human Values-I (Desirable)			·	I	
(if any)							
C:P:A= 3:0:	0						
S.	COL	URSE OUTCOMES	DOMA	IN	LEVEL		
No							
CO1	Exp	<i>lore</i> about the need of value education.	Cognitiv	ve l	Understaı	nding	

CO2	<i>Interpret</i> self and body needs and responses to ensure harmony within self.	Cognitive	Understanding
CO3	Explore the harmony in the family and society	Cognitive	Understanding
CO4	Explore about the harmony in the nature / existence	Cognitive	Understanding
CO5	Discuss about the holistic understanding.	Cognitive	Understanding

Module 1 – Introduction to Value Education (6 lectures and 3 tutorials for practice session)

Lecture1: Understanding Value Education

Lecture2: Self-exploration as the Process for Value Education

Tutorial 1: Practice Session PS1 Sharing about Oneself

Lecture3: Continuous Happiness and Prosperity—the Basic Human Aspirations

Lecture 4: Right Understanding, Relationship and Physical Facility

Tutorial 2: PracticeSessionPS2 Exploring Human Consciousness

Lecture 5: Happiness and Prosperity- Current Scenario

Lecture 6: Method to Fulfill the Basic Human Aspirations

Tutorial 3: Practice Session PS³ Exploring Natural Acceptance

Module 2 – Harmony in the Human Being (6 lectures and 3 tutorials for practice session) Lecture7:

Understanding Human being as the Co-existence of the Self and the Body

Lecture8: Distinguishing between the Needs of the Self and the Body

Tutorial 4: Practice Session PS4 Exploring the difference of Needs of Self and Body

Lecture9: The Body as an Instrument of the Self

Lecture 10: Understanding Harmony in the Self

Tutorial 5: Practice Session PS *Exploring Sources of Imagination in the Self*

Lecture 11: Harmony of the Self with the Body

Lecture 12: Programme to ensure self-regulation and Health

Tutorial 6: Practice Session PS6 Exploring Harmony of Self with the Body

Module 3 – Harmony in the Family and Society (6 lectures and 3 tutorials for practice session)

Lecture13: Harmony in the Family –the Basic Unit of Human Interaction

Lecture14: Values in Human-to-Human Relationship

Lecture 15: 'Trust' – the Foundational Value in Relationship

Tutorial 7: Practice Session PS 7 Exploring the Feeling of Trust

Lecture16: 'Respect'—as the Right Evaluation

Tutorial 8: Practice Session PS 8 Exploring the Feeling of Respect

Lecture17: Understanding Harmony in the Society

Lecture 18: Vision for the Universal Human Order

Tutorial 9: Practice Session PS 9 Exploring Systems to fulfill Human Goal

Module 4 – Harmony in the Nature/Existence (4 lectures and 2 tutorials for practice session)

Lecture19: Understanding Harmony in the Nature

Lecture 20: Interconnectedness, self-regulation and Mutual Fulfillment among the

Four Orders of Nature

Tutorial 10: Practice Session PS10 Exploring the Four Orders of Nature

Lecture21: Realizing Existence as Co-existence at All Levels

Lecture22: The Holistic Perception of Harmony in Existence

Tutorial11: Practice Session PS *11Exploring Co-existence in Existence*

Module 5 – Implications of the Holistic Understanding – a Look at Professional Ethics

(6lectures and 3 tutorials for practice session)

Lecture 23: Natural Acceptance of Human Values

Lecture24: Definitiveness of (Ethical) Human Conduct

Tutorial 12: Practice Session PS 12 Exploring Ethical Human Conduct

Lecture 25: A Basis for Humanistic Education, Humanistic Constitution and

Universal Human Order

Lecture26: Competence in Professional Ethics

Tutorial 13: Practice Session PS13 Exploring Humanistic Models in Education

Lecture 27: Holistic Technologies, Production Systems and Management ModelsTypical

Case Studies

Lecture28: Strategies for Transition towards Value-based Life and Profession

Tutorial 14: Practice Session PS 14 Exploring Steps of Transition towards Universal

Human Order

READINGS:

Text Book and Teachers Manual

a. The Textbook

A Foundation Course in Human Values and Professional Ethics, R R Gaur, RAsthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019.

ISBN978-93-87034-47-1

b. The Teacher's Manual Teachers' Manual for A Foundation Course in Human Values and

Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, NewDelhi 2019.ISBN 978-93-87034-53-2

Reference Books

- 1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan VidyaPrakashan, Amarkantak, 1999.
- 2. HumanValues, A.N. Tripathi, NewAge Intl.Publishers, NewDelhi,2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth-by Mohandas Karam chand Gandhi
- 5. Small is Beautiful -E. F Schumacher.
- 6. Slow is Beautiful-Cecile Andrews
- 7. Economy of Permanence-JC Kumarappa
- 8. Bharat Mein Angreji Raj –Pandit Sunderlal
- 9. Rediscovering India- by Dharampal
- 10. Hind Swarajor Indian Home Rule-by Mohandas K.Gandhi
- 11. India Wins Freedom-Maulana Abdul Kalam Azad
- 12. Vivekananda-Romain Rolland (English)
- 13. Gandhi-Romain Rolland(English)

Mapping of COs with POs

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	0	2	1	0	0	2	2	3	0	0	0	2	0	0
CO2	0	2	1	0	0	2	2	3	0	0	0	2	0	0
CO3	0	2	1	0	0	2	2	3	0	0	0	2	0	0
CO4	0	2	1	0	0	2	2	3	0	0	0	2	0	0
CO5	0	2	1	0	0	2	2	3	0	0	0	2	0	0
Total	0	10	5	0	0	10	10	15	0	0	0	10	0	0
Scaling	0	2	1	0	0	2	2	3	0	1	2	2	0	0

1-5 1, 6-10 2, 11-15 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	COURSE NAME	L	T	P	C
XEE 308	ELECTRICAL CIRCUIT ANALYSI S LABORATORY	0	0	1	1
C:P:A		L	T	P	Н
0:1:0		0	0	2	2

Cours	e Outcomes:	Domain	Lev	el
	To understand & verify the network theorems for the		Gui	ded
CO1	analysis of electrical circuits.	Psychomotor	Resp	onse
	To understand & validate the network theorems for the		Guided R	esponse
CO ₂	analysis of electrical circuits.	Psychomotor		
	To understand & analyze electrical circuits in both		Guided R	esponse
CO ₃	sinusoidal and transient modes.	Psychomotor		
	To understand &measure the power and inductance of		Guided R	esponse
CO4	AC circuit.	Psychomotor		
	To understand & analyze the concept of RLC Series and		Guided R	esponse
CO5	parallel resonance circuits.	Psychomotor		
Sl. No.	List of Experiments			Cos
1.	Verification of KVL and KCL.			CO1
2.	Verification of Thevenin theorem.			CO1
3.	Verification of Norton theorem.			CO2
4.	Verification of Maximum power transfer theorem.			CO2
5.	Transient analysis of Series RL, RC circuits.			CO3
6.	Sinusoidal analysis of Series RL, RC circuits.			CO3
7.	Measurement of active power for star and delta connecte	d balanced loads	•	CO4
8.	Verification of self, mutual inductance and coefficient of	coupling.		CO4
9.	Series Resonance Circuit.			CO5
10.	Parallel Resonance Circuit.			CO5
	1	PRACTIO	CAL TO	TAL

Mapping of COs with POs

Mapping of COs with 1 Os														
	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	0	0	0	0	0	0	0	0	1	0	1	1	1
CO2	3	0	0	0	0	0	0	0	0	1	0	1	2	1
CO3	3	2	0	0	0	0	0	0	0	1	1	2	3	1
CO4	3	2	0	0	1	0	0	0	0	1	1	1	3	3

CO5	3	2	0	0	1	0	0	0	0	1	1	1	2	2
Total	15	6	0	0	2	0	0	0	0	5	3	6	11	8
Scaled	3	2	0	0	1	0	0	0	0	1	1	2	3	2

1-5 1, 6-10 2, 11-15 3

 $0-No\ Relation,\ 1-Low\ Relation,\ 2-Medium\ Relation,\ 3-High\ Relation$

COURSE CODE	COURSE NAME	L	T	P	C
XEE 309	ELECTRICAL MACHINES – I LABORATORY	0	0	1	1
C:P:A		L	T	P	Н
0:1:0		0	0	2	2

COURSE OBJECTIVES:

- To introduce the different types of DC motor and generator.
- To analysis the various characteristics of performance machines.
- To expose the students to practical implementations.

Course	Outcomes:	Domain	Level		
CO1	Understand the operation of DC machines.	Psychomotor	Pe	rception	
CO2	Understand the winding concepts of DC machine.	Psychomotor	_	plex Overt esponse	
CO3	Understand the motoring and generating concepts of DC machine.	Psychomotor		Set	
CO4	Analyse single phase and three phase transformers circuits.	Psychomotor	Psychomotor		
CO5	Understand the various loss in magnetic circuits.	Psychomotor	Set		
Sl.No.	List of Experiments			Cos	
1.	Study of D.C. Motor Starters.			CO1	
2.	Open Circuit Characteristics (OCC) and load Character generator.	istics of D.C self	excited	CO2	
3.	Load characteristics of D.C shunt generator.			CO2	
4.	Load characteristics of D.C. shunt motor.			CO2	
5.	Load characteristics of D.C series motor.			CO3	
6.	Speed control of D.C shunt motor.			CO4	
7.	Load test on single-phase transformer.			CO5	
8.	Open circuit and short circuit tests on single phase trans	sformer.		CO5	
		PRACTI	CAL	TOTAL	
		30		30	

Mapping of COs with POs

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2	1	0	0	0	1	0	0	1	1	0
CO2	3	0	2	1	0	0	0	1	0	0	0	1	0	1
CO3	3	0	0	1	0	0	0	1	0	0	1	0	0	1
CO4	3	2	2	2	1	0	1	0	0	1	0	1	0	1
CO5	3	0	0	1	0	0	0	0	0	1	0	0	0	1
Total	15	4	6	7	2	0	1	2	1	2	1	3	1	4

1, 6-10 2, 11-15 3

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	COURSE NAME	L	T	P	C
XMA 401	PROBABILITY AND STATISTICS	3	0	0	3
C:P:A		L	T	P	Н
3.5:2.5:2.5		3	0	0	3

CO1 Explain conditional probability, independent events; find expected values and Moments of Discrete random variables with their properties.	Cognitive	Understanding Remembering
		romoniooning
CO2 Find distribution function, Marginal density function, conditional density function and to define density function of conditional distribution functions normal, exponential and gamma distributions.	Cognitive	Remembering
CO3 Determine the statistical parameters of Binomial, Poisson and Normal and to find correlation, regression and Rank Correlation coefficient of two variables. Moments, skewness and Kurtosis.	Cognitive Psychomotor	Understanding Guided Response
CO4 Explain large sample test for single proportion, difference of proportion, single mean, difference of means and difference of standard deviations with simple problems.	Cognitive	Understanding
CO5 Explain small sample test for single mean, difference of mean and correlation coefficients, variance test, chi square test with simple problems. UNIT - I: BASIC PROBABILITY	Cognitive Affective	Understanding Receiving

Probability spaces, conditional probability, independence; Discrete random variables, Independent random variables, the multinomial distribution, Poisson approximation to the binomial distribution, infinite sequences of Bernoulli trials, sums of independent random variables; Expectation of Discrete Random Variables, Moments, Variance of a sum, Correlation coefficient, Chebyshev's Inequality.

UNIT - II: CONTINUOUS PROBABILITY DISTRIBUTIONS & BIVARIATE DISTRIBUTIONS

9

Continuous random variables and their properties, distribution functions and densities, normal, exponential and gamma densities. Bivariate distributions and their properties, distribution of sums and quotients, conditional densities, Bayes' rule.

UNIT - III: BASIC STATISTICS

9

Measures of Central tendency: Moments, skewness and Kurtosis - Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions, Correlation and regression – Rank correlation.

UNIT - IV: APPLIED STATISTICS

9

Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations.

UNIT - V: SMALL SAMPLES

9

Test for single mean, difference of means and correlation coefficients, test for ratio of variances - Chisquare test for goodness of fit and independence of attributes.

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT BOOKS:

- 1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2015.
- 2. N.P. Bali and M. Goyal, "A text book of Engineering Mathematics", Laxmi Publications, 2010.
- 3. Veerarajan T., "Probability, Statistics and Random processes", Tata McGraw-Hill, New Delhi, 2010.

REFERENCE BOOKS:

- 1. P. G. Hoel, S. C. Port and C. J. Stone, "Introduction to Probability Theory", Universal Book Stall, 2003.
- 2. S. Ross, "A First Course in Probability", Pearson Education India, 2002.
- 3. W. Feller, "An Introduction to Probability Theory and its Applications", Vol. 1, Wiley, 1968.
- 4. E. Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 2006.

E-RESOURCES:

nptel

1. Probability and Statistics by Prof. Someshkumar, Department of Mathematics, IIT Kharagpur. (http://nptel.ac.in/noc/noc_courselist.php).

Mapping of COs with GAs

				11 0								
	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	2	1	0	0	0	0	0	1	1	0	1
CO 2	3	2	1	0	0	0	0	0	1	1	0	1
CO 3	3	2	1	1	0	0	0	0	1	1	0	1
CO 4	3	2	1	1	1	1	0	0	1	1	1	1
CO 5	3	2	1	1	1	1	1	0	1	1	1	1
Total	15	10	5	3	2	2	1	0	5	5	2	5
Scaled	3	2	1	1	1	1	1	0	1	1	1	1

