

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.3	Average percentage of courses having focus on employability/ entrepreneurship/ skill Development offered by the Department of Electrical and Electronics Engineering

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL

1. List of courses for the programmes in order of

S. No.	Programme Name
1.	Bachelor of Technology (Electrical and Electronics Engineering) (Full Time)
2.	Bachelor of Technology (Electrical and Electronics Engineering) (Part Time)
3.	Master of Technology (Power Electronics and Drives) (Full Time)

2. Syllabus of the courses as per the list.

Legend :	Words highlighted with Blue Color	-	Entrepreneurship
-	Words highlighted with Red Color	-	Employability
	Words highlighted with Green Color	-	Skill Development

Name of the Course	Course Code	Year of Introduction	Activities/Content with direct bearing on Employability/ Entrepreneurship/ Skill development
Calculus and Linear Algebra	XMA101	2007-08	****
Electrical and Electronics Engineering Systems	XBE102	2007-08	Entrepreneurship- Assignment, Seminar, Poster Presentation
Applied Chemistry for Engineers	XAC 103	2007-08	Entrepreneurship- Assignment, Seminar, Poster Presentation
Engineering Graphics and Design	XEG 104	2007-08	Employability- Drawing Assignment, Model Making
Speech Communication	XGS 105	2007-08	Skill Development- Quiz, Test, Assignment Seminar
Constitution of India	XUM 106	2007-08	Skill Development- Quiz, Test, Assignment Seminar
Electrical and Electronics Engineering Systems Labaratory	XBE107	2007-08	Entrepreneurship- Assignment, Seminar, Poster Presentation
Applied Chemistry for Engineers Labaratory	XAC 108	2007-08	Entrepreneurship- Assignment, Seminar, Poster Presentation
Calculus, Ordinary Differential Equations and Complex Variable	XMA 201	2007-08	****
Programming for Problem Solving	XCP 202	2018-19	Entrepreneurship- Test, Assignment, Problem Solving Exercises
Applied Physics for Engineers	XAP 203	2007-08	Entrepreneurship- Assignment, Seminar, Poster Presentation
Technical Communication	XGS 204	2007-08	Skill Development- Quiz, Test, Assignment, Seminar
Workshop Practices	XWP 205	2007-08	Entrepreneurship- Machining Processes, Model Making
Engineering Mechanics	XEM 206	2007-08	Employability- Drawing Assignment, Model Making
Programming for Problem Solving Labaratory	XCP 207	2007-08	Entrepreneurship- Test, Assignment, Problem Solving Exercises
Applied Physics for Engineers Labaratory	XAP 208	2007-08	Entrepreneurship- Test, Assignment, Problem Solving Exercises
Transforms and Partial Differential Equations	XMA301	2007-08	***
Electromagnetic Fields	XEE302	2007-08	Employability- Quiz, Test, Problem Solving Assignment
Digital Logic Circuits	XEE303	2007-08	Employability- Quiz, Test, Problem Solving Assignment

Electrical Circuit Analysis	XEE304	2007-08	Employability- Quiz, Test, Problem Solving Assignment
Electrical Machines – I	XEE305	2007-08	Employability-Problem Solving Assignment, Test, Seminar
Entrepreneurship Development	XUM306	2007-08	Entrepreneurship- Assignment, Seminar, Poster Presentation
Universal Human Values 2: Understanding Harmony and Gender	XUM307	2021-22	Employability- Assignment, Test, Seminar
Electrical Circuit Analysis Laboratory	XEE308	2007-08	Entrepreneurship- Mini Project, Viva Voce
Electrical Machines - I Laboratory	XEE309	2007-08	Entrepreneurship- Mini Project, Viva Voce
In-plant Training – I	XEE310	2007-08	Employability- Industrial visit, Viva Voce
FUNDAMENTALS OF ELECTRIC VEHICLES	XEEEV1	2023-24	Employability- Assignment, Test, Seminar
FUNDAMENTALS OF ELECTRIC VEHICLES LABORATORY	XEEEV2	2023-24	Employability- Assignment, Test, Seminar
Probability and Statistics	XMA401	2007-08	****
Analog Electronics	XEE402	2007-08	Employability- Assignment, Test, Seminar
Control Systems	XEE403	2007-08	Employability- Assignment, Test, Seminar, Problem Solving Assignment
Electrical Machines – II	XEE404	2007-08	Employability- Quiz, Test, Problem Solving Assignment
Economics for Engineers	XUM405	2013-14	Entrepreneurship- Quiz, Test, Assignment, Seminar, Group Discussion
Disaster Management	XUM406	2015-16	Employability- Assignment, Test, Seminar
Analog Electronics Laboratory	XEE407	2007-08	Employability- Mini Project, Viva Voce
Control Systems Laboratory	XEE408	2007-08	Employability- Mini Project, Viva Voce
Electrical Machines – II Laboratory	XEE409	2007-08	Employability- Mini Project, Viva Voce
ELECTRIC VEHICLES ARCHITECTURE	XEEEV3	2023-24	Employability- Assignment, Test, Seminar
Transmission and Distribution	XEE501	2007-08	Employability- Assignment, Test, Seminar

Power System Analysis	XEE502	2007-08	Employability- Quiz, Test, Problem Solving Assignment
Digital Electronics	XEE503	2007-08	Employability- Quiz, Test, Problem Solving Assignment
Measurements and Instrumentation	XEE504	2007-08	Employability- Assignment, Test, Seminar
Professional Elective – 1	XEEE1*	2007-08	****
Open Elective – 1	X**OE*	2007-08	****
Digital Electronics Laboratory	XEE506	2007-08	Entrepreneurship- Test, Assignment, Problem Solving Exercises
Measurements and Instrumentation Laboratory	XEE507	2007-08	Entrepreneurship- Test, Assignment, Problem Solving Exercises
In-plant Training – II	XEE508	2015-16	Employability- Industrial visit, Viva Voce
Power Electronics	XEE601	2007-08	Employability- Assignment, Test, Seminar
Microprocessors and Microcontrollers	XEE602	2007-08	Employability- Assignment, Test, Seminar
Professional Elective – 2	XEEE2*	2013-14	****
Open Elective – 2	X**OE*	2013-14	****
Professional Skills	XGS605	2007-08	Employability- Assignment, Test, Seminar
Cyber Security	XUM606	2015-16	Employability- Assignment, Test, Seminar
Power Electronics Laboratory	XEE607	2007-08	Entrepreneurship- Test, Assignment, Problem Solving Exercises
Microprocessors and Microcontrollers Laboratory	XEE608	2007-08	Entrepreneurship- Test, Assignment, Problem Solving Exercises
High Voltage Engineering	XEEE41	2013-14	Employability- Assignment, Test, Seminar
Electrical Drives	XEE E51	2013-14	Employability- Assignment, Test, Seminar
Human Ethics, Values, Rights and Gender Equality	XEE703	2007-08	Employability- Quiz, Test, Problem Solving Assignment
Open Elective – I *****	X**OE*	2013-14	****
Open Elective – II	X**OE*	2013-14	****
Project Phase – I	XEE706	2013-14	Employability- Presentation, Viva Voce
In-plant Training - III	XEE707	2015-16	Skill Development- Presentation, Mock Interviews, Group Discussion

Minor Course - II	XEE708	2007-08	Employability- Industrial visit, Viva Voce
Cyber Security	XUM 801	2013-14	Employability- Assignment, Test, Seminar
Electrical and Hybrid Vehicles	XEEE51	2013-14	Employability- Assignment, Test, Seminar
Open Elective (Intellectual Property Rights)	X**OE*	2013-14	****
Project Phase – II	XEE 804	2013-14	Employability- Assignment, Test, Seminar
Power system - I(Apparatus and Modelling)	PEE 501	2007-08	Employability- Assignment, Test, Seminar
Bio Medical Instrumentation	PEE E31	2007-08	Employability- Assignment, Test, Seminar
Industrial Economics and Foreign Trade	PEE 503	2007-08	Employability- Assignment, Test, Seminar
Control Systems	PEE 504	2007-08	Employability- Quiz, Test, Assignment, Mini Project, Viva Voce
Power System -II (Operation and Control)	PEE 601	2007-08	Employability- Assignment, Test, Seminar
E-Waste Management	PEE 602	2007-08	Employability- Quiz, Test, Problem Solving Assignment
Disaster Management	PEE 603	2007-08	Employability- Assignment, Test, Seminar
Microprocessors and Microcontrollers	PEE 604	2007-08	Employability- Quiz, Test, Assignment, Mini Project, Viva Voce
Power Plant Engineering	PEE E41	2015-16	Employability- Assignment, Test, Seminar
Electrical Drives	PEE E51	2007-08	Employability- Assignment, Test, Seminar
HVDC Transmission Systems	PEE E61	2007-08	Employability- Assignment, Test, Seminar
Main Project	PEE 704	2007-08	Employability- Presentation, Viva Voce
Elective - V	YPE E5*	2022-23	****
Open Elective	Y** OE*	2022-23	****
Project Work - I	YPE 303	2022-23	Employability- Case Study, Viva Voce
Project Work - II	YPE 401	2022-23	Employability- Case Study, Viva Voce

2.SYLLABUS

CO CC	COURSE COURSE NAME				Т	Р	С		
XM	A 101	CALCULUS AND LINEAR ALGEB	RA	3	1	0	4		
Prerec	luisites	Differentiation and Integration		L	Т	Р	Η		
C :	P:A			3	1	0	4		
3:0.	5:0.5								
Course	Course Outcomes : Domain				Leve				
CO1	Apply orthogonal transformation to reduce quadratic form to canonical forms.Co		Cognitive	Rememberi Applyin		ing Ig			
CO2	CO2 Apply power series to tests the convergence of the sequences and series. Half range Fourier sine and cosine series.		Cognitive Psychomotor	Applyin Remember or Guided Respons		olying nberi ided ponse	g ng		
CO3	Find the derivative of composite functions and implicit functions. Euler's theorem and Jacobian.		Cognitive Psychomotor	Rememberi Guided Response		ng			
CO4	Explain the functions of two variables by Taylors expansion, by finding maxima and minima with and without constraints using Lagrangian Method. Directional derivatives, Gradient, Curl and Divergence.Cogniti 			R L R	Rememberin Understandi Receiving		ng ng		
CO5	Apply ofCurv	Differential and Integral calculus to notions ature and to improper integrals.	Cognitive		Applying				

UNIT - I: MATRICES	9 + 3				
Linear Transformation - Eigen values and Eigen vectors -Properties of Eigen values and Eigen vector - Cayley-Hamilton Theorem – Diagonalisation of Matrices – Real Matrices: Symmetric - Skew Symmetric and Orthogonal Quadratic form – canonical form - Nature of Quadratic form and Transformation of Quadratic form to Canonical form (Orthogonal only).					
UNIT - II: SEQUENCES AND SERIES	9 + 3				
Sequences: Definition and examples-Series: Types and convergence- Series of positive terms – Tests of convergence: Comparison test, Integral test and D'Alembert's ratio test Fourier series: Half range sine and cosine series- Parseval's Theorem.					
UNIT - III: MULTIVARIABLE CALCULUS: PARTIAL DIFFERENTIATION	9 + 3				
Limit and continuity –Partial differentiation – Total Derivative – Partial differentiation Functions: Change of Variables – Differentiation of an Implicit Function - Euler's Theor	of Composite em- Jacobian.				
UNIT - IV: MULTIVARIABLE CALCULUS: MAXIMA AND MINIMA ANDVECTOR CALCULUS	9 + 3				

Taylor's theorem for function of Two variables- Maxima, Minima of functions of two variables: with and without constraints - Lagrange's Method of Undetermined Multipliers - Directional Derivatives -Gradient, Divergence and Curl. **UNIT - V: DIFFERENTIAL AND INTEGRAL CALCULUS** 9 + 3Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions

andtheir properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

	LECTURE	TUTORIAL	TOTAL
	45	15	60
TEXT BOOKS:			

- 1. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill New Delhi, 11th Reprint,2015. (Unit-1, Unit-3 and Unit-4).
- 2. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2014. (Unit-2).

3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40th Edition, 2010. (Unit-5).

REFERENCE BOOKS:

1. G.B.Thomas and R.L.Finney, "Calculus and Analytic geometry", 9th Edition, Pearson Reprint, @

Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi,2008.
 D. Poole, "Linear Algebra: A Modern Introduction", 2nd Edition, Brooks/Cole, 2005.

4. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

Mapping of COs with GAs

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	2	0	0	2	0	0	0	0	1	0	2
CO 2	3	2	0	0	0	0	0	0	0	1	0	1
CO 3	3	2	0	0	0	0	0	0	0	1	0	1
CO 4	3	2	0	0	0	0	0	0	0	1	0	1
CO 5	3	2	0	0	1	0	0	0	0	1	0	2
Total	15	10	0	0	3	0	0	0	0	5	0	7
Scaled	3	2	0	0	1	0	0	0	0	1	0	2

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 1-Low Relation, 2-Medium Relation, 3-High Relation

COURS CODE	SE COURSE NAME		L	Т	Р	С	
XBE 102	2 ELECTRICAL AND ELECTRONICS ENGINEERING SYSTEMS		3	1	0	4	
Prerequisi	tes Physics		L	Т	Р	Η	
C : P : <i>A</i>			3	1	0	4	
3:0:0							
Course Ou	itcomes :	Domain		Le	vel		
CO1	Define and Relate the fundamentals of electrical parameters and build and explain AC, DC circuits by Using measuring devices	Cognitive	Understand			1	
CO2	Define and Explain the operation of DC and AC machines.	Cognitive		Unde	rstanc	1	
CO3	Recall and Illustrate various semiconductor devices and their applications and displays the input output Cognitive Underst characteristics of basic semiconductor devices.					1	
CO4	Relate and Explain the number systems and logic gates. Construct the different digital circuit.CognitiveUnderstand						
CO5	Label and Outline the different types of microprocessors and their applications.	Cognitive		Unde	rstanc	1	

UNIT - I: FUNDAMENTALS OF DC AND AC CIRCUITS, MEASUREMENTS

9+3

Fundamentals of DC– Ohm's Law – Kirchhoff's Laws - Sources - Voltage and Current Relations – Star/Delta Transformation - Fundamentals of AC – Average Value, RMS Value, Form Factor - AC power and Power Factor, Phasor Representation of sinusoidal quantities, Simple Series, Parallel, Series Parallel Circuit - Operating Principles of Moving coil and Moving Iron Instruments (Ammeter, Voltmeter) and Dynamometer type meters (Watt meter and Energy meter).

UNIT - II: ELECTRICAL MACHINES			9 + 3
Construction, Principle of Operation, Basic Equatio motors - Basics of Single-Phase Induction Motor Principle of Operation of Single-Phase Transformer, UNIT - III: SEMICONDUCTOR DEVICES	ons, Types and App and Three Phase 1 , Three phase trans	Dication of DC C Induction Motor formers, Auto tra	Generators, DC Construction, Insformer. 9+3
Classification of Semiconductors, Construction, Op Zener Diode, PNP, NPN Transistors, Field Effec Applications	peration and Character t Transistors and	cteristics: PN Ju Silicon Controll	nction Diode – ed Rectifier –
Basic of Concepts of Number Systems, Logic Gate multiplexer, demultiplexer, encoder, decoder, Flipfle	es, Boolean Algeb ops, Up/Down cou	ra, Adders, Subt nters, Shift Regis	ractors, ters.
UNIT - V: MICROPROCESSORS			9 + 3
Architecture, 8085, pin diagram of 8085, ALU tin bus, timing and control signals, Instruction types, Interfacing Basics: Data transfer concepts – Simple	ning and control u classification of i Programming conc	nit, registers, da nstructions, add epts.	ta and address ressing modes,
		15 IS	101AL
	45	15	00
 Delhi. 3. Rajakamal, 2014. Digital System-Principle & Des 4. Morris Mano, 2015. Digital Design. Prentice Hall 5. Ramesh, S. Gaonkar, 2013, Microprocessor Arch the 8085, 6th ed, India: Penram International Public 	sign. 2nd ed. Pearso of India. hitecture, Programm lications.	on education. ming and its Ap	plications with
REFERENCE BOOKS:			
 Cotton, H.,2005 Electrical Technology. CBS Publ Syed, A. Nasar, 1998, Electrical Circuits. Schaum Jacob Millman and Christos, C. Halkias, 1967, E Hill. Millman, J. and Halkias, C. C., 1972. Integrated Systems, Tokyo: McGraw-Hill, Kogakusha Ltd. Mohammed Rafiquzzaman, 1999. Microprocesson Motorola, Prentice Hall International. 	lishers & Distributo Series. Electronics Devices Electronics: Analo prs - Theory and A	ors Pvt Ltd. s, New Delhi: Ta og and Digital Ca applications: Inte	ata McGraw- frcuits and and
E-REFERENCES:			

Mapping of COs with GAs

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	3	1	1	1	1	0	0	1	1	1	0
CO 2	3	3	1	1	1	1	0	0	1	1	1	0
CO 3	2	2	2	1	2	2	1	1	1	1	1	0
CO 4	2	2	1	1	1	1	1	1	1	1	1	0
CO 5	2	2	1	1	1	1	1	1	1	1	1	0
Total	12	12	6	5	6	6	3	3	5	5	5	0
Scaled	3	3	2	1	2	2	1	1	1	1	1	0

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COUF COD	SE COURSE NAME		L	Т	Р	С	
XAC 1	3 APPLIED CHEMISTRY FOR ENGINEERS		3	1	0	4	
Prerequi	ites Physics		L	Т	Р	Η	
C : P :	Α		3	1	0	4	
2.5 : 1 :	0.5						
Course C	utcomes :	Domain		Le	vel		
CO1	Identify the periodic properties such as ionization energy, electron affinity, oxidation states and electron negativity. Describe the various water quality parameters like hardness and alkalinity.	Cognitive Psychomotor	R	lemer Perce	nberii eption	ng I	
CO2	Interpret the types of corrosion, use and measure it control by various methods including protective techniques. Relate the Nernst equation to determine cell potentials under nonstandard conditions.	if corrosion, use and measure its Und ethods including protective Cognitive le Nernst equation to determine Psychomotor nonstandard conditions Image: Condition standard conditis standard condition standard condition sta					
CO3	Interpret bulk properties and processes using thermodynamic and kinetic considerations. Explain Measure microscopic chemistry in terms of atomic molecular orbitals and intermolecular forces.	and Cognitive Psychomotor Affective		App Mech Rec	lying anisn æive	1	
CO4	Apply, Measure and Distinguish the ranges of the electromagnetic spectrum used for exciting differen molecular energy levels in various spectroscopic techniques. Infer the properties of complexes in ter of splitting of the d orbitals into different energy levels of coordination compounds.	t Cognitive ms rels Affective	R	ng ; i g			
CO5	Describe and Illustrate the chemical reactions that used in the synthesis of molecules. Discuss the different kinds of isomers, identify stereogenic cent in organic molecules, aware of structural, geometric optical isomerism concepts	are res , Psychomotor	R	nberir lying anisn	ng, n		

UNIT -	I: PERIODIC P	PROPERTIES AND	WAILAU	HEMISTRY		8L + 3T
Effective	e nuclear charge.	peneuration of orbita	us, variations	oî s. p. i ani	1 orbital energy	les of atoms
the period affinity a hard soft Definition alkalinit	odic table, elect and electronegat ft acids and ba on and explanation y.	ronic configurations ivity, polarizability, ses, molecular geor on of hardness, deter	, atomic and oxidation stat netries. Wat mination of h	ionic sizes, i es, coordinati er Chemistry hardness by El	ionization energion numbers an y-Water qualit DTA method-I	rgies, electro nd geometric y parameter introduction
UNIT -	II: USE OF FR	EE ENERGY IN C	HEMICAL E	QUILIBRIA	L	12L + 3T
Thermoo Free ener reductio methods of electr	dynamic function ergy and emf. C n and solubility . Use of free en- roless plating, e	ns: energy, entropy and Cell potentials, the N equilibria. Corrosident ergy considerations	nd free energy lernst equation on-Types, fac in metallurgy f nickel and	v. Estimations on and applica tors affecting through Ellin copper on Pr	of entropy and ations. Acid b corrosion rate gham diagram inted Circuit	free energie ase, oxidatio e and Contr s. Advantag Board (PCE
UNIT -	III: ATOMIC A	AND MOLECULAR	R STRUCTU	RE plications for	10	$\frac{\mathbf{JL} + \mathbf{3T}}{\mathbf{Iagualog}}$
or atomic	c and molecular	orbitals. Energy leve	l diagrams of	distomic mole	analas Crevetal	field theory
and the er solids and Intermo l Ionic, di	hergy level diagr I the role of dopi lecular forces an polar and Vande	ams for transition me ng on band structure nd potential energy er waals interactions.	etal ions and t s. surfaces Equations of	state of real g	properties. Bai	al phenomer
and the encoded of th	nergy level diagr l the role of dopi lecular forces an polar and Vande l energy surfaces IV: SPECTROS	ams for transition me ng on band structure nd potential energy or waals interactions. s of H_3 , H_2F and HCN SCOPIC TECHNIC	etal ions and t s. surfaces Equations of N and trajector UES AND A	state of real g ries on these s	ases and critica urfaces.	al phenomer L + 3T
Intermol Intermol Ionic, di Potentia UNIT - Principle types of Vibratio spectrose shift and	hergy level diagr I the role of dopi lecular forces and polar and Vande I energy surfaces IV: SPECTROS es of spectroscopy electronic transit nal spectroscopy copy of diatomic I applications-ma	ams for transition me ng on band structure nd potential energy or waals interactions. $a of H_3, H_2F$ and HCN SCOPIC TECHNIC by and selection rules tion and application. a-types of vibrations, a molecules. Nuclear agnetic resonance implication of the second	etal ions and t s. surfaces Equations of V and trajector UES AND A . Electronic sp Fluorescence Instrumentati magnetic resc aging. Diffrace RCANIC RE	state of real g ries on these s PPLICATIO pectroscopy-cl and its applica on and applica on and spectro ction and scatt	properties. Bar properties. Bar asses and critica urfaces. NS 71 hromophore, an ations in medic ations. Rotation pscopy-concept tering.	al phenomer L + 3T ux ochromes bine. hal of chemical L + 3T
Intermol Intermol Ionic, di Potentia UNIT - Principle types of Vibratio spectrose shift and UNIT - Represen	hergy level diagr d the role of dopi lecular forces and polar and Vande l energy surfaces IV: SPECTROS es of spectroscopy electronic transitional spectroscopy copy of diatomic l applications-mainted V: STEREOCH tations of 3 dime	ams for transition me ng on band structure nd potential energy or waals interactions. $3 \text{ of H}_3, \text{H}_2\text{F} \text{ and HCN}$ SCOPIC TECHNIC by and selection rules tion and application. 7-types of vibrations, 2 molecules. Nuclear agnetic resonance ima IEMISTRY AND O ensional structures.	etal ions and t s. surfaces Equations of N and trajector UES AND A . Electronic sp Fluorescence Instrumentati magnetic resc aging. Diffrac RGANIC RH tructural isom	state of real g ries on these s PPLICATIO pectroscopy-cl and its application on and application on and spectro ction and scatt EACTIONS ers and stereo	properties. Erystal properties. Bar ases and critica urfaces. NS 71 hromophore, an ations in medic ations. Rotation pscopy-concept tering. 81 isomers. config	al phenomer L + 3T uxochromes bine. hal of chemical L + 3T gurations and
and the en solids and Intermol Ionic, di Potentia UNIT - Principle types of Vibratio spectrose shift and UNIT - Represen symmetry conforma Organic Introduct reactions	hergy level diagr I the role of dopi lecular forces ar polar and Vande I energy surfaces IV: SPECTROS es of spectroscopy electronic transit nal spectroscopy copy of diatomic <u>I applications-ma</u> V: STEREOCH tations of 3 dime y and chirality, e ational analysis. I reactions and s ion to reactions and and ring openi	ams for transition me ng on band structure nd potential energy or waals interactions. $a of H_3, H_2F$ and HCN SCOPIC TECHNIC by and selection rules tion and application. a-types of vibrations, a molecules. Nuclear ignetic resonance imp IEMISTRY AND O ensional structures, st nantiomers, diastered Isomerism in transition ynthesis of a drug n involving substitution ing reactions. Synth	etal ions and t s. surfaces Equations of V and trajector UES AND A . Electronic sp Fluorescence Instrumentati magnetic resc aging. Diffrac RGANIC RH tructural isom omers, optical onal metal con nolecule n, addition, el esis of a cor	state of real g ries on these s PPLICATIO pectroscopy-cl and its application on and application on and application on and spectro ction and scatte EACTIONS ers and stereor activity, abso mpounds	ases and critica urfaces. NS 71 hromophore, an ations in medica ations. Rotation oscopy-concept tering. 81 isomers, configurat idation, reduct drug molecul	al phenomer L + 3T uxochromes cine. nal of chemical L + 3T gurations and ion, cyclizat e- Aspirin
and the en- solids and Intermol Ionic, di Potentia UNIT - Principle types of Vibratio spectrose shift and UNIT - Represen symmetry conforma Organic Introduct reactions paracetar	hergy level diagr I the role of dopi lecular forces and polar and Vande lenergy surfaces IV: SPECTROS es of spectroscopy electronic transitional spectroscopy copy of diatomic lapplications-ma V: STEREOCH tations of 3 dime y and chirality, entional analysis. I reactions and sy ion to reactions and sy ion to reactions and and ring openinol.	ams for transition me ng on band structure nd potential energy or waals interactions. <u>a of H₃, H₂F and HCN SCOPIC TECHNIC by and selection rules tion and application. <i>a</i>-types of vibrations, <i>a</i> molecules. Nuclear <u>agnetic resonance imp</u> IEMISTRY AND O ensional structures, si nantiomers, diastered Isomerism in transition ynthesis of a drug n involving substitution ing reactions. Synth</u>	etal ions and t s. surfaces Equations of A and trajector UES AND A . Electronic sp Fluorescence Instrumentati magnetic resc aging. Diffrac RGANIC RH tructural isom omers, optical onal metal con nolecule n, addition, el esis of a cor	state of real g ries on these s PPLICATIO pectroscopy-cl and its application on and application on and application on and scatte EACTIONS ers and stereor activity, abso npounds	ases and critica urfaces. NS 71 hromophore, an ations in medications. Rotation pscopy-concept tering. 81 isomers, configurat idation, reduct drug molecul	al phenomer L + 3T uxochromes bine. hal of chemical L + 3T gurations and ion, cyclizat e- Aspirin a
and the er solids and Intermol Ionic, di Potentia UNIT - Principle types of Vibratio spectrose shift and UNIT - Represen symmetry conforma Organic Introduct reactions paracetar	hergy level diagr I the role of dopi lecular forces ar polar and Vande l energy surfaces IV: SPECTROS es of spectroscopy electronic transit nal spectroscopy copy of diatomic l applications-ma V: STEREOCH tations of 3 dime y and chirality, e ational analysis. I reactions and s ion to reactions and ring openi nol.	ams for transition me ng on band structure nd potential energy or waals interactions. Sof H ₃ , H ₂ F and HCN SCOPIC TECHNIC by and selection rules tion and application. r-types of vibrations, e molecules. Nuclear agnetic resonance ima IEMISTRY AND O ensional structures, st nantiomers, diastered Isomerism in transition ynthesis of a drug n involving substitution ing reactions. Synth	etal ions and t s. surfaces Equations of V and trajector UES AND A . Electronic sp Fluorescence Instrumentati magnetic resc aging. Diffrace RGANIC RI tructural isom omers, optical onal metal con nolecule n, addition, el esis of a cor	state of real g ries on these s PPLICATIO cectroscopy-cl and its application on and application on and application certion and scatte EACTIONS ers and stereor activity, abso inpounds limination, oximmonly used	ases and critica urfaces. NS 71 hromophore, an ations in medications. Rotation becopy-concept tering. 81 isomers, configurat idation, reduct drug molecul TUTORIAI	al phenomer L + 3T ux ochromes cine. nal of chemical L + 3T gurations and ion, cyclizat e- Aspirin a

1. Puri B.R. Sharma, L.R., Kalia K.K. Principles of Inorganic Chemistry, (23rdedition), New Delhi, Shoban Lal Nagin Chand & Co., 1993.

2. Lee. J.D. Concise Inorganic Chemistry, UK, Black well science, 2006.

3. Trapp. C, Cady, M. Giunta. C, Atkins's Physical Chemistry, 10th Edition, Oxford publishers, 2014.

- 4. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd, 1983.
- 5. Morrison R.T. and Boyd R.N. Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., 1976.

6. Banwell. C.N, Fundamentals of Molecular Spectroscopy, (3th Edition), McGraw-Hill Book Company, Europe 1983.

7. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (4th edition), S./ Chand & Company Ltd. New Delhi, 1977.

8. P. S. Kalsi, Stereochemistry: Conformation and mechanism, (9th Edition), New Age International Publishers, 2017.

REFERENCE BOOKS:

1. Puri B R Sharma L R and Madan S Pathania, "Principles of Physical Chemistry", Vishalpublishing Co., Edition 2004.

2. Kuriocose, J C and Rajaram, J, "Engineering Chemistry", Volume I/II, Tata McGraw-Hill Publishing Co. Ltd. New Delhi, 2000.

E-REFERENCES:

- 1. http://www.mooc-list.com/course/chemistry-minor-saylororg
- 2. <u>https://www.canvas.net/courses/exploring-chemistry</u>
- 3. http://freevideolectures.com/Course/2263/Engineering-Chemistry-I
- 4. http://freevideolectures.com/Course/3001/Chemistry-I
- 5. http://freevideolectures.com/Course/3167/Chemistry-II
- 6. http://ocw.mit.edu/courses/chemistry/

CO Vs GA	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
GA ₁	2	2	2	2	2	10	2
GA ₂	2	2	2	2	2	10	2
GA 3	2	0	2	1	1	6	1
GA ₄	2	1	1	2	3	9	2
GA ₅	1	1	1	1	1	5	1
GA ₆	2	0	2	2	2	8	2
GA ₇	1	0	0	1	0	2	0
GA ₈	1	0	0	1	0	2	0

Table 1 : Mapping of CO with GA

GA 9	1	0	0	1	0	2	0
GA 10	0	0	0	0	0	0	0
GA 11	1	0	0	1	1	3	1
GA 12	1	1	1	1	1	5	1
No I	Relation,	1 – 5 , 1-Low]	$5 \rightarrow 1, 6$ Relation	– 10→ 2 , 2-Medi	, 11 – 15- um Relat	→ 3 ion, 3-Hi	gh Relation

	COURSE CODECOURSE NAMELTP								
XE	G 104	ENGINEERING GRAPHICS AND DES	SIGN	2	0	1	3		
Prere	equisites	NIL		L	T	P	H		
C :	: P : A	P:A 2 0 2							
1.75 :	: 1 : 0.25								
Cours	se Outco	mes :	Domain]	Level				
CO	Appl cons	y the national and international standards, <i>truct</i> and <i>practice</i> various curves	Cognitive, Psychomotor and Affective	Applyin respons to Phen	ng, Gu e and omen	ided Respo a	onds		
со	1 nter proje	<i>pret, construct</i> and <i>practice</i> orthographic ections of points, straight lines and planes.	Cognitive, Psychomotor and Affective	Unders Mechai Respon Phenon	tandin nism a ds to nena	g, nd			
со	Con. in va solic	<i>struct Sketch</i> and <i>Practice</i> projection of solids arious positions and true shape of sectioned ls.	Cognitive, Psychomotor and Affective	ng, Co despor ds to nena	mple:	x d			
со	4 Inter later inter	<i>pret, Sketch</i> and <i>Practice</i> the development of al surfaces of simple and truncated solids, section of solids.	Cognitive, Psychomotor and Affective	, Understanding or Complex Over ve Response and to Phenomena			onds		
со	5	struct sketch and practice isometric and practice isometric and prective views of simple and truncated solids.	Cognitive, Psychomotor and Affective	to Phenomena Applying, Comple r Overt Response at e Responds to Phenomena			ĸ d		
1	1								

UNIT - I: INTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND
CONSTRUCTION OF PLANE CURVE12 + 6

Importance of graphics in engineering applications – use of drafting instruments – BIS specifications and conventions as per SP 46-2003.

Pictorial representation of engineering objects – representation of three dimensional objects in two dimensional media – need for multiple views – developing visualization skills through free hand sketching of three dimensional objects.

Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves – construction – drawing of tangents to the above curves. Practice on basic tools of CAD

UNIT - II: PROJECTION OF POINTS, LINES AND PLANE SURFACES

General principles of orthographic projection – first angle projection – layout of views – projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclinations to the planes of projection – traces – projection of polygonal surfaces and circular lamina inclined to both the planes of projection-CAD practice on points and line.

UNIT - III: PROJECTION OF SOLIDS AND SECTIONS OF SOLIDS

12 + 6

12 + 6

Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to one plane of projection – change of position & auxiliary projection methods – sectioning of above solids in simple vertical positions by cutting plane inclined to one reference plane and perpendicular to the other and above solids in inclined position with cutting planes parallel to one reference plane – true shapes of sections-CAD practice on solid models.

UNIT - IV: DEVELOPMENT OF SURFACES AND INTERSECTION OF SOLIDS

12 + 6

Need for development of surfaces – development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders and cones – development of lateral surfaces of the above solids with square and circular cutouts perpendicular to their axes – intersection of solids and curves of intersection –prism with cylinder, cylinder & cylinder, cone & cylinder with normal intersection of axes and with no offset-CAD practice on intersection of solids.

UNIT - V: ISOMETRIC AND PERSPECTIVE PROJECTIONS12 + 6Principles of isometric projection – isometric scale – isometric projections of simple solids, truncated
prisms, pyramids, cylinders and cones – principles of perspective projections – projection of prisms,
pyramids and cylinders by visual ray and vanishing point methods-CAD practice on isometric view.

THEORY	PRACTICAL	TOTAL
30	60	90

TEXT BOOKS:

- 1. Bhatt,N.D, "Engineering Drawing", Charotar Publishing House, 46th Edition-2003.
- 2. Natarajan, K.V, "A Textbook of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2k6
- 3. Dr. P.K. Srividhya, P. Pandiyaraj, "Engineering Graphics", PMU Publications, Vallam, 2013

REFERENCE BOOKS:

- 1. Luzadder and Duff, "Fundamentals of Engineering Drawing" Prentice Hall of India PvtLtd, XI Edition 2001.
- 2. Venugopal, K. and Prabhu Raja, V., "Engineering Graphics", New Age International(P) Ltd.,
- 3. Gopalakrishnan.K.R,. "Engineering Drawing I & II", Subhas Publications, 1998.
- Shah, M.B and Rana, B.C., "Engineering Drawing", Pearson Education, 2005.

E-RESOURCES:

- 1. <u>http://periyarnet/Econtent</u>
- 2. http://nptel.ac.in/courses/112103019/

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	3	2	3	1	1	2	3	3	3	-
CO2	3	3	3	1	3	1	3	1	1	1	2	3	3	-
CO3	3	3	3	1	3	1	3	1	1	1	2	3	3	-
CO4	3	3	3	1	3	1	3	1	1	1	2	3	3	-
CO5	3	3	3	1	3	1	3	1	1	1	2	3	3	-
Total	15	15	15	6	15	6	15	5	5	6	11	3	3	-
Scaled	3	3	3	2	3	2	3	1	1	2	3	3	3	-

1-5 > 1, 6-10 > 2, 11-15 > 30 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUR COD	SE E	COURSE NAME	L	Т	Р	С		
XGS1	05	SPEECH COMMUNICATION		0	1	2	3	
Prerequ	isite	Basic Understanding Skills		L	Т	P	H	
C : P :	A			0	1	4	5	
2.6:0.4	4:0							
Course (Outcor	mes:	D	omaiı	n	Le	vel	
CO1	Abili	ity to recall the types of speeches.	Co	ognitiv	ve 🛛	Reme	embering	
CO2	App	y the techniques in public speaking.	Со	ognitiv	ve	А	pplying	
CO3	Iden	tify the common patterns in organizing a speech.	Co	ognitiv	ve	Reme	embering	
CO4	Cons	struct the nature and style of speaking.	Со	ognitiv	ve	Rememberin		
CO5	Prac	ticing the speaking skills.	Psychomotor			C Re	Guided sponse	
UNIT –	I: TY	PES OF SPEECHES					9	
1.1 – Fou	ır type	s of speeches						
1.2 - An	alyzing	g the audience						
1.3 - Dev	elopin	g ideas and supporting materials						
UNIT –	II: PU	JBLIC SPEAKING					9	
2.1 - Intr	oducti							
2.2 - Cor	npeten	cies Needed for successful speech making						
2.3 – Spe	aking	about everyday life situations						
UNIT –	III: O	PRGANIZATION OF SPEECH					9	

3.1 – Developing a speech out line		
3.2 - Organizing the speech		
3.3 – Introduction - development – conclusion		
UNIT – IV: PRESENTATION		9
4.1 - Tips for preparing the draft speech		
4.2 – Presentation techniques using ICT tools		
4.3 – Using examples from different sources		
UNIT – V: ACTIVITIES		9
5.1 – Reading activities		
5.2 – Creative presentations		
5.3 – Media presentation techniques		
	TOTAL	45
SUGGESTED READINGS:		

1.

Michael Swan. Practical English Usage. OUP. 1995. Sanjay Kumar and Pushp Lata. Communication Skills. Oxford University Press. 2011. 2.

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	0	0	1	0	0	0	0	0	0	0	0	0	0
CO2	2	0	0	1	0	0	0	0	0	0	0	0	0	0
CO3	2	0	0	1	0	0	0	0	1	0	0	0	0	0
CO4	2	0	0	1	0	0	0	1	1	0	0	0	0	0
CO5	2	2	0	1	0	0	0	1	1	0	0	0	0	0
Total	10	2	0	5	0	0	0	2	3	0	0	0	0	0
Scaled	2	1	0	1	0	0	0	1	1	0	0	0	0	0

1-5 >1, 6-10 >2, 11-15 > 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	COURSE NAME	L	Т	Р	С
XBE107	ELECTRICAL AND ELECTRONICS ENGINEERING SYSTEMS LABORATORY	0	0	1	1
Prerequisite	Physics	L	Т	Р	Η
C : P : A		0	0	2	2
1.5 : 1 : 0.5					

COURSE OBJECTIVES:

The course helps to

- a. Learn the basic concepts of electrical and electronics components.
- b. Understand the basic wiring methods and connection.
- c. Study the characteristics of diodes, Zener diodes, NPN transistors.
- d. Verify the working of simple logic gates, adders and subtractors.

Course	Outcomes:	Domain	Level
CO1	Apply the fundamental electrical concepts and differentiate	Psychomotor	Set
COI	the various electronic components.		
CO_{2}	Implement and execute the different types of wiring	Psychomotor	Set
02	connections.		
CO3	Demonstrate the Fluorescent lamp connection with choke.	Psychomotor	Set
CO4	Characterize and display the basic knowledge on the	Psychomotor	Set
C04	working of PN junction and Zener diode.		
CO5	Implement and execute the various digital electronic	Psychomotor	
005	circuits such as Adders and Subtractors.		Set

List of Experiments:

- 1. Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies.
- 2. Study of Active and Passive elements Resistors, Inductors and Capacitors, Bread Board.
- 3. Testing of DC Voltage and Current in series and parallel resistors which are connected inbreadboard by using Voltmeter, Ammeter and Multimeter.
- 4. Fluorescent lamp connection with choke.
- 5. Staircase Wiring
- 6. Forward and Reverse bias characteristics of PN junction diode.
- 7. Forward and Reverse bias characteristics of zener diode.
- 8. Input and Output Characteristics of NPN transistor.
- 9. Construction and verification of simple logic gates.
- 10. Construction and verification of adders and subtractors.

PRACTICAL	TOTAL
30	30

Mapping o	f COs	with	GAs
-----------	-------	------	-----

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	3	1	1	1	1	0	0	1	1	1	0
CO 2	3	3	1	1	1	1	0	0	1	1	1	0
CO 3	2	2	2	1	2	2	1	1	1	1	1	0
CO 4	2	2	1	1	1	1	1	1	1	1	1	0

CO 5	2	2	1	1	1	1	1	1	1	1	1	0
Total	12	12	6	5	6	6	3	3	5	5	5	0
Scaled Value	3	3	2	1	2	2	1	1	1	1	1	0

1-5 > 1, 6-10 > 2, 11-15 > 30 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COU CO	RSE DE	COURSE NAME		L	Т	Р	С	
XAC	108	APPLIED CHEMISTRY FOR ENGINEERS LABORATORY		3	1	1	5	
Prereq	uisite	Physics		L	Т	Р	Η	
C : P	:A			3	1	3	7	
3.5 : 1	.0:0.5							
Course	Outcome	es:		Domai	n	Le	evel	
CO1	Underst periodic	tand the address of the electron and know the trend of properties; Recall the water treatment methods.	Ps	Cogniti [®] sychom	ve otor	Reme Perce	ember ption	
CO2	CO2Understand the laws of chemical thermodynamics; Classify the compounds as acids and basesCognitive Psychomotor						Understand Set	
CO3	CO3 Determine the stability and reactions of co-ordination					Apply		
	compou	nds;	Cognitive			Mechanism		
	Explain	and Measure microscopic chemistry in terms of	Psychomotor		Rec	eive		
	atomic,	molecular orbitals and intermolecular forces		Affectiv	ve			
CO4	CO4 Apply, Measure and Distinguish the ranges of the electromagnetic spectrum used for exciting different				ve	Reme Ana	ember lyze	
	molecular energy levels in various spectroscopic techniques;				otor	Perce	ption	
Construct the MO theory to diatomic molecules.					ve	Resp	oond	
COS	Knowledge about aliphatic and aromatic substitution				Cognitive		ember	
	CO5 Knowledge about annualic and aromatic substitution cognitive reactions, oxidation and reduction, addition and elimination reactions will kindle the mind for proposing the new reactions Psychomotor and mechanisms.						ply anism	

List of Experiments:

- 1. Determination of chloride ion present in the water sample by Argentometric method.
- 2. Determination of total, temporary and permanent hardness of water sample by EDTA method.
- 3. Determination of cell constant and conductance of solutions.
- 4. Potentiometry determination of redox potentials and emfs.
- 5. Determination of surface tension and viscosity.
- 6. Adsorption of acetic acid by charcoal.
- 7. Determination of the rate constant of a reaction.
- 8. Estimation of iron by colorimetric method.
- 9. Synthesis of a polymer/drug.

