

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.3	Average percentage of courses having focus on employability/ entrepreneurship/ skill development offered by the Department of Mathematics.

DEPARTMENT OF MATHEMATICS

SYLLABUS COPY OF THE COURSES HIGHLIGHTINGTHE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

	S. No.	Program	me N	lame
	1.	Bachelor of Science (Mathematics)		
	2.	Master of Science (Mathematics)		
2.	Syllabu	s of the courses as per the list.		
Leg	gend :	Words highlighted with Blue Color	-	Entrepreneurship
		Words highlighted with Red Color	-	Employability
		Words highlighted with Green Color	-	Skill Development

<u>1. LIST OF COURSES</u>

Name of the Course	Course Code	Year of Introduction	Activities/Content with direct bearing on Employability/ Entrepreneurship/ Skill development
Tamil – I	XGT101	2022-23	Employability-Assignment & Seminar. To acquire basic Learning skills
English – I	XGE102	2022-23	Employability-Assignment & Seminar. To acquire basic Learning skills
Algebra & Trigonometry	XMT103	2022-23	Employability- Assignment, Seminar and Group discussions
Differential Calculus	XMT104	2022-23	Employability- Assignment, Seminar and Quiz
Allied Physics – I	XPG105	2022-23	Employability- Assignment, Seminar and Quiz
Allied Physics Practical - I	XPG106	2022-23	Employability- Assignment, Seminar and Quiz
Human Ethics ,Values, Rights and Gender Equality	XUM001	2018-19	Employability-Assignment & Seminar. To acquire basic Learning skills
Foundation Course	XMT107	2023-24	Employability-Assignment & Seminar. To acquire basic Learning skills
Tamil – II	XGT201	2022-23	Employability- Assignment, Seminar and Group discussions
English – II	XGE202	2022-23	Employability- Assignment, Seminar and Group discussions
Analytical Geometry 3D and Integral Calculus	XMT203	2022-23	Employability- Assignment, Seminar and Quiz
Sequence and Series	XMT204	2018-19	Employability-Assignment & Seminar. To acquire basic Learning skills
Allied Physics – II	XPG205	2022-23	Employability- Assignment, Seminar and Group discussions
Allied Physics Practical - II	XPG206	2022-23	Employability- Assignment, Seminar and Quiz
Quantitative Aptitude - I	XMT207	2022-23	Skill Development- Seminar: To learn some application about aptitudes
Environmental Studies	XUM002	2023-24	Employability- Assignment, Seminar and Quiz
Differential Equations and Laplace Transforms	XMT301	2018-19	Employability- Assignment, Seminar and Quiz
Vector Calculus, Fourier Series and Fourier	XMT302	2018-19	Employability- Miniproject, Seminar and Group discussions

Transforms			
Mathematical Statistics - 1	XMT303	2023-24	Employability- Assignment, Seminar and Quiz
Mathematical Statistics Practical - 1	XMT304	2023-24	Employability- Assignment, Seminar and Quiz
Open Elective Accounting for everyone	XCOOE5	2018-19	Employability- Assignment, Seminar and Quiz
Open Elective Web Technologies	YSEOE2	2018-19	Employability- Assignment, Seminar and Quiz
Open Elective C++	XEAOE1	2018-19	Employability- Assignment, Seminar and Quiz
Quantitative Aptitude - II	XMT305	2023-24	Skill Development- Seminar: To learn some application about aptitudes
Disaster Management	XUM003	2018-19	Employability- Miniproject, Seminar and Group discussions
Abstract Algebra	XMT401	2023-24	Employability- Assignment, Seminar and Quiz
Mechanics	XMT402	2018-19	Employability- Assignment, Seminar and Quiz
Mathematical Statistics - 2	XMT403	2023-24	Employability- Assignment, Seminar and Quiz
Mathematical Statistics Practical - 2	XMT404	2023-24	Employability- Assignment, Seminar and Quiz
Open elective - Web Technologies	YSEOE2	2018-19	Employability- Assignment, Seminar and Group discussions
Open elective - Public Administration	XCOOE8	2018-19	Employability- Assignment, Seminar and Group discussions
Open Elective – Human Resources Management	XBAOE3	2018-19	Employability- Assignment, Seminar and Group discussions
Quantitative Aptitude - III	XMT405	2023-24	Skill Development- Seminar: To learn some application about aptitudes
Introduction to Entrepreneurship development	XUM004	2021-22	Entrepreneurship- Seminar and Group Discussions
Probability and Statistics	XMT501	2018-19	Employability- Assignment, Seminar and Quiz
Matrices	XMT502A	2018-19	Employability- Assignment, Seminar and Quiz
Discrete Mathematics	XMT502B	2018-19	Employability- Assignment, Seminar and Quiz
Numerical Methods	XMT503A	2018-19	Employability- Assignment, Seminar and Quiz
Mechanics	XMT503B	2018-19	Employability- Assignment, Seminar and Quiz

Linear Algebra	XMT504A	2018-19	Employability- Assignment, Seminar and Quiz
Astronomy	XMT504B	2018-19	Employability- Assignment, Seminar and Quiz
Open Elective - Business Analytics with worksheet	XCAOE3	2018-19	Employability- Assignment, Seminar and Quiz
Open Elective-Web Technologies	YSEOE2	2018-19	Employability- Assignment, Seminar and Quiz
Open Elective - Energy Studies	XMEOE04	2018-19	Employability- Assignment, Seminar and Quiz
Graph Theory	XMT601	2018-19	Employability- Assignment, Seminar and Quiz
Complex Analysis	XMT602A	2018-19	Employability- Assignment, Seminar and Quiz
Number Theory	XMT602B	2018-19	Employability- Assignment, Seminar and Quiz
Linear Programming	XMT603A	2018-19	Employability- Assignment, Seminar and Quiz
Stochastic Processes	XMT603B	2018-19	Employability- Assignment, Seminar and Quiz
Project	XMT604	2018-19	Employability- Mini project, Seminar and Group discussions
Linear Algebra	YMA101	2023-24	Employability- Assignment, test and case study.
Real Analysis	YMA102	2014-15	Employability- Assignment, test and case study.
Ordinary Differential Equations	YMA103	2014-15	Employability- Assignment, test and case study.
Graph Theory	YMA104	2014-15	Employability- Assignment, test and case study.
Mathematical Statistics	YMA1E1A	2014-15	Skill Development- Seminar: To learn how to apply mathematical statistics in real world problems
Fuzzy Sets and their Applications	YMA1E1B	2014-15	Skill Development- Seminar: To learn how to apply fuzzy sets and their applications in real world problems
AI and Machine Learning	YMA1E1C	2023-24	Skill Development- Seminar: To learn how to apply AI and machine learning in real world problems
Computer Programming (C++ Theory and Lab)	YMA1E2A	2022-23	Skill Development- Seminar: To learn how to apply C++ in real world problems
Number Theory and Cryptography	YMA1E2B	2022-23	Skill Development- Seminar: To learn how to apply number theory and cryptography in real world problems

Formal Languages and Automata Theory	YMA1E2C	2022-23	Skill Development- Seminar: To learn how to apply formal languages and automata theory in real world problems
Advanced Algebra	YMA201	2023-24	Employability- Assignment, test and case study.
Complex Analysis	YMA202	2023-24	Employability- Assignment, test and case study.
Partial Differential Equations	YMA203	2023-24	Employability- Assignment, test and case study.
Advanced Numerical Methods	YMA204	2023-24	Employability- Assignment, test and case study.
Resource Management Techniques	YMA2E1A	2022-23	Skill Development- Seminar: To learn how to apply resource management techniques in real world problems
Data Science Using R Programming	YMA2E1B	2023-24	Skill Development- Seminar: To learn how to apply data science using R programming in real world problems
Python for Mathematics	YMA2E1C	2023-24	Skill Development- Seminar: To learn how to apply python for mathematics in real world problems
Data Analysis Using SPSS	YMA2E2A	2022-23	Skill Development- Seminar: To learn how to apply data analysis using SPSS in real world problems
Numerical Methods Practical Using MATLAB	YMA2E2B	2023-24	Skill Development- Seminar: To learn how to apply numerical methods practical using MATLAB in real world problems
Data Analytics Practical with Python	YMA2E2C	2023-24	Skill Development- Seminar: To learn how to apply data analytics practical with python in real world problems
Research Methodology	YRM001	2023-24	Skill Development- Seminar: To learn how to apply research methodology in real world problems
Topology	YMA301	2014-15	Employability- Assignment, test and case study.
Integral Equations, Calculus of Variations and Transforms	YMA302	2022-23	Employability- Assignment, test and case study.
Functional Analysis	YMA303	2020-21	Employability- Assignment, test and case study.
Differential Geometry	YMA304	2022-23	Employability- Assignment, test and case study.
Complex Analysis	YMA305	2020-21	Employability- Assignment, test and case study.

Elements of Stochastic Process	YMA3E1	2022-23	Skill Development- Seminar: To learn how to apply elements of stochastic process in real world problems
Mathematical Modelling	YMA3E2	2014-15	Skill Development- Seminar: To learn about the application of mathematical modelling
Data Analysis Using SPSS	YMA3E3	2022-23	Skill Development- Seminar: To learn how to apply data analysis using SPSS in real world problems
Project work	YMA404	2014-15	Employability- Mini project, Seminar and Group discussions

2. <u>SYLLABUS</u>

B.Sc (MATHEMATICS)

பொதுத்தமிழ் - 1 (முதற்பருவம்)

பாடக் குறியீடு/ Course Code	பாடப் பெயர்/ Course Name	Category	L	Т	Р	SS	Н	С			
XGT101	பொதுத்தமிழ் - 1	Supportive	3	0	0	0	3	3			
Pre-requisite	பன்னிரெண்டாம் வ	தப்பில் தமிழை ஒரு	பாடமா	கப் பயி	ன்றிருச்	க்க வே	ண்டும்				
பாடப்பயன்க ள் / Course outcomes	இப்பாடத்தைக் கற்ப	இப்பாடத்தைக் கற்பதால் பின் வரும் பயன்களை மாணவர்கள் அடைவர்.									
CO1								புரிந்து கொள்ளல் (Understand)			
CO2	புதுக்கவிதை வரலாற்ற	புதுக்கவிதை வரலாற்றினை அறிந்து கொள்வர்.						புரிந்து கொள்ளல் (Understand)			
CO3		இக்கால இலக்கிய வகையினைக் கற்பதன் மூலம்					பகுப்பாய்வு செய்தல் Analyze				
CO4	மொழி அறிவோடு சி	மொழி அறிவோடு சிந்தனைத்திறன் அதிகரித்தல்.				தெரிந்து கொள்ளல் (Apply)					
C05	தமிழ் மொழியைப் பிழையின்றி எழுதவும், புதிய கலைச் சொற்களை உருவாக்கவும் அறிந்து கொள்ளுதல்.					ிந்து செ nderstar		ຈັ			
		K1- Remember; K2 – Understand; K3 – Apply; K4 Analyze; K5 Evaluate; K6 – Create.									
அலகு - I		மரபுக்கவிதை				9மணிக	ள்				

	1. பெ. சுந்தரனார்- தமிழ்த்தெய்வவணக்கம்.	
	2. பாரதிதாசன் – சிறுத்தையைவெளியேவா.	
	3. கவிமணி- புத்தரும்சிறுவனும்	
	4. முடியரசன் – மொழிஉணர்ச்சி	
	5. கண்ணதாசன் – ஆட்டனத்திஆதிமந்தி –	
	ஆதிமந்திபுலம்பல்.	
	6. சுரதாதுறைமுகம்தொகுப்பிலிருந்துஏதேனும்ஒருகவிதை	
	7. தமிழ்ஒளி- கடல்	
அலகு - II	புதுக்கவிதை	9மணிகள்
	1. அப்துல்ரகுமான் – வீட்டுக்குஒருமரம்வளர்ப்போம்.	
	2. ஈரோடுதமிழன்பன் - வணக்கம்வள்ளுவ.	
	3. வைரமுத்து – பிற்சேர்க்கை	
	4. மு.மேத்தா – வாழைமரம்.	
	5. அறிவுமதி – வள்ளுவன்பத்து.	
	6. நா.முத்துக்குமார் – ஆனந்தயாழைமீட்டுகிறாய்.	
	7. சுகிர்தாராணி – சபிக்கப்பட்டமுத்தம்.	
	8. இளம்பிறை – நீஎழுதமறுக்கும்எனதுஅழகு.	
அலகு - III	சிறுகதைகள்	9மணிகள்
	1. வாய்ச்சொற்கள் – ஜெயகாந்தன்	
	(மாலைமயக்கம்தொகுப்பு)	
	2. கடிதம் - புதுப்பித்தன்.	
	3. கரு - உமாமகேஸ்வரி.	
	4. முள்முடி - திஜானகிராமன்.	
	5. சிதறல்கள் - விழி.பா.இதயவேந்தன்.	
	6. காகிதஉறவு - சு.சமுத்திரம்.	
	7. வீட்டின்மூலையில்சமையலறை - அம்பை.	
	(மொழிபெயர்ப்புக்கதை) ஆண்டன்செக்காவ் –	
	நாய்க்காரச்சீமாட்டி.	
அலகு - IV	இலக்கியவரலாறு	9மணிகள்
	பாடம்தழுவியஇலக்கியவரலாறு	
அலகு - V	மொழித்திறன்/ போட்டித்தேர்வு	9மணிகள்
	1. பொருள்பொதிந்தசொற்றொடர்அமைத்தல்	
	2. ஓர்எழுத்துஒருமொழி	
	3. வேற்றுமைஉருபுகள்	

	4. திணை, பால், எண், இடம்	
	5. கலைச்சொல்லாக்கம், மொழிபெயர்ப்பு	
	(குறிப்பு :அலகு 4,	5
	ஆகியபகுதிகள்போட்டித்தேர்வுநோக்கில்நடத்தப்படவே	
	ண்டும்)	
		9மணிகள்
பாடநூல்கள்		
1.	மேலேசுட்டப்பட்டுள்ளகவிதைகள், பாடம்தொடர்புடையந	ால்கள்
பார்வைநூல்கல	ŷr	
1.	தமிழ்இலக்கியவரலாறு – சிற்பிபாலசுப்பிரமணியன்.	
2.	புதியநோக்கில்தமிழ்இலக்கியவரலாறு - தமிழண்ணல்	
3.	வகைமைநோக்கில்தமிழ்இலக்கியவரலாறு –	
	எஃப்.பாக்கியமேரி.	