1-5 1, 6-10 2, 11-15 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COUI	COURSE NAME	L	Т	P	C		
COL	DE		_	<u> </u>			
XEE4		3	0	0	3		
C: P	: A	L	T	P	Н		
3:0	: 0	3	0	0	3		
Course	Outcomes:	Do	main		Level		
CO1	Understand the characteristics of diodes, Zener and Spediodes and their applications.	ccial	gnitive	Uno	Understanding		
CO2	Understand the characteristics of transistor.	Сод	gnitive	Uno	Understanding		
	•			•			
~~~	Understand the working of MOSFET and its characteristics. Cognitive Understandin						
CO ₃							
CO3	Classify and explain different types of amplifier.		gnitive	Uno	derstand		

### **UNIT - I: DIODE CIRCUITS**

Amp.

**CO5** 

Understanding

Cognitive

P-N junction diode, I-V characteristics of a diode; review of half-wave and full-wave rectifiers, Zener diodes, Special diodes, clamping and clipping circuits.

# **UNIT - II: BJT CIRCUITS**

Structure and I-V characteristics of a BJT; BJT as a switch. BJT as an amplifier: small-signal model, biasing circuits, current mirror; common-emitter, common-base and common collector amplifiers; Small signal equivalent circuits, high-frequency equivalent circuits.

# UNIT - III: MOSFET CIRCUITS

MOSFET structure and I-V characteristics. MOSFET as a switch. MOSFET as an amplifier: small-signal model and biasing circuits, common-source, common-gate and common-drain amplifiers; small signal equivalent circuits - gain, input and output impedances, transconductance, high frequency equivalent circuit.

# UNIT - IV: DIFFERENTIAL, MULTI-STAGE AND OPERATIONAL AMPLIFIERS

Differential amplifier; power amplifier; direct coupled multi-stage amplifier; internal structure of an operational amplifier, ideal op-amp, non-idealities in an op-amp (Output offset voltage, input bias current, input offset current, slew rate, gain bandwidth product)

# UNIT - V: LINEAR AND NONLINEAR APPLICATIONS OF OP-AMP

Recall and explain linear and non-linear application of OP-

15

Idealized analysis of op-amp circuits. Inverting and non-inverting amplifier, differential amplifier, instrumentation amplifier, integrator, active filter, P, PI and PID controllers and lead/lag compensator using an op-amp, voltage regulator, oscillators (Wien bridge and phase shift). Analog to Digital Conversion. Hysteretic Comparator, Zero Crossing Detector, Square-wave and triangular-wave generators. Precision rectifier, peak detector, Monoshot.

	LECTURE	TUTORIAL	TOTAL
	45	0	45
TEXT BOOKS.			

#### TEXT BOOKS

- 1. Electronic Devices and Circuits theory Robert L. Boylestead, Louis Nashelsky, 11th Edition, 2009, Pearson.
- 2. Malvino A. and D. J. Bates, Electronic Principles 7/e, Tata McGraw Hill, 2010.
- 3. Millman J. and C. C. Halkias, Integrated Electronics: Analog and Digital Circuits and Systems, Tata McGraw Hill, 2010.

# **REFERENCE BOOKS:**

- 1. Floyd T. L., Fundamentals of Analog Circuits, Pearson Education, 2012.
- 2. Bell D. A., Electronic Devices and Circuits, Prentice Hall of India, 2007.
- 3. Electronics circuits and applications, Md H Rashid, Cengage 2014.
- 4. Robert T. Paynter and John Clemons, Paynter's Introductory Electronic Devices & Circuits, Prentice Hall Career & Technology, New Jersey.
- 5. Electronic Devices and Circuits, S. Salivahanan, N. Suresh Kumar, A Vallvaraj, 5th Edition, McGraw Hill Education.
- 6. Gayakward R. A., Op-Amps and Linear Integrated Circuits, PHI Learning Pvt. Ltd., 2012.
- 7. Choudhury R., Linear Integrated Circuits, New Age International Publishers. 2008.

# **E-RESOURCES:**

1. www.nptel.ac.in.

**Mapping of COs with POs** 

					·····	F8	n COs		_ ~ ~					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	0	0	0	0	0	0	0	0	1	0	1	3	3
CO2	3	0	0	0	0	0	0	0	0	1	0	1	3	3
CO3	3	2	0	0	0	0	0	0	0	1	1	2	3	3
CO4	2	2	0	0	1	0	0	0	0	1	1	1	3	3
CO5	0	0	0	0	0	0	0	0	0	0	0	0	3	3
Total	11	4	0	0	1	0	0	0	0	4	2	5	15	15
Scaled	2	1	0	0	1	0	0	0	0	1	1	1	3	3

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	COURSE NAME	L	T	P	C
XEE 403	CONTROL SYSTEMS	3	1	0	4
C:P:A		L	T	P	Н
3:0:0		3	1	0	4

Course Outcomes:	Domain	Level
------------------	--------	-------

	<b>Identify</b> the basic elements, derive the transfer function	Cognitive	
	and		
CO1	Compute the overall gain of the control system and		Understanding
	<b>Construct</b> the transfer function of DC motors and DC		
	generators.		
CO2	<b>Explain</b> the performance of First and Second order system	Cognitive	Understanding
	with static and dynamic error coefficients.		
CO2	<b>Describe</b> the frequency domain specifications and show	C :4:	Understanding
CO3	the response of frequency response.	Cognitive	
CO4	Determine the stability of the systems and Design the	Cognitive	Understanding
	suitable compensator and controller for the given		
	performance criteria of the control system.		
CO5	Describe State transition matrix. Explain State space		
	model and construct and verify the canonical state model	Cognitive	Remembering
	and Kalman's test for controllability and observability.		
TIMIT I	CYCTEMS AND THEID DEDDESENTATION	•	0 + 2

# **UNIT - I: SYSTEMS AND THEIR REPRESENTATION**

9 + 3

Basic elements in control systems – Open and closed loop systems – Principles of feedback, Transfer function Block diagram reduction techniques – Signal flow graphs. Mason gain formula, Modelling of electric systems translation and rotational mechanical systems.

### UNIT – II: TIME RESPONSE ANALYSIS

9 + 3

Time response – Time domain specifications - Standard test signals. Time response of first and second order systems for standard test inputs. Error coefficients – Generalized error series – Steady state error.

# **UNIT - III: FREQUENCY-RESPONSE ANALYSIS**

9 + 3

Frequency domain specification – Bode plot – Polar plot – Determination of closed loop response from open loop response – Correlation between frequency domain and time domain specifications.

# UNIT – IV: STABILITY ANALYSIS AND CONTROLLER DESIGN

9 + 3

Characteristics equation – Location of roots in S plane for stability –Routh Hurwitz criterion–Root locus construction – Effect of pole, zero addition –Nyquist stability criterion. Introduction to design of Proportional, Integral and Derivative Controllers- Lead and Lag compensator- Analog and Digital implementation of controllers.

# **UNIT – V:STATE VARIABLE ANALYSIS**

9 + 5

Concepts of state variables. State space model. Diagonalization of State Matrix. Solution of state equations. Eigen values and Stability Analysis. Physical variable phase variable and canonical variable forms State Space representation of continuous time system. Transfer function from state variable representation –. Concept of controllability and observability.

LECTURE	TUTORIAL	TOTAL
45	15	60

#### **TEXT BOOKS:**

- 1. I.J. Nagrath& M. Gopal, 'Control Systems Engineering', New Age International Publishers Pvt Ltd; Sixth edition (1 September, 2018).
- 2. Norman S. Nise, "Control System Engineering "Seventh edition, John Wiley & Sons, Inc, 2015.
- 3. M. Gopal, "Control Systems, Principles & Design", Tata McGraw Hill, New Delhi, 2002.
- 4. Richard C. Dorf& Robert H. Bishop, "Modern Control Systems", Addison-Wesley, 2012.

#### **REFERENCE BOOKS:**

- 1. B.C. Kuo, 'Automatic Control Systems', Prentice Hall of India Ltd., New Delhi, 2014.
- 2. K. Ogata, 'Modern Control Engineering', 4th edition, Pearson Education, New Delhi, 2003 / PHI.
- 3. N. Bandyopadhyay, 'Control Engineering Theory and Practice', Prentice Hall of India, 2009.
- 4. John J.D'azzo& Constantine H.Houpis, 'Linear control system analysis and design', Tata McGrowHill, Inc., 2013.

# **E-RESOURCES:**

1. NTPEL, Control Systems Engineering (Web Course), Prof. M. Gopal, IIT Kharagpur.

# **Mapping of COs with POs**

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	2	1	0	0	1	1	1	0	0	1	0	0
CO2	2	3	1	0	2	1	1	1	1	1	0	2	2	1
CO3	3	3	3	2	0	0	1	0	3	0	0	0	2	0
CO4	1	2	2	3	2	2	1	1	2	1	1	2	1	0
CO5	2	1	1	1	2	1	1	1	2	1	0	1	2	0
Total	10	10	9	7	4	4	5	4	9	3	1	6	7	7
Scaled	2	2	2	2	1	1	1	1	2	1	1	2	2	2

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	COURSE NAME	L	Т	P	С
XEE 404	ELECTRICAL MACHINES – II	3	1	0	4
C:P:A		L	T	P	Н
3:0:0		3	1	0	4

Course C	Outcomes:	Domain	Level
CO1	To Understand the fundamentals of different types of slots and windings used for AC machines.	Cognitive	Understanding
CO2	To Understand the concepts of pulsating and revolving	Cognitive	Understanding
	magnetic fields.		
CO3	To Understand the operation of induction machines, ttorque	Cognitive	Understanding
	slip characteristics, equivalent circuit and its phasor		
	diagram.		
CO4	To Understand the different typesof starting, braking and	Cognitive	Understanding
	speed control for induction motors. React the generator		
	operation, self-excitation and doubly-fed Induction		
	machines.		

CO5	To Understand the operation of single-phase induction	Cognitive	Understanding
	motors and its performance parameters.		

# UNIT – I: FUNDAMENTALS OF AC MACHINE WINDINGS

9 + 3

Physical arrangement of windings in stator and cylindrical rotor—Slots for windings —Single-turn coil — Active portion and overhang —Full-pitch coils—Types of windings—3D visualization of the above winding types—Air-gap MMF distribution with fixed current through winding—Winding distribution factor.

# UNIT – II: PULSATING AND REVOLVING MAGNETIC FIELDS

9 + 3

Types of magnetic fields –Alternating current in windings with spatial displacement – Magnetic field produced by a single winding – Fixed current and alternating current. Pulsating fields produced by spatially displaced windings– Windings spatially shifted by 90° – Three windings spatially shifted by 120° (carrying three-phase balanced currents) – Revolving magnetic field.

# **UNIT – III: INDUCTION MACHINES**

12 + 3

Constructional details –Types of rotors (squirrel cage and slip-ring) – Torque Slip Characteristics – Equivalent circuit – Phasor Diagram– Effect of parameter variation on torque speed characteristics – Methods of starting, braking and speed control for induction motors–Generator operation –Selfexcitation–Doubly-Fed Induction Machines.

# **UNIT - IV: SINGLE PHASE INDUCTION MOTORS**

6 + 3

Constructional details of single-phase induction motor – Double revolving field theory and operation – Equivalent circuit – Determination of parameters – Split-phase starting methods and applications.

# **UNIT - V: SYNCHRONOUS MACHINES**

9 + 3

Constructional details – Cylindrical rotor synchronous machine – EMF equation –Equivalent circuit – Phasor diagram—Armature reaction—Voltage regulation—V-curves. Salient pole machine – Two reaction theory –Phasor diagram –Power angle characteristics. Synchronizing and parallel operation. (Basic operation of synchronous motors)

LECTURE	TUTORIAL	TOTAL
45	15	60

# **TEXT BOOKS:**

- 1. I. J. Nagrath and D. P. Kothari, 'Electric Machines', Tata McGraw Hill Publishing Company Ltd, 2017.
- 2. M. G. Say, 'Performance and Design of AC Machines', CBS Publishers, 2013
- 3. P. S. Bimbhra, 'Electrical Machinery', Khanna Publishers, 2011.
- 4. B. L. Theraja, 'A Textbook of Electrical Technology', Vol. I & II, M/s S. Chand, Delhi, 2013.

# REFERENCE BOOKS:

- 1. A. E. Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric Machinery', Tata McGraw Hill publishing Company Ltd, 2013.
- 2. A. S. Langsdorf, 'Alternating Current Machines', Tata McGraw Hill publishing Company Ltd, 1984.
- 3. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons, 2007.
- 4. J.B. Gupta, 'Theory and Performance of Electrical Machines', S.K.Kataria and Sons, 2002.
- 5. DeshPande M.V., 'Electrical Machines', PHI Learning Pvt Ltd., New Delhi 2011.
- 6. A. G. Warren, 'Problems in Electrical Engineering', Parker and Smith Solutions, Newyork, 1940.
- 7. K. Murugesh Kumar, 'Electric Machines', Vikas Publishing House Pvt Ltd, 2002.
- 8. Department Laboratory Manual.

# **E-RESOURCES:**

1. http://freevideolectures.com/Course/2335/Basic-Electrical-Technology35-38, Prof. L. Umanand, IISc Bangalore.

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2	1	0	0	0	0	0	0	2	2	1
CO2	3	2	2	2	1	0	0	0	0	0	0	1	2	1
CO3	3	2	2	2	1	0	0	0	0	0	0	1	1	1
CO4	2	2	1	3	2	0	0	0	0	0	0	1	1	1
CO5	3	0	0	0	1	0	0	0	0	0	0	1	1	1
Total	14	8	7	9	6	0	0	0	0	0	0	6	7	5

1-5 1, 6-10 2, 11-15 3

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XUM 405	L	T	P	С
COURSE NAME	ECONOMICS FOR ENGINEERS	3	0	0	3
PREREQUISITES		L	Т	P	Н
C:P:A	3:0:0	3	0	0	3

COURS	E OUTCOMES	DOMAIN	LEVEL
CO1	Explain the concepts of economics in engineering and identify element of cost to prepare cost sheet	Cognitive	Understanding
CO2	Calculate and Explain the Break-even point and marginal costing	Cognitive	Understanding
CO3	Summarize and Use value engineering procedure for cost analysis	Cognitive	Understanding
CO4	Estimate replacement problem	Cognitive	Understanding
CO5	Compute, Explain and make Use of different methods of depreciation	Cognitive	Understanding
UNIT I	INTRODUCTION TO ECONOMICS		08

Flow in an economy, Law of supply and demand, Concept of Engineering Economics – Engineering efficiency, Economic efficiency, Scope of engineering economics- types of costing, element of costs, preparation of cost sheet and estimation, Marginal cost, Marginal Revenue, Sunk cost, Opportunity cost

#### UNIT II BREAK-EVEN ANALYSIS & SOCIAL COST BENEFIT ANALYSIS 12

Margin of Safety, Profit, Cost & Quantity analysis-Product Mix decisions and CVP analysis, Profit/Volume Ratio (P/V Ratio), Application of Marginal costing, Limitations

Social Cost Benefit Analysis: compare different project alternatives, Calculate direct, indirect and external effects; Monetizing effects; Result of a social cost benefit analysis.

# **UNIT III VALUE ENGINEERING & COST ACCOUNTING:**

10

Value engineering – Function, aims, Value engineering procedure - Make or buy decision Business operating costs, Business overhead costs, Equipment operating costs

# UNIT IV REPLACEMENT ANALYSIS

07

Replacement analysis –Types of replacement problem, determination of economic life of an asset, Replacement of an asset with a new asset.

# **UNIT V DEPRECIATION**

**08** 

Depreciation- Introduction, Straight line method of depreciation, declining balance method of depreciation-Sum of the year's digits method of depreciation, sinking fund method of depreciation, Annuity method of depreciation, service output method of depreciation.

	LECTURE	TUTORIAL	TOTAL
HOURS	45	0	45

#### **TEXT BOOKS**

- 1. Sp Gupta, Ajay Sharma & Satish Ahuja, "Cost Accounting", V K Global Publications, Faridabad, Haryana, 2012
- 2. S.P.Jain&Narang, "Cost accounting Principles and Practice", Kalyani Publishers, Calcutta, 2012
- 3. PanneerSelvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2001.
- 4. William G.Sullivan, James A.Bontadelli& Elin M.Wicks, "Engineering Economy", Prentice Hall International, New York, 2001.

#### REFERENCES

types

- 1. Luke M Froeb / Brian T Mccann, "Managerial Economics A problem solving approach" Thomson learning 2007
- 2.Truett&Truett, "Managerial economics-Analysis, problems & cases "Wiley India 8th edition 2004.
- 3. Chan S. Park, "Contemporary Engineering Economics", Prentice Hall of India, 2002.
- 4.Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2002

#### Mapping of COs with POs

	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁	PO ₁₂
CO1	1	2	0	1	0	0	1	1	1	2	2	3
CO2	2	2	1	2	0	0	2	1	1	2	3	3
CO3	2	2	1	3	0	0	2	2	1	2	2	3
CO4	1	2	1	2	0	0	0	1	1	1	2	3
CO5	1	2	0	1	0	0	1	1	0	1	2	3
Scaled	1	2	1	2	0	0	1	1	1	2	2	3

 $1-5 > 1, 6-10 > 2, \overline{11-15 > 3}$ 

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

Cours	se Co	de		:	XUM406		L	T	P	C	
Cours	se Nai	me	:	:	DISASTER MANAGEMENT		3	0	0	3	
Prere	quisit	e	: NIL								
C	P	A					L	T	P	Н	
3	0	0					3	0	0	3	
Course Outcome: After the completion of the course, students will be able to						Domain		Level			
CO1	Uı	nderstan	d the	e co	oncepts of disasters, their significance and	Cogn	itive	Un	Understanding		

CO2	Understand the relationship between vulnerability, disasters, disaster prevention and risk reduction	Cognitiv	'e	Unde	rstanding					
CO3	Able to understanding of preliminary approaches of Disaster Risk Reduction (DRR)	Cognitiv	re	Unde	rstanding					
CO4	Develop awareness of institutional processes in the country	Cognitiv	re	Appl	ying					
CO5	Develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity	Cognitiv	re	Apply	ying					
COUR	SE CONTENT									
UNIT I	INTRODUCTION TO DISASTERS				6					
	Importance & Significance, Types of Disasters, Climate Chan	ge, DM cy	ycle							
UNIT I	I RISK ASSESSMENT				12					
	Risk, Vulnerability, Types of Risk, Risk identification, Em Damage Assessment, Risk modeling.	erging Ris	sks, F	Risk As	sessment,					
UNIT I	III DISASTER MANAGEMENT				10					
	Phases, Cycle of Disaster Management, Institutional Framew System, DM Plan, Community Based DM, Community healt and Disaster Monitoring, Disaster Communication, Role of C and Don'ts in various disasters.	h and safe	ty, Ea	ırly Wa	rning					
UNIT I										
	Hazard and Vulnerability profile of India, Components of Sanitation, Shelter, Health, Waste Management, Institutional Response and Preparedness), Disaster Management Act and plans, programmes and legislation	arrangeme	ents (	Mitigat	ion,					
UNIT V	DISASTER MANAGEMENT: APPLICATIONS AND CA	SE STUI	DIES		7					
	Landslide Hazard Zonation, Earthquake Vulnerability Assess Infrastructure, Drought Assessment, Coastal Flooding, Forest Space Based Inputs for Disaster Mitigation and Management	Fire, Man	Mad	_	ters,					
		L	T	P	Total					
		45	0	0	45					

# **TEXT BOOKS**

- 1. Singhal J.P. Disaster Management, Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, Disaster Science and Management, McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10:** 1259007367, **ISBN-13:** 978-1259007361)
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. KapurAnu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010

# **REFERENCE BOOKS**

- 1. Siddhartha Gautam and K Leelakrisha Rao, "Disaster Management Programmes and Policies", Vista International Pub House, 2012
- 2. Arun Kumar, "Global Disaster Management", SBS Publishers, 2008
- 3. Pardeep Sahni, Alka Dhameja and Uma medury, "Disaster mitigation: Experiences and reflections", PHI, 2000
- 4. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
- 5. Government of India, National Disaster Management Policy, 2009

#### **E-REFERENCES**

- NIDM Publications at http://nidm.gov.in- Official Website of National Institute of Disaster Management (NIDM), Ministry of Home Affairs, Government of India
- http://cwc.gov.in , http://ekdrm.net , http://www.emdat.be , http://www.nws.noaa.gov http://pubs.usgs.gov , http://nidm.gov.ini http://www.imd.gov.ini

# **Mapping of COs with POs**

						-uppiii	8							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1		1	1					1			1	1	2	2
CO 2			2		3						2	2	2	2
CO 3						2	2				1	1		1
CO 4		2	2		1	1	1	2	1	1	3	1	1	
CO 5						2	3	3		2	1	1	2	2
Total	0	3	5	0	4	5	6	6	1	3	8	6	7	7
Scaled	0	1	1	0	1	1	1	1	1	1	2	1	2	2

1-5 > 1, 6-10 > 2, 11-15 > 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	COURSE NAME	L	Т	P	С
XEE 407	ANALOG ELECTRONICS LABORATORY	0	0	1	1
C:P:A		L	Т	P	Н
1:0:0		0	0	2	2

# **COURSE OBJECTIVES:**

- To introduce the different types of analog and digital modulation and demodulation.
- To convey frequency division multiplexing and demultiplexing.
- To expose the students line coding and decoding.
- To create awareness on the performance of digital modulation techniques in AWGN and Rayleigh channels.

Course Outcomes:	Domain	Level
------------------	--------	-------

	Construct, Demonstrate and Simulate Amplitude	Psychom	otor Me	chanism
CO1	Modulation, Demodulation, sensitivity and selectivity			
	of AM receivers.			
	Construct, Demonstrate and Simulate Frequency	Psychom	otor Me	chanism
CO ₂	Modulation, Demodulation, sensitivity and selectivity			
	of FM receivers.	D 1		1 .
CO3	Construct, and Demonstrate Frequency Division	Psychom	otor Me	echanism
	Multiplexing and demultiplexing. <b>Build, Demonstrate</b> and <b>Simulate</b> various types of	Psychom	oton Ma	chanism
CO4	analog and digital Pulse Modulations using trainer kits.	Psycholii	otor Me	chamsin
	analog and digital ruise wooddiations using trainer kits.			
COF	Simulate performance of digital modulation techniques	Psychom	otor Me	chanism
CO5	in AWGN and Rayleigh channels.	•		
Sl.	List of Experiments			COs
No.	•			COS
1.	Design of full wave rectifier with and without filter.			CO1
2.	Design of bridge rectifier circuits using with and without			CO1
3.	Conduct an experiment to test clipping and clamping circ			CO1
4.	Design of BJT common emitter amplifier using voltage di	vider bias v	with and with	
	feedback.			CO2
5.	Plot the drain and transfer characteristics of MOSFET.			CO3
6.	Conduct experiment on differential amplifier			CO4
7.	Design of Phase shift and Wien bridge oscillators using (		- 1.1 m	CO5
8.	Conduct experiment on Inverting, Non inverting amplific			CO5
9.	Conduct experiment on a stable and monostable multivib			CO5
10.	Conduct experiment on integrator and differentiator circu		P-AMP.	CO5
11.	Conduct experiment on Schmitt trigger circuit using OP-			CO5
			ACTICAL	TOTAL
		30		30

**Mapping of COs with POs** 

								Os witi						
	PO	PO	PO	PO	PO	<b>PSO</b>	<b>PSO</b>							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3									1		1	3	3
CO2	3									1		1	3	3
CO3	3	2								1	1	2	3	3
CO4	2	2			1					1	1	1	3	3
CO5													3	3
Total	11	4			1					4	2	5	15	15
Scaled	2	1			1					1	1	1	3	3

1-5 1, 6-10 2, 11-15 3

COURSE CODE	COURSE NAME	L	Т	P	C
XEE 408	CONTROL SYSTEMS LABORATORY	0	0	1	1
C:P:A		L	T	P	Н
0:1:0		0	0	2	2

# **COURSE OBJECTIVES:**

- Control Systems is the engineering discipline that applies control theory to design systems with desired behaviours.
- To make students understand the concept of system representation for stability analysis and state –space analysis.
- To design the compensator in time and frequency domain, to design the PID compensator.

Course	Outcomes:	Domain	Level				
CO1	Identify the basic elements, derive the transfer function and Compute the overall gain of the control system and Construct the transfer function of DC motors and DC generators.	Psychomotor	Set				
CO2	<b>Explain</b> the performance of First and Second order system with static and dynamic error coefficients.	Psychomotor	Set				
CO3	Describe the frequency domain specifications and show the response of frequency response.  Set  Psychomotor						
CO4	<b>Determine</b> the stability of the systems and <b>Design</b> the suitable compensator and controller for the given performance criteria of the control system	Psychomotor	Percept	ion			
CO5	<b>Describe</b> State transition matrix. <b>Explain</b> State space model <b>and construct</b> and <b>verify</b> the canonical state model and Kalman's test for controllability and observability.	Psychomotor	Percept	ion			
Sl. No.	List of Experiments	-		COs			
1.	Transfer function and modelling of separately excited D	C Generator.		CO1			
2.	Transfer function and modelling of Armature & field-co	ntrolled DC Moto	or.	CO1			
3.	Transfer function of AC Servomotor.			CO1			
4.	Analysis of Synchro Transmitter and Receiver.			CO2			
5.	Performance of DC Stepper Motor.			CO2			
6.	Digital simulation of I order and II order system by usin	<u> </u>		CO2			
7.	Frequency response of Lag, Lead & Lag – Lead network			CO3			
8.	Determination of Phase margin and Gain margin of the l			CO3			
9. Transfer function and modelling of Ward – Leonard speed control system applied to DC motor.							
10.	DC Position using feedback Control system.			CO5			
		PRACTI	CAL	ГОТАL			
		30		30			

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	2	1	0	0	1	1	1	0	0	1	0	0
CO2	2	3	1	0	2	1	1	1	1	1	0	2	2	1
CO3	3	3	3	2	0	0	1	0	3	0	0	0	2	0
CO4	1	2	2	3	2	2	1	1	2	1	1	2	1	0
CO5	2	1	1	1	2	1	1	1	2	1	0	1	2	0
Total	10	10	9	7	4	4	5	4	9	3	1	6	7	7
Scaled	2	2	2	2	1	1	1	1	2	1	1	2	2	2

1-5 1, 6-10 2, 11-15 3

 $0-No\ Relation,\ 1-Low\ Relation,\ 2-Medium\ Relation,\ 3-High\ Relation$ 

COURSE CODE	COURSE NAME	L	T	P	C
XEE 409	ELECTRICAL MACHINES – II LABORATORY	0	0	1	1
C:P:A		L	T	P	Н
0:1:0		0	0	2	2

# **COURSE OBJECTIVES:**

- To introduce the different types of AC motor and generator.
- To analysis the various characteristics of performance Induction and synchronous machines.
- To expose the students to practical implementations of real time applications.

Course	Outcomes:	Domain	Level			
CO1	To Understand the fundamentals of different types of slots and windings used for AC machines.	Psychomotor	Mechanis	sm		
CO2	To Understand the concepts of pulsating and revolving magnetic fields.	Psychomotor	Mechanis	sm		
СОЗ	To Understand the operation of induction machines, torque slip characteristics, equivalent circuit and its phasor diagram.	Psychomotor	Mechani	sm		
CO4	To Understand the different types of starting, brakingand speed control for induction motors. React the generator operation, self-excitation and doubly-fed Induction machines.	Psychomotor	Mechani	sm		
CO5	To Understand the operation of single-phase induction motors and its performance parameters.	Psychomotor	Mechani	sm		
Sl. No.	List of Experiments			COs		
1.	Load test on three phase squirrel cage induction motor.					
2.	Load test on three phase slip ring induction motor.			CO1		

3.	Load test of a three-phase alternator.	CO2
4.	No load and blocked rotor test on three phase induction motor.	CO3
5.	Study of induction motor starters.	CO4
6.	Load test on single-phase induction motor.	CO4
7.	No load and blocked rotor test on single phase induction motor.	CO4
8.	Regulation of three phase alternator by EMF /MMF methods.	CO5
9.	OCC and load characteristics of three phase alternator	CO5
10.	V and inverted V curves of three phase synchronous motor.	CO5
	PRACTICAL TO	OTAL
	30	30

**Mapping of COs with POs** 

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2	1	0	0	0	0	0	0	2	2	1
CO2	3	2	2	2	1	0	0	0	0	0	0	1	2	1
CO3	3	2	2	2	1	0	0	0	0	0	0	1	1	1
CO4	2	2	1	3	2	0	0	0	0	0	0	1	1	1
CO5	3	0	0	0	1	0	0	0	0	0	0	1	1	1
Total	14	8	7	9	6	0	0	0	0	0	0	6	7	5

1-5 1, 6-10 2, 11-15 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation (V SEM -R-2018)

Cours	se Outcomes (XEE 501):	Domain	Level					
CO1	<b>Demonstrate</b> the per phase analysis of power system	Cognitive	Understanding					
CO2	<b>Develop</b> the model of various components of power	Cognitive	Applying					
	system and <b>Construct</b> the Y Bus and Z Bus for a power system.							
CO3	<b>Analyse</b> the power system network with symmetrical and unsymmetrical faults. <b>Calibrate</b> the fault current in a power system.	Cognitive psychomotor	Analysing Complex					
CO4	<b>Summarize</b> the power flow equation. <b>Assess</b> the voltage profile of a power system by performing the load flow analysis and <b>Identify</b> the line loss and line flow.	Cognitive psychomotor	Understanding Evaluating Perception					
CO5	Classify and determine the stability of power system.  Detect the transient behaviour of power system when it is subjected to a fault.	Cognitive psychomotor	Understanding Evaluating Perception					

**Learning Objectives:** 

Establish and use power system models based on nodal admittance and impedance matrices for the analysis of large-scale power networks. Model generators, transformers, lines and cables in the positive, negative and zero sequence systems as basis for the analysis of symmetrical and unsymmetrical faults. Perform analysis of power systems subject to symmetrical and unsymmetrical faults.

Use simulation tools to perform comprehensive short circuit studies, load flow studies, and optimal power flow studies.

COURSE CODE	COURSE NAME	L	T	P	C
XEE 501	POWER SYSTEMS-I (APPARATUS AND MODELLING)	3	1	1	5
C:P: A		L	T	P	Н
3:1:0		3	1	2	6
UNIT - I: INTROD	UCTION	I	1	9+3	1

Need for system analysis in planning and operation of modern power system – per phase analysis - Single line diagram - Per unit representation and Per unit calculations – Change of base – introduction to Electricity Deregulation.

# **UNIT-II: MODELLING OF POWER SYSTEM COMPONENTS**

12+3+6

Primitive network and its matrices – bus incidence matrix – bus admittance and bus impedance matrix formation – Z – Bus building algorithm - Modelling of generator, load, transformer, transmission line for different power system studies.

# **List of Experiments**

- 1. Formation of Bus Admittance Matrix.
- 2. Formation of Bus Impedance Matrix using building Algorithm

# UNIT - III: FAULT ANALYSIS-UNSYMMETRICAL FAULTS

12+3+6

Need for short circuit study - basic assumptions in fault analysis of power systems. Symmetrical (or) balanced three phase faults – problem formulation – fault analysis using Zbus matrix – algorithm and flow chart. Computations of short circuit capacity, post fault voltage and currents. Introduction to symmetrical components – sequence impedances – sequence networks Unsymmetrical fault analysis: L-G, L-L and L-L-G faults.

#### **List of Experiments**

- 3. Symmetrical Fault Analysis.
- 4. Unsymmetrical Fault Analysis.

# **UNIT- IV: POWER FLOW ANALYSIS**

9+3+9

Need for Power Flow Analysis – bus classification – derivation of power flow equation – solution by Gauss–Seidel, Newton–Raphson and Fast Decoupled Power Flow methods – comparison of three methods

# **List of Experiments**

- 5. Solution of power flow using Gauss-Seidel Method.
- 6. Solution of power flow using Newton Raphson Method.
- 7. Solution of power flow using Fast Decoupled Power Flow Method.

#### **UNIT -V: STABILITY ANALYSIS**

9+3+3

Types of stability - Swing equation in state space form - equal area criterion - stability analysis of single machine connected to infinite bus by modified Euler's method using classical machine model— critical clearing angle and time. Causes of voltage instability — voltage stability proximity indices for two-bus system — methods of improving power system stability.