REFERENCE BOOKS

- 1. Mendham, Denney R.C,. Barnes J.D and Thomas N.J.K., "Vogel's Textbook of Quantitative Chemical Analysis", 6th Edition, Pearson Education, 2004.
- 2. Garland, C. W.; Nibler, J. W.; Shoemaker, D. P. "Experiments in Physical Chemistry", 8th Ed.; McGraw-Hill: New York, 2003.

E Resources - MOOCs :

1.http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques.

- 2. http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011.
- 3.http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques.

PRACTICAL	TOTAL	
30	30	

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	0	0	0	0	0	2	3	3
CO2	2	0	0	0	0	0	1	2	2
CO3	3	0	0	0	0	0	2	3	3
CO4	8	0	0	0	0	0	3	3	3
CO5	3	0	0	0	0	0	2	2	3

1-5 >1, 6-10 >2, 11-15 > 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

CO CO	COURSE COURSE NAME					C
XM	3	1	0	4		
Prerec	L	Т	Р	Η		
C :	P : A		3	1	0	4
3:	0:0					
Cours	Course Outcomes : Doma				Level	
	Find double and triple integrals and to find line, surface and				Applying	
COI	volume diverge	of an integral by Applying Greens, Gauss Cognition of an Integral by Applying Greens, Gauss Cognition	ve	Ren	nembe	rıng

CO2	Solve first order differential equations of different types which are solvable for p, y, x and Clairaut's type	Cognitive	Applying				
CO3	Solve Second order ordinary differential equations with variable coefficients using various methods.	Cognitive	Remembering				
CO4	Use CR equations to verify analytic functions and to find harmonic functions and harmonic conjugate.Conformal mapping of translation and rotation. Mobius transformation.	Cognitive Psychomotor	Understanding Remembering Guided Response				
CO5	Apply Cauchy residue theorem to evaluate contour integrals involving sine and cosine function and to state Cauchy integral formula, Liouvilles theorem. Taylor'sseries, zeros of analytic functions, singularities, Laurent's series.	Cognitive Affective	Applying Receiving				
UNIT -	I: MULTIVARIABLE CALCULUS (INTEGRATION)		9 + 3				
Multiple	Integration: Double integrals (Cartesian) - change of order of in	ntegration in d	ouble				
integrals	integrals -Change of variables (Cartesian to polar) - Triple integrals (Cartesian), Scalar line						
integrals - vector line integrals - scalar surface integrals - vector surface integrals - Theorems of							
Green, Gauss and Stokes.							
UNIT -	II: FIRST ORDER ORDINARY DIFFERENTIAL EQUATION	ONS	9+3				
Exact -]	inear and Bernoulli's equations - Euler's equations - Equations	not of first d	egree:				

equations solvable for p - equations solvable for y- equations solvable for x and Clairaut's type.UNIT - III: ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDERS9 + 3

Second order linear differential equations with variable coefficients- method of variation of parameters -Cauchy-Euler equation- Power series solutions- Legendre polynomials- Bessel functions of the first kindand their properties.

UNIT - IV: COMPLEX VARIABLE – DIFFERENTIATION

9+3

Differentiation – Cauchy - Riemann equations - analytic functions - harmonic functions - finding harmonic conjugate - elementary analytic functions (exponential, trigonometric, logarithm) and their properties - Conformal mappings - Mobius transformations and their properties.

UNIT - V: COMPLEX VARIABLE – INTEGRATION

9+3

Contour integrals - Cauchy-Goursat theorem (without proof) - Cauchy Integral formula (without proof)-Liouville's theorem (without proof)- Taylor's series- zeros of analytic functions- singularities-Laurent's

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS:

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40thth Edition, 2008. **REFERENCE BOOKS:**

- 1. G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.
- 2. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.
- 3. W. E. Boyce and R. C. DiPrima, "Elementary Differential Equations and Boundary Value Problems",9thEdn. Wiley India, 2009.
- 4. S. L. Ross, "Differential Equations", 3rd Ed., Wiley India, 1984.
- 5. E. A. Coddington, "An Introduction to Ordinary Differential Equations", Prentice Hall India, 1995.

6. E. L. Ince, "Ordinary Differential Equations", Dover Publications, 1958.

- 7. J. W. Brown and R. V. Churchill, "Complex Variables and Applications", 7th Ed., McGraw Hill, 2004.
- 8. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2008.

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO1	3	2	0	0	2	0	0	0	0	1	0	2
CO2	3	1	0	0	0	0	0	0	0	1	0	1
CO3	3	1	0	0	0	0	0	0	0	1	0	1
CO4	3	2	0	0	0	0	0	0	0	1	0	1
CO5	3	2	0	0	1	0	0	0	0	1	0	2
Total	15	8	0	0	3	0	0	0	0	5	0	7
Scaled	3	2	0	0	1	0	0	0	0	1	0	0

Mapping of COs with GAs

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COUR COD	SE E	COURSE NAME	L	Т	Р	С
XCP 2	02	PROGRAMMING FOR PROBLEM SOLVING	3	0	0	3
Prerequis	sites	Basic Understanding Skills	L	Т	P	Η
C : P :	Α		3	0	0	3
3:0:	0					
Course O	outcon	nes : Doma	in	Level		
CO1	Defin progr	ne programming fundamentals and Solve simple Cognitiv cams using I/O statements	e	Applyir		ıg
CO2	Defin contr	ne syntax and write simple programs using Cognitiv ol structures and arrays	e	А	pplyir	ıg
CO3	Expl and p	ain and write simple programs using functions Cognitiv	e	A	pplyir	ng
CO4	Expl and u	ain and write simple programs using structures Cognitiv	e	А	pplyir	ıg

	Explain and write simple programs using files and	Cognitive	Applying
CO5	Build simple projects		

UNIT - I: PROGRAMMING FUNDA	MENTALS AND I/O	STATEMENTS	9								
Introduction to components of a computer system, Program – Flowchart – Pseudo code – Software – Introduction to C language – Character set – Tokens: Identifiers, Keywords, Constants, and Operators – sample program structure -Header files – Data Types- Variables - Output statements – Input statements.											
UNIT - II: CONTROL STRUCTURE	AND ARRAYS		9								
Control Structures – Conditional Control statements: Branching, Looping - Unconditional control structures: switch, break, continue, goto statements – Arrays: One Dimensional Array – Declaration – Initialization – Accessing Array Elements – Searching – Sorting – Two Dimensional arrays - Declaration – Initialization – Matrix Operations – Multi Dimensional Arrays - Declaration – Initialization. Storage classes: auto – extern – static. Strings: Basic operations on strings.UNIT - III: FUNCTIONS AND POINTERS9											
Functions: Built in functions - User	Defined Functions - I	Darameter passing n	nethods - Passing a								
Functions: Built in functions – Oser Defined Functions - Parameter passing methods - Passing a functions – Recursion - Programs using arrays and functions. Pointers - Pointer declaration - Address - Pointer expressions & pointer arithmetic - Pointers and function - Call by value - Call by Reference - to arrays - Use of Pointers in self-referential structures-Notion of linked list											
UNIT - IV: STRUCTURES AND UNI	IONS		9								
Structures and Unions - Giving values to Passing structure to elements to function Structure within a structure and Union. UNIT - V: FILES	o members - Initializin ns - Passing entire funct	g structure - Functio tion to functions - A	ns and structures - rrays of structure - 9								
File management in C - File operation f The getw and putw functions - The fprin	functions in C - Definit tf & fscanf functions -	ng and opening a fil fseek function – Fil	e - Closing a file - es and Structures.								
	LECTURE	TUTORIAL	TOTAL								
	45	0	45								
TEXT BOOKS:											
 Byron Gottfried, "Programming with C", III Edition, (Indian Adapted Edition), TMH publications, 2010. Yeshwant Kanethker, "Let us C", BPB Publications, 2008. 											
REFERENCE BOOKS:											
 E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill, 7th edition 2017. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education Inc. 2005. Johnson baugh R. and Kalin M., "Applications Programming in ANSI C", III Edition, Pearson Education India, 2003. 											

E-REFERENCES:

- 1. https://www.indiabix.com/c-programming/questions-and-answers/
- 2. https://www.javatpoint.com/c-programming-language-tutorial
- 3. https://www.w3schools.in/c-tutorial/

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	2	0	0	3	0	0	0	0	0	2	3
CO 2	3	2	0	0	2	0	0	0	0	0	2	3
CO 3	2	2	1	2	2	0	0	0	0	0	2	2
CO 4	2	2	1	2	2	0	0	0	0	0	2	2
CO 5	2	2	1	0	2	0	0	1	0	2	2	2
Total	12	10	3	4	11	0	0	1	0	2	10	12
Scaled	3	2	1	1	3	0	0	1	0	1	2	3

Mapping of COs with GAs

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COU	RSE DE	COURSE NAME	L	Т	Р	С	
XAP	203	APPLIED PHYSICS FOR ENGINEERS	3	1	0	4	
Prereq	uisite	Basic Physics in HSC Level	L	Т	Р	Н	
C : P	: A		3	1	0	4	
2.8:0.8	8:0.4	· · · · ·					
Course	Outcor	nes:	Doma	in	Ι	Level	
CO1	Identi of elas system	fy the basics of mechanics, explain the principles sticity and determine its significance in engineering as and technological advances.	Cognit Psychon	ive notor	Remember Understand Mechanism		
CO2	Illustr electro applic	rate the laws of electrostatics, magneto-statics and omagnetic induction; use and locate basic ations of electromagnetic induction to technology.	Cognitiv Psychon Affectiv	re notor e	Ren Ana Meo Res	nember alyze chanism pond	
CO3	Under measu applic	rstand the fundamental phenomena in optics by rement and describe the working principle and ation of various lasers and fiber optics.	Cognitiv Psychon Affectiv	ve notor e	Understand Apply Mechanism Receive		
CO4	Analy princij	ze energy bands in solids, discuss and use physics ples of latest technology using semiconductor devices.	Cognitive Psychomotor Affective Re			derstand dyze chanism eive	

CO5 Dev Schr equa	elop Knowledge on particle duality and solve odinger tion for simple potential.	Cognitive	Understand Apply
UNIT – I: M	ECHANICS OF SOLIDS		9+3
Mechanics: I	orce - Newton's laws of motion - work and energy - im	pulse and momen	tum - torque -
Electicity	ation of energy and momentum - Friction.	Classification of	alactia
modulus M	mont couple and torque. Torsion pendulum Applicat	Classification of	elastic
Bending of be	ame. Experimental determination of Young's modulus:	Uniform bending	and non
uniform bend	ing.	Childrin bendning	and non-
UNIT – II: E	LECTROMAGNETIC THEORY		9+3
Laws of elect	rostatics - Electrostatic field and potential of a dipole; D	Dielectric Polarizat	tion, Dielectric
constant, inte	nal field - Clausius Mossotti Equation - Laws of magn	etism - Ampere's	Faraday's law;
Lenz's law -	Maxwell's equation - Plane electromagnetic waves; the	ir transverse natur	e - expression
for plane, cire	cularly and elliptically polarized light - quarter and ha	lf wave plates - p	production and
detection of p	lane, circularly and elliptically polarized light.		
UNIT – III:	OPTICS, LASERS AND FIBRE OPTICS		9 + 3
Optics: Disp	ersion- Optical instrument: Spectrometer - Determination	n of refractive ind	dex and
dispersivepov	ver of a prism- Interference of light in thin films: air wed	lge - Diffraction:	grating.
Fibre Optics acceptancean	Principle and propagation of light in optical fibre - gle - Types of optical fibre - Fibre optic communication	Numerical apertu system (Block dia	re and gram).
UNIT – IV: S	SEMICONDUCTOR PHYSICS		9 + 3
Semiconduct	ors: Energy bands in solids - Energy band diagram of	good conductors,	insulators and
semiconducto	rs - Concept of Fermi level - Intrinsic semiconductors	- Concept of ho	les - doping -
Extrinsic sem	iconductors - P type and N type semiconductors - Hall e	ffect.	
Diodes and 7	ransistors : P-N junction diode - Forward bias and reve	rse bias - Rectific	ation action of
diode - Work	ing of full wave rectifier using P N junction diodes - P	NP and NPN tran	sistors - Three
different conf	igurations - Advantages of common emitter configuration	ion - working of l	NPN transistor
as anamplifie	in common emitter configuration.		
UNIT - V: Q	UANTUM PHYSICS		9+3
Introduction	o quantum physics, black body radiation, Compton eff	fect, de Broglie h	ypothesis,
wave –partic	e duality, uncertainty principle, Schrodinger wave equa	tion (Time depend	dent and Time
independent),	particle in a box, Extension to three dimension - Degeno	eracy.	
TEXT BOO	KS:		
2. Gaur R. H	L. and Gupta S. L., "Engineering Physics", Dhanpat Rai	Publications, 2009	Э.
3. Avadhan	ulu M. N. "Engineering Physics" (Volume I and II), S. C	hand & Company	Itd Now
Delhi,201			Liu., New
	0.		Liu., New
REFERENC	0. E BOOKS:		Ltd., New

1. Palanisamy P. K., "Engineering Physics", Scitech Publications (India) Pvt. Ltd, Chennai.

- 2. Arumugam M., "Engineering Physics" (Volume I and II), Anuradha Publishers, 2010.
- 3. Senthil Kumar G., "Engineering Physics", 2nd Enlarged Revised Edition, VRB Publishers, Chennai, 2011.
- 4. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2007.

E-RESOURCES:

1. NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO1	3	2	2	2	1	0	0	0	1	0	0	1
CO2	3	0	1	0	1	0	0	0	0	0	0	1
CO3	3	2	2	2	1	0	0	0	1	0	0	1
CO4	3	2	2	2	1	0	0	0	1	0	0	1
CO5	3	0	2	0	0	0	0	0	0	0	0	1
Total	15	6	9	6	4	0	0	0	3	0	0	5
Scaled	3	2	2	2	1	0	0	0	1	0	0	1

Mapping of COs with GAs

 $1 - 5 \rightarrow 1, 6 - 10 \rightarrow 2, 11 - 15 \rightarrow 3$

No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURSE CODE	COURSE NAME	L	Т	Р	С				
XGS 204	TECHNICAL COMMUNICATION	2	0	0	2				
Prerequisite	Basic English in HSC level	L	Т	Р	Η				
C : P : A		2	0	0	2				
3:0:0									
Course Outco	in		Level						
CO1 Abilit	\mathbf{y} to understand the basic principles.	Cognit	Remembering						
CO2 Apply	the techniques in writing.	Cognit	Applying						
CO3 Ident	fy communicative styles.	Cognit	Ren	nembering					
CO4 Const	ruct the nature of writing.	Cognit	ive	Ren	nembering				
UNIT – I: BA	ASIC PRINCIPLES				9				
1.1 – Basic Pr	inciples of Technical Writing								
1.2 - Styles us	ed in Technical Writing								
1.3 – Languag	e and Tone								
UNIT – II: TECHNIQUES									
2.1 – Special	Fechniques used in writing								
2.2 – Definition & Description of mechanism									
2.3 – Descript	ion- Classification-Interpretation								

UNIT – III: COMMUNICATION		
3.1 – Modern development in style of writing		
3.2 - New letter writing formats		
UNIT – IV: REPORT WRITING		(
4.1 – Types of Report writing		
4.2 – Project writing formats		
	LECTURE	TOTAL
	30	30
SUGGESTED READINGS		
1. John Sealy, Writing and Speaking Author: Oxfo	rd University Press, New	Delhi, 2009.

2. Williams K.S, Communicating Business. Engage Learning India Pvt Ltd, 2012.

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO2	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO3	1	0	0	0	0	0	1	0	1	0	0	0	0	0
CO4	2	0	0	0	0	0	1	0	1	0	0	0	0	0
CO5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	7	0	0	0	0	0	6	0	4	0	0	0	0	0
Scaled	2	0	0	0	0	0	2	0	1	0	0	0	0	0

1-5 >1, 6-10 >2, 11-15 > 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COU COI	RSE DE	COURSE NAME	L	Т	Р	С		
XWP	205	Workshop Practices	2	0	0			
			L	Т	Р	Н		
C : P	: A		1	0	4	5		
1:3:	: 0				•			
Course (Outcome	es:	Dom	ain	Level			
CO1:	Summa	rize the machining methods and Practice	Cognitive		Understanding			
	machini	ng operation.	Psychomo	otor	Guided r	esponse		
CO2:	Defining	gmetal casting process, moulding methodsand	Cognitive		Remembering			
	relates (Casting and Smithy applications.	Psychomo	otor	Perception			
CO3:	Plan ba	sic carpentry and fitting operation and Practice	Cognitive		Applying			
	carpenti	ry and fitting operations.	Psychomo	otor	Guided r	esponse		
CO4:	Summa	rize metal joining operation and Practice welding	Cognitive		Understa	nding		
	operatio	on.	Psychomo	otor	Guided r	esponse		
CO5:	Illustra	tethe, electrical and electronics basics and Makes	Cognitive		Understa	nding		
	appropri	ate connections.	Psychomo	otor	Originati	on		

COURSE CONTENT

EV No		CO DELATION
EA.NO.	IIILE	KELATION
1	Introduction to machining process	CO1
2	Plain turining using lathe operation	CO1
3	Introduction to CNC	CO1
4	Demonstration of plain turning using CNC	CO1
5	Study of metal casting operation	CO2
6	Demonstration of moulding process	CO2
7	Study of smithy operation	CO2
8	Study of carpentry tools	CO3
9	Half lap joint – Carpentry	CO3
10	Mortise and Tenon joint – Carpentry	CO3
11	Study of fitting tools	CO3
12	Square fitting	CO3
13	Triangular fitting	CO3
14	Study of welding tools	CO4
15	Square butt joint – welding	CO4
16	Tee joint – Welding	CO4
17	Introduction to house wiring	CO5
18	One lamp controlled by one switch	C05
19	Two lamps controlled by single switch	C05
20	Staircase wiring	C05

TEXT BOOKS

1. Workshop Technology I,II,III, by S K Hajra, Choudhary and A K Chaoudhary. Media Promoters and Publishers Pvt. Ltd., Bombay

2. Workshop Technology by Manchanda Vol. I,II,III India Publishing House, Jalandhar.

REFERENCES

- 1. Manual on Workshop Practice by K Venkata Reddy, KL Narayana et al; MacMillan India Ltd.
- 2. Basic Workshop Practice Manual by T Jeyapoovan; Vikas Publishing House (P) Ltd., New Delhi
- 3. Workshop Technology by B.S. Raghuwanshi, Dhanpat Rai and Co., New Delhi.
- 4. Workshop Technology by HS Bawa, Tata McGraw Hill Publishers, New Delhi.

E RESOURCES

1. http://nptel.ac.in/courses/112107145/

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2	2	1			1	1		1	2	2	1
CO2	2	1	2	2	1			1	1		1	2	2	1
CO3	2	1	2	2	1			1	1		1	2	2	1
CO4	2	1	2	2	1			1	1		1	2	2	1

CO5	2	1	2	2	1			1	1		1	2	2	1
Total	7	0	0	0	0	0	6	0	4	0	0	0	0	0
Scaled	2	0	0	0	0	0	2	0	1	0	0	0	0	0

1-5 > 1, 6-10 > 2, 11-15 > 30 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

CO	URSE CODE	XEM206	L	Т	Р	С						
CO	URSE NAME	ENGINEERING MECHANICS	3	0	0	3						
PRE	REQUISITES	NIL	L	Т	Р	Н						
C:P:A	A= 3:0:0		3	0	0	3						
COUI	RSE OBJECTIV	TES										
U	pon successful cor	pletion of the course, student will have:										
• A	bility to apply kno	wledge of mathematics, science, and engineering.										
• A	bility to design as	well as to analyse and inter pre-data.										
• Al	bility to identify,	formulates, and solves engineering problems.										
• Ability to apply techniques and resources to solve complex mechanical engineering activities with an												
un	understanding of the limitations.											
COUI	RSE OUTCOM	ES	DOMAIN	L	EVEL							
CO1	Explain the prin	nciples forces, laws and their applications.	Cognitive	Aj	oplying							
cor	Classification (f friction, and apply the forces in Trusses and	Cognitive	A	oplying							
02	beams.											
CO3	Explain and A	ply moment of Inertia and Virtual work	Cognitive	A	oplying							
CO4 Outline and Examine Dynamics Cognitive A												
CO5Explain free and forced vibrationCognitiveUnder												
UNIT	UNIT IINTRODUCTION TO ENGINEERING MECHANICS9											
Force	Systems Basic	concepts, Particle equilibrium in 2-D & 3-D; Rig	gid Body equ	uilibrium	; Syste	m of						
Forces	s, Coplanar Cor	current Forces, Components in Space - Resulta	ant- Moment	t of For	ces an	d its						
Applic	cation; Couples a	nd Resultant of Force System, Equilibrium of Syste	m of Forces,	Free bod	ly diagi	rams,						
Equati	ons of Equilibriu	m of Coplanar Systems and Spatial Systems; Static i	indeterminacy	у.								
UNIT	II FRICT	ON AND BASIC STRUCTURAL ANALYSIS				9						
Types	of friction, Limi	ting friction, Laws of Friction, Static and Dynamic I	Friction; Moti	ion of Bo	dies, w	redge						
friction	n, screw jack &	lifferential screw jack; Equilibrium in three dimensi	ions; Method	of Section	ons; Me	ethod						
of Joir	nts; How to deter	mine if a member is in tension or compression; Sim	ple Trusses;	Zero forc	e mem	bers;						
Beams	s & types of bean	ns; Frames & Machines.		_								
UNIT	III CENTR	OID, CENTRE OF GRAVITY AND VIRTUAL	WORK AN	D		9						
a		Y METHOD			•							
Centro	old of simple fig	ares from first principle, centroid of composite sec	ctions; Centre	e of Grav	ity and	1 1ts						
implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles,												
moment inertia of circular plate Cylinder Cone Sphere Hook												
Virtua	lit mertia of circu	principle of virtual work for particle and ideal sy	stem of rigi	d hodies	degra	as of						
viitua	i dispiacements,	principle of virtual work for particle and lucal sy	seem of righ	u boules,	ucgie	65 01						

					1 00 1 0					
free	edom. Act	ive force dia	agram, systems wit	th friction, mechanica	l efficiency. Conserva	tive forces and				
pot	ential ener	gy (elastic an	d gravitational), end	ergy equation for equil	ibrium. Applications of	energy method				
for	equilibriu	n. Stability of	equilibrium.							
UN	IT IV	REVIEW C	DF PARTICLE DY	NAMICS AND INTR	ODUCTION TO	9				
		KINETICS	OF RIGID BODII	ES						
Rec	tilinear m	otion; Plane c	urvilinear motion (r	ectangular, path, and po	olar coordinates). 3-D c	urvilinear				
mo	tion; Relat	ive and constr	rained motion; New	ton's 2nd law (rectangu	ilar, path, and polar coo	rdinates).				
Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and										
obl	ique). Typ	es of motion,	Instantaneous centre	e of rotation in plane m	otion and simple proble	ms;				
D'A	Alembert's	principle and	l its applications in p	plane motion and conne	cted bodies; Work ener	gy principle				
and	its applica	ation in plane	motion of connected	d bodies; Kinetics of rig	gid body rotation.					
UN	IT V	MECHANI	CAL VIBRATION	IS		9				
Bas	sic termino	logy, free and	l forced vibrations, 1	resonance and its effect	s; Degree of freedom; I	Derivation for				
free	quency and	l amplitude of	free vibrations with	nout damping and single	e degree of freedom sys	tem, simple				
pro	blems, typ	es of pendulu	m, use of simple, co	mpound and torsion pe	endulums.					
			LECTURE	TUTORIAL	PRACTICAL	TOTAL				
			30	0	0	30				
TE	XT BOOI	KS								
1.	Hisrich,	2016, Entrepro	eneurship, Tata McC	Graw Hill, New Delhi.						
2	SSKhar	ka 2013 Ent	repreneurial Develo	pment S Chand and C	ompany Limited New 1	Delhi				
2. S.S.Khanka, 2015, Entrepreneurial Development, S.Chand and Company Entried, New Denn.										
KEFEKENCE BUUKS										
1.	Mathew	Manimala, 20	05, Entrepreneurshi	p Theory at the Crossro	bads, Paradigms & Prax	18,				
	Biztrantr	a ,2nd Edition			T 1					
2.	Prasanna	Chandra, 200	19, Projects – Planni	ng, Analysis, Selection	, Implementation and					
2	Reviews,	Tata McGrav	W-Hill.			•				
3.	P.Sarava	navel, 1997, E	entrepreneurial Deve	elopment, Ess Pee kay	Publishing House, Cher	inai.				
4.	Arya Ku	nar,2012, Ent	repreneurship: Crea	ting and Leading an Er	trepreneurial organisati	on, Pearson				
	Education	n India.								
5.	Donald F	Kuratko, T.V	Rao, 2012, Entrepr	reneurship: A South As	sian perspective, Cengag	ge				
	Learning	India.								
6.	Dinesh	Awasthi, Ra	iman Jaggi, V.Pa	dmanand, Suggested	Reading / Reference	e Material for				
	Entreprei	neurship Deve	elopment Programm	es (EDP/WEDP/TEDF	P), EDI Publication, E	Intrepreneurship				
	Develop	ment Institute	of India, Ahmedaba	ıd.						
E-F	REFEREN	ICES								
1.	Jeff Haw	kins, "Charac	cteristics of a succes	ssful entrepreneur", AI	LISON Online e	entrepreneurship				
	courses, '	'https://alison	.com/learn/entrepre	neurial-skills						
2.	Jeff Co	rnwall, "En	trepreneurship	From Idea to La	aunch", Udemy onl	ine Education,				
	https://w	ww.udemy.co	m/entrepreneurship	-from-idea-to-launch/	· J	,				
Mapping of COs with GAs										

PROGRAM OUTCOMES PO1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12

CO1	3	2	1	1	3	1	1	2	3	2	1	3
CO2	3	2	1	1	3	1	1	2	3	2	1	3
CO3	3	2	1	1	3	1	1	2	3	2	1	3
CO4	3	2	1	1	3	1	1	2	3	2	1	3
CO5	2	2	2	1	3	1	1	3	3	3	1	3

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COL CO	JRSE DDE	COURSE NAME	L	Т	Р	C			
XCI	P 207	PROGRAMMING FOR PROBLEM SOLVIN LABORATORY	G 0	0	1	1			
Prerec	quisites	Basic Understanding Skills	L	Т	P	Η			
C : 1	P : A		0	0	2	2			
0.75 : 0	0.25 : 0								
COUR	SE OBJ	ECTIVES:							
•	To learn	programming language basics and syntax.							
•	To ignite	e logical thinking.							
•	To unde	rstand structured programming approach.							
•	To deal	with user defined data types.							
•	To know	v about data storage in secondary memory.							
Course	e Outcon	nes:	Domain		Lev	el			
COI	Solve s1	mple programs using I/O statements.	Psychomoto	r Re	espondi	ng			
CO2	Solve programs using control structures and arrays. Psychomotor Responde								
CO3	Solve p	rograms using functions and pointers.	Psychomoto	r Re	espondi	ng			
CO4	Solve p	rograms using structures.	Psychomotor	r Re	espondi	ng			
CO5	Solve p	rograms using files.	Psychomoto	r Re	espondi	ng			
Sl.No.		List of Experiments				COs			
1	Program	m to display a Leave Letter as per proper format				CO1			
2	i. Pro	ogram for addition of two numbers				CO1			
	ii. Pro	ogram to solve any mathematical formula.							
3	Program	n to find greatest of 3 numbers using Branching State	ements			CO2			
4	Program	n to display divisible numbers between n1 and n2 usi	ng looping S	statem	nent	CO2			
5	Program	n to search an array element in an array.				CO2			
6	Program	n to find largest / smallest element in an array.				CO2			
7	Program to perform string operations.								
8	Program	m to find area of a rectangle of a given number use fo	ur function t	ypes.		CO3			
9	Program	ms to pass and receive array and pointers using four for	unction type	S		CO3			
10	Program	ns using Recursion for finding factorial of a number				CO3			
11	Program Variable	n to read and display student mark sheet of a studes	udent struct	ures	with	CO4			

12	Program to read and display student marks of a class using structures with arrays	CO4
13	Program to create linked list using structures with pointers	CO4
14	Program for copying contents of one file to another file.	CO5
15	Program using files to store and display student mark list of a class using structures with array	CO5
	PRACTICAL	TOTAL
	30	30

Mapping of COs with GAs

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	2	0	0	3	0	0	0	0	0	2	3
CO 2	3	2	0	0	2	0	0	0	0	0	2	3
CO 3	2	2	1	2	2	0	0	0	0	0	2	2
CO 4	2	2	1	2	2	0	0	0	0	0	2	2
CO 5	2	2	1	0	2	0	0	1	0	2	2	2
Total	12	10	3	4	11	0	0	1	0	2	10	12
Scaled	3	2	1	1	3	0	0	1	0	1	2	3

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

	DURSE CODE	COURSE NAME	L	Т	Р	C		
XA	AP 208	APPLIED PHYSICS FOR ENGINEERS LABORATORY	0	0	1	1		
Pre	requisite	Basic Physics in HSC level	L	Т	Р	H		
C	: P : A		0	0	2	2		
0:	1.5 : 0.5		•					
Cours	se Outcom	28:	Doma	in	Le	evel		
C01	Identify significant	the basics of mechanics, and determine its ce in engineering systems and technologicaladvances.	e its dvances. Psychomotor Mo					
CO2	Use and lot to technol	ocate basic applications of electromagnetic induction ogy.	Psychomo	otor	Mech	nanism		
CO3	Describe lasers and	the working principle and application of various fibre optics.	Psychomotor Mechanism					
CO4	Analyze of principles	energy bands in solids, discuss and use physics of latest technology using semiconductor devices.	Psychomotor Mechanism					
List o	of Experime	ents:						

- 1. Torsional Pendulum Determination of moment of inertia and rigidity modulus of the given material of the wire.
- 2. Uniform Bending Determination of the Young's Modulus of the material of the beam.
- 3. Non-Uniform Bending Determination of the Young's Modulus of the material of the beam.
- 4. Meter Bridge Determination of specific resistance of the material of the wire.
- 5. Spectrometer Determination of dispersive power of the give prism.
- 6. Spectrometer Determination of wavelength of various colours in Hg source using grating.
- 7. Air wedge Determination of thickness of a given thin wire.
- 8. Laser Determination of wavelength of given laser source and size of the given micro particle using Laser grating.
- 9. Post office Box Determination of band gap of a given semiconductor.
- 10. PN Junction Diode Determination of V-I characteristics of the given diode.

PRACTICAL	TOTAL
30	30

Mapping of COs with GAs

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	2	2	2	1	0	0	0	1	0	0	1
CO 2	3	0	1	0	1	0	0	0	0	0	0	1
CO 3	3	2	2	2	1	0	0	0	1	0	0	1
CO 4	3	2	2	2	1	0	0	0	1	0	0	1
CO 5	3	0	2	0	0	0	0	0	0	0	0	1
Total	15	6	9	6	4	0	0	0	3	0	0	5
Scaled	3	2	2	2	1	0	0	0	1	0	0	1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURSE CODE	XMA 301	L	Т	Р	С
COURSE NAME	Transforms and Partial Differential Equations	3	0	0	3
PREREQUISITES	Algebra, Calculus and Laplace Transforms	L	Т	Р	Η
C:P:A	2.5:0:0.5	3	0	0	3

COURSE OBJECTIVES

Learning Objectives

- **1.** Introduction of methods to solve linear partial differential equations of second order and higher order.
- 2. Find the solutions of pde's are determined by conditions at the boundaries of the spatial domain and initial conditions at time zero.
- **3.** Provide sufficient knowledge to engineering students in the specific mathematical tools and techniques such as Fourier series, Fourier transform and Z transform.
- **4.** To enable students to use Fourier series method both in the solution of pde and other wider context.

COUF	RSE O	UTCOMES	DOMAIN	LEVEL		
CO1	Solve partia Elimi	e standard types of first order and second order I differential equations with constant coefficients. nation of arbitrary constants and functions.	Cognitive	Applying		
CO2	State series (0, 2 analy	Dirichlet's condition. Explain general Fourier of the curve $y = f(x)$ in the interval $(0,2\pi)$ $(-\pi, \pi)$, $(-\ell,\ell)$, $(0,\pi)$ and $(0,\ell)$. Perform harmonic sis.	Cognitive Psychomotor	Understanding Guided Response		
CO3	Solve equat coord Class	one dimensional Wave equation and Heat flow ion by Fourier series method in Cartesian linates. ify second order quasi pde.	Cognitive Affective	Applying Receiving		
CO4	CO4Find the Fourier transform and Fourier sine and cosine transforms of simple functions using definition and its propertiesCognitive					
CO5	Applying					
UNIT	9					
Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solution of standard types of first order partial differential equations – Lagrange's linear equation – Linear partial differential equations of second order with constant coefficients.						
UNIT II FOURIER SERIES						
Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Harmonic Analysis.						
UNIT	9					
Classification of second order quasi linear partial differential equations – Solutions of one dimensional wave equation – One dimensional heat equation – Steady state conditions (zero Boundary conditions only).						
UNIT	IV	FOURIER TRANSFORM		9		
Fourie functio	r transf ons – P	form pairs – Fourier Sine and Cosine transforms – pro arseval's identity.	perties – Transfo	orms of simple		

UN	т v	Z TRANSFO	RM AND DIFFE	RENCE EQUATI	ONS	9	
Z-transform – Elementary properties – Inverse Z – transform – Convolution theorem - Solution of difference equations using Z-transform.							
			LECTURE	TUTORIAL	PRACTICAL	TOTAL	
			45	-	-	45	
TE	XT BOO	KS			- -		
1.	Grewal (2012).	, B.S., "Higher]	Engineering Mathe	ematics", 42 nd Edition	on, Khanna Publish	ners, New Delhi	
2.	Veerara Educati	ijan. T., "Engine on Pvt. Ltd., Ne	eering Mathematic w Delhi, 2012	s Volume III", Seco	ond reprint, Tata Mo	cGraw Hill	
RE	REFERENCE BOOKS						
1.	1. Churchill, R.V. and Brown, J.W., "Fourier Series and Boundary Value Problems", Fourth Edition, McGraw Hill Book Co., Singapore (1987).						
2.	2. Churchill, R.V. and Brown, J.W., "Fourier Series and Boundary Value Problems", Fourth Edition, McGraw Hill Book Co., Singapore (1987).						
3.	3. Bali N.P. and Manish Goyal, "A Text Book of Engineering Mathematics" 7 th Edition Lakshmi Publications (P) Limited. New Delhi (2007).						
4.	Erwin Kreyszig, "Advanced Engineering Mathematics", 8 th Edition, Wiley India, 2007.						
5.	5. Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012						
6.	6. Narayanan, S., ManicavachagomPillay, T.K. and Ramaniah, G., "Advanced Mathematics for Engineering Students", Volume: II and III, S.Viswanathan (Printers and Publishers) Pvt. Ltd., Chennai (2002).						
E-REFERENCES							
1.	Nptel: A Indian	Advanced Engine Institute of Tech	eering Mathematic nology, Kharagpu	es, Prof. Jitendra Ku r, India.	ımar, Department o	of Mathematics,	

Table 1: Mapping	of Cos with GAs	5:
------------------	-----------------	----

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	2			2					1		2
CO 2	3	1								1		1
CO 3	3	1								1		1
CO 4	3	2								1		1
CO 5	3	2			1					1		2
Total	15	8	0	0	3	0	0	0	0	5	0	7
Scaled	3	2			1					1		

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

XEE302 ELECTRO MAGNETIC FIELDS 3 1 0 4 C:P:A L T P H 3:0:0 3 1 0 4	COURSECODE	COURSE NAME	L	Т	Р	С
C:P:A L T P H 3:0:0 3 1 0 4	XEE302	ELECTRO MAGNETIC FIELDS	3	1	0	4
	C : P : A		L	Т	P	H
	3:0:0		3	1	0	4

Course (Dutcomes:	Domain	Level
CO1	To understand the basics of vector and outline different coordinate system.	Cognitive	Understanding
CO2	To understand the concept of static electric field for simple configuration using gauss and Coulombs law.	Cognitive	Understanding
CO3	Define the knowledge of electrostatics using, boundary conditions, Poissons and Laplace equation.	Cognitive	Understanding
CO4	Recall the magnetic field configuration using Different laws and outline time varying electric and magnetic fields using Maxwell's equation.	Cognitive	Understanding
C05	Recall the concept of magnetization and magnetic field configuration using boundary condition.	Cognitive	Understanding

UNIT - I: REVIEW OF VECTOR CALCULUS

Vector algebra-addition, subject traction, components of vectors, scalar and vector multiplications, triple products, three orthogonal coordinate systems (rectangular, cylindrical and spherical). Vector calculus differentiation, partial differentiation, integration, vector operator del, gradient, divergence and curl; integral theorems of vectors. Conversion of a vector from one coordinate system to another.

UNIT - II: STATIC ELECTRIC FIELD

Coulomb's law, Electric field intensity, Electrical field due to point charges. Line, Surface and Volume charge distributions. Gauss law and its applications. Absolute Electric potential, Potential difference, Calculation of potential differences for different configurations. Electric dipole, Electrostatic Energy and Energy density.

UNIT - III: CONDUCTORS, DIELECTRICS AND CAPACITANCE

Current and current density, Ohms Law in Point form, Continuity of current, Boundary conditions of perfect dielectric materials. Permittivity of dielectric materials, Capacitance, Capacitance of a two-wire line, Poisson's equation, Laplace's equation, Solution of Laplace and Poisson's equation, Application of Laplace's and Poisson's equations.

UNIT - IV: STATIC MAGNETIC FIELDS, TIME VARYING FIELDS AND MAXWELL'S EQUATIONS

9 + 3

9+3

9 + 3

9 + 3

Biot-Savart Law, Ampere Law, Magnetic flux and magnetic flux density, Scalar and Vector Magnetic potentials. Steady magnetic fields produced by current carrying conductors. Faraday's law for Electromagnetic induction, Displacement current, Point form of Maxwell's equation, Integral form of Maxwell's equations, Motional Electromotive forces. Boundary Conditions. Force on a moving charge, Force on a differential current element, Force between differential current elements, Nature of magnetic **UNIT - V: ELECTROMAGNETIC WAVES 9 + 3**

Derivation of Wave Equation, Uniform Plane Waves, Maxwell's equation in Phasor form, Wave equation in Phasor form, Plane waves in free space and in a homogenous material. Wave equation for a conducting medium, Plane waves in lossy dielectrics, Propagation in good conductors, Skin effect. Poynting theorem.
LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS:

- 1. M. N. O. Sadiku, "Elements of Electromagnetics", Oxford University Publication, 2014.
- 2. A.Pramanik, "Electromagnetism Theory and applications", PHI Learning Pvt. Ltd, New Delhi, 2009.
- 3. A.Pramanik, "Electromagnetism-Problems with solution", Prentice Hall India, 2012.
- 4. G. W. Carter, "The electromagnetic field in its engineering aspects", Longmans, 1954.

REFERENCE BOOKS:

- 1. W. J. Duffin, "Electricity and Magnetism", McGraw Hill Publication, 1980.
- 2. W. J. Duffin, "Advanced Electricity and Magnetism", McGraw Hill, 1968.
- 3. E. G. Cullwick, "The Fundamentals of Electromagnetism", Cambridge University Press, 1966.
- 4. B. D. Popovic, "Introductory Engineering Electromagnetics", Addison-Wesley Educational Publishers, International Edition, 1971.