Sour	rces
• '	Tamil Heritage Foundation - www.tamilheritage.org <http: www.tamilheritage.org=""></http:>
• '	Tamil virtual University Library - www.tamilvu.org/library http://www.virtualvu.org/library
•]	Project Madurai - www.projectmadurai.org.
•	Chennai Library - www.chennailibrary.com <http: www.chennailibrary.com="">.</http:>
• '	Tamil Universal Digital Library-www.ulib.prg <http: www.ulib.prg="">.</http:>
• '	Tamil E-Books Downloads – tamilebooksdownloads.blogspot.com
• '	Tamil Books online - books.tamilcube.com
•	Catalogue of the Tamil books in the Library of British Congress archive.org
• '	Tamil novels online - books.tamilcube.com

COUF	RSE CODE	XGE102	L	Т	Р	SS	н	C
COURSENAME		ENGLISH I	3	0	0	0	3	3
C:P:A	- 3:0:0							
COUR	RSE OUTCON	IES:	Do	omai	n	Ι	Level	
		of course, the learners will be able to get						
compr CO1	rehensive skills	like: I integrate the use of the four language skills i.e.	0			• •	1 .	1
COI	-	stening, Speaking and Writing	Co	gniti	ve	Un	dersta	and
CO2		the total content and underlying meaning in the	Co	gniti	ve	1	Apply	7
200	context.			-				
CO3		bit of reading for pleasure and for information	Co	gniti	ve	Und	lersta	nd
CO4	-	<i>d</i> material other than the prescribed text	Co	gniti	ve	Un	dersta	nd
CO5	future, to pro	linguistic competence that enables them, in the esent the culture and civilization of their nation.	Co	gniti	ve		dersta	
SYLL	ABUS						HOU	RS
UNIT	-I POETR	Y				6-	+3+0:	=9
1.1	A Patch of La	d - Subramania Bharati						
	÷	Paul Laurence Dunbar						
		ength – Ralph Waldo Emerson						
1.4 UNIT	Love Cycle - Contract - II PROSE	Chinua Achebe				6	+3+0:	_0
						0	TJTU-	_,
	JRD - Harish	Bhat - David Sedaris From Dress Your Family in Cordur		d D	onim			
		ngs a Picture - Jerome K Jerome	Oy ai		CIIIII	L		
UNIT		STORIES				6-	+3+0:	=9
3.1	The Faltering	Pendulum- Bhabani Bhattacharya						
		my Grandmother to Read - Sudha Murthy						
		he- R.K. Laxman					<u> </u>	0
UNIT	-IV LANGU	AGE COMPETENCY				0-	+3+0:	=9
4.1 Voc	abulary : Syno	nyms, Antonyms, Word Formation						
4.2	Appropriate us	e of Articles and Parts of Speech						
4.3	Error correction	n						
UNIT	- V ENGLIS	H FOR WORKPLACE					6+3+	0=9
5.1	Self - introduc	tion, Greetings						
	Introducing of							
	•	General and Specific Information						
3.4	Listening to a	d Giving Instructions / Directions L=30 / T=15	г	`ota l	Hou	irs	45	5
lutoria	al Activities		-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
		derstanding incomplete texts						
2)	Summarize a p	iece of prose or poetry						
	Communicatio	n Practice						
,	Role play							
,	ooks							

- Hogan, Sharon. The Art of Civilized Conversation: A Guide to Expressing Yourself withStyle and Grace -Margaret Shepherd,Penny Carter, (Illustrator), 2015.
- Kumar, Vijay T. English in Use A Textbook For College Students (English ,Paper back, K Durga Bhavani, YL Srinivas,2015
- Murthy, Sudha. *How I taught my Grandmother to Read and other Stories*. Penguin Books, India, 2014
- Swan, Michael. *Practical English Usage* 4th Edition By, 2018

COU	IRSE NA	ME		Algebra	& Trigo	nometry	L	T	P	C
COU	JRSE CO	DDE			XMT103	}	3	1	0	4
С	Р	A					L	Т	P	H
4	0	0					3	1	0	4
PREREC	QUISITE		Numb	per systems						
On succe	ssful con	pletion o	of this c	ourse, the st	udents w	ill be able to:				
		CO	URSE	OUTCOME	S		DOMAI	N	LEV	VEL
CO 1	Utilize I	Horner's N	Method	to obtain the	roots of	oolynomials	Cognitiv	/e	App	lying
CO 2		e summa tial and lo		-	series su	ich as binomial,	Cognitiv	/e	Remen	nbering
CO 3	Utilize	Cayley-H	lamiltor		-	wers of a given	Cognitiv	/e	App	lying
CO 4	Find the	e expansio	on of tri	gonometric r	atios in te	rms of θ	Cognitiv	/e	Remen	nbering
CO 5	Explain	the relation	on betw	veen circular	and hype	rbolic functions	Cognitiv	/e	Unders	tanding
UNIT 1							L			+ 3
-	-				-	creasing the roots or orner'smethod-rela	-	-	n – Rer	noval of
UNIT 2	proximat	c solution	15 01 100	ts ofporynon	naistyrit	filler sinctiou-rela		15.	9	+ 3
	on of Ser	ies: Binon	nial–	Exponentia	l –Log	arithmic series(Th	eoremswith	hout	-	proof)-
.	nations-re	elatedprob	olems.							
UNIT 3 Characteris	ticequation	-Figen va	luesandF	Figen Vectors	- Simile	ur matrices - Cayl	ev_Hamilton	Theore		+3
						3, Diagonalization of				
UNIT 4									-	+ 3
	in ⁿ θ, co					xpansion of tannθ ,,+ $θ_n$)-Expansion				
UNIT 5									9	+ 3
• I						yperbolic function	s-Inverse h	yperb	olic fui	nctions,
Logarith LEC		plex quant 45		relatedproble	ems. 15	PRACTICAL	0	тот	AT	60
		43	1	UIUNIAL	13	TRACIICAL	U	101	AL	00
Text Boo										
	,		,		. Thilagay	athy,S.ChandPubl	ication, 1 st l	Edition	n, 2004	
		1-23,36-4)						
Unit II - 2 Unit III -	· · -	·I], 71-100	0							
Unit IV -		,								
			1[Vol-I	I], 242-247.						
Referenc		,		1/						
1. Algeb	raandTri	gonometry	y,J.Stev	vart,L.Redlin	andS.Wa	tson,CengageLear	ning,2012.			
2. Calcu	lusandAn	•				Finny,PearsonPubl	0	Editio	n, 2010	
E-Refere	nces									
<u>.</u>										

https://nptel.ac.in

COs VS POs													
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2		
CO 1	3	3	2	0	1	3	3	3	3	3	0		
CO 2	2	1	0	0	0	1	1	1	2	1	0		
CO 3	3	3	2	0	1	3	3	3	3	3	0		
CO 4	2	1	0	0	0	1	1	1	2	1	0		
CO 5	3	2	1	0	0	2	2	2	3	2	0		
TOTAL	13	10	5	0	2	10	10	10	13	10	0		
SCALED	3	3	1	0	1	2	2	2	3	2	0		
VALUE													
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation													
1-5→1, 6-10→2, 11	l-15→3												

CO	URSE NA	ME	Differe	ential Ca	llculus	L	Т	Р	C
CO	URSE CO	DE	2	XMT104	ļ	3	1	0	4
С	Р	Α				L	Т	Р	Н
4	0	0				3	1	0	4
PREREC	QUISITE		Basic differentiation	n formul	a				
On succe	essful com	pletion of	this course, the stud	dents wi	ll be able to:				
		CO	URSE OUTCOMES	5		DOMAI	N	LEVI	EL
CO 1	Utilize Le	bnitz for	mula to find n th deriva	ative of a	a given function.	Cognitiv	e	Apply	ing
CO 2	Identifyt	hepartiald	erivatives of the giver	function	ns.	Cognitiv	e	Apply	ing
CO 3		agrange's	method to findther ables.	naximaa	nd minima of a	Cognitiv	e	Apply	ing
CO 4	Identify	the envelo	ppe of various family	of curve	s.	Cognitiv	e	Apply	ing
CO 5	Identify	evolute of	a given family of cur	ves.		Cognitiv	e	Apply	ing
UNIT 1								9 +	
n th derivat UNIT 2 Partial de Implicit f UNIT 3 Homogene	netricaltrar tive ofapro rivatives - unctions ousfunctions	duct. Successiv –Partialderi	n–Formationofequati /e partial derivatives	onsinvo – Functi	on of function rule	eibnitzform – Total dif	nula ferenti	9 + al coeffi 9 +	forthe 3 cient – 3
UNIT 4 Method o quadratic UNIT 5 Definition	in the part	envelope ameter. ature – Ci	– Another definitio					9 +	ch are
	in polar co FURE	5- ordinate	TUTORIAL	15	PRACTICAL	0	TOTA	AL	60
Text Boo	ok								
Unit I - C Unit II - Unit III - Unit IV- Unit V- C Reference 1. Cal- 2. Cal- 3. Cal- (Per	Chapter III Chapter VI Chapter V Chapter IV Chapter V chapter V ces culus, H. A culus, G.B culus, M.J arson Educ	All section III Section VIII Section V Section Section Anton, I. B . Thomas V. Strauss, cation), De	yanan and T.K. Manica etions (Pages 69 to 87 ons: 1.1 to 1.5 (Pages ns: 1.6 to 1.7,4 & 5 (I ons: 1.1 to 1.4, (Pages ns: 2.1 to 2.3& 2.5 (P Girens and S. Davis, Jo and R.L. Finney, Pea G.L. Bradley and 1 ethi, 2007. s and Analysis (Volumeter)) 178 to 1 Pages 19 281 to 2 Pages 291 ohn Wild rson Edu K. J. Sn	91) 1 to 204,222 to 234 291) 1 to 301,309 to 312 ey and Sons, Inc., 2 acation, 2010. nith, 3rd Ed., Dor	17)) 002. ling Kinde	rsley ((India) I	

York, Inc., 1989.

- Calculus, Volumes I and II, T. Apostol. 5.
- Calculus and mathematical analysis, S. Goldberg, 6.

E-References

- https://nptel.ac.in 1.
- 2. https://www.math.columbia.edu/programs-math/undergraduate-program/ [Columbia University] https://www.math.harvard.edu/undergraduate/?courseid=63/(Hardvard University)
- 3.

	COs VS POs													
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2			
CO 1	3	3	2	0	1	3	3	3	3	3	0			
CO 2 3 3 2 0 1 3 3 3 3 0														
CO 3	3	3	2	0	1	3	3	3	3	3	0			
CO 4	3	3	2	0	1	3	3	3	3	3	0			
CO 5	3	3	2	0	1	3	3	3	3	3	0			
TOTAL	15	15	10	0	5	15	15	15	15	15	0			
SCALED VALUE	3	3	2	0	1	3	3	3	3	3	0			
0 - No Relation $1 - 1$		lation '	2_ Modi	um Pa	lation '	L. High	Polotic	n						

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

COU	RSE C	CODE	COURSE NAME	L	Τ	P	С						
XPG1	05			3	0	0	3						
С	Р	Α	ALLIED PHYSICS – I	L	Τ	Р	Η						
2.7	0	0.3		3	1	0	4						
COU	RSE O	OUTCO	MES: At the end of the course, the student will	be able	e to								
OBJE	CTIV	ES: To	impart basic principles of Physics that which										
would	be hel	lpful for	students who have taken programmes other	DOM	AIN	LEV	EL						
than P	hysics	•											
	Ex	<i>plain</i> ty	bes of motion and extend their knowledge in			Reme	mhar						
CO1	the	study o	f various dynamic motions analyze and	Cognit	tive	Unde							
COI	der	nonstrat	e mathematically. <i>Relate</i> theory with										
	pra	ctical ap	plications in medical field.			Appl	y						
	Ex	<i>plain</i> th	eir knowledge of understanding about	Comi	ine	Unde	naton						
CO2	ma	terials a	nd <i>apply</i> it to various situations in laboratory	Cognit	live								
	and	l real lif	2.			apply							
	Co	mprehe	<i>id</i> basic concept of thermodynamics concept			D	1						
CO3		-	and <i>interpret</i> the process of flow	Cognit	tive	Reme							
	tem	nperatur	2.	C		under	stand						
	Art	ticulate	the knowledge about electric current			TT. J.							
CO4			capacitance in terms of potential electric field	Cognit	tive	Unde							
			them mathematically verify circuits.	C		Analy	ze						
			e real life solutions using AND, OR, NOT			D	1						
CO5			gates and <i>Infer</i> operations using Boolean	Cognit	tive	Reme							
			acquire elementary ideas of IC circuits.	U		analy	ze						
			· · ·										
UNIT	– I	WAVE	S, OSCILLATIONS AND ULTRASONICS			9 +	- 3						
			tion (SHM) - composition of two SHMs at rig			riods ii	n the						
ratio 1	:1) – I	Lissajou	s figures – uses – laws of transverse vibrations	of string	gs –								
determ	inatio	n of AC	frequency using sonometer (steel and brass wi	res) – u	ltraso	ound –							
produc	ction –	- piezoel	ectric method – application of ultrasonics: med	lical fiel	$ \mathbf{d} - \mathbf{l} $	thotrip	sy,						
			trasonic imaging- ultrasonics in dentistry – phy										
			intages of noninvasive surgery – ultrasonics in	green c	hemi								
UNIT	– II	PRO	PERTIES OF MATTER			9 +	- 3						
Elastic	<i>city</i> : el	astic co	nstants – bending of beam – theory of non- unit	form be	nding	5 —							
			ung's modulus by non-uniform bending – energ				ned						
			ire – determination of rigidity modulus by tors										
			and turbulent motion - critical velocity - coef	ficient of	of vis	cosity -	-						
			 comparison of viscosities – burette method, 										
			nition – molecular theory – droplets formation-	-									
lifetim	e - CC	OVID tr	ansmission through droplets, saliva – drop weig	ght metl	hod –	interfa	icial						
surface	e tensi	on.											
UNIT			AT AND THERMODYNAMICS			9 +							
			- Joule-Thomson porous plug experiment - th										
			ion of Oxygen– Linde's process of liquefactior			d Oxy	gen						
			- importance of cryocoolers – thermodynamic s										
			librium – laws of thermodynamics – heat engir			cycle -	_						
efficie		1	- change of entropy in reversible and irreversil	ble proc	ess.	•							
	– IV		CTRICITY AND MAGNETISM			9 +	2						

Potentiometer – principle – measurement of thermo emf using potentiometer –magnetic field due to a current carrying conductor – Biot-Savart's law – field along the axis of the

coil carrying current – peak, average and RMS values of ac current and voltage – power factor and current values in an AC circuit – types of switches in household and factories–Smart wifi switches- fuses and circuit breakers in houses.

UNIT - VDIGITAL ELECTRONICS AND DIGITAL INDIA9 + 3Logic gates, OR, AND, NOT, NAND, NOR , EXOR logic gates – universal building
blocks – Boolean algebra – De Morgan's theorem – verification – overview of Government
initiatives: software technological parks under MeitY, NIELIT- semiconductor laboratories
under Dept. of Space – an introduction to Digital India.9 + 3

HOURS	LECTURE	TUTORIAL	TOTAL
	45	15	60

TEXT BOOKS

- Murugeshan R, "Properties of Matter For B. Sc. Students", <u>S Chand & Company</u> <u>Limited</u>, Mohan Co-Operative Industrial Estate, New Delhi - 110 044, First edition 1994, Reprint 2022.
- R. Murugeshan, Er. Kiruthiga Siva Prasath, "Properties of Matter and Acoustics", S.Chand& Company Ltd, Ram Nagar, New Delhi - 110 055, First edition 2005, Second Edition 2012.
- 3. Brijlal and N.Subramanyam (1994), Waves and Oscillations, Vikas Publishing House, New Delhi
- 4. V.K.Metha(2004). Principles of electronics 6thEdn. S. Chand and company.
- 5. J.B.Rajam and C.L.Arora (1976). Heat and Thermodynamics (8th edition), S.Chand&Co.,New Delhi.