# **List of Experiments**

9. Transient Stability Analysis of Single-Machine Infinite Bus System

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	15	30	90

#### **TEXT BOOKS**

- 1. J. Grainger and W. D. Stevenson, "Power System Analysis", McGraw-Hill Education; 2nd edition (December 28, 2015)
- 2. O. I. Elgerd, "Electric Energy Systems Theory", McGraw Hill Education, 1st July 2017.
- 3. A. R. Bergen and V. Vittal, "Power System Analysis", Pearson Education Inc., 2nd Edition, 2009.

#### REFERENCES

- 1. D. P. Kothari and I. J. Nagrath, "Modern Power System Analysis", McGraw Hill Education, 4th Edition (29 June 2011)
- 2. B. M. Weedy, B. J. Cory, N. Jenkins, J. Ekanayake and G. Strbac, "Electric Power Systems", Wiley, 5 edition (December 26, 2012)

#### **E REFERENCES**

www.nptel.ac.in

https://nptel.ac.in/courses/108104051/ https://nptel.ac.in/courses/108102047/

Mapping of COs with POs

Trupping of Cost With 1 os														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3									1		1	3	2
CO 2	3									1		1	3	2
CO 3	3	2								1	1	2	3	2
CO 4	3	2			1					1	1	1	3	2
CO 5	3	2			1					1	1	1	3	2
Total	15	6	0	0	2	0	0	0	0	5	3	6	15	10
Scaled	3	1	0	0	0	0	0	0	0	1	1	1	3	2

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

Cours	se Outcomes (XEE 502):	Domain	Level
CO1	<b>Identify</b> the basic elements, derive the transfer function	Cognitive	Understanding
	and	Psychomotor	
	Compute the overall gain of the control system and		
	Construct the transfer function of DC motors and DC		
	generators.		
CO2	<b>Explain</b> the performance of First and Second order system	Cognitive	Understanding
	with static and dynamic error coefficients.	Psychomotor	Set

CO3	<b>Describe</b> the frequency domain specifications and show the	Cognitive	Remembering
	response of frequency response.	Psychomotor	Understanding
			Set
CO4	Determine the stability of the systems and Design the	Cognitive	Understanding
	suitable compensator and controller for the given	Psychomotor	Design
	performance criteria of the control system		Perception
CO5	Describe State transition matrix. Explain State space	Cognitive	Remembering
	model and construct and verify the canonical state model		
	and Kalman's test for controllability and observability.		

**Learning Objectives:** Control Systems is the engineering discipline that applies control theory to design systems with desired behaviours. To make students understand the concept of system representation for stability analysis and state –space analysis, to design the compensator in time and frequency domain, to design the PID compensator

COURSE CODE	COURSE NAME	L	T	P	C						
<b>XEE 502</b>		3	0	1	4						
C:P: A	CONTROL SYSTEMS	L	T	P	Н						
3:1:0		3	0	2	5						
LINIT I. CVCTEN	UNIT 1. SYSTEMS AND THEIR DEPRESENTATION 0.40										

#### UNIT - I: SYSTEMS AND THEIR REPRESENTATION

Basic elements in control systems — Open and closed loop systems — Principles of feedback, Transfer function Block diagram reduction techniques — Signal flow graphs. Mason gain formula, Modelling of

# electric systems translation and rotational mechanical systems. **List of Experiments**

- 1. Transfer function and modelling of separately excited DC Generator.
- 2. Transfer function and modelling of Armature & field-controlled DC Motor.
- 3. Transfer function of AC Servomotor

### UNIT – II: TIME RESPONSE ANALYSIS

9+9

Time response – Time domain specifications - Standard test signals. Time response of first and second order

systems for standard test inputs. Error coefficients – Generalized error series – Steady state error

# **List of Experiments**

- 4. Analysis of Synchro Transmitter and Receiver.
- 5. Performance of DC Stepper Motor
- 6. Digital simulation of I order and II order system by using Scilab.

# **UNIT - III: FREQUENCY-RESPONSE ANALYSIS**

9+6

Frequency domain specification – Bode plot – Polar plot – Determination of closed loop response from open loop response – CorRelation between frequency domain and time domain specifications

# **List of Experiments**

- 7. Frequency response of Lag, Lead & Lag Lead networks.
- 8. Determination of Phase margin and Gain margin of the Bode plot using Scilab.

# UNIT – IV: STABILITY ANALYSIS AND CONTROLLER DESIGN

Characteristics equation – Location of roots in S plane for stability –Routh Hurwitz criterion – Root locus construction – Effect of pole, zero addition –Nyquist stability criterion. Introduction to design of Proportional, Integral and Derivative Controllers- Lead and Lag compensator- Analog and Digital implementation of controllers.

#### UNIT – V: STATE VARIABLE ANALYSIS

9+6

Concepts of state variables. State space model. Diagonalization of State Matrix. Solution of state equations. Eigenvalues and Stability Analysis. Physical variable phase variable and canonical variable forms State Space representation of continuous time system. Transfer function from state variable representation –. Concept of controllability and observability.

# **List of Experiments**

9. Transfer function and modeling of Ward – Leonard speed control system applied to DC motor. 10.DC Position using feedback Control system.

LECTURE	TUTORIAL	PRACTICAL	TOTAL	l
45	0	30	75	l

#### **TEXTBOOKS**

- 1. I.J. Nagrath & M. Gopal, 'Control Systems Engineering', New Age International Publishers Pvt Ltd; Sixth edition (1 September, 2018)
- 2. Norman S. Nise, "Control System Engineering" Seventh edition, John Wiley & Sons, Inc, 2015.
- 3. M. Gopal, "Control Systems, Principles & Design", Tata McGraw Hill, New Delhi, 2002.
- 4. Richard C. Dorf & Robert H. Bishop, "Modern Control Systems", Addison-Wesley, 2012.

#### REFERENCES

- 1. B.C. Kuo, 'Automatic Control Systems', Prentice Hall of India Ltd., New Delhi, 2014.
- 2. K. Ogata, 'Modern Control Engineering', 4th edition, Pearson Education, New Delhi, 2003 / PHI.
- 3. N. Bandyopadhyay, 'Control Engineering Theory and Practice', Prentice Hall of India, 2009
- 4. John J.D'azzo & Constantine H.Houpis, 'Linear control system analysis and design', Tata McGrowHill, Inc., 2013

# E – REFERENCES

1. NTPEL, Control Systems Engineering (Web Course), Prof. M. Gopal, IIT Kharagpur.

Mapping of COs with POs

	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	1			1	1	1			1		
CO2	2	3	1		2	1	1	1	1	1		2	2	1
CO3	3	3	3	2			1		3				2	2
CO4	1	2	2	3	2	2	1	1	2	1	1	2	1	2
CO5	2	1	1	1	2	1	1	1	2	1		1	2	2
Total	10	10	9	7	4	4	5	4	9	3	1	6	7	7
Scaled	2	2	2	2	1	1	1	1	2	1	1	2	2	2

0 –No Relation 1 – Low Relation

2 – Medium Relation 3 – High Relation

#### MICROPROCESSORS AND MICROCONTROLLERS

	Cours	se Outcomes (XEE 503):	Domain	Level
•	CO1	To understand the fundamentals of microprocessors, microcontrollers and embedded systems	Cognitive	Understanding
•	CO2	To understand the architecture, Timing diagrams and Execution cycles of 8051	Cognitive	Understanding

CO3	To understand the types of addressing modes, Instruction	Cognitive	Understanding
	types and to understand the basic concepts of programming	Psychomotor	Set
		Affective	Responding
CO4	To understand interfacing design of peripherals like I/O,	Cognitive	Understanding
	A/D, D/A, timer etc.	Psychomotor	Set
		Affective	Responding
CO5	To understand communication protocols and interfacing	Cognitive	Understanding
	with external devices	Psychomotor	Set
		Affective	Responding

**Learning Outcomes:** Able to do assembly language programming, do interfacing design of peripherals like I/O, A/D, D/A, timer etc. and to develop systems using different microcontrollers.

COURSE CODE	COURSE NAME	L	T	P	C
<b>XEE 503</b>	MICROPROCESSORS AND	3	0	1	4
C:P: A	MICROCONTROLLERS	L	T	P	Н
3:1:0		3	0	2	5
TINITE I ETININANA	ENTAL C OF MICHOPROCESCORS				0

#### UNIT- I: FUNDAMENTALS OF MICROPROCESSORS

Fundamentals of Microprocessor Architecture. 8-bit Microprocessor and Microcontroller architecture, Comparison of 8-bit microcontrollers, 16-bit and 32-bit microcontrollers. Definition of embedded system and its characteristics, Role of microcontrollers in embedded Systems. Overview of the 8051 family.

# **UNIT-II: THE 8051 ARCHITECTURE**

- 19

Internal Block Diagram, CPU, ALU, address, data and control bus, working registers, SFRs, Clock and RESET circuits, Stack and Stack Pointer, Program Counter, I/O ports, Memory Structures, Data and Program Memory, Timing diagrams and Execution Cycles.

# UNIT- III: INSTRUCTION SET AND PROGRAMMING

9+12

Addressing modes: Introduction, Instruction syntax, Data types, Subroutines Immediate addressing, Register addressing, Direct addressing, Indirect addressing, Relative addressing, indexed addressing, Bit inherent addressing, bit direct addressing. 8051 Instruction set, Instruction timings. Data transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Subroutine instructions, Bit manipulation instruction. Assembly language programs, C language programs. Assemblers and compilers. Programming and Debugging tools.

#### **List of Experiments**

- 1. Simple arithmetic operations with 8085 Microprocessors: Multi precision addition / subtraction / multiplication / division.
- 2. Programming with control instructions: Increment / Decrement, Ascending / Descending order, Maximum / Minimum of numbers, Rotate instructions.
- 3. Demonstration of basic instructions with 8051 Micro controller execution, including: a. Conditional jumps, looping b. Calling subroutines. c. Stack parameter testing
- 4. Design program for code conversions.

# UNIT -IV: MEMORY AND I/O INTERFACING

9+

Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters, memory devices. **List of Experiments** 

5. Interfacing Converters of 8-bit D/A and A/D.

# UNIT -V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS

9+15

Synchronous and Asynchronous Communication. RS232, SPI, I2C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing. Stepper motor interfacing, DC Motor interfacing, sensor interfacing. **List of Experiments** 

- 6. Interfacing of Keyboard with 8085
- 7. Interfacing of seven segment display with 8085.
- 8. Serial communication, I/O Port operations.
- 9. Design and implementation of Traffic Light control.
- 10. Design and implementation of Stepper motor control

LECTURE	PRACTICAL	TOTAL
45	30	75

#### **TEXTBOOKS**

- 1. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.
- 2. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.
- 3. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.
- 4. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013

### REFERENCES

- 1. D.A.Patterson and J.H.Hennessy, "Computer Organization and Design: The Hardware /Software interface", Morgan Kaufman Publishers, 5th Edition, 2013.
- 2. D.V.Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 2005.

# E REFERENCES

# www.nptel.ac.in

https://onlinecourses.nptel.ac.in/noc19 ee11 https://nptel.ac.in/courses/Webcourse-

# contents/IISc

BANG/notused/Microprocessors%20and%20Microcontrollers-/Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.pdf

Mapping of COs with POs

	Trupping of Cos with 1 Cos													
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO	PSO
													1	2
CO 1	1	0	2	0	0	0	0	0	0	1	1	0	1	1
CO 2	1	2	1	3	1	0	0	0	2	1	2	1	1	1
CO 3	0	0	0	0	0	1	2	0	1	2	0	0	1	1
CO 4	1	1	2	2	1	0	0	0	2	1	2	1	0	1
CO 5	1	2	2	1	0	0	3	0	3	2	1	0	0	1
Total	4	5	7	6	2	1	5	0	8	7	6	2	3	5
Scaled	1	1	2	1	1	1	1	0	2	2	1	1	1	1

0 –No Relation 1 – Low Relation

2 – Medium Relation 3 – High Relation

#### CONSTITUTION OF INDIA

Cours	e Outcomes:	Domain	Level
CO1	<i>Understand</i> the Constitutional	Cognitive	Understanding
	History		
CO2	Understand the Powers and	Cognitive	Understanding
	Functions		
CO3	Understand the Legislature	Affective	Remembering
CO4	<i>Understand</i> the Judiciary	Affective	Remembering
CO5	Understand the Centre State	Cognitive	Understanding
	relations		

COURSE CODE	COURSE NAME	L	T	P	$\mathbf{C}$
XUM 506	CONSTITUTION OF INDIA	3	0	0	3
C:P: A		L	T	P	Н
3:0:0		3	0	0	3
UNIT- I:		I			9

Constitutional History- The Constitutional Rights- Preamble- Fundamental Rights- Fundamental Duties- Directive principles of State Policy.

UNIT- II:

The Union Executive- The President of India (powers and functions)- Vice-President of India The Council of Ministers-Prime Minister- Powers and Functions.

UNIT- III:

Union Legislature- Structure and Functions of Lok Sabha- Structure and Functions of Rajya Sabha- Legislative Procedure in India- Important Committees of Lok Sabha- Speaker of the Lok Sabha.

UNIT- IV:

The Union Judiciary- Powers of the Supreme Court- Original Jurisdiction- Appellate jurisdictions- Advisory Jurisdiction- Judicial review.

UNIT-V:

Centre State relations- Political Parties- Role of governor, powers and functions of Chief Minister-Legislative Assembly- State Judiciary- Powers and Functions of the High Courts.

LECTURE	TUTORIAL	TOTAL
45	0	45

# REFERENCES

- 1. W.H.Morris Shores- Government and politics of India, NewDelhi, B.1. Publishers, 1974.
- 2. M.V.Pylee- Constitutional Government in India, Bombay, Asia Publishing House, 1977.
- 3. R.Thanker- The Government and politics of India, London: Macmillon, 1995.
- 4. A.C.Kapur- Select Constitutions S,Chand & Co.,NewDelhi, 1995
- 5. V.D.Mahajan- Select Modern Governments, S, Chand & Co, New Delhi, 1995.
- 6. B.C.Rout- Democractic Constitution of India.
- 7. Gopal K.Puri- Constitution of India, India 2005.

# **COs versus POs mapping**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	0	0	1	0	0	0	0	0	0	0	0	0	0
CO 2	2	0	0	1	0	0	0	0	0	0	0	0	0	0
CO 3	2	0	0	1	0	0	0	0	1	0	0	0	0	0
CO 4	2	0	0	1	0	0	0	1	1	0	0	0	0	0
CO 5	2	2	0	1	0	0	0	1	1	0	0	0	0	0
Total	10	2	0	5	0	0	0	2	3	0	0	0	0	0
Scaled	2	1	0	1	0	0	0	1	1	0	0	0	0	0

0 –No Relation 1 – Low Relation

#### **ELECTRICAL SAFETY**

Cours	se Outcomes	(XEE M01):	Don	nain	Level		
CO1	Describe ele	ctrical hazards and safety equipment.	Cognitive		Und	Understanding	
CO2	Analyze bond	Analyze and apply various grounding and bonding techniques.					3
CO3	Select approvoltage equi	Cognitive		Understanding		nding	
COU	RSE CODE	COURSE NAME		L	T	P	C
X	EE M01			1	0	0	1
	C:P: A	<b>ELECTRICAL SAFETY</b>		L	T	P	Н
	3:0:0		ŀ	1	0	0	1
Topic	es ·		<u> </u>				15

Principles of electric safety - Electricity & Human body - Earthing / Grounding Risk assessment & management - Safety against over voltage, extra-low and residual voltages - Safe practices – RCD, PPE, CB, lockout/tag out -Hazardous areas, Electrical insulation - Electrical fires, Arc flash - Electrical safety in hospitals and Industries. Hazards of electricity - basic physics of electrical hazards - electrical safety equipment safety procedures and methods - grounding and bonding of electrical systems and equipment - electrical maintenance and its Relationship to safety regulatory and legal safety requirements and standards accident prevention, accident investigation, rescue, and first aid - medical aspects of electrical trauma - low-voltage, mediumand high-voltage safety synopsis Human factors in electrical safety.

LECTURE	TUTORIAL	TOTAL
15	0	15

#### **TEXT BOOKS**

1. "Electrical Safety Handbook", John Cadick, Mary Capelli-Schellpfeffer, Dennis Neitzel, Al Winfield, McGraw-Hill Education, 4th Edition, 2012.

# REFERENCE BOOKS

- 1. "Electrical Safety- a guide to the causes and prevention of electric hazards", Maxwell Adams.J, The Institution of Electric Engineers, IET 1994(Reprint).
- 2. "Electrical Safety in the Workplace", Ray A. Jones, Jane G. Jones, Jones & Bartlett Learning, 2000.

^{2 –} Medium Relation 3 – High Relation

Cours	se Outcomes:	Domain	Level
CO1	<i>Understand</i> the concepts of economics in engineering.	Cognitive	Remembering
CO2	Interpret Break-even analysis.	Cognitive	Understanding
CO3	<i>Illustrate</i> value engineering procedure.	Cognitive	Understanding
CO4	Understand and analyze replacement problem.	Cognitive	Understanding
CO5	Explain depreciation.	Cognitive	Understanding

# **Learning Objectives:**

COURSE CODE	COURSE NAME	L	T	P	C	
XUM 601	<b>ECONOMICS FOR ENGINEERS</b>	3	0	0	3	
C:P: A		L	T	P	Н	
3:0:0		3	0	0	3	
UNIT- I: INTRODUCTION TO ECONOMICS						

Flow in an economy, Law of supply and demand, Concept of Engineering Economics – Engineering efficiency, Economic efficiency, Scope of engineering economics-types of costing, element of costs, preparation of cost sheet and estimation, Marginal cost, Marginal Revenue, Sunk cost, Opportunity cost

# UNIT- II: BREAK-EVEN ANALYSIS & SOCIAL COST BENEFIT ANALYSIS

Margin of Safety, Profit, Cost & Quantity Analysis-Product Mix decisions and CVP analysis, Profit/Volume Ratio (P/V Ratio), Application of Marginal costing, Limitations

Social Cost Benefit Analysis: compare different project alternatives, Calculate direct, indirect and external effects; Monetizing effects; Result of a social cost benefit analysis.

# UNIT- III: VALUE ENGINEERING & COST ACCOUNTING

10

12

Value engineering – Function, aims, Value engineering procedure - Make or buy decision Business operating costs, Business overhead costs, Equipment operating costs

#### **UNIT- IV: REPLACEMENT ANALYSIS**

Replacement analysis – Types of replacement problem, determination of economic life of an asset, Replacement of an asset with a new asset.

#### **UNIT- V: DEPRECIATION**

Depreciation- Introduction, Straight line method of depreciation, declining balance method of depreciation-Sum of the years digits method of depreciation, sinking fund method of depreciation, Annuity method of depreciation, service output method of depreciation.

 	 1			
		LECTURE	TUTORIAL	TOTAL
		45	0	45

#### **TEXTBOOKS**

- 1. 1 Sp Gupta, Ajay Sharma & Satish Ahuja, "Cost Accounting", V K Global Publications, Faridabad, Haryana, 2012
- 2. S.P.Jain & Narang, "Cost accounting Principles and Practice", Kalyani Publishers, Calcutta, 2012
- 3. Panneer Selvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2001.
- 4. William G.Sullivan, James A.Bontadelli & Elin M.Wicks, "Engineering Economy", Prentice Hall International, New York, 2001.

#### REFERENCES

- 1. Luke M Froeb / Brian T Mccann, "Managerial Economics A problem solving approach" Thomson learning 2007
- 2. Truett & Truett, "Managerial economics- Analysis, problems & cases "Wiley India 8th edition 2004.
- 3. Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2002.
- 4. Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2002

# E REFERENCES

_

# POWER SYSTEMS-II (OPERATION AND CONTROL)

Cours	se Outcomes (XEE 602):	Domain	Level	
CO1	<b>Explain</b> power system load characteristics and generation reserve requirements.	Cognitive	Understanding	
CO2	<b>Demonstrate</b> and <b>Apply</b> the mathematical knowledge to model and analysis of power system for frequency control.	Cognitive	Understanding Applying	
CO3	<b>Identify</b> fundamental aspects of reactive power and its effect on system voltage and <b>Select</b> the suitable voltage control method for the system operating condition.	Cognitive	Applying	
CO4	Formulate economic dispatch and unit commitment problem and its solution.	Cognitive	Creating	
CO5	<b>Apply</b> computer control methods for power system operation and control	Cognitive	Applying	

**Learning Objectives:** To provide the knowledge of optimization techniques used in the power system and Load Frequency Control (LFC). To provide a solid foundation in mathematical and engineering fundamentals required to control the governing system in Turbine models. To provide the knowledge of Hydrothermal scheduling, reactive power control.

COURSE CODE	COURSE NAME			P	С
XEE 602	POWER SYSTEMS-II (OPERATION AND CONTROL)	3	1	1	5
C:P: A = 3:1:0		L	T	P	Н
		3	1	2	6
UNIT - IV INTRODUCTION				9+3	

An overview of power system operation and control - system load variation - load characteristics - load curves and load-duration curve - load factor - diversity factor - Reserve requirements: Installed reserves, spinning reserves, cold reserves, hot reserves - Importance of load forecasting - quadratic and exponential curve fitting techniques for forecasting - plant level and system level controls.

# UNIT - II: REAL POWER - FREQUENCY CONTROL

Basics of speed governing mechanism and modelling - speed-load characteristics - load sharing between two synchronous machines in parallel - concept of control area - LFC control of a single-area system: static and dynamic analysis of uncontrolled and controlled cases two-

12+3+9

area system: modelling - static analysis of uncontrolled case - tie line with frequency bias control - state variable model.

# **List of Experiments**

- 1. Simulink model of single area load frequency control with PI controller.
- 2. Simulink model of single area load frequency control without PI controller.
- 3. Simulink model for two area load frequency control.

# UNIT - III: REACTIVE POWER-VOLTAGE CONTROL

9+3+6

Generation and absorption of reactive power - basics of reactive power control - excitation systems- modelling - static and dynamic analysis - stability compensation - methods of voltage control: tap-changing transformer, injection reactive power - SVC (TCR + TSC) and STATCOM - secondary voltage control. **List of Experiments** 

- 4. Modelling of reactive power compensation using STATCOM in MATLAB.
- 5. Modelling of reactive power compensation using SVC in MATLAB.

# UNIT -IV: UNIT COMMITMENT AND ECONOMIC DISPATCH

12+3+9

Formulation of economic dispatch problem – I/O cost characterization – incremental cost curve - coordination equations without and with loss (No derivation of loss coefficients) solution by direct method and  $\lambda$ -iteration method - statement of unit commitment problem – priority-list method - forward dynamic programming.

# **List of Experiments**

- 6. MATLAB program to find optimum loading of generators with penalty factor.
- 7. MATLAB program to find optimum loading of generators neglecting transmission losses.
- 8. MATLAB program to find economic load dispatch problem.

# UNIT- V: COMPUTER CONTROL OF POWER SYSTEMS

9 + 3

Need for computer control of power systems - concept of energy control centre - functions system monitoring - data acquisition and control - system hardware configuration - SCADA and EMS functions - network topology - state estimation - WLSE - Contingency Analysis state transition diagram showing various state transitions and control strategies.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	15	30	90

### **TEXT BOOKS**

- 1. Olle.I.Elgerd, 'Electric Energy Systems theory An introduction', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 34th reprint, 2010.
- 2. Allen. J. Wood and Bruce F. Wollenberg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 3rd Edition ,2013.
- 3. Kundur P., 'Power System Stability and Control, Tata McGraw Hill, New Delhi, 5th reprint, 2014.

# **REFERENCES**

- 1. Nagrath I.J. and Kothari D.P., 'Modern Power System Analysis', Tata McGraw-Hill, Fourth Edition, 2011.
- 2. Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21streprint, 2010.
- 3. Abhijit Chakrabarti, Sunita Halder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third Edition, 2010.

# E REFERENCES

- 1. www.nptel.ac.in
- 2. NPTEL: http://nptel.ac.in/courses/108104052/

# **Mapping of COs with POs**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1	2	-	-	-	-	1	-	-	2	1
CO2	2	3	2	2	2	-	-	-	1	1	1	-	2	-
CO3	2	2	2	2	3	-	1	-	-	-	1	1	2	-
CO4	2	2	3	3	2	-	-	-	-	1	-	-	1	-
CO5	1	2	2	2	2	-	1	-	-	-	-	1	1	1
Total	10	12	10	10	11	0	0	0	1	3	2	2	8	2
Scaled	2	3	2	1	3	0	0	0	1	1	1	1	2	1

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

# **DISASTER MANAGEMENT**

Cours	se Outcomes:		Doma	in		Level				
CO1	Understanding	the concepts of application of types of				Appli	cation			
	disaster prepare	edness	Cogni	tive						
CO2	On completion of this course the students will be able to understand planning essentials of disaster.  Cognitive									
CO3	CO3 Have a good understanding of importance of seismic waves occurring globally Cognitive									
CO4	On completion perform drill es	Cognitive			Application					
CO5	Have a keen kn	owledge on essentials of risk reduction	Cogni	tive		Appli	cation			
C	OURSE CODE	COURSE NAME		L	T	P	C			
	XUM 606	DISASTER MANAGEMENT		3	0	0	3			
	C:P: A			L	T	P	Н			
	3:0:0			3	0	0	3			
UNIT	- I: INTRODUC	CTION			1	L	9			

Introduction – Disaster preparedness – Goals and objectives of ISDR Programme- Risk identification – Risk sharing – Disaster and development: Development plans and disaster management –Alternative to dominant approach– disaster-development linkages -Principle of risk partnership

# UNIT- II: APPLICATION OF TECHNOLOGY IN DISASTER RISK REDUCTION | 9

Application of various technologies: Data bases – RDBMS – Management Information systems – Decision support system and other systems – Geographic information systems – Intranets and extranets – video teleconferencing. Trigger mechanism – Remote sensing-an insight – contribution of remote sensing and GIS - Case study

### UNIT- III: AWARENESS OF RISK REDUCTION

9

Trigger mechanism – constitution of trigger mechanism – risk reduction by education – disaster information network – risk reduction by public awareness

### UNIT- IV: DEVELOPMENT PLANNING ON DISASTER

9

Implication of development planning – Financial arrangements – Areas of improvement – Disaster preparedness – Community based disaster management – Emergency response.

### **UNIT- V: SEISMICITY**

9

Seismic waves – Earthquakes and faults – measures of an earthquake, magnitude and intensity – ground damage – Tsunamis and earthquakes

LECTURE	TUTORIAL	TOTAL
45	0	45

### **TEXTBOOKS**

- 1. Siddhartha Gautam and K Leelakrishna Rao, "Disaster Management Programmes and Policies", Vista International Pub House, 2012,
- 2. Arun Kumar, "Global Disaster Management", SBS Publishers, 2008

### **REFERENCES**

- 1. Encyclopaedia of Disaster Management, Neha Publishers & Distributors, 2008
- 2. Pradeep Sahni, Madhavi Malalgoda and Ariyabandu, "Disaster risk reduction in South Asia", PHI, 2002
- 3. Amita Sinvhal, "Understanding earthquake disasters" TMH, 2010.
- 4. Pardeep Sahni, Alka Dhameja and Uma Medury, "Disaster mitigation: Experiences and reflections", PHI, 2000

## **E REFERENCES**

**Mapping of COs with POs** 

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1		1	1					1			1	1	2	2
CO 2			2		3						2	2	2	2
CO 3						2	2				1	1		1
CO 4		2	2		1	1	1	2	1	1	3	1	1	
CO 5						2	3	3		2	1	1	2	2
Total	0	3	5	0	4	5	6	6	1	3	8	6	7	7
Scaled	0	1	1	0	1	1	1	1	1	1	2	1	2	2

^{0 –}No Relation 1 – Low Relation

### **ENERGY AUDITING**

Course	Outcomes (XEE M02):	Domain	Level
CO1	Understand the importance of energy auditing & energy	Cognitive	Understanding
	management.		
CO2	Apply their own ideas in optimizing the energy	Cognitive	Applying
	requirements to overcome the demand.		

^{2 –} Medium Relation 3 – High Relation

CO3	CO3 Acquire knowledge about energy monitoring and targeting Cognitive Understand							
to improve the energy efficiency.								
COI	URSE CODE	COURSE NAME		L	T	P	C	
	XEE M02			1	0	0	1	
	C:P: A	<b>ENERGY AUDITING</b>		L	T	P	Н	
	1:0:0			1	0	0	1	
Topics							15	

Energy Scenario: energy needs of growing economy, energy pricing, energy sector reforms, Restructuring of the energy supply sector, Energy Conservation Act-2010 and its features - Need for energy audit - Energy management & audit approach: understanding energy, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, energy audit instruments. Energy Monitoring and Targeting: Defining monitoring & targeting, elements of monitoring & targeting, data and information-analysis, techniques -energy consumption, production, cumulative sum of differences (CUSUM) - Energy Efficiency in Electrical Utilities: electrical load management and maximum demand control, power factor improvement, energy saving opportunities with energy efficient motors.

LECTURE	TUTORIAL	TOTAL	
15	0	15	

### **TEXT BOOKS**

- 1. "Energy Management Principles: Applications, Benefits, Savings", Craig B. Smith Kelly Parmenter, Elsevier, 2nd Edition, 21st November 2015 eBook ISBN: 9780128026441
- 2. "Industrial Energy Management and Utilization "by L.C. Witte, P.S. Schmidt, D.R. Brown Hemisphere Publication, Washington, 1988, Published online 2010.

### REFERENCE BOOKS

- 1. "Industrial Energy Conservation Manuals" by Elias P. Gyftopoulos, MIT Press, Mass, 1982© 2019 The MIT Press
- 2. "Energy Conservation guide book" by Patrick/Patrick/Fardo, Prentice hall, Third Edition, 2014.
- 3. "Energy Management Handbook" by Wayne C. **Turner** & Steve Doty", John Wiley and Sons, A Wiley Interscience publication, 6th Edition, 2013.

### SEMESTER VII-R-2018 HIGH VOLTAGE ENGINEERING

Cours	se Outcomes (XEE E41):	Domain	Level
CO1	Explain the different causes of overvoltage and Illustrate overvoltage control due to switching.  Classify the various methods for protection of lightning overvoltage	Cognitive	Understanding
CO2	<b>Explain</b> and <b>Classify</b> breakdown mechanisms in solid, liquid and gases dielectrics and list out the application of insulating materials	Cognitive	Understanding
CO3	Able to define and Classify the different methods to generate the various types of high voltages and high currents	Cognitive	Understanding
CO4	Classify and analyze the different techniques used to measure the various types of high voltages and high currents.	Cognitive	Understanding Analyzing

CO5	Recall and Illustrate the different testing methods to	Cognitive	Remembering
	test the various high voltage components of power		Understanding
	System and define the International, Indian standards		
	and insulation co-ordination.		

### **Learning Objectives:**

Understand the basic physics related to various breakdown processes in solid, liquid and gaseous insulating materials. Knowledge of generation and measurement of D. C., A.C., & Impulse voltages. Knowledge of tests on H.V. equipment and on insulating materials, as per the standards. Knowledge of how over-voltages arise in a power system, and protection against these over-voltages.