5. W. Hayt, "Engineering Electromagnetics", McGraw Hill Education, 2012.

E-RESOURCES:

1. NPTEL: http://nptel.ac.in/courses

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	-	1	-	-	-	-	-	1	-	1	1	1
CO2	1	2	-	1	-	-	-	-	-	-	1	-	2	1
CO3	1	2	-	-	-	-	-	-	-	-	-	1	1	2
CO4	1	3	-	-	-	-	-	-	-	-	-	-	2	2
CO5	1	2	1	-	-	-	-		-	-	-	1	1	1
Total	6	11	1	3	0	0	0	0	0	1	1	3	7	7
Scaled	2	3	1	1	0	0	0	0	0	1	1	1	2	2

1-5 > 1, 6-10 > 2, 11-15 > 30 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COU CO	RSE COURSE NAME	L	Т	Р	С
XEE	303 DIGITAL LOGIC CIRCUITS	3	0	0	3
C : P	: A	L	Т	Р	Н
3:0	:0	3	0	0	3
Course	Outcomes:	Γ	omai	n	Level
CO1	Ability to design combinational and sequential Circuits.	С	ogniti	ve	Understanding

-											
CO2	Ability to study various	number systems and s	implify the	Cognitive	Understanding						
	logical expressions using F	300lean functions.		U							
CO3	Ability to design various	synchronous and async	chronouscircuits.	Cognitive	Understanding						
CO4	Ability to introduce asyne	chronous sequential circ	uits and PLDs.	Cognitive	Understanding						
CO5	Ability to introduce digita	l simulation for develop	ment of	Comitive	Understanding						
	application oriented logic of	circuits.		Cognitive	Understanding						
UNIT -	- I: NUMBER SYSTEMS	AND DIGITAL LOGI	C FAMILIES		9						
Review	of number systems, binar	y codes, error detection	and correction c	odes (Parity	and Hamming						
code) -	Digital Logic Families -co	omparison of RTL, DTL	, TTL, ECL and	MOS famili	les - operation,						
charact	eristics of digital logic famil	ly.									
UNIT -	- II: COMBINATIONAL	CIRCUITS			9						
Combin	national logic - representatio	on of logic functions-SOF	and POS forms,	K-map repres	sentations -						
minimi	zation using K maps - sim	plification and implemer	ntation of combin	ational logic	- multiplexers						
and de	multiplexers - code converte	ers, adders, subtractors, E	ncoders and Deco	ders.	1						
UNIT -	- III: SYNCHRONOUS S	EQUENTIAL CIRCUI	TS		9						
Sequen	tial logic- SR, JK, D and T	flip flops - level triggeri	ng and edge trigg	ering - count	ters -						
asynchronous and synchronous type - Modulo counters - Shift registers - design of synchronous											
sequent	tial circuits – Moore and Me	av models- Counters, st	ate diagram; state	reduction; sta	ate assignment.						
UNIT -	- IV: ASYNCHRONOUS	SEQUENTIAL CIRCU	ITS AND	,							
01.111	PROGRAMMABIL	ITY LOGIC DEVICES			9						
Asynch	pronous sequential logic circ	uits-Transition tability.	flow tability-race	conditions. h	azards & errors						
in digit	tal circuits: analysis of asy	nchronous sequential lo	gic circuits intro	duction to P	rogrammability						
Logic I	Devices: PROM – PLA –PA	L. CPLD-FPGA.	6								
UNIT -	-V: VHDL	,			9						
RTL D	Design – combinational logic	- Sequential circuit – O	perators – Introdu	iction to Pacl	kages –						
Subpro	grams – Test bench. (Simul	ation /Tutorial Examples	s: adders counters	s flin flons	Multiplexers &						
De mul	tiplexers)			, inp nops,							
		LECTURE	TUTORIAL		TOTAL						
		45	0		45						
TFXT I	ROOKS	77	U								
	as W Bignal Digital Elastr	conica Congago looming	5th Edition 2007	,							
1. Jah	A Morris Mana Digital Dis	onics, Cengage rearning,	Jui Euluoli, 2007		tion 2012						
2.	VI. MOITIS Mano, Digital De	Sign with an introduction	1 to the VHDL, P	earson Educa	uton, 2015.						
<i>s</i> . (Lomer Digital Logic & Stat	e Machine Design, Oxio	rd, 2012.								
REFE	RENCE BOOKS:										
1. Mar	ndal, "Digital Electronics Pri	inciples & Application, N	IcGraw Hill Edu,	2013.							
2. Wil	liam Keitz, Digital Electroni	cs-A Practical Approach	with VHDL, Pear	rson, 2013.							
3. Tho	mas L.Floyd, [•] Digital Funda	amentals', 11th edition, P	Pearson Education,	, 2015.							
4. Cha	rles H.Roth, Jr, Lizy Lizy K	urian John, 'Digital Syste	em Design using V	/HDL, Cenga	age, 2013.						
5. D.P	.Kothari,J.S.Dhillon, 'Digita	l circuits and Design', Pe	arson Education.	2016.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	-	1	-	-	-	-	-	1	-	1	1	1
CO2	1	2	-	1	-	-	-	-	-	-	1	-	2	1
CO3	1	2	-	I	I	I	I	-	-	-	-	1	1	2
CO4	1	3	-	-	1	-	1	-	-	-	-	-	2	2
CO5	1	2	1	-	-	I	-		-	-	-	1	1	1
Total	6	11	1	3	0	0	0	0	0	1	1	3	7	7
Scaled	2	3	1	1	0	0	0	0	0	1	1	1	2	2

1-5 >1, 6-10 >2, 11-15 > 3 0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

CO C	OURSE ODE	COURSE NAME	L	Т	Р	C
XF	EE 305	ELECTRICAL MACHINES - I	3	1	0	4
C :	: P : A		L	Т	Р	Н
3	:0:0		3	1	0	4
Course Outcomes:				in	Leve	el
CO1	Understa	nd the operation of DC machines.	Cog	gnitive	e Un	derstanding
CO2	Understa	nd the winding concepts of DC machine.	Cog	nitive	Un	derstanding
CO3	Understa	nd the motoring and generating concepts of DC machine	Cog	gnitive	e Un	derstanding
CO4	Analyse	single phase and three phase transformers circuits.	Cognitive Analyzi			nalyzing
CO5	Understa	nd the various loss in magnetic circuits	Cog	derstanding		

UNIT - I: INTRODUCTION TO DC MACHINES

9 + **3**

Basic construction of a DC machine, magnetic structure - stator yoke, stator poles, pole-faces or shoes, air gap and armature core, visualization of magnetic field produced by the field winding excitation with armature winding open, air gap flux density distribution, flux per pole, induced EMF in an armature coil. 9 + 3

UNIT - II: DC MACHINES – ARMATURE AND WINDING

Armature winding and commutation – Elementary armature coil and commutator, lap and wave windings, construction of commutator, linear commutation Derivation of back EMF equation, armature MMF wave, derivation of torque equation, armature reaction, air gap flux density distribution with armature reaction. **UNIT - III: DC MACHINE - MOTORING AND GENERATION** 8+3

Armature circuit equation for motoring and generation, Types of field excitations – separately excited, shunt and series. Open circuit characteristic of separately excited DC generator, back EMF with armature reaction, voltage build-up in a shunt generator, critical field resistance and critical speed. V-I characteristics and torque-speed characteristics of separately excited, shunt and series motors. Speed control through armature voltage. Losses, load testing and back-to-back testing of DC machines.

UNIT - IV: TRANSFORMERS AND TEST

10 + 3

Principle, construction and operation of single-phase transformers, equivalent circuit, phasor diagram, voltage regulation, transformer - construction, types of connection and their comparative features, Parallel operation of single-phase and three-phase transformers, Phase conversion - Scott connection, three-phase to six-phase conversion, Tap-changing transformers losses and efficiency Testing - open circuit and short circuit tests, polarity test, back-to-back test- separation of hysteresis and eddy current losses.

UNIT - V: AUTOTRANSFORMERS

9 + 3

Autotransformers - construction, principle, applications and comparison with two winding transformer, Magnetizing current, effect of nonlinear B-H curve of magnetic core material, harmonics in magnetization current.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS:

1. A.E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2018.

2. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.

REFERENCE BOOKS:

- 1. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.
- 2. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.
- 3. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	1	0	0	0	1	0	0	1	1	0
CO2	3	0	2	1	0	0	0	1	0	0	0	1	0	1
CO3	3	0	0	1	0	0	0	1	0	0	1	0	0	1
CO4	3	2	2	2	1	0	1	0	0	1	0	1	0	1
CO5	3	0	0	1	0	0	0	0	0	1	0	0	0	1
Total	15	4	6	7	2	0	1	2	1	2	1	3	1	4
Scaled	3	2	2	2	1	0	0	0	1	0	0	1	1	0

Mapping of COs with POs

1-5 >1, 6-10 >2, 11-15 > 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURS	COURSE CODE COURSE NAME L T VUM20(ENTREPRENEURSHUR DEVELOPMENT 2 0									
XUM30	6	ENTREPRENEURSHIP DEVELOPMEN	Γ	2	0	0	2			
PRERE	QUISITES	NIL		L	Т	S	Н			
C:P:A=	3:0:0			2	0	1	3			
COURS	SE OUTCOM	ES	DO	MAIN		LEVEL				
CO1	Recognise and motivation for	Cog	gnitive	Ur	Idersta	nding				
CO2	Evaluat	ing								
CO3Outline the importance of generation of new ideas for entrepreneurship and illustrate market assessment.CognitiveA										
CO4	Explain the c sketch/demo with competi	competition in business and nstrate/ comply business model for dealing tion.	Co	gnitive	Un	derstar	nding,			
CO5	Describe and small busines	Explain venture creation and launching of s and its management.	Cog	gnitive	Ur	Idersta	nding			
CO6	Describe and global opport	Discuss various government policies and unities for Entrepreneurship Development	Cog	gnitive	Ur	Idersta	nding			
UNIT I	INNOV	ATION AND ENTREPRENEURSHIP					5			
Definition develops Family a	on of Innovation ment (2)- Entre and Society; En	on, Creativity and Entrepreneurship; role of inner epreneurial motivation (1)-Competencies and tr intrepreneurship as a career and its role in nation	ovation aits of nal dev	n in entrep an entrep elopment	preneur reneur (1)	ship (1)-Ro	le of			
UNIT I	I SELF A	ASSESSMENT OF ENTREPRENEURIAL I	NCLI	NINATI	ON		4			
Self-ass inclinati	essment of entron on rating (2)-C	repreneurial inclination (1)-Presentation by stuc case study of successful entrepreneurs (1)	lents o	on their en	trepren	eurial				
UNIT I	II NEW	IDEA GENERATION TO MARKET ASSE	ESSMI	ENT			9			
Importat idea - va ownersh segment compan	nce of Idea ger ilue proposition ip (1)-Market ation (1)-mark ies (1)	neration-filtering-refinement (1)-opportunity red n, customer-problem-Solution statement) (1)-be Validation- Technology/ user/decision makers/ et TAM,SAM and SOM (1)-case study on mark	cogniti enefits partne ket seg	on (1)- D ; developr ers (1)-ma gmentation	escripti nent st rket ne 1 by po	ion of c atus; II ed; pular	chosen			
UNIT I	V CUSTO	OMER – COMPETITION- BUSINESS MOI	DEL				9			
Custome Custome model (2	er-Target prima er Acquisition 1) -Financial pl	ary customer research, Decision making unit/ p (2)-Competition- comparative analysis, compet anning (1)-Pitch documentation and presentation	rocess titive a on (3)	-Beach he dvantages	ad mar s-; (2)-1	ket; Co Busines	ost of ss			
UNIT V VENTURE CREATION AND LAUNCHING OF SMALL BUSINESS AND ITS MANAGEMENT										

New enterprise creation - organizational and legal matters (1)-Operational plan (1)-Sales and distribution
plan (1)-Accounting (1)-Team recruitment and management (1)-Fund raising and management (1)-Profile
of a startup – case studies (2)

UNIT VI GOVERNMENT INITIATIVES AND GLOBAL OPPORTUNITIES

9

Incubators and accelerators - capacity building (2)-Startup policies- Startup India (2)-Support for MSME; GeM Portal(2) Funding–national and international sources(2)-Bilateral programmes by Govt. of India - Global reach for promoting cross-cultural entrepreneurship (1)

LECTURE: 45	TUTORIAL: 0	PRACTICAL:0	TOTAL: 45

- REFERENCE
- 1. A.P.Aruna, "Lecture Notes on Entrepreneurship Development", available as softcopy @ www.brain.net
- 2. Thomas W. Zimmerer, Norman M. Scarborough, "Essentials of Entrepreneurship and Small Business Management", Pearson; 3rd edition, 2001.
- **3.** John Burnett, "Introducing Marketing", Open Text Book available at <u>http://solr.bccampus.ca:8001/bcc/file/ddbe3343-9796-4801-a0cb-</u> 7af7b02e3191/1/Core%20Concepts%20of%20Marketing.pdf
- **4.** Toubia, Olivier. "Idea Generation, Creativity, and Incentives", Marketing Science. Vol. 25. pp.411-425. 10.1287/mksc.1050.0166, 2006.
- **5.** Alexander Osterwalder and Yves Pigneur, "Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers", Wiley; 1st edition, 2010.
- **6.** Gerardus Blokdyk,"3C's model The Ultimate Step-By-Step Guide"5starcooks, 2018.

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	0	0	0	0	0	0	0	0	3	3	3	1
CO 2	0	0	1	2	3	2	1	1	1	2	3	0
CO 3	0	0	0	0	0	1	0	2	3	3	0	2
CO 4	0	0	0	0	0	1	1	2	3	0	3	3
CO 5	0	0	0	0	0	1	1	3	0	0	0	3
Total	0	0	1	2	3	5	3	8	10	8	9	9
Scaled	0	0	1	1	1	2	1	2	3	2	2	2

Table 1: Mapping of Cos with GAs:

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ No Relation, 1-Low Relation, 2-Medium Relation, 3-High

				L	Т	Р	С
VIIN/207		Universal Human Values 2: Understan	nding	2	1	0	3
AUM307		Harmony and Gender		L	Т	Р	Н
				2	1	0	3
Pre-requisites		None. Universal Human Values-I (Desirable)					
(if any)							
C:P:A= 3:0:0							
S.No	COU	RSE OUTCOMES	DOM	AIN	LEV	/EL	
CO1	Explo	pre about the need of value education.	Cognit	tive	Unde	erstand	ing
CO2	Interp harmo	<i>bret</i> self and body needs and responses to ensure ony within self.	Cognit	ive	Unde	erstand	ing
CO3	Explo	<i>re</i> the harmony in the family and society	Cognit	ive	Unde	erstand	ing
CO4	Explo	<i>re</i> about the harmony in the nature / existence	Cognit	ive	Unde	erstand	ing
CO5	Discu	ss about the holistic understanding.	Cognit	ive	e Understanding		

Module 1 – Introduction to Value Education (6 lectures and 3 tutorials for practice session)

Lecture1: Understanding Value Education

Lecture2: Self-exploration as the Process for Value Education

Tutorial 1: Practice Session PS1Sharing about Oneself

Lecture3: Continuous Happiness and Prosperity- the Basic Human Aspirations

Lecture 4: Right Understanding, Relationship and

Physical Facility

Tutorial 2: PracticeSessionPS2 Exploring Human Consciousness

Lecture 5: Happiness and Prosperity– Current Scenario

Lecture 6: Method to Fulfill the Basic Human Aspirations

Tutorial 3: Practice Session PS*3 Exploring Natural Acceptance*

Module 2 – Harmony in the Human Being (6 lectures and 3 tutorials for practice session)

Lecture7: Understanding Human being as the Co-existence of the Self and the Body **Lecture8:** Distinguishing between the Needs of the Self and the Body

Tutorial 4: Practice Session PS4 Exploring the difference of Needs of Self and Body

Lecture9: The Body as an Instrument of the Self

Lecture10: Understanding Harmony in the Self

Tutorial 5: Practice Session PS5 Exploring Sources of Imagination in the Self

Lecture11: Harmony of the Self with the Body

Lecture12: Programme to ensure self-regulation and Health

Tutorial 6: Practice Session PS6 Exploring Harmony of Self with the Body

Module 3 – Harmony in the Family and Society (6 lectures and 3 tutorials for practice session)

Lecture13: Harmony in the Family –the Basic Unit of Human Interaction Lecture14: Values in Human-to-Human Relationship Lecture 15: 'Trust' – the Foundational Value in Relationship
Tutorial 7: Practice Session PS7 Exploring the Feeling of Trust
Lecture16: 'Respect'–as the Right Evaluation
Tutorial 8: Practice Session PS 8 Exploring the Feeling of Respect
Lecture17: Understanding Harmony in the Society
Lecture18: Vision for the Universal Human Order
Tutorial 9: Practice Session PS 9 Exploring Systems to fulfill Human Goal
Module 4 – Harmony in the Nature/Existence (4 lectures and 2 tutorials for practice session)
Lecture19: Understanding Harmony in the Nature
Lecture 20: Interconnectedness, self-regulation and Mutual Fulfillment among the Four Orders of Nature

Tutorial 10: Practice Session PS*10 Exploring the Four Orders of Nature* **Lecture21:** Realizing Existence as Co-existence at All Levels **Lecture22:** The Holistic Perception of Harmony in Existence

Tutorial11: Practice Session PS *11Exploring Co-existence in Existence*

Module 5 – Implications of the Holistic Understanding – a Look at

Professional Ethics (6lectures and 3 tutorials for practice session)

Lecture23: Natural Acceptance of Human Values

Lecture24: Definitiveness of (Ethical) Human Conduct

Tutorial 12: Practice Session PS 12 Exploring Ethical Human Conduct

Lecture 25: A Basis for Humanistic Education, Humanistic

Constitution and Universal Human Order

Lecture26: Competence in Professional Ethics

Tutorial 13: Practice Session PS*13 Exploring Humanistic Models in Education* **Lecture 27:** Holistic Technologies, Production Systems and Management Models-Typical Case Studies

Lecture28: Strategies for Transition towards Value-based Life and Profession **Tutorial 14: Practice Session PS** 14 Exploring Steps of Transition towards Universal Human Order

READINGS:

Text Book and Teachers Manual

a. The Textbook

A Foundation Course in Human Values and Professional Ethics, R R Gaur, RAsthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN978-93-87034-47-1

b. The Teacher's Manual Teachers' Manual for *A Foundation Course in Human Values* and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition,Excel Books, NewDelhi,2019.ISBN978-93-87034-53-2

Reference Books

- 1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan VidyaPrakashan, Amarkantak, 1999.
- 2. HumanValues, A.N. Tripathi, NewAge Intl.Publishers, NewDelhi,2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth-by Mohandas Karam chand Gandhi

- 5. Small is Beautiful -E. F Schumacher.
- 6. Slow is Beautiful-Cecile Andrews
- 7. Economy of Permanence-JC Kumarappa
- 8. Bharat Mein Angreji Raj –Pandit Sunderlal
- 9. Rediscovering India- by Dharampal
- 10. Hind Swarajor Indian Home Rule-by Mohandas K.Gandhi
- 11. India Wins Freedom-Maulana Abdul Kalam Azad
- 12. Vivekananda-Romain Rolland (English)
- 13. Gandhi-Romain Rolland(English)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	0	2	1	0	0	2	2	3	0	0	0	2	0	0
CO2	0	2	1	0	0	2	2	3	0	0	0	2	0	0
CO3	0	2	1	0	0	2	2	3	0	0	0	2	0	0
CO4	0	2	1	0	0	2	2	3	0	0	0	2	0	0
CO5	0	2	1	0	0	2	2	3	0	0	0	2	0	0
Total	0	10	5	0	0	10	10	15	0	0	0	10	0	0
Scaled	0	2	1	0	0	2	2	3	0	1	2	2	0	0

1-5 >1, 6-10 >2, 11-15 > 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

RSE DE	COURSE NAME		L	Т	Р	С	
308	ELECTRICAL CIRCUIT ANALYSIS LABORATORY		0	0	1	1	
: A			L	Т	Р	Η	
: 0			0	0	2	2	
Outcome	es:	Domain			Level		
To und	erstand & verify the network theorems for the				Guided		
analysis	s of electrical circuits.	Psychomotor			Response		
To und	lerstand & validate the network theorems for the				Guided		
analysis	s of electrical circuits.	Psyc	homot	or	Respo	onse	
To und	erstand & analyze electrical circuits in both				Guid	led	
sinusoi	dal and transient modes.	Psyc	homot	or	Respo	onse	
To und	erstand & measure the power and inductance of				Guid	led	
AC circ	cuit.	Psyc	homot	or	Respo	onse	
To und	erstand & analyze the concept of RLC Series			Guid	led		
and par	allel resonance circuits.	Psyc	homot	or	Respo	onse	
	RSE DE 308 : A : 0 Outcome To und analysia To und analysia To und sinusoia To und AC circo To und and par	RSE DE COURSE NAME 308 ELECTRICAL CIRCUIT ANALYSIS LABORATORY : A	RSE DE COURSE NAME 308 ELECTRICAL CIRCUIT ANALYSIS LABORATORY : A	RSE DE COURSE NAME L 308 ELECTRICAL CIRCUIT ANALYSIS LABORATORY 0 : A L 0 : A L 0 : 0 0 0 Outcomes: Domain To understand & verify the network theorems for the analysis of electrical circuits. Psychomote To understand & validate the network theorems for the analysis of electrical circuits. Psychomote To understand & validate the network theorems for the analysis of electrical circuits. Psychomote To understand & analyze electrical circuits in both sinusoidal and transient modes. Psychomote To understand & measure the power and inductance of AC circuit. Psychomote To understand & analyze the concept of RLC Series and parallel resonance circuits. Psychomote	RSE DECOURSE NAMELT308ELECTRICAL CIRCUIT ANALYSIS LABORATORY00: ALT: 000: A00: 000Outcomes:To understand & verify the network theorems for the analysis of electrical circuits.To understand & validate the network theorems for the analysis of electrical circuits.PsychomotorTo understand & validate the network theorems for the analysis of electrical circuits.PsychomotorTo understand & analyze electrical circuits in both sinusoidal and transient modes.PsychomotorTo understand & measure the power and inductance of AC circuit.PsychomotorTo understand & analyze the concept of RLC Series and parallel resonance circuits.Psychomotor	RSE DE COURSE NAME L T P 308 ELECTRICAL CIRCUIT ANALYSIS LABORATORY 0 0 1 : A L T P : 0 0 0 2 Outcomes: Domain Leve To understand & verify the network theorems for the analysis of electrical circuits. Psychomotor Respective To understand & validate the network theorems for the analysis of electrical circuits. Psychomotor Respective To understand & validate the network theorems for the analysis of electrical circuits. Psychomotor Respective To understand & analyze electrical circuits in both sinusoidal and transient modes. Psychomotor Respective To understand & measure the power and inductance of AC circuit. Psychomotor Respective To understand & analyze the concept of RLC Series and parallel resonance circuits. Psychomotor Respective	

Sl.No.	List of Experiments		Cos
1.	Verification of KVL and KCL.		C01
2.	Verification of Thevenin theorem.		CO1
3.	Verification of Norton theorem.		CO2
4.	Verification of Maximum power transfer theorem.		CO2
5.	Transient analysis of Series RL, RC circuits.		CO3
6.	Sinusoidal analysis of Series RL, RC circuits.		CO3
7.	Measurement of active power for star and delta connected ba	lanced loads.	CO4
8.	Verification of self, mutual inductance and coefficient of cou	pling.	CO4
9.	Series Resonance Circuit.		CO5
10.	Parallel Resonance Circuit.		CO5
		PRACTICAL	TOTAL
		30	30

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	0	0	0	0	0	0	0	0	1	0	1	1	1
CO2	3	0	0	0	0	0	0	0	0	1	0	1	2	1
CO3	3	2	0	0	0	0	0	0	0	1	1	2	3	1
CO4	3	2	0	0	1	0	0	0	0	1	1	1	3	3
CO5	3	2	0	0	1	0	0	0	0	1	1	1	2	2
Total	15	6	0	0	2	0	0	0	0	5	3	6	11	8
Scaled	3	2	0	0	1	0	0	0	0	1	1	2	3	2

1-5 > 1, 6-10 > 2, 11-15 > 30 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COL CO	URSE COURSE NAME	L	Т	Р	С				
XEF	2 309 ELECTRICAL MACHINES – I LABORA	TORY 0	0	1	1				
C :1	P:A	L	Т	P	Η				
0:	1:0	0	0	2	2				
COUR	SE OBJECTIVES:								
•	To introduce the different types of DC motor and generat	troduce the different types of DC motor and generator.							
•	To analysis the various characteristics of performance machines.								
•	To expose the students to practical implementations.								
Course	e Outcomes:	Domain	in Leve						
CO1	Understand the operation of DC machines.	Psychomotor	Perception						
CO2	Understand the winding concepts of DC machine.	Psychomotor	Co	Overt se					
CO3	Understand the motoring and generating concepts of DC machine.	Psychomotor		Set					
CO4 Analyse single phase and three phase transformers Psychomotor Set									
CO5	Understand the various loss in magnetic circuits.	Psychomotor		Set					

Sl.No.	List of Experiments		Cos
1.	Study of D.C. Motor Starters.		CO1
2.	Open Circuit Characteristics (OCC) and load Characteristic excited generator.	s of D.C self-	CO2
3.	Load characteristics of D.C shunt generator.		CO2
4.	Load characteristics of D.C. shunt motor.		CO2
5.	Load characteristics of D.C series motor.		CO3
6.	Speed control of D.C shunt motor.		CO4
7.	Load test on single-phase transformer.		CO5
8.	Open circuit and short circuit tests on single phase transforme	r.	CO5
		PRACTICAL	TOTAL
		30	30

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	1	0	0	0	1	0	0	1	1	0
CO2	3	0	2	1	0	0	0	1	0	0	0	1	0	1
CO3	3	0	0	1	0	0	0	1	0	0	1	0	0	1
CO4	3	2	2	2	1	0	1	0	0	1	0	1	0	1
CO5	3	0	0	1	0	0	0	0	0	1	0	0	0	1

Total	15	4	6	7	2	0	1	2	1	2	1	3	1	4
Scaled	3	2	2	2	1	0	0	0	1	0	0	1	1	0

1-5 >1, 6-10 >2, 11-15 > 3

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	COURSE NAME	L	Т	Р	С
XMA 401	PROBABILITY AND STATISTICS	3	0	0	3
C : P : A		L	Т	Р	Н
3.5 : 2.5 : 2.5		3	0	0	3

Course	Outcomes:	Domain	Level
CO1	Explain conditional probability, independent events; find expected values and Moments of Discrete random variables with their properties.	Cognitive	Understanding Remembering
CO2	Find distribution function, Marginal density function, conditional density function and to define density function of conditional distribution functions normal, exponential and gamma distributions.	Cognitive	Remembering
CO3	Determine the statistical parameters of Binomial, Poisson and Normal and to find correlation, regression and Rank Correlation coefficient of two variables. Moments, skewness and Kurtosis.	Cognitive Psychomotor	Understanding Guided Response
CO4	Explain large sample test for single proportion, difference of proportion, single mean, difference of means and difference of standard deviations with simple problems.	Cognitive	Understanding
CO5	Explain small sample test for single mean, difference of mean and correlation coefficients, variance test, chi square test with simple problems.	Cognitive Affective	Understanding Receiving

UNIT - I: BASIC PROBABILITY	9
Probability spaces, conditional probability, independence; Discrete random variables,	Independent
random variables, the multinomial distribution, Poisson approximation to the binomial distribution	oution, infinite
sequences of Bernoulli trials, sums of independent random variables; Expectation of Disc	rete
Random Variables, Moments, Variance of a sum, Correlation coefficient, Chebyshev's Inequa	lity.
UNIT - II: CONTINUOUS PROBABILITY DISTRIBUTIONS & BIVARIATE	9
DISTRIBUTIONS	
Continuous random variables and their properties, distribution functions and densities, no	ormal,
exponential and gamma densities. Bivariate distributions and their properties, distribution of	f sums and
quotients, conditional densities, Bayes' rule.	

UNIT - III: BASIC STATISTICS

9

		1.11.7 11.7.11.71	D' '1
Measures of Central tendency: Moments, skewness and	Kurtosis - Proba	bility distribution	ons: Binomial,
Poisson and Normal - evaluation of statistical parameter	s for these three	distributions, C	Correlation and
regression – Rank correlation.			
UNIT - IV: APPLIED STATISTICS			9
Curve fitting by the method of least squares- fitting of st	raight lines, seco	nd degree parab	olas and more
general curves. Test of significance: Large sample test for	or single proporti	on, difference of	of proportions,
single mean, difference of means, and difference of standa	rd deviations.		
UNIT - V: SMALL SAMPLES			9
Test for single mean, difference of means and correlation	n coefficients, tes	st for ratio of va	ariances - Chi-
square test for goodness of fit and independence of attribu	tes.		
	LECTURE	TUTORIAL	TOTAL
	45	0	45
TEXT BOOKS:			
1. B.S. Grewal, "Higher Engineering Mathematics", Khar	nna Publishers, 43	B rd Edition, 2015	j.
 B.S. Grewal, "Higher Engineering Mathematics", Khan N.P. Bali and M. Goyal, "A text book of Engineering N 	na Publishers, 43 Aathematics", Lax	rd Edition, 2015 mi Publications	5. 5, 2010.
 B.S. Grewal, "Higher Engineering Mathematics", Khan N.P. Bali and M. Goyal, "A text book of Engineering N Veerarajan T., "Probability, Statistics and Random pro- 	na Publishers, 43 Mathematics", Lax cesses", Tata Mc	g rd Edition, 2015 ami Publications Graw-Hill, New	5. s, 2010. Delhi, 2010.
 B.S. Grewal, "Higher Engineering Mathematics", Khan N.P. Bali and M. Goyal, "A text book of Engineering N Veerarajan T., "Probability, Statistics and Random pro- REFERENCE BOOKS: 	na Publishers, 43 Iathematics", Laz cesses", Tata McC	rd Edition, 2015 kmi Publications Graw-Hill, New	5. s, 2010. Delhi, 2010.
 B.S. Grewal, "Higher Engineering Mathematics", Khan N.P. Bali and M. Goyal, "A text book of Engineering N Veerarajan T., "Probability, Statistics and Random pro- REFERENCE BOOKS: P. G. Hoel, S. C. Port and C. J. Stone, "Introduction 	na Publishers, 43 Aathematics", Lax cesses", Tata McC to Probability T	rd Edition, 2015 kmi Publications Graw-Hill, New heory", Univers	5. s, 2010. Delhi, 2010. al Book Stall,
 B.S. Grewal, "Higher Engineering Mathematics", Khan N.P. Bali and M. Goyal, "A text book of Engineering N Veerarajan T., "Probability, Statistics and Random proc REFERENCE BOOKS: P. G. Hoel, S. C. Port and C. J. Stone, "Introduction 2003. 	na Publishers, 43 fathematics", Laz cesses", Tata McC to Probability T	rd Edition, 2015 kmi Publications Graw-Hill, New heory", Univers	5. s, 2010. Delhi, 2010. al Book Stall,

- 2. S. Ross, "A First Course in Probability", Pearson Education India, 2002.
- 3. W. Feller, "An Introduction to Probability Theory and its Applications", Vol. 1, Wiley, 1968.
- 4. E. Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 2006.

E-RESOURCES:

- nptel
- 1. Probability and Statistics by Prof. Someshkumar, Department of Mathematics, IIT Kharagpur. (http://nptel.ac.in/noc/noc_courselist.php).

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	2	1	0	0	0	0	0	1	1	0	1
CO 2	3	2	1	0	0	0	0	0	1	1	0	1
CO 3	3	2	1	1	0	0	0	0	1	1	0	1
CO 4	3	2	1	1	1	1	0	0	1	1	1	1
CO 5	3	2	1	1	1	1	1	0	1	1	1	1
Total	15	10	5	3	2	2	1	0	5	5	2	5
Scaled	3	2	1	1	1	1	1	0	1	1	1	1

Table 1: Mapping of Cos with GAs:

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

	DCE				[1				
	DE		COURSE NAME		L	Т	Р	С			
XEF	E402	Α	NALOG ELECTRONIC	S	3	0	0	3			
C : I	P:A				L	Т	P	Η			
3:0):0				3	0	0	3			
							1				
Course	e Outcor	nes:			Do	main		Level			
CO1	Unders and the	tand the character ir applications.	istics of diodes, Zener and	Special diodes	Cog	gnitive	Unc	lerstanding			
CO1and their applications.CognitiveOlderstandingCO2Understand the characteristics of transistor.CognitiveUnderstanding											
CO3	Unders	tand the working	of MOSFET and its charac	cteristics.	Cog	gnitive	Unc	lerstanding			
CO4	Classif	y and explain diff	erent types of amplifier.		Cog	gnitive	Unc	lerstanding			
CO5	Recall	and explain linear	and non-linear application	n of OP-Amp.	Cog	gnitive	Unc	lerstanding			
UNIT		DF CIRCUITS						6			
P-N iu	nction d	iode, I-V charact	eristics of a diode: review	v of half-wave a	nd ful	ll-wave	rectif	iers, Zener			
diodes,	Special	diodes, clamping	and clipping circuits.					,			
UNIT -	– II: BJ	T CIRCUITS	** *					8			
Structu	re and I-	V characteristics	of a BJT; BJT as a switch.	BJT as an ampli	fier: s	mall-sig	gnal n	nodel,			
biasing	circuits	, current mirror; c	ommon-emitter, common-	base and commo	n coll	ector an	nplifie	ers; Small			
signal e	equivale	nt circuits, high-fi	requency equivalent circuit	ts.							
UNIT -	– III: M	IOSFET CIRCU	ITS MOREET		-	1.1	••				
MOSF	ET struc	ture and I-V char	acteristics. MOSFET as a	switch. MOSFET	as al	n amplii	ier: s	mall-signal			
equival	ent circ	uits - gain innu	and output impedances	transconductanc	ulaiii e hio	ampinie sh frequ	encv	equivalent			
circuit.		uns - gam, mpu	and output impedances,	transconductanc	c, mg	sii iicqu	ency	equivalent			
LINIT - 1	IV. DIF	FERENTIAL N	ALL TI-STAGE AND OF	PERATIONAL A	MPI	IFIER	S	8			
Different	tial amp	lifier: power am	plifier: direct coupled m	ilti-stage amplifi	er: in	ternal s	structi	ire of an			
operation	al ampl	ifier, ideal op-am	p, non-idealities in an op-a	mp (Output offse	t volt	age, inp	ut bia	s current,			
input off	set curre	nt, slew rate, gair	bandwidth product)			0 / 1		,			
UNIT - Y	V: LIN	EAR AND NON	LINEAR APPLICATION	NS OF OP-AMP)			15			
Idealized	l analys	is of op-amp ci	rcuits. Inverting and nor	n-inverting ampli	ifier,	differer	ntial	amplifier,			
instrume	ntation a	amplifier, integra	tor, active filter, P, PI an	d PID controller	s and	lead/la	g con	npensator			
using an	op-am	p, voltage regula	ator, oscillators (Wien bi	ridge and phase	shift). Ana	log t	o Digital			
Conversi	on. Hy	steretic Compar	ator, Zero Crossing De	etector, Square-	wave	and t	riang	ular-wave			
generato	rs. Preci	sion rectifier, pea	K detector, Monoshot.	TUTODIAI	r		тот	TAT			
					4		101				
TEXTR	OOKE		43	U			4.	,			
1. Electr	ronic De	vices and Circuit	s theory – Robert L. Bovle	stead, Louis Nasł	nelskv	v, 11th E	ditio	n, 2009.			
Pears	on.		5	,	5			. ,			
2. Malv	ino A. ai	nd D. J. Bates, Ele	ectronic Principles 7/e, Tat	a McGraw Hill, 2	2010.						
3. Milln	nan J. an	d C. C. Halkias, I	ntegrated Electronics: Ana	log and Digital C	Circuit	ts and S	ystem	s, Tata			
McGi	raw Hill,	, 2010.									

REFERENCE BOOKS:

- 1. Floyd T. L., Fundamentals of Analog Circuits, Pearson Education, 2012.
- 2. Bell D. A., Electronic Devices and Circuits, Prentice Hall of India, 2007.
- 3. Electronics circuits and applications, Md H Rashid, Cengage 2014.
- 4. Robert T. Paynter and John Clemons, Paynter's Introductory Electronic Devices & Circuits, Prentice Hall Career & Technology, New Jersey.
- 5. Electronic Devices and Circuits, S. Salivahanan, N. Suresh Kumar, A Vallvaraj, 5th Edition, McGraw Hill Education.
- 6. Gayakward R. A., Op-Amps and Linear Integrated Circuits, PHI Learning Pvt. Ltd., 2012.
- 7. Choudhury R., Linear Integrated Circuits, New Age International Publishers. 2008.

E-RESOURCES:

1. www.nptel.ac.in.