REFERENCE BOOKS

- <u>DS Mathur</u>, "Elements of Properties of Matter", <u>S. Chand Limited</u>, S. Chand & Company Pvt. Ltd., Ram Nagar, New Delhi - 110 055, First edition 1949, Reprint 2016.
- **2.** Brij Lal, N Subrahmanyam, "*A Textbook of Sound*" 2nd Edition, Vikas Publishing House Pvt.Ltd.A–27, 2nd Floor, Mohan Co–operative Industrial Estate, New Delhi–110044, 2018.
- **3.** ResnickHallidayandWalker(2018).FundamentalsofPhysics(11thedition),JohnWilleyand Sons, Asia Pvt.Ltd., Singapore.
- 4. R. Murugesan (2001), Allied Physics, S. Chand & Co, New Delhi
- **5.** V.R. Khannaand R.S. Bedi (1998), Text book of Sound 1stEdn. Kedharnaath Publish &Co, Meerut.
- N.S. Khare and S.S.Srivastava (1983), Electricity and Magnetism10thEdn., Atma Ram &Sons, New Delhi

E REFERENCES

- 1. <u>https://youtu.be/M_5KYncYNyc</u>
- 2. <u>https://youtu.be/ljJLJgIvaHY</u>
- 3. https://youtu.be/7mGqd9HQ_AU
- 4. <u>https://youtu.be/h5jOAw57OXM</u>
- 5. <u>https://learningtechnologyofficial.com/category/fluid-mechanics-lab/</u>

- 6. http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html
- 7. <u>https://www.youtube.com/watch?v=gT8Nth9NWPM</u>
- 8. <u>https://www.youtube.com/watch?v=9mXOMzUruMQ&t=1s</u>
- 9. https://www.youtube.com/watch?v=m4u-SuaSu1s&t=3s
- 10. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-theywork

Course Outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO9	PO10	PSO1	PSO2
CO ₁	3	0	1	0	1	3	1	2	1	2	2	1
CO ₂	2	0	1	2	1	3	1	1	1	2	2	1
CO ₃	2	1	3	3	1	3	2	1	0	2	1	1
CO ₄	1	1	2	3	2	3	1	2	0	2	2	2
CO ₅	2	1	1	3	1	3	1	2	1	2	1	1
Total	10	3	8	11	6	15	6	8	3	10	8	6
Scaled to 1, 2, 3	2	1	2	3	2	3	3	2	1	2	2	2

Mapping with Programme Outcomes

0 - No relation 1 - Low relation 2 - Medium relation

3 – High relation

CO	URSE C	ODE	COURSE NAME	L	Т	P	С	
XP(G106			0	0	1	1	
С	Р	Α	ALLIED PHYSICS PRACTICAL – I	L	Т	Р	Н	
0	0.75	0.25		0	0	2	2	
		UTCOM ssful com	ES pletion of this course students would able to	Dom	ain	Lev	el	
COI		e lop Knov applicatio	<i>vledge</i> on bending of beams, its properties on	Psycl r	homoto	Mec	hanism	
CO2			rinciples of elasticity, <i>derive</i> expression for le and <i>determine</i> rigidity modulus of a wire.	-	homoto fective:	Mec	lyze, hanism oond	
CO3			<i>flow</i> of liquid, viscosity and <i>identify</i> its <i>and Define surface tension</i>	Psycl r: Affec	homoto ctive:	App Mec Rece	hanism	
CO			cepts of electric and magnetic field and libration of the equipments.		homoto fective:	Analyze Mechanis		
COS		derstand ications	basic concepts of gates and <i>identify</i> its	-	homoto fective:	Analyze Mechanism Receive		

Ex. No	Experiments (Any eight experiments)			Cos
1.	Young's modulus by non-uniform bendi	ng using pin an	d microscope	CO2
2.	Young's modulus by non-uniform bendi telescope	ng using optic l	ever,scale and	CO2
3.	Rigidity modulus by static torsion method	od.		CO1
4.	Rigidity modulus by torsional oscillation	ns without mass		CO1
5.	Surface tension and interfacial Surface to	ension – drop w	eight method	CO3
6.	Comparison of viscosities of two liquids	- burette meth	od	CO3
7.	Specific heat capacity of a liquid – half	time correction		CO3
8.	Verification of laws of transverse vibration	ions using sono	meter	CO4
9.	Calibration of low range voltmeter using	g potentiometer		CO4
10.	Determination of thermo emf using pote	ntiometer		CO4
11	Verification of De Morgan's theorems u	sing logic gate	ICs.	CO5
12	Use of NAND as universal building bloc		CO5	
	· · · · · · · · · · · · · · · · · · ·	LECTURE	PRACTICAL	TOTAL
HOURS		0	30	30

TEXT BOOKS

1. C. L. Arora, "B.Sc .Practical Physics", S. Chand & Company Ltd. Ram Nagar, New Delhi–110055. 2007.

2. R. K. Shukla & Anchal Srivastava. "Practical Physics," New Age International (P) Ltd, Publishers, (Formerly Wiley Eastern Limited), 4835/24, Ansari Raod, Daryagani, New Delhi–11002. 2006.

REFERENCE BOOKS

 Geeta Sanon, "B. Sc., Practical Physics", 1st Edition, S. Chand and Company, 2007.
 Chattopadhyay, D., Rakshit, P. C. and Saha, B., "An Advanced Course in Practical Physics," 8th Edition, Books & Allied Ltd., Calcutta, 2007.

G. L. Squires, "Practical Physics", Fourth edition, Cambridge University Press, 2001.
 Indu Prakash and Ramakrishna, "A Text Book of Practical Physics," 11th Edition, Kitab

Mahal, New Delhi, 2011.

5. C. Ouseph,K. Rangarajan, "A Text Book of Practical Physics", Volume I,II, S.Viswanathan Publishers,1997.

E-Resources:

1. Amal Kumar Das, Department of Physics, IIT Kanpur, "Introduction to Electromagnetic Theory", National Programme on Technology Enhanced Learning (NPTEL), <u>https://onlinecourses.nptel.ac.in/noc20_ph16/preview</u>

Course Outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO9	PO10	PSO1	PSO2
CO ₁	1	1	3	3	2	3	1	3	0	1	2	1
CO ₂	1	1	3	2	1	3	1	3	1	1	2	1
CO ₃	1	1	3	3	1	3	2	3	1	2	2	1
CO ₄	1	1	2	2	2	3	1	3	1	2	2	1
CO ₅	1	1	3	3	2	3	1	3	1	2	2	1
Total	5	5	14	13	8	15	6	15	4	8	10	5
Scaled to 1, 2, 3	1	1	3	3	2	3	2	3	1	2	2	1

Mapping of COs with POs

 $0 - No relation \qquad 1 - Low relation$

1 - Low relation 2 - Medium relation

3 - High relation

CO	URSE NA	ME			Found	ation C	ourse			L	Т	Р	C
CO	URSE CO	DE			X	MT107				1	1	0	2
С	Р	Α								L	Т	Р	Н
2	0	0								1	1	0	2
PRERE	QUISITE		Numb	er syste	ems & A	Algebra							<u> </u>
On succ	essful com	pletion of	this co	urse, tl	ne stud	ents wil	l be abl	e to:					
		CO	URSE	OUTCO	OMES				D	OMAL	N	LEV	EL
CO 1	-	general ter omial theo		middle	e tern i	n a bin	omial e	xpansic	on Co	ognitiv	e []]	Rememl	bering
CO 2		number o fundamer	-				a given	situatio	on Co	ognitiv	e ¹	Rememl	pering
CO 3	Ť	combinati			-		5.		C	ognitiv	e]	Rememl	bering
CO 4		6 trigono ing exact								ognitiv	e]	Rememl	pering
CO 5		vatives of	the giv	en com	posite f	function	s.		C	ognitiv	e]	Rememl	pering
UNIT 1 3+3 Binomial theorem, General term, middle term, problems based on these concepts.													3+3
	theorem,	General te	rm, mic	ldle teri	n, prob	lems ba	sed on t	hese con	ncepts.				2.2
UNIT 2	ental princi	pla of cour	nting E	lactorial	ln								3+3
UNIT 3			nung. r	actoria									3+3
Derivation	of formulae	and their	connectio	ons, simp	ole appli	cations, c	ombinati	ons with	repetitio	ns, arra	ngemen		
formation UNIT 4	of groups.												3+3
	tion to trig	gonometric	c ratios	, proof	of sin((A+B),	cos(A+l	B), tan((A+B) f	formula	ae, mu		
multiple	angles, si	n(2A), co	s(2A),	tan(2A)) etc., 1	transform	mations	sum ir					
	, inverse tr	igonometi	ric funct	tions, si	ne rule	and cos	ine rule	•					2 + 2
UNIT 5	standard fo	rmulae a	nd nrol	hlems	differe	ntiation	first n	rincinle	יז עוו י	ıle u/	v rule		$\frac{3+3}{ds of}$
	ation, appl		-				-	-				, meane	us 01
	TURE	15		UTOR		15		CTICA			TOTA	AL	30
Text Bo	ok												
1. NC	ERT class	XI and X	II text h	ooks									
	y State Boa				ks of cl	lass XI a	and XII	current	Edition				
Referen													
	te Board M	lathematic	s text b	ooks of	class X	XI and X	II, Old	Edition.	•				
E-Refer													
https://np	otel.ac.in												
					CC	os Vs Po	Os						
		PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9 F	SO1	PSO2
CO 1		2	1	0	0	0	1	1	1	2		1	0
		I	1	1	1	1	1	1	1	1	1		

CO 2	2	1	0	0	0	1	1	1	2	1	0		
CO 3	2	1	0	0	0	1	1	1	2	1	0		
CO 4	2	1	0	0	0	1	1	1	2	1	0		
CO 5	2	1	0	0	0	1	1	1	2	1	0		
TOTAL	10	5	0	0	0	5	5	5	10	5	0		
SCALED VALUE	2	1	0	0	0	1	1	1	2	1	0		
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation													
1-5→1, 6-10→2, 11-	1 - 5 - 1, 6 - 10 - 2, 11 - 15 - 3												

<i>c</i> : <i>c</i>	RSE CODE	XUM001			L	Т	Р	SS	С
	RSE NAME	HUMAN ETHICS, VALUES, RIGH EQUALITY	TS A	ND GENDER	1	0	0	1	1
PRER	REQUISITES	Not Required			L	Т	Р	SS	Н
C:P:A		0.8:0.1:0.1			1	0	0	1	2
	RSE OUTCOM			Domain	Lev	vel			1
CO1	Relate and In	erpret the human ethics and human relations	hips	Cognitive	Ren	nembe	er, Ur	ndersta	nd
CO2		<i>pply</i> gender issues, equality and violence ag	rainet	Cognitive		lersta			
CO3	CO3 Classify and Develop the identify of women issues and Cognitive & Analyze Affective Receive								
CO4	Classify and D	<i>issect</i> human rights and report on violations.		Cognitive	Unc	lersta	nd, A	nalyze	
CO5		ond to family values, universal brotherhood,	-	Cognitive &	Ren	nembe	er, Re	spond	
	<u> </u>	tion by common man and good governance.		Affective					
	I HUMAN E	THICS AND VALUES						3	+3
Gende Status Dr.B.H UNIT Wome Harass Educa UNIT Huma Cultur types.	of Women in D A. Ambethkar, T IIIWOMEN I en Issues and Ch sment, Trafficki tion, Dowry Pro IVHUMAN R n Rights and Du al Rights, Right National Policy VGOOD GOV Governance - D	n in society and in family, Gender equity, endia in Education, Health, Employment, De hanthaiPeriyar and Phule to Women Empower SSUES AND CHALLENGES allenges- Female Infanticide and Feticide, V ng, Remedial Measures – Acts related to work hibition Act. IGHTS ties, Universal Declaration of Human Rights ts against torture, Forced Labour, Child he on occupational safety and health.	efinition erment. fiolence men: Po s (UDH elpline-	against women, against women, olitical Right, Prop (R), Civil, Politica Intellectual Prop governance and au	Doma perty al, Ecoerty	EM. C estic v Right conom Right	violen s, and ical, s (IP ption,	Econc bution 3 ce, Se d Right 3 Social R) and 3 Impac	s of +3 xual ts to +3 and l its +3 t of
corrup									
corrup		ersal brotherhood.		SELF STUD)Y			ТОТА	L
corrup		ersal brotherhood.		SELF STUE 15	РY			ТОТА 30	L

- 7. Singh, B. P. Sehgal, (ed) Human Rights in India: Problems and Perspectives (New Delhi: Deep and Deep, 1999).
- 8. Veeramani, K. (ed) Periyar on Women Right, (Chennai: Emerald Publishers, 1996)
- 9. Veeramani, K. (ed) Periyar Feminism, (Periyar Maniammai University, Vallam, Thanjavur: 2010).
- 10.Planning Commission report on Occupational Health and Safety <u>http://planningcommission.nic.in/aboutus/committee/wrkgrp12/wg_occup_safety.p</u>

- 11. Central Vigilance Commission (Gov. of India) website: <u>http://cvc.nic.in/welcome.html</u>.
- Weblink of Transparency International: <u>https://www.transparency.org/</u>
 Weblink Status report: https://www.hrw.org/world-report/2015/country-chapters/india

Table 1 : Mapping of COs with Pos

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								2						
CO2								3	1					
CO3								2						
CO4								3		2				
CO5								3	2	2		2		
Total		2						13	3	4		2		
Scaled		1						3	1	1		1		
Value														

பொதுத்தமிழ் - 2 (இரண்டாம்பருவம்)