COURSE CODE	COURSE NAME	L	T	P	C
XEE E41	HICH VOLTAGE ENGINEEDING	3	0	0	3
C:P: A	3	L	T	P	Н
3:0:0		3	0	0	3

### UNIT - I: OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS

Natural Causes of overvoltage-Lightning phenomena and its effects on power system – Over voltage due to switching surge-power frequency overvoltage-control of overvoltage due to switching – protection of transmission lines against overvoltage –Becoleys lattice diagram.

# UNIT- II: ELECTRICAL BREAKDOWN IN GASES, SOLIDS AND LIQUIDS

9

Gaseous breakdown in uniform and non-uniform fields - corona discharges - Vacuum breakdown conduction and breakdown in pure and commercial liquids - Breakdown mechanisms in solid and composite dielectrics-Applications of insulating materials.

# UNIT – III: GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS

9

Generation of High DC, AC, impulse voltages and currents. Tripping and control of impulse generators.

# UNIT – IV: MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS

9

Measurement of High direct current voltages – measurement of voltages: alternating and impulse voltages and measurement of currents: direct, alternating and impulse currents. Digital techniques in high voltage measurement

# UNIT – V: HIGH VOLTAGE TESTING OF ELECTRICAL APPARATUS

9

International and Indian standards-Testing of insulators and bushings, testing of isolators and circuit breakers, testing of cables, power transformers and some high voltage equipment. -Insulation co-ordination.

LECTURE	PRACTICAL	TOTAL
45	0	45

### **TEXTBOOKS**

- 1. E. Kuffel and M. Abdullah, 'High Voltage Engineering', Pergamon press, Oxford, 2010.
- 2. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill, 4th Edition, 2004.
- 3. E. Kuffel and W.S. Zaengl, 'High Voltage Engineering Fundamentals', Pergamon Press, Oxford, London, 2012
- 4. August F.Metraux. "Some problems and actual limits of test techniques at extra high voltages", Haefely publications EIS 14.

### REFERENCES

- 1. C.L.Wadhwa, 'High Voltage Engineering', New Age International (P) Ltd, 2nd Edition, 2006.
- 2. Ravindra Arora, Wolfgang Mosch, "High Voltage Insulation Engineering", New Age International (P) Limited, 2011.
- 3. Chinnappa ,K.M., Need for next higher voltage level in India", National seminar on high voltage AC and Dc Transmission, New Delhi.

### **E-REFERENCES**

1. Web Content - http://www.library.dce.edu/e-resources/books/ee/ 2. NPTEL-High Voltage Engineering, C.L. Wadhwa -IIT Madras.

**Mapping of COs with POs** 

					-upp-	8		V 1 C 11 1	0.5					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	2	-	-	1	-	1	-	-	-	2	2	2
CO2	3	2	-	-	-	-	-	-	-	-	-	1	1	2
CO3	2	2	-	-	1	1	-	1	-	-	-	1	1	1
CO4	2	2	-	-	-	-	1	1	-	ı	-	1	2	2
CO5	2	2	-	2	-	1	ı	ı	-	ı	-	2	2	2
Total	12	10	2	2	1	3	1	2	0	0	0	7	8	9
Scaling	3	2	1	1	1	1	1	2	0	0	0	2	2	2

# **ELECTRICAL DRIVES**

Course	Outcomes (XEE E51):	Domain	Level
CO1	<b>Understand</b> the characteristics of DC drives and its multi-quadrant operation	Cognitive	Understanding
CO2	Understand the various control techniques of DC Drives.	Cognitive	Remembering
CO3	Categorize the different speed control methods for an Induction motor drive at stator side.	Cognitive	Understanding
CO4	<b>Illustrate</b> the various control techniques of induction motor Drives at rotor side.	Cognitive	Understanding
CO5	<b>Illustrate</b> the various control techniques and application of Synchronous motor drives.	Cognitive	Understanding

COURSE	COURSE NAME	L	T	P	C			
CODE								
XEE E51	ELECTRICAL DRIVES	3	0	0	3			
C:P: A		L	T	P	Н			
3:0:0		3	0	0	3			
UNIT- I: DC MOTOR DRIVE CHARACTERISTICS AND ITS MULTI-								

**QUADRANT OPERATIONS** 

Fundamentals of Electrical Drives - Advantage of Electrical Drives - Selection of Motor Power Rating - Review of emf and torque equations of DC machine - Review of torque-speed characteristics of separately excited dc motor - Four quadrant operation of dc machine - Steady state operation of multiquadrant chopper fed dc drive, regenerative braking.

### UNIT- II: CONTROL OF DC DRIVES

9

DC Motor and their Performance - Transient Analysis - Ward Leonard Drives - Steady State Analysis of the Single and Three Phase Fully Controlled Converter Fed Separately Excited DC Motor Drive - Continuous and Discontinuous Mode Chopper Controlled DC Drives - Time Ratio Control and Current Limit Control - Industrial Applications of DC drives

# UNIT- III: STATOR CONTROLLED INDUCTION MOTOR DRIVES

9

Induction Motor Drives - Stator Control - Stator Voltage and Frequency Control - VSI, CSI and Cycloconverter Fed Induction Motor Drives - Open Loop and Closed Loop V/f Control. Conventional space vector modulation; Steady-state performance analysis based on equivalent circuit, speed drop with loading, slip regulation - Industrial Applications of Stator controlled Induction Motor drives.

# UNIT- IV: ROTOR CONTROLLED INDUCTION MOTOR DRIVES

9

Impact of rotor resistance of the induction motor torque-speed curve - Operation of slip-ring induction motor with external rotor resistance, starting torque - Power electronic based rotor side control of slip ring motor - Slip Power Recovery, sub-synchronous and Super Synchronous Operations - Power

Factor Improvement - Closed Loop Control- - Industrial Applications of Rotor controlled Induction Motor drives.

### **UNIT- V: SYNCHRONOUS MOTOR DRIVES**

9

Separate Controlled Mode - Self Controlled Mode of Synchronous Motor - Constant Marginal Angle Control and Motor Power Factor Control - Cycloconverter Fed Synchronous Motors - Digital Control and Drive Applications.

LECTURE	TUTORIAL	TOTAL	l
45	0	45	

### **TEXT BOOKS**

- 1. Dubey G.K, 'Fundamentals of Electrical Drives', Narosa Publications, 2008.
- 2. B. K. Bose, 'Power Electronics and AC Drives', Prentice Hall Onglewood cliffs, New Jersey, 1998.
- 3. Krishnan. R, 'Electric motor& Drives; Modelling, Analysis and Control', Prentice Hall of India, 2001.
- 4. Dubey G. K., 'Power Semiconductor Controlled Drives', Prentice Hall, 1989.

### REFERENCE BOOKS

- 1. Murphy, J.M.D and Turnbull F.G, 'Thyristor Control of AC Motors', Pergamon Press, 1990.
- 2. Sen. P.C, 'Thyristor D.C. Drives', John Wiley and Sons, 1981.
- 3. Vedam Subrahmaniyam, 'Electric Drives Concepts and Applications', Tata McGraw Hill Publishing company Ltd., 2011.
- 4. Leonhard. W, 'Control of Electric Drives', Springer Science & Business Media, 2001

### **E-REFERENCES**

Lecture Series on Solid State Devices by Prof.S.Karmalkar, Department of Electrical Engineering, IIT Madras.

**Mapping of COs with POs** 

							<b>5</b> 0							
	PO	PO	PO	PO	PO	PO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	1	0	2	0	1	0	0	0	0	0	0	3
CO2	3	1	0	0	2	0	1	0	0	0	0	0	3	2
CO3	1	2	3	0	2	0	0	1	0	0	0	0	1	2
CO4	0	2	0	0	3	0	1	0	0	0	0	0	2	2
CO5	3	1	1	0	0	1	1	1	0	0	0	1	1	2
Total	10	8	5	0	9	1	4	2	0	0	0	1	7	11
Scaled	2	2	1	0	2	1	1	1	0	0	0	1	2	3

# **HUMAN ETHICS, VALUES, RIGHTS AND GENDER**

Course	Outcomes:	Domain	Level
CO1	Adapt the human values and Social Justice.	Cognitive Affective	Knowledge and Responding
CO2	Discuss and accept Gender Equality, empowerment and feminism.	Cognitive Affective	Comprehension and Valuing
CO3	Recognize the status of women and analyse the issues related to women.	Cognitive Affective	Comprehension and Valuing
CO4	Demonstrate the human rights and good governance.	Cognitive Affective	Comprehension Responding
CO5	Adapt the human values and Social Justice.	Cognitive Affective	Apply Responding

COURSE	COURSE NAME	L	T	P	C
CODE					
XUM 703	HUMAN ETHICS, VALUES, RIGHTS AND GENDER	3	0	0	3
C:P: A		L	T	P	Н
3:0:0		3	0	0	3
TINITE T II	X7 I				Δ.

### **UNIT- I: Human Values**

Human Ethics and values - Understanding of oneself and others- Basic instincts, motives and needs- Social service, Social Justice, Dignity and worth, Harmony in human relationship: Family and Society, Integrity and Competence, Caring and Sharing, Honesty and Courage, Valuing Time, Co-operation, Commitment, Sympathy and Empathy, Self-Confidence and Personality- Living in harmony at various levels.

# **UNIT- II: Gender Equality**

9

Gender Equality - Gender Vs Sex -, Concepts, definition, Gender equity, equality, and empowerment. Status of Women in India Social, Economic, Education, Health, Employment,

HDI, GDI, GEM. Contributions of Dr.B.R. Ambethkar, Thanthai Periyar and Phule to Women Empowerment.

### **UNIT-III: Women issues and Challenges**

9

Women Issues and Challenges- Female Infanticide, Female feticide, Violence against women, Domestic violence, Sexual Harassment, Trafficking, Access to education, Marriage. Remedial Measures – Acts related to women: Political Right, Property Rights, and Rights to Education, Medical Termination of Pregnancy Act, and Dowry Prohibition Act

# **UNIT- IV: Human Rights**

9

Human Rights Movement in India – The preamble to the Constitution of India, Human Rights and Duties Universal Declaration of Human Rights (UDHR), Civil, Political, Economic, Social and Cultural Rights, Rights against torture, Discrimination and forced Labour, Rights of Children.

### **UNIT- V: Good Governance**

9

Good Governance - Democracy, People's Participation, Guaranteed Freedoms, Open and Transparency governance, Combating corruption, Fairness in criminal justice administration, Government system of Redressal, Judiciary, National Human Rights Commission and other statutory Commissions, Creation of Human Rights Literacy and Awareness.

LECTURE	TUTORIAL	TOTAL	
45	0	45	

### **TEXTBOOKS**

- 1. Alam, Aftab ed., Human Rights in India: 1999Issues and Challenges (New Delhi: Raj Publications,)
- 2. Bajwa, G.S. and D.K. Bajwa, 1996 Human Rights in India: Implementation and Violations (New Delhi: D.K. Publications,)
- 3. Chatrath, K. J. S., (ed.), 1998) Education for Human Rights and Democracy (Shimala: Indian Institute of Advanced Studies, ).
- 4. Jagadeesan.P., 1990. Marriage and Social legislations in Tamil Nadu, Elachiapen pub, Chennai,
- 5. Kaushal, Rachna, 2000 Women and Human Rights in India (New Delhi: Kaveri Books,)
- 6. Mani. V. S., 1998)Human Rights in India: An Overview (New Delhi: Institute for the World Congress on Human Rights, )
- 7. Singh Sehgal, B. P. 1999 (ed) Human Rights in India: Problems and Perspectives (New Delhi: Deep and Deep,)
- 8. Veeramani K. (1996), Periyar on Women Right, Emerald Publishers, Chennai, India.
- 9.. Veeramani.K (2010) (ed) Periyar Feminism.Periyar Maniammai University, Vallam,Thanjavur.
- 10. Status Report 1976, Govt. of India.

# **REFERENCES**

1.

### **E REFERENCES**

### **Mapping of COs with POs**

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO 1			3		3	2		2					

CO 2		3	1	2	3			
CO 3		2	2	2	3			
CO 4		3	3	3	3			
CO 5		1	1	1	1			
Total		12	10	10	12			
Scaled		3	2	2	3			

0 –No Relation

1 – Low Relation

2 – Medium Relation 3 – High Relation

### **MICROGRIDS**

Cours	se Outcomes	(XEE M03):	Dor	nain		Lev	el
CO1	Understand	concept of microgrid and implementation	Cog	nitive	Uno	ınding	
	issues.						
CO2	Understand	issues related to power electronics	Cog	nitive	Uno	dersta	ınding
	interface.						
CO3	Acquire kno	wledge about modelling and stability analysis	Cog	Cognitive		Understandin	
	of solving po	ower quality issues in Microgrid.					
COU	RSE CODE	COURSE NAME		L	T	P	C
X	EE M03			1	0	0	1
	C:P: A	MICROGRIDS		L	T	P	Н
	3:0:0			1	0	0	1
Topic	es .						15

Concept and definition of microgrid, review of sources of microgrids, typical structure and configuration of a microgrid: AC and DC microgrids, Power Electronics interfaces in DC and AC microgrids, modes of operation and control of microgrid: grid connected and islanded mode, Power quality issues in microgrids- Modelling and Stability analysis of Microgrid, regulatory standards, Microgrid economics.

LECTURE	TUTORIAL	TOTAL
15	0	15

### **TEXT BOOKS**

- 1. "Renewable Energy Resources", John Twidell and Tony Weir, Taylor and Francis Publications, 2006.
- 2."Microgrids and Active Distribution", S. Chowdhury, S. P. Chowdhury, P. Crossley The Institution of Engineering and Technology (June 24, 2009).

# **REFERENCE BOOKS**

- 1. "Solar Photo Voltaics", Chetan Singh Solanki, PHI learning Pvt. Ltd., New Delhi, 2009.
- 2. "Wind Energy Conversion System", Freris, Prentice Hall, 1990.

# SEMESTER VIII CYBER SECURITY

Cour	se Outcomes:	Domain	Level
CO1	Able to <b>understand</b> the Cyber Security Policy, Laws and	Cognitive	Remember
	Regulations		

CO2	Able to discuss the Cyber Security Management	Cognitive	Understand
	Concepts		
CO3	Able to <b>understand</b> the Cyber Crime and Cyber	Cognitive	Understand
	welfare		
CO4	Able to <b>discuss</b> on issues related to Information Security	Cognitive	Understand
	Concepts		
CO5	Able to <b>understand</b> various security threats	Cognitive	Understand

# **Learning Objectives:**

To understand key terms and concepts in cyber law, intellectual property and cybercrimes, trademarks and domain theft. Able to examine secure software development practices. The learner will be able to incorporate approaches for risk management and best practices. To understand the basic knowledge of information security and security threats.

COURSE CODE	COURSE NAME	L	T	P	C
XUM 801	CYBER SECURITY	0	0	0	0
C:P: A		L	T	P	Н
3:0:0		0	0	0	3

### UNIT-I: INTRODUCTION

Cyber Security – Cyber Security policy – Domain of Cyber Security Policy – Laws and Regulations – Enterprise Policy – Technology Operations – Technology Configuration - Strategy Versus Policy – Cyber Security Evolution – Productivity – Internet – E commerce – Counter Measures – Challenges

### UNIT-II: CYBER SECURITY OBJECTIVES AND GUIDANCE

9

Cyber Security Metrics – Security Management Goals – Counting Vulnerabilities – Security Frameworks – E Commerce Systems – Industrial Control Systems – Personal Mobile Devices – Security Policy Objectives – Guidance for Decision Makers – Tone at the Top – Policy as a Project – Cyber Security Management – Arriving at Goals – Cyber Security Documentation – The Catalog Approach – Catalog Format – Cyber Security Policy Taxonomy

# **UNIT-III: CYBER SECURITY POLICY CATALOG**

9

Cyber Governance Issues – Net Neutrality – Internet Names and Numbers – Copyright and Trademarks – Email and Messaging - Cyber User Issues - Malvertising - Impersonation – Appropriate Use – Cyber Crime – Geo location – Privacy - Cyber Conflict Issues – Intellectual property Theft – Cyber Espionage – Cyber Sabotage – Cyber Welfare

# **UNIT-IV: INFORMATION SECURITY CONCEPTS**

9

Information Security Overview: Background and Current Scenario - Types of Attacks - Goals for Security - E-commerce Security - Computer Forensics - Steganography

# UNIT-V: SECURITY THREATS AND VULNERABILITIES

**15** 

Overview of Security threats -Weak / Strong Passwords and Password Cracking - Insecure Network connections - Malicious Code - Programming Bugs - Cyber-crime and Cyber terrorism - Information Warfare and Surveillance

<b>LECTURE</b>	TUTORIAL	TOTAL	
45	0	45	

### TEXTBOOKS

1. Jennifer L. Bayuk, J. Healey, P. Rohmeyer, Marcus Sachs, Jeffrey Schmidt, Joseph Weiss "Cyber Security Policy Guidebook" John Wiley & Sons 2012.

### REFERENCES

- 1. Rick Howard "Cyber Security Essentials" Auerbach Publications 2011.
- 2. Richard A. Clarke, Robert Knake "Cyberwar: The Next Threat to National Security & What to Do About It" Ecco 2010.
- 3. Dan Shoemaker Cyber security The Essential Body Of Knowledge, 1st ed. Cengage Learning 2011.
- 4. Rhodes-Ousley, Mark, "Information Security: The Complete Reference", Second Edition, McGraw-Hill, 2013.

# E REFERENCES

- 1. https://www.coursera.org/specializations/cyber-security
- 2. www. nptel.ac.in
- 3. http://professional.mit.edu/programs/short-programs/applied-cybersecurity

# **ELECTRICAL AND HYBRID VEHICLES**

Cours	se Outcomes (XEE E61):	Domain	Level
CO1	To understand the working and performance of conventional vehicles	Cognitive	Understanding
CO2	To understand Hybrid Electric Vehicles and Drive-trains	Cognitive	Understanding
CO3	To explain basic concepts of Electric Drive Trains	Cognitive	Understanding
CO4	To explain the various types of Energy Storage Systems	Cognitive	Understanding
CO5	To understand different types of Energy management strategies	Cognitive	Understanding

# **Learning Objectives:**

Understand the models to describe hybrid vehicles and their performance and Understand the different strategies related to energy storage systems design.

COURSE CODE	COURSE NAME	L	T	P	C
XEE E61		3	0	0	3
C:P: A	ELECTRICAL AND HYBRID VEHICLES	L	T	P	H
3:0:0		3	0	0	3

### UNIT- I: INTRODUCTION

9

Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance.

### UNIT - II: HYBRID ELECTRIC VEHICLES

9

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

# **UNIT - III: ELECTRIC DRIVE TRAINS**

9

Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-

Train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switched Reluctance Motor drives, drive system efficiency

# **UNIT – IV: ENERGY STORAGE**

9

Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subject systems

# **UNIT - V: ENERGY MANAGEMENT STRATEGIES**

9

Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies, Charging Stations. Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).

LECTURE	PRACTICAL	TOTAL
45	0	45

### **TEXTBOOKS**

- 1. C. Mi, M.A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.
- 2. S.Onori, L.Serrao and G.Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.

### **REFERENCES**

- 1.M. Ehsani, Y.Gao, S.E.Gay and A.Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2004.
- 2.T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016

### **E REFERENCES**

www.nptel.ac.in

**Mapping of COs with POs** 

	Wiapping of COs with 1 Os													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3									1		1		2
CO 2	3									1		1		2
CO 3	3	2								1	1	2		2
CO 4	3	2			1					1	1	1		3
CO 5	3	2			1					1	1	1		3
Total	15	6	0	0	2	0	0	0	0	5	3	6		12
Scaled	3	1	0	0	1	0	0	0	0	1	1	1		3

0 –No Relation 1 – Low Relation

2 – Medium Relation 3 – High Relation

# **B.TECH -R2021 PART TIME**

COURSE CODE	COURSE NAME	L	Т	P	C
PEE 301	TRANSMISSION AND DISTRIBUTION	3	1	0	4
C:P:A		L	T	P	Н
3:0:0		3	1	0	4

Course	e Outcomes:	Domain	Level
	Explain the major components of Transmission	Cognitive	Understanding
CO1	and Distribution Systems (TDS). Classify different types		
	of single and three phase transmission line parameters.		
	Outline the types of transmission line efficiency	Cognitive	Understanding
CO2	calculations and its performance.		
CO3	<b>Explain</b> the different types of insulators and <b>solve</b> for	Cognitive	Understanding
COS	stress and sag in overhead lines		Applying
CO4	Interpret different type's underground cables	Cognitive	Understanding
CO5	Summarize the latest technologies in the field of	Cognitive	Understanding
CO3	distribution systems		

# **UNIT - I: TRANSMISSION LINE PARAMETERS**

9 + 3

Structure of electric power system: Various levels such as generation, transmission and distribution; – Resistance, Inductance and Capacitance calculations – Single-phase and three-phase lines – double circuit lines – effect of earth on transmission line capacitance.

# **UNIT - II: PERFORMANCE OF TRANSMISSION LINES**

9 + 3

Standard representation for logic functions, K-map representation, and simplification of logic functions using K-map, minimization of logical functions. Don't care conditions, Multiplexer, DeMultiplexer /Decoders, Adders, Subtractors, ALU, elementary ALU design, popular MSI chips, digital comparator, parity checker/generator, code converters, priority encoders, decoders Q-M method of function realization.regulation and efficiency — Tuned power lines, Power flow through a transmission line — Power circle diagrams, Introduction to Transmission loss and Formation of corona — critical voltages — effect on line performance — travelling waveform phenomena.

### UNIT - III: MECHANICAL DESIGN OF OVERHEAD LINES

9 + 3

Line supports – Insulators, Voltage distribution in suspension insulators – Testing of insulators string efficiency – Stress and sag calculation – effects of wind and ice loading

### **UNIT - IV: UNDERGROUND CABLES**

9 + 3

comparison with overhead line – Types of cables – insulation resistance – potential gradient – capacitance of single-core and three-core cables

# **UNIT - V: DISTRIBUTION SYSTEM**

9 + 3

General aspects – Kelvin's Law – A.C. distribution – Single-phase and three phase – Techniques of voltage control and power factor improvement – Introduction to Distribution loss – Recent trends in transmission and distribution systems.

LECTURE	TUTORIAL	TOTAL

45	15	60

### **TEXT BOOKS:**

- 1. D.P. Kothari and I.J. Nagrath, 'Power System Engineering', Tata McGraw–Hill,2 nd Edition, 2008.
- 2. B.R.Gupta, 'Power System Analysis and Design', S.Chand, New Delhi, 2003.
- 3. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall India Pvt. Ltd, 2002.

# **REFERENCE BOOKS:**

- 1. Luces M.Fualkenberry, Walter Coffer, 'Electrical Power Distribution and Transmission', Pearson Education, 1996.
- 2. Hadisaddak, 'Power System Analysis,' Tata McGraw Hill Publishing Company',2003
- 3. Central Electricity Authority (CEA), 'Guidelines for Transmission System Planning', New Delhi.
- 4. Tamil Nadu Electricity Board Handbook', 2012.

### **E-RESOURCES:**

**1.** NPTEL, Power System Generation, Transmission and Distribution Prof. D. P. Kothari Center for Energy Studies Indian Institute of Technology, Delhi.

**Mapping of COs with POs** 

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	3	0	0	0	0	0	0	0	1	0	2	2	1
CO2	1	3	1	0	1	0	0	0	0	0	0	1	3	1
CO3	1	0	0	1	1	0	0	0	0	1	0	0	2	1
CO4	1	2	0	0	0	0	0	0	0	0	1	1	2	1
CO5	1	2	0	0	0	0	0	0	0	0	0	1	2	1
Total	5	10	1	1	2	0	0	0	0	2	1	5	11	5
Scaled	2	3	1	1	1	0	0	0	0	1	1	2	3	2

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	COURSE NAME	L	Т	P	C
PEE 303	DIGITAL ELECTRONICS	3	1	0	4
C:P:A		L	T	P	Н
3:0:0		3	1	0	4

Course	e Outcomes:	Domain	Level
	Understand numerical values in various number systems	Cognitive	Understanding
CO1	and show number conversions between different number		
	Systems.		
CO2	Analyze Boolean functions and minimization techniques	Cognitive	Analyze
	using k -maps and postulates and theorems of Boolean		
	Algebra, minimization of Boolean functions using basic		
	laws.		
CO3	To Apply Logic gates and their applications and construct	Cognitive	Apply
03	the simple adders and sub tractors using logic gates.		
CO4	To Understand the process of Analog to Digital conversion	Cognitive	Understanding
	and its applications.		
CO5	To Understand the process of Digital to Analog conversion	Cognitive	Understanding
CO3	and its application		

# UNIT - I: FUNDAMENTALS OF DIGITAL SYSTEMS AND LOGIC FAMILIES

9 + 3

Digital signals, digital circuits, AND, OR, NOT, NAND, NOR and Exclusive-OR operations, Boolean algebra, examples of IC gates, number systems-binary, signed binary, octal hexadecimal number, binary arithmetic, one's and two's complements arithmetic, codes, error detecting and correcting codes, characteristics of digital ICs, digital logic families.

# **UNIT - II: COMBINATIONAL DIGITAL CIRCUITS**

9 + 3

Standard representation for logic functions, K-map representation, and simplification of logic functions using K-map, minimization of logical functions. Don't care conditions, Multiplexer, DeMultiplexer /Decoders, Adders, Subtractors, ALU, elementary ALU design, popular MSI chips, digital comparator, parity checker/generator, code converters, priority encoders, decoders Q-M method of function realization.

# UNIT – III: SEQUENTIAL CIRCUITS AND SYSTEMS

9 + 3

A 1-bit memory, the circuit properties of Bistable latch, JK, SR, D and T types flip-flops, applications of flip-flops, shift registers, applications of shift registers, Asynchronous counters, synchronous counters design using flip flops, special counter IC's, applications of counters

# UNIT - IV: UNDERGROUND CABLES

9 + 3

Digital to analog converters: weighted resistor/converter, R-2R Ladder DAC, specifications for D/A converters, examples of DAC lCs, sample and hold circuit, analog to digital converters: quantization and encoding, parallel comparator ADC, successive approximation ADC, specifications of ADC, example of ADC lCs.

# UNIT – V: SEMICONDUCTOR MEMORIES AND PROGRAMMABLE LOGIC DEVICES

9 + 3

Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, ROM, RAM, content addressable memory (CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD, PLA, PAL, CPLDS, and FPGA.

LECTURE	TUTORIAL	TOTAL
45	15	60

### TEXT BOOKS:

- 1. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education, 2009.
- 2. M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016.
- 3. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.

### REFERENCE BOOKS:

- 1. Taub and Schilling, 'Digital Integrated Circuits', McGraw Hill, 2002.
- 2. Samuel C. Lee "Digital Circuits and Logic Designs" Prentice Hall of India; 2000.
- 3. Fletcher, W.I., 'An Engineering Approach to Digital Design', Prentice Hall of India, 2002.
- 4. Anand Kumar, Fundamental of Digital circuits, PHI 2003.

### **E-RESOURCES:**

- 1. NPTEL, Digital Logic Circuits, Prof. S.Srinivasan, IIT Madras.
- 2. NPTEL, Digital Logic Circuits, Prof. D. Roychoudhury, IIT Kharagpur.

# Mapping of COs with POs

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	3	1	1	1	1	1	-	1	-	2	2	1
CO2	3	2	1	1	ı	2	0	2	1	1	-	2	1	2
CO3	2	2	1	1	1	1	2	2	1	1	-	1	2	2
CO4	2	2	3	1	1	1	1	1	-	1	1	1	1	2
CO5	3	2	2	1	1	0	1	1	1	1	1	2	2	2
Total	12	9	10	ı	ı	4	5	7	3	3	2	8	8	9
Scaled	3	2	2			1	1	2	1	1	1	2	2	2

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

CODE		T	P	C
PEE 304 ELECTRICAL MACHINES II	3	1	0	4
C:P:A	L	T	P	Н
3:0:0	3	1	0	4

Course	e Outcomes:	Domain	Level
	To Understand the fundamentals of different types of slots	Cognitive	Understanding
CO1	and windings used for AC machines.	Psychomotor	Mechanism

CO2	To Understand the concepts of pulsating and revolving magnetic fields.	_	Understanding Mechanism
CO3	To Understand the operation of induction machines, torque slip characteristics, equivalent circuit and its phasor diagram.	Cognitive Psychomotor	Understanding Mechanism
CO4	To Understand the different typesof starting, braking and speed control for induction motors. React the generator operation, self-excitation and doubly-fed Induction machines.	_	Understanding Mechanism
CO5	To Understand the operation of single-phase induction motors and its performance parameters.	_	Understanding Mechanism

### UNIT – I: FUNDAMENTALS OF AC MACHINE WINDINGS

9 + 3

Physical arrangement of windings in stator and cylindrical rotor—Slots for windings —Single-turn coil — Active portion and overhang —Full-pitch coils—Types of windings—3D visualization of the above winding types—Air-gap MMF distribution with fixed current through winding —Winding distribution factor.

# UNIT – II: PULSATING AND REVOLVING MAGNETIC FIELDS

9 + 3

Types of magnetic fields –Alternating current in windings with spatial displacement – Magnetic field produced by a single winding – Fixed current and alternating current. Pulsating fields produced by spatially displaced windings– Windings spatially shifted by 90° – Three windings spatially shifted by 120° (carrying three-phase balanced currents) – Revolving magnetic field.

# **UNIT - III: INDUCTION MACHINES**

9 + 3

Constructional details –Types of rotors (squirrel cage and slip-ring) – Torque Slip Characteristics – Equivalent circuit – Phasor Diagram– Effect of parameter variation on torque speed characteristics – Methods of starting, braking and speed control for induction motors–Generator operation – Selfexcitation– Doubly-Fed Induction Machines.

### UNIT – IV: SINGLE PHASE INDUCTION MOTORS

9 + 3

Constructional details of single-phase induction motor – Double revolving field theory and operation – Equivalent circuit – Determination of parameters – Split-phase starting methods and applications.

# **UNIT – V: SYNCHRONOUS MACHINES**

9 + 3

Constructional details – Cylindrical rotor synchronous machine – EMF equation – Equivalent circuit – Phasor diagram – Armature reaction – Voltage regulation – V-curves. Salient pole machine – Two reaction theory – Phasor diagram – Power angle characteristics. Synchronizing and parallel operation. (Basic operation of synchronous motors)

	LECTURE	TUTORIAL	TOTAL
	45	15	60
TEVT DOOKS.			

# TEXT BOOKS:

- 1. I. J. Nagrath and D. P. Kothari, 'Electric Machines', Tata McGraw Hill Publishing Company Ltd, 2017.
- 2. M. G. Say, 'Performance and Design of AC Machines', CBS Publishers, 2013
- 3. P. S. Bimbhra, 'Electrical Machinery', Khanna Publishers, 2011.
- 4. B. L. Theraja, 'A Textbook of Electrical Technology', Vol. I & II, M/s S. Chand, Delhi, 2013.

### REFERENCE BOOKS:

- 1. A. E. Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric Machinery', Tata McGraw Hill publishing Company Ltd, 2013.
- 2. A. S. Langsdorf, 'Alternating Current Machines', Tata McGraw Hill publishing Company Ltd, 1984.
- 3. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons, 2007.
- 4. J.B. Gupta, 'Theory and Performance of Electrical Machines', S.K.Kataria and Sons, 2002.
- 5. DeshPande M.V., 'Electrical Machines', PHI Learning Pvt Ltd., New Delhi 2011.
- 6. A. G. Warren, 'Problems in Electrical Engineering', Parker and Smith Solutions, Newyork, 1940.
- 7. K. Murugesh Kumar, 'Electric Machines', Vikas Publishing House Pvt Ltd, 2002.
- 8. Department Laboratory Manual.

### **E-RESOURCES:**

1.http://freevideolectures.com/Course/2335/Basic-Electrical-Technology35-38, Prof. L. Umanand, IISc Bangalore.

**Mapping of COs with POs** 

	PO	PO	PO	PO	РО	PO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2	1	0	0	0	0	0	0	2	2	1
CO2	3	2	2	2	1	0	0	0	0	0	0	1	2	1
CO3	3	2	2	2	1	0	0	0	0	0	0	1	1	1
CO4	2	2	1	3	2	0	0	0	0	0	0	1	1	1
CO5	3	0	0	0	1	0	0	0	0	0	0	1	1	1
Total	14	8	7	9	6	0	0	0	0	0	0	6	7	5

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE					