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	0	0	0	0	0	0	0	0	1	0	1	3	3
CO2	3	0	0	0	0	0	0	0	0	1	0	1	3	3
CO3	3	2	0	0	0	0	0	0	0	1	1	2	3	3
CO4	2	2	0	0	1	0	0	0	0	1	1	1	3	3
CO5	0	0	0	0	0	0	0	0	0	0	0	0	3	3
Total	11	4	0	0	1	0	0	0	0	4	2	5	15	15
Scaled	2	1	0	0	1	0	0	0	0	1	1	1	3	3

1-5 >1, 6-10 >2, 11-15 > 3

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUR COD	SE E COURSE NAME	L	Т	Р	С
XEE 4	03 CONTROL SYSTEMS	3	1	0	4
C : P :	Α	L	Т	Р	Η
3:0:	0	3	1	0	4
	•				
Course (Outcomes:	Doma	nin	Lev	el
CO1	Identify the basic elements, derive the transfer function and Compute the overall gain of the control system and Construct the transfer function of DC motors and DC generators.	Cognit	tive	Uno	derstanding
CO2	Explain the performance of First and Second order system with static and dynamic error coefficients.	Cognit	ive	Uno	derstanding
CO3	Describe the frequency domain specifications and show the response of frequency response.	Cogni	itive	Und	erstanding

CO4	Determine the stability suitable compensator performance criteria of	ty of the systems and l and controller for the control system.	Design the the given	Cognitive	Understanding
CO5	Describe State transiti model and construct a and Kalman's test for c	on matrix. Explain Stat and verify the canonical s controllability and observ	e space state model ability.	Cognitive	Remembering
UNIT - I	: SYSTEMS AND THE	IR REPRESENTATIO	N		9+3
Basic ele function electric s	ements in control systems Block diagram reduction ystems translation and rot	s – Open and closed loc techniques – Signal flo ational mechanical system	op systems – w graphs. M ms.	Principles of ason gain form	feedback, Transfer nula, Modelling of
UNIT –	II: TIME RESPONSE A	NALYSIS			9+3
Time res order sys	ponse – Time domain sp tems for standard test inp	ecifications - Standard to uts. Error coefficients – C	est signals. T Generalized e	ime response rror series – St	of first and second eady state error.
UNIT - I	II: FREQUENCY-RES	PONSE ANALYSIS			9+3
Frequenc open loop	y domain specification – p response – Correlation b	Bode plot – Polar plot - between frequency domai	 Determinat n and time determinat 	ion of closed l	oop response from ations.
UNIT – I	IV: STABILITY ANAL	YSIS AND CONTROL	LER DESIG	N	9+3
Character construct Proportice implement	ristics equation – Locatio ion – Effect of pole, z onal, Integral and Derivation ntation of controllers.	n of roots in S plane for zero addition –Nyquist ive Controllers- Lead and	stability –Ro stability crit d Lag compe	uth Hurwitz cr erion. Introdue nsator- Analog	iterion– Root locus ction to design of and Digital
Character construct Proportic implement UNIT – T Concepts equations forms St represent	ristics equation – Location ion – Effect of pole, z onal, Integral and Derivation intation of controllers. V:STATE VARIABLE of state variables. States. Eigen values and Stabinate Space representation ation –. Concept of control	n of roots in S plane for zero addition –Nyquist ive Controllers- Lead and ANALYSIS te space model. Diagor ility Analysis. Physical y n of continuous time sy collability and observability	stability –Ro stability crit d Lag compe- nalization of variable phas ystem. Trans	uth Hurwitz cr erion. Introduc nsator- Analog State Matrix. e variable and fer function f	riterion– Root locus ction to design of g and Digital 9+5 Solution of state canonical variable from state variable
Character construct Proportice implement UNIT – Concepts equations forms St represent	ristics equation – Location ion – Effect of pole, z onal, Integral and Derivation ntation of controllers. V:STATE VARIABLE A of state variables. State s. Eigen values and Stabi ate Space representation ation –. Concept of control	n of roots in S plane for zero addition –Nyquist ive Controllers- Lead and ANALYSIS te space model. Diagor ility Analysis. Physical v n of continuous time sy collability and observability LECTURE	stability –Ro stability crit d Lag compe nalization of variable phas vstem. Trans ty.	uth Hurwitz cr erion. Introduc nsator- Analog State Matrix. e variable and fer function f	titerion– Root locus ction to design of and Digital 9+5 Solution of state canonical variable from state variable TOTAL
Character construct Proportic implement UNIT – T Concepts equations forms St represent	ristics equation – Locatio ion – Effect of pole, z onal, Integral and Derivation intation of controllers. V:STATE VARIABLE of state variables. Stat s. Eigen values and Stabi rate Space representation ation –. Concept of control	n of roots in S plane for zero addition –Nyquist ive Controllers- Lead and ANALYSIS te space model. Diagor ility Analysis. Physical v n of continuous time sy collability and observability LECTURE 45	stability –Ro stability crit d Lag compe- nalization of variable phas ystem. Trans ty. TUTO 15	uth Hurwitz cr erion. Introduc nsator- Analog State Matrix. e variable and fer function f	riterion– Root locus ction to design of g and Digital 9+5 Solution of state canonical variable from state variable TOTAL 60
Character construct Proportice implement UNIT – Concepts equations forms St represent TEXT B 1. I.J. Na Sixth e 2. Norma 3. M. Go 4. Richar REFERI 1. B.C. I 2. K. Og 3. N. Ba 4. John Hill, I E-RESO	ristics equation – Location ion – Effect of pole, z onal, Integral and Derivation intation of controllers. V:STATE VARIABLE A of state variables. State s. Eigen values and Stabi- ate Space representation ation –. Concept of control ation –. Concept of control oOKS: grath& M. Gopal, 'Control odition (1 September, 2018 in S. Nise, "Control System pal, "Control Systems, Pr d C. Dorf& Robert H. Bis ENCE BOOKS: Kuo, 'Automatic Control Signa, 'Modern Control Eng ndyopadhyay, 'Control E J.D'azzo& Constantine H inc., 2013. URCES:	n of roots in S plane for tero addition –Nyquist ive Controllers- Lead and ANALYSIS te space model. Diagor ility Analysis. Physical w of continuous time sy collability and observability <u>LECTURE</u> 45 ol Systems Engineering', 8). m Engineering "Seventh inciples & Design", Tata shop, "Modern Control Sy Systems', Prentice Hall of gineering', 4 th edition, Pe ngineering Theory and Pi I.Houpis, 'Linear control	stability –Ro stability –Ro stability crit d Lag compe nalization of variable phas vstem. Trans ty. TUTO 15 New Age Int edition, John McGraw Hil ystems", Add of India Ltd., arson Educat ractice', Pren l system anal	uth Hurwitz cr erion. Introduc nsator- Analog State Matrix. e variable and fer function f PRIAL cernational Pub wiley &Sons, II, New Delhi, 20 ion, New Delhi, 20 ion, New Delhi tice Hall of Inc lysis and desig	titerion– Root locus ction to design of g and Digital 9+5 Solution of state canonical variable from state variable TOTAL 60 dishers Pvt Ltd; , Inc, 2015. 2002. 2012. 14. i, 2003 / PHI. dia, 2009. gn', Tata McGrow-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	1	0	0	1	1	1	0	0	1	0	0
CO2	2	3	1	0	2	1	1	1	1	1	0	2	2	1
CO3	3	3	3	2	0	0	1	0	3	0	0	0	2	0
CO4	1	2	2	3	2	2	1	1	2	1	1	2	1	0
CO5	2	1	1	1	2	1	1	1	2	1	0	1	2	0
Total	10	10	9	7	4	4	5	4	9	3	1	6	7	7
Scaled	2	2	2	2	1	1	1	1	2	1	1	2	2	2

 $1\text{-}5 > 1, 6\text{-}10 > 2, 11\text{-}15 > 3 \\ 0 - \text{No Relation}, 1 - \text{Low Relation}, 2 - \text{Medium Relation}, 3 - \text{High Relation}$