பாடக்குறியீ	டு/ பாடப்பெயர்/	Category	L	Т	Р	SS	н	С		
Course Cod	e Course Name	Calegory								
XGT201	பொதுத்தமிழ் - 2	Supportive	3	0	0	0	3	3		
Pre-requisite	ச பன்னிரெண்டாம் ச	வகுப்பில் தமிழை ஒருட	பாடமா க	ப்பயின்	றிருக்க ⁽	வேண்(டும்.			
பாடப் பயன்கள் / Course outcomes	இப்பாடத்தைக் க <u>ர</u> ்	பதால்பி ன் வரும் பய	ன்களை	மாணவர்	்கள் அ	டைவர்				
CO1	CO1 நீதிஇலக்கியங்களைக்கற்பதன்மூலம்நீதிநெறியினையும்வாழ்வியல் மற்றும்மேலாண்மைச்சிந்தனைகளையும்தெரிந்துபின்பற்றுவர்									
CO2		ரிந்துகெ Indersta	5ாள்ளல் and)							
CO3	CO3 க்கியங்கள்குறித்தஅறிவினைப்பெரும்பான்மையானதமிழ்இல									
CO4	ك4 தமிழ்ச்சமூகப்பண்பாட்டுவரலாற்றினைஇலக்கியங்கள்வாயிலாகஅ றிவர்									
CO5		ரில்வெற்றிபெறுவதற்₀ யில்ஏற்றபயிற்சிபெறு		ப்பாடத்தி	னைப்ப		ரிந்துகெ Indersta	5ாள்ளல் and)		
		K1- Remember; K2 – Understand; K3 –Apply; K4 Analyze; K5 Evaluate; K6 – Create.								
அலகு - I		நீதிஇலக்கியம்				9	மணிக	ள்		
	திருக்குறளில் வாழ்வ சிந்தனைகள்	ியல் – திருக்குறளில்	மேலான	ன்மை ச்						
அலகு - II		பிறஇலக்கியங்க	ள்			9	மணிக	ள்		
	வள்ளலார் – அருள்விளக்கமாலை (முதல் 10 பாடல்கள்) – எச்.ஏ.கிருட்டிணப்பிள்ளை – இரட்சணியமனோகரம் – பால்யபிரார்த்தனை – குணங்குடிமஸ்தான்சாகிபு – பராபரக்கண்ணி (முதல் 10 கண்ணி)									
அலகு - III		9	மணிக	ள்						
	தமிழ்விடுதூது (முதல் குறத்திமலைவளம்கூ	· · · · · ·			_					
அலகு -IV		இலக்கியவரலா _[<u>р</u> и			9	மணிக	ள்		

	பாடம்தழுவியஇலக்கியவரலாறு (பல்லவர்காலம்,						
	நாயக்கர்காலம்)						
அலகு - V	மொழித்திறன்/ போட்டித்தேர்வுத்திறன்	9மணிகள்					
	1. தொடர்வகைகள்						
	2. மரபுத்தொடர், பழமொழிகள்						
	3. பிறமொழிச்சொற்களைக்களைதல்						
	4. வழுச்சொற்கள்நீக்குதல்						
	5. இலக்கணக்குறிப்புஅறிதல்						
	(குறிப்பு :அலகு 4, 5	45 மணிகள்					
	ஆகியபகுதிகள்போட்டித்தேர்வுநோக்கில்நடத்தப்படவேண்டும்)						
பாடநூல்கள்	ir						
1.	திருக்குறள், மணிவாசகர்பதிப்பகம், சென்னை	<u> </u>					
2.	2. இலக்கியத்தல்மனிதவளமேம்பாடு, சி. சரவணஜோதி, பாவைபப்						
3.	தமிழ்விடுதூது						
4.	திருக்குற்றாலக்குறவஞ்சி						
5.	எச்.ஏ.கிருட்டிணப்பிள்ளை – இரட்சணியமனோகரம்						
பார்வைநூ	ப்கள்						
1.	தமிழ்இலக்கியவரலாறு – சிற்பிபாலசுப்பிரமணியன்.						
2.	புதியநோக்கில்தமிழ்இலக்கியவரலாறு - தமிழண்ணல்						
3.	வகைமைநோக்கில்தமிழ்இலக்கியவரலாறு – எஃப்.பாக்கியமேரி.						
Related Online	e Contents [MOOC, SWAYAM, NPTEL, Websites etc.]						
Web Sources							
 Tamil Heritage Foundation - <u>www.tamilheritage.org<http: u="" www.tamilheritage.org<="">></http:></u> Tamil virtual University Library - <u>www.tamilvu.org/library http://www.virtualvu.org/library</u> Project Madurai - <u>www.projectmadurai.org</u>. Chennai Library - <u>www.chennailibrary.com<http: u="" www.chennailibrary.com<="">>.</http:></u> 							
	l Universal Digital Library- <u>www.ulib.prg<http: u="" www.ulib.prg<="">>. l E-Books Downloads – tamilebooksdownloads.blogspot.com</http:></u>						
	l E-Books Downloads – tamilebooksdownloads.blogspot.com l Books online - books.tamilcube.com						
	ogue of the Tamil books in the Library of British Congress archive.org						
 Tami 	l novels online - books.tamilcube.com						

COUR	SE CODE		L	Т	P	SS	H	C
COUR	SENAME	ENGLISH II	2	1	0	0	3	3
C:P:A	- 3:0:0							
	SE OUTCOM		Do	mai	n	L	evel	
		of course, the learners will be able to get						
	ehensive skills							
CO1			Cog	gnitiv	ve	Un	dersta	nd
<u> </u>		vities confidently						
CO2			Cog	gnitiv	/e	A	Apply	
CO3		· ·	Cog	gnitiv	ve 🖉	Und	ersta	nd
		in speaking and writing						
CO4		lge to write subjective and objective	Cog	gnitiv	ve 🖉	Uno	dersta	nd
	descriptions							
CO5	••	se their skills effectively in formal	Cog	gnitiv	ve	Und	ersta	nd
	contexts.							
SYLL	ABUS						HOU	RS
UNIT-	I POETRY					6-	+3+0=	=9
1.1	Very Indian Poe	m in Indian English - Nissim Ezekiel						
	Still I Rise - Ma							
1.3	The Flower - Ter	inyson						
1.4	On Killing a Tre	e - Gieve Patel						
UNIT-	II PROSE					6-	+3+0=	=9
2.1	If You Are Wro	ng Admit it- Dale Carnegie						
		lease - Shashi Tharoor						
	The Spoon-fed A							
	III FICTION					6-	+3+0=	-0
	Alchemist - Pau	lo Coelho					510	-/
UNIT-		GE COMPETENCY				6	+3+0=	-0
		mophones, Homographs				-	1310-	_/
	tmanteau words	· · · ·						
		es, Subject Verb Agreement						
	Error correction							
UNIT		I FOR WORKPLACE					6+3+	0-0
		and Specific Information [charts, tables, schedules]	or	anho	atel		0101	0-2
	-	nd weather reports	,, gi	apin	sele			
	Writing paragra							
	Taking and mak							
	Tuking and mak	L=30 / T=15	Т	otal	Hou	irs	45	;
Futoria	l Activities				00			
		lerstanding incomplete texts						
		ce of prose or poetry						
	Communication							
	Role play	-						
Textbo	<u> </u>							
• (Coelho, Paulo.Th	he Alchemist. Harper, 2016						
		son.Brilliant Speed Reading: Whatever you need to) re	ad.	howe	ever		
	Phil, 2013			, .				

•	Hewings, Martin. Advanced English Grammar. Cambridge University Press, 2000
٠	Sharma, Richa Descriptive English. Arihant Publications (India) Ltd, 2019
Re	ources:
•	Very Indian poem by Nissim Ezekiel
•	http://econtent.in/pacc.in/admin/contents/40_%20_2020103001102714.pdf
•	Still I Rise by Maya Angelou https://www.poetryfoundation.org/poems/46446/still- i-rise
•	Kindly Adjust please - Shashi Tharoor
•	https://www.theweek.in/columns/shashi-tharoor/2018/05/25/kindly-adjust-to-our- english.html?fbclid=IwAR3IhtdXqvuV4ySECn9S7SA6HmCEYISyd1QHd3BlwKg iNKKwdkeSg3qWp-U/
•	The Alchemist: https://www.youtube.com/watch?v=lxBYpmxjeDU

COU	RSE NA	ME		-	metry 3- Calculus	D and Integral	L	T		Р	C
COU	RSE CO	DDE			XMT203		3	1		0	4
С	Р	Α					L	T		Р	H
4	0	0					3	1		0	4
PREREQ	UISITE	1	2D	and 3D Shapes	& Basic I	ntegration Formul	ae				
On succes	ssful con	npletion o	f this	s course, the stu	udents wi	ll be able to:					
		CO	URS	E OUTCOME	S		DOMAI	N	L	EVE	L
CO1	Find th	e equation	n tang	gent plane to a g	given sphe	ere.	Cognitiv	ve	Rem	embe	ring
CO2	Find the equation tangent plane to a given cone and cylinder. Cognitive Remembering									ring	
CO3	3 Apply the properties of definite integral to find reduction Cognitive Applying formulae for a given integral.										ng
CO4	O4 Examine the relation between beta and gamma function and also find recurrence for gamma function. Cognitive Analyzing										ng
CO5		the chan			gration to	obtain area the	Cognitiv	/e	Aj	oplyi	ıg
UNIT 1										9+	3
Sphere- Ta UNIT 2	angent pl	lane- inter	section	on of two sphere	es – Equa	tion of tangent pla	netoaspher	e.		0.	2
UNIT 29 + 3The equation of surface – cone- Right Circular Cone- Tangent plane and normal –Cylinder- Enveloping											
Cylinder.			one			ingent plane and i	ionna C.	, 1110		1,010	pmg
UNIT 3										9+	3
				uctionformulaed $f, \int sin^n x dx,$: !x,∫sin ^m xcos ⁿ x	dx,∫tan	ⁿ xd:	x.		
UNIT 4										9+	
						f $\Gamma(n)$ – Recurrence	ce formula	of g	amma	ı fun	ction
UNIT 5			- Iei		eta and g	amma functions.				9+	3
	ntegral: I	Double int	egral	– Evaluation o	f double i	ntegral - change o	of order of	integ	ratio		
	^	le integrals	s - A <u>I</u>	oplication of mu	ultiple inte						
LECT	URE	45		TUTORIAL	15	PRACTICAL	0	TO	TAL		50
Text Bool	K										
1. Analyt	tical Geo	metry Par	t II –	Three Dimensi	ons: T.K.	M. Pillai, 2015 (fo	or Unit I, Il	[)			
Unit I - Ch	1		· T	ages:92 -111)							
Unit II - C	-		· -	ages :115-139)	4 TTT TX7 0	- V)					
				i, 2015 (for Uni l – 13.6 (pages:		2					
Unit IV- C	-			bages 278-290)	,	,					
Unit V- C		Sec: 2	- 5.4	(pages 203-231	l)						
Reference	es										
•		•			U	ndIssac, New Gam					
-	-					nal Publishing Cor					
3. Ancilla	aryMath	ematics,T.	K.M	.Pillai,P.Nataraj	an, S. Vis	wanathan (Printer	s & Publis	hers)	Pvt I	.td. 1	992.

E-References

<u>https://sites.math.washington.edu/~m125/</u>[WashingtonUniversity]
 <u>https://courses.maths.ox.ac.uk/node/28</u>[OxfordUniversity]

COs VS POs											
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO
											2
CO 1	2	1	0	0	0	1	1	1	2	1	0
CO 2	2	1	0	0	0	1	1	1	2	1	0
CO 3	3	3	2	0	1	3	3	3	3	3	0
CO 4	3	3	3	1	2	3	3	3	3	3	1
CO 5	3	3	2	0	1	3	3	3	3	3	0
TOTAL	13	11	7	1	4	11	11	11	13	11	1
SCALED	3	3	2	1	1	3	3	3	3	3	1
VALUE											
0 - No Relation,	, 1 – Low R	elation,	2- Med	lium Ro	elation,	3- Higl	h Relati	ion	<u> </u>	1	

1-5→1, 6-10→2, 11-15→3

CO	URSE NA	ME		Seque	ence and S	eries	L	ſ		Р	С
CO	URSE CO)DE			XMT204		3	1	-	0	4
С	Р	Α					L	T		Р	Н
4	0	0					3	1	-	0	4
PRERE	QUISITE	I	Alg	gebra and Numb	er System	S	-				
On succ	essful com	pletion o	f this	s course, the stu	dents will	be able to:					
		CC	OURS	SE OUTCOME	S		DOMA	IN		LEVE	EL
CO 1	Demons oscillatir		in int	finite sequence	is bounde	d, monotonic or	Cognit	ive	Un	dersta	nding
CO 2	Demonstrate the given series whether it is convergent or Cognitive Understanding divergent by using the appropriate tests.										
CO 3	using the test.	e appropri	ate te	ests such as Raa	be's test a	t or divergent by nd Cauchy's root	Cognit	ive	Un	dersta	nding
CO 4											ng
CO 5	CO 5 Demonstrate the concepts about the Weirstrass inequalities and Cognitive Understanding Cauchy's inequality.									nding	
tends to a UNIT 2 Some ge condensa Necessar UNIT 3 Cauchy's problems. UNIT 4 Summati UNIT 5 Inequaliti LF Text Boo 1. Algebra Unit I	Some general theorems concerning infinite series – series of positive terms – comparison tests – Cauchy's condensation test – D-Alembert's ratio test - Definition of convergence, Divergence and Oscillation-Necessary condition for convergence- convergence of $\sum \frac{1}{n^p}$ and Geometric series. UNIT 3 9+3 Cauchy's root test and their simple problems - Raabe's test – Absolutely convergent series - Alternative series with simple problems. UNIT 4 9+3 Summation of series – Summation by different series – recurring series.										3 uchy's lation- 3 simple 3 3 60
Unit II : Chapter 2 (Sec: 8 – 16), Pages: 41 - 68 Unit III: Chapter 2 (Sec: 17 – 19, 21 – 24), Pages: 68 - 88 Unit IV: Chapter 5 (Sec: 1 – 7), Pages: 246 – 281. 2. Algebra Volume II, T.K.M. Pillay, T. Natarajan and K.S.Ganapathy, S. Viswanathan (Printers & Publishers) Pvt. Ltd., 2015. Unit V : Chapter 4 (Sec: 1 – 12), Pages: 179 – 212. Reference 1. Sequence and Series: S. Arumugam and Isaac, New Gamma Publishing House – 2002 Edition E-References 1. https://courses.maths.ox.ac.uk/node/43846 [Oxford University] 2. https://explore.course.Stanford.edu/search?q=MATH21 [Stanford University]											

COs VS POs											
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO 1	3	2	1	0	0	2	2	2	3	2	0
CO 2	3	2	1	0	0	2	2	2	3	2	0
CO 3	3	2	1	0	0	2	2	2	3	2	0
CO 4	3	3	2	0	1	3	3	3	3	3	0
CO 5	3	2	1	0	0	2	2	2	3	2	0
TOTAL	15	11	6	0	1	11	11	11	15	11	0
SCALED VALUE	3	3	2	0	1	3	3	3	3	3	0

1-5→1, 6-10→2, 11-15→3

COUR	SE CO	DE	COURSE NAME		L	Т	Р	C		
X	PG205				3	0	0	3		
С	Р	Α	ALLIED PHYSICS –II		L	Т	Р	Н		
2.7	0	0.3		3						
COURS	E OUT	COMI	ES							
On the s	uccessfu	l comp	letion of this course students would able to							
OBJEC	TIVES :	To un	derstand the basic concepts of optics, modern	DOMA	IN	L	EVEI			
Physics,	concept	s of re	elativity and quantum physics, semiconductor							
physics,	and elec	tronics								
CO1	<i>Explain</i> the concepts of interference diffraction and Cognitive Understandi									
CO2	and R	elate	basic foundation of different atom models the importance of interpreting improving odels based on observation.	Cognitiv	ve	Remembering understanding				
CO3	structu nuclea	re of a	the properties of nuclei, nuclear forces atomic nucleus and nuclear models. <i>Interpret</i> esses like fission and fusion. <i>Understand</i> the f nuclear energy, safety measures.	Cognitiv	ve	Remembering understanding apply		0		
CO4	Describe the basic concepts of relativity like equivalence Rememberi							0		
CO5	Summ diode,		Cognitiv	ve	Rememberi		0			

UNIT - IOPTICS9+3Interference - interference in thin films -colors of thin films - air wedge - determination of diameterof a thin wire by air wedge - diffraction - diffraction of light vs sound - normal incidence -experimental determination of wavelength using diffraction grating (no theory) - polarization -polarization by double reflection - Brewster's law - optical activity - application in sugar industries.