CODE	COURSE NAME	L	T	P	C
PEE 305	ELECTRICAL MACHINES – II LABORATORY	0	0	1	1
C:P:A		L	T	P	Н
0:1:0		0	0	2	2

# **COURSE OBJECTIVES:**

- To introduce the different types of AC motor and generator.
- To analysis the various characteristics of performance Induction and synchronous machines.
- To expose the students to practical implementations of real time applications.

Course	Outcomes:	Domain	Level
CO1	To Understand the fundamentals of different types of slots and windings used for AC machines.	Cognitive Psychomotor	Understandin Mechanism
CO2	To Understand the concepts of pulsating and revolving magnetic fields.	Cognitive Psychomotor	Understandin Mechanism
CO3	To Understand the operation of induction machines, torque slip characteristics, equivalent circuit and its phasor diagram.	Cognitive Psychomotor	Understandin Mechanism
CO4	To Understand the different typesof starting, braking and speed control for induction motors. React the generator operation, self-excitation and doubly-fed Induction machines.	Cognitive Psychomotor	Understandir Mechanism
CO5	To Understand the operation of single-phase induction motors and its performance parameters.	Cognitive Psychomotor	Understandir Mechanism
Sl.No.	List of Experiments		COs
1.	Load test on three phase squirrel cage induction motor.		CO1
2.	Load test on three phase slip ring induction motor.		CO2
3.	Load test of a three-phase alternator.		CO3
4.	No load and blocked rotor test on three phase induction mo	otor.	CO4
5.	Study of induction motor starters.		CO4
6.	Load test on single-phase induction motor.		CO4
7.	No load and blocked rotor test on single phase induction m	otor.	CO5
8.	Regulation of three phase alternator by EMF /MMF methods	ods.	CO5
9.	OCC and load characteristics of three phase alternator		CO5
10.	V and inverted V curves of three phase synchronous motor		CO5
		PRACTICAL	TOTAL
		30	30

**Mapping of COs with POs** 

	PO	PO	PO		PO	T			PO	PO	PO	PO	PSO	PSO
		10						10	10				150	150
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2	1	0	0	0	0	0	0	2	2	1

CO2	3	2	2	2	1	0	0	0	0	0	0	1	2	1
CO3	3	2	2	2	1	0	0	0	0	0	0	1	1	1
CO4	2	2	1	3	2	0	0	0	0	0	0	1	1	1
CO5	3	0	0	0	1	0	0	0	0	0	0	1	1	1
Total	14	8	7	9	6	0	0	0	0	0	0	6	7	5

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	COURSE NAME	L	Т	P	C
PEE 401	MICROPROCESSORS AND MICROCONTROLLERS	3	0	0	3
C:P:A		L	T	P	Н
3:0:0		3	0	0	3

Course	e Outcomes:	Domain	Level
	To Understand the fundamentals of microcontrollers and	Cognitive	Understanding
CO1	embedded systems.		
	To explain the architecture, Timing diagrams and Execution.	Cognitive	Understanding
CO2	cycles of 8051		
CO3	To identify the types of addressing modes, recall Instruction	Cognitive	Understanding
003	types and to understand the basic concepts of programming		
CO4	To understand interfacing design of peripherals like I/O,	Cognitive	Understanding
	A/D,D/A, timer etc.		
CO5	To identify and explain various communication protocols	Cognitive	Understanding
COS	and interfacing with external devices		

# UNIT - I: FUNDAMENTALS OF MICROPROCESSORS

Fundamentals of Microprocessor Architecture, Comparison of 8-bit microcontrollers, 16-bit and 32-bitmicrocontrollers. Definition of embedded system and its characteristics, Role of microcontrollers in embedded Systems. 8085 Hardware Architecture, – Functional Building Blocks of Processor – Memory organization – I/O ports and data transfer concepts – Timing Diagram – Interrupts – Data Transfer, Manipulation, Control Algorithms & I/O instructions, Programming concepts with 8085.

# UNIT - II: THE 8051ARCHITECTURE

Overview of the 8051 family-Internal Block Diagram, CPU, ALU, address, data and control bus.working registers, SFRs, Clock and RESET circuits, Stack and Stack Pointer, Program Counter, I/O ports, Memory Structures, Data and Program Memory, Timing diagrams and Execution Cycles.

### **UNIT - III: INSTRUCTION SET AND PROGRAMMING**

9

8051 Instruction syntax, Data types, Subroutines, Addressing modes, Instruction set, Instruction timings, Data transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Subroutine instructions, Bit manipulation instruction. Assembly language programs, C language programs. Assemblers and compilers. Programming and Debugging tools.

### UNIT - IV: MEMORY AND I/O INTERFACING

9

Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters and memory devices. Parallel Peripheral Interface8255, Interrupt Controller 8259, Timer / Counter 8254, Keyboard Display Controller 8279.

# UNIT - V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS

9

Synchronous and Asynchronous Communication. RS232, SPI, I2C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor.

LECTURE	TUTORIAL	TOTAL	
45	0	45	

### TEXT BOOKS:

- 1. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram
  - International Publishing, 6th Edition, 2013.
- 2. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.
- 3. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.
- 4. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.

# **REFERENCE BOOKS:**

- 1. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017...
- 2. D.V.Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 2005.

### **E-RESOURCES:**

- 1. www.nptel.ac.in
- 2. https://onlinecourses.nptel.ac.in/noc19_ee11
- https://nptel.ac.in/courses/Webcourse contents/IIScBANG/notused/Microprocessors%20 and %20 Microcontrollers /Learning%20 Material%20 %20 Microprocessors% 20and%20 microcontrollers. Pdf

Mapping of COs with POs

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	0	2	0	0	0	0	0	0	1	1	0	1	1
CO2	1	2	1	3	1	0	0	0	2	1	2	1	1	1
CO3	0	0	0	0	0	1	2	0	1	2	0	0	1	1
CO4	1	1	2	2	1	0	0	0	2	1	2	1	0	1

CO5	1	2	2	1	0	0	3	0	3	2	1	0	0	1
Total	4	5	7	6	2	1	5	0	8	7	6	2	3	5
Scaled	1	1	2	1	1	1	1	0	2	2	1	1	1	1

1-5 1, 6-10 2, 11-15

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COUR	SE CODE	COURSE NAME			L	T	P	С
PEE402 ECONOMICS FOR ENGINEERS					3	0	0	3
PRER	EQUISITES				L	T	P	Н
C:P:A		2.64:0.24:0.12			3	0	0	3
COUR	SE OUTCOM	ES	S DC					Ĺ
CO1	Explain the o	concepts of economics	s in engineering and	Cognitive		Unde	ersta	nd
	identify eleme	ent of cost to prepare co	ost sheet	Psychomoto	r	Perc	eptio	on
					•			
CO2	Calculate	and Explain	the Break-	Cognitive		Unde	rstar	nd
	even point	and marginal costing		Psychomotor		&A	pply	<i>,</i>
						Perce	eptio	n
1	1	·						

CO ₂	Calculate and Explain the Break-	Cognitive	Understand
	even point and marginal costing	Psychomotor	&Apply
			Perception
CO3	Summarize and Use value engineering procedure for	Cognitive	Understand
	cost analysis	Affective	Receive
CO4	Estimate replacement problem	Cognitive	Understand
CO5	Compute, Explain and make Use of different methods	Cognitive	Understand
	of depreciation		&Apply
IINIT	I INTRODUCTION TO ECONOMICS		08

Flow in an economy, Law of supply and demand, Concept of Engineering Economics – Engineering efficiency, Economic efficiency, Scope of engineering economics- types of costing, element of costs, preparation of cost sheet and estimation, Marginal cost, Marginal Revenue, Sunk cost, Opportunity cost

# UNIT II BREAK-EVEN ANALYSIS&SOCIAL COST BENEFIT ANALYSIS

12

Margin of Safety, Profit, Cost & Quantity analysis-Product Mix decisions and CVP analysis, Profit/Volume Ratio (P/V Ratio), Application of Marginal costing, Limitations Social Cost Benefit Analysis: compare different project alternatives, Calculate direct, indirect and external effects; Monetizing effects; Result of a social cost benefit analysis.

# UNIT III VALUE ENGINEERING & COST ACCOUNTING:

10

Value engineering – Function, aims, Value engineering procedure - Make or buy decision Business operating costs, Business overhead costs, Equipment operating costs

### UNIT IV REPLACEMENT ANALYSIS

07

Replacement analysis – Types of replacement problem, determination of economic life of an asset, Replacement of an asset with a new asset.

### UNIT V DEPRECIATION

Depreciation- Introduction, Straight line method of depreciation, declining balance method of depreciation-Sum of the year's digits method of depreciation, sinking fund method of depreciation, Annuity method of depreciation, service output method of depreciation.

	LECTURE	TUTORIAL	TOTAL
HOURS	45	0	45

### **TEXT BOOKS**

- 1. Sp Gupta, Ajay Sharma & Satish Ahuja, "Cost Accounting", V K Global Publications, Faridabad, Haryana, 2012
- 2. S.P.Jain&Narang, "Cost accounting Principles and Practice", Kalyani Publishers, Calcutta, 2012
- 3. PanneerSelvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2001.
- 4. William G.Sullivan, James A.Bontadelli& Elin M.Wicks, "Engineering Economy", Prentice Hall International, New York, 2001.

### REFERENCES

- 1.Luke M Froeb / Brian T Mccann, "Managerial Economics A problem solving approach" Thomson learning 2007
- 2.Truett&Truett, "Managerial economics- Analysis, problems & cases " Wiley India 8th edition 2004.
- 3. Chan S. Park, "Contemporary Engineering Economics", Prentice Hall of India, 2002.
- 4.Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2002

COURSE NAME CODE	L	T	P	C
------------------	---	---	---	---

PEE E11	SOLID STATE DRIVES	3	0	0	3
C:P:A		L	T	P	Н
3:0:0		3	0	0	3

Course	Outcomes:	Domain		Level
CO1	<b>Understand</b> the fundamentals of Electric Drives and their ratings.	Cognitive	Un	derstanding
CO2	<b>Express</b> the various control techniques of DC Drives.	Cognitive	Re	membering
CO3	<b>Analyze</b> the different speed control methods of Induction motor at stator.	Cognitive	Un	derstanding
CO4	Formulate the closed loop control of Induction motor drive.	Cognitive	Re	membering
CO5	<b>Devise</b> the assorted control strategies of synchronous motor control operation.	Cognitive	Un	derstanding
TINITE	I DDIVE CHADACTEDICTICS			•

### **UNIT – I: DRIVE CHARACTERISTICS**

Fundamentals of Electric Drives - Advantage of Electric Drives - selection of Motor power ratingThermal model of motor for heating and cooling – Classes of duty cycle. Determination of motor rating – Control of Electric drives – modes of operation – speed control and drive classifications.

# UNIT – II: SOLID STATE CONTROL OF DC DRIVES

DC motor and their performance - Transient analysis -Ward Leonard drives – Steady state analysis of the single and three phase fully controlled converter fed separately excited DC motor drive – continuous and discontinuous mode Chopper controlled DC drives-Time ratio control and current limit control.

### UNIT – III: STATOR CONTROLLED INDUCTION MOTOR DRIVES

9

Induction Motor Drives-Stator control – Stator voltage and frequency control – VSI, CSI and cycloconverter fed induction motor drives-open loop and closed VVVF control.

### UNIT - IV: ROTOR CONTROLLED INDUCTION MOTOR DRIVES

9

Rotor resistance control – Slip power recovery schemes–Sub synchronous and super synchronous operations– Power factor improvement– Closed loop control.

### **UNIT - V: SYNCHRONOUS MOTOR DRIVES**

9

Separate controlled mode – Self controlled mode of synchronous motor –Constant marginal angle control and motor power factor control – Cycloconverter fed synchronous motors - Digital Control and Drive Applications.

LECTURE	TUTORIAL	TOTAL
45	0	45

### **TEXT BOOKS:**

- 1. Dubey. G.K."Fundamentals of Electrical drives", Narora publications, 1995.
- 2. R. Krishnan, "Electric motor & Drives; Modelling, Analysis and Control", Prentice Hall of India. 2001.
- 3. Gopal K. Dubey, Fundamentals of Electrical Drives, New Delhi, 2nd Edition, Narosa Publishing House, 2001.
- 4. B.K.Bose, 'Power Electronics and AC Drives', Prentice Hall Ongle woodcliffs, New Jersey, 1986.

### **REFERENCE BOOKS:**

- 1. Murphy, J.M.D and Turnbull. F.G., 'Thyristor control of AC Motors', PergamonPress, 1988.
- 2. Sen. P.C., 'Thyristor D.C. Drives', John Wiley and Sons, 1981.
- 3. Vedam Subrahmaniyam, 'Electric Drives Concepts and Applications', Tata McGraw Hill Publishing company Ltd.,1994.
- 4. Gaekward, "Analog and Digital control systems", Wiley Eastern Ltd, 1989.

COURSE CODE	COURSE NAME	L	Т	P	C
PEE404	CONTROL SYSTEMS	3	1	0	4
C:P:A		L	T	P	Н
3:0:0		3	1	0	4

Course	Outcomes:	Domain	Level
CO1	<b>Identify</b> the basic elements, derive the transfer function and	Cognitive	Understanding
	Compute the overall gain of the control system and	Psychomotor	
	Construct the transfer function of DC motors and DC		
	generators.		
	<b>Explain</b> the performance of First and Second order system	Cognitive	Understanding
CO2	with static and dynamic error coefficients.	Psychomotor	Set

CO3	<b>Describe</b> the frequency domain specifications and show the	Cognitive	Remembering
	response of frequency response.	Psychomotor	Understanding
			Set
CO4	<b>Determine</b> the stability of the systems and <b>Design</b> the	Cognitive	Understanding
	suitable compensator and controller for the	Psychomotor	Design
	given performance criteria of the control system.		Perception
CO5	<b>Describe</b> State transition matrix. <b>Explain</b> State space model	Cognitive	Remembering
	and construct and verify the canonical state model and		
	Kalman's test for controllability and observability.		

### **UNIT - I: SYSTEMS AND THEIR REPRESENTATION**

9 + 3

Basic elements in control systems – Open and closed loop systems – Principles of feedback, Transfer function Block diagram reduction techniques – Signal flow graphs. Mason gain formula, Modelling of electric systems translation and rotational mechanical systems.

### **UNIT – II: TIME RESPONSE ANALYSIS**

9 + 3

Time response – Time domain specifications - Standard test signals. Time response of first and second order systems for standard test inputs. Error coefficients – Generalized error series – Steady state error.

### UNIT - III: FREQUENCY-RESPONSE ANALYSIS

9 + 3

Frequency domain specification – Bode plot – Polar plot – Determination of closed loop response from open loop response – Correlation between frequency domain and time domain specifications.

# UNIT – IV: STABILITY ANALYSIS AND CONTROLLER DESIGN

9 + 3

characteristics equation – Location of roots in S plane for stability –Routh Hurwitz criterion– Root locus construction – Effect of pole, zero addition –Nyquist stability criterion. Introduction to design of Proportional, Integral and Derivative Controllers- Lead and Lag compensator- Analog and Digital implementation of controllers.

# UNIT – V:STATE VARIABLE ANALYSIS

9 + 3

Concepts of state variables. State space model. Diagonalization of State Matrix. Solution of state equations. Eigen values and Stability Analysis. Physical variable phase variable and canonical variable forms State Space representation of continuous time system. Transfer function from state variable representation –. Concept of controllability and observability.

	<u> </u>	 		
		LECTURE	TUTORIAL	TOTAL
		45	15	60

### TEXT BOOKS:

- 1. I.J. Nagrath& M. Gopal, 'Control Systems Engineering', New Age International Publishers Pvt Ltd; Sixth edition (1 September, 2018).
- 2. Norman S. Nise, "Control System Engineering "Seventh edition, John Wiley &Sons, Inc, 2015.
- 3. M. Gopal, "Control Systems, Principles & Design", Tata McGraw Hill, New Delhi, 2002.
- 4. Richard C. Dorf& Robert H. Bishop, "Modern Control Systems", Addison-Wesley, 2012.

### REFERENCE BOOKS:

- 1. B.C. Kuo, 'Automatic Control Systems', Prentice Hall of India Ltd., New Delhi, 2014.
- 2. K. Ogata, 'Modern Control Engineering', 4th edition, Pearson Education, New Delhi, 2003 / PHI.
- 3. N. Bandyopadhyay, 'Control Engineering Theory and Practice', Prentice Hall of India, 2009.
- **4.** John J.D'azzo& Constantine H.Houpis, 'Linear control system analysis and design', Tata McGrow-Hill, Inc., 2013.

# **E-RESOURCES:**

2. NTPEL, Control Systems Engineering (Web Course), Prof. M. Gopal, IIT Kharagpur.

Mapping of COs with POs	Manni	ng of	COs	with	POs
-------------------------	-------	-------	-----	------	-----

	PO	PO	PO	PO	РО	PO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	2	1	0	0	1	1	1	0	0	1	0	0
CO2	2	3	1	0	2	1	1	1	1	1	0	2	2	1
CO3	3	3	3	2	0	0	1	0	3	0	0	0	2	0
CO4	1	2	2	3	2	2	1	1	2	1	1	2	1	0
CO5	2	1	1	1	2	1	1	1	2	1	0	1	2	0
Total	10	10	9	7	4	4	5	4	9	3	1	6	7	7
Scaled	2	2	2	2	1	1	1	1	2	1	1	2	2	2

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

# SEMESTER V POWER SYSTEMS-I (APPARATUS AND MODELING)

Cours	se Outcomes (PEE 501):	Domain	Level
CO1	Understand the concepts of power systems.	Cognitive	Understand
CO2	Understand the various power system components.	Cognitive	Understand
CO3	Evaluate fault currents for different types of faults.	Cognitive	Evaluate
CO4	Understand the generation of over voltages and insulation	Cognitive	Understand
	coordination basic protection schemes.		
CO5	Understand concepts of HVDC power transmission and	Cognitive	Understand
	renewable energy generation.		

**Learning Objectives**: Able to demonstrate the principles and practices of the electrical power industry regarding generation, transmission, distribution and electrical machines and their controls.

COURSE CODE	COURSE NAME	L	T	P	C					
PEE 501	POWER SYSTEMS-I (APPARATUS	3	0	0	3					
C:P: A = 3:0:0	AND MODELING)	L	T	P	Н					
		3	0	0	3					
UNIT - I: INTRODUCTION										

Need for system analysis in planning and operation of modern power system – per phase analysis Single line diagram - Per unit representation and Per unit calculations – Change of base – introduction to Electricity Deregulation.

# UNIT – II: MODELLING OF POWER SYSTEM COMPONENTS 9

Primitive network and its matrices – bus incidence matrix – bus admittance and bus impedance matrix formation – Z – Bus building algorithm - Modelling of generator, load, transformer, transmission line for different power system studies.

# UNIT - III: FAULT ANALYSIS-UNSYMMETRICAL FAULTS

9

Need for short circuit study - basic assumptions in fault analysis of power systems. Symmetrical (or) balanced three phase faults – problem formulation – fault analysis using Z-bus matrix – algorithm and flow chart. Computations of short circuit capacity, post fault voltage and currents. Introduction to symmetrical components – sequence impedances – sequence networks Unsymmetrical fault analysis: L-G, L-L and L-L-G faults.

### UNIT – IV: POWER FLOW ANALYSIS

9

Need for Power Flow Analysis – bus classification – derivation of power flow equation – solution by Gauss–Seidel, Newton–Raphson and Fast Decoupled Power Flow methods – comparison of three methods

### **UNIT-V: STABILITY ANALYSIS**

9

Types of stability - Swing equation in state space form - equal area criterion - stability analysis of single machine connected to infinite bus by modified Euler's method using classical machine model—critical clearing angle and time. Causes of voltage instability – voltage stability proximity indices for two-bus system – methods of improving power system stability.

LECTURE	PRACTICAL	TOTAL
45	0	45

### TEXT BOOKS

- 1. J. Grainger and W. D. Stevenson, "Power System Analysis", McGraw-Hill Education; 2nd edition (December 28, 2015)
- 2. O. I. Elgerd, "Electric Energy Systems Theory", McGraw Hill Education, 1st July 2017.
- 3. A. R. Bergen and V. Vittal, "Power System Analysis", Pearson Education Inc., 2nd Edition, 2009.

### REFERENCES

- 1. D. P. Kothari and I. J. Nagrath, "Modern Power System Analysis", McGraw Hill Education, 4th Edition (29 June 2011)
- 2. B. M. Weedy, B. J. Cory, N. Jenkins, J. Ekanayake and G. Strbac, "Electric Power Systems", Wiley, 5 edition (December 26, 2012)

# E REFERENCES

www.nptel.ac.in

https://nptel.ac.in/courses/108104051/

https://nptel.ac.in/courses/108102047/

# Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3									1		1	3	2
CO 2	3									1		1	3	2
CO 3	3	2								1	1	2	3	2
CO 4	3	2			1					1	1	1	3	2

CO 5	3	2			1					1	1	1	3	2
Total	15	6	0	0	2	0	0	0	0	5	3	6	3	2
Scaled	3	1	0	0	1	0	0	0	0	1	1	1	1	1

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

COURSE CODE	COURSE NAME	L	Т	P	C
PEE E31	BIO-MEDICAL INSTRUMENTATION	3	0	0	3
C:P:A		L	T	P	Н
3:0:0		3	0	0	3

Course	Outcomes:	Domain	Level
CO1	<b>Describe</b> the principles of biomedical measurement systems and apply the signal amplification and processing that is common to many medical Instruments.	Cognitiv e	Understanding
CO2	Identify the origin of bio-potentials and various bioelectric signals that are recorded routinely in modern clinical practice.  Understand the basic mechanisms involved in the transduction process of bio-potential electrodes and be able to discuss electrical characteristics of electrodes.	Cognitiv e	Understanding
CO3	<ul><li>Handle the various techniques of measuring blood flow, pressure &amp; volume.</li><li>Summarize the concepts and mechanisms of various clinical laboratory instrumentation.</li></ul>	Cognitiv e	Understanding
CO4	<b>Describe</b> and apply the safety issues, safe design, and safe use of medical instrumentation, specifically electrical safety, and learn how to incorporate safety features into the design.	Cognitiv e	Understanding
CO5	<b>Design</b> an instrument that can be used to analyze heart rate with exercise using appropriate Bio-amplification and filters, bio-potential sensors, and data acquisition programs.	Cognitiv e	Understanding

### UNIT – I: HUMAN SYSTEM AND BIOPOTENTIAL ELECTRODES 9

Different types of human system, origin of bio-potential and its propagation. Electrode-electrolyte interface, electrode – skin interface, half cell potential, Types of electrode, PH electrode, Recording problems, measurement with two electrodes – human cell structure.

### UNIT – II: ELECTRODE CONFIGURATION

9

Bio-signals characteristics – frequency & amplitude ranges. ECG –Enthoven's triangle, standard12 load system, PQPs waveform. EEG - 10-20 electrode system, brainwaves, recording setup of EEG, EMG, ERG, and EOG – unipolar and bipolar mode.

### UNIT - III: BIOAMPLIFIER AND TRANSDUCER

9

Need for Bio-amplifier, power amplifier, isolation amplifier, feedback amplifier. Resistive, Inductive, Capacitive transducer and application, Fibre optic, photo electric transducer – description, features applicable for biomedical instrumentation.

# **UNIT – IV: CARDIAC MEASUREMENTS**

9

Blood pressure measurement – blood flow measurement – phonocardiography – vector cardiography. Heart lung machine –ventilator – Anesthetic machine – cardiac pacemaker –defibrillator patient safetyelectrical shock hazards.

# UNIT – V: MEDICAL DIAGNOSTICS INSTRUMENTS AND SYSTEMS

9

CT scanner–MRI Scanand Ultrasonic scanner–XRay–Laser Equipment and application- bio-telemetry Kidney dialysis machine – electron microscope – blood cell counter-Endoscopy.

LECTURE	TUTORIAL	TOTAL
45	0	45

### **TEXT BOOKS:**

- 1. Khandpur, R.S., 'Handbook of Biomedical Instrumentation', TataMcGrawHill, 1989.
- 2. Arumugam M., 'Bio-Medical Instrumentation', Anuradha Agencies Pub., 2002.
- 3. C.Rajarao and S.K. Guha, 'Principles of Medical Electronics and Bio-medical Instrumentation', Universities press (India) Ltd, Orient Longman ltd, 2000.
- 4. J. Webster, 'Medical Instrumentation', John Wiley & Sons, 1995.

### **REFERENCE BOOKS:**

- 1. Geddes L.A., and Baker, L.E., 'Principles of Applied Bio-medical Instrumentation', 3rd Edition, John Wiley and Sons, 1995.
- 2. Cromwell, Weibell and Pfeiffer, 'Biomedical Instrumentation and Measurements', 2nd Edition, Prentice Hall of India,1999.
- 3. Tompkins W.J., Biomedical Digital Signal Processing, Prentice Hall of India, 1998.
- 4. J. Wilson, J.F.B. Hawkes, 'Laser Principles and Applications', .Prentice-Hall, NewYork, 1987.

### INDUSTRIAL ECONOMIICS AND FOREIGN TRADE

Cours	e Outcomes:	Domain	Level
CO1	States the international trade theory	Cognitive	Remember
CO2	List the international trade policy	Cognitive	Remember
CO3	Outline economic scales	Cognitive	Remember
CO4	Distinguish the Human Aspects and Social Issues in TIM	Cognitive	Understanding
CO5	List the sustainability of technology	Cognitive	Remember

COURSE CODE	COURSE NAME	L	T	P	C
	INDUSTRIAL ECONOMIICS AND	3	0	0	3
PEE503	FOREIGN TRADE				
C:P: A		L	T	P	Н
3:0:0		3	0	0	3

# UNIT- I: INTRODUCTION TO INTERNATIONAL TRADE POLICY

10

The Law of Comparative Advantage - The Standard Theory of International Trade - Demand and Supply, Offer Curves, and the Terms of Trade - Factor Endowments and the Heckscher—Ohlin Theory - Economies of Scale, Imperfect Competition, and International Trade - Economic Growth and International Trade

### UNIT- II: INTERNATIONAL TRADE POLICY

9

Trade Restrictions: Tariffs - Nontariff Trade Barriers and the New Protectionism - Economic Integration: Customs Unions and Free Trade Areas - International Trade and Economic Development - International Resource Movements and Multinational Corporations

### UNIT- III: ECONOMIC SCALES

8

Economies of Scale, Imperfect Competition, and International Trade - Economic Growth and International Trade

# UNIT- IV: ECONOMY MACROECONOMICS

9

The Price Adjustment Mechanism with Flexible and Fixed Exchange Rates - The Income Adjustment Mechanism and Synthesis of Automatic Adjustments - Open-Economy Macroeconomics: Adjustment Policies - Prices and Output in an Open Economy: Aggregate Demand and Aggregate Supply

# UNIT- V: INTERNATIONAL MONETARY SYSTEM

9

Flexible versus Fixed Exchange Rates, the European Monetary System, and Macroeconomic Policy Coordination 645 21 The International Monetary System: Past, Present, and Future

LECTURE	TUTORIAL	TOTAL
45	0	45

### **TEXTBOOKS**

1. Dominick Salvatore (2013), "International Economics" John Wiley & Sons, USA

### REFERENCES

2. Thomas A Pugel, "International Economics" McGraw Hill Education, 13th Edition, New Delhi

# **E REFERENCES**

_

**COs versus POs mapping** 

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	2	2	3	3	3	2	2	3					
CO 2	2	2	2	3	3	3	2	2	3					
CO 3	2	2	2	3	3	3	2	2	3					
CO 4	2	2	2	3	3	3	2	2	3					
CO 5	2	2	2	3	3	3	2	2	3					
Total	10	10	10	15	15	15	10	10	15					
Scaled	2	2	2	3	3	3	2	2	3					

0 –No Relation

1 – Low Relation

2 – Medium Relation 3 – High Relation

### **CONTROL SYSTEMS**

Cours	se Outcomes (PEE 504):	Domain	Level
CO1	<b>Identify</b> the basic elements, derive the transfer function	Cognitive	Understanding
	and Compute the overall gain of the control system and	Psychomotor	Complex or
	<b>Construct</b> the transfer function of DC motors and DC		Overt Response
	generators.		
CO2	<b>Explain</b> the performance of I and II system with static and	Cognitive	Understanding
	dynamic error coefficients.	Psychomotor	Set
CO3	Describe the frequency domain specifications and show	Cognitive	Remembering
	the response of frequency response.	Psychomotor	

			Understanding Set
CO4	<b>Determine</b> the stability of the systems and <b>Design</b> the suitable compensator and controller for the given performance criteria of the control system	Cognitive Psychomotor	Understanding Design Perception
CO5	<b>Describe</b> State transition matrix. <b>Explain</b> State space model <b>and construct</b> and <b>verify</b> the canonical state model and Kalman's test for controllability and observability.	Cognitive	Remembering

**Learning Objectives:** Control Systems is the engineering discipline that applies control theory to design systems with desired behaviors. To make students understand the concept of system representation for stability analysis and state –space analysis, to design the compensator in time and frequency domain, to design the PID compensator.

COURSE CODE         COURSE NAME         L         T         P         C           PEE 504         CONTROL SYSTEMS         3         0         1         4           C:P: A = 3:1:0         L         T         P         H           3         0         2         5	LINIT L. CVCTEM	CAND THEID DEDDECENTATION			15	
PEE 504         CONTROL SYSTEMS         3         0         1         4			3	0	2	5
	C:P: A = 3:1:0		L	T	P	Н
COURSE CODE COURSE NAME L T P C	PEE 504	CONTROL SYSTEMS	3	0	1	4
	COURSE CODE	COURSE NAME	L	T	P	C

### UNIT - I: SYSTEMS AND THEIR REPRESENTATION

Basic elements in control systems – Open and closed loop systems – Principles of feedback, Transfer function Block diagram reduction techniques – Signal flow graphs. Mason gain formula, Modeling of electric systems translation and rotational mechanical systems.

### **List of Experiments**

- 1. Transfer function and modeling of separately excited DC Generator.
- 2. Transfer function and modeling of Armature & field-controlled DC Motor.
- 3. Transfer function of AC Servomotor

### **UNIT – II: TIME RESPONSE ANALYSIS**

15

Time response – Time domain specifications - Standard test signals. Time response of first and second order systems for standard test inputs. Error coefficients – Generalized error series – Steady state error **List of Experiments** 

- 4. Analysis of Synchro Transmitter and Receiver.
- 5. Performance of DC Stepper Motor
- 6. Digital simulation of I order and II order system by using Scilab.

### **UNIT - III: FREQUENCY-RESPONSE ANALYSIS**

15

Frequency domain specification – Bode plot – Polar plot – Determination of closed loop response from open loop response – Correlation between frequency domain and time domain specifications **List of Experiments** 

- 7. Frequency response of Lag, Lead & Lag Lead networks.
- 8. Determination of Phase margin and Gain margin of the Bode plot using Scilab.

### UNIT - IV: STABILITY ANALYSIS AND CONTROLLER DESIGN

15

Characteristics equation – Location of roots in S plane for stability –Routh Hurwitz criterion – Root locus construction – Effect of pole, zero addition –Nyquist stability criterion. Introduction to design of Proportional, Integral and Derivative Controllers- Lead and Lag compensator- Analog and Digital implementation of controllers.

# UNIT – V: STATE VARIABLE ANALYSIS

15

Concepts of state variables. State space model. Diagonalization of State Matrix. Solution of state equations. Eigenvalues and Stability Analysis. Physical variable phase variable and canonical variable forms State Space representation of continuous time system. Transfer function from state variable representation –. Concept of controllability and observability.