COURSE CODE	COURSE NAME	L	Т	Р	С
XEE 404	ELECTRICAL MACHINES – II	3	1	0	4
C : P : A		L	Т	Р	Н
3:0:0		3	1	0	4

Course	Outcomes:	Domain	Level
CO1	To Understand the fundamentals of different types of slots	Cognitive	Understanding
	and windings used for AC machines.		
CO2	To Understand the concepts of pulsating and revolving	Cognitive	Understanding
	magnetic fields.		
~~~	To Understand the operation of induction machines, ttorque		Un denston din o
CO3	slip characteristics, equivalent circuit and its phasordiagram.	Cognitive	Understanding
	To Understand the different typesof starting, braking and		
CO4	speed control for induction motors. React the generator	Cognitive	Understanding
	operation, self-excitation and doubly-fed Induction		
	machines.		
CO5	To Understand the operation of single-phase induction	Cognitive	Understanding
	motors and its performance parameters.		

UNIT – I: FUNDAMENTALS OF AC MACHINE WINDINGS	9 + 3
Physical arrangement of windings in stator and cylindrical rotor-Slots for windings -Single	-turn coil –
Active portion and overhang -Full-pitch coils-Types of windings- 3D visualization of the abo	ve winding
types-Air-gap MMF distribution with fixed current through winding -Winding distribution fa	ctor.
UNIT – II: PULSATING AND REVOLVING MAGNETIC FIELDS	9 + 3

Types of magnetic fields –Alternating current in windings with spatial displacement – Magnetic field produced by a single winding – Fixed current and alternating current. Pulsating fields produced by spatially displaced windings– Windings spatially shifted by  $90^{\circ}$  – Three windings spatially shifted by  $120^{\circ}$  (carrying three-phase balanced currents) – Revolving magnetic field.

## **UNIT – III: INDUCTION MACHINES**

12 + 3

Constructional details –Types of rotors (squirrel cage and slip-ring) – Torque Slip Characteristics – Equivalent circuit – Phasor Diagram– Effect of parameter variation on torque speed characteristics – Methods of starting, braking and speed control for induction motors–Generator operation –Selfexcitation– Doubly-Fed Induction Machines.

## **UNIT – IV: SINGLE PHASE INDUCTION MOTORS**

Constructional details of single-phase induction motor – Double revolving field theory and operation – Equivalent circuit – Determination of parameters – Split-phase starting methods and applications.

## **UNIT – V: SYNCHRONOUS MACHINES**

Constructional details – Cylindrical rotor synchronous machine– EMF equation –Equivalent circuit – Phasor diagram–Armature reaction–Voltage regulation– V-curves. Salient pole machine – Two reaction theory –Phasor diagram –Power angle characteristics. Synchronizing and parallel operation. (Basic operation of synchronous motors)

LECTURE	TUTORIAL	TOTAL
45	15	60

#### **TEXT BOOKS:**

- 1. I. J. Nagrath and D. P. Kothari, 'Electric Machines', Tata McGraw Hill Publishing Company Ltd, 2017.
- 2. M. G. Say, 'Performance and Design of AC Machines', CBS Publishers, 2013
- 3. P. S. Bimbhra, 'Electrical Machinery', Khanna Publishers, 2011.

4. B. L.Theraja, 'A Textbook of Electrical Technology', Vol. I & II, M/s S.Chand, Delhi, 2013.

## **REFERENCE BOOKS:**

- 1. A. E. Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric Machinery', Tata McGraw Hill publishing Company Ltd, 2013.
- 2. A. S. Langsdorf, 'Alternating Current Machines', Tata McGraw Hill publishing Company Ltd, 1984.
- 3. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons, 2007.
- 4. J.B. Gupta, 'Theory and Performance of Electrical Machines', S.K.Kataria and Sons, 2002.
- 5. DeshPande M.V., 'Electrical Machines', PHI Learning Pvt Ltd., New Delhi 2011.
- 6. A. G. Warren, 'Problems in Electrical Engineering', Parker and Smith Solutions, Newyork, 1940.
- 7. K. Murugesh Kumar, 'Electric Machines', Vikas Publishing House Pvt Ltd, 2002.
- 8. Department Laboratory Manual.

## **E-RESOURCES:**

1. http://freevideolectures.com/Course/2335/Basic-Electrical-Technology35-38, Prof. L. Umanand, IISc Bangalore.

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	1	0	0	0	0	0	0	2	2	1
<b>CO2</b>	3	2	2	2	1	0	0	0	0	0	0	1	2	1

## Mapping of COs with POs

9 + 3

6 + 3

CO3	3	2	2	2	1	0	0	0	0	0	0	1	1	1
CO4	2	2	1	3	2	0	0	0	0	0	0	1	1	1
CO5	3	0	0	0	1	0	0	0	0	0	0	1	1	1
Total	14	8	7	9	6	0	0	0	0	0	0	6	7	5
Scaled	3	2	2	2	1	0	0	0	0	0	0	2	2	1

^{1-5 &}gt; 1, 6-10 > 2, 11-15 > 30 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COU	RSE CODE	XUM 405	L	Т	Р	С
COUH	RSE NAME	ECONOMICS FOR ENGINEERS	3	0	0	3
PRER	REQUISITES		L	Т	Р	Н
C:P:A		3:0:0	3	0	0	3
COU	RSE OUTCOM	IES	DOMAIN	L	EVEI	
CO1	<i>Explain</i> the <i>identify</i> eleme	concepts of economics in engineering and nt of cost to prepare cost sheet	Cognitive	Unde	erstand	ding
CO2	<i>Calculate and</i> costing	d Explain the Break-even point and marginal	Cognitive	Unde	erstand	ding
CO3	<i>Summarize</i> an analysis	nd Use value engineering procedure for cost	Cognitive	Unde	erstand	ding
<b>CO4</b>	Estimate repla	acement problem	Cognitive	Unde	erstan	ding
CO5	<i>Compute, Exp</i> depreciation	blain and make Use of different methods of	Cognitive	Unde	erstand	ding

#### UNIT I INTRODUCTION TO ECONOMICS

Flow in an economy, Law of supply and demand, Concept of Engineering Economics – Engineering efficiency, Economic efficiency, Scope of engineering economics- types of costing, element of costs, preparation of cost sheet and estimation, Marginal cost, Marginal Revenue, Sunk cost, Opportunity cost

#### UNIT II BREAK-EVEN ANALYSIS & SOCIAL COST BENEFIT ANALYSIS

Margin of Safety, Profit, Cost & Quantity analysis-Product Mix decisions and CVP analysis, Profit/Volume Ratio (P/V Ratio), Application of Marginal costing, Limitations **Social Cost Benefit Analysis**: compare different project alternatives, Calculate direct, indirect and external effects; Monetizing effects; Result of a social cost benefit analysis.

#### UNIT III VALUE ENGINEERING & COST ACCOUNTING:

10

**08** 

12

Value engineering – Function, aims, Value engineering procedure - Make or buy decision Business operating costs, Business overhead costs, Equipment operating costs

#### UNIT IV REPLACEMENT ANALYSIS

07

Replacement analysis –Types of replacement problem, determination of economic life of an asset, Replacement of an asset with a new asset.

08

#### UNIT V DEPRECIATION

Depreciation- Introduction, Straight line method of depreciation, declining balance method of depreciation-Sum of the year's digits method of depreciation, sinking fund method of depreciation, Annuity method of depreciation, service output method of depreciation.

	LECTURE	TUTORIA L	TOTAL
HOURS	45	0	45

#### **TEXT BOOKS**

1. Sp Gupta, Ajay Sharma & Satish Ahuja, "Cost Accounting", V K Global Publications, Faridabad, Haryana, 2012

2. S.P.Jain&Narang, "Cost accounting – Principles and Practice", Kalyani Publishers, Calcutta, 2012

3. PanneerSelvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi,2001.

4. William G.Sullivan, James A.Bontadelli& Elin M.Wicks, "Engineering Economy", Prentice Hall International, New York, 2001.

#### REFERENCES

1.Luke M Froeb / Brian T Mccann, "Managerial Economics – A problem solving approach" Thomson learning 2007

2. Truett&Truett, "Managerial economics-Analysis, problems & cases "Wiley India 8th edition 2004.

3.Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2002.4.Donald.G.Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2002

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	0	1	0	0	1	1	1	2	2	3	1	2
CO2	2	2	1	2	0	0	2	1	1	2	3	3	2	2
CO3	2	2	1	3	0	0	2	2	1	2	2	3	2	2
CO4	1	2	1	2	0	0	0	1	1	1	2	3	1	2
CO5	1	2	0	1	0	0	1	1	0	1	2	3	1	2
Total	7	10	3	9	0	0	6	6	4	6	11	15	7	10
Scaled	1	2	1	2	0	0	1	1	1	2	2	3	1	2

## Mapping of COs with POs

1-5 >1, 6-10 >2, 11-15 > 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

Course Code   :   XUM406								Т	Р	C		
Course	Name		:	DISA	STER MANAGEMENT		3	0	0	3		
Prerequ	uisite		:	NIL								
С		Р		Α			L	Т	Р	H		
3		0		0			3	0	0	3		
Course able to	Outcon	ne: After	the	complet	ion of the course, students will be	Domair	1	L	evel			
CO1	Under types	stand th	e cor	ncepts o	f disasters, their significance and	Cognitive	; 1	Understanding				
CO2	Under disaste	stand th er preve	e rela	ationshi and ris	p between vulnerability, disasters, k reduction	Cognitive	; 1	Under	standi	ng		
CO3Able to understanding of preliminary approaches of Disaster Risk Reduction (DRR)Cognitive								Under	standi	ng		
CO4	Devel	op awar	eness	s of inst	tutional processes in the country	Cognitive	2	Apply	ing			
CO5       Develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity       Cognitive       Applying												
UNIT	<u></u> [		ROE	OUCTIO	ON TO DISASTERS				6			
Importa	ance &S	Significa	nce, '	Types o	f Disasters, Climate Change, DM cycle	e						
UNIT	II	RIS	KA	SSESS	MENT				12			
Risk, V Assessi	Vulneral ment, Ri	oility, T isk mode	ypes eling	of Ris	k, Risk identification, Emerging Ris	ks, Risk A	ssess	ment,	Dam	age		
UNIT	III	DIS	AST	TER M	ANAGEMENT				10			
Phases, Commu Commu	Cycle o unity Ba unicatio	of Disast used DM n, Role (	ter M , Con of GI	lanagen mmunit S and R	ent, Institutional Framework, Incident y health and safety, Early Warning and temote Sensing, Do's and Don'ts in vari	Command Disaster M ious disaste	Syste Ionitc ers.	m, Dl ring, 1	M Plai Disast	ı, er		
UNIT	IV	DIS	AST	ER RIS	K MANAGEMENT IN INDIA				10			
Hazard Shelter Disaste	and V , Health r Manag	ulnerabi , Waste gement A	lity Man Act a	profile agemen nd Polic	of India, Components of Disaster R t, Institutional arrangements (Mitigatio cy – Other related policies, plans, progr	elief: Wate on, Respons cammes and	er, Fo e and l legis	od, S Prepa lation	anitat aredne	ion, ss),		
UNIT	V	DIS	AST	ER MA	NAGEMENT: APPLICATIONS AN	ND CASE S	STUL	DIES	7			
Landsli Drough Disaste	de Haza it Asses r Mitiga	ard Zona sment, ( ation and	tion, Coast I Mai	Earthc tal Floo nageme	uake Vulnerability Assessment of Buil ding, Forest Fire, Man Made disasters, nt, Cast Study	ldings and l , Space Ba	Infras sed Ir	tructu puts f	re, for			
						L	]	P	Te	otal		
	DOOT	<u>a</u>				45	5 (	0 0	4	15		
TEXT	BOOK	S										

1.	. Singhal J.P. Disaster Management, Lax	mi Publications,	2010.	ISBN-10:	9380386427	ISBN-13:	978-
	9380386423						

- 2. Tushar Bhattacharya, Disaster Science and Management, McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10:** 1259007367, **ISBN-13:** 978-1259007361)
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. KapurAnu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010

#### **REFERENCE BOOKS**

- 1. Siddhartha Gautam and K Leelakrisha Rao, "Disaster Management Programmes and Policies", Vista International Pub House, 2012
- 2. Arun Kumar, "Global Disaster Management", SBS Publishers, 2008
- 3. Pardeep Sahni, Alka Dhameja and Uma medury, "Disaster mitigation: Experiences and reflections", PHI, 2000
- 4. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
- 5. Government of India, National Disaster Management Policy, 2009

#### **E-REFERENCES**

- NIDM Publications at http://nidm.gov.in- Official Website of National Institute of Disaster Management (NIDM), Ministry of Home Affairs, Government of India
- http://cwc.gov.in , http://ekdrm.net , http://www.emdat.be , http://www.nws.noaa.gov , http://pubs.usgs.gov , http://nidm.gov.ini http://www.imd.gov.ini

#### Mapping of COs with POs

	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		1	1					1			1	1	2	2
CO2			2		3						2	2	2	2
CO3						2	2				1	1		1
<b>CO4</b>		2	2		1	1	1	2	1	1	3	1	1	
CO5						2	3	3		2	1	1	2	2
Total	0	3	5	0	4	5	6	6	1	3	8	6	7	7
Scaled	0	1	1	0	1	1	1	1	1	1	2	1	2	2

 $^{1\}text{-}5>1,\,6\text{-}10>2,\,11\text{-}15>3\\0-\text{No Relation},\,1-\text{Low Relation},\,2-\text{Medium Relation},\,3-\text{High Relation}$ 

COURSE CODE	COURSE NAME	L	Т	Р	С
XEE 407	ANALOG ELECTRONICS LABORATORY	0	0	1	1
<b>C</b> : <b>P</b> : <b>A</b>		L	Т	Р	Η
1:0:0		0	0	2	2

COUR	RSE OBJECTIVES:									
•	To introduce the different types of analog and digital mod	dulation and demod	ulation.							
•	To convey frequency division multiplexing and demultip	lexing.								
•	To expose the students line coding and decoding.									
•	To create awareness on the performance of digital modul	ation techniques in .	AWGN and							
	Rayleigh channels.									
Course	e Outcomes:	Domain	Level							
	Construct, Demonstrate and Simulate Amplitude	Psychomotor	Mechanism							
CO1	Modulation, Demodulation, sensitivity and selectivity	r sychomotor	Wieenamsm							
	of AM receivers.									
	Construct, Demonstrate and Simulate Frequency	Psychomotor	Mechanism							
CO2	Modulation, Demodulation, sensitivity and selectivity	5								
	Of FM receivers.	Developmentor	Maahaniam							
CO3	Multiplexing and demultiplexing	1 Sychomotor	Mechanishi							
	Build.Demonstrate and Simulate various types of									
CO4	analog and digital Pulse Modulations using trainer kit	Psychomotor	Mechanism							
0.0	Simulate performance of digital modulation	Psychomotor	Mechanism							
005	techniques in AWGN and Rayleigh channels.	5								
SI.	Listof		COs							
No.	Experiments		005							
1.	Design of full wave rectifier with and without filter.		CO1							
2.	Design of bridge rectifier circuits using with and without	filter.	C01							
3.	Conduct an experiment to test clipping and clamping circ	cuits.	CO1							
4.	Design of BJT common emitter amplifier using volta	ge divider bias								
	with and without feedback.		CO2							
5.	Plot the drain and transfer characteristics of MOSFET.		CO3							
6.	Conduct experiment on differential amplifier		CO4							
7.	Design of Phase shift and Wien bridge oscillators using C	OP-AMP.	CO5							
8.	8. Conduct experiment on Inverting, Non inverting amplifier using OP-AM									
9.	rator using OP-	CO5								
10.	Conduct experiment on integrator and differentiator circu	it using OP-AMP.	C05							
11.	Conduct experiment on Schmitt trigger circuit using OP-	AMP.	CO5							
	·	PRACTICAL	TOTAL							
		30	30							

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3									1		1	3	3
CO2	3									1		1	3	3

CO3	3	2					1	1	2	3	3
CO4	2	2		1			1	1	1	3	3
CO5										3	3
Total	11	4		1			4	2	5	15	15
Scaled	2	1		1			1	1	1	3	3

#### 1-5>1, 6-10>2, 11-15>3

## 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	COURSE NAME	L	Т	Р	С
<b>XEE 408</b>	CONTROL SYSTEMS LABORATORY	0	0	1	1
<b>C</b> : <b>P</b> : <b>A</b>		L	Т	Р	Η
0:1:0		0	0	2	2

#### **COURSE OBJECTIVES:**

- Control Systems is the engineering discipline that applies control theory to design systems with desired behaviours.
- To make students understand the concept of system representation for stability analysis and state –space analysis.
- To design the compensator in time and frequency domain, to design the PID compensator.

Cours	se Outcomes:	Domain	Level				
CO1	<b>Identify</b> the basic elements, derive the transfer function and <b>Compute</b> the overall gain of the control system and <b>Construct</b> the transfer function of DC motors and DC generators.	Psychomotor	sychomotor Set				
CO2	<b>Explain</b> the performance of First and Second order system with static and dynamic error coefficients.	Psychomotor	Set				
CO3	<b>Describe</b> the frequency domain specifications and show the response of frequency response.	Psychomotor	Set				
CO4	<b>Determine</b> the stability of the systems and <b>Design</b> the suitable compensator and controller for the given performance criteria of the control system						
CO5	<b>Describe</b> State transition matrix. <b>Explain</b> State space model <b>and construct</b> and <b>verify</b> the canonical state model and Kalman's test for controllability and observability.	Psychomotor	Percept	ion			
Sl.				CO			
No.	. List of Experiments						
1.	Transfer function and modelling of separately excited DC Generator.						
2.	Transfer function and modelling of Armature & field-cont	trolled DC Motor.	•	CO1			

3.	Transfer function of AC Servomotor.			CO1		
4.	Analysis of Synchro Transmitter and Receiv	/er.		CO2		
5.	Performance of DC Stepper Motor.			CO2		
6. Digital simulation of I order and II order system by using Scilab.						
7. Frequency response of Lag, Lead & Lag – Lead networks.						
8.	8. Determination of Phase margin and Gain margin of the Bode plot using Scilab.					
9.	Transfer function and modelling of Ward –	Leonard speed control	system applied	CO5		
	to DC motor.					
10.	DC Position using feedback Control system	•		CO5		
		PRACTICAL	TOTAL			
		30	30			

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO10</b>	PO11	PO12	PSO1	PSO2
CO1	2	3	2	1	0	0	1	1	1	0	0	1	0	0
CO2	2	3	1	0	2	1	1	1	1	1	0	2	2	1
CO3	3	3	3	2	0	0	1	0	3	0	0	0	2	0
CO4	1	2	2	3	2	2	1	1	2	1	1	2	1	0
CO5	2	1	1	1	2	1	1	1	2	1	0	1	2	0
Total	10	10	9	7	4	4	5	4	9	3	1	6	7	7
Scaled	2	2	2	2	1	1	1	1	2	1	1	2	2	2

## 1-5 >1, 6-10 >2, 11-15 > 3

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	COURSE NAME	L	Т	Р	С
XEE 409	ELECTRICAL MACHINES – II LABORATORY	0	0	1	1
<b>C</b> : <b>P</b> : <b>A</b>		L	Т	Р	Η
0:1:0		0	0	2	2

## **COURSE OBJECTIVES:**

- To introduce the different types of AC motor and generator.
- To analysis the various characteristics of performance Induction and synchronous machines.
- To expose the students to practical implementations of real time applications.

Course	e Outcomes:	Domain	Level
CO1	To Understand the fundamentals of different types of slots and windings used for AC machines.	Psychomotor	Mechanism

CO2	To Understand the concepts of pulsating and revolvin magnetic fields.	ng Psychomotor	Mechanis	sm				
CO3	To Understand the operation of induction machine torque slip characteristics, equivalent circuit and in phasor diagram.	es, ts Psychomotor	Mechani	sm				
CO4To Understand the different types of starting, brakingand speed control for induction motors. React the generator operation, self-excitation and doubly-fed Induction machines.PsychomotorMechani								
CO5	To Understand the operation of single-phase induction motors and its performance parameters.	on Psychomotor	Mechani	sm				
		· ·						
Sl. List of Experiments								
1.	Load test on three phase squirrel cage induction moto	or.		CO1				
2.	Load test on three phase slip ring induction motor.			CO1				
3.	Load test of a three-phase alternator.			CO2				
4.	No load and blocked rotor test on three phase induction	on motor.		CO3				
5.	Study of induction motor starters.			<b>CO4</b>				
6.	Load test on single-phase induction motor.			<b>CO4</b>				
7.	No load and blocked rotor test on single phase induct	ion motor.		<b>CO4</b>				
8.	Regulation of three phase alternator by EMF/MMF r	nethods.		CO5				
9.	OCC and load characteristics of three phase alternator	r		CO5				
10.	V and inverted V curves of three phase synchronous	motor.		CO5				
		PRACTICAL	TOTAL	1				
		30	30					

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	1	0	0	0	0	0	0	2	2	1
CO2	3	2	2	2	1	0	0	0	0	0	0	1	2	1
CO3	3	2	2	2	1	0	0	0	0	0	0	1	1	1
CO4	2	2	1	3	2	0	0	0	0	0	0	1	1	1
CO5	3	0	0	0	1	0	0	0	0	0	0	1	1	1
Total	14	8	7	9	6	0	0	0	0	0	0	6	7	5

1-5 >1, 6-10 >2, 11-15 > 3

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUR	SE DE	COURSE NAME	L	Т	Р	С			
XEE 5	501	TRANSMISSION AND DISTRIBUTION	3	0	0	3			
C:1	<b>P:A</b>		L	Т	Р	Н			
3:	0:0		3	0	0	3			
				1 1					
Course (	Dutcor	mes:	Do	main		Level			
	Expl	ain the major components of Transmission and							
CO1	<b>CO1</b> Distribution Systems (TDS). <b>Classify</b> different types of single Cognitive Us and three phase transmission line parameters.								
CO2	Outl and i	<b>ine</b> the types of transmission line efficiency calculations ts performance.	Cog	nitive	Ur	derstandin			
CO3	Expl and s	ain the different types of insulators and solve for stress sag in overhead lines.	Cog	nitive	Applying				
CO4	Interpret different type's underground cables. Cognitive Ur								
CO5	Sum syste	<b>marize</b> the latest technologies in the field of distribution ems.	Cog	Cognitive		derstandin			
IINIT - I		NSMISSION I INF PARAMETERS				0			
Structure	of el	actric power system: Various levels such as generation tra	nemie	sion a	nd di	stribution			
Resistand	re Ind	uctance and Canacitance calculations – Single-phase and thr	ee-nh	sion a se line	$a_{s} = d$	ouble circu			
lines – ef	fect of	² earth on transmission line capacitance.	ce più		.5 U				
UNIT - J	I: PE	RFORMANCE OF TRANSMISSION LINES				9			
Regulation diagrams performa	on and , Intro nce – 1	efficiency – Tuned power lines, Power flow through a traduction to Transmission loss and Formation of corona – cr travelling waveform phenomena.	nsmis itical v	sion lin voltage	$e^{-1}$ $e^{-1}$	Power circl ffect on lir			
UNIT - I	II: M	ECHANICAL DESIGN OF OVERHEAD LINES				9			
Line sup efficienc	ports - y – Str	- Insulators, Voltage distribution in suspension insulators – ess and sag calculation – effects of wind and ice loading.	Testi	ng of i	nsula	tors – strin			
UNIT - I	V: UN	VDERGROUND CABLES				9			
Compari	son wi	th overhead line – Types of cables – insulation resistance	– pote	ntial g	radie	nt –			
		TRIBUTION SVSTEM				0			
General	aspect	s – Kelvin's Law – A.C. distribution – Single-phase and	three	phase	– Te	chniques of			
voltage o	control	and power factor improvement – Introduction to Distrib	ution	loss –	Rece	nt trends			

transmission and distribution systems.

LECTURE	TUTORIAL	TOTAL		
45	0	45		

## **TEXT BOOKS:**

1. D.P. Kothari and I.J. Nagrath, 'Power System Engineering', Tata McGraw-Hill,2nd Edition, 2008.

 B.R.Gupta, 'Power System Analysis and Design', S.Chand, New Delhi, 2003.
 S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall India Pvt. Ltd, 2002.

## **REFERENCE BOOKS:**

- 1. Luces M.Fualkenberry ,Walter Coffer, 'Electrical Power Distribution and Transmission', Pearson Education, 1996.
- 2. Hadisaddak, 'Power System Analysis,' Tata McGraw Hill Publishing Company',2003
- 3. Central Electricity Authority (CEA), 'Guidelines for Transmission System Planning', New Delhi.
- 4. Tamil Nadu Electricity Board Handbook', 2012.

## **E-RESOURCES:**

1. NPTEL, Power System Generation, Transmission and Distribution Prof. D. P. Kothari Center for Energy Studies Indian Institute of Technology, Delhi.

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	0	0	0	0	0	0	0	1	0	2	2	1
CO2	1	3	1	0	1	0	0	0	0	0	0	1	3	1
CO3	1	0	0	1	1	0	0	0	0	1	0	0	2	1
CO4	1	2	0	0	0	0	0	0	0	0	1	1	2	1
CO5	1	2	0	0	0	0	0	0	0	0	0	1	2	1
Total	5	10	1	1	2	0	0	0	0	2	1	5	11	5
Scaled	2	3	1	1	1	0	0	0	0	1	1	2	3	2

## Mapping of COs with POs

#### 1-5 > 1, 6-10 > 2, 11-15 > 30 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	COURSE NAME	L	Т	Р	С
XEE 502	POWER SYSTEM ANALYSIS	3	1	0	4
<b>C</b> : <b>P</b> : <b>A</b>		L	Т	Р	Н
3:0:0		3	1	0	4

Course (	Dutcomes:	Domain	Level
CO1	<b>Demonstrate</b> the per phase analysis of power system.	Cognitive	Understanding
CO2	<b>Develop</b> the model of various components of the power system and <b>Construct</b> the Y Bus and Z Bus for a power system.	Cognitive	Applying
CO3	<b>Analyze</b> the power system network with symmetrical and unsymmetrical faults. <b>Calibrate</b> the fault current in a power	Cognitive	Analyzing
	system.		
CO4	<b>Summarize</b> the power flow equation. <b>Assess</b> the voltage profile of a power system by performing the load flow analysis and <b>Identify</b> the line loss and line flow.	Cognitive	Evaluating

CO5	<b>Classify</b> and <b>determine</b> <b>Detect</b> the transient be subjected to a fault.	e the stability of po havior of power system	wer system. when it is	Cognitive	Evaluating					
UNIT –	I: INTRODUCTION				10 + 3					
Need for line diag Electricit	system analysis in planr ram-Per unit representa y Deregulation.	ning and operation of mod ation and Per unit calcu	lern power syste lations – Chan	em–per phase ge of base	e analysis - Single – Introduction to					
UNIT – I	II: MODELLING OF	POWER SYSTEM CON	<b>IPONENTS</b>		8+3					
Primitive formation different	network and its matrice n – Z–Bus building algor power system studies.	es – bus incidence matrix ithm – Modelling of gene	a –bus admittan erator, load, tran	ce and bus ir sformer, tran	npedance matrix smission line for					
UNIT – I	III: FAULT ANALYSI	S – UNSYMMETRICA	L FAULTS		9 + 3					
balanced three phase faults – problem formulation – fault analysis of power systems. Symmetrical (or) balanced three phase faults – problem formulation – fault analysis using Z-bus matrix– algorithm and flow chart. Computations of short circuit capacity, post fault voltage and currents. Introduction to symmetrical components – sequence impedances – sequence networks Unsymmetrical fault analysis: L-G, L-L and L-L-G faults.										
UNIT – I	IV: POWER FLOW A	NALYSIS			9 + 3					
Need for Gauss–Se methods.	Power Flow Analysis - eidel, Newton–Raphson	- bus classification – der and Fast Decoupled Pow	ivation of powe er Flow method	er flow equat ds –comparis	ion – solution by son of three					
UNIT – T	V: STABILITY ANAL	YSIS			9 + 3					
Types of machine clearing system –	stability - Swing equation connected to infinite but angle and time. Causes of methods of improving po	on in state space form - eq s by modified Euler's m of voltage instability – vo ower system stability.	ual area criterio ethod using cla oltage stability p	n – stability a ssical machir proximity ind	analysis of single ne model–critical lices for two-bus					
		LECTURE 45	TUTORI 15	AL	TOTAL 60					
ТЕХТ В	OOKS:		15		00					
<ol> <li>Hadi S</li> <li>John J</li> <li>Editic</li> <li>Nagar 1994.</li> <li>Pai. M 2007.</li> </ol>	<ol> <li>Hadi Sadaat, "Power System Analysis", Tata McGraw Hill Publishing Company, 2002.</li> <li>John J. Grainger and Stevenson Jr. W.D., "Power System Analysis", McGraw Hill International Edition, 1994.</li> <li>Nagarat .I.J, Kothari .D.P, "Power system Engineering", Tata McGraw Hill Publishing Company, 1994.</li> <li>Pai. M.A "Computer techniques in Power System Analysis" Tata McGraw Hill Publishing Company, 2007</li> </ol>									
REFER	ENCE BOOKS:									
<ol> <li>Stagg, G.W. and El-Abaid, A. H. "Computer Methods in Power System Analysis", McGraw-Hill International Book Company, 1968.</li> <li>Nagarath, I.J., and Kothari, D.P., 'Modern Power System Analysis', Tata McGraw Hill Publishing Company, 1990.</li> <li>Wadhwa C L. "Electric Power Systems" Willey Fastern, 2007.</li> </ol>										
J. Wadii		Jotems Whitey Easterli, 2								

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	<b>PO9</b>	<b>PO10</b>	PO11	PO12	PSO1	PSO2
CO1	3									1		1	3	2
CO2	3									1		1	3	2
CO3	3	2								1	1	2	3	2
CO4	3	2			1					1	1	1	3	2
CO5	3	2			1					1	1	1	3	2
Total	15	6	0	0	2	0	0	0	0	5	3	6	15	10
Scaled	3	1	0	0	0	0	0	0	0	1	1	1	3	2

# $1\text{-}5>1,\,6\text{-}10>2,\,11\text{-}15>3\\0-\text{No Relation},\,1-\text{Low Relation},\,2-\text{Medium Relation},\,3-\text{High Relation}$

COU	IRSE	COURSE NAME	L	Т	Р	С			
CO	DDE				-	, , , , , , , , , , , , , , , , , , ,			
XEE	2 503	DIGITAL ELECTRONICS	3	0	0	3			
C : I	P:A		L	Т	P	Н			
3:0	):0		3	0	0	3			
Course	e Outcor	nes:	Dom	ain		Level			
	Unders	stand numerical values in various number systems and							
CO1	show r	number conversions between different number	Cogniti	ve	Unc	lerstanding			
	System	18.							
	Analyz	e Boolean functions and minimization techniques using							
CO2	k –ma	ps and postulates and theorems of Boolean Algebra,	Comiti	vo		Analyzina			
	minimi	ization of Boolean functions using basic laws.	Coginti	ve	1	Anaryzing			
CO3	To Ap	ply Logic gates and their applications and construct	Cogniti	ve		A			
0.00	the sim	ple adders and sub tractors using logic gates.	U		1	Applying			
CO4	To Uno	derstand the process of Analog to Digital conversionand	Cognitive			lanstanding			
	its app	lications.			Understanding				
CO5	To Uno	derstand the process of Digital to Analog conversion	Cogniti	ve	Un	larstanding			
	and its	applications.			UIIC	lerstanding			
UNIT -	- I: FUN	NDAMENTALS OF DIGITAL SYSTEMS AND LOGI	<b>[C FAM]</b>	LIES	5	9			
Digital	signals,	digital circuits, AND, OR, NOT, NAND, NOR and Ex	clusive-0	DR of	peratio	ons, Boolean			
algebra	, examp	les of IC gates, number systems-binary, signed binary, o	ctal hexa	decin	nal nur	nber, binary			
arithme	etic, one	's and two's complements arithmetic, codes, error detect	ing and	correc	cting c	odes,			
characteristics of digital ICs, digital logic families.									
UNIT ·	– II: C(	OMBINATIONAL DIGITAL CIRCUITS				9			
Standar	rd repres	sentation for logic functions, K-map representation, and	simplific	ation	of log	gic functions			
using	K-map,	minimization of logical functions. Don't care	conditio	ons,	Multip	plexer, De-			
Multip	lexer/De	coders, Adders, Subtractors, ALU, elementary ALU desig	gn, popula	ar MS	I chip	s, digital			

comparator, parity checker/generator, code converters, priority encoders, decoders Q-M method of function realization.

#### UNIT – III: SEQUENTIAL CIRCUITS AND SYSTEMS

A 1-bit memory, the circuit properties of Bistable latch, JK, SR, D and T types flip-flops, applications of flip-flops, shift registers, applications of shift registers, Asynchronous counters, synchronous counters design using flip flops, special counter IC's, applications of counters.

## UNIT – IV: A/D AND D/A CONVERTERS

Digital to analog converters: weighted resistor/converter, R-2R Ladder DAC, specifications for D/A converters, examples of DAC ICs, sample and hold circuit, analog to digital converters: quantization and encoding, parallel comparator ADC, successive approximation ADC, specifications of ADC, example of ADC ICs.

# UNIT – V: SEMICONDUCTOR MEMORIES AND PROGRAMMABLE LOGIC DEVICES

9

Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, ROM, RAM, content addressable memory (CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD, PLA, PAL, CPLDS, and FPGA.

LECTURE	TUTORIAL	TOTAL
45	0	45

#### **TEXT BOOKS:**

- 1. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education, 2009.
- 2. M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016.
- 3. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.

## **REFERENCE BOOKS:**

- 1. Taub and Schilling, 'Digital Integrated Circuits', McGraw Hill, 2002.
- 2. Samuel C. Lee "Digital Circuits and Logic Designs" Prentice Hall of India; 2000.
- 3. Fletcher, W.I., 'An Engineering Approach to Digital Design', Prentice Hall of India, 2002.
- 4. Anand Kumar, Fundamental of Digital circuits, PHI 2003.

#### **E-RESOURCES:**

- 1. NPTEL, Digital Logic Circuits, Prof. S.Srinivasan, IIT Madras.
- 2. NPTEL, Digital Logic Circuits, Prof. D. Roychoudhury, IIT Kharagpur.

## Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	3	-	-	1	1	1	-	1	-	2	2	1
CO2	3	2	1	-	-	2	0	2	1	-	-	2	1	2
CO3	2	2	1	-	-	1	2	2	1	1	-	1	2	2
CO4	2	2	3	-	-	1	1	1	-	-	1	1	1	2
CO5	3	2	2	-	-	0	1	1	1	1	1	2	2	2
Total	12	9	10	-	-	4	5	7	3	3	2	8	8	9
Scaled	3	2	2			1	1	2	1	1	1	2	2	2

1-5 >1, 6-10 >2, 11-15 > 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COUH COI	RSE DE	COURSE NAME	L	Т	Р	C	
XEE	504	MEASUREMENTS AND INSTRUMENTATION	3	0	0	3	
С:Р	: A		L	Т	Р	Н	
3:0	:0		3	0	0	3	
				Ţ			
Course	Outcon	nes:	Doma	in	Le	vel	
CO1	Desci Desci instru	<b>ribe</b> the different errors in measurements and <b>ribe</b> the working principle of different measuring ments.	Cognitive	e	Rememt	bering	
CO2	e	Understa	anding				
CO3	Use c unkno the tr and tr	lifferent types bridge circuits for the measurements of own passive elements. <b>Relate</b> the different types of ansducers. <b>Demonstrate</b> the use of different bridges ansducers.	Cognitive	e	Applyin	g	
CO4	e	Understanding					
CO5	Expla signal meas	<b>ain</b> the construction and working of different types conditioners. <b>Demonstrate</b> the recent trends in arement of AC quantities.	Cognitive	e	Remembering		
	1				•		
UNIT -	I: INT	RODUCTION				9	
Measure	ments -	- Errors & classification, Measurement of voltage & cu	irrent - pei	mane	ent magne	t movin	
coil and	moving	g iron meters, Measurement of power and energy - dy	namomete	er and	l induction	ı	
nstrume	ents, Ins	trument transformers – Current and Potential transforme	ers.				
UNIT -	II: DC	AND AC BRIDGES				9	
Measure	ment o	f resistance, inductance and capacitance using dc and	d ac bridg	ges, V	Vheatstone	e bridge	
Maxwel	l bridge	, Kelvin's Bridge, Schering Bridge.					
UNIT -	III: Th	KANSDUCERS	tura a dara a			<u>9</u>	
Active a Strain of	nu rass	ne transducers, Piezoelectric transducer, Pilotoelectric	Fiber optic	rs, rr tran	sducers R	nes,	
Inductiv	e and c	insuccers, Even, unreferencial capacitive transducers, I		/ uall	succes, N	05151110	
UNIT -	IV: SI	GNAL CONDITIONING UNITS				9	
Signal c	ondition	ners - Instrumentation amplifiers, voltage-current con	verters, A	/D ar	nd D/A co	nverter	
voltage-	frequen	cy converters, analog multiplexers and de-multi	iplexers.	Micr	oprocesso	r Base	
Measure	ments,	Case Studies in Instrumentation.			I		
	V: RE	CORDERS AND DISPLAY				9	
UNIT -			· · · · ·				

storage and Analog storage Oscilloscope, Digital Phosphor Oscilloscopes. Analog and Digital Recorders and printers. Spectrum Analyzers, Data and Logic Analyzers.

LECTURE	TUTORIAL	TOTAL
45	0	45

#### **TEXT BOOKS:**

- 1. K. Sawhney, 'A Course in Electrical and Electronic Measurements and Instrumentation', DhanpatRai & Co., 9th Edition, 2018.
- 2. Bouwens A. J., 'Digital Instrumentation', Tata McGraw Hill Publications, 16th Reprint (2008).
- 3. Kalsi H.S, 'Electronic Instrumentation', Tata McGraw-Hill Education, 3rd Edition, 2010.
- 4. Deobelin, 'Measurements Systems', Tata McGraw Hill Publications, 2nd Edition, 2010.

#### **REFERENCE BOOKS:**

1. W. D. Cooper, 'Electronic Instrumentation and Measurement Techniques', Prentice Hall of India Publications, 1st Edition, 2009.

2. Rangan C.S., 'Instruments Devices and System', Tata McGraw Hill Publications, 2nd Edition, 2009. **E-RESOURCES:** 

1. NTPEL, Electrical Instrumentations (Web Course), Prof. N.K. De, Prof. T.K. Bhattacharyaand Prof. G. D. Roy, IIT Kharagpur.

## Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	0	0	1	0	1	1	0	0	3	0	0	2	3
CO2	1	1	0	0	0	0	0	0	0	0	0	1	2	3
CO3	1	0	1	0	1	0	0	2	0	1	0	0	2	2
CO4	1	2	0	0	0	0	0	0	0	0	0	1	2	2
CO5	0	0	0	0	0	0	0	0	1	0	1	1	2	3
Total	4	3	1	1	1	1	1	2	1	4	1	3	10	13
Scaled	1	3	1	1	1	1	1	1	1	1	1	1	2	3

#### 1-5 >1, 6-10 >2, 11-15 > 3

0-No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURSE CODE	COURSE NAME	L	Т	Р	С
<b>XEE506</b>	DIGITAL ELECTRONICS LABORATORY	0	0	1	1
<b>C</b> : <b>P</b> : <b>A</b>		L	Т	Р	Η
0:1:0		0	0	2	2

## **COURSE OBJECTIVES:**

• To acquire the basic knowledge of digital logic levels and application of knowledge to understand digital electronics circuits.

• To prepare students to perform the analysis and design of various digital electronic circuits.

Course	e Outcomes:	Domain	Lev	vel			
CO1	Assemble code converter and conform the output	Psychomotor	Me	chanism			
CO2	Assemble Combinational logic circuits and conform the	Psychomotor	Me	chanism			
	output						
CO3	Assemble Sequential logic circuits and conform the output	Psychomotor	Me	chanism			
CO4	<b>Simulate</b> Counters and Shift register <b>conform the output</b> using PSpice.	Psychomotor	Me	chanism			
CO5	Develop VHDL programs for Digital Logic Circuits	Psychomotor	Me	chanism			
Sl.No	List of Experiments			COs			
1.	Study of logic gates.			CO1			
2.	Design and implementation of code converters using logic gates.						
3.	Design and implementation of Adders using logic gates.			CO1			
4.	Design and implementation Subtractor using logic gates.			CO1			
5.	Design and implementation of Magnitude Comparators.			CO2			
6.	Design and implementation of encoder and decoder.			CO2			
7.	Design and implementation of Multiplexer and De-multiplexe	r.		CO2			
8.	Implementation of Flip- flops.			CO3			
9.	Construction and verification of counter. (Simulation using PS	Spice).		<b>CO4</b>			
10.	Construction and verification of shift register. (Simulation usi	ng PSpice).		CO4			
11.	Logic gates using VHDL.			CO5			
12.	Adder and subtractor using VHDL.			CO5			
		PRACTICAL		ГОТАL			
		30		30			

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	3	2	-	2	-	-	-	1	-	3	2	2
CO2	3	2	1	2	-	2	-	-	1	-	-	3	2	2
CO3	2	2	1	2	-	2	-	-	1	1	-	3	2	2
CO4	2	2	3	2	-	2	-	1	-	-	1	3	2	2
CO5	3	2	2	2	-	2	-	1	1	1	1	3	2	2
Total	12	9	10	10	0	10	0	2	3	3	2	15	10	10
Scaled	3	2	2	2	0	2	0	1	1	1	1	3	2	2

1-5 > 1, 6-10 > 2, 11-15 > 30 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COU	URSE DDE	COURSE NAME	L	Т	Р	С	
XEI	E <b>507</b>	MEASUREMENTS AND INSTRUMENTATIO LABORATORY	N 0	0	1	1	
<b>C</b> :	<b>P : A</b>		L	Т	Р	Н	
0:	1:0		0	0	2	2	
COUR	<b>RSE OBJ</b> Understa Understa	<b>ECTIVES:</b> anding about the instruments used for different types of anding about various types of AC and DC bridges.	f AC meas	suremen	ıts.		
Course	e Outcon	nes:	<b>Domain</b>	Lev	el		
CO1	Descril Descril measur	be the different errors in measurements and be the working principle of different Psy ing instruments.	chomotor/	F	Percept	tion	
CO2	Unders differen calibrat	Understanding about the instruments used for different types of AC measurements. Carryout calibration test for measuring electrical instrumentsPsychomotorSUse different types bridge circuits for the </td					
CO3	Use dif measur the diff the use	ferent types bridge circuits for the ements of unknown passive elements. <b>Relate</b> erent types of the transducers. <b>Demonstrate</b> of different bridges and transducers.	sychomoto	Iechan	nism		
CO4	Explain and dis analog	n the construction and operation of recording play instruments. Establish Relations between and digital signal conversions.Particular Particular	sychomoto	r	Set		
CO5	Explain types sin trends i	<b>n</b> the construction and working of differentParticularignal conditioners. <b>Demonstrate</b> the recentin measurement of AC quantities.	sychomoto	r N	Mechanisr		
Sl. No.		List of Experiments				COs	
1.	Calibra	tion of Current Transformer and Potential transformer				CO1	
2.	Measur	rement of three phase active, Reactive Power and Power	er factor			CO1	
3.	Calibra	tion of Single phase / Three Phase Energy meter				CO1	
4.	Resista	nce measurement using Wheat stone bridge				CO2	
5.	Inducta			CO2			
6.	Capacitance measurement using Schering Bridge						
7.	Study of	of Transducers				CO3	
8.	A/D co	nverter				CO4	
9.	D/A co	nverters				<b>CO4</b>	
10.	Measur	rement of Current / Voltage / power / Energy using Are	duino boar	d.		CO5	
	1		PRACT	TICAL	TO	TAL	
			30		1 3	<b>JU</b>	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	0	0	1	0	1	1	0	0	3	0	0	2	3
CO2	1	1	0	0	0	0	0	0	0	0	0	1	2	3
CO3	1	0	1	0	1	0	0	2	0	1	0	0	2	2
CO4	1	2	0	0	0	0	0	0	0	0	0	1	2	2
CO5	0	0	0	0	0	0	0	0	1	0	1	1	2	3
Total	4	3	1	1	1	1	1	2	1	4	1	3	10	13
Scaled	1	3	1	1	1	1	1	1	1	1	1	1	2	3

## 1-5 >1, 6-10 >2, 11-15 > 3

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	COURSE NAME	L	Т	Р	С
<b>XEE 601</b>	POWER ELECTRONICS	3	1	0	4
<b>C</b> : <b>P</b> : <b>A</b>		L	Т	Р	Η
3:0:0		3	1	0	4

Course (	Dutcomes:	Domain	Level	
CO1	To Understand the structure, operation and characteristics of power switching devices.	Cognitive	Understanding	
CO2	Determine the operation, characteristics and performance parameters of controlled rectifiers.	Cognitive	Understanding	
CO3	Analysis the operation of DC - DC choppers.	Cognitive	Analyzing	
CO4	Analysis the operation of various inverters and infer the suitable PWM techniques.	Cognitive	Analyzing	
CO5	To Understand the concept of various types of AC voltage controllers.	Cognitive	Understanding	

#### **UNIT – I: POWER SWITCHING DEVICES**

9+3

Review on Semiconductor devices – I-V characteristics and Switching Characteristics of power Diodes,<br/>SCR, TRIAC, power BJT, power MOSFET and IGBT. Triggering and Commutation Circuits.UNIT – II: THYRISTOR RECTIFIERS9 + 3

Single phase half-wave and full-wave thyristor rectifiers – Single phase full-bridge thyristor rectifier with R-load and highly inductive load – Three phase full-bridge thyristor rectifier with R-load and highly inductive load.

UNIT – III: DC TO DC CHOPPERS

9 + 3
Types of Choppers, Class A to E, step-up and step-down choppers – Analysis of Voltage, Current and Load commutated choppers –Introduction to Resonant converters.

#### **UNIT – IV: INVERTERS**

9 + 3

Single phase, Three phase voltage source inverters (Both 120° and 180° mode of conductions) – Bipolar sinusoidal modulation and unipolar sinusoidal modulation, Modulation Index - PWM Techniques-Current Source Inverters.

#### UNIT – V: AC VOLTAGE CONTROLLERS

9 + 3

Single-phase and three phase AC voltage controllers -. Multi-stage sequence control – step-up and step-down cycloconverter – Single phase to single phase and Single phase to Three phase cycloconverters.

LECTURE	TUTORIAL	TOTAL
45	15	60

#### **TEXT BOOKS:**

- 1. Rashid, M.H., 'Power Electronics: Circuits, Devices and Applications', Pearson Education India, 2009.
- 2. Singh, M.D and Kanchandani, 'Power Electronics', Tata McGraw Hill & Hill publication Company Ltd New Delhi, 2009.
- 3. Bimbhra, P.S, 'Power Electronics', Khanna Publishers, 2007.

#### **REFERENCE BOOKS:**

- 1. Dubey, G.K., Doradia, S.R., Joshi, A. and Sinha, R.M., 'Thyristorised Power Controllers', Wiley Eastern Limited, 1986.
- 2. Lander, W., 'Power Electronics', McGraw Hill and Company, Third Edition, 2009.
- 3. Sen.P.C., 'Power Electronics', Tata McGraw-Hill Publishing Co. Ltd., New Delhi, 2005.
- 4. Joseph Vithayathil, 'Power Electronics', McGraw-Hill New York, 1996.
- 5. Erickson, R.W and Maksimovic, D., 'Fundamentals of Power Electronics', Springer Science & Business Media, 2007.
- 6. Umanand, L., 'Power Electronics: Essentials and Applications', Wiley India, 2009.
- 7. Ned Mohan, Tore M. Undeland and William P.Robbins, 'Power Electronics: Converters, Applications and Design', New Jersey, John Wiley and Sons, 2007.

#### **E-RESOURCES:**

- 1. Lecture Series on Power Electronics by Prof. B.G. Fernandes, Department of Electrical Engineering, IIT Bombay.
- 2. http://www.nptel.ac.in/courses/108105066/PDF/L-1(SSG)(PE)%20((EE)NPTEL).pdf

	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	0	0	1	3	0	0	0	0	1	3	1
CO2	2	1	2	1	0	0	1	0	0	0	0	0	2	2
CO3	3	1	1	0	0	0	0	0	0	0	0	0	1	2
CO4	1	3	2	0	0	1	0	0	0	0	0	0	2	1
CO5	1	2	3	1	3	0	1	1	0	0	0	0	3	2
Total	10	9	9	2	3	2	5	1	0	0	0	1	11	8
Scaled	2	2	2	1	1	1	1	1	0	0	0	1	3	2

1-5 > 1, 6-10 > 2, 11-15 > 30 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COUR COD	COURSE NAME	L	Т	Р	С		
XEE 6	502 MICROPROCESSORS AND MICROCONTROLLERS	3	0	0	3		
<b>C</b> : <b>P</b> : <i>A</i>	A	L	Т	Р	H		
3:0:0		3	0	0	3		
Course (	Outcomes:	Do	main		Level		
CO1	To understand the fundamentals of microprocessors, microcontrollers and embedded systems.	Cog	nitive	Un	Understanding		
CO2	To explain the architecture, Timing diagrams and Execution cycles of 8051.	Cog	nitive	Un	derstanding		
CO3	To identify the types of addressing modes, recall Instruction types and to understand the basic concepts of programming.	Cog	nitive	derstanding			
CO4	To understand interfacing design of peripherals like I/O, A/D, D/A, timer etc.	Cog	Cognitive Understand				
CO5	To identify and explain various communication protocols and interfacing with external devices.	Cog	nitive	Un	derstanding		

#### **UNIT - I: FUNDAMENTALS OF MICROPROCESSORS**

Fundamentals of Microprocessor Architecture, Comparison of 8-bit microcontrollers, 16-bit and 32bitmicrocontrollers. Definition of embedded system and its characteristics, Role of microcontrollers in embedded Systems. 8085 Hardware Architecture, – Functional Building Blocks of Processor – Memory organization – I/O ports and data transfer concepts– Timing Diagram – Interrupts- Data Transfer, Manipulation, Control Algorithms& I/O instructions, Programming concepts with 8085.

9

UNIT - II: THE 8051ARCHITECTURE         9           Overview of the 8051 family-Internal Block Diagram, CPU, ALU, address, data and control bus, working registers, SFRs, Clock and RESET circuits, Stack and Stack Pointer, Program Counter, I/O ports, Memory Structures, Data and Program Memory, Timing diagrams and Execution Cycles.           UNIT - III: INSTRUCTION SET AND PROGRAMMING         9           8051 Instruction syntax, Data types, Subroutines, Addressing modes, Instructions et, Instructions, Subroutine instructions, Bit manipulation instruction. Assembly language programs, C language programs. Assemblers and compilers. Programming and Debugging tools.         9           Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters and memory devices. Parallel Peripheral Interface8255, Interrupt Controller 8259, Timer / Counter 8254, Keyboard Display Controller 8279.         9           Synchronous and Asynchronous Communication. RS232, SPI, I2C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing. Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor Arthefect Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013.         1. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2017.         1. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013.         1. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The				
Overview of the 8051 family-Internal Block Diagram, CPU, ALU, address, data and control bus, working registers, SFRs, Clock and RESET circuits, Stack and Stack Pointer, Program Counter, I/O ports, Memory Structures, Data and Program Memory, Timing diagrams and Execution Cycles. UNIT - III: INSTRUCTION SET AND PROGRAMMING 9 8051 Instruction syntax, Data types, Subroutines, Addressing modes, Instructions set, Instruction timings, Data transfer instructions, Arithmetic instruction, Logical instructions, Branch instructions, Subroutines, Assemblers and compilers. Programming and Debugging tools. UNIT - IV: MEMORY AND I/O INTERFACING 9 9 Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters and memory devices. Parallel Peripheral Interface8255, Interrupt Controller 8259, Timer / Counter 8254, Keyboard Display Controller 8279. UNIT - V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS 9 Synchronous and Asynchronous Communication. RS232, SPI, 12C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor. I EECTURE TUTORIAL TOTAL 45 0 45 TEXT BOOKS: 1. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013. 2. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C', Pearson Education, 2007. 3. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004. 4. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017. <b>EFFERENCE BOOKS:</b> 1. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017. 2. D.V.Hall, "Microprocessors	UNIT - II: THE 8051ARCHIT	ECTURE		9