UNIT - IIATOMIC PHYSICS9 + 3Atom models - Bohr atom model - mass number - atomic number - nucleons - vector atom model- various quantum numbers - Pauli's exclusion principle - electronic configuration - periodicclassification of elements - Bohr magneton - Stark effect -Zeeman effect (elementary ideas only) -photo electric effect - Einstein's photoelectric equation - applications of photoelectric effect: solarcells, solar panels, optoelectric devices

UNIT – III	NUCLEAR PHYSICS	9 + 3							
Nuclear models – liquid drop model – magic numbers – shell model – nuclear energy – mass defect –									
binding energy - radioactivity - uses - half life - mean life - radio isotopes and uses -controlled and									
uncontrolled chain	uncontrolled chain reaction - nuclear fission - energy released in fission - chain reaction - critical								
reaction - critica	ıl size- atom bomb – nuclear reactor – breeder rea	ctor – importance of							
commissioning PI	FBR in our country – heavy water disposal, safety of reacto	rs: seismic and floods –							
introduction to DA	E, IAEA – nuclear fusion – thermonuclear reactions – diff	erences between fission							
and fusion.									

UNIT - IVINTRODUCTION TO RELATIVITY AND9+3

		G	GRAVI	TATI	ONAL	WAVI	ES						
Fran	Frame of reference – postulates of special theory of relativity – Galilean transformation equations												
	- Lorentz transformation equations – derivation – length contraction – time dilation – twin paradox												
– mass-energy equivalence –introduction on gravitational waves, LIGO, ICTS opportunities at													
International Centre for Theoretical Sciences.													
													2
p-n junction diode – forward and reverse biasing – characteristic of diode – zener diode –													
characteristic of zener diode - voltage regulator - full wave bridge rectifier - construction and													
working - advantages (no mathematical treatment) - USB cell phone charger -introduction to e-													
vehi	vehicles and EV charging stations												
							LEC	CTURE	TU	TORIA		TOTA	L
					Н	OURS				L			
								45		15		60	
TEXT BOOKS													
1. R. Murugesan (2005), Allied Physics, S. Chand & Co, New Delhi.													
2.													
3.													
 Brijiai and N. Subramanyam(2002), Text book of Optics, S. Chand & Co, New Denn. R.Murugesan (2005), Modern Physics, S. Chand & Co, New Delhi. 													
 K.Wurugesan (2005), Wodern Physics, S. Chand & Co, New Denn. A. SubramaniyamApplied Electronics, 2ndEdn., National Publishing Co., Chennai 													
REFERENCE BOOKS													
1.				nd Wal	ker (20	18). Fi	ındam	entals o	f Phys	sics. 11 th	^h Edn J	ohn Wil	lev and
	Sons, A		•			10), 1	andum	ontais o	1 1 11 9 1		2411., 0		iej una
2.				U 1	-).Optio	cs. S.C	Chand&	Co. Lt	d New	Delhi.		
3.						· •						n, New I	Delhi.
4.												l, New	
5.												New De	
E R	EFEREN			i									
1.	https://	www.b	erkshi	re.com	/learnin	g-cente	er/delta	a-p-face	nask/				
2.	https://					-		-					
3.									=D38I	BigUdL5	U&feat	ure=emt	_logo
4.	https://	www.y	outube	e.com/v	vatch?v		5F-Qı	ı4					•
5.								pressure	-transe	ducers/			
6.	https://	www.a	toptics	.co.uk/	atoptics	s/blsky.	. <u>htm</u> -						
7.	https://	www.n	netoffi	-				out/weat	-		ects		
				M	apping	with P	rogra	mme O	utcom	es			
С	ourse												
	tcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO9	PO10	PSO1	PSO2

Course	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO9	PO10	PSO1	PSO2
Outcomes	101	102	103	104	105	100	107	108	107	1010	1001	1001
CO ₁	3	0	1	0	1	3	1	2	1	2	2	1
CO ₂	2	0	1	2	1	3	1	1	1	2	2	1
CO ₃	2	1	3	3	1	3	2	1	0	2	1	1
CO ₄	1	1	2	3	2	3	1	2	0	2	2	2
CO ₅	2	1	1	3	1	3	1	2	1	2	1	1
Total	10	3	8	11	6	15	6	8	3	10	8	6
Scaled to 1, 2, 3	2	1	2	3	2	3	3	2	1	2	2	2

0 - No relation 1 - Low relation 2 - Medium relation 3 - High relation

COU	URSE (CODE	COURSE NAME	L	Т	P	С		
	XPG2)6		0 0		1	1		
С	Р	Α	ALLIED PHYSICS PRACTICAL – II	L	Т	Р	Н		
0	0.75	0.25		0	0	2	2		
COU	URSE (DUTCO	MES						
On t	he succ	essful co	ompletion of this course students would able to						
OBJ	ECTI	VES :A	pply various Physics concepts to understand			Level			
conc	epts of	ELight,	electricity and magnetism and waves, set up	Dor	nain				
expe	erimenta	ation to	verify theories, quantify and analyse, able to do	Don	nam				
error	r analys	is and c							
CO	1 Un	derstand	Psych	omoto	Mechanism				
	app	lication	S	1	r	Wiechamsm			
CO	2 Ide	<i>ntify</i> the	e principles of optics, and <i>determine</i> refractive	Psych	omoto	Analyze,			
	ind	ex.		r: Affe	ective:	Respond			
CO	3 De	velop Ki	nowledge to differentiate resistance of material	Psych	omoto	Mechanism			
	affe	ected by	temperature.	r	:		ceive		
				Affe	cerve				
CO	4 Red	call the	concepts of laws and <i>explain</i> the methods of	Psych	omoto	Mec	hanism		
	ma	gnetic fi	eld.	r: Affe	ective:	Re	eceive		
CO	5 Un	derstand	<i>I</i> function of semiconductor and zener diode and	Psych	omoto	Ar	nalyze		
	hov	v it is w	orking regulator.	r: Affe	ective:	Re	Receive		

Any Eight of the experiments

Ex. No	Experiments (Any eig	ht experiments)	Cos						
1.	Radius of curvature of lens by forming Newton's rings									
2.	Thickness of a wire using air wedge			CO1						
3.	Wavelength of mercury lines using spect	1 of mercury lines using spectrometer and grating								
4.	Refractive index of material of the lens by minimum deviation									
5.	Refractive index of liquid using liquid prism									
6.	Specific resistance of a wire using PO box									
7.	Thermal conductivity of poor conductor using Lee's disc									
8.	Determination of Earth's magnetic field coil	using field alon	g the axis of a	CO4						
9.	Characterisation of Zener diode			CO5						
10.	Construction of Zerner/IC regulated pow	ver supply		CO5						
11.	Construction of AND, OR, NOT gates u	sing diodes and	transistor	CO5						
12.	NOR gate as a universal building block			CO5						
		LECTURE	PRACTICAL	TOTAL						
	HOURS	0	30	30						

TEXT BOOKS

- 1. C. L. Arora, "B.Sc .Practical Physics", S. Chand & Company Ltd. Ram Nagar, New Delhi-110055. 2007.
- 2. R. K. Shukla & Anchal Srivastava. "Practical Physics," New Age International (P) Ltd, Publishers, (Formerly Wiley Eastern Limited), 4835/24, Ansari Raod, Daryagani, New Delhi–11002. 2006.

REFERENCE BOOKS

- 1. Geeta Sanon, "B. Sc., Practical Physics", 1st Edition, S. Chand and Company, 2007.
- 2. Chattopadhyay, D., Rakshit, P. C. and Saha, B., "An Advanced Course in Practical Physics," 8th Edition, Books & Allied Ltd., Calcutta, 2007.
- 3. G. L. Squires, "Practical Physics", Fourth edition, Cambridge University Press, 2001.

- 4. Indu Prakash and Ramakrishna, "A Text Book of Practical Physics," 11th Edition, Kitab Mahal, New Delhi, 2011.
- 5. C. Ouseph,K. Rangarajan, "A Text Book of Practical Physics", Volume I,II, S.Viswanathan Publishers,1997.

E-Resources:

1. Amal Kumar Das , Department of Physics, IIT Kanpur, "Introduction to Electromagnetic Theory", National Programme on Technology Enhanced Learning (NPTEL), <u>https://onlinecourses.nptel.ac.in/noc20_ph16/preview</u>

Course Outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO9	PO10	PSO1	PSO2
CO ₁	1	1	3	3	2	3	1	3	0	1	2	1
CO ₂	1	1	3	2	1	3	1	3	1	1	2	1
CO ₃	1	1	3	3	1	3	2	3	1	2	2	1
CO ₄	1	1	2	2	2	3	1	3	1	2	2	1
CO ₅	1	1	3	3	2	3	1	3	1	2	2	1
Total	5	5	14	13	8	15	6	15	4	8	10	5
Scaled to 1, 2, 3	1	1	3	3	2	3	2	3	1	2	2	1

Mapping of COs with POs

0 - No relation

1 – Low relation

2 – Medium relation

3 – High relation

COU	RSE NA	MF		Ou	antitati	ve Anti	itude –	r		L	Т	P	C					
				Qu		-		L				1 1 1 0						
	RSE CO				Δ	MT207				1			2					
C	P	Α								L	Т	Р	Η					
2	0	0								1	1	0	2					
PREREC	QUISITE	E	Numł	per Syste	ems													
On successful completion of this course, the students will be able to:																		
COURSE OUTCOMES DOMAIN LEVEL													EL					
CO 1	Explain the basic concepts of Numbers, H.C.F. & L.C.M of Numbers and to solve the problems.CognitiveUnderstanding												anding					
CO 2	Explain the basic concepts of Decimal Fractions, Cognitive Understanding Simplification and to solve the problems.												anding					
CO 3	Explain the basic concepts of Square Roots & Cube Roots, Average and to solve the problems.CognitiveUnderstanding																	
CO 4	Explai	n the bas ns on Age	ic con	cepts of	Proble		Number	rs,	Co	gnitivo	e (Jnderst	anding					
CO 5	Explai	n the basi e the Prob	c conce				s, Percei	ntage an	d Co	gnitiv	e (Jnderst	anding					
UNIT 1			CAL										3+3					
Numbers, UNIT 2	H.C.F.	&L.C.M c	of Num	bers.									3+3					
	Fractions	, Simplifi	cation.										515					
UNIT 3																		
Square Roo UNIT 4	ts & Cube	Roots, Ave	erage.										3+3					
Problems	on Num	bers, Prob	olems o	n Ages.														
UNIT 5													3+3					
Surds & In		ercentage		UTOR	TAT.	15	PRAC	CTICA	L (TOTA		30					
Text Boo		10				10				,			50					
				A	fan Ca				- C C1-		oth 1		012)					
Referenc		al, Quant	itative	Aptitude	e for Co	mpetiti	ve Exan	nination	is, s Ch	and; 2	0 ed	11101 (2	.013).					
1. Banki		eness by	Sangra	mKesha	ri Rout	and So	oumyaR	anjanBe	ehera, B	.K. Pı	blicat	ions P	vt. Ltd.;					
Secon	d edition	n (2014).																
		ET/SET b	-				,				2							
3. Fast T E-Refere		jective Ar	ithmeti	c by Ra	jesh ve	rma, Ai	ihant Pi	iblicatio	on, Editi	on 201	2.							
	careerble	ess.com																
	jagranjo																	
3. <u>www</u> .	bestguru	.com																
					CC)s VS P	Os											
		PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9 F	SO1	PSO2					
CO 1		3	2	1	0	0	2	2	2	3		2	0					
CO 2		3	2	1	0	0	2	2	2	3		2	0					
CO 3		3	2	1	0	0	2	2	2	3		2	0					
				-						-								

CO 4	3	2	1	0	0	2	2	2	3	2	0
CO 5	3	2	1	0	0	2	2	2	3	2	0
TOTAL	15	10	5	0	0	10	10	10	15	10	0
SCALED	3	2	1	0	0	2	2	2	3	2	0
VALUE											
0 - No Relation, 1	– Low R	elation	, 2- Me	dium R	elation	, 3- Hig	h Rela	tion	1	I	1