# **List of Experiments**

- 9. Transfer function and modeling of Ward Leonard speed control system applied to DC motor.
- 10. DC Position using feedback Control system.

LECTURE	TUTORIAL	PRACTICA L	TOTAL
45	0	30	75

### **TEXTBOOKS**

- 1. I.J. Nagrath & M. Gopal, 'Control Systems Engineering', New Age International Publishers, 2003
- 2. Norman S. Nise, "Control System Engineering" Fifth edition, John Wiley & Sons, Inc, 2007.
- 3. M. Gopal, 'Control Systems, Principles & Design', Tata McGraw Hill, New Delhi, 2002.
- 4. Richard C. Dorf& Robert H. Bishop, "Modern Control Systems", Addison–Wesley, 2012.

### REFERENCES

- 1. B.C. Kuo, 'Automatic Control Systems', Prentice Hall of India Ltd., New Delhi, 2014.
- 2. K. Ogata, 'Modern Control Engineering', 4th edition, Pearson Education, New Delhi, 2003 / PHI.
- 3. N. Bandyopadhyay, 'Control Engineering Theory and Practice', Prentice Hall of India, 2009
- 4. John J.D'azzo & Constantine H.Houpis, 'Linear control system analysis and design', Tata McGraw Hill, Inc., 2013

### **E – REFERENCES**

NTPEL, Control Systems Engineering (Web Course), Prof. M. Gopal, IIT Kharagpur.

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	2	3	2	1			1	1	1			1		
CO2	2	3	1		2	1	1	1	1	1		2	2	1
CO3	3	3	3	2			1		3				2	2
CO4	1	2	2	3	2	2	1	1	2	1	1	2	1	2
CO5	2	1	1	1	2	1	1	1	2	1		1	2	2
Total	10	10	9	7	4	4	5	4	9	3	1	6	7	7
Scaled	2	2	2	2	1	1	1	1	2	1	1	2	2	2

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

### SEMESTER VI POWER SYSTEMS-II (OPERATION AND CONTROL)

Cours	e Outcomes (PEE 601):	Domain	Level
CO1	Use numerical methods to analyze a power system in steady state.	Cognitive	Analyze
CO2	Understand stability constraints in a synchronous grid.	Cognitive	Understand
CO3	Understand methods to control the voltage, frequency and power flow	Cognitive	Understand
CO4	Understand the monitoring and control of a power system.	Cognitive	Understand

COS	Understand the basics of power system economics.	Cognitive	Understand
COS	Understand the basics of bower system economics.	Cosmuve	Understand

**Learning objectives:** To provide the knowledge of optimization techniques used in the power system and Load Frequency Control (LFC). To provide a solid foundation in mathematical and engineering fundamentals required to control the governing system in Turbine models. To provide the knowledge of Hydrothermal scheduling, reactive power control

COURSE CODE	COURSE NAME	L	T	P	C
PEE 601	POWER SYSTEMS-II	3	0	0	3
C:P: A = 3:0:0	(OPERATION AND CONTROL)	L	T	P	Н
		3	0	0	3
			1	1	

### **UNIT - I: INTRODUCTION**

9

An overview of power system operation and control - system load variation - load characteristics load curves and load-duration curve - load factor - diversity factor - Reserve requirements: Installed reserves, spinning reserves, cold reserves, hot reserves - Importance of load forecasting - quadratic and exponential curve fitting techniques for forecasting – plant level and system level controls.

# UNIT - II: REAL POWER - FREQUENCY CONTROL

9

Basics of speed governing mechanism and modelling - speed-load characteristics – load sharing between two synchronous machines in parallel - concept of control area - LFC control of a single-area system: static and dynamic analysis of uncontrolled and controlled cases - two-area system: modelling - static analysis of uncontrolled case - tie line with frequency bias control - state variable model.

### UNIT - III: REACTIVE POWER-VOLTAGE CONTROL

9

Generation and absorption of reactive power - basics of reactive power control - excitation systems—modelling - static and dynamic analysis - stability compensation - methods of voltage control: tapchanging transformer, injection reactive power - SVC (TCR + TSC) and STATCOM – secondary voltage control.

### UNIT – IV: UNIT COMMITMENT AND ECONOMIC DISPATCH

9

Formulation of economic dispatch problem – I/O cost characterization – incremental cost curve coordination equations without and with loss (No derivation of loss coefficients) - solution by direct method and  $\lambda$ -iteration method - statement of unit commitment problem – priority-list method forward dynamic programming.

# UNIT - V: COMPUTER CONTROL OF POWER SYSTEMS

9

Need for computer control of power systems - concept of energy control centre - functions - system monitoring - data acquisition and control - system hardware configuration - SCADA and EMS functions - network topology - state estimation - WLSE - Contingency Analysis - state transition diagram showing various state transitions and control strategies.

0	<u> </u>	<u> </u>		
		LECTURE	PRACTICAL	TOTAL
		45	0	45

### **TEXTBOOKS**

- 1. Olle.I.Elgerd, 'Electric Energy Systems theory An introduction', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 34th reprint, 2010.
- 2. Allen. J. Wood and Bruce F. Wollenberg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 3rd Edition ,2013.
- 3. Kundur P., 'Power System Stability and Control, Tata McGraw Hill, New Delhi, 5th reprint, 2014.

### REFERENCES

- 1. Nagrath I.J. and Kothari D.P., 'Modern Power System Analysis', Tata McGraw-Hill, Fourth Edition, 2011.
- 2. Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21streprint, 2010.
- 3. Abhijit Chakrabarti, Sunita Halder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third Edition, 2010.

# **E REFERENCES**

www.nptel.ac.in, https://nptel.ac.in/courses/108102047/29

# Mapping of COs with POs

11 8									,					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	2	1	1	1	1	-	-	-	1	-	1	2	2
CO 2	3	3	2	2	1	1	1	-	-	1	-	1	1	1
CO 3	2	1	1	2	1	0	-	-	-	1	-	2	1	1
CO 4	1	1	1	1	1	0	1	-	-	1	-	1	2	2
CO 5	2	1	1	1	1	1	-	-	-	1	-	1	1	1
Total	10	8	6	5	5	3	2	0	0	5	0	6	7	7
Scaling	2	2	2	1	1	1	1	0	0	1	0	2	2	2

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

### E-WASTE MANAGEMENT

Cours	se Outcomes:	Domain	Level
CO1	Able to <b>find</b> the technologies for waste electrical and	Cognitive	Remember
	electronic equipment		
CO2	Able to <b>explain</b> the methods of Mechanical Processing of	Cognitive	Remember
	waste disposal		
CO3	Able to <b>classify</b> the sources of Hydrometallurgical	Cognitive	Remember
	Processing		Understand
CO4	Able to summarize the Electronic Waste Recycling	Cognitive	Remember
			Understand
CO5	Able to <b>demonstrate</b> the methods for Batteries disposal	Cognitive	Remember
			Understand

# **Learning Objectives:**

- To classify waste sources
- To identify methods of waste disposal
- To study various energy generation methods
- To analyse recycling of e-waste

COURSE CODE	COURSE NAME	L	T	P	C			
PEE602	E-WASTE MANAGEMENT	3	0	0	3			
C:P: A		L	T	P	Н			
3:0:0		3	0	0	3			
UNIT- I: INTRODUCTION								

Introduction, Electronic Waste, Generation and Management, Electronic Waste in the World, The Problem of WEEE, WEEE Management Leaching Processes, Acid and Alkaline Leaching, Leaching Using Supercritical Fluids, Bioleaching.

# **UNIT- II: MECHANICAL PROCESSING**

9

Mechanical Processing, Comminution, Size Separation, Density Separation, Separation by Dense Medium, Separation via Suspensions, Jigs, Flowing Film Concentrators, Air Separation, Magnetic Separation, Dry Separators, Wet Separators, Electrostatic Separation, Electrification by Contact or Friction, Electrification by Ion Bombardment, Eddy Current (Foucault Current)

### UNIT- III: HYDRO METALLURGICAL PROCESSING

9

Hydrometallurgical Processing: Liquid-Liquid Extraction, Supercritical Extraction, Cementation, Electrometallurgical Processing: Pyrometallurgical Processing

# UNIT- IV: ELECTRONIC WASTE RECYCLING

9

Electronic Waste Recycling: Materials Recycling Considerations, Polymers, Ceramics, Printed Circuit Boards, Mechanical Processing, Hydrometallurgical Processing, Bio hydro metallurgical Processing, Pyro metallurgical Processing, Monitors, Cathode Ray Tube, Liquid Crystal Displays/Light Emitting Diodes.

# **UNIT- V: BATTERIES**

9

Batteries: Nickel-Cadmium (NiCd) Batteries, Manual Sorting, Component Separation by Unity Operations of Mineral Treatment, Pyro metallurgical Route, Hydrometallurgical Route, Nickel Metal Hydride (NiMH) Batteries, Characteristics of Nickel Metal Hydride Batteries—NiMH, Recycling NiMH Batteries, Lithium Ion Batteries, Constituents of Rechargeable Lithium-Ion Batteries (LIBs), Cathode Materials, Anode Materials, Electrolytes, Separator, Recycling LIBs Batteries, Zinc-Manganese Dioxide Systems.

LECTURE	TUTORIAL	TOTAL
45	0	45

### **TEXTBOOKS**

- 1. Hugo Marcelo Veit Andréa Moura Bernardes, Electronic Waste Recycling Techniques, Springer International Publishing Switzerland 2015.
- 2. "E-waste in India: Research unit, Rajya Sabha Secretariat, New Delhi, June 2011"

### REFERENCES

### GOOGLE BOOKS

- 1. e-waste Management: From waste to Resource Klaus Hieronymi, Ramzy Kahnat, Eric williams Tech. & Engg.-2013(Publisher: Earthscan 2013).
- 2. What is the impact of E-waste: Tamara Thompson
- 3. E-waste poses a Health Hazard: Sairudeen Pattazhy

### **E REFERENCES**

### **WEBLINKS:**

- www.unep.org
- www.routledge.com
- www.amazon.com
- www.bookdepository.com
- www.ecoactiv.com

**Mapping of COs with POs** 

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

CO 1	1					2	3	2		1	1	2	1
CO 2			2	1		2	3	2		1	1	1	1
CO 3		1	1	1	2	2	2	2		1	1	2	2
CO 4	1	1	1	1			2	2	2	2	2	2	2
CO 5	2		3	2	2	2	2	2		2	2	3	3
Total	4	2	7	5	4	8	12	10	2	7	7	10	9
Scaled	1	1	2	1	1	2	3	2	1	2	2	2	2

0 –No Relation

1 – Low Relation

2 – Medium Relation 3 – High Relation

### DISASTER MANAGEMENT

Cour	se Outcomes:	Domain	Level
CO 1	Understanding the concepts of application of types of disaster preparedness	Cognitive	Application
CO 2	On completion of this course the students will be able to understand planning essentials of disaster.	Cognitive	Analyze
CO 3	Have a good understanding of importance of seismic waves occurring globally	Cognitive	Analyze
CO 4	On completion of this course, the students will be able to perform drill essential for disaster mitigation	Cognitive	Application
CO 5	Have a keen knowledge on essentials of risk reduction	Cognitive	Application

COURSE CODE	COURSE NAME	L	T	P	C
PEE603	DISASTER MANAGEMENT	3	0	0	3
C:P: A		L	T	P	Н
3:0:0		3	0	0	3
UNIT- I: INTRODUCTION	ON	<u> </u>	1	1	9

Introduction – Disaster preparedness – Goals and objectives of ISDR Programme- Risk identification – Risk sharing – Disaster and development: Development plans and disaster management –Alternative to dominant approach– disaster-development linkages -Principle of risk partnership

# UNIT- II: APPLICATION OF TECHNOLOGY IN DISASTER RISK REDUCTION

Application of various technologies: Data bases – RDBMS – Management Information systems – Decision support system and other systems – Geographic information systems – Intranets and extranets – video teleconferencing. Trigger mechanism – Remote sensing-an insight – contribution of remote sensing and GIS - Case study

### UNIT- III: AWARENESS OF RISK REDUCTION

9

Trigger mechanism – constitution of trigger mechanism – risk reduction by education – disaster information network – risk reduction by public awareness

### UNIT- IV: DEVELOPMENT PLANNING ON DISASTER

9

Implication of development planning – Financial arrangements – Areas of improvement – Disaster preparedness – Community based disaster management – Emergency response.

#### **UNIT- V: SEISMICITY**

9

Seismic waves – Earthquakes and faults – measures of an earthquake, magnitude and intensity – ground damage – Tsunamis and earthquakes

LECTURE	TUTORIAL	TOTAL	
45	0	45	_

#### **TEXTBOOKS**

- 1. Siddhartha Gautam and K Leelakrishna Rao, "Disaster Management Programmes and Policies", Vista International Pub House, 2012,
- 2. Arun Kumar, "Global Disaster Management", SBS Publishers, 2008

#### REFERENCES

- 1. Encyclopaedia of Disaster Management, Neha Publishers & Distributors, 2008
- 2. Pradeep Sahni, Madhavi Malalgoda and Ariyabandu, "Disaster risk reduction in South Asia", PHI, 2002
- 3. Amita Sinvhal, "Understanding earthquake disasters" TMH, 2010.
- 4. Pardeep Sahni, Alka Dhameja and Uma Medury, "Disaster mitigation: Experiences and reflections", PHI, 2000

# **E REFERENCES**

## **Mapping of COs with POs**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1		1	1					1			1	1	2	2
CO 2			2		3						2	2	2	2
CO 3						2	2				1	1		1
CO 4		2	2		1	1	1	2	1	1	3	1	1	
CO 5						2	3	3		2	1	1	2	2
Total	0	3	5	0	4	5	6	6	1	3	8	6	7	7
Scaled	0	1	1	0	1	1	1	1	1	1	2	1	2	2

^{0 –}No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

#### MICROPROCESSORS AND MICROCONTROLLERS

Cours	se Outcomes (PEE 604):	Domain	Level
CO1	To understand the fundamentals of microprocessors,	Cognitive	Understanding
	microcontrollers and embedded systems		

CO2	To understand the architecture, Timing diagrams and	Cognitive	Understanding
	Execution cycles of 8051		
CO3	To understand the types of addressing modes, Instruction	Cognitive	Understanding
	types and to understand the basic concepts of programming	Psychomotor	Set
		Affective	Responding
CO4	To understand interfacing design of peripherals like I/O,	Cognitive	Understanding
	A/D, D/A, timer etc.	Psychomotor	Set
		Affective	Responding
CO5	To understand communication protocols and interfacing	Cognitive	Understanding
	with external devices	Psychomotor	Set
		Affective	Responding

**Learning Outcomes:** Able to do assembly language programming, do interfacing design of peripherals like I/O, A/D, D/A, timer etc. and to develop systems using different microcontrollers.

COURSE CODE	COURSE NAME	L	T	P	C
PEE 604	MICROPROCESSORS AND	3	0	1	4
C:P:A = 3:1:0	MICROCONTROLLERS	L	T	P	Н
		3	0	2	5

#### UNIT - I: FUNDAMENTALS OF MICROPROCESSORS

Fundamentals of Microprocessor Architecture, 8-bit Microprocessor and Microcontroller architecture, Comparison of 8-bit microcontrollers, 16-bit and 32-bit microcontrollers. Definition of embedded system and its characteristics, Role of microcontrollers in embedded Systems. Overview of the 8051 family.

#### **UNIT – II: THE 8051 ARCHITECTURE**

9

Internal Block Diagram, CPU, ALU, address, data and control bus, working registers, SFRs, Clock and RESET circuits, Stack and Stack Pointer, Program Counter, I/O ports, Memory Structures, Data and Program Memory, Timing diagrams and Execution Cycles.

#### UNIT-III: INSTRUCTION SET AND PROGRAMMING

9+12

Addressing modes: Introduction, Instruction syntax, Data types, Subroutines Immediate addressing, Register addressing, Direct addressing, Indirect addressing, Relative addressing, indexed addressing, Bit inherent addressing, bit direct addressing. 8051 Instruction set, Instruction timings. Data transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Subroutine instructions, Bit manipulation instruction. Assembly language programs, C language programs. Assemblers and compiler Programming and Debugging tools.

#### **List of Experiments**

- 1. Simple arithmetic operations with 8085 Microprocessors: Multi precision addition / subtraction / multiplication / division.
- 2. Programming with control instructions: Increment / Decrement, Ascending / Descending order, Maximum / Minimum of numbers, Rotate instructions.
- 3.Demonstration of basic instructions with 8051 Micro controller execution, including: a. Conditional jumps, looping b. Calling subroutines. c. Stack parameter testing
- 4. Design program for code conversions.

#### UNIT – IV: MEMORY AND I/O INTERFACING

9+3

Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters, memory devices.

#### **List of Experiments**

5. Interfacing Converters of 8-bit D/A and A/D.

# UNIT-V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS

9+15

Synchronous and Asynchronous Communication. RS232, SPI, I2C. Introduction and interfacing to protocols like Blue-tooth and Zig-bee. LED, LCD and keyboard interfacing. Stepper motor interfacing, DC Motor interfacing, sensor interfacing.

#### **List of Experiments**

6.Interfacing of Keyboard with 8085

- 7.Interfacing of seven segment display with 8085.
- 8. Serial communication, I/O Port operations.
- 9. Design and implementation of Traffic Light control.
- 10.Design and implementation of Stepper motor control

LECTURE	PRACTICAL	TOTAL
45	30	75

#### **TEXTBOOKS**

- 1. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.
- 2. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.
- 3. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.
- 4. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013

#### **REFERENCES**

- 1. D.A.Patterson and J.H.Hennessy, "Computer Organization and Design: The Hardware /Software interface", Morgan Kaufman Publishers, 5th Edition, 2013.
- 2. D.V.Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 2005.

#### **E REFERENCES**

www.nptel.ac.in

https://onlinecourses.nptel.ac.in/noc19 ee11

https://nptel.ac.in/courses/Webcourse-contents/IISc

BANG/notused/Microprocessors%20and%20Microcontrollers-/Learning%20Material%20-

%20Microprocessors%20and%20microcontrollers.pdf

# Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
GO 1	1		_		0	0				1				
CO 1	1	0	2	0	0	0	0	0	0	l	1	0	1	1
CO 2	1	2	1	3	1	0	0	0	2	1	2	1	1	1
CO 3	0	0	0	0	0	1	2	0	1	2	0	0	1	1
CO 4	1	1	2	2	1	0	0	0	2	1	2	1	0	1
CO 5	1	2	2	1	0	0	3	0	3	2	1	0	0	1
Total	4	5	7	6	2	1	5	0	8	7	6	2	3	5
Scaled	1	1	2	1	1	1	1	0	2	2	1	1	1	1

# POWER PLANT ENGINEERING

Cours	e Outcomes (PEE E41):	Domain	Level			
CO1	<b>Explain</b> about the various types of the power generation and function of boilers	Cognitive	Understanding			
CO2	Choose Various Measurements in power plants.	Cognitive	Remembering			
CO3	<b>Illustrate</b> Various analyzers in power plants, and <b>identify</b> the pollution monitoring instruments.	Cognitive	Understanding Applying			
CO4	<b>Infer all</b> control loops in boiler, and interlocks in boiler operation-boiler trip protection.	Cognitive	Understanding			
CO5	Explain about turbine speed vibration – lubricant oil temperature control – cooling system and select the SCADA and other monitoring an control software	Cognitive	Understanding Remembering			
COUR	SE CODE COURSE NAME	· I	T P C			

COURSE CODE	COURSE NAME	L	T	P	C					
PEE E41	POWER PLANT ENGINEERING	3	0	0	3					
C:P: A = 3:0:0	POWER PLANT ENGINEERING	L	T	P	Н					
LINET LOVEDNESS OF DOWED CENED ATION										

#### UNIT- I: OVERVIEW OF POWER GENERATION

Principle of Power Generation, Brief survey of methods of power generation – hydro, thermal, nuclear, solar, wind and tidal power – importance of instrumentation in power generation—Material handling of power plant equipment thermal power plants – building blocks – details of boiler process UP&I diagram of boiler – cogeneration.

#### UNIT- II: MEASUREMENTS IN POWER PLANTS

9

Electrical measurements – current, voltage, power, frequency, power – factor etc. – non electrical parameters – flow of feed water, fuel, air and steam with correction factor for temperature – steam pressure and steam temperature – drum level measurement – radiation detector – smoke density measurement – dust monitor-emission measurements-performance measurements

#### **UNIT-III: ANALYZERS IN POWER PLANTS**

9

Flue gas oxygen analyzer – Demineral - Steam and Water Analysis System (SWAT) analysis of impurities in feed water and steam – dissolved oxygen analyzer – chromatography – PH meter – fuel analyzer – pollution monitoring instruments

#### UNIT-IV: CONTROL LOOPS IN BOILER

9

Combustion control – air/fuel ratio control – furnace draft control – drum level control – low and high protection- main steam and reheat steam temperature control – super heater control – at temperature – deaerator level control – distributed control system in power plants – interlocks in boiler operation-boiler trip protection

### UNIT- V: TURBINE - MONITORING AND CONTROL SOFTWARE

9

Speed, vibration, shell temperature monitoring and control – steam pressure control – lubricant oil temperature control – cooling system and application of SCADA and other monitoring and control software

LECTURE	PRACTICA	TOTAL
	L	
45	0	45

#### TEXT BOOKS

- 1. Sam G. Dukelow, "The control of Boilers" Instrument Society of America, 2000.
- 2. V.K. Mehta and Rohit Mehta "Principles of Power system" S. Chand & Company, New Delhi, 2003
- 3. Er. R.K. Rajput, A text book of power plant engineering, Fourth edition, 2015.
- 4. Dr. P. C. Sharma's A Textbook of Power Plant Engineering, published by S. K. Kataria, 2013.

#### REFERENCE BOOKS

- 1. Power station Engineering and Economy by Bernhardt G.A.Skrotzki and William A.VopatTata McGraw Hill Publishing Company Ltd., New Delhi, 20th reprint 2002
- 2. R.K.Jain, "Mechanical and Industrial Measurements" Khanna Publishers, New Delhi, 2002.
- 3. Arora Domkundwar, A course in Power Plant engineering, Dhanpat Rai & Co.,2001

#### **E-REFERENCES:**

www.electrical4u.com

**Mapping of COs with POs** 

	DO4	200	D00		DO -		200	DOO	D00	DO40	DO44	DO44	D004	DOOA
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	1	-	-	-	1	-	-	1	3	2
CO2	3	1	1	2	1	-	-	ı	1	ı	ı	1	1	2
CO2	3	1	-	2	1	-	-	-	1	-	-	1	1	2
CO3	3	-	1	-	1	-	-	-	1	-	-	1	2	1
CO4	3	2	2	2	1	-	-	-	1	-	-	1	3	1
CO5	3	1	-	-	1	-	-	-	-	-	-	1	2	1
Total	15	6	4	6	5				4			5	11	7
Scaled	3	2	1	2	1				1			1	3	2

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

#### **ELECTRICAL DRIVES**

Course O	utcomes	s (PEE E51):		Domain	I	Level			
CO1		stand the characteristics of DC drive uadrant operation	es and its	Cognitive	Unders	standing			
CO2	Unders Drives.	stand the various control techniques	of DC	Cognitive	Remer	nbering			
CO3	CO3 Categorize the different speed control methods for an Induction motor drive at stator side. Cognitive Understanding								
CO4	CO4 Illustrate the various control techniques of induction motor Drives at rotor side.  Cognitive Understa								
CO5		<b>te</b> the various control techniques an tion of Synchronous motor drives.	d	Cognitive	Unders	standing			
COURSE		COURSE NAME	L	T	P	C			
CODE									
PEE E	51		3	0	0	3			
C:P: A		ELECTRICAL DRIVES	L	T	P	Н			
3:0:0			3	0	0	3			
UNIT- I: DC MOTOR DRIVE CHARACTERISTICS AND MULTI-QUADRANT OPERATIONS									

Fundamentals of Electrical Drives - Advantage of Electrical Drives - Selection of Motor Power Rating

- Review of emf and torque equations of DC machine - Review of torque-speed characteristics of separately excited dc motor - Four quadrant operation of dc machine - Steady state operation of multiquadrant chopper fed dc drive, regenerative braking.

#### UNIT- II: CONTROL OF DC DRIVES

g

DC Motor and their Performance - Transient Analysis - Ward Leonard Drives - Steady State Analysis of the Single and Three Phase Fully Controlled Converter Fed Separately Excited DC Motor Drive – Continuous and Discontinuous Mode Chopper Controlled DC Drives - Time Ratio Control and Current Limit Control.

#### UNIT- III: STATOR CONTROLLED INDUCTION MOTOR DRIVES

9

Induction Motor Drives - Stator Control - Stator Voltage and Frequency Control - VSI, CSI and Cycloconverter Fed Induction Motor Drives - Open Loop and Closed Loop V/f Control. Conventional space vector modulation; Steady-state performance analysis based on equivalent circuit, speed drop with loading, slip regulation.

#### UNIT- IV: ROTOR CONTROLLED INDUCTION MOTOR DRIVES

•

Impact of rotor resistance of the induction motor torque-speed curve - Operation of slip-ring induction motor with external rotor resistance, starting torque - Power electronic based rotor side control of slip ring motor - Slip Power Recovery. sub-synchronous and Super Synchronous Operations - Power Factor Improvement - Closed Loop Control.

# **UNIT- V: SYNCHRONOUS MOTOR DRIVES**

9

Separate Controlled Mode - Self Controlled Mode of Synchronous Motor - Constant Marginal Angle Control and Motor Power Factor Control - Cycloconverter Fed Synchronous Motors - Digital Control and Drive Applications.

LECTURE	PRACTICAL	TOTAL
45	0	45

#### **TEXT BOOKS**

- 1. Dubey. G.K, 'Fundamentals of Electrical Drives', Narosa Publications, 2008.
  - B. K. Bos, 'Power Electronics and AC Drives', Prentice Hall Onglewood cliffs, New Jersey, 1998.
- 2. Gopal K. Dubey, 'Fundamentals of Electrical Drives', New Delhi, 2nd Edition, Narosa Publishing House,
- 3. Krishnan. R, 'Electric motor& Drives; Modelling, Analysis and Control', Prentice Hall of India, 2001.
- 4. Dubey. G. K, 'Power Semiconductor Controlled Drives', Prentice Hall, 1989.

#### **REFERENCE BOOKS**

- 1. Murphy, J.M.D and Turnbull F.G, 'Thyristor Control of AC Motors', Pergamon Press,1990.
- 2. Sen. P.C, 'Thyristor D.C. Drives', John Wiley and Sons, 1981.
- 3. Vedam Subrahmaniyam, 'Electric Drives Concepts and Applications', Tata McGraw Hill Publishing company Ltd., 2011.
- 4. Gaekward, 'Analog and Digital Control Systems', Wiley Eastern Ltd, 1989.
- 5. Leonhard. W, 'Control of Electric Drives', Springer Science & Business Media, 2001

#### **E-REFERENCES**

Lecture Series on Solid State Devices by Prof.S.Karmalkar, Department of Electrical Engineering, IIT Madras.

#### Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	1	0	2	0	1	0	0	0	0	0	0	3
CO2	3	1	0	0	2	0	1	0	0	0	0	0	3	2

CO3	1	2	3	0	2	0	0	1	0	0	0	0	1	2
CO4	0	2	0	0	3	0	1	0	0	0	0	0	2	2
CO5	3	1	1	0	0	1	1	1	0	0	0	1	1	2
Total	10	8	5	0	9	1	4	2	0	0	0	1	7	11
Scaling	2	2	1	0	2	1	1	1	0	0	0	1	2	3

0 –No Relation 1 – Low Relation

2 – Medium Relation 3 – High Relation

#### **HVDC TRANSMISSION SYSTEMS**

Cours	se Outcomes (PEE	E61):		Doma	ain		<b>Level</b>		
CO1	Understand the ac	dvantages of dc transmission over ac Cognitive Understandi						anding	
	transmission.								
CO2	Understand the	operation of Line Commutated Cognitive Understan					anding		
	Converters and Vo	ltage Source Converters.							
CO3	Understand the co	ontrol strategies used in H	Cogni	itive	J	Understanding			
	transmission system	m.							
CO4	Understand the in	nprovement of power syst	em stability	Cogni	itive	J	Jnderst	anding	
	using an HVDC sy	stem.							
CO5	Understand the co	oncept of MTDC system.	Cognitive			Jnderst	anding		
CC	OURSE CODE	COURSE N	NAME		L	T	P	C	

COURSE CODE	COURSE NAME	L	T	P	C
PEE E61	HVDC TRANSMISSION SYSTEMS	3	0	0	3
C:P: A	HVDC TRANSMISSION STSTEMS	L	T	P	Н
3:0:0		3	0	0	3

#### UNIT - I: D.C. TRANSMISSION TECHNOLOGY

09

Comparison of AC and DC Transmission (Economics, Technical Performance and Reliability)-Application of DC Transmission –Types of HVDC Systems –Components of a HVDC System – Line Commutated Converter and Voltage Source Converter Based systems.

# UNIT- II: ANALYSIS OF LINE COMMUTATED AND VOLTAGE SOURCE CONVERTERS

09

Line Commutated Converters (LCCs) Six Pulse Converter – Analysis neglecting Commutation Overlap, Harmonics – Twelve Pulse Converters – Inverter Operation –Effect of Commutation Overlap – Effect of Commutation Failure, Misfire and Current Extinction in LCC links. Voltage Source Converters (VSCs): Two and Three-Level VSCs –PWM Schemes: Selective Harmonic Elimination, Sinusoidal Pulse width Modulation. Analysis of a six-pulse converter –Real and Reactive power control using VSC.

# UNIT- III: CONTROL OF HVDC CONVERTERS AND COMPONENTS OF HVDC SYSTEM

**09** 

Principles of Link Control in a LCC HVDC System - Control Hierarchy, Firing Angle Controls – Phase Locked Loop, Current and Extinction Angle Control – Starting and Stopping of a Link Principles of Link Control in a VSC HVDC system: Power Flow and DC Voltage Control. Smoothing Reactors, Reactive Power Sources and Filters in LCC HVDC Systems DC Line, Corona Effects - Insulators, Transient Over-voltages DC Line faults in LCC Systems.

# UNIT – IV: STABILITY ENHANCEMENT USING HVDC CONTROL

09

Basic Concepts: Power System Angular -Voltage and Frequency Stability –Power Modulation: Basic Principles –Synchronous and Asynchronous Links - Voltage Stability Problem in AC/DC Systems.

#### UNIT – V: MTDC LINKS

09

Multi-Terminal and Multi- Infeed Systems – Series and Parallel MTDC Systems using LCCs MTDC Systems using VSCs – Modern Trends in HVDC Technology –Introduction to Modular Multi-level Converters.

LECTURE	TUTORIAL	TOTAL
45	0	45

#### **TEXTBOOKS:**

- 1. Padiyar. K. R, 'HVDC Power Transmission Systems', New Age International publishers, 2011.
- 2. Arrillaga. J, 'High Voltage Direct Current Transmission', Peter Peregrinus Ltd., 1983.

#### **REFERENCES:**

1. Kimbark. E.W, 'Direct Current Transmission', Vol.1, Wiley-Interscience, 1971.

#### **E-REFERENCES:**

1. www.nptel.ac.in

**Mapping of COs with POs** 

					FF8									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	-	1	-	-	1	1	-	1	2	1
CO2	1	1	1	1	-	-	-	-	-	-	1	1	1	2
CO3	1	3	-	-	-	-	-	-	-	-	-	1	2	2
CO4	2	3	1	1	-	-	-	-	-	-	-	-	2	2
CO5	1	2	-	-	-	-	-		-	-	-	1	1	1
Total	7	10	3	3	0	1	0	0	1	1	1	3	8	8
Scaling	2	3	1	1	0	1	0	0	1	1	1	1	2	2

0 –No Relation 1 – Low Relation 2 – Medium Relation 3 – High Relation

# M.TECH (PED) SEMESTER I ANALYSIS OF ELECTRICAL MACHINES

	se Outcomes (YPE	101):	Domain		L	evel	
CO1	Understand the p	rinciples of electromechanical energy	Cognitiv	e	U	nders	tandin
	conversion and cl	haracteristics of DC motors			g		
CO2	Know the concep	ts related with AC machines and	Cognitiv	e	U	nders	tandin
	modelling of 'n' 1	phase machines			g		
CO3	Interpret the cond	cepts of reference frame theory.	Cognitiv	e	U	nders	tandin
					g		
CO ₄	11 0 1	s to develop induction machine model in	Cognitiv	e	A	pplyi	ng
		iable form and reference variable forms					
CO ₅	_	edures to develop synchronous machine	Cognitiv	e	A	pplyi	ng
		ne variables form and reference variable					
	form.					_	
C(	OURSE CODE	COURSE NAME		L	T	P	C
	YPE 101	ANALYSIS OF ELECTRICAL MAC	HINES	3	1	0	4
(	C:P: $A = 3:0:0$			L	T	P	H
				3	1	0	4
UNIT	L ELECTROM	  ECHANICAL ENERGY CONVERSIO	N and DC	7 1 1 1	CIII	NIEC	12
_	_	ent magnet, Energy conservation - stored	_		y, co-	energ	-
and to operat	rque in singly and do	nent magnet, Energy conservation - stored to bubly excited systems – Elementary DC ma rque equations – dynamic characteristics -	nchine and DC motor	analy	y, co-	energ	y forcedy state