working registers, SFRs, Clock and RESET circuits, Stack and Stack Pointer, Program Counter, I/O         ports, Memory Structures, Data and Program Memory, Timing diagrams and Execution Cycles.         UNIT - ILI INSTRUCTION SET AND PROGRAMMING         8051 Instruction syntax, Data types, Subroutines, Addressing modes, Instructions, Branch instructions, Subroutine instructions, Bit manipulation instruction. Assembly language programs, C language programs.         Assemblers and compilers. Programming and Debugging tools.         UNIT - IV: MEMORY AND I/O INTERFACING       9         Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters and memory devices. Parallel Peripheral Interface8255, Interrupt Controller 8259, Timer / Counter 8254, Keyboard Display Controller 8279.         UNIT - V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS       9         Synchronous and Asynchronous Communication. RS232, SPI, 12C.Introduction and interfacing, to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor.         I. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013.         2. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.         3. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.	Overview of the 8051 family-In	ternal Block Diagram, (	CPU, ALU, address, dat	a and control bus,
ports, Memory Structures, Data and Program Memory, Timing diagrams and Execution Cycles. UNIT - III: INSTRUCTION SET AND PROGRAMMING 9 9 S051 Instruction syntax, Data types, Subroutines, Addressing modes, Instruction set, Instruction timings, Data transfer instructions, Arithmetic instruction, Logical instructions, Branch instructions, Subroutine instructions, Bit manipulation instruction. Assembly language programs, C language programs. Assemblers and compilers. Programming and Debugging tools. UNIT - IV: MEMORY AND I/O INTERFACING 9 9 Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters and memory devices. Parallel Peripheral Interface8255, Interrupt Controller 8259, Timer / Counter 8254, Keyboard Display Controller 8279. UNIT - V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS 9 Synchronous and Asynchronous Communication. RS232, SPI, I2C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard Interfacing, Stepper motor interfacing. C Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor. LECTURE TUTORIAL TOTAL 45 0 45 TEXT BOOKS: 1. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013. 2. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007. 3. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004. 4. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017. REFERENCE BOOKS: 1. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017. 2. D.V.Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 2005. E-RESOURCES: 1. www.nptel.ac.	working registers, SFRs, Clock a	and RESET circuits, Stat	ck and Stack Pointer, P	rogram Counter, I/O
UNIT - III: INSTRUCTION SET AND PROGRAMMING     9       8051 Instruction syntax, Data types, Subroutines, Addressing modes, Instruction set, Instruction timings, Data transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Subroutine instructions, Bit manipulation instruction. Assembly language programs, C language programs.       Assemblers and compilers. Programming and Debugging tools.     9       WINT - IV: MEMORY AND I/O INTERFACING     9       Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters and memory devices. Parallel Peripheral Interface8255, Interrupt Controller 8259, Timer / Counter 8254, Keyboard Display Controller 8279.     9       Synchronous and Asynchronous Communication. RS232, SPI, I2C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor.     9       I. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013.     45       I. R.S. Gaonkar, "Microprocessor Architecture: Program gauge Learning, 2004.     4. R. Kamal, "Embedded System"; McGraw Hill Education, Third Edition, 2017.       REFERENCE BOOKS:     1. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017       I. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition Th	ports, Memory Structures, Data	and Program Memory, 7	Timing diagrams and Exe	ecution Cycles.
<ul> <li>8051 Instruction syntax, Data types, Subroutines, Addressing modes, Instructions et, Instruction timings, Data transfer instructions, Arithmetic instruction, Logical instructions, Branch instructions, Bit manipulation instruction. Assembly language programs, C language programs. Assemblers and compilers. Programming and Debugging tools.</li> <li>UNIT - IV: MEMORY AND I/O INTERFACING 9</li> <li>Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters and memory devices. Parallel Peripheral Interface8255, Interrupt Controller 8259, Timer / Counter 8254, Keyboard Display Controller 8279.</li> <li>UNIT - V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS 9</li> <li>Synchronous and Asynchronous Communication. RS232, SPI, 12C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor.</li> <li>I. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013.</li> <li>M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.</li> <li>K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.</li> <li>R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.</li> <li>REFFRENCE BOOKS:</li> <li>I. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, Sth ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017</li> <li>D.V.Hall, "Microprocessors &amp; Interfacing", McGraw Hill Higher Education, 2005.</li> <li>E-RESOURCES:</li> <li>I. www.nptel.ac.in</li> <li>https://nptel.ac.in/noc19_ee11</li> <li>https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Mic</li></ul>	UNIT - III: INSTRUCTION SE	ET AND PROGRAMMI	NG	9
Data transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Subroutine instructions, Bit manipulation instruction, Assembly language programs, C language programs.         Assemblers and compilers. Programming and Debugging tools.         UNIT - IV: MEMORY AND I/O INTERFACING       9         Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters and memory devices. Parallel Peripheral Interface8255, Interrupt Controller 8259, Timer / Counter 8254, Keyboard Display Controller 8279.         UNIT - V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS       9         Synchronous and Asynchronous Communication. RS232, SPI, 12C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor.         TEXT BOOKS:       1       I. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013.       I. R.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.         3. K.J. Ayala, "8051 Microprocessors & Interfacing", McGraw Hill Education, Third Edition, 2017.       REFERENCE BOOKS:         1. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017         2. D.V.Hall, "Microprocessors & I	8051 Instruction syntax, Data type	es, Subroutines, Address	ing modes, Instruction set	t, Instruction timings,
Instructions, Bit manipulation instruction. Assembly language programs, C language programs. Assemblers and compilers. Programming and Debugging tools. UNIT - IV: MEMORY AND I/O INTERFACING 9 Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters and memory devices. Parallel Peripheral Interface8255, Interrupt Controller 8259, Timer / Counter 8254, Keyboard Display Controller 8279. UNIT - V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS 9 Synchronous and Asynchronous Communication. RS232, SPI, I2C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor. TEXT BOOKS: 1. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013. 2. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007. 3. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004. 4. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017. <b>REFERENCE BOOKS:</b> 1. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017 2. D.V.Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 2005. <b>E-RESOURCES:</b> 1. www.nptel.ac.in/courses./Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers./Learning%20Material%20-%20Microprocessors%20and%20Microprocessors%20and% 20Microcontrollers./Learning%20Material%20-%20Microprocessors%20and%20Microprocessors%20and%	Data transfer instructions, Arithm	netic instructions, Logica	I instructions, Branch ins	tructions, Subroutine
Assemblers and computers and computers. Programming and Debugging tools.         UNIT - IV: MEMORY AND I/O INTERFACING       9         Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters and memory devices. Parallel Peripheral Interface8255, Interrupt Controller 8259, Timer / Counter 8254, Keyboard Display Controller 8279.         UNIT - V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS       9         Synchronous and Asynchronous Communication. RS232, SPI, I2C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor.         Image: International Publishing, 6th Edition, 2013.       TOTAL         45       0       45         TEXT BOOKS:	instructions, Bit manipulation in	struction. Assembly lan	guage programs, C lang	uage programs.
Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters and memory devices. Parallel Peripheral Interface8255, Interrupt Controller 8259, Timer / Counter 8254, Keyboard Display Controller 8279.         UNT - V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS       9         Synchronous and Asynchronous Communication. RS232, SPI, I2C.Introduction and interfacing, to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor.         Image: Control of the system of the sy	Assemblers and compilers. Progra	mming and Debugging to	DOIS.	
Memory and PO expansion ouses, control signals, memory wat states. method of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters and memory devices. Parallel Peripheral Interface8255, Interrupt Controller 8259, Timer / Counter 8254, Keyboard Display Controller 8279.         UNIT - V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS         9       Synchronous and Asynchronous Communication. RS232, SPI, 12C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor.         Image: Interfacing and the end of the	Momenty and L/O expansion by	JINIERFACING	more wait states. Inter	facing of paripharal
actives such as General Fulpose DG, ADC, DAC, MAC, MINES, Counters and memory devices. Familier peripheral Interface8255, Interrupt Controller 8259, Timer / Counter 8254, Keyboard Display Controller 8279.         UNIT - V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS       9         Synchronous and Asynchronous Communication. RS232, SPI, 12C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor.         Microcontroller, ARM Processor, ATMEGA Processor.       TOTAL         45       0         45       0         9       Synchronous with the 8085", Penram International Publishing, 6th Edition, 2013.         2. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.         3. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.         4. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.         REFERENCE BOOKS:         1. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017         2. D.V.Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 2005.         ERESOURCES:         1. mww.nptel.ac.in         1. www.nptel.ac.in         1. typ	devices such as General Purpos	ses, control signals, inc se $I/O$ ADC DAC time	ers counters and memo	acting of peripheral
Interfactors of the control of 2001, Finite Found Field Wite State Display         Controller 8279.         UNIT - V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS       9         Synchronous and Asynchronous Communication. RS232, SPI, 12C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor.         LECTURE       TUTORIAL       TOTAL         45       0       45         TEXT BOOKS:         1. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013.         2. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.         3. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.         4. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.         REFERENCE BOOKS:         1. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017         2. D.V.Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 2005.         ERESOURCES:         1. www.nptel.ac.in         2. https://nptel.ac.in/courses/Webcourse-contents/I	Peripheral Interface 8255 Interru	int Controller 8259 Tin	her / Counter 8254 Kev	hoard Display
UNIT - V: EXTERNAL COMMUNICATION INTERFACE AND APPLICATIONS         9           Synchronous and Asynchronous Communication. RS232, SPI, I2C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor.           LECTURE         TUTORIAL         TOTAL           45         0         45           TEXT BOOKS:           1. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013.           2. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.           3. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.           4. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.           REFERENCE BOOKS:           1. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017           2. D.V.Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 2005.           E-RESOURCES:           1. mww.nptel.ac.in           2. https://onlinecourses.nptel.ac.in/noc19_ee11           3. https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers. <td>Controller 8279.</td> <td>ipt controller 0259, 11</td> <td></td> <td>bourd Display</td>	Controller 8279.	ipt controller 0259, 11		bourd Display
Synchronous and Asynchronous Communication. RS232, SPI, I2C.Introduction and interfacing to protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor.         Image: transmission of the transmission of transmission of the transmission of transmissing transmission of transmission of transmission of tr	UNIT - V: EXTERNAL COMM	<b>IUNICATION INTERI</b>	FACE AND APPLICAT	IONS 9
protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing, Stepper motor interfacing, DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC Microcontroller, ARM Processor, ATMEGA Processor. ILECTURE TUTORIAL TOTAL 45 0 45 TEXT BOOKS: 1. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013. 2. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007. 3. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004. 4. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017. REFERENCE BOOKS: 1. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017 2. D.V.Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 2005. E-RESOURCES: 1. www.nptel.ac.in 2. https://onlinecourses.nptel.ac.in/noc19_ee11 3. https://onlinecourses.nptel.ac.in/noc19_ee11 3. https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers./Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.	Synchronous and Asynchronous	Communication. RS23	2, SPI, I2C.Introduction	n and interfacing to
DC Motor interfacing, sensor interfacing, Application to automated systems - Introduction to PIC         Microcontroller, ARM Processor, ATMEGA Processor.         LECTURE       TUTORIAL       TOTAL         45       0       45         TEXT BOOKS:	protocols like Blue-tooth and Zig	g-bee LED, LCD and ke	yboard interfacing, Stepp	ber motor interfacing,
Microcontroller, ARM Processor, ATMEGA Processor.LECTURETUTORIALTOTAL45045TEXT BOOKS:1. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013.2. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.3. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.4. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.REFERENCE BOOKS:1. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 20172. D.V.Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 2005.E-RESOURCES:1. www.nptel.ac.in2. https://onlinecourses.nptel.ac.in/noc19_ee113. https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers./Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.	DC Motor interfacing, sensor in	nterfacing, Application	to automated systems -	Introduction to PIC
LECTURETUTORIALTOTAL45045TEXT BOOKS:1. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013.2. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.3. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.4. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.REFERENCE BOOKS:1. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 20172. D.V.Hall, "Microprocessors &Interfacing", McGraw Hill Higher Education, 2005.E-RESOURCES:1. www.nptel.ac.in1. www.nptel.ac.inAttracting 2004.4. https://onlinecourses.nptel.ac.in/noc19_ee113. https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers./Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.	Microcontroller, ARM Processor,	ATMEGA Processor.		
45045TEXT BOOKS:1. R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013.2. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.3. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.4. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.REFERENCE BOOKS:1. D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 20172. D.V.Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 2005.E-RESOURCES:1. www.nptel.ac.in2. https://onlinecourses.nptel.ac.in/noc19_ee113. https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 200Microcontrollers./Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.		LECTURE	TUTORIAL	TOTAL
<ol> <li>TEXT BOOKS:         <ol> <li>R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013.</li> <li>M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.</li> <li>K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.</li> <li>R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.</li> </ol> </li> <li>REFERENCE BOOKS:         <ol> <li>D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017</li> <li>D.V.Hall, "Microprocessors &amp;Interfacing", McGraw Hill Higher Education, 2005.</li> </ol> </li> <li>E-RESOURCES:         <ol> <li>www.nptel.ac.in</li> <li>https://onlinecourses.nptel.ac.in/noc19_ee11</li> <li>https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors% 20and% 20Microcontrollers./Learning% 20Material% 20-% 20Microprocessors% 20and% 20Microcontrollers.</li> </ol></li></ol>		45	0	45
<ol> <li>R.S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 6th Edition, 2013.</li> <li>M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.</li> <li>K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.</li> <li>R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.</li> <li><b>REFERENCE BOOKS:</b> <ol> <li>D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017</li> <li>D.V.Hall, "Microprocessors &amp;Interfacing", McGraw Hill Higher Education, 2005.</li> </ol> </li> <li><b>E-RESOURCES:</b> <ul> <li>www.nptel.ac.in</li> <li>https://onlinecourses.nptel.ac.in/noc19_ee11</li> <li>https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers-/Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.</li> </ul> </li></ol>	TEXT BOOKS:			
<ul> <li>International Publishing, 6th Edition, 2013.</li> <li>M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.</li> <li>K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.</li> <li>R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.</li> <li><b>REFERENCE BOOKS:</b> <ol> <li>D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017</li> <li>D.V.Hall, "Microprocessors &amp;Interfacing", McGraw Hill Higher Education, 2005.</li> </ol> </li> <li><b>E-RESOURCES:</b> <ol> <li>www.nptel.ac.in</li> <li>https://onlinecourses.nptel.ac.in/noc19_ee11</li> <li>https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers-/Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.</li> </ol> </li> </ul>	1. R.S. Gaonkar, "Microprocesso	r Architecture: Programm	ning and Applications with	th the 8085", Penram
<ol> <li>M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Pearson Education, 2007.</li> <li>K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.</li> <li>R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.</li> <li><b>REFERENCE BOOKS:</b></li> <li>D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017</li> <li>D.V.Hall, "Microprocessors &amp; Interfacing", McGraw Hill Higher Education, 2005.</li> <li><b>E-RESOURCES:</b></li> <li>www.nptel.ac.in</li> <li>https://onlinecourses.nptel.ac.in/noc19_ee11</li> <li>https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers-/Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.</li> </ol>	International Publishing, 6th E	dition, $2013$ .		Embedded Contenae
<ul> <li>3. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.</li> <li>4. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.</li> <li><b>REFERENCE BOOKS:</b> <ol> <li>D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017</li> <li>2. D.V.Hall, "Microprocessors &amp;Interfacing", McGraw Hill Higher Education, 2005.</li> </ol> </li> <li><b>E-RESOURCES:</b> <ol> <li>www.nptel.ac.in</li> <li>https://onlinecourses.nptel.ac.in/noc19_ee11</li> <li>https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers./Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.</li> </ol> </li> </ul>	2. M.A.Mazidi, J.G.Mazidi and	R.D.McKiniay, The 80	51 Microcontroller and	Embedded Systems:
<ul> <li>3. K.J. Ayaa, 3031 Microcontroller, Denhar Cengage Learning, 2004.</li> <li>4. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.</li> <li><b>REFERENCE BOOKS:</b> <ol> <li>D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017</li> <li>2. D.V.Hall, "Microprocessors &amp;Interfacing", McGraw Hill Higher Education, 2005.</li> </ol> </li> <li><b>E-RESOURCES:</b> <ol> <li>www.nptel.ac.in</li> <li>https://onlinecourses.nptel.ac.in/noc19_ee11</li> <li>https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers-/Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.</li> </ol> </li> </ul>	Using Assembly and C, Pears	on Education, 2007.	2001	
<ul> <li>R. Kahlai, "Effective System", Webfaw Thil Education, Thild Educion, 2017.</li> <li>REFERENCE BOOKS: <ol> <li>D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017</li> <li>D.V.Hall, "Microprocessors &amp; Interfacing", McGraw Hill Higher Education, 2005.</li> </ol> </li> <li>E-RESOURCES: <ol> <li>www.nptel.ac.in</li> <li>https://onlinecourses.nptel.ac.in/noc19_ee11</li> <li>https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers./Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.</li> </ol> </li> </ul>	A R Kamal "Embedded System"	" McGraw Hill Education	n Third Edition 2017	
<ol> <li>D.A.Patterson and J.H.Hennessy, Computer Organization and Design RISC-V Edition The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017</li> <li>D.V.Hall, "Microprocessors &amp;Interfacing", McGraw Hill Higher Education, 2005.</li> <li>E-RESOURCES:         <ol> <li>www.nptel.ac.in</li> <li>https://onlinecourses.nptel.ac.in/noc19_ee11</li> <li>https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers-/Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.</li> </ol> </li> </ol>	REFERENCE BOOKS:	, Meoraw IIII Educatio	n, Third Edition, 2017.	
<ul> <li>1. D.A.Fatterson and J.F.Fitennessy, Computer organization and Design Ruse-v Educion The Hardware/Software Interface, 5th ed., Amsterdam; Boston: Elsevier/Morgan Kaufmann, 2017</li> <li>2. D.V.Hall, "Microprocessors &amp;Interfacing", McGraw Hill Higher Education, 2005.</li> <li>E-RESOURCES: <ol> <li>www.nptel.ac.in</li> <li>https://onlinecourses.nptel.ac.in/noc19_ee11</li> <li>https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers-/Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.</li> </ol> </li> </ul>	1 D A Patterson and I H Hennes	sy Computer Organizatio	on and Design RISC-V Fu	dition The
<ol> <li>D.V.Hall, "Microprocessors &amp;Interfacing", McGraw Hill Higher Education, 2005.</li> <li>E-RESOURCES:         <ol> <li>www.nptel.ac.in</li> <li>https://onlinecourses.nptel.ac.in/noc19_ee11</li> <li>https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers-/Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.</li> </ol> </li> </ol>	Hardware/Software Interface	Sth ed Amsterdam: Bost	on: Elsevier/Morgan Kau	fmann 2017
<ul> <li>E-RESOURCES:</li> <li>1. www.nptel.ac.in</li> <li>2. https://onlinecourses.nptel.ac.in/noc19_ee11</li> <li>3. https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers-/Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.</li> </ul>	2. D.V.Hall, "Microprocessors &	Interfacing" McGraw Hi	ll Higher Education, 2005	
<ol> <li>www.nptel.ac.in</li> <li>https://onlinecourses.nptel.ac.in/noc19_ee11</li> <li>https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers-/Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.</li> </ol>	E-RESOURCES:			<u> </u>
<ol> <li>https://onlinecourses.nptel.ac.in/noc19_ee11</li> <li>https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and% 20Microcontrollers-/Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.</li> </ol>	1. www.nptel.ac.in			
3. https://nptel.ac.in/courses/Webcourse-contents/IIScBANG/notused/Microprocessors%20and%20Microcontrollers-/Learning%20Material%20-%20Microprocessors%20and%20microcontrollers.	2. https://onlinecourses.nptel.ac.in	n/noc19 ee11		
20 Microcontrollers-/Learning% 20 Material% 20-% 20 Microprocessors% 20 and% 20 microcontrollers.	3. https://nptel.ac.in/courses/Web	course-contents/IIScBAN	NG/notused/Microprocess	ors%20and%
	20Microcontrollers-/Learning%	20Material%20-%20Mic	croprocessors%20and%20	microcontrollers.

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2
CO1	1	0	2	0	0	0	0	0	0	1	1	0	1	1
CO2	1	2	1	3	1	0	0	0	2	1	2	1	1	1
CO3	0	0	0	0	0	1	2	0	1	2	0	0	1	1

CO4	1	1	2	2	1	0	0	0	2	1	2	1	0	1
CO5	1	2	2	1	0	0	3	0	3	2	1	0	0	1
Total	4	5	7	6	2	1	5	0	8	7	6	2	3	5
Scaled	1	1	2	1	1	1	1	0	2	2	1	1	1	1

 $1-5 > 1, \ 6-10 > 2, \ 11-15 > 3 \\ 0 - No \ Relation, \ 1 - Low \ Relation, \ 2 - Medium \ Relation, \ 3 - High \ Relation$ 

COUR COD	RSE DE	COURSE NAME	L	Т	Р	С		
		PROFESSIONAL SKILLS	1	0	2	3		
<b>C</b> : <b>P</b> : <b>A</b>			L	Т	Р	Н		
2.6:0.4	4:0		1	0	4	5		
Course Outcomes:		nes:	Domain			Level		
CO1	Abili	ity to understand communications	Cognitive			Remember		
CO2	App	ly the known skills for career	Co	ognitiv	/e	Apply		
CO3	Iden	tify inner strength	Co	ognitiv	/e	Remember		
<b>CO4</b>	Cons	struct the attitude as a professional	Cognitive		/e	Create		
CO5	Prac	ticing Etiquettes	Psychomotor		otor	Guided Response		

UNIT – I: Communication				9
1.1 – Brainstorming				
1.2 - LSRW				
UNIT – II: Career Skills				9
2.1 – Resume & CV Preparing Skills				
2.2 – Interview Skills				
2.3 – Exploring Career Opportunities				
UNIT – III: Team Skills				9
3.1 – Listening as a Team Skill				
3.2 – Team Building at Work Place				
UNIT – IV: Professional Skills				9
4.1 – Attitude and Goal Setting				
4.2 – Verbal and Non-Verbal Communic	cations			
UNIT – V: Professional Etiquettes				9
5.1 – Social Etiquettes				
5.2 – Cultural Ethics at work place				
	LECTURE	TUTORIAL	TC	DTAL
	45	0		45
<b>REFERENCE BOOKS:</b>				

- 1. Er. A. K. Jain, Dr. Pravin S. R. Bhatia, Dr. A. M. Sheikh Professional Communication Skills S. Chand Publications, 2015.
- 2. Alan Pannett. Key Skills for Professionals: How to Succeed in Professional Services, Kogan Page; 1st edition, 2013.

COURSE CODE	COURSE NAME	L	Т	Р	С
<b>XEE 606</b>	CYBER SECURITY	0	0	0	0
<b>C</b> : <b>P</b> : <b>A</b>		L	Т	Р	Η
3:0:0		3	0	0	3

Course (	Dutcomes:	Domain	Level
CO1	Understand the fundamentals of Cyber Security and the	Cognitive	Understanding
COI	technologies.		_
CO2	Understand the organizational structure of Cyber security.	Cognitive	Understanding
CO3	Understand the Cyber Security policy development.	Cognitive	Understanding
<b>CO4</b>	Understand the Indian IT act and the initiatives.	Cognitive	Understanding
CO5	Understand and Apply the Cyber security practices.	Cognitive	Applying

#### **UNIT – I: INTRODUCTION**

Cyber Security – Cyber Security policy – Domain of Cyber Security Policy – Laws and Regulations – Enterprise Policy – Technology Operations – Technology Configuration - Strategy Versus Policy – Cyber Security Evolution – Productivity – Internet – E commerce – Counter Measures – Challenges. 9

### **UNIT - II: CYBER SECURITY OBJECTIVES AND GUIDANCE**

Cyber Security Metrics – Security Management Goals – Counting Vulnerabilities – Security Frame works - E-Commerce Systems - Industrial Control Systems - Personal Mobile Devices - Security Policy Objectives – Guidance for Decision Makers – Tone at the Top – Policy as a Project– Cyber Security Management – Arriving at Goals – Cyber Security Documentation – The Catalog Approach – Catalog Format – Cyber Security Policy Taxonomy.

#### **UNIT – III: CYBER SECURITY POLICY CATALOG**

Cyber Governance Issues - Net Neutrality - Internet Names and Numbers - Copyright and Trademarks -Email and Messaging - Cyber User Issues - Malvertising - Impersonation - Appropriate Use - Cyber Crime – Geo location – Privacy - Cyber Conflict Issues – Intellectual property Theft – Cyber Espionage – Cyber Sabotage – Cyber Welfare- Computer Forensics – Steganography

#### **UNIT - IV: CYBER SECURITY INITIATIVES AND IT ACT**

Counter Cyber Security Initiatives in India, Cyber Security Exercise, Cyber Security Incident Handling, Cyber Security Assurance, IT Act, Hackers-Attacker-Counter measures, Application Web Security, Digital Infrastructure Security and Defensive Programming. Traditional Problems Associated with Computer Crime, Introduction to Incident Response.

9

9

9

UNIT – V: SECURITY PRACT	ICES		9
Guidelines to choose web browse setting up a Secure password, Two for social media security, Tips a Windows, User Account Password Security Online Banking Security Security Security of Micro ATMs (POS).	ers, Securing web browser, A o-steps authentication, Passw and best practices for safer l. Introduction to mobile Sma , Mobile Banking Security, e-wallet Security Guideline	Antivirus, Email sec ord Manager, Wi-Fi Social Networking artphone Security, A Security of Debit a s Security Guideline	eurity, Guidelines for Security, Guidelines . Basic Security for .ndroid Security, IOS nd Credit Card, UPI es for Point of Sales
	LECTURE	TUTORIAL	TOTAL
	45	0	45

#### **REFERENCE BOOKS:**

1. Jennifer L. Bayuk, J. Healey, P. Rohmeyer, Marcus Sachs , Jeffrey Schmidt, Joseph Weiss "Cyber Security Policy Guidebook" John Wiley & Sons 2012.

- 2. Rick Howard "Cyber Security Essentials" Auerbach Publications 2011.
- 3. Cyber Laws & Information Technology, Jothi Rathan, Vijay Rathan, Bhrath Pubishers, 7th Edition January 2019.
- 4. Modern Cyber security Practices by Pascal Ackerman, BPB Publications, 2020
- 5. Dan Shoemaker Cyber security The Essential Body Of Knowledge, 1st ed. Cengage Learning 2011.
- 6. Rhodes-Ousley, Mark, "Information Security: The Complete Reference", Second Edition, McGraw-Hill, 2013.

#### **E-RESOURCES:**

- 1. https://www.coursera.org/specializations/cyber-security
- 2. www.nptel.ac.in
- 3. http://professional.mit.edu/programs/short-programs/applied-cybersecurity
- 4. https://us.norton.com/internetsecurity-how-to-cyber-security-best-practices-for-employees.html
- 5. https://www.meity.gov.in/content/cyber-laws

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	0	0	0	0	0	2	0	3	0	0	0	0
CO 2	0	0	0	0	0	0	2	0	1	0	0	0
CO 3	3	0	0	0	0	2	3	0	1	0	0	0
CO 4	0	0	0	0	0	0	0	0	0	2	0	0
CO 5	3	0	0	0	0	0	0	0	0	0	0	0
Total	6	0	0	0	0	4	5	3	2	2	0	0
Scaled	2	0	0	0	0	1	1	1	1	1	0	0

#### Table 1: Mapping of Cos with GAs:

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURSE CODE	XEE 607	L	Т	Р	С
COURSE NAME	<b>Power Electronics Laboratory</b>	0	0	1	1
PREREQUISITES	Electronic Devices and Circuits Analog Electronics	L	Т	Р	Н
C:P:A	0:1:0	0	0	2	2

#### LEARNING OBJECTIVES

- To introduce students to the basic theory of power semiconductor devices and passive components, their practical applications in power electronics.
- To familiarize students to the principle of operation, design and synthesis of different power conversion circuits and their applications.
- To provide strong foundation for further study of power electronic circuits and systems

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	Distinguish the types of power semiconductor devices,	Psychomotor	Mechanism
	and analyze their switching characteristics		
CO2	<i>Construct</i> and <i>demonstrate</i> the operation of controlled rectifiers, and <i>analyze</i> its characteristics and performance parameters of controlled rectifiers	Psychomotor	Mechanism
CO3	<i>Construct</i> and <i>demonstrate</i> the operation of DC-DC switching regulators, and differentiate the switching techniques and basics topologies of DC-DC switching Regulators	Psychomotor	Mechanism
CO4	<i>Apply</i> the different modulation techniques to pulse width modulated inverters and identify the harmonic reduction methods.	Psychomotor	Mechanism
CO5	<i>Construct</i> and <i>demonstrate</i> the operation of AC voltage controller and <i>differentiate</i> its various configurations. Associate cyclo-converter and matrix converter in AC-AC applications.	Psychomotor	Mechanism

S.No	List of Experiments	COs
1	Characteristics of SCR	CO1
2	Characteristics of MOSFET	CO1
3	Characteristics of IGBT	CO1
4	Single phase fully controlled rectifier with R, RL load	CO2
5	BUCK- BOOST converter using MOSFET.	CO3
6	IGBT based choppers.	CO3
7	Four quadrant chopper	CO3
8	Single phase IGBT PWM Inverter.	CO4
9	Series Inverter/ Parallel Inverter	CO4

10Single phase AC voltage controller using SCR / TRIAC.										
11	Single phase cycloconverter.			CC	)5					
		TUTORIAL	PRACTICAL	TOTAL						
	HOURS	0	30	30						

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	0	0	1	3	0	0	0	0	1	3	1
CO2	2	1	2	1	0	0	1	0	0	0	0	0	2	2
CO3	3	1	1	0	0	0	0	0	0	0	0	0	1	2
CO4	1	3	2	0	0	1	0	0	0	0	0	0	2	1
CO5	1	2	3	1	3	0	1	1	0	0	0	0	3	2
Total	10	9	9	2	3	2	5	1	0	0	0	1	11	8
Scaled	2	2	2	1	1	1	1	1	0	0	0	1	3	2

1-5 >1, 6-10 >2, 11-15 > 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COU COI	RSE DE	COURSE NAME		L	Т	Р	С						
XEE	608 MICR	MICROPROCESSORS AND OCONTROLLERS LABORATORY		0	0	1	1						
Prereq	uisite Digital Elec	etronics		L	Т	Р	Η						
С:Р	: A			0	1	2	2						
0:1	1:0												
Course (	Outcomes:		Domain			Level							
CO1	Write Assembly	Language Programs for Arithmetic	Ps	sychom	otor	Guided							
	operations and Data				Response								
	Write Assembly La	nguage Programs using conditional	Psychomotor			Guided							
CO2	jump group of instru	ctions and Subroutines.				Resp	oonse						
	Write Assembly La	nguage Programs for Interfacing	Ps	sychom	omotor		Guided						
CO3	Converters of 8-bit I	D/A and A/D as well as Keyboard with	5			Resp	oonse						
000	8085.						-						
	Program for Serial	communication implementation and I/O	Ps	sychom	otor	Gu	ided						
CO4	interface.					Resp	oonse						
	Program and e	xecute simple applications using	Ps	sychom	otor	Guided							
CO5	microprocessor train	er kits.				Response							

List of Experiments:													
1. Simple arithmetic operations with	8085												
Microprocessors: Multi precision													
addition/subtraction/multiplication/division.													
2. Programming with control instructions: Increment/Decrement, Ascending/Descending order,													
Maximum/Minimum of numbers, Rotate instructions.													
3. Demonstration of basic instructions with 8051 Micro controller executions, including:													
a. Conditional jumps, looping.													
b. Calling subroutines.													
c. Stack parameter testing.													
4. Design program for code conversions.													
5. Interfacing Converters of 8-bit D/A and A/D.													
6. Interfacing of Keyboard with 8085													
7. Interfacing of seven segment display with 8085.													
8. Serial communication and I/O Port operations.													
9. Design and implementation of Traffic Light control.													
10. Design and implementation of Stepper motor control.													
	PRACTICAL	TOTAL											
	30	30											

	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	0	2	0	0	0	0	0	0	1	1	0	1	1
CO2	1	2	1	3	1	0	0	0	2	1	2	1	1	1
CO3	0	0	0	0	0	1	2	0	1	2	0	0	1	1
CO4	1	1	2	2	1	0	0	0	2	1	2	1	0	1
CO5	1	2	2	1	0	0	3	0	3	2	1	0	0	1
Total	4	5	7	6	2	1	5	0	8	7	6	2	3	5
Scaled	1	1	2	2	1	1	1	0	2	2	2	1	1	1

 $1-5 > 1, \ 6-10 > 2, \ 11-15 > 3 \\ 0 - No \ Relation, \ 1 - Low \ Relation, \ 2 - Medium \ Relation, \ 3 - High \ Relation$ 

# SEMESTER VII-R-2018 HIGH VOLTAGE ENGINEERING

Cours	se Outcomes (XEE E41):	Domain	Level
CO1	<b>Explain</b> the different causes of overvoltage and <b>Illustrate</b>	Cognitive	Understanding
	methods for protection of lightning overvoltage		
CO2	Explain and Classify breakdown mechanisms in solid,	Cognitive	Understanding
	inquid and gases dielectrics and list out the application of insulating materials		
CO3	Able to define and Classify the different methods to	Cognitive	Understanding
	currents		
CO4	Classify and analyze the different techniques used to	Cognitive	Understanding
	currents.		Analyzing
CO5	Recall and Illustrate the different testing methods to test	Cognitive	Remembering
	the various high voltage components of power System and		Understanding
	define the International, Indian standards and insulation co-		
	ordination.		

#### Learning Objectives:

Understand the basic physics related to various breakdown processes in solid, liquid and gaseous insulating materials. Knowledge of generation and measurement of D. C., A.C., & Impulse voltages. Knowledge of tests on H.V. equipment and on insulating materials, as per the standards. Knowledge of how over-voltages arise in a power system, and protection against these over-voltages

COURSE CODE	COURSE NAME	L	Τ	P	С							
<b>XEE E41</b>	HICH VOLTACE ENCINEEDINC	3	0	0	3							
C:P: A	HIGH VOLTAGE ENGINEERING	L	Т	Р	Η							
3:0:0		3	0	3								
UNIT - I: OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS9												
Natural Causes of overvo	ltage-Lightning phenomena and its effects on power system	- Ove	er volt	age d	lue							
to switching surge-power frequency overvoltage-control of overvoltage due to switching – protection of												
transmission lines against overvoltage –Becoleys lattice diagram.												
UNIT- II: ELECTRICA	L BREAKDOWN IN GASES, SOLIDS AND LIQUIDS				9							
Gaseous breakdown in	uniform and non-uniform fields - corona discharges - Vac	uum	break	dowr	<u>n</u> -							
conduction and breakdo	wn in pure and commercial liquids - Breakdown mechan	isms	in sc	olid a	nd							
composite dielectrics-Ap	plications of insulating materials.											
UNIT – III: GENERATI	ON OF HIGH VOLTAGES AND HIGH CURRENTS				9							
Generation of High DC,	AC, impulse voltages and currents. Tripping and control of in	npuls	se gen	erator	rs.							
UNIT – IV: MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9												
Measurement of High direct current voltages - measurement of voltages: alternating and impulse												

voltages and measurement of currents: dir	rect, alternating and imp	pulse currents. Digital	techniques in high
voltage measurement			
UNIT – V: HIGH VOLTAGE TESTING	G OF ELECTRICAL	APPARATUS	9
International and Indian standards-Testin	g of insulators and bi	ushings, testing of iso	olators and circuit
breakers, testing of cables, power transform	ners and some high volt	tage equipmentInsul	ation co-ordination.
	LECTURE	PRACTICAL	TOTAL
	45	0	45
TEXTBOOKS			
1. E. Kuffel and M. Abdullah, 'High Volt	age Engineering', Perg	gamon press, Oxford,2	.010.
2. M.S. Naidu and V. Kamaraju, 'High Vo	oltage Engineering', Ta	ata McGraw Hill, 4 th E	dition, 2004.
3. E. Kuffel and W.S. Zaengl, 'High Volta	age Engineering Funda	mentals', Pergamon P	Press, Oxford,
London, 2012			
4. August F.Metraux. "Some problems an	d actual limits of test t	echniques at extra hig	h voltages",
Haefely publications EIS 14.			
REFERENCES			
1. C.L.Wadhwa, 'High Voltage Engineeri	ng', New Age Internat	ional (P) Ltd, 2 nd Edit	ion, 2006.
2. Ravindra Arora, Wolfgang Mosch, "Hi	gh Voltage Insulation I	Engineering", New Ag	ge International
(P) Limited, 2011.			
3. Chinnappa ,K.M., Need for next higher	voltage level in India'	', National seminar on	high voltage AC
and Dc Transmission, New Delhi.			
E-REFERENCES			
1. Web Content - http://www.library.de	ce.edu/e-resources/boo	ks/ee/	
2. NPTEL-High Voltage Engineering,	C.L. Wadhwa -IIT Ma	dras.	

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	-	1	-	1	-	-	-	2	2	2
CO2	3	2	-	-	-	-	-	-	-	-	-	1	1	2
CO3	2	2	-	-	1	1	-	1	-	-	-	1	1	1
CO4	2	2	-	-	-	-	1	-	-	-	-	1	2	2
CO5	2	2	-	2	-	1	-	-	-	-	-	2	2	2
Total	12	10	2	2	1	3	1	2	0	0	0	7	8	9
Scaled	3	2	1	1	1	1	1	2	0	0	0	2	2	2

1-5>1, 6-10>2, 11-15>3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

#### **ELECTRICAL DRIVES**

Course	Outcomes (XEE E51):	Domain	Level
CO1	<b>Understand</b> the characteristics of DC drives and its multi-quadrant operation	Cognitive	Understanding
CO2	<b>Understand</b> the various control techniques of DC Drives.	Cognitive	Remembering
CO3	<b>Categorize</b> the different speed control methods for an Induction motor drive at stator side.	Cognitive	Understanding
CO4	<b>Illustrate</b> the various control techniques of induction motor Drives at rotor side.	Cognitive	Understanding
CO5	<b>Illustrate</b> the various control techniques and application of Synchronous motor drives.	Cognitive	Understanding

COURSE CODE	COURSE NAME	L	Т	Р	C		
XEE E51	ELECTRICAL DRIVES	3	0	0	3		
C:P: A		L	Т	Р	Н		
3:0:0		3	0	0	3		
UNIT- I: DC MOTOR DRIVE CHARACTERISTICS AND ITS MULTI-QUADRANT							
OPERATIONS							

Fundamentals of Electrical Drives - Advantage of Electrical Drives - Selection of Motor Power Rating - Review of emf and torque equations of DC machine - Review of torque-speed characteristics of separately excited dc motor - Four quadrant operation of dc machine - Steady state operation of multiquadrant chopper fed dc drive, regenerative braking.

#### **UNIT-II: CONTROL OF DC DRIVES**

DC Motor and their Performance - Transient Analysis - Ward Leonard Drives - Steady State Analysis of the Single and Three Phase Fully Controlled Converter Fed Separately Excited DC Motor Drive -Continuous and Discontinuous Mode Chopper Controlled DC Drives - Time Ratio Control and Current Limit Control – Industrial Applications of DC drives

#### **UNIT-III: STATOR CONTROLLED INDUCTION MOTOR DRIVES**

Induction Motor Drives - Stator Control - Stator Voltage and Frequency Control - VSI, CSI and Cycloconverter Fed Induction Motor Drives - Open Loop and Closed Loop V/f Control. Conventional space vector modulation; Steady-state performance analysis based on equivalent circuit, speed drop with loading, slip regulation - Industrial Applications of Stator controlled Induction Motor drives. 9

#### **UNIT-IV: ROTOR CONTROLLED INDUCTION MOTOR DRIVES**

Impact of rotor resistance of the induction motor torque-speed curve - Operation of slip-ring induction motor with external rotor resistance, starting torque - Power electronic based rotor side control of slip ring motor - Slip Power Recovery, sub-synchronous and Super Synchronous Operations -PowerFactor Improvement - Closed Loop Control- - Industrial Applications of Rotor controlled Induction Motor drives.

#### **UNIT- V: SYNCHRONOUS MOTOR DRIVES**

9

Separate Controlled Mode - Self Controlled Mode of Synchronous Motor - Constant Marginal Angle Control and Motor Power Factor Control - Cycloconverter Fed Synchronous Motors - Digital Control and Drive Applications.

LECTURE	TUTORIAL	TOTAL	
45	0	45	

#### **TEXT BOOKS**

- 1. Dubey G.K, 'Fundamentals of Electrical Drives', Narosa Publications, 2008.
- 2. B. K. Bose, 'Power Electronics and AC Drives', Prentice Hall Onglewood cliffs,New Jersey,1998
- 3. Krishnan. R, 'Electric motor& Drives; Modelling, Analysis and Control', Prentice Hall of India, 2001.
- 4. Dubey G. K., 'Power Semiconductor Controlled Drives', Prentice Hall, 1989.

#### **REFERENCE BOOKS**

- 1. Murphy, J.M.D and Turnbull F.G, 'Thyristor Control of AC Motors', Pergamon Press, 1990.
- 2. Sen. P.C, 'Thyristor D.C. Drives', John Wiley and Sons, 1981.
- 3. Vedam Subrahmaniyam, 'Electric Drives Concepts and Applications', Tata McGraw Hill Publishing company Ltd., 2011.
- 4. Leonhard. W, 'Control of Electric Drives', Springer Science & Business Media, 2001 E-REFERENCES

Lecture Series on Solid State Devices by Prof.S.Karmalkar, Department of Electrical Engineering, IITM

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO10</b>	PO11	PO12	PSO1	PSO2
CO1	3	2	1	0	2	0	1	0	0	0	0	0	0	3
CO2	3	1	0	0	2	0	1	0	0	0	0	0	3	2
CO3	1	2	3	0	2	0	0	1	0	0	0	0	1	2
CO4	0	2	0	0	3	0	1	0	0	0	0	0	2	2
CO5	3	1	1	0	0	1	1	1	0	0	0	1	1	2
Total	10	8	5	0	9	1	4	2	0	0	0	1	7	11
Scaled	2	2	1	0	2	1	1	1	0	0	0	1	2	3

#### Mapping of COs with POs

1-5 > 1, 6-10 > 2, 11-15 > 30 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

# HUMAN ETHICS, VALUES, RIGHTS AND GENDER

Course	Outcomes:	Domain	Level
CO1	Adapt the human values and Social Justice.	Cognitive	Knowledge and
		Affective	Responding
CO2	Discuss and accept Gender Equality,	Cognitive	Comprehension and
	empowerment and feminism.	Affective	Valuing
CO3	Recognize the status of women and analyse	Cognitive	Comprehension and
	the issues related to women.	Affective	Valuing
CO4	Demonstrate the human rights and good	Cognitive	Comprehension
	governance.	Affective	Responding
CO5	Adapt the human values and Social Justice.	Cognitive	Apply
		Affective	Responding

COURSE CODE	COURSE NAME	L	Τ	Р	С			
XUM 703	XUM 703 HUMAN ETHICS, VALUES, RIGHTS AND GENDER 3							
C:P: A	C:P: A L T P							
3:0:0		3	0	0	3			
UNIT- I: Human	Values				9			
Human Ethics and	d values - Understanding of oneself and others- Basic instit	ncts	, mo	tives	s and			
needs- Social serv	ice, Social Justice, Dignity and worth, Harmony in human rel	atio	nshij	p: Fɛ	mily			
and Society, Integ	rity and Competence, Caring and Sharing, Honesty and Courag	ge, V	/alu	ing T	lime,			
Co-operation, Cor	nmitment, Sympathy and Empathy, Self-Confidence and Pers	ona	lity-	Livi	ng in			
harmony at variou	is levels.							
UNIT- II: Gende	r Equality				9			
Gender Equality	- Gender Vs Sex -, Concepts, definition, Gender equit	ty,	equa	lity,	and			
empowerment. St	atus of Women in India Social, Economic, Education, Heal	lth,	Emp	oloyr	nent,			
HDI, GDI, GEM.	Contributions of Dr.B.R. Ambethkar, Thanthai Periyar and	Phu	ile to	) Wo	omen			
Empowerment.								
UNIT-III: Wom	en issues and Challenges				9			
Women Issues an	d Challenges- Female Infanticide, Female feticide, Violence	e ag	ainst	t wo	men,			
Domestic violence, Sexual Harassment, Trafficking, Access to education, Marriage. Remedial								
Measures - Acts related to women: Political Right, Property Rights, and Rights to								
Education, Medical Termination of Pregnancy Act, and Dowry Prohibition Act								
UNIT- IV: Huma	UNIT- IV: Human Rights 9							
Human Rights Me	wement in India – The preamble to the Constitution of India	Hu	man	Righ	nte			

Human Rights Movement in India – The preamble to the Constitution of India, Human Rightsand Duties Universal Declaration of Human Rights (UDHR), Civil, Political, Economic, Socialand Cultural Rights, Rights against torture, Discrimination and forced Labour, Rights of Children.UNIT- V: Good Governance9

Good Governance - Democracy, People's Participation, Guaranteed Freedoms, Open and Transparency governance, Combating corruption, Fairness in criminal justice administration, Government system of Redressal, Judiciary, National Human Rights Commission and other statutory Commissions, Creation of Human Rights Literacy and Awareness.

	LECTURE	TUTORIAL	TOTAL
	45	0	45
FEXTBOOKS	·		