 $1 ext{-}5 ext{-}1, 6 ext{-}10 ext{-}2, 11 ext{-}15 ext{-}3$

				L	Т	Р	SS	С
COU	RSE CODE	XUM002		1	0	0	1	1
COU	RSE NAME	ENVIRONMENTAL STUDI	ES	L	Т	Р	SS	Н
C: P:	Α	0.8:0.1:0.1		1	0	0	1	2
COU	RSE OUTCOM		Domain				Level	
CO1	Describe the	significance of natural resources and					ememt	
		pogenic impacts.	Cognitive			U	ndersta	nd
CO2		significance of ecosystem, biodiversity eo bio chemical cycles for maintaining ance.	Cognitive			U	ndersta	nd
CO3		acts, consequences, preventive measures ollutions and <i>recognize</i> the disaster	Cognitive Affective				ememt eceivii	
CO4	the control mea development.	tio-economic, policy dynamics and <i>practice</i> sures of global issues for sustainable	Cognitive				ndersta Analys	
CO5	various welfare towards enviror	mpact of population and the concept of programs, and <i>apply</i> themodern technology mental protection.	r		U	ndersta Apply		
UNI	Г-I NATURAI	L RESOURCES AND ENERGY					3+3	
		nservation of Resources. EMS AND BIODIVERSITY					3+3	
	Structure and func Food chains, Food Introduction to Bi	EMS AND BIODIVERSITY ction of an ecosystem – Producers, consumers l webs, Structure and Function of the Forest ec odiversity- Endemic, Extinct and Endangered	cosystem and Aq	uatic	ecosy	stem–	al cycl	
	Structure and func Food chains, Food Introduction to Bi situ and Ex-situ co	EMS AND BIODIVERSITY etion of an ecosystem – Producers, consumers I webs, Structure and Function of the Forest ecodiversity- Endemic, Extinct and Endangered onservation.	cosystem and Aq	uatic	ecosy	stem–	al cycl sity: Iı	
UNIT	Structure and func Food chains, Food Introduction to Bi situ and Ex-situ co T – IIIENVIRON	EMS AND BIODIVERSITY etion of an ecosystem – Producers, consumers I webs, Structure and Function of the Forest eco odiversity- Endemic, Extinct and Endangered onservation. MENTAL POLLUTION	cosystem and Aq species- Conserv	uatic vation	ecosy of Bi	stem– odiver	al cycl rsity: Iı 3+3	1-
UNIT	Structure and func Food chains, Food Introduction to Bi situ and Ex-situ co C – IIIENVIRON Definition – Cau Marine pollution management: Ca	EMS AND BIODIVERSITY etion of an ecosystem – Producers, consumers I webs, Structure and Function of the Forest ecodiversity- Endemic, Extinct and Endangered onservation.	cosystem and Aq species- Conserv collution, Water and Nuclear	uatic vation r poll haza	ecosy of Bi ution ards	stem– odiver , Soil – Sc	al cycl sity: Ii <u>3+3</u> pollu lid w	n- tion vast
UNIT	Structure and func Food chains, Food Introduction to Bi situ and Ex-situ co C – IIIENVIRON Definition – Cau Marine pollutio management: Ca prevention of po	EMS AND BIODIVERSITY etion of an ecosystem – Producers, consumers I webs, Structure and Function of the Forest eco odiversity- Endemic, Extinct and Endangered onservation. MENTAL POLLUTION uses, effects and control measures of Air p on, Noise pollution, Thermal pollution auses, effects and control measures of ind llution – Pollution case studies	cosystem and Aq species- Conserv collution, Water and Nuclear	uatic vation r poll haza	ecosy of Bi ution ards	stem– odiver , Soil – Sc	al cycl rsity: In 3+3 pollu lid w lividu	n- tior vast
UNIT	Structure and func Food chains, Food Introduction to Bi situ and Ex-situ co C – IIIENVIRON Definition – Cau Marine pollution management: Ca prevention of po F –IVSOCIAL I Rain water har warming, Acid	EMS AND BIODIVERSITY etion of an ecosystem – Producers, consumers I webs, Structure and Function of the Forest eco odiversity- Endemic, Extinct and Endangered onservation. MENTAL POLLUTION uses, effects and control measures of Air p on, Noise pollution, Thermal pollution auses, effects and control measures of ind llution – Pollution case studies SSUES AND THE ENVIRONMENT vesting– Resettlement and Rehabilitation rain, Ozone layer depletion, Nuclear and	cosystem and Aq species- Conserv collution, Water and Nuclear lustrial wastes -	uatic vation r poll haza - Rol Clim Ioloc	ution ards e of a nate of aust	stem– odiver , Soil – Sc an inc chang	al cycl rsity: In 3+3 pollu lid w lividu 3+3 e, Gl	tior vast al in
UNIT	Structure and func Food chains, Food Introduction to Bi situ and Ex-situ co C – IIIENVIRON Definition – Cau Marine pollution management: Ca prevention of po F –IVSOCIAL I Rain water har warming, Acid Protection Act –	EMS AND BIODIVERSITY ction of an ecosystem – Producers, consumers I webs, Structure and Function of the Forest eco odiversity- Endemic, Extinct and Endangered onservation. MENTAL POLLUTION uses, effects and control measures of Air p on, Noise pollution, Thermal pollution auses, effects and control measures of ind llution – Pollution case studies SSUES AND THE ENVIRONMENT vesting– Resettlement and Rehabilitation	oollution, Water and Nuclear ustrial wastes - on of people, ccidents and F	uatic vation r poll haza - Rol Clim Ioloc	ution ards e of a nate of aust	stem– odiver , Soil – Sc an inc chang	al cycl rsity: In 3+3 pollu lid w lividu 3+3 e, Gl	tior vast al i
UNIT UNIT UNIT	Structure and func Food chains, Food Introduction to Bi situ and Ex-situ co C – IIIENVIRON Definition – Cau Marine pollution management: Ca prevention of po F –IVSOCIAL I Rain water har warming, Acid Protection Act – F –VHUMAN P Population grow health- HIV / A	EMS AND BIODIVERSITY ction of an ecosystem – Producers, consumers I webs, Structure and Function of the Forest eco odiversity- Endemic, Extinct and Endangered onservation. MENTAL POLLUTION uses, effects and control measures of Air p on, Noise pollution, Thermal pollution auses, effects and control measures of ind llution – Pollution case studies SUES AND THE ENVIRONMENT vesting– Resettlement and Rehabilitation rain, Ozone layer depletion, Nuclear and Water Act – Wildlife Protection Act – For	oollution, Water and Nuclear ustrial wastes - on of people, ccidents and F rest Conservation ENT on explosion -	uatic vation r poll haza - Rol Clim Ioloc on Ac	ution ards e of a nate of aust et.	stem– odiver , Soil – Sc an inc chang – En ent ar	al cycl rsity: In 3+3 pollu lid w lividu 3+3 e, Gl vironn 3+3 nd Hu	tion vaste al in oba nen
UNIT UNIT UNIT	Structure and func Food chains, Food Introduction to Bi situ and Ex-situ co C – IIIENVIRON Definition – Cau Marine pollution management: Ca prevention of po F –IVSOCIAL I Rain water har warming, Acid Protection Act – F –VHUMAN Po Population grow	EMS AND BIODIVERSITY ction of an ecosystem – Producers, consumers I webs, Structure and Function of the Forest eco odiversity- Endemic, Extinct and Endangered onservation. MENTAL POLLUTION uses, effects and control measures of Air p on, Noise pollution, Thermal pollution auses, effects and control measures of ind llution – Pollution case studies SSUES AND THE ENVIRONMENT vesting– Resettlement and Rehabilitation rain, Ozone layer depletion, Nuclear and Water Act – Wildlife Protection Act – For OPULATION AND THE ENVIRONMIN rth, Variation among nations - Population IDS – Role of Information Technology in	oollution, Water and Nuclear ustrial wastes - on of people, ccidents and F rest Conservation ENT on explosion -	uatic vation r poll haza - Rol Clim Ioloc on Ac	ution ards e of a nate of aust et.	stem– odiver , Soil – Sc an inc chang – En ent an n hea	al cycl rsity: In 3+3 pollu lid w lividu 3+3 e, Gl vironn 3+3 nd Hu	n- tior vast al in oba nen
UNIT UNIT UNIT	Structure and func Food chains, Food Introduction to Bi situ and Ex-situ co C – IIIENVIRON Definition – Cau Marine pollution management: Ca prevention of po T –IVSOCIAL I Rain water har warming, Acid Protection Act – T –VHUMAN Po Population grow health- HIV / Au	EMS AND BIODIVERSITY ction of an ecosystem – Producers, consumers I webs, Structure and Function of the Forest eco odiversity- Endemic, Extinct and Endangered onservation. MENTAL POLLUTION uses, effects and control measures of Air p on, Noise pollution, Thermal pollution auses, effects and control measures of ind llution – Pollution case studies SSUES AND THE ENVIRONMENT vesting– Resettlement and Rehabilitation rain, Ozone layer depletion, Nuclear au Water Act – Wildlife Protection Act – For OPULATION AND THE ENVIRONMIN rth, Variation among nations - Population IDS – Role of Information Technology in	oosystem and Aq species- Conserv collution, Water and Nuclear lustrial wastes - on of people, ccidents and F rest Conservation ENT on explosion - n Environment	uatic vation r poll haza - Rol Clim Ioloc on Ac	ution ards e of a nate of aust et.	stem- odiver , Soil - Sc an inc chang - En ent an n hea TO	al cycl rsity: In 3+3 pollu lid w lividu: 3+3 e, Gl vironn 3+3 nd Hu lth - 0	n- tior vast al i oba ner
UNIT UNIT UNIT	Structure and func Food chains, Food Introduction to Bi situ and Ex-situ co C – IIIENVIRON Definition – Cau Marine pollution management: Ca prevention of po F –IVSOCIAL I Rain water har warming, Acid Protection Act – F –VHUMAN Po Population grow health- HIV / A studies. LECTURE	EMS AND BIODIVERSITY ction of an ecosystem – Producers, consumers 1 webs, Structure and Function of the Forest ecodiversity- Endemic, Extinct and Endangered onservation. MENTAL POLLUTION uses, effects and control measures of Air point, Noise pollution, Thermal pollution auses, effects and control measures of ind llution – Pollution case studies SSUES AND THE ENVIRONMENT vesting – Resettlement and Rehabilitation rain, Ozone layer depletion, Nuclear au Water Act – Wildlife Protection Act – For OPULATION AND THE ENVIRONMING th, Variation among nations - Population Distribution automation automati	oosystem and Aq species- Conserv collution, Water and Nuclear lustrial wastes - on of people, ccidents and F rest Conservation ENT on explosion - n Environment	uatic vation r poll haza - Rol Clim Ioloc on Ac	ution ards e of a nate of aust et.	stem- odiver , Soil - Sc an inc chang - En ent an n hea TO	al cycl rsity: In 3+3 pollu lid w lividu 3+3 e, Gl vironn 3+3 nd Hu lth – 0 FAL	n- tior vast al i oba ner

	3.	Trivedi R.K and P.K.Goel, Introduction to Air pollution, Techno Science Publications,
		India, (2003).
	4.	Disaster mitigation, Preparedness, Recovery and Response, SBS Publishers & Distributors
		Pvt. Ltd, New Delhi, (2006).
		Introduction to International disaster management, Butterworth Heinemann, (2006).
	6.	Gilbert M.Masters, Introduction to Environmental Engineering and Science, Pearson
		Education Pvt., Ltd., Second Edition, New Delhi, (2004).
	REFE	RENCES
	1.	Trivedi R.K., Handbook of Environmental Laws, Rules, Guidelines, Compliances and
		Standards, Vol. I and II, Enviro Media, India, (2009).
	2.	Cunningham, W.P.Cooper, T.H.Gorhani, Environmental Encyclopedia, Jaico Publ., House,
		Mumbai, (2001).
	3.	S.K.Dhameja, Environmental Engineering and Management, S.K.Kataria and Sons, New
		Delhi, (2012).
	4.	Sahni, Disaster Risk Reduction in South Asia, PHI Learning, New Delhi, (2003).
	5.	Sundar, Disaster Management, Sarup& Sons, New Delhi, (2007).
	6.	G.K.Ghosh, Disaster Management, A.P.H.Publishers, New Delhi, (2006).
	E RES	SOURCES
	1.	http://www.e-booksdirectory.com/details.php?ebook=10526
	2.	
	3.	
	4.	https://www.learner.org/courses/envsci/unit/unit_vis.php?unit=4
	5.	http://bookboon.com/en/pollution-prevention-and-control-ebook
	6.	http://www.e-booksdirectory.com/details.php?ebook=8557
	7.	http://www.e-booksdirectory.com/details.php?ebook=6804
	8.	http://bookboon.com/en/atmospheric-pollution-ebook
	9.	
	10	. http://www.e-booksdirectory.com/details.php?ebook=2604
1		. http://www.e-booksdirectory.com/details.php?ebook=2116
		. http://www.e-booksdirectory.com/details.php?ebook=1026
		. http://www.faadooengineers.com/threads/7894-Environmental-Science

C	Course	e Name	Di	fferential Equ	ations and	Laplace Trai	nsforms	L	Т	Р	C
C	Cours	e Code			XMT3)1		3	1	0	4
С	P	Α						L	Т	Р	H
4	0	0						3	1	0	4
Prere	equisi	te	Know	ledge of Ordin	ary and P	artial Derivati	ves	Ι	ļ ļ		Į
On su	iccess	ful complet	ion of thi	s course, the stu	udents will	be able to:					
				Course Outco	mes			Dor	nain	Le	evel
CO1		Identify the the form of		n of a given par 's.	tial differe	ntial equation	which is in	Cogi	nitive	App ng	plyi
CO2		Demonstra differential		ethods for findi 1	ing particu	lar integral of t	he partial	Cogi	nitive	Uno and	derst ling
CO3		partial diffe	erential e						nitive	ng	plyi
CO4		Solve a giv	en partia	l differential eq	uation usi	ng Lagrange's	Method	Cogi	nitive	App ng	plyi
CO5		Solve seco	nd order	differential equ	ations usir	g Laplace Trai	nsforms	Cogi	nitive	App ng	plyi
UNIT	Г 1										+3
linear UNIT Varia	$\mathbf{C} 3$	tions with v	ariable co	th constant coefficients. Defficients. lifferential equa		-			_	1	+3
UNIT		1 102 - 0								9	+3
		erential For	uation- F	our standard typ	nes- Laora	ige's method f	or solving P	$a + \Omega a$	= R		
UNIT		erentiai Eqt	sati ()11 ⁻ 1 (sar standard ty		ige 5 method f	or sorving I	י ≺ ץ	π	9	+3
UNII	ce tra	ansform –	Laplace	transform of	periodic	functions – S	ome genera	al theo	orems	- Inv	verse
		0.1.	econd ord	ler differential e	equations u	sing Laplace t	ransform - p	roblem	18		
Lapla		- Solving se									()
Lapla transf			45	Tutorial	15	Practical	0		Tot	al	60

Unit IV: Chapter 4 (sec: 1 – 6), Pages: 115 – 145

Unit V : Chapter 5 (sec: 1 – 8), Pages: 154 – 189

References

- 1. Engineering Mathematics- A. Singaravelu, Meenakshi Agency, 2022.
- 2. Ordinary and Partial Differential Equations- M.D. Raisinghania and R.S. Aggarwal. S.Chand& Company Ltd, New Delhi, 2022.

			COs	vs POs					
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	РО
									9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	14	9	15	5	4	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1
0 - No Relation, 1 – L	ow Relati	on, 2- Me	dium Rela	ation, 3- H	ligh Rela	tion			

C	ourse	Name	Vect	or Calculus, Fo	ourier Seri	ies and Fourier Tr	ansforms	L	Т	Р	C
С	ourse	Code		,	XMT			3	1	0	4
С	Р	Α						L	Т	Р	Н
4	0	0						3	1	0	4
Preree	quisit	e	Know	ledge in Differen	ntiation, Ir	itegration		I	ļ	I	ļ
On suc	ccessf	ul complet	ion of th	is course, the stu	idents will	be able to:					
				Course Outcom	mes		I	Domai	in	Le	evel
CO1		Identify					C	ognitiv	ve	App	lying
CO2		Identify					C	ognitiv	ve	App	lying
CO3		Identify					C	ognitiv	ve	App	lying
CO4 CO5		Identity Identify					1	ognitiv ognitiv			lying lying
UNIT	1	VECTOR	DIFFE	RENTIATION						9	+3
				adient, Divergen	ce and Cu	d.					
UNIT	2	VECTOR	INTEG	RATION						9-	+3
Ŭ					Ŭ	l – Surface integral	– Gauss's	Diver	genc	e theo	orem,
Green	's the	orem, Stok	e's theor	rem (Without Pro	oof).						
UNIT	3	FOURIER	R SERIE	S						9-	+3
	range	ctions – Fo cosine ser FOURIER	ries.		s Condition	ns – Even and odd f	functions- H	Half ra	nge		eries +3
				Theorem, Harm	nonic Anal	vsis.				,	
UNIT		FOURIER				<i>J</i>				9.	+3
					of Fourier	Transforms – Parse	eval's ident	ity – I	Infin		
		ine transfo		•				-			
Le	ecture		45	Tutorial	15	Practical	0		Tota	al	60
	Kandas	S.Chand&	Compan	yLtd,New Delhi	, 2004.	me IV: Vector Calc	culus, Fouri	er seri	es ai	nd Fo	urier
				Calculus: Pages Calculus: Pages							
		Unit III	: Fourier	series: Pages 93	3 - 144						
		Unit IV	: Fourier	series: Pages 14	45 – 174, 1	76 - 182					
				r Transforms: Pa	ages 196 -						

1. Vector Algebra and Analysis- T.K.M. Pillai, Anand Book Depot. 2009.

2. Calculus Volume III- T.K.M. Pillai, Anand Book Depot, 1991.

3.Engineering Mathematics- A. Singaravelu, Meenakshi Agency, 2022.