and to operat diagra	rque in singly and do	nent magnet, Energy conservation - stored to bubly excited systems – Elementary DC ma rque equations – dynamic characteristics - namic characteristic by Laplace transformat	nchine and DC motor	analy	y, co-	energ	y forc
and to operat diagra UNIT	rque in singly and detion - Voltage and to tions - solution of dyn Y - II AC MACHIN	nent magnet, Energy conservation - stored to bubly excited systems – Elementary DC ma rque equations – dynamic characteristics - namic characteristic by Laplace transformat ES -CONCEPTS	nchine and DC motor	analy	y, co- ysis o ime o	energ f stea lomai	y forced y statent block
and to operat diagra UNIT Distril	rque in singly and detion - Voltage and to ams - solution of dyn - II AC MACHIN buted Windings - Wi	nent magnet, Energy conservation - stored to bubly excited systems – Elementary DC ma rque equations – dynamic characteristics - namic characteristic by Laplace transformat	DC motor	analyrs – T	y, co- ysis o ime o	energ f stea lomai MF -	y forced y staten block
and to operat diagra <b>UNIT</b> Distril Linka	orque in singly and detain - Voltage and to to to some - solution of dyn - II AC MACHIN buted Windings - Wige and Inductance -	nent magnet, Energy conservation - stored to bubly excited systems – Elementary DC magnetic equations – dynamic characteristics - namic characteristic by Laplace transformate ES -CONCEPTS inding Functions - Air-Gap Magneto motive	DC motor tion Te Force -F	analyrs – T	y, co- vsis o ime o ng M	energ f stea lomai MF -	y forced y statent block
and to operat diagra UNIT Distrib Linka Machi	rque in singly and detion - Voltage and to ams - solution of dyn buted Windings - Wige and Inductance - inesmagnetic nois	nent magnet, Energy conservation - stored to bubly excited systems – Elementary DC magnetic equations – dynamic characteristics - namic characteristic by Laplace transformate ES -CONCEPTS inding Functions - Air-Gap Magneto motive Resistance -Voltage and Flux Linkage Ed	DC motor tion Te Force -F	analyrs – T	y, co- vsis o ime o ng M	energ f stea lomai MF -	y forced y statent block
and to operated diagrae UNIT Distribution Linka, Machimachi	rque in singly and detion - Voltage and to the second of dyn and a	nent magnet, Energy conservation - stored to bubly excited systems – Elementary DC magnetic equations – dynamic characteristics - namic characteristic by Laplace transformate ES -CONCEPTS inding Functions - Air-Gap Magneto motive Resistance -Voltage and Flux Linkage Ed	DC motor tion Te Force -F	analyrs – T	y, co- vsis o ime o ng M	energ f stea lomai MF -	y forced y statent block
and to operat diagra UNIT Distril Linka Machi machi UNIT	rque in singly and detion - Voltage and to ams - solution of dyn buted Windings - Wige and Inductance - inesmagnetic nois ne.	nent magnet, Energy conservation - stored to bubly excited systems – Elementary DC marque equations – dynamic characteristics - namic characteristic by Laplace transformates - CONCEPTS inding Functions - Air-Gap Magneto motive-Resistance - Voltage and Flux Linkage Ede and harmonics in rotating electrical magnetic results.	DC motor tion e Force -F quations for	analyrs – Transfer Cotation Cotation Mode	y, co- ysis o ime o ng M stribu ling	energ f stea lomai MF - uted V	y forced y statenth block bloc
and to operate diagra UNIT Distribution Linka, Machimachi UNIT History variab	rque in singly and detion - Voltage and to the second result of dynams - solution of dynams - solution of dynams - solution of dynams - which will be second result of the second results of the secon	tent magnet, Energy conservation - stored to bubly excited systems – Elementary DC marque equations – dynamic characteristics - tamic characteristic by Laplace transformate ES -CONCEPTS  Inding Functions - Air-Gap Magneto motive Resistance - Voltage and Flux Linkage Extended and harmonics in rotating electrical magnetic transformation and commutator transformation and commutator transformation arbitrary reference frame – transformation	DC motor tion  The Force -Force -Forc	analy rs – Transcription Rotation or Dia Mode	y, co- ysis o ime o ng M stribu ling	f steadomai	y forced y state n block 12 Flux Vinding phase 12
and to operat diagra UNIT Distril Linka Machi machi UNIT Histor variab observ	rque in singly and detion - Voltage and to the series - solution of dyn and the series - William	tent magnet, Energy conservation - stored to bubly excited systems - Elementary DC marque equations - dynamic characteristics - tamic characteristic by Laplace transformates - CONCEPTS inding Functions - Air-Gap Magneto motive-Resistance - Voltage and Flux Linkage Ede and harmonics in rotating electrical magnetic transformation and commutator transformation and commutator transformation of reference.	DC motor tion  The Force -Force -Forc	analy rs – Transcription Rotation or Dia Mode	y, co- ysis o ime o ng M stribu ling	f steadomai	y forcedy staten block.  12 Flux Vindin ' phase  12 ation coariable
and to operat diagra UNIT Distril Linka Machi machi UNIT Histor variab observ UNIT	rque in singly and detion - Voltage and to the second of dyndrams - solution of dyndrams - solution of dyndrams - Wige and Inductance - inesmagnetic noisene.  You will reference the second of the	tent magnet, Energy conservation - stored to bubly excited systems – Elementary DC marque equations – dynamic characteristics - tamic characteristic by Laplace transformate ES -CONCEPTS  Inding Functions - Air-Gap Magneto motive Resistance - Voltage and Flux Linkage Extended and harmonics in rotating electrical magnetic transformation and commutator transformation and commutator transformation of reference.  N MACHINES	re Force -Fquations for achines.	analy rs – Tre Rotatin or Dia Mode	y, co- vsis o ime o ng M stribu ling trans	MF - uted V of 'n	y forced y statent block of the statent block of th
and to operat diagra UNIT Distril Linka Machi machi UNIT Histor variab observ UNIT Three	rque in singly and detion - Voltage and to the second of dyn S - II AC MACHIN buted Windings - Winge and Inductance - tinesmagnetic nois ine.  S - III REFERENCE rical background - toles from stationary wed from several frames - IV INDUCTION phase induction many second of the seco	tent magnet, Energy conservation - stored to bubly excited systems - Elementary DC marque equations - dynamic characteristics - namic characteristic by Laplace transformates - CONCEPTS inding Functions - Air-Gap Magneto motive - Resistance - Voltage and Flux Linkage Ede and harmonics in rotating electrical magnetic transformation and commutator transformation and commutator transformation of reference.  N MACHINES echine and doubly fed induction machine-	re Force -Force	analy rs – Transfer Control Mode on – balan	y, co- ysis o ime o ime o img M stribu ling trans nced	MF - nted V of 'n forma set-v	y forced y state of the state o
and to operated diagrated UNIT Distribution Linka, Machimachi UNIT History variabobsery UNIT Three steady	rque in singly and detion - Voltage and to the solution of dyn and - II AC MACHIN buted Windings - Winge and Inductance - III REFERENCE rical background - III REFERENCE rom stationary and from several frame of the sever	tent magnet, Energy conservation - stored to bubly excited systems - Elementary DC may reque equations - dynamic characteristics - tamic characteristic by Laplace transformate ES - CONCEPTS and Functions - Air-Gap Magneto motive Resistance - Voltage and Flux Linkage Extended and harmonics in rotating electrical magnetic transformation and commutator transformation and commutator transformation of reference.  N MACHINES achine and doubly fed induction machine-free acceleration characteristics - voltage	re Force -Force	analy rs – Transport Rotation or Dia Mode on – balan t circue	y, co- vsis o ime o ime o img M stribu ling trans nced	MF - nted V of 'n forma set-v	y forced y state of the state o
and to operated diagraed UNIT Distribution D	rque in singly and detion - Voltage and to the second of dyn S - II AC MACHIN buted Windings - Winge and Inductance - tinesmagnetic nois ine.  S - III REFERENCE rical background - toles from stationary wed from several frames - IV INDUCTION phase induction may state operation - foles and arbitrary reference of the second	tent magnet, Energy conservation - stored to bubly excited systems - Elementary DC marque equations - dynamic characteristics - tamic characteristic by Laplace transformates. CONCEPTS inding Functions - Air-Gap Magneto motive resistance - Voltage and Flux Linkage Ede and harmonics in rotating electrical magnetic representation and commutator transformation and commutator transformation of reference.  N MACHINES technical magnetic representation of the store acceleration characteristics - voltage ference frame variables - analysis of dynamic representations.	re Force -Force	analy rs – Transport Rotation or Dia Mode on – balan t circue	y, co- vsis o ime o ime o img M stribu ling trans nced	MF - nted V of 'n forma set-v	y forced y state of the state o
and to operated diagrated UNIT Distribution	rque in singly and detion - Voltage and to the second of dyn S - II AC MACHIN buted Windings - Winge and Inductance - tinesmagnetic nois ine.  S - III REFERENCE rical background - toles from stationary wed from several frames - IV INDUCTION phase induction may state operation - foles and arbitrary reference of the second	tent magnet, Energy conservation - stored to bubly excited systems - Elementary DC marque equations - dynamic characteristics - tamic characteristic by Laplace transformate ES - CONCEPTS  Inding Functions - Air-Gap Magneto motive Resistance - Voltage and Flux Linkage Extended and harmonics in rotating electrical magnetic transformation and commutator transformation and commutator transformation of reference.  N MACHINES  Inchine and doubly fed induction machine-free acceleration characteristics - voltage ference frame variables - analysis of dynamic theory for 'n' phase induction machine.	re Force -Force	analy rs – Transport Rotation or Dia Mode on – balan t circue	y, co- vsis o ime o ime o img M stribu ling trans nced	MF - nted V of 'n forma set-v	y forced y state of the state o

Three phase synchronous machine and analysis of steady state operation - voltage and torque equations in machine variables and rotor reference frame variables (Park's equations) – analysis of dynamic performance for load torque variations –Krons primitive machine.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
	45	15	0	60
REFERENCES				

- 1. Stephen D. Umans, "Fitzgerald & Kingsley's Electric Machinery", Tata McGraw Hill, 7th Edition,2020.
- 2. Bogdan M. Wilamowski, J. David Irwin, The Industrial Electronics Handbook, Second Edition, Power Electronics and Motor Drives, CRC Press, 2011
- 3. Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, Steven D. Pekarek, "Analysis of ElectricMachinery and Drive Systems", 3rd Edition, Wiley-IEEE Press, 2013.
- 4. R. Krishnan, Electric Motor & Drives: Modeling, Analysis and Control, Pearson Education, 1st Imprint, 2015.
- 5. R.Ramanujam, Modeling and Analysis of Electrical Machines, I.k. International Publishing HousePvt.Ltd,2018

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	2
CO2	3	3	3	3	3	2
CO3	3	3	3	3	3	2
CO4	3	3	3	3	3	2
CO5	3	3	3	3	3	2
Total	15	15	15	15	15	10
Scaled	3	3	3	3	3	2

1- Slightly2 – Supportive 3 – Highly related **ANALYSIS OF POWER CONVERTERS** 

Cours	se Outcomes (YPE 102):		Domain	Level
<b>CO1</b>	Acquire and apply knowledge of mathematics in	power	Cognitive	Applying

CO3	Formulate, design	and simulate phase controlled rectifiers	Cognitiv	e	U	Understar		
	for generic load an	for machine loads g						
CO4	Design and simulational load and for machi	8 8					rstandin	
CO5	CO5 Select device and calculate performance parameters of power converters under various operating modes				U g	nders	tandin	
CO	OURSE CODE	COURSE NAME		L	T	P	С	
	YPE 102 ANALYSIS OF POWER CONVER			3	1	0	4	
(	C:P: A = 3:0:0			L	T	P	Н	
				3	1	0	4	

Static Characteristics of power diode, SCR and GTO, half controlled and fully controlled converters with R-L, R-L-E loads and freewheeling diodes – continuous and discontinuous modes of operation - inverter operation and its limit –Sequence control of converters – performance parameters – effect of source impedance and overlap-reactive power and power balance in converter circuit.

#### UNIT – II THREE PHASE AC-DC CONVERTER

12

Half controlled and fully controlled converters with R, R-L, R-L-E loads and freewheeling diodes – inverter operation and its limit – performance parameters – effect of source impedance and overlap - 12 pulse converter – Applications - Excitation system, DC drive system.

#### **UNIT – III SINGLE PHASE INVERTERS**

12

Introduction to self-commutated switches: MOSFET and IGBT - Principle of operation of half and full bridge inverters – Performance parameters – Voltage control of single phase inverters using various PWM techniques – various harmonic elimination techniques – Design of UPS - VSR operation

#### **UNIT-IV THREE PHASE INVERTERS**

12

180 degree and 120-degree conduction mode inverters with star and delta connected loads – voltage control of three phase inverters: single, multi pulse, sinusoidal, space vector modulation techniques – VSR operation-Application – Induction heating, AC drive system – Current source inverters.

#### **UNIT – V MODERN INVERTERS**

12

Multilevel concept – diode clamped – flying capacitor – cascaded type multilevel inverters Comparison of multilevel inverters – application of multilevel inverters – PWM techniques for MLI – Single phase &Three phase Impedance source inverters – Filters.

LECTURE	TUTORIAL	PRACTICAL	TOTAL	ı
45	15	0	60	ì

#### REFERENCES

- 1. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Pearson, fourth Edition, 10th Impression 2021.
- 2. Jai P. Agrawal, "Power Electronics System Theory and Design", Pearson Education, First Edition, 2015.
- 3. Bimal.K.Bose "Modern Power Electronics and AC Drives", Pearson Education, Second Edition, 2003.
- 4. Ned Mohan, T.M.Undeland and W.P.Robbins, "Power Electronics: converters, Application and design", 3rd edition Wiley, 2007.
- 5. Philip T. Krein, "Elements of Power Electronics" Indian edition Oxford University Press-2017.
- 6. P.C.Sen, "Modern Power Electronics", S.Chand Publishing 2005.
- 7. P.S.Bimbra, "Power Electronics", Khanna Publishers, Eleventh Edition, 2003.
- 8. Bin Wu, Mehdi Narimani, "High-Power Converters and AC Drives", Wiley, 2nd Edition, 2017.

#### **CO-PO Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	3	3	2	2
CO2	3	-	3	3	2	2
CO3	3	-	3	3	2	2
CO4	3	ı	3	3	2	2

CO5	3	-	3	3	2	2
Total	15	0	15	15	10	10
Scaled	3	0	3	3	2	2

1- Slightly

2 – Supportive

3 – Highly related

# MODELING AND DESIGN OF SMPS

Course Outcomes (YPE 103): Domain Level									
CO1 Ana	lyze and desig	n Non-Isolate	d DC-DC conve	erter	Cognitiv	e	U	Inders	tanding
CO2 Ana	lyze and desig	n Isolated DC	C-DC converter		Cognitiv	e	Understand		tanding
CO3 Der	ve transfer fur	ction of diffe	rent converters		Cognitiv	e	U	Inders	tanding
CO4 Des	esign controllers for DC-DC converters Cognitive					e	U	Inders	tanding
CO5 Des	ign magnetics	for SMPS application Cognitive				e	U	Inders	tanding
COURS	SE CODE		COURSE I	NAME		L	T	P	C
YP	E 103	MODE	LING AND DI	ESIGN OF SI	MPS	3	0	0	3
C:P: A	A = 3:0:0	-				L	Т	P	Н
						3	0	0	3
UNIT -I ANALYSIS OF NON-ISOLATED DC-DC CONVERTERS 08									08
			verters: Principl			110116	2021	notice	
relationship	s – Introduction	on to disconti	arge balance – nuous conducti	•	_				
	s to Battery of								
			D DC-DC CON						08
	n - classificatio Applications to		lyback- pushpu ated vehicle	ll – half bridg	e – full br	ridge 1	topol	ogies.	· design
UNIT – III	CONVERTE	ER DYNAMI	CS						08
_		•	pace averaging - ost, buck-boost		~ ~	_		itch m	odeling
	CONTROLL			and cuk conve	11C18 – III _j	քաւ ոո	W15.		08
			pts – gain marg	in and phase r	nargin _ F	Rođe r	lot h	ased :	
			buck-boost and	*	_	oue p	101 0	asca (	marysis
UNIT - V	DESIGN OF I	MAGNETIC	S						13
Basic magn	etic theory rev	rision – Induc	tor design – Des	sign of mutual	inductan	ce – D	esig	n of	
		opologies – I	Ferrite core tabl	e and selection	on of area	produ	uct –	wire	table –
selection of	wire gauge			T					
			LECTURE	TUTORIA	L PRA	CTI	CAL	T	OTAL
							45		
REFEREN	ICES								

- 1. Robert W. Erickson & Dragon Maksimovic," Fundamentals of Power Electronics", Third Edition, 2020.
- 2. John G. Kassakian, Martin F. Schlecht, George C. Verghese, "Principles of Power Electronics", Pearson, India, New Delhi, 2010
- 3. Simon Ang and Alejandra Oliva, "Power-Switching Converters", CRC press, 3rd edition, 2011.
- 4. Philip T Krein, "Elements of Power Electronics", Oxford University Press, 2017.
- 5. Ned Mohan, "Power Electronics: A first course", Wiley, 2011, 1st edition.
- 6. IssaBatarseh, Ahmad Harb, "Power Electronics- Circuit Analysis and Design, Second edition, 2018.
- 7. V.Ramanarayanan, "Course material on Switched mode power conversion", 2007.
- 8. Alex Van den Bossche and Vencislav Cekov Valchev, "Inductors and Transformers for Power Electronics", CRC Press, 1st edition, 2005.
- 9. W. G. Hurley and W. H. Wolfle, "Transformers and Inductors for Power Electronics Theory, Design and Applications", 2013 Wiley, 1st Edition.

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	3	3	2	2
CO2	1	-	2	2	3	2
CO3	2	-	2	3	2	1
CO4	3	-	2	1	1	2
CO5	3	-	1	2	1	2
Total	10	0	10	11	9	9
Scaled	2	0	2	3	2	2

1- Slightly 2 – Supportive

3 – Highly related

# ELECTIVES - GROUP I POWER SEMICONDUCTOR DEVICES

Cours	se Outcomes (YPE E11):	Domain	Level
CO1	To identification of suitable device for the application.	Cognitive	Understanding
CO2	To know the advantages of Silicon Carbide devices and Galium Nitride devices.	Cognitive	Understanding
CO3	To understand the principles and characteristics of Silicon devices, Silicon Carbide devices and Gallium Nitride devices.	Cognitive	Understanding

COURSE CODE		COURSE NAME		L	T	P	С
CO	CO5 To construct a proper thermal protective device for power semiconductor devices.			e	U	nders	tandin
	To design proper d	Cognitiv		Ug	nders	tandin	

YPE E11	POWER SEMICONDUCTOR DEVICES	3	0	0	3			
C:P: A = 3:0:0		L	T	P	H			
		3	0	0	3			
UNIT -I INTRODUCTION								

Power switching devices overview – Attributes of an ideal switch, application requirements, circuit symbols; Power handling capability – (SOA); Power diodes - Types, forward and reverse characteristics, switching characteristics – rating. Features and Brief History of Silicon CarbidePromise and Demonstration of SiC Power Devices- Physical Properties of Silicon Carbide devicesUnipolar and Bipolar Diodes- GaN Technology Overview.

#### UNIT - II CURRENT CONTROLLED DEVICES

09

BJT's – Construction, static characteristics, switching characteristics; Negative temperature coefficient and second breakdown; - Thyristors – Construction, working, static and transient characteristics, types, series and parallel operation; comparison of BJT and Thyristor – steady state and dynamic models of BJT &Thyristor- Basics of GTO, SiC based Bipolar devices-

Applications- Building a GaN Transistor -GaN Transistor Electrical Characteristics

#### UNIT - III VOLTAGE CONTROLLED DEVICES

**09** 

Power MOSFETs and IGBTs – Principle of voltage controlled devices, construction, types, static and switching characteristics, steady state and dynamic models of MOSFET and IGBTs - and IGCT. New semiconductor materials for devices – Intelligent power modules- study of modules like APTGT100TL170G, MSCSM70TAM05TPAG. Integrated gate commutated thyristor (IGCT) – SiC based unipolar devices-applications

# UNIT - IV DEVICE SELECTION, DRIVING and PROTECTING CIRCUITS

09

Device selection strategy – On-state and switching losses – EMI due to switching. Necessity of isolation, pulse transformer, optocoupler – Gate drive integrated circuit: Study of Driver IC – IRS2110/2113. SCR, MOSFET, IGBTs and base driving for power BJT. - Over voltage, over current and gate protections; Design of snubbers.

#### **UNIT - V THERMAL PROTECTION**

09

Heat transfer – conduction, convection and radiation; Cooling – liquid cooling, vapour – phase cooling; Guidance for hear sink selection – Thermal resistance and impedance -Electrical analogy of thermal components, heat sink types and design – Mounting types- switching loss calculation for power device.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

#### REFERENCES

- 1. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Pearson,4th Edition, 10th Impression 2021.
- 2. Ned Mohan, T.M.Undeland and W.P.Robbins, "Power Electronics: converters, Application and design", 3rd Edition Wiley, 2007.
- 3. Tsunenobu Kimoto and James A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications, First Edition, 2014 John Wiley & Sons Singapore Pte Ltd.
- 4. Alex Lidow, Johan Strydom, Michael de Rooij, David Reusch, GaN TRANSISTORS FOR EFFICIENT POWER CONVERSION, Second Edition, Wiley, 2015.
- 5. Biswanath Paul, Power Electronics, Universities Press 2019.

# **CO-PO Mapping**

11 0								
PO1	PO2	PO3	PO4	PO5	PO6			

CO1	2	1	3	2	2	2
CO2	1	0	2	1	3	3
CO3	1	0	2	1	3	3
CO4	2	1	3	2	2	1
CO5	2	2	3	2	2	1
Total	8	4	13	8	12	10
Scaled	2	1	3	2	3	2

1- Slightly

2 – Supportive

3 – Highly related

# ELECTIVES - GROUP - II POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS

Course	Outcomes (Y	PE E21):	Dom	ain		Leve	el
CO1	Ability to und	derstand different renewable energy systems	Cognitive		Understand		ding
CO2	_	sign and simulate power electronics converters facing Renewable energy systems	Cognit	Cognitive Understa			
CO3	-	design standalone renewable energy system nbedded energy storage and MPPT strategy.	Cognit	Cognitive Unde			ding
CO4	Ability to des	ign grid connected renewable energy system.	Cognitive Under			Inderstanding	
CO5	Ability to ext algorithms	ract maximum power using different MPPT	Cognitive		Understanding		ding
COUI	RSE CODE	COURSE NAME		L	T	P	C
Y	PE E21			3	0	0	3
C:P	:A = 3:0:0	DOWED ELECTRONICC EOD DENEWA	DIE	L	T	P	Н
POWER ELECTRONICS FOR RENEWA ENERGY SYSTEMS				3	0	0	3
UNIT -I INTRODUCTION							

Introduction to renewable energy systems, environmental aspects of electric energy conversion, impacts of renewable energy generation on environment, GHG Effect, Qualitative study of different renewable energy resources Ocean, Biomass, Hydrogen energy systems and Fuel cell.

#### UNIT- II POWER ELECTRONIC CONVERTERS FOR RENEWABLE ENERGY 09

Solar: Block diagram of solar photo voltaic system: line commutated converters (inversion mode) - Boost and buck-boost converters. Wind: three phase AC voltage controllers- AC-DCAC converters: uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.

#### UNIT – III PHOTO VOLTAIC ENERGY CONVERSION SYSTEMS

**09** 

Introduction, Photo Voltaic (PV) effect, Solar Cell, Types, Equivalent circuit of PV cell, PV cell characteristics (I/V and P/V) for variation of insolation, temperature and shading effect, Standalone PV system, Grid connected PV system, Design of PV system-load calculation, array sizing, selection of converter/inverter, battery sizing.

#### UNIT - IV WIND ENERGY CONVERSION SYSTEMS

09

Introduction, Power contained in wind, Efficiency limit in wind, types of wind turbines, Wind control strategies, Power curve and Operating area, Types of wind generators system based on Electrical machines-Induction Generator and Permanent Magnet Synchronous Generator(PMSG), Grid Connected-Single and Double output system, Self-excited operation of Induction Generator and Variable Speed PMSG.

#### UNIT - V HYBRID RENEWABLE ENERGY SYSTEMS AND MPPT

09

Energy Storage systems, Need for Hybrid Systems, Features of Hybrid Systems, Range and types of Hybrid systems (Wind-Diesel, PV-Diesel and Wind-PV), Case studies of PVMaximum Power Point Tracking (MPPT) and Wind Energy system.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

#### REFERENCES

- 1. S.N.Bhadra, D. Kastha and S. Banerjee "Wind Electrical Systems", Oxford University Press, 2009.
- 2. Haitham Abu-Rub, Mariusz Malinowski and Kamal Al-Haddad, "Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications", IEEE Press and John Wiley & Sons Ltd Press, 2014.
- 3. Rashid M. H. "power electronics Hand book", Academic Press, 2001.
- 4. Rai. G.D., "Non-conventional energy sources", Khanna Publishers, 1993.
- 5. Rai. G.D.," Solar energy utilization", Khanna Publishers, 1993.
- 6. Gray, L. Johnson, "Wind Energy System", Prentice Hall Inc, 1995.
- 7. Non-conventional Energy Sources B.H.Khan Tata McGraw-hill Publishing Company, New Delhi.

## **CO-PO Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	3	2	3	2
CO2	2	1	3	2	2	2
CO3	2	1	3	2	2	2
CO4	1	1	3	2	2	2
CO5	1	1	3	2	2	2
Total	7	5	15	10	11	10
Scaled	2	1	3	2	3	2

# 1- Slightly2 – Supportive 3 – Highly related ENGLISH FOR RESEARCH PAPER WRITING

Cours	se Outcomes (YEGOE1):	Domain	Level
CO1	Understand that how to improve your writing skills and level of readability	Cognitive	Understanding
CO2	Learn about what to write in each section	Cognitive	Understanding
CO3	Understand the skills needed when writing a Title	Cognitive	Understanding
CO4	Understand the skills needed when writing the Conclusion	Cognitive	Understanding
CO5	Ensure the good quality of paper at very first-time submission	Cognitive	Understanding

COURSE CODE	COURSE NAME	L	T	P	C
YEGOE1	ENGLISH FOR RESEARCH PAPER WRITING	3	0	0	3
C:P: A = 3:0:0		L	T	P	Н
		3	0	0	3
UNIT -I	1	<u> </u>			08

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and

Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and vagueness

UNIT – II

08

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

UNIT – III 08

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT – IV

Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT – V 13

Skills needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first-time submission

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

08

#### **REFERENCES**

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books).
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press.
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011.

## **CO-PO Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	1	1	1	-	1
CO2	-	1	1 1 1		1	1
CO3	-	1	1	1	-	1
CO4	-	1	1	1	-	1
CO5	-	1	1	1	-	1
Total	0	5	5	5	0	5
Scaled	0	1	1	1	0	1

1- Slightly 2 – Supportive

3 – Highly related

#### RESEARCH METHODOLOGY AND IPR

Cours	se Outcomes (YUM 107):	Domain	Level
CO1	Ability to formulate research problem	Cognitive	Understanding

UNIT	`-I						08
				3	0	0	3
(	C:P: $A = 3:0:0$			L	T	P	Н
	YUM 107	RESEARCH METHODOLOGY AND IPR	2	3	0	0	3
CO	OURSE CODE	COURSE NAME	·	L	T	P	C
<b>CO5</b>	CO5 Ability to understand about IPR and filing patents in R&D.			Cognitive		Unde	erstanding
	ruled by ideas, con-	cept, and creativity					
	Computer, Informa	tion Technology, but tomorrow world will be					
CO4	Ability to unders	tand that today's world is controlled by	Cog	nitive		Unde	erstanding
CO ₃	Ability to follow re	search ethics	Cog	nitive		Understanding	
CO2	Ability to carry out research analysis Cognitive U					Unde	erstanding

Meaning of research problem, Sources of research problem, Criteria-Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT – II 08

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

UNIT – III 08

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT – IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

UNIT – V 13

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

#### REFERENCES

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction".
- 3. Ranjit Kumar, "Research Methodology: A Step by Step Guide for beginners", 2nd Edition.
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008.

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	3
CO2	3	3	3	3	3	3
CO3	3	3	3	3	3	3
CO4	3	3	3	3	3	3
CO5	3	3	3	3	3	3
Total	15	15	15	15	15	15
Scaled	3	3	3	3	3	3

COURSE	CODE	COURSE NAME	L T		P	C	
YPE	108	DESIGN AND SIMULATION OF POWER	0	0	1	1	
C:P: A =	= 1:2:0	ELECTRONIC CIRCUITS LABORATORY	L	T	P	СН	
			0	0	2	2	
Course Ou	itcomes:		Domain		Le	vel	
CO1	To Observ	e and analyse the operation and basic Co	ognitive		Anal	yze	
	characteris	stics of various types of switching devices	sychomo	tor		nplex	
						ert	
CO2	To onniv	knowledge about industrial applications of power Co	ognitive		Respo		
CO2	1 1 1		sychomo	ton		ply iplex	
	Ciccuonics	s converter such as AC-AC and AC-DC converter	sycholilo	ıoı		ert	
					Respo		
CO3	To analyse	various firing circuits of thyristor Co	Cognitive		Analyze		
		Ps	sychomo	tor	Con	nplex	
						ert	
~~.					Respo		
CO4		and simulate AC/DC and DC/AC converters on Co	$\mathbf{c}$		Cre		
	MATLAB	software	sychomo	tor		nplex vert	
					Respo		
CO5	To Sir	nulate DC to DC and AC Co	ognitive			ply	
	to		sychomo	tor		plex	
						ert	
					Respo	onse	
		LIST OF EXPERIMENTS					
1.	Simul	ation of Single-phase semi converter with R, RL and F	RLE load	S.	CC	<b>)</b> 1	
2.	Simul	Simulation of Single-phase full-converter with R, RL and RLE loads.					
3.	Simula	tion of three phase Semi and Full converter.			CC	02	

4.	Simulation of MOSFET, IGBT based CLASS A, B, C, D, E Choppers.	CO2				
5.	Simulation of Single Phase dual converter fed R, RL and RLE loads.	CO2				
6.	Simulation of Single phase IGBT based PWM inverter.	CO3				
7.	Simulation of Single-phase semi converter fed DC drives.	CO4				
8.	Simulation of Three-phase semi converter fed DC drives.	CO4				
9.	Simulation of Single-phase full converter fed DC drives.	CO4				
10.	Simulation of closed loop control of chopper fed DC motor.	CO5				
11.	Simulation of Single-phase AC voltage controller fed AC drives.	CO5				
Total	Total 30 Hours					

	11 9					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	3
CO2	3	3	3	3	3	3
CO3	3	3	3	3	3	3
CO4	3	3	3	3	3	3
CO5	3	3	3	3	3	3
Total	15	15	15	15	15	15