FEXTBOOKS			
1. Alam, Aftab ed., Human Rights in India: 199	99Issues and C	Challenges (New	Delhi: Raj
Publications,)			
2. Bajwa, G.S. and D.K. Bajwa, 1996 Human Rigl	nts in India: Im	plementation and	l Violations
(New Delhi: D.K. Publications,)			

- 3. Chatrath, K. J. S., (ed.), 1998) Education for Human Rights and Democracy (Shimala: Indian Institute of Advanced Studies, ).
- 4.Jagadeesan.P., 1990. Marriage and Social legislations in Tamil Nadu, Elachiapen pub, Chennai,
- 5. Kaushal, Rachna, 2000 Women and Human Rights in India (New Delhi: Kaveri Books,)
- 6. Mani. V. S., 1998)Human Rights in India: An Overview (New Delhi: Institute for the World Congress on Human Rights, )
- 7. Singh Sehgal, B. P. 1999 (ed) Human Rights in India: Problems and Perspectives (New Delhi: Deep and Deep,)
- 8. Veeramani K. (1996), Periyar on Women Right, Emerald Publishers, Chennai , India.

9..Veeramani.K (2010) (ed) Periyar Feminism.Periyar Maniammai University, Vallam,Thanjavur.

10. Status Report 1976, Govt. of India.

# Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			3		3	2		2						
CO2			3		1	2		3						
CO3			2		2	2		3						
CO4			3		3	3		3						
CO5			1		1	1		1						
Total			12		10	10		12						
Scaled			3		2	2		3						

1-5 > 1, 6-10 > 2, 11-15 > 30 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

#### MICROGRIDS

Cours	se Outcomes (XEE M03):	Domain	Level
<b>CO1</b>	Understand concept of microgrid and implementation	Cognitive	Understanding
	issues.		
CO2	Understand issues related to power electronics	Cognitive	Understanding
	interface.		
<b>CO3</b>	Acquire knowledge about modelling and stability	Cognitive	Understanding
	analysis of solving power quality issues in Microgrid.		

COURSE CODE	COURSE NAME	L	Т	Р	С	
XEE M03		1	0	0	1	
C:P: A	MICROGRIDS	L	Т	Р	Н	
3:0:0		1	0	0	1	
Topics					15	
Concept and define	ition of microgrid, review of sources of microgrids	, typic	cal str	uctur	e and	
configuration of a n	nicrogrid: AC and DC microgrids, Power Electronics in	nterfac	es in l	DC ai	nd AC	
microgrids, modes of operation and control of microgrid: grid connected and islanded mode,						
Power quality issues in microgrids- Modelling and Stability analysis of Microgrid, regulatory						
standards, Microgrid economics.						

LECTURE	TUTORIAL	TOTAL
15	0	15

#### **TEXT BOOKS**

1. "Renewable Energy Resources", John Twidell and Tony Weir, Taylor and Francis Publications, 2006.

2."Microgrids and Active Distribution", S. Chowdhury, S. P. Chowdhury, P. Crossley The Institution of Engineering and Technology (June 24, 2009).

#### **REFERENCE BOOKS**

1. "Solar Photo Voltaics", Chetan Singh Solanki, PHI learning Pvt. Ltd., New Delhi, 2009.

2. "Wind Energy Conversion System", Freris, Prentice Hall, 1990.

SEMESTER VIII CYBER SECURITY

Cours	se Outcomes:	Domain	Level
<b>CO1</b>	Able to understand the Cyber Security Policy, Laws and	Cognitive	Remember
	Regulations		
CO2	Able to discuss the Cyber Security Management Concepts	Cognitive	Understand
CO3	Able to understand the Cyber Crime and Cyber welfare	Cognitive	Understand
<b>CO4</b>	Able to discuss on issues related to Information Security	Cognitive	Understand
	Concepts		
CO5	Able to <b>understand</b> various security threats	Cognitive	Understand

#### Learning Objectives:

To understand key terms and concepts in cyber law, intellectual property and cybercrimes, trademarks and domain theft. Able to examine secure software development practices. The learner will be able to incorporate approaches for risk management and best practices. To understand the basic knowledge of information security and security threats.

COURSE CODE	COURSE	NAME		L	Т	P	С
XUM 801	CYBER SE	CURITY		0	0	0	0
C:P: A				L	Т	Р	Η
3:0:0				0	0	0	3
UNIT-I: INTRODUC	CTION						9
Cyber Security - Cybe	er Security policy - Dom	nain of Cyber	Security 1	Policy	/ – L	aws	and
Regulations – Enterprise	e Policy – Technology Oper	rations – Techr	ology Con	figura	tion -	Strat	egy
Versus Policy – Cyber	Security Evolution - Prod	uctivity - Inte	rnet – E co	omme	erce –	Cou	nter
Measures – Challenges							
UNIT-II: CYBER SH	<b>ECURITY OBJECTIVES</b>	AND GUIDA	NCE				9
Cyber Security Metrics -	- Security Management Go	als – Counting	Vulnerabil	ities -	- Secu	rity	
Frameworks – E Comme	erce Systems – Industrial C	ontrol Systems	– Personal	l Mob	ile De	vices	s –
Security Policy Objectiv	es – Guidance for Decision	Makers – Ton	e at the To	p – Po	olicy a	is a	
Project–Cyber Security	Management - Arriving at	Goals – Cyber	Security De	ocume	entatio	n-7	Гhe
Catalog Approach – Cat	alog Format – Cyber Secur	ity Policy Taxo	onomy				
UNIT-III: CYBER S	ECURITY POLICY CAT	ALOG					9
Cyber Governance Issu	es – Net Neutrality – Int	ernet Names a	and Numbe	ers –	Copy	right	and
Trademarks – Email a	nd Messaging - Cyber Us	ser Issues - N	Alvertising	g - Ir	nperso	onati	on –
Appropriate Use – Cybe	r Crime – Geo location – F	Privacy - Cybei	Conflict I	ssues	– Inte	llect	ual
property Theft – Cyber E	Espionage – Cyber Sabotage	e – Cyber Welf	are				
UNIT-IV: INFORMA	TION SECURITY CONC	CEPTS					9
Information Security Ov	erview: Background and C	urrent Scenario	- Types of	Attac	ks - G	ioals	for
Security - E-commerce S	Security - Computer Forens	ics – Steganog	raphy				
UNIT-V: SECURITY	THREATS AND VULNE	CRABILITIES					15
Overview of Security t	hreats -Weak / Strong Pas	sswords and P	assword C	rackir	ng - I	nsecu	ire
Network connections - I	Malicious Code - Programn	ning Bugs - Cy	ber-crime a	and C	yber to	errori	sm
- Information Warfare an	nd Surveillance						
		LECTURE	TUTORI	AL	TOT	AL	
		45	0			45	
TEXTBOOKS							
1. Jennifer L. Bayuk, J	Healey, P. Rohmeyer, M	arcus Sachs, J	effrey Sch	midt,	Josep	h We	eiss
Cyber Security Poli	icy Guidebook" John Wiley	& Sons 2012.					
<b>KEFERENCES</b>	- Converting Engranting and Amort	ash Dublissi	ma 2011				
1. RICK HOWARD Cyber	Security Essentials Auero	bach Publicatio	ons 2011. to Notiona	1 Com	miter 6	- W/L	at
2. Kichard A. Clarke, K	10	lie Next Thieat	to Nationa	II Seci	unity c		lai
3 Dan Shoemaker Cyh	10. er security The Essential B	ody Of Knowle	dae 1sted	Cen	uaue I	earn	ina
2011	er seeurity The Essential Do		uge, ist cu	. cong	gage I	Aan	mg
4. Rhodes-Ousley Ma	rk. "Information Security	The Complete	Reference	" See	cond 1	Editio	on.
McGraw-Hill. 2013.	in, internation becanty.		10101010100	,		20111	···,

#### **E REFERENCES**

- 1. https://www.coursera.org/specializations/cyber-security
- 2. www.nptel.ac.in
- 3. http://professional.mit.edu/programs/short-programs/applied-cybersecurity

### ELECTRICAL AND HYBRID VEHICLES

Cours	se Outcomes (XEE E61):	Domain	Level
CO1	To understand the working and performance of	Cognitive	Understanding
	conventional vehicles		
CO2	To understand Hybrid Electric Vehicles and Drive-trains	Cognitive	Understanding
CO3	To explain basic concepts of Electric Drive Trains	Cognitive	Understanding
<b>CO4</b>	To explain the various types of Energy Storage Systems	Cognitive	Understanding
CO5	To understand different types of Energy management	Cognitive	Understanding
	strategies		

#### **Learning Objectives:**

Understand the models to describe hybrid vehicles and their performance and Understand the different strategies related to energy storage systems design

COURSE CODE	COURSE NAME	L	Τ	P	С							
<b>XEE E61</b>		3	0	0	3							
C:P: A	ELECTRICAL AND HYBRID VEHICLES	L	Т	Р	Н							
3:0:0		0	0	3								
UNIT-I: INTRODUCTION												
Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization,												
transmission characte	eristics, mathematical models to describe vehicle per	formar	nce.									
UNIT – II: HYBRII	D ELECTRIC VEHICLES			9								
Introduction to Hy	brid Electric Vehicles: History of hybrid and	electri	c vehi	cles, s	social and							
environmental impor	rtance of hybrid and electric vehicles, impact of r	nodern	drive	trains	on energy							
supplies. Hybrid Ele	ctric Drive-trains: Basic concept of hybrid traction,	introdu	iction	to vario	ous hybrid							
drive-train topologies	s, power flow control in hybrid drive-train topologies	, fuel e	fficien	cy anal	ysis.							
UNIT – III: ELECT	RIC DRIVE TRAINS			9								
Electric Drive-trains:	Basic concept of electric traction, introduction to va	rious e	electric	drive-								
Train topologies, pov	wer flow control in electric drive-train topologies, fu	el effi	ciency	analysi	is. Electric							
Propulsion unit: Intro	Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration											
and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and												
control of Permanent Magnet Motor drives, Configuration and control of Switched Reluctance Motor												
drives, drive system	efficiency											
L												

#### UNIT – IV: ENERGY STORAGE

Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subject systems

**UNIT – V: ENERGY MANAGEMENT STRATEGIES** 

9

Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies, Charging Stations. Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).

LECTURE	PRACTICAL	TOTAL
45	0	45

#### TEXTBOOKS

- 1. C. Mi, M.A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.
- 2. S.Onori, L.Serrao and G.Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.

#### REFERENCES

1.M. Ehsani, Y.Gao, S.E.Gay and A.Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2004.

2.T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016

E REFERENCES

www.nptel.ac.in

#### Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	<b>PO9</b>	<b>PO10</b>	PO11	PO12	PSO1	PSO2
CO1	3									1		1		2
CO2	3									1		1		2
CO3	3	2								1	1	2		2
CO4	3	2			1					1	1	1		3
CO5	3	2			1					1	1	1		3
Total	15	6	0	0	2	0	0	0	0	5	3	6		12
Scaled	3	1	0	0	1	0	0	0	0	1	1	1		3

1-5 >1, 6-10 >2, 11-15 > 3

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COL	COURSE CODECOURSE NAMELTP											
PE	E501	POWER SYSTEM ANALYSIS		3	1	0	4					
C:1	P:A			L	Т	Р	Н					
2.5	: 0.5 : 0.5			3	1	0	4					
					1							
Course	Outcome	:	Ι	Doma	in	Level						
CO1	Demonstr	ate the per phase analysis of power system.	Co	ognitiv	e	Underst	anding					
CO2	CO2Develop the model of various components of the power system and Construct the Y Bus and Z Bus for a power system.CognitiveUnde Ap											
CO3Analyze the power system network with symmetrical and unsymmetrical faults. Calibrate the fault current in a powerCognitiveUnder AnaSystemSystemSystemSystemSystemSystem												
System.       CO4       Summarize the power flow equation. Assess the voltage profile of a power system by performing the load flow       Cognitive Eval         analysis and Identify the line loss and line flow       Perce												
CO5       Classify and determine the stability of power system       Cognitive       Under         betect the transient behavior of power system when it is subjected to a fault.       Cognitive       Eval												
UNIT Need f	- <b>I: INTR(</b> or system a line diagr	<b>DDUCTION</b> nalysis in planning and operation of modern powe am-Per unit representation and Per unit calcul	er sys	stem–j	per pl	10 hase ana ge of b	0 + 3 lysis -					
Introdu UNIT Primiti matrix transmi	ction to Ele - <b>II: MOD</b> ve network formation	ectricity Deregulation. <b>ELLING OF POWER SYSTEM COMPONENT</b> and its matrices – bus incidence matrix –bus ad – Z–Bus building algorithm – Modelling of g	T <b>S</b> mitta gener	ince a ator,	nd bı load,	8 s impection transfor	+ 3 lance rmer,					
		T ANALVSIS _ UNSYMMETRICAL FAIL TS				9	1 + 3					
Need for short circuit study - basic assumptions in fault analysis of power systems. Symmetrical (or) balanced three phase faults – problem formulation – fault analysis using Z-bus matrix– algorithm and flow chart. Computations of short circuit capacity, post fault voltage and currents. Introduction to symmetrical components – sequence impedances – sequence networks Unsymmetrical fault analysis: L-G, L-L and L-L-G faults.												
UNIT – Need for by Gau three m	IV: POW or Power F uss–Seidel, nethods.	ER FLOW ANALYSIS low Analysis – bus classification – derivation of po Newton–Raphson and Fast Decoupled Power Fl	ower	flow metho	equat ds –	tion – sc comparis	+ 3 olution son of					
UNIT – Types of single model– indices	V: STAB of stability machine co- critical cle for two-bu	LITY ANALYSIS - Swing equation in state space form - equal area connected to infinite bus by modified Euler's metharing angle and time. Causes of voltage instability s system – methods of improving power system stal	riteri hod – vo bility	on – s using ltage 7.	tabili class stabil	y analys sical mae ity prox	sis of chine imity					

	LECTURE	TUTORIAL	TOTAL
	45	15	60
TEXT BOOKS:			

- 1. Hadi Sadaat, "Power System Analysis", Tata McGraw Hill Publishing Company, 2002.
- 2. John J. Grainger and Stevenson Jr. W.D., "Power System Analysis", McGraw Hill International Edition, 1994.
- 3. Nagarat .I.J, Kothari .D.P, "Power system Engineering", Tata McGraw Hill Publishing Company, 1994.
- 4. Pai. M.A "Computer techniques in Power System Analysis" Tata McGraw Hill Publishing Company,2007

#### **REFERENCE BOOKS:**

1. Stagg, G.W. and El-Abaid, A. H. "Computer Methods in Power System Analysis", McGraw-Hill International Book Company, 1968.

2. Nagarath, I.J., and Kothari, D.P., 'Modern Power System Analysis', Tata McGraw Hill Publishing Company, 1990.

3. Wadhwa C.L. "Electric Power Systems" Willey Eastern, 2007.

#### Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	<b>PO10</b>	PO11	PO12	PSO1	PSO2
CO1	3	2	1	0	0	1	3	0	0	0	0	1	3	1
CO2	2	1	2	1	0	0	1	0	0	0	0	0	2	2
CO3	3	1	1	0	0	0	0	0	0	0	0	0	1	2
CO4	1	3	2	0	0	1	0	0	0	0	0	0	2	1
CO5	1	2	3	1	3	0	1	1	0	0	0	0	3	2
Total	10	9	9	2	3	2	5	1	0	0	0	1	11	8
Scaled	2	2	2	1	1	1	1	1	0	0	0	1	3	2

1-5 >1, 6-10 >2, 11-15 > 3

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUR COD	SE E COURSE NAME	L	Т	Р	С		
XEE E	33 BIO-MEDICAL INSTRUMENTATION	3	0	0	3		
<b>C</b> : <b>P</b> :	Α	L	Т	Р	Н		
3:0:	0	3	0	0	3		
Course Outcomes:					Level		
CO1	<b>Describe</b> the principles of biomedical measurement systems and apply the signal amplification and processing that is common to many medical Instruments.	Cog	nitive	Un	derstanding		
CO2	<b>12 Identify</b> the origin of bio-potentials and various bioelectric signals that are recorded routinely in modern clinical practice. Cognitive						

CO3Handle the various techniques of measuring blood flow, pressure & volume. Summarize the concepts and mechanisms of various clinical laboratory instrumentation.CognitiveUnderstanCO4Describe and apply the safety issues, safe design, and safe use of medical instrumentation, specifically electrical safety, and learn how to incorporate safety features into the design.CognitiveUnderstanCO5Design an instrument that can be used to analyze heart rate with exercise using appropriate Bio-amplification and filters, bio-potential sensors, and data acquisition programs.CognitiveUnderstanUNIT - I: HUMAN SYSTEM AND BIOPOTENTIAL ELECTRODES9Different interface, electrode – skin interface, half cell potential, Types of electrode, PH electrode, Record9		<b>Understand</b> the basic mechanisms involved in the transduction process of bio-potential electrodes and be able to discuss electrical characteristics of electrodes.						
CO4Describe and apply the safety issues, safe design, and safe use of medical instrumentation, specifically electrical safety, and learn how to incorporate safety features into the design.CognitiveUnderstandCO5Design an instrument that can be used to analyze heart rate with exercise using appropriate Bio-amplification and filters, bio-potential sensors, and data acquisition programs.CognitiveUnderstandUNIT – I: HUMAN SYSTEM AND BIOPOTENTIAL ELECTRODES9Different interface, electrode – skin interface, half cell potential, Types of electrode, PH electrode, Record9	CO3	<ul><li>Handle the various techniques of measuring blood flow, pressure &amp; volume.</li><li>Summarize the concepts and mechanisms of various clinical laboratory instrumentation.</li></ul>	Cognitive	Un	derstanding			
CO5Design an instrument that can be used to analyze heart rate with exercise using appropriate Bio-amplification and filters, bio-potential sensors, and data acquisition programs.CognitiveUnderstanUNIT – I: HUMAN SYSTEM AND BIOPOTENTIAL ELECTRODES9Different types of human system, origin of bio-potential and its propagation. Electrode-electr interface, electrode – skin interface, half cell potential, Types of electrode, PH electrode, Record	CO4	CO4Describe and apply the safety issues, safe design, and safe use of medical instrumentation, specifically electrical safety, and learn how to incorporate safety features into the design.CognitiveUnd						
UNIT – I: HUMAN SYSTEM AND BIOPOTENTIAL ELECTRODES       9         Different types of human system, origin of bio-potential and its propagation. Electrode-electrinterface, electrode – skin interface, half cell potential, Types of electrode, PH electrode, Record       9	CO5	CO5Design an instrument that can be used to analyze heart rate with exercise using appropriate Bio-amplification and filters, bio-potential sensors, and data acquisition programs.CognitiveUnder						
interface, electrode – skin interface, half cell potential, Types of electrode, PH electrode, Reco	UNIT – Different	I: HUMAN SYSTEM AND BIOPOTENTIAL ELECTRODES	S pagation Ele	ctrode	9 e-electrolyte			
problems, measurement with two electrodes – human cell structure.	interface, electrode – skin interface, half cell potential, Types of electrode, PH electrode, Recording problems, measurement with two electrodes – human cell structure.							

Bio-signals characteristics – frequency & amplitude ranges. ECG –Enthoven's triangle, standard12 load system, PQPs waveform. EEG – 10-20 electrode system, brainwaves, recording setup of EEG, EMG, ERG, and EOG – unipolar and bipolar mode.

#### **UNIT – III: BIOAMPLIFIER AND TRANSDUCER**

Need for Bio-amplifier, power amplifier, isolation amplifier, feedback amplifier. Resistive, Inductive, Capacitive transducer and application, Fibre optic, photo electric transducer – description, features applicable for biomedical instrumentation.

9

9

9

#### **UNIT – IV: CARDIAC MEASUREMENTS**

Blood pressure measurement – blood flow measurement – phonocardiography – vector cardiography. Heart lung machine –ventilator – Anesthetic machine – cardiac pacemaker –defibrillator patient safety-electrical shock hazards.

#### UNIT – V: MEDICAL DIAGNOSTICS INSTRUMENTS AND SYSTEMS

CTscanner–MRIScanandUltrasonicscanner–XRay–LaserEquipmentandapplication- bio-telemetry Kidney dialysis machine – electron microscope – blood cell counter-Endoscopy.

LECTURE	TUTORIAL	TOTAL
45	0	45

#### **TEXT BOOKS:**

1. Khandpur, R.S., 'Handbook of Biomedical Instrumentation', TataMcGrawHill, 1989.

- 2. Arumugam M., 'Bio-Medical Instrumentation', Anuradha Agencies Pub., 2002.
- 3. C.Rajarao and S.K. Guha, 'Principles of Medical Electronics and Bio-medical Instrumentation', Universities press (India) Ltd, Orient Longman ltd, 2000.
- 4. J. Webster, 'Medical Instrumentation', John Wiley & Sons, 1995.

#### **REFERENCE BOOKS:**

1. Geddes L.A., and Baker, L.E., 'Principles of Applied Bio-medical Instrumentation', 3rd Edition, John Wiley and Sons, 1995.

2. Cromwell, Weibell and Pfeiffer, 'Biomedical Instrumentation and Measurements', 2nd Edition,

Prentice Hall of India,1999.

3. Tompkins W.J., Biomedical Digital Signal Processing, Prentice Hall of India, 1998.

4. J. Wilson, J.F.B. Hawkes, 'Laser Principles and Applications', .Prentice-Hall, NewYork, 1987.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	0	0	1	3	0	0	0	0	1	3	1
CO2	2	1	2	1	0	0	1	0	0	0	0	0	2	2
CO3	3	1	1	0	0	0	0	0	0	0	0	0	1	2
CO4	1	3	2	0	0	1	0	0	0	0	0	0	2	1
CO5	1	2	3	1	3	0	1	1	0	0	0	0	3	2
Total	10	9	9	2	3	2	5	1	0	0	0	1	11	8
Scaled	2	2	2	1	1	1	1	1	0	0	0	1	3	2

#### Mapping of COs with POs

1-5 > 1, 6-10 > 2, 11-15 > 30 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSECODE	COURSE NAME	L	Т	Р	С
PEE504	POWER ELECTRONICS	3	1	0	4
<b>C</b> : <b>P</b> : <b>A</b>		L	Т	Р	Η
3:0:0		3	1	0	4

Course O	utcomes:	Domain	Level
CO1	To Understand the structure, operation and characteristics of power switching devices.	Cognitive	Understanding
CO2	Determine the operation, characteristics and performance parameters of controlled rectifiers.	Cognitive	Understanding
CO3	Analysis the operation of DC - DC choppers.	Cognitive	Analyzing
CO4	Analysis the operation of various inverters and infer the suitable PWM techniques.	Cognitive	Analyzing
CO5	To Understand the concept of various types of AC voltage controllers.	Cognitive	Understanding

**UNIT – I: POWER SWITCHING DEVICES** 

10 + 3

Review on Semiconductor devices – I-V characteristics and Switching Characteristics of power Diodes,<br/>SCR, TRIAC, power BJT, power MOSFET and IGBT. Triggering and Commutation Circuits.UNIT – II: THYRISTOR RECTIFIERS8 + 3

Single phase half-wave and full-wave thyristor rectifiers – Single phase full-bridge thyristor rectifier with R-load and highly inductive load – Three phase full-bridge thyristor rectifier with R-load and highly inductive load.

UNIT – III: FAULT ANALYSIS – UNSYMMETRICAL FAULTS

9 + 3

9 + 3

9 + 3

Need for short circuit study - basic assumptions in fault analysis of power systems. Symmetrical (or) balanced three phase faults – problem formulation – fault analysis using Z-bus matrix– algorithm and flow chart. Computations of short circuit capacity, post fault voltage and currents. Introduction to symmetrical components – sequence impedances – sequence networks Unsymmetrical fault analysis: L-G, L-L and L-L-G faults.

#### UNIT – IV: POWER FLOW ANALYSIS

Need for Power Flow Analysis – bus classification – derivation of power flow equation – solution by Gauss–Seidel, Newton–Raphson and Fast Decoupled Power Flow methods –comparison of three methods.

#### UNIT – V: STABILITY ANALYSIS

Types of stability - Swing equation in state space form - equal area criterion – stability analysis of single machine connected to infinite bus by modified Euler's method using classical machine model–critical clearing angle and time. Causes of voltage instability – voltage stability proximity indices for two-bus system – methods of improving power system stability.

LECTURE	TUTORIAL	TOTAL
45	15	60
		-

#### TEXT BOOKS:

- 1. Hadi Sadaat, "Power System Analysis", Tata McGraw Hill Publishing Company, 2002.
- 2. John J. Grainger and Stevenson Jr. W.D., "Power System Analysis", McGraw Hill International Edition, 1994.
- 3. Nagarat .I.J, Kothari .D.P, "Power system Engineering", Tata McGraw Hill Publishing Company, 1994.
- 4. Pai. M.A "Computer techniques in Power System Analysis" Tata McGraw Hill Publishing Company,2007

#### **REFERENCE BOOKS:**

2. Stagg, G.W. and El-Abaid, A. H. "Computer Methods in Power System Analysis", McGraw-Hill International Book Company, 1968.

2. Nagarath, I.J., and Kothari, D.P., 'Modern Power System Analysis', Tata McGraw Hill Publishing Company, 1990.

3. Wadhwa C.L. "Electric Power Systems" Willey Eastern, 2007.

#### Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	0	0	1	3	0	0	0	0	1	3	1
CO2	2	1	2	1	0	0	1	0	0	0	0	0	2	2
CO3	3	1	1	0	0	0	0	0	0	0	0	0	1	2
CO4	1	3	2	0	0	1	0	0	0	0	0	0	2	1

CO5	1	2	3	1	3	0	1	1	0	0	0	0	3	2
Total	10	9	9	2	3	2	5	1	0	0	0	1	11	8
Scaled	2	2	2	1	1	1	1	1	0	0	0	1	3	2

1-5 > 1, 6-10 > 2, 11-15 > 30 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	COURSE NAME	L	Т	Р	С
PEE 505	POWER ELECTRONICS LABORATORY	0	0	1	1
<b>C</b> : <b>P</b> : <b>A</b>		L	Т	Р	Η
0:1:0		0	0	2	2

#### **COURSE OBJECTIVES:**

- To introduce the different types of analog and digital modulation and demodulation.
- To convey frequency division multiplexing and demultiplexing.
- To expose the students line coding and decoding.
- To create awareness on the performance of digital modulation techniques in AWGN and Rayleigh channels.

Course	e Outcomes:	Domain	Level
CO1	<b>Construct, Demonstrate</b> and <b>Simulate</b> Amplitude Modulation, Demodulation, sensitivity and selectivity of AM receivers.	Cognitive Psychomotor	Mechanism Response
CO2	<b>Construct, Demonstrate</b> and <b>Simulate</b> Frequency Modulation, Demodulation, sensitivity and selectivity of FM receivers.	Cognitive Psychomotor	Mechanism Responding
CO3	<b>Construct</b> and <b>Demonstrate</b> Frequency Division Multiplexing and demultiplexing.	Cognitive Psychomotor	Mechanism Responding
CO4	<b>Build</b> , <b>Demonstrate</b> and <b>Simulate</b> various types of analog and digital Pulse Modulations using trainer kits.	Cognitive Psychomotor	Mechanism Responding
CO5	<b>Simulate</b> performance of digital modulation techniques in AWGN and Rayleigh channels.	Cognitive Psychomotor	Mechanism Responding

Sl. No.	List of Experiments	COs
1.	Characteristics of SCR.	CO1
2.	Characteristics of MOSFET.	CO1
3.	Characteristics of IGBT.	CO1
4.	Single phase fully controlled rectifier with R, RL load.	CO2
5.	BUCK- BOOST converter using MOSFET.	CO3
6.	IGBT based choppers.	CO3
7.	Four quadrant chopper.	CO3

8.	Single phase IGBT PWM Inverter.		CO4
9.	Series Inverter/ Parallel Inverter.		CO4
10.	Single phase AC voltage controller using SCR / TRIAC.		COS
11.	Single phase cycloconverter.		COS
		PRACTICAL	TOTAL
		30	30

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	0	0	1	3	0	0	0	0	1	3	1
CO2	2	1	2	1	0	0	1	0	0	0	0	0	2	2
CO3	3	1	1	0	0	0	0	0	0	0	0	0	1	2
CO4	1	3	2	0	0	1	0	0	0	0	0	0	2	1
CO5	1	2	3	1	3	0	1	1	0	0	0	0	3	2
Total	10	9	9	2	3	2	5	1	0	0	0	1	11	8
Scaled	2	2	2	1	1	1	1	1	0	0	0	1	3	2

1-5 > 1, 6-10 > 2, 11-15 > 30 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	COURSE NAME	L	Т	Р	С
<b>PEE601</b>	POWER SYSTEMS OPERATION AND CONTROL	3	1	0	4
<b>C</b> : <b>P</b> : <b>A</b>		L	Т	Р	Н
3:0:0		3	1	0	4

Course (	Dutcomes:	Domain	Level
CO1	<b>Explain</b> power system load characteristics and generation reserve requirements.	Cognitive	Understanding
CO2	<b>Demonstrate</b> and <b>Apply</b> the mathematical knowledge to model and analysis of power system for frequency control.	Cognitive	Understanding Applying
CO3	<b>Identify</b> fundamental aspects of reactive power and its effect on system voltage and <b>Select</b> the suitable voltage control method for the system operating condition.	Cognitive	Understanding Applying
CO4	<b>Formulate</b> economic dispatch and unit commitment problem and its solution.	Cognitive	Understanding Applying
CO5	<b>Apply</b> computer control methods for power system operation and control	Cognitive	Understanding

**UNIT - I: INTRODUCTION** 

9+3

Power scenario in Indian grid – requirements of good power system- system duration curve - load factor - diversity reserves, cold reserves, hot reserves - Impo fitting techniques for forecasting – plant lev	National and Ro n load variation - lo factor - Reserve re ortance of load fored el and system level o	egional load dispat ad characteristics - loa equirements: Installed casting - quadratic and controls.	ching centers – ad curves and load- reserves, spinning exponential curve
UNIT - II: REAL POWER - FREQUEN	CY CONTROL		9+3
Basics of speed governing mechanism and r	nodelling - speed-lo	ad characteristics – loa	d sharing between
static and dynamic analysis of uncontrolled	and controlled cases	- two-area system: mo	delling - static
analysis of uncontrolled case - tie line with	frequency bias contr	ol - state variable mode	el.
UNIT - III: REACTIVE POWER-VOLT	TAGE CONTROL		9+3
Generation and absorption of reactive pow	ver - basics of reac	tive power control - e	excitation systems-
modelling - static and dynamic analysis	- stability compensation	ation - methods of vo	oltage control: tap-
changing transformer, injection reactive pow	wer - SVC (TCR $+$ 7	TSC) and STATCOM -	- secondary voltage
control.			0.2
UNIT - IV: UNIT COMMITMENT AND	ECONOMIC DIS	PATCH	9+3
Formulation of economic dispatch problem	- I/O cost characteri	zation – incremental co	ost curve -
$\alpha$ method and $\lambda$ iteration method statement (	s (no derivation of i	oroblem priority list	nothed forward
dynamic programming		problem – priority-list	neulou -loi walu
UNIT - V. COMPLITER CONTROL OF	POWER SYSTEM	IS	9 + 3
Need for computer control of power system	s - concept of energy	z control centre– functi	ons - system
monitoring - data acquisition and control - s	vstem hardware con	figuration – SCADA a	nd EMS functions -
network topology - state estimation – WLSI	E - Contingency Ana	lysis - state transition of	liagram showing
various state transitions and control strategie	es.	-	
	LECTURE	TUTORIAL	TOTAL
	45	15	60
TEXT BOOKS:			
1. Olle.I.Elgerd, 'Electric Energy Systems	theory - An introdu	ction', Tata McGraw	Hill Education Pvt.
Ltd., New Delni, 34th reprint, 2010.	. Darran Cananatia	n Onemation and Cont	nal' John Wilow Pr
2. Allen, J. wood and Bluce F. wollender Song Inc. 3 rd Edition 2013	g, Power Generatio	n, Operation and Cont	101, John whey $\alpha$
<b>3</b> Kundur P 'Power System Stability and (	Control Tata McGra	w Hill New Delhi 5th	reprint 2014
<b>REFERENCE BOOKS:</b>			110p1111, 2011.
1 Nagrath LL and Kothari D.P. 'Modern	Power System Anal	vsis' Tata McGraw-H	fill Fourth Edition
2011.	Tower System Ana	ysis, Tata Mediaw-II	st
2. HadiSaadat, 'Power System Analysis', T 2010.	Tata McGraw Hill Ec	lucation Pvt. Ltd., New	Delhi, 21 st reprint,
3. Abhijit Chakrabarti, SunitaHalder, 'Pow	er System Analysis	Operation and Control	', PHI learning Pvt.
E-RESOURCES:			
NPTEL : http://nptel.ac.in/courses/1081040	52/		
10112L. http://ipte1.ac.ii/courses/1081040	<u>J 4 </u>		

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO10</b>	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1	2	0	0	0	0	1	0	0	2	1
CO2	2	3	2	2	2	0	0	0	1	1	1	0	2	0
CO3	2	2	2	2	3	0	0	0	0	0	1	1	2	0
CO4	2	2	3	3	2	0	0	0	0	1	0	0	1	0
CO5	1	2	2	2	2	0	0	0	0	0	0	1	1	1
Total	10	12	10	10	11	0	0	0	1	3	2	2	8	2
Scaled	2	3	2	1	3	0	0	0	1	1	1	1	2	1

1-5 > 1, 6-10 > 2, 11-15 > 30 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COUR COD	SE E	COURSE NAME	L	Т	Р	С				
PEE6	04	MEASUREMENTS AND INSTRUMENTATION	3	1	0	4				
<b>C</b> : <b>P</b> :	A		L	Т	P	H				
3:0:	0		3	1	0	4				
Course (	Dutcor	mes:	Domai	n		Level				
C01	Desc Desc instru	<b>ribe</b> the different errors in measurements and <b>ribe</b> the working principle of different measuring uments.	Cognitive Psychomo	otor	Reme Perce	mbering ption				
CO2	Und types meas	erstanding about the instruments used for different s of AC measurements. Carryout calibration test for suring electrical instruments.	Cognitive Psychomo	otor	Unde Set	rstanding				
CO3	Use of unkn the tr and t	different types bridge circuits for the measurements of own passive elements. <b>Relate</b> the different types of ransducers. <b>Demonstrate</b> the use of different bridges ransducers.	Cognitive Psychomo	otor	Apply Mech	ying nanism				
CO4	Expl displ and c Reco betw	<b>ain</b> the construction and operation of recording and ay instruments. <b>Establish</b> Relations between analog digital signal conversions. ording and display instruments. <b>Establish</b> Relations een analog and digital signal conversions.	Cognitive Psychomo	rstanding						
CO5	Expl signa meas	ain the construction and working of different types al conditioners. <b>Demonstrate</b> the recent trends in surement of AC quantities.	different types cent trends inCognitive PsychomotorRem Mecl				fferent types at trends inCognitive PsychomotorRemembering Mechanism			mbering anism
UNIT - I	UNIT - I: INTRODUCTION					9+3				
Measure	nents	- Errors & classification, Measurement of voltage & c	current - per	rmane	ent mag	gnet moving				
con anu	movi	ing non meters, measurement of power and energy	sy - uynai	nome	ici all					

in	istrumen	ts, Inst	trumen	t transf	former	s – Cui	rent a	nd Pote	ential t	ransfor	mers.				
U	NIT - I	: DC	AND	AC BF	RIDGE	ES								9	+ 3
N N	leasuren laxwell	nent of bridge,	resista Kelvii	nce, in n's Bri	ductar dge, So	nce and chering	capac Bridg	itance ge.	using	dc and	ac bridg	ges, Wh	eatstone	bridge,	
U	NIT - I	I: TR	ANSD	DUCEI	RS									9	+ 3
A St In	ctive ar train gau nductive	nd Pas age tra	sive ti nsduce pacitiv	ransduo ers, LV e trans	cers, F DT, d ducers	Piezoel lifferen	ectric tial ca	transd pacitiv	ucer, i ve tran	Photoe sducers	lectric 1 5, Fiber	transduc optic ti	cers, Th	ermoco ers, Res	uples, istive,
U	NIT - I	V: SIC	GNAL	CON	DITIO	NING	UNIT	S						9	+ 3
S ve M	ignal co oltage-fr Ieasuren	nditior equenc nents, (	ners – 1 cy cor Case St	Instrun nverter tudies i	nentati rs, an In Instr	on am alog ument	plifiers multip ation.	s, volta lexers	age–cu and	rrent c de-mu	onverte ultiplexe	rs, A/D ers. M	and D/ icroproc	A conv cessor	erters, Based
U	NIT - V	': REG	CORD	ERS A	ND D	ISPLA	Y							9	+ 3
Si st ai	ignal so orage ar nd printe	urces nd Ana ers. Spe	– Osci log sto ectrum	llators orage C Analy:	, Func )scillos zers, D	tion ge scope, 2 ata and	enerato Digital l Logio	or and Phosp c Analy	pulse phor O yzers.	genera scilloso	ators. O copes. A	scillosc Analog a	opes - and Digi	CRO, I ital Rec	Digital orders
						L	ECTU	RE		TU	TORIA	L	7	ΓΟΤΑΙ	
							45				15			60	
1. 2. 3. 4. 1. 2. <b>E</b> 1	<ul> <li>K. Sav &amp; Co.,</li> <li>Bouwe</li> <li>Kalsi I</li> <li>Deobe</li> </ul> EFERE <ul> <li>W. D.</li> <li>Public</li> <li>Ranga</li> </ul> -RESO <ul> <li>NTPE</li> <li>Prof. C</li> </ul>	vhney, 9th Ed ens A. H.S, 'E lin, 'M ENCE I Coop ations, n C.S., URCE L, Ele G. D. R	'A Co dition, J., 'Dig Electror leasure BOOK er, 'El 1st Ed S: ctrical .oy, IIT	2018. gital In nic Inst ments S: ectron lition, 2 uments Instru	strume rumen Systen ic Inst 2009. Devic menta agpur.	rical ar entation', ns', Ta rument ees and tions (	nd Elec , Tata 1 , Tata 1 ta McC ation Syster Web	etronic McGra McGra Graw H and M n', Tat Course	Meas raw Hi w-Hill lill Pul leasure a McC e), Pro	uremen ill Publ l Educa blicatio ement ' Graw H	its and I ications ation, 3rd ons, 2nd Techniq ill Publi K. De,	nstrume , 16th R d Editio Edition ues', P cations, Prof. T	entation eprint (2 n, 2010 , 2010. rentice , 2nd Ed	', Dhanj 2008). Hall of lition, 20 attachar	India 009. yaand
-						Μ	appin	g of C	Os wit	th POs					
		PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	1	0	0	1	0	1	1	0	0	3	0	0	2	3
	CO2	1	1	0	0	0	0	0	0	0	0	0	1	2	3
	CO3	1	0	1	0	1	0	0	2	0	1	0	0	2	2
	<b>CO4</b>	1	2	0	0	0	0	0	0	0	0	0	1	2	2
	CO5	0	0	0	0	0	0	0	0	1	0	1	1	2	3

Total

Scaled

# 1-5 > 1, 6-10 > 2, 11-15 > 30 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COL	URSE DDE	COURSE NAME		L	Т	Р	С			
PE	E605	MEASUREMENTS AND INSTRUMENTATIO	DN	0	0	1	1			
<b>C</b> :	P:A			L	Т	Р	Н			
0:	1:0			0	0	2	2			
COUF	RSE OBJ	E OBJECTIVES:								
•	Understa	Understanding about the instruments used for different types of AC measurements.								
•	Underst	anding about various types of AC and DC bridges.								
•	Understa	anding about various types of transducers and display	units.	•	- T	<b>T</b>				
Cours	e Outcon	nes:	Dom	aın	_	Leve	l			
CO1	<b>Describe</b> the uniferent errors in measurements and <b>Describe</b> the working principle of different <b>Cognitive</b>									
001	measuring instruments. Psychomotor Per									
	Under	standing about the instruments used for	Cogn	itive	U	ndersta	nding			
CO2	differen	nt types of AC measurements. <b>Carryout</b>	svcho	moto	•	Set	0			
	Use dif	ferent types bridge circuits for the								
002	measur	ements of unknown passive elements. <b>Relate</b>	Cogni	tive		Applyi	pplying			
003	the diff	Ferent types of the transducers. <b>Demonstrate</b> P	sycho	moto	: ] ]	Mechan	ism			
	the use	of different bridges and transducers.								
CO4	<b>Explan</b>	n the construction and operation of recording	Cogn	itive	U	ndersta	lerstanding			
0.04	analog	and digital signal conversions.	sycho	moto	•	Set				
	Explai	<b>n</b> the construction and working of different	Com	itive	R	amambaring				
CO5	types si	ignal conditioners. <b>Demonstrate</b> the recent	Svcho	moto	. 1	Mechan	ism			
	trends	n measurement of AC quantities.	syeno	moto		vice en an	10111			
<u>CI</u>										
No.		List of Experiments				C	COs			
1.	Calibrat	ion of Current Transformer and Potential transformer.	•			C	CO1			
2.	Measurement of three phase active, Reactive Power and Power factor									
3.	Calibration of Single phase / Three Phase Energy meter									
4.	Resistance measurement using Wheat stone bridge									
5.	Inductar	nce measurement using Maxwell Bridge				C	202			
6.	Capacita	ance measurement using Schering Bridge				C	202			
7.	Study of	Transducers				C	203			
8.	A/D cor	verter				C	CO4			

9.	D/A converters			CO4
10.	Measurement of Current / Voltage / power / Energy usin	ng Arduino board.		CO5
		PRACTICAL	Т	OTAL
		30		30

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	0	0	1	0	1	1	0	0	3	0	0	2	3
CO2	1	1	0	0	0	0	0	0	0	0	0	1	2	3
CO3	1	0	1	0	1	0	0	2	0	1	0	0	2	2
CO4	1	2	0	0	0	0	0	0	0	0	0	1	2	2
CO5	0	0	0	0	0	0	0	0	1	0	1	1	2	3
Total	4	3	1	1	1	1	1	2	1	4	1	3	10	13
Scaled	1	3	1	1	1	1	1	1	1	1	1	1	2	3

#### 1-5 >1, 6-10 >2, 11-15 > 3

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

# POWER PLANT ENGINEERING

Cours	se Outcomes (PEE E41):	Domain	Level
CO1	<b>Explain</b> about the various types of the power generation and function of boilers	Cognitive	Understanding
CO2	Choose Various Measurements in power plants.	Cognitive	Remembering
CO3	<b>Illustrate</b> Various analyzers in power plants, and <b>identify</b> the pollution monitoring instruments.	Cognitive	Understanding Applying
CO4	<b>Infer all</b> control loops in boiler, and interlocks in boiler operation-boiler trip protection.	Cognitive	Understanding
CO5	<b>Explain</b> about turbine speed vibration – lubricant oil temperature control – cooling system and select the SCADA and other monitoring and control software	Cognitive	Understanding Remembering

COURSE CODE	COURSE NAME	L	Т	Р	С			
<b>PEE E41</b>	DOWED DI ANT ENCIMEEDING	3	0	0	3			
C:P: A = 3:0:0	POWER PLANT ENGINEERING	L	Т	Р	Η			
UNIT- I: OVERVIEW OF PO	OWER GENERATION				9			
Principle of Power Generation, Brief survey of methods of power generation – hydro, thermal, nuclear, solar wind and tidal power importance of instrumentation in power generation. Material handling of								
solar, while and theat power – hi	iportance of instrumentation in power generation-	- Iviai	Ellai	nanum	ing of			

nower plant equipment thermal newer plants by	uilding blocks d	otails of boilar prog	and UD&I diagram
of boiler $-$ cogeneration	ununig blocks – u	etails of boller proc	ess or al magrain
UNIT- II: MEASUREMENTS IN POWER PI	LANTS		9
Electrical measurements – current, voltage, power	er, frequency, pow	ver – factor etc. – no	on electrical
parameters - flow of feed water, fuel, air and stea	am with correction	n factor for tempera	ture – steam
pressure and steam temperature – drum level mea	asurement – radiat	tion detector – smol	ke density
measurement – dust monitor-emission measurem	nents-performance	measurements	
UNIT-III: ANALYZERS IN POWER PLAN	TS		9
Flue gas oxygen analyzer – Demineral - Steam a	nd Water Analysi	s System (SWAT) a	analysis of
impurities in feed water and steam - dissolved or	xygen analyzer – o	chromatography – F	PH meter – fuel
analyzer – pollution monitoring instruments			
UNIT-IV: CONTROL LOOPS IN BOILER			9
Combustion control – air/fuel ratio control – furn	nace draft control -	- drum level contro	l –low and
high protection- main steam and reheat steam ter	nperature control ·	– super heater contr	ol – at
emperature – deaerator level control – distribute	ed control system i	n power plants – in	terlocks in
hoiler operation-boiler trip protection		F - ·· F	
UNIT- V: TURBINE – MONITORING AND	CONTROL SOF	TWARE	9
UNIT- V: TURBINE – MONITORING AND Speed, vibration, shell temperature monitoring an	CONTROL SOF nd control – steam	TWARE	9 lubricant oil
UNIT- V: TURBINE – MONITORING AND Speed, vibration, shell temperature monitoring an temperature control – cooling system and applica	CONTROL SOF nd control – steam ation of SCADA a	<b>TWARE</b> pressure control – nd other monitoring	9 lubricant oil and control
UNIT- V: TURBINE – MONITORING AND Speed, vibration, shell temperature monitoring an temperature control – cooling system and applica software	CONTROL SOF nd control – steam ation of SCADA a	TWARE pressure control – nd other monitoring	9 lubricant oil and control
UNIT- V: TURBINE – MONITORING AND Speed, vibration, shell temperature monitoring an temperature control – cooling system and applica software	CONTROL SOF nd control – steam ation of SCADA a LECTURE	TWARE pressure control – nd other monitoring PRACTICAL	9 lubricant oil and control TOTAL
UNIT- V: TURBINE – MONITORING AND Speed, vibration, shell temperature monitoring an temperature control – cooling system and applica software	CONTROL SOF nd control – steam ation of SCADA a LECTURE 45	TWARE pressure control – nd other monitoring PRACTICAL 0	9 lubricant oil and control TOTAL 45
UNIT- V: TURBINE – MONITORING AND Speed, vibration, shell temperature monitoring an temperature control – cooling system and applica software	CONTROL SOF nd control – steam ation of SCADA a LECTURE 45	TWARE pressure control – nd other monitoring PRACTICAL 0	9 lubricant oil and control TOTAL 45
UNIT- V: TURBINE – MONITORING AND Speed, vibration, shell temperature monitoring an temperature control – cooling system and applica software TEXT BOOKS 1. Sam G. Dukelow, "The control of Boilers" In	CONTROL SOF nd control – steam ation of SCADA a LECTURE 45	TWARE pressure control – nd other monitoring PRACTICAL 0 of America, 2000.	9 lubricant oil and control TOTAL 45
UNIT- V: TURBINE – MONITORING AND Speed, vibration, shell temperature monitoring an emperature control – cooling system and applica software TEXT BOOKS 1. Sam G. Dukelow, "The control of Boilers" In 2. V.K. Mehta and Rohit Mehta "Principles of F	CONTROL SOF nd control – steam ation of SCADA a LECTURE 45 nstrument Society Power system" S.	TWARE pressure control – nd other monitoring PRACTICAL 0 of America, 2000. Chand & Company,	9 lubricant oil and control TOTAL 45 , New Delhi, 2003
UNIT- V: TURBINE – MONITORING AND Speed, vibration, shell temperature monitoring an temperature control – cooling system and applica software TEXT BOOKS 1. Sam G. Dukelow, "The control of Boilers" In 2. V.K. Mehta and Rohit Mehta "Principles of F 3. Er. R.K. Rajput, A text book of power plant e	CONTROL SOF nd control – steam ation of SCADA a LECTURE 45 nstrument Society Power system" S. C engineering, Fourt	TWARE pressure control – nd other monitoring PRACTICAL 0 of America, 2000. Chand & Company, h edition, 2015.	9 lubricant oil and control TOTAL 45 , New Delhi, 2003
<ul> <li>UNIT- V: TURBINE – MONITORING AND</li> <li>Speed, vibration, shell temperature monitoring an comperature control – cooling system and applica software</li> <li>TEXT BOOKS</li> <li>1. Sam G. Dukelow, "The control of Boilers" In</li> <li>2. V.K. Mehta and Rohit Mehta "Principles of F</li> <li>3. Er. R.K. Rajput, A text book of power plant of Dr. P. C. Sharma's A Textbook of Power Plant</li> </ul>	CONTROL SOF nd control – steam ation of SCADA a LECTURE 45 Distrument Society Power system" S. C engineering, Fourt lant Engineering, T	TWARE pressure control – nd other monitoring PRACTICAL 0 of America, 2000. Chand & Company, h edition, 2015. published by S. K. H	9 lubricant oil and control TOTAL 45 , New Delhi, 2003 Kataria, 2013.
<ul> <li><b>UNIT- V: TURBINE – MONITORING AND</b></li> <li>Speed, vibration, shell temperature monitoring an emperature control – cooling system and applica software</li> <li><b>TEXT BOOKS</b></li> <li>1. Sam G. Dukelow, "The control of Boilers" In</li> <li>2. V.K. Mehta and Rohit Mehta "Principles of F</li> <li>3. Er. R.K. Rajput, A text book of power plant of Dr. P. C. Sharma's A Textbook of Power Plant REFERENCE BOOKS</li> </ul>	CONTROL SOF nd control – steam ation of SCADA a LECTURE 45 hstrument Society Power system" S. 0 engineering, Fourt lant Engineering, J	TWARE         a pressure control –         nd other monitoring         PRACTICAL         0         of America, 2000.         Chand & Company,         h edition, 2015.         published by S. K. H	9 lubricant oil and control TOTAL 45 , New Delhi, 2003 Kataria, 2013.
<ul> <li>UNIT- V: TURBINE – MONITORING AND</li> <li>Speed, vibration, shell temperature monitoring an temperature control – cooling system and applica software</li> <li>TEXT BOOKS</li> <li>1. Sam G. Dukelow, "The control of Boilers" In</li> <li>2. V.K. Mehta and Rohit Mehta "Principles of F</li> <li>3. Er. R.K. Rajput, A text book of power plant e Dr. P. C. Sharma's A Textbook of Power Pl</li> <li>REFERENCE BOOKS</li> <li>1. Power station Engineering and Economy by</li> </ul>	CONTROL SOF nd control – steam ation of SCADA a LECTURE 45 Destrument Society Power system" S. C engineering, Fourt lant Engineering, J Bernhardt G.A.Sk	TWARE pressure control – nd other monitoring PRACTICAL 0 of America, 2000. Chand & Company, h edition, 2015. published by S. K. H crotzki and William	9 lubricant oil and control TOTAL 45 , New Delhi, 2003 Kataria, 2013. A.Vopat-Tata
<ul> <li>UNIT- V: TURBINE – MONITORING AND</li> <li>Speed, vibration, shell temperature monitoring an temperature control – cooling system and applica software</li> <li>TEXT BOOKS</li> <li>1. Sam G. Dukelow, "The control of Boilers" In</li> <li>2. V.K. Mehta and Rohit Mehta "Principles of F</li> <li>3. Er. R.K. Rajput, A text book of power plant of Dr. P. C. Sharma's A Textbook of Power Plant e</li> <li>REFERENCE BOOKS</li> <li>1. Power station Engineering and Economy by McGraw Hill Publishing Company Ltd., New McGraw Hill Publishing Company Ltd., New Mathematical Science Sci</li></ul>	CONTROL SOF nd control – steam ation of SCADA a LECTURE 45 Distrument Society Power system" S. G engineering, Fourt lant Engineering, J Bernhardt G.A.Sk w Delhi, 20th repr	TWARE pressure control – nd other monitoring PRACTICAL 0 of America, 2000. Chand & Company, h edition, 2015. published by S. K. H strotzki and William int 2002	9 lubricant oil and control TOTAL 45 , New Delhi, 2003 Kataria, 2013. A.Vopat-Tata
<ul> <li>UNIT- V: TURBINE – MONITORING AND Speed, vibration, shell temperature monitoring an temperature control – cooling system and applica software</li> <li>TEXT BOOKS         <ol> <li>Sam G. Dukelow, "The control of Boilers" In</li> <li>V.K. Mehta and Rohit Mehta "Principles of F</li> <li>Er. R.K. Rajput, A text book of power plant of Dr. P. C. Sharma's A Textbook of Power Pl</li> </ol> </li> <li>Power station Engineering and Economy by McGraw Hill Publishing Company Ltd., Nev</li> <li>R.K.Jain, "Mechanical and Industrial Measu</li> </ul>	CONTROL SOF nd control – steam ation of SCADA a LECTURE 45 Destrument Society Power system" S. ( engineering, Fourt lant Engineering, J Bernhardt G.A.Sk w Delhi, 20th repr urements" Khanna	TWARE pressure control – nd other monitoring PRACTICAL 0 of America, 2000. Chand & Company, h edition, 2015. published by S. K. H krotzki and William int 2002 Publishers, New D	9 lubricant oil and control TOTAL 45 , New Delhi, 2003 Kataria, 2013. A.Vopat-Tata elhi,2002.Arora