E-References

- 1. <u>https://courses.maths.ox.ac.uk/node/43944</u>[Oxford University]
- 2. <u>https://courses.maths.ox.ac.uk/node/43955</u> [Oxford University]
- 3. <u>https://www.maths.cam.ac.uk/undergrad/files/coursesIA.pdf</u> [Cambridge]

			COs	vs POs					
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	10	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1
0 - No Relation, 1 – L	ow Relati	on, 2- Me	dium Rela	ation, 3- H	ligh Rela	tion	1		

C	ourse	Name		Math	ematical S	tatistics- I	L	Т	P	C
С	Course	Code			XMT3)3	3	1	0	4
C	Р	Α					L	Т	P	H
4	0	0					3	1	0	4
Prere	quisite	e	Basic kn	nowledge of st	tatistics.					
				course, the stu		be able to:				
				Course Outco			Don	nain	L	evel
C O 1	I	E xplain th				ous random variable	Cogn			standiı
		1	1				U			
C O2	I	E xplain th	e concepts	of two-dimer	nsional rand	dom variable	Cogn	itive	Under	standiı
CO3			-	nerating func indom variable		finding expectation a	and Cogn	itive	Apply	ing
C O 4		-	-		istributions	, Gamma distribution a	and Cogn	itive	Under	standiı
C O 5	Ι	dentify co	d distributi orrelation orrelation or analysis	coefficient of	the given	random variables by w	vay Cogn	itive	Apply	ing
UNIT	<u>'1</u>									9+3
listrib functio	oution f on.					variable – probability bility density function			ribution	
distrib functio U NIT Fwo-c Distril	oution f on. 2 2	function - ional rand Function -	continuous om variabl - Stochasti	e: joint proba c independent	able- proba bility mass ce -Mathen	÷ •	– continuou probability	us disti v functi	ribution ion - M	9+ 3 arginal
distrib functio UNIT Two-c Distril Proper	oution f on. 2 dimens bution rties of	function - ional rand Function -	continuous om variabl - Stochasti	e: joint proba	able- proba bility mass ce -Mathen	bility density function function – continuous	– continuou probability	us disti v functi	ribution ion - M ctation	9+3 arginal –
distrib functio UNIT Two-c Distril Proper UNIT	Dution f on. 2 dimens bution rties of 3	function - ional rand Function - `variance	continuous om variabl - Stochasti - simple pi	e: joint proba c independend roblems only.	able- proba bility mass ce -Mathen	bility density function function – continuous natical Expectations - F	– continuou probability Properties o	us distr 7 functi 1 expe	ribution ion - M ctation	9+3 arginal - 9+3
distrib functio UNIT Two-c Distril Proper UNIT M.G.F only.	bution f on. $\begin{bmatrix} 2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	function - ional rand Function - `variance	continuous om variabl - Stochasti - simple pi	e: joint proba c independend roblems only.	able- proba bility mass ce -Mathen	bility density function function – continuous	– continuou probability Properties o	us distr 7 functi 1 expe	ribution ion - M ctation e and N	9+3 arginal - 9+3 IGF
distrib Function UNIT Fwo-c Distrib Proper UNIT UNIT M.G.F Donly. UNIT	bution f on. 2 dimense bution rties of 3 F - Cur 4	function - ional rand Function - variance nulants - (continuous om variabl - Stochasti - simple pi Characteris	e: joint proba c independend roblems only.	able- proba bility mass ce -Mathen - Binomial	bility density function function – continuous natical Expectations - H	– continuou probability Properties o – Moments	us distr v functi f expe	ribution ion - M ctation e and M	9+3 arginal - 9+3 IGF 9+3
distrib Functio UNIT Fwo-c Distrib Proper UNIT UNIT M.G.F Duly. UNIT	oution fon. 2 dimensionbutionrties of 3 $F - Cur4al distr$	function - ional rand Function - variance nulants - (continuous om variabl - Stochasti - simple pi Characteris	e: joint proba c independend roblems only.	able- proba bility mass ce -Mathen - Binomial	bility density function function – continuous natical Expectations - F	– continuou probability Properties o – Moments	us distr v functi f expe	ribution ion - M ctation e and M ributior	9+3 arginal - 9+3 IGF 9+3 1.
distrib function UNIT Two-c Distrib Proper UNIT UNIT M.G.F only. UNIT Norma	oution fon. 2 dimensionbutionrties of 3 $F - Cur$ 4 al distr 5	function - ional rand Function - variance nulants - G	continuous om variabl - Stochasti - simple pi Characteris	e: joint proba c independend roblems only. tic Functions	able- proba bility mass ce -Mathen - Binomial a distributio	bility density function function – continuous natical Expectations - H	 continuou probability Properties o Moments Exponentia 	us distr 7 functi f expe s, mod	ribution ion - M ctation e and M ributior	9+3 arginal - 9+3 IGF 9+3 1. 9+3
distrib function UNIT Two-c Distrib Proper UNIT UNIT M.G.F only. UNIT Norma UNIT Correl	oution fon. 2 dimensionbutionrties of 3 $F - Cur4al distr5lation:$	function - ional rand Function - variance nulants - G ibution- G Karl Pea	continuous om variabl - Stochasti - simple pr Characteris camma dist	e: joint proba c independend roblems only. tic Functions ribution- Beta	able- proba bility mass ce -Mathen - Binomial a distributio	bility density function function – continuous natical Expectations - H , Poisson distributions on (without problems) Rank correlation – H	 continuou probability Properties o Moments Exponenti Regression: 	us distr 7 functi f expe s, mod	ribution ion - M ctation e and M ributior	9+3 arginal - 9+3 IGF 9+3 1. 9+3
distrib Function UNIT Fwo-c Distrib Proper UNIT M.G.F Donly. UNIT Norma UNIT Correl	oution fon. 2 dimensionbutionrties of 3 $F - Cur4al distr5lation:$	function - ional rand Function - variance nulants - G ibution- G Karl Pea	continuous om variabl - Stochasti - simple pr Characteris camma dist	e: joint proba c independend roblems only. tic Functions ribution- Beta	able- proba bility mass ce -Mathen - Binomial a distributio	bility density function function – continuous natical Expectations - F , Poisson distributions on (without problems) Rank correlation – F ents – related problems.	 continuou probability Properties o Moments Exponenti Regression: 	us distr 7 functi f expe s, mod	ribution ion - M ctation e and M ributior	9+3 - 9+3 IGF 9+3 1. 9+3
distrib function UNIT Two-c Distrib Proper UNIT UNIT M.G.F only. UNIT Norma UNIT Correl Regres	oution fon. 2 dimensionbutionrties of 3 $F - Cur4al distr5lation:$	function - ional rand Function - variance nulants - G ibution- G Karl Pea	continuous om variabl - Stochasti - simple pr Characteris camma dist	e: joint proba c independend roblems only. tic Functions ribution- Beta	able- proba bility mass ce -Mathen - Binomial a distributio	bility density function function – continuous natical Expectations - H , Poisson distributions on (without problems) Rank correlation – H	 continuou probability Properties o Moments Exponenti Regression: 	us distr 7 functi f expe s, mod	ribution ion - M ctation e and M ribution ar regr	9+3 arginal - 9+3 IGF 9+3 1. 9+3
listrib Functio UNIT Fwo-c Distrif Proper UNIT VI.G.F Only. UNIT Norma UNIT Correl Regres	oution fon. 2 dimensionbutionrties of 3 $F - Current4al distr5lation:ession cecture$	function - ional rand Function - variance nulants - G ibution- G Karl Pea	continuous om variabl - Stochasti - simple pr Characteris amma dist arson coef - propertie	e: joint proba c independend roblems only. tic Functions ribution- Beta	able- proba bility mass ce -Mathen - Binomial a distributio orrelation- on coefficie	bility density function function – continuous natical Expectations - F , Poisson distributions on (without problems) Rank correlation – F ents – related problems.	 continuou probability Properties o Moments Exponenti Regression: 	us distr y functi f expe s, mode ial dist Line	ribution ion - M ctation e and M ribution ar regr	9+3 arginal - 9+3 1GF 9+3 1. 9+3 ression

Unit III: Chapter 7 (Sec.7.1-7.3.1) Chapter8(Sec.8.4, 8.4.1, 8.4.2, 8.4.5, 8.4.6, 8.5, 8.5.2 - 8.5.5) Unit IV: Chapter 9 (Sec.9.2, 9.2.1-9.2.3, 9.2.5, 9.2.11, 9.3, 9.5, 9.8) Unit V: Chapter 10 (Sec.10.2-10.4& 10.7) Chapter 11 (Sec.11.1-11.2.2)

Reference

1. Dr. P.R. Vittal "Mathematical Statistics" Margham Publications Chennai, 2009.

E-References

- 1. <u>https://science.korea.edu/science_en/undergraduate/under_math3.do</u> [Korea University college of science]
- 2. <u>http://www.bath.ac.uk/catalogues/2019-2020/ma/MA10211.html</u> [University of Bath, United Kingdom

			C	Os vs POs	5					
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
CO 1	3	3	2	1	3	1	0	1	1	
CO 2	3	3	2	1	3	1	0	1	1	
CO 3	3	3	3	2	3	1	1	1	1	
CO 4	3	3	2	1	3	1	0	1	1	
CO 5	3	3	3	2	3	1	1	1	1	
TOTAL	15	15	12	7	15	5	2	5	5	
SCALED VALUE	3	3	3	2	3	1	1	1	1	

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

 $1\text{-}5 \rightarrow 1, 6\text{-}10 \rightarrow 2, 11\text{-}15 \rightarrow 3$

			1						1		
C	Course	e Name		Mathemati		tics Practical -	[L	Т	P	С
0	Cours	e Code			XMT3	04		0	0	4	2
С	P	Α						L	Т	P	H
2	0	0						0	0	4	2
Prere	equisi	te								·	
On su	iccess	ful completi	on of this	course, the stu	idents wil	l be able to:					
				Course Outco	mes			Dom	ain	Le	vel
CO1		Apply the solve the pr	-	of discrete an	id continu	ious random va	riables to	Cogn	itive	Appl	ying
CO2		0	nd condit			ndom variables h discrete and c		Cogn	itive	Appl	ying
CO3		Find the me	ean, varia			and Poisson dis		Cogn		Unde nding	
CO4		problems	-	-		d the area of the	-	Cogn		Appl	
CO5		Apply the c problem	concept of	f correlation an	nd regressi	on to solve the g	given	Cogn	itive	Appl	ying
UNIT	ſ 1									6	•
Rando	om va	riables- Disc	crete dist	ribution function	on - contin	uous random va	riable- Proł	oability	densit	y func	tion
- Con	ntinuo	us distributio	on functio	on.							
UNIT	Г 2									e	j
Two-	dimer	isional rando	om variab	le: joint probab	bility mas	s function – cont	inuous prol	oability	functi	on -	
Margi	inal D	istribution F	Function -	Mathematical	Expectation	ons - Properties	of expectati	on – Pr	operti	es of	
variar	nce – s	simple probl	ems only								
UNIT	3									6	
M.G.I	F – Cı	umulants - C	haracteri	stic Functions	- Binomia	l, Poisson distril	outions – M	oments	, mod	e and	
MGF	only										
UNIT	Γ4									6)
Norm	al dis	tribution- Ga	amma dis	tribution- Beta	distributi	on - Exponentia	l distributio	n	ļ		
UNIT	Г 5									6	j
		: Karl Pearso coefficient.	on coeffic	cient of correla	tion–Ranl	c correlation – R	egression:]	Linear r	egress	ion –	
	ectur		0	Tutorial	0	Practical	30		Tota	al	30
Text]	Book										
Refer	Pub ence	lishers, New	v Delhi, 3	rd Edition, Rep	print 2008	ical Statistics, Su n Publications C			s, Edu	cation	al

E-References

- 1. <u>https://science.korea.edu/science_en/undergraduate/under_math3.do[Korea_University_college_of</u> science]
- 2. <u>http://www.bath.ac.uk/catalogues/2019-2020/ma/MA10211.html</u>[University of Bath, United Kingdom

			COs	vs POs					
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	11	9	15	5	4	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1
0 - No Relation, 1 – I	Low Relati	on, 2- Me	dium Rela	ation, 3- H	ligh Rela	tion	1	I	1
$1-5 \to 1, 6-10 \to 2, 11$	$-15 \rightarrow 3$								