Scaled	3	3	3	3	3	3

COURSE CODE		COURSE NAME	L	T	P	C
Y	PE 109	MODELING OF ELECTRICAL	0	0	1	1
C:P	: A = 1:2:0	MACHINES LABORATORY	L	T	P	СН
			0	0	2	2
Course C	Outcomes:		Don	ain	L	evel
CO1	Synchronous N	Performance of Permanent Magnet Machine in motoring and generating mode.  aracteristics of Switched Reluctance Motor to Vehicles.	Psychomotor  Psychomotor		Com Over	-
•		rformance of Brushless Direct Current otoring and Generating mode.	Psycho	motor	Com Over Resp	-

CO4	Apply the stationary reference frame method for modelling of single phase and three phase Induction Machine.	Psychomotor	Complex Overt Response
CO5	Apply the rotor reference frame method for modelling of Three phase synchronous Machine	Psychomotor	Complex Overt Response
	LIST OF EXPERIMENTS	<u> </u>	
1.	Design and analyze the performance of PMSM using Ansys	s Maxwell.	CO1
2.	Design and analyze the performance of SRM using Ansys Maxwell.		
3.	Design and analyze the performance of BLDC motor using Ansys Maxwell.		
4.	Design and analyze the performance of DC motor using Ansys Maxwell.		
5.	Design and analyze the performance of three-phase squirr motor using Ansys Maxwell.	el cage inductio	n CO3
6.	Modeling and Simulation of Single phase Induction is reference frame using MATLAB/SIMULINK.	n the stationar	y CO4
7.	Modeling and Simulation of three phase induction machine reference frame using MATLAB/SIMULINK.	e in the stationar	y CO4
8.	Modeling and Simulation of three phase synchronous machine in the rotor reference frame using MATLAB/SIMULINK.		
9.	Current Regulated PWM inverter fed induction motor drive field oriented control using MATLAB/SIMULINK	e with indirect	CO5
10.	Modeling and Simulation of permanent magnet synchronous using MATLAB/SIMULINK.	s Generator	CO5
Total	, -		30 Hours

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	3	3	3	3
CO2	3	-	3	3	3	3
CO3	3	-	3	3	3	3
CO4	3	-	3	3	3	3
CO5	3	-	3	3	3	3
Total	15	0	15	15	15	15
Scaled	3	0	3	3	3	3

# SEMESTER II ANALYSIS OF ELECTRICAL DRIVES

Cours	se Outcomes (YPE 201):	Domain	Level
CO1	Able to acquire and apply knowledge of mathematics and	Cognitive	Understanding
	converter/machine dynamics in Electrical engineering.		
CO2	Able to formulate, design, simulate power supplies for	Cognitive	Understanding

	generic load and fo	generic load and for machine loads.					
CO3	, , , , ,					nders	tandin
CO4	current motor based adjustable speed drives.  CO4 Able to analyze, comprehend, design and simulate induction motor based adjustable speed drives.			Cognitive		Understandin g	
CO5	Able to design a	closed loop motor drive system with current and speed control operations.	Cognitiv	e	_	nders	tandin
CO	OURSE CODE	COURSE NAME		L	T	P	C
	YPE 201 ANALYSIS OF ELECTRICAL DRIV			3	1	0	4
C:P:A = 3:0:0				L	T	P	Н

#### UNIT -I DC MOTORS FUNDAMENTALS AND MECHANICAL SYSTEMS

eld speed

4

3

1

0

DC motor- Types, induced emf, speed-torque relations; Speed control – Armature and field speed control; Ward Leonard control – Constant torque and constant horse power operation - Introduction to high-speed drives and modern drives. Characteristics of mechanical system

- Dynamic equations, components of torque, types of load; Requirements of drives characteristics stability of drives-multi-quadrant operation; Drive elements, types of motor duty and selection of motor rating.

#### UNIT - II CONVERTER AND CHOPPER CONTROL

12

Principle of phase control – Fundamental relations; Analysis of series and separately excited DC motor with single-phase and three-phase converters –performance parameters, performance characteristics. Introduction to time ratio control and frequency modulation; chopper controlled DC motor – performance analysis, multi-quadrant control - Chopper based implementation of braking schemes; Related problems.

#### UNIT - III CLOSED LOOP CONTROL

12

Modeling of drive elements – Equivalent circuit, transfer function of self, separately excited DC motors; Linear Transfer function model of power converters; Sensing and feeds back elements Closed loop speed control – current and speed loops, P, PI and PID controllers – response comparison. Simulation of converter and chopper fed DC drive.

# UNIT - IV VSI AND CSI FED STATOR CONTROLLED INDUCTION MOTOR CONTROL

12

AC voltage controller – six step inverter voltage control-closed loop variable frequency PWM inverter fed induction motor (IM) with braking-CSI fed IM variable frequency motor drives – pulse width modulation techniques – simulation of closed loop operation of stator controlled induction motor drives.

#### UNIT - V ROTOR CONTROLLED INDUCTION MOTOR DRIVES

12

Static rotor resistance control - injection of voltage in the rotor circuit – static Scherbius drives – static and modified Kramer drives – sub-synchronous and super-synchronous speed operation of induction machines – simulation of closed loop operation of rotor controlled induction motor drives.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	15	0	60

#### **REFERENCES**

- 1. Gopal K Dubey, "Power Semiconductor controlled Drives", Prentice Hall Inc., New Jersey, 1989.
- 2. R. Krishnan, "Electric Motor Drives Modeling, Analysis and Control", Prentice-Hall of India Pvt. Ltd., New Delhi, 2010.
- 3. Bimal K Bose, "Modern Power Electronics and AC Drives", Pearson Education Asia2002.
- 4. Gopal K. Dubey, "Fundamentals of Electrical Drives", Narosa Publishing House, New Delhi, Second Edition, 2009.
- 5. Vedam Subramanyam, "Electric Drives Concepts and Applications", Tata McGraw-Hill publishing company Ltd., New Delhi, 2002.
- 6. P.C Sen "Thyristor DC Drives", John Wiley and sons, New York, 1981.
- 7. W. Leonhard, "Control of Electrical Drives", Narosa Publishing House, 1992
- 8. Murphy J.M.D and Turnbull, "Thyristor Control of AC Motors", Pergamon Press, Oxford, 1988.

## **CO-PO Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	2	3	1	1
CO2	2	0	2	3	1	1
CO3	2	1	2	3	1	2
CO4	1	1	2	3	1	2
CO5	1	1	2	3	1	2
Total	8	4	10	15	5	10
Scaled	2	1	2	3	1	2

1- Slightly 2 – Supportive 3 – Highly related

#### SPECIAL ELECTRICAL MACHINES

Cours	se Outcomes (YPE 202):	Domain	Level
CO1	Ability to model and analyze power electronic systems and	Cognitive	Understandin
	equipment using computational software.		g
CO2	Ability to optimally design magnetics required in special	Cognitive	Understandin
	machines based drive systems using FEM based software		g
	tools.		
CO3	Ability to analyze the dynamic performance of special	Cognitive	Understandin
	electrical machines		g
CO4	Ability to understand the operation and characteristics of	Cognitive	Understandin
	other special electrical machines.		g

CO5	Ability to	design and	design and conduct experiments Cognitive Unders					tandin	
	towar	ds research.					g		
CC	OURSE COD	E	COU	JRSE NAME		L	T	P	C
	YPE 202	S	PECIAL ELE	CTRICAL MACHIN	ES	3	0	0	3
(	C:P:A = 3:0:0					L	T	P	Н
						3	0	0	3
TINITE	T DEDAKA		NEW DDITCH	T ECC DO MOTOD		l		<u> </u>	00

# UNIT -I PERMANENT MAGNET BRUSHLESS DC MOTORS

)9

Fundamentals of Permanent Magnets- Types- Principle of operation- Magnetic circuit analysis- EMF and Torque equations- Characteristics and control.

#### UNIT – II PERMANENT MAGNET SYNCHRONOUS MOTORS

09

Principle of operation – EMF and Torque equations - Phasor diagram - Power controllers – Torque speed characteristics – Digital controllers – Constructional features, operating principle and characteristics of synchronous reluctance motor.

#### UNIT - III SWITCHED RELUCTANCE MOTORS

09

Constructional features – Principle of operation – Torque prediction – Characteristics Power controllers – Control of SRM drive- Sensor less operation of SRM – Applications.

#### **UNIT – IV STEPPER MOTORS**

09

Constructional features – Principle of operation – Types – Torque predictions – Linear and Non-linear analysis – Characteristics – Drive circuits – Closed loop control – Applications.

#### UNIT - V OTHER SPECIAL MACHINES

09

Principle of operation and characteristics of Hysteresis motor – AC series motors – Linear motor – Applications.

LECTURE	TUTORIAL	PRACTICAL	TOTAL	
45	0	0	45	

#### REFERENCES

- 1.T.J.E. Miller, "Brushless magnet and Reluctance motor drives", Claredon press, London, 1989.
- 2.R. Krishnan, 'Switched Reluctance motor drives', CRC press, 2001.
- 3.T. Kenjo, 'Stepping motors and their microprocessor controls', Oxford University press, New Delhi, 2000.
- 4.T. Kenjo and S. Nagamori, 'Permanent magnet and Brushless DC motors', Clarendon press, London, 1988
- 5.R. Krishnan, "Electric motor drives", Prentice Hall of India, 2002.
- 6.D.P. Kothari and I.J. Nagrath, "Electric machines", Tata McGraw hill publishing company, New Delhi, Third Edition, 2004.
- 7. Irving L. Kosow, "Electric Machinery and Transformers" Pearson Education, Second Edition, 2007.

# **CO-PO Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	3	2	2	2
CO2	3	1	3	2	2	2
CO3	3	1	3	2	2	2
CO4	3	1	3	2	2	2
CO5	3	1	3	2	2	2

Total	15	5	15	10	10	10
Scaled	3	1	3	2	2	2

1- Slightly 2 – Supportive

3 – Highly related

Course Outcomes (YPE 203): Dom					L	evel		
CO1	Learned the electri	c vehicle architecture and power train	Cognitiv	ve Understar		tandin		
	components.							
CO ₂	Acquire the concep	ots of dynamics of electrical vehicles	ts of dynamics of electrical vehicles Cognitive					
			g				5	
CO ₃	Able to understan	d the vehicle control for standard drive	Cognitiv	e	U	nders	tandin	
	cycles of hybrid el	ectrical vehicles (HEVs).			g			
CO ₄	Able to design and	select energy storage systems.	Cognitiv	e	U	nders	tandin	
					g			
CO ₅	-	vledge of different energy sources and	Cognitiv	e	U	nders	tandin	
	energy managemen				g		Г	
CO	OURSE CODE	COURSE NAME		L	T	P	C	
	YPE 203			3	0	0	3	
(	C:P:A = 3:0:0	ELECTRIC VEHICLES AND POW	ER	L	T	P	Н	
		MANAGEMENT		3	0	0	3	
UNIT	:-1	ELECTRIC VEHICLE ARCHITECTUI	KE AND I	POW	EK		09	
1 1 4 .								
			hiolog wit	h Into	mo1 (	Comb	nuction	
Histor	ry of evolution of El	ectric Vehicles - Comparison of Electric Ve						
Histor Engin	ry of evolution of Ele es - Architecture of I	ectric Vehicles - Comparison of Electric Ve Electric Vehicles (EV) and Hybrid Electric	Vehicles (	HEV)	) — Pl	ug-in	Hybri	
Histor Engin Electr	ry of evolution of Ele es - Architecture of I ic Vehicles (PHEV)	ectric Vehicles - Comparison of Electric Ve	Vehicles (	HEV)	) — Pl	ug-in	Hybri	
Histor Engine Electr Brake	ry of evolution of Ele es - Architecture of I ric Vehicles (PHEV) s	ectric Vehicles - Comparison of Electric Ve Electric Vehicles (EV) and Hybrid Electric - Power train components and sizing, Ge	Vehicles ( ears, Clutc	HEV)	) — Pl	ug-in	Hybrid on and	
Histor Engin Electr Brake UNIT	ry of evolution of Elees - Architecture of lees (PHEV) s  - II MECHANICS	ectric Vehicles - Comparison of Electric Ve Electric Vehicles (EV) and Hybrid Electric - Power train components and sizing, Ge S OF HYBRID ELECTRIC VEHICLES	Vehicles ( ears, Clutc	HEV)	) — Pli Trans	ug-in missi	Hybridon and	
Histor Engin Electr Brake UNIT Funda	ry of evolution of Ele es - Architecture of I ric Vehicles (PHEV) s C – II MECHANICS amentals of vehicle r	ectric Vehicles - Comparison of Electric Ve Electric Vehicles (EV) and Hybrid Electric - Power train components and sizing, Ge S OF HYBRID ELECTRIC VEHICLES nechanics - tractive force, power and energ	Vehicles (lears, Clutc	HEV)	) — Pli Trans	ug-in missi	Hybrid on and	
Histor Engin Electr Brake UNIT Funda cycles	ry of evolution of Ele es - Architecture of I ric Vehicles (PHEV) s C – II MECHANICS amentals of vehicle rics of HEV's - motor to	ectric Vehicles - Comparison of Electric Vehicles (EV) and Hybrid Electric In Power train components and sizing, General Soft Hybrid ELECTRIC VEHICLES nechanics - tractive force, power and energy orque and power rating and battery capacity	Vehicles (lears, Clutc	HEV)	) — Pli Trans	ug-in missi	Hybrid on and <b>09</b> rd driv	
Histor Engine Electr Brake UNIT Funda cycles UNIT	ry of evolution of Eless - Architecture of Eless - Vehicles (PHEV) is  T - II MECHANICS amentals of vehicle respond to the Eless of HEV's - motor to the Ele	Electric Vehicles - Comparison of Electric Vehicles (EV) and Hybrid Electric Power train components and sizing, General Electric Vehicles (EV) and Hybrid Electric Power train components and sizing, General Electric Vehicles Power tractive force, power and energy or and power rating and battery capacity of DC AND AC MOTOR DRIVES	Vehicles (apars, Clutcons) y requiren	HEV)	) – Pl ¹ Trans for st	ug-in emissi randar	Hybrid ion and 09 rd drive	
Histor Engin Electr Brake UNIT Funda cycles UNIT Speed	ry of evolution of Elester - Architecture of Price Vehicles (PHEV) as C – II MECHANICS amentals of vehicle resoft HEV's - motor to C – III CONTROL (Ill control for constant)	Electric Vehicles - Comparison of Electric Vehicles (EV) and Hybrid Electric IIII - Power train components and sizing, General Electric Vehicles (EV) and Hybrid Electric IIII - Power train components and sizing, General Electric Vehicles IIII - Power train components and sizing, General Electric Vehicles IIII - Power train components and sizing, General Electric Vehicles (EV) and Hybrid Electric Vehicles (EV) a	y requiren	HEV) ches, nents	) – Pla Trans for st	andar	Hybridon and O9 rd drive O9 er base	
Histor Engine Electr Brake UNIT Funda cycles UNIT Speed four q	ry of evolution of Elester - Architecture of Bric Vehicles (PHEV) s  T - II MECHANICS  T - III CONTROL (PHEV) s	Electric Vehicles - Comparison of Electric Vehicles (EV) and Hybrid Electric Power train components and sizing, General Electric Vehicles (EV) and Hybrid Electric Power train components and sizing, General Electric Vehicles Power train components and sizing, General Electric Vehicles Power train components and sizing, General Electric Power train Components and Sizing Power train C	y requirence of motors - cration (mo	hetel, hence he hence hence he	for st	andar	Hybridon and O9 od driv O9 or basecing) o	
Histor Engin Electr Brake UNIT Funda cycles UNIT Speed four q induct	ry of evolution of Elester - Architecture of Price Vehicles (PHEV) is  To II MECHANICS  The mentals of vehicle response of HEV's - motor to the control for constant quadrant operation of the control of	Electric Vehicles - Comparison of Electric Vehicles (EV) and Hybrid Electric In Power train components and sizing, General Electric Vehicles (EV) and Hybrid Electric In Power train components and sizing, General Electric Vehicles In Power train components and sizing, General Electric In Power train components and sizing, General Electric In Industry Charles In Industry Charles In Industry Charles In Industry Charles Industry Charles Industry Industr	y requirence of motors - cration (mo	hetel, hence he hence hence he	for st	andar	Hybridon and 09 od drive 09 or based cing) o	
Histor Engine Electr Brake UNIT Funda cycles UNIT Speed four q induct drives	ry of evolution of Eleses - Architecture of leses - Architecture of leses - Architecture of leses - II MECHANICS amentals of vehicle researched to the control for constant quadrant operation of the control for dives, very services, Switched reluctances.	Electric Vehicles - Comparison of Electric Vehicles (EV) and Hybrid Electric Power train components and sizing, General Power train components and sizing, General Electric Vehicles and Electric Vehicles Power train components and sizing, General Electric Vehicles Power and energy or and power rating and battery capacity of DC AND AC MOTOR DRIVES are torque, constant HP operation of all electric forms of the DC motor drives, inverter based V/f Operation control operation of Induction motor are motor (SRM) drives	y requirence of motors - cration (mo	hetel, hence he hence hence he	for st	andar	Hybridon and O9 od drive O9 or based sing) of motor	
Histor Engin Electr Brake UNIT Funda cycles UNIT Speed four q induct drives UNIT	ry of evolution of Eleses - Architecture of leses - Architecture of leses - Architecture of leses - Architecture of leses - II MECHANICS amentals of vehicle research of HEV's - motor to leses of HEV's - motor to leses - III CONTROL (leses of leses of lese	Electric Vehicles - Comparison of Electric Vehicles (EV) and Hybrid Electric In Power train components and sizing, General Electric Vehicles (EV) and Hybrid Electric In Power train components and sizing, General Electric Vehicles In Electric Vehicles In Electric Vehicles In Electric In Electric In International International International International International International Induction Ind	y requirency.  c motors -	hety hes, nents DC/lotorin M, Br	for st	andar nopped brak	Hybridon and O9 or basecting) of C moto	
Histor Engine Electr Brake UNIT Funda cycles UNIT Speed four q induct drives UNIT Batter	ry of evolution of Eleses - Architecture of leses - Architecture of leses - Vehicles (PHEV) as E - II MECHANICS amentals of vehicle research of HEV's - motor to a control for constant quadrant operation of the con	Electric Vehicles - Comparison of Electric Vehicles (EV) and Hybrid Electric Power train components and sizing, General Power train components and sizing, General Power train components and sizing, General Power tractive force, power and energy or and power rating and battery capacity of DC AND AC MOTOR DRIVES torque, constant HP operation of all electric force power and energy or an electric force power and power rating and battery capacity of DC motor drives, inverter based V/f Operation control operation of Induction motor are motor (SRM) drives ORAGE SYSTEMS ration, types, models, estimation of parameters and sizing the size of the sector control operation of Induction motor and Induct	y requirency.  c motors - cration (motors) and PMSM	nents DC/Dotorin M, Br	o – Pla Trans for st DC cl g and ushle	andar nopped l brak ss DC	Hybridon and  09 rd driv  09 er based  cing) of  moto	
Histor Engine Electr Brake UNIT Funda cycles UNIT Speed four q induct drives UNIT Batter batter	ry of evolution of Eleses - Architecture of leses - Architecture of leses - Architecture of leses - Architecture of leses - II MECHANICS amentals of vehicle research of the V's - motor to less of HEV's - motor to less of HEV's - motor to less of the V's - motor of less of the V's - motor of less of the V's - III CONTROL (less of the V's - III CONTROL (less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of open less of the V's - IV ENERGY STry: Principle of the V's - IV ENERGY STry: Princip	Electric Vehicles - Comparison of Electric Vehicles (EV) and Hybrid Electric Power train components and sizing, General Electric Vehicles (EV) and Hybrid Electric Power train components and sizing, General Electric Power train components and sizing, General Electric Power tractive force, power and energy or and power rating and battery capacity of DC AND AC MOTOR DRIVES torque, constant HP operation of all electric force power and electric power traction of the power traction of	y requirency.  c motors - cration (motors) and PMSM	nents DC/Dotorin M, Br	o – Pla Trans for st DC cl g and ushle	andar nopped l brak ss DC	Hybridon and  09 rd driv  09 er based  cing) of  moto	
Histor Engine Electr Brake UNIT Funda cycles UNIT Speed four q induct drives UNIT Batter batter	ry of evolution of Eleses - Architecture of Pic Vehicles (PHEV) is  T - II MECHANICS amentals of vehicle resoft HEV's - motor to a control for constant quadrant operation of the control for constant quadrant opera	Electric Vehicles - Comparison of Electric Vehicles (EV) and Hybrid Electric Power train components and sizing, General Power train components and sizing, General Electric Vehicles  BOF HYBRID ELECTRIC VEHICLES In the electric force, power and energy for each power rating and battery capacity of DC AND AC MOTOR DRIVES  Torque, constant HP operation of all electric force for motor drives, inverter based V/f Operation control operation of Induction motor are motor (SRM) drives  ORAGE SYSTEMS  Tation, types, models, estimation of parameter and their capacity for standard drive cycluel cells, Ultra capacitors, Flywheels.	y requirency.  c motors - cration (motors) and PMSM	nents DC/Dotorin M, Br	o – Pla Trans for st DC cl g and ushle model Grid	andar nopped l brak ss DC	Hybridon and O9 ord drive O9 or base composed motor O9 os Composed	

HEV supervisory control - Selection of modes - power spilt mode - parallel mode - engine brake mode - regeneration mode - series parallel mode - energy management of HEV's.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

#### **REFERENCES**

- 1. Iqbal Husain, 'Electric and Hybrid Electric Vehicles', CRC Press, 2011.
- 2. Wei Liu, 'Hybrid Electric Vehicle System Modeling and Control', Second Edition, WILEY, 2017.
- 3. James Larminie and John Lowry, 'Electric Vehicle Technology Explained', Second Edition, 2012.

**CO-PO Mapping** 

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	3	2
CO2	3	3	3	2	3	2
CO3	3	3	3	2	3	2
CO4	3	3	3	2	3	2
CO5	3	3	3	2	3	2
Total	15	15	15	10	15	10
Scaled	3	3	3	2	3	2

1- Slightly 2 – Supportive 3 – Highly related **ELECTIVES GROUP** 

- III ENERGY STORAGE TECHNOLOGIES

Cours	se Outcomes (YPE	E31):	Domain		L	evel		
CO1	Gained knowledge of	of various storage technologies.	Cognitive		U	Understandin		
					g			
CO2 Able to design a thermal storage system.			Cognitiv	e	U	nders	tandin	
					g			
CO ₃	CO3 Ability to model battery storage system.			e	U	nders	tandin	
					g			
<b>CO4</b>	Learned to analyze	the thermodynamics of fuel cell.	Cognitive Un		Understandin			
						g		
<b>CO5</b>	_	ge of various applications of storage			11	nders	tandin	
	_	perform the selection based on	Cognitive		nacis	tanam		
	technoeconomic vi	ew point			٥			
CO	OURSE CODE	COURSE NAME		L	T	P	C	
	YPE E31	ENERGY STORAGE TECHNOLO	GIES	3	0	0	3	
C:P: A = 3:0:0				L	T	P	Н	
				3	0	0	3	
UNIT -	-I INTRODUC	ΓΙΟΝ					09	

Necessity of energy storage – types of energy storage – comparison of energy storage technologies – Applications.

#### UNIT - II THERMAL STORAGE SYSTEM

09

Thermal storage – Types – Modeling of thermal storage units – Simple water and rock bed storage system – pressurized water storage system – Modelling of phase change storage system – Simple units, packed bed storage units - Modelling using porous medium approach, Use of TRNSYS.

#### UNIT – III ELECTRICAL ENERGY STORAGE

09

Fundamental concept of batteries – measuring of battery performance, charging and is charging of a battery, storage density, energy density, and safety issues. Types of batteries – Lead Acid, Nickel-Cadmium, Zinc Manganese dioxide - Mathematical Modelling for Lead Acid Batteries – Flow Batteries.

#### UNIT - IV FUEL CELL

09

Fuel Cell – History of Fuel cell, Principles of Electrochemical storage – Types – Hydrogen oxygen cells, Hydrogen air cell, Hydrocarbon air cell, alkaline fuel cell, detailed analysis – advantages and disadvantages –Fuel Cell Thermodynamics

## UNIT - V ALTERNATE ENERGY STORAGE TECHNOLOGIES

09

Flywheel, Super capacitors, Principles & Methods – Applications, Compressed air Energy storage, Concept of Hybrid Storage – Applications, Pumped Hydro Storage – Applications.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

#### **REFERENCES**

- 1. Ibrahim Dincer and Mark A. Rosen, 'Thermal Energy Storage Systems and
  - Applications', JohnWiley & Sons 2002.
- 2. James Larminie and Andrew Dicks, 'Fuel cell systems Explained', Wiley publications, 2003.
- 3. Lunardini.V.J, 'Heat Transfer in Cold Climates', John Wiley and Sons1981.
- 4. Ru-shiliu, Leizhang and Xueliang sun, 'Electrochemical technologies for energy storage and conversion', Wiley publications, 2012.
- 5. Schmidt.F.W. and Willmott A. J., 'Thermal Storage and Regeneration', Hemisphere Publishing Corporation, 1981.

## **CO-PO Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	0	1	0	0	2	-
CO2	2	1	2	0	3	ı
CO3	2	2	2	0	3	ı
CO4	3	2	3	0	3	3
CO5	2	2	2	2	2	3
Total	9	8	9	2	13	6
Scaled	2	2	2	1	3	1

1- Slightly 2 – Supportive

3 – Highly related

#### **ELECTIVES GROUP - IV**

#### **OPTIMIZATION TECHNIQUES**

Cours	Course Outcomes (YPE E41):		Level
CO1	To learn about different classifications of optimization problems and techniques.	Cognitive	Understandin g
CO2	To attain knowledge on linear programming concepts	Cognitive	Understandin g

CO3	To understand	11	Cognitive		U	nders	tandin
	programming in or	etimization techniques	Cognitive		g	g	
CO4	To understand	the fundamental concepts	Cognitive		U	nders	tandin
	of dynamic programming			7	g		
CO5	To gain knowled	lge about Genetic algorithm and its	Comitive Understan		tandin		
	application to power	er system optimization.	Cognitive	7	g		
CO	OURSE CODE	COURSE NAME		L	T	P	C
	YPE E41	OPTIMIZATION TECHNIQUE	S	3	0	0	3
(	C:P: A = 3:0:0			L	T	P	Н
				3	0	0	3
IINIT	LI INTRODUC	L TION					00

Definition, Classification of optimization problems, Classical Optimization Techniques, Single and Multiple Optimization with and without inequality constraints.

#### UNIT - II LINEAR PROGRAMMING (LP)

09

Simplex method of solving LPP, revised simplex method, duality, Constrained optimization, Theorems and procedure, Linear programming, mathematical model, solution technique, duality.

#### UNIT - III NON LINEAR PROGRAMMING

09

Steepest descent method, conjugates gradient method, Newton's Method, Sequential quadratic programming, Penalty function method, augmented Lagrange multiplier method.

#### UNIT - IV DYNAMIC PROGRAMMING (DP)

09

Multistage decision processes, concept of sub-optimization and principle of optimality, Recursive relations, Integer Linear programming, Branch and bound algorithm

# **UNIT - V GENETIC ALGORITHM**

09

Introduction to genetic Algorithm, working principle, coding of variables, fitness function, GA operators; Similarities and differences between Gas and traditional methods; Unconstrained and constrained optimization using genetic Algorithm, real coded gas, Advanced Gas, global optimization using GA, Applications to power system.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

#### REFERENCES

- 1. S.S. Rao, "Engineering Optimization Theory and Practice", John Wiley & Sons, Inc., 2009.
- 2. Hamdy A. Taha, Operations Research: An Introduction, 10th Edition, Pearson, 2016.
- 3. David G. Luenberger, "Introduction to Linear and Nonlinear Programming", Addison-Wesley, 1973.
- 4. E. Polak, "Computational methods in Optimization", Academic Press, 1971.
- 5. Pierre D.A., "Optimization Theory with Applications", Wiley Publications, 1969.

# **CO-PO Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	0	3	0	0	1
CO2	3	0	3	0	0	1
CO3	3	0	3	0	0	1
CO4	3	0	3	0	0	1
CO5	3	0	3	3	0	1

Total	15	0	15	3	0	5
Scaled	3	0	3	1	0	1

COURSE CODE		COURSE NAME	,	L	T	P	C	
YPE 206		POWER ELECTRONICS AND		0	0	1	1	
C:P: A = 1:2:0		DRIVES LABORATORY		L	T	P	CH	
				0 0 2		2	2	
Course Outcomes:			Dom	ain	Level			
CO1	motor-based drive system and conduct load tests in an				motor	Complex Overt		
602	electrical drive			D 1		Respo		
CO2	Ove					Overt	omplex vert esponse	
CO3	converters. and various inverters.					Overt	mplex ert sponse	
CO4	motor-based drive system.					Overt	Complex Overt Response	
CO5	Ability to design the control algorithm for the control of an electrical drive using Microcontrollerand Digital signal processor.					Complex Overt Response		
		LIST OF EXPERIN	MENTS					
1.	Single phase se	mi- converter fed DC drive.						
2.	Single phase full converter fed DC drive.							
3.	3. Three phase Half controlled rectifier fed DC drive							
4.	4. Three phase fully controlled rectifier fed DC drive.							
5.	Chopper fed DC drives.							
6.	6. Speed control of three-phase induction motor using PWM inverter.							
7.	7. DSP based closed loop drive for induction motor							
8.	8. DSP based Speed control of Brush Less DC motor.							
9. DSP based Switched Reluctance Motor Drive.								
10.	10. Three phase AC voltage controller fed AC Drive							
11.	11. Mini Projects ( Related to the above Experiments)							

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	3
CO2	3	3	3	3	3	3
CO3	3	3	3	3	3	3
CO4	3	3	3	3	3	3
CO5	3	3	3	3	3	3
Total	15	15	15	15	15	15
Scaled	3	3	3	3	3	3

1- Slightly 2 – Supportive

3 – Highly related

#### **CONSTITUTION OF INDIA**

Course Outcomes (YPSOE1):			Domain	Domain		Level			
CO1	Discuss the growth the bulk of Indians politics	Cognitive			Understandin g				
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.			Cognitive			Understandin g		
CO3	Discuss the various organs of Governance			Cognitive		Understandin g			
CO4	O4 Discuss the circumstances surrounding the foundation of the Congress Socialist Party[CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.			Cognitive			Understandin g		
CO5	Discuss the passage of the Hindu Code Bill of 1956.			Cognitive			Understandin g		
CO	OURSE CODE	COURSE NAME	1	L	T	P	C		
	YPSOE1			3	0	0	3		

C:P:A = 3:0:0	CONSTITUTION OF INDIA	L	T	P	Н
		3	0	0	3
UNIT -I HISTORY AND PHIOLOSOPHY					09

History of Making of the Indian Constitution: History-Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble-Salient Features

#### UNIT – II CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES

**09** 

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion-Cultural and Educational Rights-Right to Constitutional Remedies-Directive Principles of State Policy-Fundamental Duties.

# **UNIT – III ORGANS OF GOVERNANCE**

**09** 

Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, ExecutivePresident- Governor- Council of Ministers-Judiciary, Appointment and Transfer of Judges, Qualifications- Powers and Functions

#### **UNIT - IV LOCAL ADMINISTRATION**

09

District's Administration head: Role and Importance, - Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayati raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

#### **UNIT - V ELECTION COMMISSION**

- 09

Election Commission: Role and Functioning. - Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

#### REFERENCES

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.