<ul> <li>UNIT- V: TURBINE – MONITORING AND Speed, vibration, shell temperature monitoring an temperature control – cooling system and applica software</li> <li>TEXT BOOKS <ol> <li>Sam G. Dukelow, "The control of Boilers" In</li> <li>V.K. Mehta and Rohit Mehta "Principles of F</li> <li>Er. R.K. Rajput, A text book of power plant e Dr. P. C. Sharma's A Textbook of Power Pl</li> </ol> </li> <li>REFERENCE BOOKS <ol> <li>Power station Engineering and Economy by McGraw Hill Publishing Company Ltd., New Domkundwar, A course in Power Plant engineering</li> </ol> </li> </ul>	CONTROL SOF nd control – steam ation of SCADA a LECTURE 45 Distrument Society Power system" S. C engineering, Fourt lant Engineering, J Bernhardt G.A.Sk w Delhi, 20th repr irements" Khanna neering, Dhanpat	TWARE pressure control – nd other monitoring PRACTICAL 0 of America, 2000. Chand & Company, h edition, 2015. published by S. K. H crotzki and William int 2002 Publishers, New D Rai & Co.,2001	9 lubricant oil and control TOTAL 45 , New Delhi, 2003 Kataria, 2013. A.Vopat-Tata elhi,2002.Arora
<ul> <li>UNIT- V: TURBINE – MONITORING AND Speed, vibration, shell temperature monitoring an temperature control – cooling system and applica software</li> <li>TEXT BOOKS</li> <li>1. Sam G. Dukelow, "The control of Boilers" In</li> <li>2. V.K. Mehta and Rohit Mehta "Principles of F</li> <li>3. Er. R.K. Rajput, A text book of power plant of Dr. P. C. Sharma's A Textbook of Power Pl</li> <li>REFERENCE BOOKS</li> <li>1. Power station Engineering and Economy by McGraw Hill Publishing Company Ltd., New</li> <li>2. R.K.Jain, "Mechanical and Industrial Measu Domkundwar, A course in Power Plant engineering</li> </ul>	CONTROL SOF nd control – steam ation of SCADA a LECTURE 45 Distrument Society Power system" S. C engineering, Fourt lant Engineering, J Bernhardt G.A.Sk w Delhi, 20th repr urements" Khanna neering, Dhanpat	TWARE         a pressure control –         nd other monitoring         PRACTICAL         0         of America, 2000.         Chand & Company,         h edition, 2015.         published by S. K. H         strotzki and William         int 2002         Publishers, New D         Rai & Co.,2001	9 lubricant oil and control TOTAL 45 , New Delhi, 200 Kataria, 2013. A.Vopat-Tata elhi,2002.Arora

www.electrical4u.com

#### Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO10</b>	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	1	-	-	-	1	-	-	1	3	2
CO2	3	1	-	2	1	-	-	-	1	-	-	1	1	2
CO3	3	1	-	2	1	-	-	-	1	-	-	1	1	2
CO4	3	-	1	-	1	-	-	-	1	-	-	1	2	1
CO5	3	2	2	2	1	-	-	-	1	-	-	1	3	1
Total	3	1	-	-	1	-	-	-	-	-	-	1	2	1
Scaled	15	6	4	6	5				4			5	11	7

# 1-5 > 1, 6-10 > 2, 11-15 > 30 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

# ELECTRICAL DRIVES

Course Outcomes (PEE E51): Domain Level										
<b>CO2</b> Understand the various control techniques of DC Cognitive Rememberin	וס									
Drives.	-0									
<b>CO3</b> Categorize the different speed control methods for an Induction motor drive at stator side.	ng									
CO4Illustrate the various control techniques of induction motor Drives at rotor side.CognitiveUnderstanding	ng									
CO5Illustrate the various control techniques and application of Synchronous motor drives.CognitiveUnderst										
COURSE NAME L T P	С									
<b>PEE E51</b> 3 0 0	3									
C:P: A     ELECTRICAL DRIVES     L     T     P	<u>H</u>									
3:0:0 3 0 0	3									
UNIT- 1: DC MOTOR DRIVE CHARACTERISTICS AND MULTI-QUADRANT	9									
UPERATIONS										
Fundamentals of Electrical Drives - Advantage of Electrical Drives - Selection of Motor Power										
of separately excited de motor. Four quedrent operation of de machine. Steady state operation	of									
of separately excited do motor - Four quadrant operation of do machine – Steady state operation multi-guadrant chapper fed de drive, regenerative breking	01									
INIT II. CONTROL OF DC DRIVES	0									
DC Motor and their Performance. Transient Analysis Word Leonard Drives. Steady State And										
of the Single and Three Phase Fully Controlled Converter Fed Separately Excited DC Motor Driv	ary 515 ve _									
Continuous and Discontinuous Mode Chopper Controlled DC Drives - Time Ratio Control and	vc –									
Current Limit Control										
UNIT, III, STATOR CONTROLLED INDUCTION MOTOR DRIVES										
Induction Motor Drives Stater Control Stater Voltage and Ergqueney Control VSL CSL and										
Induction Motor Drives - Stator Control - Stator Voltage and Frequency Control - VSI, CSI and Cycloconverter Fed Induction Motor Drives - Open Loop and Closed Loop V/f Control Conventional										
cycloconverter red induction Motor Drives - Open Loop and Closed Loop V/I Control. Conventional space vector modulation: Steady-state performance analysis based on equivalent circuit, speed drop										
with loading slin regulation	νγ									
UNIT- IV: ROTOR CONTROLLED INDUCTION MOTOR DRIVES	9									

Impact of rotor resistance of the induction motor torque-speed curve - Operation of slip-ring induction motor with external rotor resistance, starting torque - Power electronic based rotor side control of slip ring motor - Slip Power Recovery, sub-synchronous and Super Synchronous Operations - Power Factor Improvement - Closed Loop Control. **UNIT- V: SYNCHRONOUS MOTOR DRIVES** 9 Separate Controlled Mode - Self Controlled Mode of Synchronous Motor - Constant Marginal Angle Control and Motor Power Factor Control - Cycloconverter Fed Synchronous Motors - Digital Control and Drive Applications. LECTURE PRACTICAL TOTAL 45 45 0 **TEXT BOOKS** 1. Dubey. G.K, 'Fundamentals of Electrical Drives', Narosa Publications, 2008.B. K. Bos, 'Power Electronics and AC Drives', Prentice Hall Onglewood cliffs, New Jersey, 1998. 2. Gopal K. Dubey, 'Fundamentals of Electrical Drives', New Delhi, 2nd Edition, Narosa Publishing House, 3. Krishnan, R, 'Electric motor & Drives; Modelling, Analysis and Control', Prentice Hall of India, 2001. 4. Dubey, G. K, 'Power Semiconductor Controlled Drives', Prentice Hall, 1989. **REFERENCE BOOKS** 1. Murphy, J.M.D and Turnbull F.G, 'Thyristor Control of AC Motors', Pergamon Press, 1990. 2. Sen. P.C, 'Thyristor D.C. Drives', John Wiley and Sons, 1981. 3. Vedam Subrahmaniyam, 'Electric Drives Concepts and Applications', Tata McGraw Hill Publishing

- 3. Vedam Subrahmaniyam, 'Electric Drives Concepts and Applications', Tata McGraw Hill Publishing company Ltd., 2011.
- 4. Gaekward, 'Analog and Digital Control Systems', Wiley Eastern Ltd, 1989.
- 5. Leonhard. W, 'Control of Electric Drives', Springer Science & Business Media, 2001

#### **E-REFERENCES**

Lecture Series on Solid State Devices by Prof.S.Karmalkar, Department of Electrical Engineering, IIT Madras.

	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	0	2	0	1	0	0	0	0	0	0	3
CO2	3	1	0	0	2	0	1	0	0	0	0	0	3	2
CO3	1	2	3	0	2	0	0	1	0	0	0	0	1	2
CO4	0	2	0	0	3	0	1	0	0	0	0	0	2	2
CO5	3	1	1	0	0	1	1	1	0	0	0	1	1	2
Total	10	8	5	0	9	1	4	2	0	0	0	1	7	11
Scaled	2	2	1	0	2	1	1	1	0	0	0	1	2	3

#### Mapping of COs with POs

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

^{1-5 &}gt; 1, 6-10 > 2, 11-15 > 3

# HVDC TRANSMISSION SYSTEMS

Cours	se Outcomes (PEE E61):	Domain	Level
CO1	Understand the advantages of dc transmission over ac	Cognitive	Understanding
	transmission.		
CO2	Understand the operation of Line Commutated	Cognitive	Understanding
	Converters and Voltage Source Converters.		
CO3	Understand the control strategies used in HVDC	Cognitive	Understanding
	transmission system.		
<b>CO4</b>	Understand the improvement of power system stability	Cognitive	Understanding
	using an HVDC system.		
CO5	Understand the concept of MTDC system.	Cognitive	Understanding

COURSE CODE	COURSE NAME	L	Т	Р	С				
<b>PEE E61</b>	IIVDC TDANSMISSION SVSTEMS	3	0	0	3				
C:P: A	<b>HVDC TRAINSMISSION STSTEMS</b>	L	Т	Р	Н				
3:0:0		3	0	0	3				
UNIT – I: D.C. TRANSMISSION TECHNOLOGY									
Comparison of AC and DC Transmission (Economics, Technical Performance and Reliability									
Application of DC Transmi	ssion – Types of HVDC Systems – Components	of a H	VDC	Syste	em –Line				
Commutated Converter and	Voltage Source Converter Based systems.								
UNIT– II: ANALYSIS OF	<b>FLINE COMMUTATED AND VOLTAGE S</b>	SOUR	CE		00				
CONVERTERS					0)				
Line Commutated Converte	rs (LCCs) Six Pulse Converter – Analysis negl	ecting	Com	nutat	ion				
Overlap, Harmonics – Twel	ve Pulse Converters – Inverter Operation –Effe	ct of C	omm	utatio	n				
Overlap – Effect of Commu	tation Failure, Misfire and Current Extinction in	1 LCC	links.						
Voltage Source Converters	(VSCs): Two and Three-Level VSCs –PWM Se	cheme	s: Sele	ective	٤				
Harmonic Elimination, Sinu	soidal Pulse width Modulation. Analysis of a s	ix-puls	se con	verte	r –Real				
and Reactive power control	using VSC.				1				
UNIT–III: CONTROL O	F HVDC CONVERTERS AND COMPONE	NTS C	)F		09				
HVDC SYSTEM									
Principles of Link Control i	n a LCC HVDC System - Control Hierarchy, F	iring A	ngle	Conti	cols –				
Phase Locked Loop, Curren	t and Extinction Angle Control – Starting and S	toppir	ng of a	l Link	ζ-				
Principles of Link Control i	n a VSC HVDC system: Power Flow and DC V	'oltage	e Cont	rol.					
Smoothing Reactors, Reacti	ve Power Sources and Filters in LCC HVDC S	ystems	S DC 1	Line,	Corona				
Effects - Insulators, Transient Over-voltages DC Line faults in LCC Systems.									
UNIT – IV: STABILITY ENHANCEMENT USING HVDC CONTROL									
Basic Concepts: Power System Angular -Voltage and Frequency Stability –Power Modulation:									
Basic Principles – Synchronous and Asynchronous Links - Voltage Stability Problem in AC/DC									
Systems.									
UNIT – V: MTDC LINKS					09				

Multi-Terminal and Multi- Infeed Systems – Series and Parallel MTDC Systems using LCCs -MTDC Systems using VSCs – Modern Trends in HVDC Technology –Introduction to Modular Multi-level Converters.

LECTURE	TUTORIAL	TOTAL
45	0	45

#### **TEXTBOOKS:**

1. Padiyar. K. R, 'HVDC Power Transmission Systems', New Age International publishers, 2011.

2. Arrillaga. J, 'High Voltage Direct Current Transmission', Peter Peregrinus Ltd., 1983.

#### **REFERENCES:**

1. Kimbark. E.W, 'Direct Current Transmission', Vol.1, Wiley-Interscience, 1971.

#### **E-REFERENCES:**

1. <u>www.nptel.ac.in</u>

#### Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	-	1	-	-	1	1	-	1	2	1
CO2	1	1	1	1	-	-	-	-	-	-	1	1	1	2
CO3	1	3	-	-	-	-	-	-	-	-	-	-	2	2
CO4	2	3	1	1	-	-	-	-	-	-	-	-	2	2
CO5	1	2	-	-	-	-	-		-	-	-	1	1	1
Total	7	10	3	3	0	1	0	0	1	1	1	3	8	8
Scaled	2	3	1	1	0	1	0	0	1	1	1	1	2	2

1-5 >1, 6-10 >2, 11-15 > 3

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUR COD	E COURSE NAME	L	Т	Р	С					
PEE7	01 INDUSTRIAL AUTOMATION	3	0	0	3					
<b>C</b> : <b>P</b> :	Α	L	Т	Р	Н					
3:0:	0	3	0	0	3					
Course Outcomes:		Don	nain		Level					
CO1	Able to <b>define</b> and <b>explain</b> the fundamentals of Pneumatic hydraulics and electrical drives. <b>List</b> out the advantage disadvantages and its application.	s, s, Cogr	nitive	τ	Understand					
CO2	<b>Understand</b> the electrical ladder diagrams for hydraulic and pneumatic system and able to <b>explain</b> pressure, proximit switches and intelligent Relays.	ty Cogr	nitive	τ	Understand					
r		1:00 1.1								
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------	--	--	--	--	--	--
CO3	<b>Explain</b> and <b>categoriz</b>	e different types of Sensors and the	r Cognitive	Understand						
	<b>Illustrate</b> the knowled	lge in the PLC logic. Architecture								
COA	and <b>design</b> the indust	rial automated system for specific		Understand						
CO4	applications and applications	oply the knowledge of PLC	Cognitive	Understand						
	programming to interfac	ce pneumatics.								
CO5	Outline the overview	of robotics and their application	. Cognitive	Understand						
000	<b>Understand</b> the operation	ion of robots.	cognitive	Chiulistana						
UNIT – I	I: INTRODUCTION T	O AUTOMATION		9						
Introduct	ion to Automation - I	Hydraulic Systems - Pneumatics	Systems - Electr	o pneumatics –						
Advantag	ges and disadvantages – A	Applications.		-						
UNIT – I	II: APPLICATIONS O	F RELAYS		9						
Introduct	ion to Process Control P	hilosophies: type of relays, ladder l	ogic methodology.	ladder symbols.						
Essential	qualities of relays- NO	& NC contacts- Electrical Ladder E	iagrams for Pneur	natic system and						
Hydrauli	c system-pressure switch	es- Intelligent Relays.	_							
UNIT – I	III: SENSORS AND TI	IMERS IN CONTROLLERS		9						
Introduct	ion to sensors- proxim	nity sensors -characteristics- types	of sensors-resist	ive - inductive-						
capacitiv	e- magnetic- ultrasonic -	photoelectric-applications of sensors								
UNIT – I	UNIT – IV: PROGRAMMABLE LOGIC CONTROLLERS 9									
Evolution	n of PLC – Sequential a	and Programmable controllers – Ar	chitecture–Program	nming of PLC –						
Evolution of PLC – Sequential and Programmable controllers – Architecture–Programming of PLC –										
kelay log	Relay logic and Ladder logic – role of unlers and counters - Applications – PLC interface to pheumatics.									
LINIT _ Y		le of timers and counters - Application	ns – PLC interface	e to pneumatics.						
UNIT – Y	V: ROBOTICS	le of timers and counters - Application	ns – PLC interface	e to pneumatics.						
UNIT – Introduct	V: ROBOTICS	obotics – Terms and Definitions	ns – PLC interface	e to pneumatics. 9 Classification and						
UNIT – V Introduct configura	V: ROBOTICS ion and overview of R ation of robots, Basic co	obotics – Terms and Definitions r omponents - Drives, controller grij	ns – PLC interface elated robotics, c oper, application-	e to pneumatics. 9 lassification and programming in						
UNIT – V Introduct configura Robotics.	V: ROBOTICS ion and overview of R ation of robots, Basic co	obotics – Terms and Definitions a omponents - Drives, controller grij	ns – PLC interface elated robotics, c oper, application-	e to pneumatics. 9 lassification and programming in TOTAL						
UNIT – V Introduct configura Robotics.	V: ROBOTICS ion and overview of R ation of robots, Basic co	obotics – Terms and Definitions 1         omponents - Drives, controller grip         LECTURE       TUT         45	ns – PLC interface elated robotics, c oper, application- ORIAL	e to pneumatics. 9 lassification and programming in TOTAL 45						
Introduct configura Robotics.	V: ROBOTICS ion and overview of R ation of robots, Basic co OOKS:	obotics – Terms and Definitions 1         omponents - Drives, controller grip         LECTURE       TUT         45	ns – PLC interface related robotics, c oper, application- ORIAL 0	e to pneumatics. 9 classification and programming in TOTAL 45						
Ketay logUNIT – `IntroductconfiguraRobotics.TEXT B1. Indust	V: ROBOTICS ion and overview of R ation of robots, Basic co OOKS:	le of timers and counters - Application         obotics - Terms and Definitions in         omponents - Drives, controller grip         LECTURE       TUT         45         nologies       Edited         By       Chanchal	ns – PLC interface elated robotics, c oper, application- ORIAL 0	e to pneumatics. 9 Classification and programming in TOTAL 45						
Ketay log       UNIT – '       Introduct       configura       Robotics.       TEXT B       1. Indust       97803	V: ROBOTICS ion and overview of R ation of robots, Basic co OOKS: trial Automation Tech	le of timers and counters - Application         obotics – Terms and Definitions reprint         omponents - Drives, controller grip         LECTURE       TUT         45         nologies, Edited By Chanchal         e 10, 2020 by CRC Press	ns – PLC interface elated robotics, c oper, application- ORIAL 0 Dey, Sunit Kur	e to pneumatics. 9 Classification and programming in TOTAL 45 nar Sen ISBN						
Ketay logUNIT – 'IntroductconfiguraRobotics.TEXT B1. Indust978032. James	V: ROBOTICS ion and overview of R ation of robots, Basic co OOKS: trial Automation Tech 367260422 Published Jun 5 Dally, W., "Instrumenta	le of timers and counters - Application         obotics – Terms and Definitions momponents - Drives, controller grip         LECTURE       TUT         45         nologies, Edited By Chanchal         e 10, 2020 by CRC Press.         tion for Engineering Measurements"	ns – PLC interface elated robotics, c oper, application- ORIAL 0 Dey, Sunit Kur	e to pneumatics. 9 lassification and programming in TOTAL 45 nar Sen ISBN ns.						
TEXT B 1. Indust 97803 2. James 3. JOHN	V: ROBOTICS ion and overview of R ation of robots, Basic co OOKS: trial Automation Tech 67260422 Published Jun 5 Dally, W., "Instrumenta WEBB: Programmable	le of timers and counters - Application         obotics – Terms and Definitions reprinted to the second se	ns – PLC interface elated robotics, c oper, application- ORIAL 0 Dey, Sunit Kur , John Wiley & son cations, PHI.	e to pneumatics. 9 lassification and programming in TOTAL 45 mar Sen ISBN ns.						
TEXT B 1. Indust 97803 2. James 3. JOHN 4. Progra	V: ROBOTICS ion and overview of R ation of robots, Basic co OOKS: trial Automation Tech 667260422 Published Jun 5 Dally, W., "Instrumenta I WEBB: Programmable ammable Logic Controlle	le of timers and counters - Application         obotics – Terms and Definitions reprint         omponents - Drives, controller grip         LECTURE       TUT         45         nologies, Edited By Chanchal         e 10, 2020 by CRC Press.         tion for Engineering Measurements"         Logic Controllers Principles & appliers, Sixth Edition, William Bolton, 20	ns – PLC interface elated robotics, c oper, application- ORIAL 0 Dey, Sunit Kur , John Wiley & son cations, PHI. )15.	e to pneumatics.  9  lassification and programming in  TOTAL 45  nar Sen ISBN ns.						
Keiay logUNIT – VIntroductconfiguraRobotics.TEXT B1. Indust978032. James3. JOHN4. Progra5. Patran	V: ROBOTICS ion and overview of R ation of robots, Basic co OOKS: trial Automation Tech 667260422 Published Jun 5 Dally, W., "Instrumenta I WEBB: Programmable ammable Logic Controlle nabis, D., "Sensors and Tech	le of timers and counters - Application         obotics – Terms and Definitions reprinted to the second se	ns – PLC interface elated robotics, c oper, application- ORIAL 0 Dey, Sunit Kur , John Wiley & son cations, PHI. 015.	e to pneumatics. 9 Classification and programming in TOTAL 45 mar Sen ISBN ns.						
Keiay logUNIT – VIntroductconfiguraRobotics.TEXT B1. Indust978032. James3. JOHN4. Progra5. Patrar6. Harry	V: ROBOTICS ion and overview of R ation of robots, Basic co OOKS: trial Automation Tech 667260422 Published Jun 5 Dally, W., "Instrumenta I WEBB: Programmable ammable Logic Controlle nabis, D., "Sensors and Ti Colestock, Industrial Ro	le of timers and counters - Application         obotics – Terms and Definitions reprinted to the second se	ns – PLC interface elated robotics, c oper, application- ORIAL 0 Dey, Sunit Kur , John Wiley & son cations, PHI. 015. 00. Delhi, 2005.	e to pneumatics. 9 lassification and programming in TOTAL 45 mar Sen ISBN ns.						
TEXT B 1. Indust 97803 2. James 3. JOHN 4. Progra 5. Patran 6. Harry REFERI	V: ROBOTICS ion and overview of R ation of robots, Basic co OOKS: trial Automation Tech 67260422 Published Jun 5 Dally, W., "Instrumenta WEBB: Programmable ammable Logic Controlle nabis, D., "Sensors and Tech Colestock, Industrial Ro ENCE BOOKS:	le of timers and counters - Application         obotics – Terms and Definitions recomponents - Drives, controller gription         Import International Control of the second seco	ns – PLC interface elated robotics, c oper, application- ORIAL 0 Dey, Sunit Kur , John Wiley & son cations, PHI. )15. )0. Delhi, 2005.	e to pneumatics. 9 Classification and programming in TOTAL 45 mar Sen ISBN ns.						
Relay logUNIT – 'IntroductconfiguraREXT B1. Indust978032. James3. JOHN4. Progra5. Patrar6. HarryREFERI1. Antho	V: ROBOTICS ion and overview of R ation of robots, Basic co OOKS: trial Automation Tech 667260422 Published Jun 5 Dally, W., "Instrumenta I WEBB: Programmable ammable Logic Controlle nabis, D., "Sensors and Te Colestock, Industrial Ro ENCE BOOKS:	le of timers and counters - Application         obotics – Terms and Definitions reprint         omponents - Drives, controller grip         LECTURE       TUT         45         nologies, Edited By Chanchal         e 10, 2020 by CRC Press.         tion for Engineering Measurements"         Logic Controllers Principles & appli         ers, Sixth Edition, William Bolton, 20         ransducers", Wheeler Publishing, 20         botics, McGraw Hill Book Co., New	ns – PLC interface elated robotics, coper, application- ORIAL 0 Dey, Sunit Kur , John Wiley & son cations, PHI. 015. 00. Delhi, 2005.	e to pneumatics. 9 Plassification and programming in TOTAL 45 mar Sen ISBN ns. w Delbi 2014						
Ketay logUNIT – VIntroductconfiguraRobotics.TEXT B1. Indust978032. James3. JOHN4. Progra5. Patrar6. HarryREFERI1. Antho2. S R	V: ROBOTICS ion and overview of R ation of robots, Basic co OOKS: trial Automation Tech 667260422 Published Jun 5 Dally, W., "Instrumenta I WEBB: Programmable ammable Logic Controlle habis, D., "Sensors and Ti Colestock, Industrial Ro ENCE BOOKS: ony Esposito, Fluid Powe Mujumdar "Pneumatic s	le of timers and counters - Application         obotics – Terms and Definitions reprint         omponents - Drives, controller grip         LECTURE       TUT         45         nologies, Edited By Chanchal         e 10, 2020 by CRC Press.         tion for Engineering Measurements"         Logic Controllers Principles & appli         ers, Sixth Edition, William Bolton, 20         potics, McGraw Hill Book Co., New         r with Applications, Pearson Education         vstem" Tata McGraw Hill ISBN: 00	ns – PLC interface elated robotics, c oper, application- ORIAL 0 Dey, Sunit Kur , John Wiley & son cations, PHI. 015. 00. Delhi, 2005.	e to pneumatics.  9  lassification and programming in  TOTAL 45  nar Sen ISBN ns.  ew Delhi, 2014.						
Ketay logUNIT – VIntroductconfiguraRobotics.TEXT B1. Indust978032. James3. JOHN4. Progra5. Patran6. HarryREFERI1. Antho2. S. R. I3. Stuart	V: ROBOTICS ion and overview of R ation of robots, Basic co OOKS: trial Automation Tech 667260422 Published Jun 6 Dally, W., "Instrumenta WEBB: Programmable ammable Logic Controlle nabis, D., "Sensors and Ti Colestock, Industrial Ro ENCE BOOKS: ony Esposito, Fluid Powe Mujumdar, "Pneumatic spinal and	le of timers and counters - Application         obotics – Terms and Definitions reprint         omponents - Drives, controller grip         LECTURE       TUT         45         nologies, Edited By Chanchal         e 10, 2020 by CRC Press.         tion for Engineering Measurements"         Logic Controllers Principles & appli         ers, Sixth Edition, William Bolton, 20         ransducers", Wheeler Publishing, 20         botics, McGraw Hill Book Co., New         r with Applications, Pearson Educati         ystem", Tata McGraw Hill. ISBN: 00         : Supervisory Control and Date	ns – PLC interface elated robotics, coper, application- ORIAL 0 Dey, Sunit Kur , John Wiley & son cations, PHI. 015. 00. Delhi, 2005.	e to pneumatics.  9  Passification and programming in  TOTAL 45  nar Sen ISBN ns.  ew Delhi, 2014. 3 rd Edition. The						
Ketay logUNIT – VIntroductconfiguraRobotics.TEXT B1. Indust978032. James3. JOHN4. Progra5. Patrar6. HarryREFERI1. Antho2. S. R. I3. Stuartinstrum	V: ROBOTICS ion and overview of R ation of robots, Basic co OOKS: trial Automation Tech 67260422 Published Jun 5 Dally, W., "Instrumenta I WEBB: Programmable ammable Logic Controlle abis, D., "Sensors and Te Colestock, Industrial Ro ENCE BOOKS: ony Esposito, Fluid Powe Mujumdar, "Pneumatic sp A. Boyer., SCADA mentation systems and A	le of timers and counters - Application         obotics – Terms and Definitions reprint         omponents - Drives, controller grip         LECTURE       TUT         45         nologies, Edited By Chanchal         e 10, 2020 by CRC Press.         tion for Engineering Measurements"         Logic Controllers Principles & appli         ers, Sixth Edition, William Bolton, 20         ransducers", Wheeler Publishing, 20         botics, McGraw Hill Book Co., New         r with Applications, Pearson Educati         ystem", Tata McGraw Hill. ISBN: 00         : Supervisory Control and Dat         utomation Society, 2009.	ns – PLC interface elated robotics, c oper, application- ORIAL 0 Dey, Sunit Kur , John Wiley & sor cations, PHI. )15. )0. Delhi, 2005. on, 7th Edition, No )74602314. a Acquisition, 3	e to pneumatics. 9 lassification and programming in TOTAL 45 mar Sen ISBN ns. ew Delhi, 2014. 3 rd Edition, The						
<ul> <li>Ketay log</li> <li>UNIT – V</li> <li>Introduct configura Robotics.</li> <li>TEXT B</li> <li>1. Indust 97803</li> <li>2. James</li> <li>3. JOHN</li> <li>4. Progra</li> <li>5. Patran</li> <li>6. Harry</li> <li>REFERI</li> <li>1. Antho</li> <li>2. S. R. I</li> <li>3. Stuart instrum</li> <li>4. W Bo</li> </ul>	V: ROBOTICS ion and overview of R ation of robots, Basic co OOKS: Trial Automation Tech 667260422 Published Jun 6 Dally, W., "Instrumenta WEBB: Programmable ammable Logic Controlle abis, D., "Sensors and Ti Colestock, Industrial Ro ENCE BOOKS: ony Esposito, Fluid Powe Mujumdar, "Pneumatic spinal Action Systems and A Molton., "Mechatronics: El	le of timers and counters - Application         obotics – Terms and Definitions reprint         omponents - Drives, controller grip         LECTURE       TUT         45         nologies, Edited By Chanchal         e 10, 2020 by CRC Press.         tion for Engineering Measurements"         Logic Controllers Principles & appliers, Sixth Edition, William Bolton, 20         ransducers", Wheeler Publishing, 20         botics, McGraw Hill Book Co., New         r with Applications, Pearson Educati         ystem", Tata McGraw Hill. ISBN: 00         : Supervisory Control and Dat         utomation Society,2009.         lectronic Control Systems in Mecha	ns – PLC interface elated robotics, coper, application- ORIAL 0 Dey, Sunit Kur , John Wiley & son cations, PHI. 015. 00. Delhi, 2005. on, 7th Edition, Ne 074602314. a Acquisition, 3 nical and Electric	e to pneumatics.  9  lassification and programming in  TOTAL 45  nar Sen ISBN ns.  ew Delhi, 2014. 3 rd Edition, The al Engineering"						

Prentice-Hall. ISBN: 0131216333.

- 5. Micro-sensors; principles and applications-J.W.Gardner.
- 6. Semiconductor sensors and itsapplication-S.M.Sze.

## **E-RESOURCES:**

- 1. NPTEL- Industrial automation, Prof. S. Mukhopadhyay IITKharagpur.
- 2. Web Course -<u>http://elearning.vtu.ac.in/</u>

### Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	0	2	1	1	1	0	0	1	1	0		
CO2	3	2	0	0	1	1	0	1	0	1	3	2		
CO3	2	3	0	0	1	1	1	0	0	0	0	1		
CO4	2	1	3	0	0	1	0	1	1	0	0	1		
CO5	2	2	0	0	1	0	0	2	0	0	0	1		
Total	12	10	3	2	4	4	2	4	1	2	4	5		
Scaled	3	2	1	1	1	1	1	1	1	1	1	1		

### 1-5 >1, 6-10 >2, 11-15 > 3

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COUR COD	SE COURSE NAME	L	Т	Р	С
PEE7	02 ELECTRICAL AND HYBRID VEHICLES	3	0	0	3
<b>C</b> : <b>P</b> :	C : P : A				Н
3:0:	0	3	0	0	3
Course (	Dutcomes:	Dor	main		Level
CO1	To understand the working and performance of conventional vehicles.	Cog	nitive	Un	derstanding
CO2	<b>CO2</b> To understand Hybrid Electric Vehicles and Drive-trains.				derstanding
CO3	To explain basic concepts of Electric Drive Trains.	Cog	nitive	Un	derstanding

005	To explain busic concepts of Electric Drive Trains.	cognitive	Chacistanding
CO4	To explain the various types of Energy Storage Systems.	Cognitive	Understanding
CO5	To understand different types of Energy management strategies.	Cognitive	Understanding

## UNIT - I: INTRODUCTION

Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance.

9

UNIT – II: HYBRID ELECTRIC VEHICI	LES		9
Introduction to Hybrid Electric Vehicles: Hist environmental importance of hybrid and electric supplies. Hybrid Electric Drive-trains: Basic c drive-train topologies, power flow control in h	ory of hybrid and ele ric vehicles, impact o concept of hybrid trac nybrid drive-train top	ctric vehicles, socia f modern drive-trai tion, introduction t ologies, fuel efficie	al and ns on energy o various hybrid ency analysis.
UNIT – III: ELECTRIC DRIVE TRAINS	· · ·		9
Electric Drive-trains: Basic concept of electric topologies, power flow control in electric driv Propulsion unit: Introduction to electric compa and control of DC Motor drives, Configuration control of Permanent Magnet Motor drives, C drives, drive system efficiency.	e traction, introductio e-train topologies, fu onents used in hybrid n and control of Indu onfiguration and con	n to various electric el efficiency analys l and electric vehicl ction Motor drives, trol of Switched Re	c drive-Train sis. Electric les, Configuration configuration ar eluctance Motor
UNIT – IV: ENERGY STORAGE			9
Energy Storage: Introduction to Energy Stor based energy storage and its analysis, Fuel C based energy storage and its analysis, Flywh different energy storage devices. Sizing the d combustion engine (ICE), Sizing the propulsi storage technology, Communications, support	age Requirements in Cell based energy sto eel based energy sto rive system: Matchir on motor, sizing the ing subject systems.	Hybrid and Electro prage and its analysing the electric mach power electronics,	sis, Super Capac sis, Hybridization nine and the inter selecting the ene
UNIT – V: ENERGY MANAGEMENT ST	TRATEGIES		9
Energy Management Strategies: Introduction to vehicles, classification of different energy man management strategies, implementation issues Studies: Design of a Hybrid Electric Vehicle (	to energy management nagement strategies, s of energy managem (HEV), Design of a B	nt strategies used in comparison of diffe ent strategies, Char attery Electric Veh	hybrid and elect erent energy ging Stations. Ca icle (BEV).
	LECTURE	TUTORIAL	TOTAL
	LECTURE 45	TUTORIAL 0	TOTAL 45
TEXT BOOKS:	LECTURE 45	TUTORIAL 0	TOTAL 45
<ul> <li>TEXT BOOKS:</li> <li>1. C. Mi, M.A. MasrurandD. W. Gao, "Hy Practical Perspectives", John Wiley &amp; Son</li> <li>2. S. Onori, L. Serrao and G.Rizzoni, "Hybr 2015.</li> </ul>	45 ybrid Electric Vehic s, 2011. idElectricVehicles:E	TUTORIAL         0         les: Principles and         nergyManagement	TOTAL 45 1 Applications v Strategies",Spring
<ul> <li>TEXT BOOKS:</li> <li>1. C. Mi, M.A. MasrurandD. W. Gao, "Hy Practical Perspectives", John Wiley &amp; Son</li> <li>2. S. Onori, L. Serrao and G.Rizzoni, "Hybr 2015.</li> <li>REFERENCE BOOKS:</li> </ul>	<b>LECTURE</b> 45 ybrid Electric Vehic s, 2011. idElectricVehicles:E	TUTORIAL       0       les: Principles and       nergyManagements	TOTAL 45 Applications v Strategies",Spring
<ul> <li>TEXT BOOKS:</li> <li>1. C. Mi, M.A. MasrurandD. W. Gao, "Hy Practical Perspectives", John Wiley &amp; Son</li> <li>2. S. Onori, L. Serrao and G.Rizzoni, "Hybr 2015.</li> <li>REFERENCE BOOKS:</li> <li>1. M.Ehsani, Y.Gao, S.E.Gay and A.Emadi, Fundamentals, Theory and Design", CRCP</li> <li>2. T. Denton, "Electric and HybridVehicles",</li> </ul>	LECTURE 45 ybrid Electric Vehic s, 2011. idElectricVehicles:E "Modern Electric, H Press, 2004. Routledge, 2016.	TUTORIAL         0         les: Principles and         nergyManagements         lybrid Electric and	TOTAL 45 Applications v Strategies",Spring Fuel Cell Vehic
<ul> <li>TEXT BOOKS:</li> <li>1. C. Mi, M.A. MasrurandD. W. Gao, "Hy Practical Perspectives", John Wiley &amp; Son</li> <li>2. S. Onori, L. Serrao and G.Rizzoni, "Hybr 2015.</li> <li>REFERENCE BOOKS:</li> <li>1. M.Ehsani, Y.Gao, S.E.Gay and A.Emadi, Fundamentals, Theory and Design", CRCP</li> <li>2. T. Denton, "Electric and HybridVehicles",</li> <li>E-RESOURCES:</li> </ul>	LECTURE         45         ybrid Electric Vehic         s, 2011.         idElectricVehicles:Es         "Modern Electric, H         Press, 2004.         Routledge, 2016.	TUTORIAL         0         les: Principles and         nergyManagements         (ybrid Electric and	TOTAL 45 1 Applications v Strategies",Spring Fuel Cell Vehic

## Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO10</b>	PO11	PO12	PSO1	PSO2
CO1	3	0	0	0	0	0	0	0	0	1	0	1	0	2
CO2	3	0	0	0	0	0	0	0	0	1	0	1	0	2
CO3	3	2	0	0	0	0	0	0	0	1	1	2	0	2
CO4	3	2	0	0	1	0	0	0	0	1	1	1	0	3
CO5	3	2	0	0	1	0	0	0	0	1	1	1	0	3
Total	15	6	0	0	2	0	0	0	0	5	3	6	0	12
Scaled	3	1	0	0	1	0	0	0	0	1	1	1	0	3

1-5 > 1, 6-10 > 2, 11-15 > 30 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

## DISTRIBUTED GENERATION AND MICRO GRID

Cours	se Outcomes (YPE ]	E51):	Domain		L	evel				
CO1	To Understand the co	oncepts of Distributed Generation and	Cognitive	e	U	Inders	tanding			
	Microgrids.									
CO2	To Gain Knowledge	about the various DG resources	Cognitive	e	U	Inders	tanding			
CO3	To Familiarize with Distributed Generation	he planning and protection schemes of	Cognitive	e	U	Inders	tanding			
CO4	To Learn the concept	Cognitive	e	U	Inders	tanding				
CO5	To Acquire knowled	ge on the impacts of Microgrid	Cognitiv	e	U	Inders	tanding			
CO	DURSE CODE	COURSE NAME		L	Т	Р	С			
	YPE E51			3	0	0	3			
C	C:P: A = 3:0:0	<b>DISTRIBUTED GENERATION</b> A	ND	L	Т	Р	Η			
		MICRO GRID		3	0	0	3			
UNIT	-I INTRODUCT	ON TO DISTRIBUTED GENERATION					09			
DG de	finition - Reasons for	distributed generation-Benefits of integration	- Distribute	d gene	ratio	n and	the			
distrib	ution system - Technic	cal, Environmental and Economic impacts of c	listributed g	genera	tion o	on the				
distrib	ution system - Impact	of distributed generation on the transmission	system-Imp	act of	distri	buted				
genera	tion on central generat	ion								
UNIT	– II DISTRIBUTE	D ENERGY RESOURCES					09			
Combi	ned heat and power (C	CHP) systems-Wind energy conversion system	is (WECS)-	Solar	phot	ovolta	ic (PV)			
system	s-Small-scale hydroel	ectric power generation-Other renewable ener	gy sources-	Storag	ge de	vices-l	nverter			
	UES	IC AND BROTECTION					00			
	- III DG PLANNI	IG AND PROTECTION	. <b>.</b>				09			
Gener	ation capacity adequ	acy in conventional thermal generation sy	stems-Imp	act of	t dist	ribute	d			
generation-Impact of distributed generation on network design-Protection of distributed generation-										
Protection of the generation equipment from internal Faults-Protection of the faulted distribution										
network from fault currents supplied by the distributed generator-Impact of distributed generation on										
existing distribution system protection.										
UNIT	- IV CONCEPT O	F MICROGRID					09			

Microgrid Definition-A typical Microgrid configuration- Functions of Micro source controller and central controller- Energy Management Module (EMM) and Protection Co-ordination Module (PCM)- Modes of Operation- Grid connected and islanded modes- Modelling of Microgrid-Microturbine Model- PV Solar Cell Model- Wind Turbine Model-Role of Microgrid in power market competition.

### UNIT - V IMPACTS OF MICROGRID

09

Technical and economical advantages of Microgrid-Challenges and disadvantages of Microgrid development-Management and operational issues of a Microgrid- Impact on heat utilization-Impact on process optimization-Impact on market-Impact on environment-Impact on distribution system-Impact on communication standards and protocols.

Microgrid economics-Main issues of Microgrid economics-Microgrids and traditional power system economics-Emerging economic issues in Microgrids-Economic issues between Microgrids and bulk power systems-Potential benefits of Microgrid economics.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
	45	0	0	45
DEEDENICEC				

#### REFERENCES

- 1. Nick Jenkins, Janaka Ekanayake, GoranStrbac, "Distributed Generation", Institution of Engineering and Technology, London, UK,2010.
- 2. S. Chowdhury, S.P. Chowdhury and P. Crossley, "Microgrids and Active DistributionNetworks", The Institution of Engineering and Technology, London, United Kingdom, 2009.
- 3. Math H. Bollen , Fainan Hassan, "Integration of Distributed Generation in the Power System", John Wiley &Sons, New Jersey, 2011.
- 4. Magdi S. Mahmoud, Fouad M. AL-Sunni, "Control and Optimization of Distributed Generation Systems", Springer International Publishing, Switzerland, 2015.
- 5. Nadarajah Mithulananthan, Duong Quoc Hung, Kwang Y. Lee, "Intelligent Network Integration of Distributed Renewable Generation", Springer International Publishing, Switzerland, 2017.
- 6. Ali K., M.N. Marwali, Min Dai, "Integration of Green and Renewable Energy in Electric Power Systems", Wiley and sons, New Jersey, 2010.

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	2	1	2	1
CO2	2	2	2	1	3	2
CO3	2	2	2	1	3	2
CO4	1	1	2	1	2	1
CO5	2	2	2	2	3	2
Total	8	8	10	6	13	8
Scaled	2	2	2	2	3	2

### Mapping of COs with POs

#### 1-5 >1, 6-10 >2, 11-15 > 3

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

# SPECIALIZATION COURSE SYLLABUSES

# FUNDAMENTALS OF ELECTRIC VEHICLES

CO	URSE CODE		COURSE N	NAME		L	Τ	Р	C
	XEEEV1					3	0	0	3
C:	<b>P:A = 3:0:0</b>					L	Т	Р	Н
						3	0	0	3
Course	Outcomes:				Domai	n	L	evel	•
CO1	To explain the f	fundamentals, onventional v	, basic princip ehicles	es, operation,	Cogn	itive	U	nders	tanding
CO2	To differentiate	and compare	e the structure	, components			U	nders	tanding
	required, general Electric Vehicle	layout of El	lectric Vehicle	and Hybrid	Cogn	itive			
CO3	To understand th	ne types of 1	DC Motors us	ed in Electric	Com	itive	U	nders	tanding
	Vehicles				Cogn				
CO4	To explain the fo various converter	ur-quadrant c s	operations and t	he working of	Cogn	itive	U	nders	tanding
CO5	To understand t Indian and Globa	he various l l Electric Veb	Policies and R	Regulations in	Cogn	itive	U	nders	tanding
UNIT -	<b>I</b> VEHICLE FI		TALS						06
Vehicle	e resistance. Type	s: Rolling H	Resistance. gra	ding resistance	. Aeroc	lvnam	nic d	rag.	vehicle
perform	nance. Calculating	The Acceler	ration Force. n	naximum speed	l. Findi	ng Th	ne To	otal [	Tractive
Effort,	Torque Required C	In The Drive	Wheel, Transm	ission: Differen	tial, clut	ch &	gear	box, ]	Braking
perform	nance.		,		,	•		,	U
UNIT -	II: ELECTRIC	AND HYBR	<b>ID VEHICLES</b>	5					12
History	, Components of 1	Electric Vehi	cle, General L	ayout of EV, F	EV class	ificati	on,	Com	parison
with In	ternal combustion	Engine: Tec	hnology, Adva	ntages &Disady	vantages	of E	V, C	)verv	iew of
Tesla ca	ar.								
History	, Components of H	Iybrid Electri	c Vehicle, Gei	neral Layout of	Hybrid	EV, C	Comp	pariso	n with
Electric	vehicles, Advanta	ages &Disadv	antages of Hyb	rid EV, Overvie	ew of To	yota l	Prius		
UNIT -	- III MOTORS								09
Princip	le and working of	DC motor, 0	Characteristics	and Types of I	DC Mote	ors -	Over	view	(Speed
torque of	characteristics) of 1	Permanent M	agnet motor, B	LDC Motor and	d Inducti	ion m	otor.	Com	parison
of all n	notors.								
UNIT - IV CONVERTERS 09									09
Introduction of DC-DC, AC-AC, AC-DC, DC-AC, four-quadrant operation, Driver circuits									
UNIT - V INDIAN AND GLOBAL SCENARIO 09									
Technology Scenario, Market Scenario, Policies and Regulations, Payback and commercial model, P,									
Polices in India.									
			LECTURE	TUTORIAL	PRA	CTI	CAL	T	OTAL
			45	0		0			45
TEXT	BOOKS / REFER	ENCES							

- 1. John Lowry and James Larminie, Electric Vehicle Technology Explained, Second Edition, 2012.
- 2. MehrdadEhsani and Yimin Gao Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design Power Electronics and Applications Series, Second Edition,2009.
- 3. Iqbal Husain, Electric and Hybrid Vehicles: Design Fundamentals, Third Edition, 2021.
- 4. Seth Leitman and Bob Brant Build Your Own Electric Vehicle, Third Edition, 2013.
- 5. Wei Liu, Introduction to Hybrid Vehicle System Modeling and Control, Second Edition, 2013.

	PO 1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	1	2	1	0	1	1	0	0	1	0	1	1	2
CO2	3	1	2	1	0	1	1	0	0	1	0	1	1	2
CO3	3	2	2	1	0	1	1	0	0	1	1	2	1	2
CO4	3	2	2	1	1	1	1	0	0	1	1	1	1	3
CO5	0	0	0	1	0	1	1	1	0	1	1	1	1	3
Total	12	6	8	5	1	5	5	1	0	5	3	6	5	12
Scaled	3	2	2	0	1	1	1	0	0	1	2	2	1	3

#### **COs versus POs Mapping**

0–No Relation

1 – LowRelation 2 – Medium Relation 3 – HighRelation

### **XEEEV2 FUNDAMENTALS OF ELECTRIC VEHICLES LABORATORY**

#### Objectives

Understanding the performance of various measuring instruments through practical demonstrations.

_			
Course	Outcomes:	Domain	Level
CO1	To demonstrate conversion of DC-to-DC voltage	Psychomotor	Guided Response
	using converter	-	_
CO2	To carry out Simulation for AC-to-AC conversion,	Psychomotor	Guided Response
	AC to DC conversion and DC to AC conversion		
CO3	Perform speed control of DC motor and reversal of	Psychomotor	Guided Response
	DC shunt motor		
CO4	Calculate and compare the brake power, torque and	Davahamatar	Guided Response
	mechanical efficiency of IC Engine and Electrical	Psycholiotor	
	Motor of same configuration		
CO5	Recall various elements of transmission systems and	Psychomotor	Guided Response
	various types of braking systems	-	-

### Practical

### Perform any 8 Experiments. List of Practical:

- 1. Experiment for conversion of DC-to-DCvoltage using converter.
- 2. Simulation for AC-to-ACconversion.
- 3. Simulation for AC to DC conversion.
- 4. Simulation for DC to AC conversion.
- 5. Study of 3phase Induction motor.
- 6. Speed control of DC motor using IGBT.
- 7. To perform speed reversal of DC shunt motor.
- 8. Study of various elements of transmission systems (clutch, differentials, gearbox etc.)
- 9. Calculate and compare the brake power, torque and mechanical efficiency of IC Engine and Electrical Motor of same configuration.

10.Study of various types of braking systems.

- 11.Case study of Tesla Car.
- 12. Case study of Toyota Prius.

### TOTAL

**30 Hours** 

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	0	0	0	0	0	0	0	1	0	1	1	2
CO2	3	2	0	0	0	0	0	0	0	1	0	1	1	2
CO3	3	2	0	0	0	0	0	0	0	1	1	2	1	2
CO4	3	2	0	0	1	0	0	0	0	1	1	1	1	2
CO5	3	2	0	0	1	0	0	0	0	1	1	1	1	2
Total	15	6	0	0	2	0	0	0	0	2	3	6	5	10
Scaled	3	2	0	0	1	0	0	0	0	1	2	2	1	2

# **COs versus POs Mapping**

0-No Relation 1 -Low Relation 2 - Medium Relation 3 - High Relation

### **SEMESTER IV**

### **ELECTRIC VEHICLES ARCHITECTURE**

COU	RSE CODE	COURSE NAME	L	Т	Р	С		
X	EEEV3			3	0	0	3	
C:P	: A = 3:0:0	ELECTRIC VEHICLES ARCHITECTUR	RE	L	Т	Р	Η	
				3	0	0	3	
Course	e Outcomes:		Do	main	Level			
CO1	To explain th analyze series	Co	gnitive	Und	nding			
CO2	To understan	d the Power flow in HEVs	Co	gnitive	Understandi		nding	
CO3	To understandelectric powe	d Torque Coupling and analyze Parallel hybrid r-train architecture	Cognitive		Understanding			
CO4	To explain th electric powe	Co	Cognitive		Understanding			
CO5 To select the appropriate EV configuration with suitable power source Cognitive							standing	
UNIT - SERIES	-I BASIC ARC S DRIVE TRAI	HITECTURE OF HYBRID DRIVE TRAINS AN N	D Al	NALYSIS	S OF		09	

Hybrid Electric Vehicles (HEV): T	he gasoline ICE and	battery. Diesel	ICE and battery.	Battery and						
Fuel Cells Battery and capacitor Battery and flywheel Battery and battery hybrids. Fneroy use in										
conventional vehicles. Energy saving potential of hybrid drive trains: Regenerative braking. More										
efficient operation of the ICE, inclu	efficient operation of the ICE including reduction of idle Smaller ICE Potential for higher weight									
Electrical losses Various HEV configurations and their operation modes. Series configuration										
Parallel configuration. Series-parallel configuration. Complex configuration.										
UNIT – II POWER FLOW IN HI	EVs			12						
Power Flow Control: Optimal ICE	operating point and o	perating line. Sa	afe battery voltage	×.						
Power Flow Control in Series Hybr	id for various modes.	Power Flow C	ontrol in Parallel I	Hybrid for						
various modes.				5						
Power Flow Control in Series - Pa	arallel Hybrid for va	rious modes, T	he operating mod	les of EM						
dominated system. Power Flow Control Complex Hybrid Control for various modes.										
UNIT – III TOROUE COUPLING AND ANALYSIS OF PARALLEL DRIVE TRAIN 06										
Introduction to Parallel Hybrid Electric Drive Train. Torque Coupling. Speed Coupling. Post-										
Transmission Parallel Hybrid Drive	e Train with Torque	Coupling, Pre-7	Transmission Para	llel Hybrid						
Drive Train with Torque Coupli	ng, Parallel Hybrid	Drive Train w	ith Speed Couplin	ng: Hybrid						
traction, Engine alone traction, Mot	tor alone traction,	Regenerative	braking, Battery	charging						
from the ICE. Complex Hybrid D	Prive train.	-								
UNIT - IV BASIC ARCHITECTURE OF ELECTRIC DRIVE TRAINS - I 09										
Electric Vehicle (EV) Configuration: Electric propulsion – The electronic controller. Power										
converter, Electric Motor (EM), I	Mechanical transmis	ssion, Driving	wheels. Energy s	ource-The						
energy source (battery, fuel cell,	ultra capacitor), Er	nergy managen	nent unit, Energy	refueling						
unit. Auxiliary system- Power ste	ering unit, Tempera	ture control un	it, Auxiliary pow	ver supply.						
EV alternatives based on drivetrains: EV configuration with clutch. gearbox and differential-I.										
EV configuration without clutch	and gearbox, EV	configuration	with clutch, ge	arbox and						
differential-II.										
UNIT – V BASIC ARCHITECTURE OF ELECTRIC DRIVE TRAINS - II 09										
EV configuration with two EM, EV configuration with in wheel motor and mechanical gear, EV										
configuration with in wheel motor and no mechanical gear. EV alternatives based on power										
source configuration: EV configuration with battery source, EV configuration with two battery										
sources, EV configuration with battery and fuel cell source, EV configuration with multiple energy										
sources, EV configuration with battery and capacitors sources, EV configuration with battery										
and flywheel sources, Single and Multi-motor drives, In wheel drives.										
	IECTUDE	TITODIAI								
		TUTORIAL	PRACTICAL	TOTAL						

## **TEXTBOOKS / REFERENCES**

- 1. M. Ehsani, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2005.
- 2. I. Husain, Electric and Hybrid Electric Vehicles, CRC Press, 2003, 2nd edition.
- 3. L. Guzzella and A. Sciarretta, Vehicle Propulsion Systems: Introduction to Modeling and Optimization, Springer, 2007 Fifth edition
- 4. G. Lechner and H. Naunheimer, Automotive Transmissions: Fundamentals, Selection, Design and Application, Springer, 1999, Third edition.
- 5. C.C. Chan and K.T. Chau Modern Electric VehicleTechnology, Oxford Science Publication Volume,2001.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	1	1	1	0	0	0	0	0	1	0	1	1	2
CO2	3	1	1	0	0	0	0	0	0	1	0	1	1	2
CO3	3	1	1	0	0	0	0	0	0	1	1	2	1	2
CO4	3	1	1	0	1	0	0	0	0	1	1	1	1	3
CO5	3	1	1	0	1	0	0	0	0	1	1	1	1	3
Total	15	5	0	0	2	0	0	0	0	2	3	6	5	12
Scaled	3	1	0	0	1	0	0	0	0	1	2	2	1	3

# **COs versus POs Mapping**

0-No Relation 1 -Low Relation 2 - Medium Relation 3 - High Relation