On successful completion of this c CO1 Applythe basic concept the problems CO2 Apply the basic concept the problems CO3 Explain the basic concept the problems CO4 Explain the basic concept the problems	XMT305 ther secondary level mathematical knowledge. course, the students will be able to: ourse Outcomes ots of profit and loss, ratio & proportionto solve pts of partnership, chain rule to solve the cepts of time & work, pipes & cisternsto solve the cepts of time & distance and problems on trains	2 L 2 Doma Cogni Cogni	tive	0 P 0 Lev	
200PrerequisiteBasic higOn successful completion of this completion of this completionCO1Apply the basic concept the problemsCO2Apply the basic concept the problemsCO2CO3Explain the basic concept the problemsConcept the problemsCO4Explain the basic concept the problemsConcept the problemsCO4Explain the basic concept the problemsbasic concept the problemsCO4Explain the basic concept the problemsbasic concept the problemsCO5Explain the basic concept the problemsbasic concept the problemsCO5Explain the basic concept the problemsbasic concept the problemsCO5Explain the basic concept the problemsbasic concept the problemsUNIT 1Profit & Loss, Ratio & Proportion UNIT 2profit & Loss, Ratio & Proportion to solve the problems	course, the students will be able to: ourse Outcomes outs of profit and loss, ratio & proportionto solve pts of partnership, chain rule to solve the cepts of time & work, pipes &cisternsto solve the	2 Doma Cogni Cogni	0 ain tive	0 Leve	2 el
PrerequisiteBasic higOn successful completion of this cCO1Applythe basic conceptCO1Apply the basic conceptCO2Apply the basic conceptCO3Explain the basic conceptCO4Explain the basic conceptCO5Explain the basic conceptUNIT 1Profit & Loss, Ratio & ProportionUNIT 2Image: Concept	course, the students will be able to: ourse Outcomes outs of profit and loss, ratio & proportionto solve pts of partnership, chain rule to solve the cepts of time & work, pipes &cisternsto solve the	Doma Cogni Cogni	ain tive	Leve	el
On successful completion of this cCO1Applythe basic concept the problemsCO2Apply the basic concept problemsCO3Explain the basic concept problemsCO4Explain the basic concept problemsCO5Explain the basic concept problemsCO5Explain the basic concept problemsUNIT 1Profit & Loss, Ratio & Proportion UNIT 2	course, the students will be able to: ourse Outcomes outs of profit and loss, ratio & proportionto solve pts of partnership, chain rule to solve the cepts of time & work, pipes &cisternsto solve the	Cogni Cogni	tive		
CO1Applythe basic concept the problemsCO2Apply the basic concept problemsCO3Explain the basic concept problemsCO4Explain the basic concept problemsCO5Explain the basic concept problemsUNIT 1Profit & Loss, Ratio & Proportion UNIT 2	ourse Outcomes ots of profit and loss, ratio & proportionto solve pts of partnership, chain rule to solve the cepts of time & work, pipes &cisternsto solve the	Cogni Cogni	tive		
CO1Applythe basic concept the problemsCO2Apply the basic concept problemsCO3Explain the basic concept problemsCO4Explain the basic concept problemsCO5Explain the basic concept to solve the problemsUNIT 1Profit & Loss, Ratio & Proportion UNIT 2	ots of profit and loss, ratio & proportionto solve pts of partnership, chain rule to solve the cepts of time & work, pipes &cisternsto solve the	Cogni Cogni	tive		
CO2Apply the problemsCO3Explain the basic concerproblemsCO4Explain the basic concerproblemsCO4Explain the basic concerproblemsCO5Explain the basic concerproblemsCO5Explain the basic concerproblemsUNIT 1Profit & Loss, Ratio & ProportionUNIT 2Image: Concerproblem in the basic concerproblem in t	pts of partnership, chain rule to solve the cepts of time & work, pipes &cisternsto solve the	Cogni		Apply	
CO3Explain the basic cond problemsCO4Explain the basic cond to solve the problemsCO5Explain the basic cond to solve the problemsUNIT 1Profit & Loss, Ratio & Proportion UNIT 2	cepts of time & work, pipes &cisternsto solve the		tive		ing
cO4Explain the basic cond to solve the problemsCO5Explain the basic cond mixture to solve the prUNIT 1Profit & Loss, Ratio & Proportion UNIT 2		Cogni		Apply	ing
to solve the problemsCO5Explain the basic cond mixture to solve the prUNIT 1Profit & Loss, Ratio & Proportion UNIT 2	cents of time & distance and problems on trains	U	tive	Apply	ing
mixture to solve the prUNIT 1Profit & Loss, Ratio & ProportionUNIT 2	cepts of time & distance and problems on trains	Cogni		Apply	ing
Profit & Loss, Ratio & Proportion UNIT 2	cepts of boats and streams and allegation or oblems	Cogni	tive	Apply	ing
UNIT 2				6	
Partnership, Chain Rule.				6	
UNIT 3				6	
Time & work, Pipes& Cisterns UNIT 4				6	
Times & Distance, Problems on T	rains.				
UNIT 5				6	
Boats & Streams, Alligation or Mi	ixture.				
Lecture 30	Tutorial 0 Practical 0		Tota	al	30
Text Book					
1. R.S. Aggarwal, Quantitative	e Aptitude for Competitive Examinations, S Chand	$1; 20^{\text{th}} \text{ ec}$	dition	(2013)	
References1. Banking awareness by San Ltd.; Second edition (2014)2. UGC-CSIR NET/SET by I3. Fast Track Objective ArithE-References1. www.careerbless.com	gram Keshari Rout and Soumya Ranjan Behera, B	ation.		ons Pvt.	

- <u>www.jagranjosh.com</u>
 <u>www.bestguru.com</u>

			COs	vs POs					
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	10	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1
0 - No Relation, 1 – I	low Relati	on, 2- Me	dium Rela	ation, 3- H	ligh Rela	tion			
$1-5 \to 1, 6-10 \to 2, 11$	$-15 \rightarrow 3$								

	Course	e Name	DI	SASTERMANA(GEMENT		L	Т	P	C
(Cours	e Code		XUM003			1	0	0	1
С	P	Α					L	Т	SS	F
1	0	0					1	0	1	1
Prere	 equisi	te	Basic knowledge	about environmer	nt.				ļ	I
On sı	- iccess	ful completi	on of this course, t	he students will be	e able to:					
			Course O	outcomes			Dom	ain	Lev	vel
C O 1		Understan	ding the concepts of	of application of ty	pes		Cogn	itive	Apply	y
			preparedness							
CO2			nd conditions & Di				Cogn		Analy	
C O 3			ding of importanc	e of seismic wave	2S		Cogn	itive	Analy	/ze
C O 4		occurring g	•	ion problems			Cogn	itivo	Annly	
CO4			bisaster and mitigat ledge one essentia	_	1		Cogn		Apply Apply	
U NI		INTRODU		is of fiski eduction	1		Cogn	nive	<u>- אין אין</u> 3	
		REDUCTI		OLOGY INDISA		ormation	System	is-Dec	3 ision	
suppo video	ication ort sys	REDUCTI n of various tem and oth onferencing.	ON	bases–RDBMS–M aphic information	lanagement Inf systems – Intr	anets and	extrane	ts–	ision	
Appli suppo video GIS-0	ication ort sys otelecc Case s	REDUCTI n of various tem and oth onferencing.' tudy.	ON technologies: Data er systems – Geogr	bases–RDBMS–M aphic information -Remotesensing-a	lanagement Inf systems – Intr	anets and	extrane	ts–	ision	
Appli suppo video GIS-0 UNIT	ication ort sys otelecc Case s Γ 3	REDUCTI n of various tem and oth onferencing." tudy. AWAREN	ON technologies: Data er systems – Geogr Triggermechanism-	bases–RDBMS–M raphic information -Remotesensing-a	lanagement Inf systems – Intr ninsight–contri	anets and ibutionof 1	extrane	ts–	ision ng and	
Appli suppo video GIS-(UNI Frigg	ication ort sys otelecco Case s Г 3	REDUCTI n of various tem and oth onferencing.' tudy. AWAREN chanism–cor	ON technologies: Data er systems – Geogr Triggermechanism ESSOF RISKREI	bases–RDBMS–M aphic information -Remotesensing-a DUCTION mechanism–risk r	lanagement Inf systems – Intr ninsight–contri	anets and ibutionof 1	extrane	ts–	ision ng and	
Appli suppo video GIS-(UNI Frigg	ication ort sys otelecc Case s Г 3	REDUCTI n of various tem and oth onferencing." tudy. AWAREN chanism–con n network–r	ON technologies: Data er systems – Geogr Triggermechanism ESSOF RISKREI nstitution of trigger	bases–RDBMS–M raphic information -Remotesensing-a DUCTION mechanism–risk r blic awareness.	lanagement Inf systems – Intr ninsight–contri reduction by ed	anets and ibutionof 1	extrane	ts–	ision ng and	
Appli suppo video GIS-C UNI Frigg Infor	ication ort sys otelecc Case s $\Gamma 3$ germec mation $\Gamma 4$	REDUCTI n of various tem and oth onferencing." tudy. AWAREN chanism—con n network—r DEVELOI	ON technologies: Data er systems – Geogr Triggermechanism ESSOF RISKREI nstitution of trigger isk reduction by pu	bases–RDBMS–M raphic information -Remotesensing-a DUCTION mechanism–risk r blic awareness. IG ONDISASTE	Ianagement Inf systems – Intr ninsight–contri reduction by ed	anets and ibutionof f ucation–d	extrane remote isaster	ts– sensin	ision ag and 3	
Appli suppo video GIS-(UNI Frigg Inform UNI Inform	ication ort sys otelecco Case s $\Gamma 3$ germed mation $\Gamma 4$ cation	REDUCTI n of various tem and oth onferencing.' tudy. AWAREN chanism-com n network-r DEVELOI	ON technologies: Data er systems – Geogr Triggermechanism ESSOF RISKREI astitution of trigger isk reduction by pu PMENTPLANNIN	bases–RDBMS–M raphic information -Remotesensing-a DUCTION mechanism–risk r blic awareness. IG ONDISASTEI	lanagement Inf systems – Intr ninsight–contri reduction by ed R ts–Areas of im	anets and ibutionof f ucation-d provemen	extrane remote isaster	ts– sensin	ision ag and 3	
Appli suppo video GIS-(UNI Frigg Inform UNI Inform	ication ort sys otelecc Case s $\Gamma 3$ germed mation $\Gamma 4$ cation aredne	REDUCTI n of various tem and oth onferencing.' tudy. AWAREN chanism-com n network-r DEVELOI	ON technologies: Data er systems – Geogr Triggermechanism ESSOF RISKREI astitution of trigger isk reduction by pu PMENTPLANNIN ment planning–Fina ity based disaster r	bases–RDBMS–M raphic information -Remotesensing-a DUCTION mechanism–risk r blic awareness. IG ONDISASTEI	lanagement Inf systems – Intr ninsight–contri reduction by ed R ts–Areas of im	anets and ibutionof f ucation-d provemen	extrane remote isaster	ts– sensin	ision ag and 3	
Appli suppo video GIS-C UNIT frigg Infor UNIT Impli Prepa UNIT	ication ort sys otelecc Case s $\Gamma 3$ germed mation $\Gamma 4$ cation aredne $\Gamma 5$	REDUCTI n of various tem and oth onferencing.' tudy. AWAREN chanism-com n network-r DEVELOI n of develops ss-Commun SEISMICI	ON technologies: Data er systems – Geogr Triggermechanism ESSOF RISKREI astitution of trigger isk reduction by pu PMENTPLANNIN ment planning–Fin- ity based disaster r TY	bases–RDBMS–M raphic information -Remotesensing-a DUCTION mechanism–risk r blic awareness. IG ONDISASTE ancial arrangement nanagement–Emer	Ianagement Inf systems – Intr ninsight–contri reduction by ed R ts–Areas of im rgency respons	anets and ibutionof f ucation–d provemen e.	extrane remote isaster t–Disa	ts– sensin ster	ision lg and 3 3	
Appli suppo video GIS-0 UNI Frigg Inform UNI Empli Prepa UNI Seisn	ication ort sys otelecco Case s $\Gamma 3$ germed mation $\Gamma 4$ cation aredne $\Gamma 5$ nic wa	REDUCTI n of various tem and oth onferencing.' tudy. AWAREN chanism—con n network—r DEVELOI n of develop ss-Commun SEISMICI	ON technologies: Data er systems – Geogr Triggermechanism ESSOF RISKREI astitution of trigger isk reduction by pu PMENTPLANNIN ment planning–Fina ity based disaster r	bases–RDBMS–M raphic information -Remotesensing-a DUCTION mechanism–risk r blic awareness. IG ONDISASTE ancial arrangement nanagement–Emer	Ianagement Inf systems – Intr ninsight–contri reduction by ed R ts–Areas of im rgency respons	anets and ibutionof f ucation–d provemen e.	extrane remote isaster t–Disa	ts– sensin ster	ision lg and 3 3	
Appli suppo /ideo GIS-0 UNI Frigg Infor UNI Prepa UNI Seisn lama	ication ort sys otelecco Case s $\Gamma 3$ germed mation $\Gamma 4$ cation aredne $\Gamma 5$ nic wa	REDUCTI n of various tem and oth onferencing.' tudy. AWAREN chanism-com n network-r DEVELOI n of develops ss-Commun SEISMICI wes-Earthquesunamis and	ON technologies: Data er systems – Geogr Triggermechanism ESSOF RISKREI astitution of trigger isk reduction by pu PMENTPLANNIN ment planning–Fina ity based disaster r TY uakes and faults– n	bases–RDBMS–M raphic information -Remotesensing-a DUCTION mechanism–risk r blic awareness. IG ONDISASTE ancial arrangement nanagement–Emer	Ianagement Inf systems – Intr ninsight–contri reduction by ed R ts–Areas of im rgency respons	anets and ibutionof f ucation–d provemen e.	extrane remote isaster t–Disa	ts– sensin ster	ision ig and 3 3 nd	
Appli appo video GIS-C UNI Frigg nfor UNI Prepa UNI Seisn lama L	ication ort sys otelecc Case s $\Gamma 3$ germed mation $\Gamma 4$ cation aredne $\Gamma 5$ nic wa age T	REDUCTI n of various tem and oth onferencing.' tudy. AWAREN chanism-com n network-r DEVELOI n of develops ss-Commun SEISMICI aves-Earthques sunamis and e	ON technologies: Data er systems – Geogr Triggermechanism ESSOF RISKREI astitution of trigger isk reduction by pu PMENTPLANNIN ment planning–Fin- ity based disaster r TY uakes and faults– n l earthquakes.	bases–RDBMS–M raphic information -Remotesensing-a DUCTION mechanism–risk r blic awareness. IG ONDISASTE ancial arrangement nanagement–Emer	lanagement Inf systems – Intr ninsight–contri reduction by ed R ts–Areas of im rgency respons quake, magnit	anets and ibutionof f ucation–d provemen e.	extrane remote isaster t–Disa	ts– sensin ster ′–grou	ision ig and 3 3 nd	

- 1. "EncyclopediaOfDisaster Management", Neha Publishers &Distributors, 2008
- 2. PardeepSahni, Madhavimalalgodaandariyabandu, "DisasterriskreductioninSouthAsia", PHI, 2002
- 3. Amitasinvhal, "Understandingearthquakedisasters" TMH, 2010.
- 4. PardeepSahni,AlkaDhamejaandUmamedury,"Disastermitigation:Experiencesandreflections",PHI, 2000

E-References

http://icom.museum/disaster_preparedness_book/copyright.pdf

http://www.international.icomos.org/centre_documentation/bib/riskpreparedness.pdf

			COs	vs POs					
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	3	3	1	2	1	1
CO 3	3	3	3	3	3	1	2	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	12	15	5	7	5	5
SCALED VALUE	3	3	3	3	3	1	2	1	1
0 - No Relation, 1 – I	Low Relati	ion, 2- Me	dium Rela	ation, 3- H	ligh Rela	tion		1	1

Co	urse]	Name		Α	bstract .	Algebra			L	Т	P	С
Co	urse	Code			XMT	401			3	1	0	4
C	Р	Α							L	Т	Р	Н
4	0	0							3	1	0	4
Prer	requis	site	Highe	er Seconda	ary level	Mathem	atics		I		Ι	ļ
On s	ucces	sful con	pletio	n of this co	ourse, the	e student	s will b	be able	to:			
			С	ourse Out	tcomes				Dom	ain	\mathbf{L}	evel
CO1	L	Constru	uct Ca	yley table	for the g	iven per	mutatic	on	Cogn	itive	Apply	ing
		groups										
CO2	2	Identify	y the le	ft and righ	nt coset o	of the giv	ven		Cogn	itive	Apply	ing
		symmet	ric gro	up								
CO3	3	Explain	1 norm	al subgrou	ps and q	uotient g	groups		Cogn	itive	Under	standing
CO4	•	Explain	i the co	oncepts of	ring and	its prop	erties		Cogn	itive	Under	standing
CO5	5	Explain	n Integ	ral domain	and Euc	clidean d	omain		Cogn	itive	Under	standing
UNI	T 1								1		9	+3
	nition			Examples – Permutatio		•	perties	of a G	roup –	Equiva		+3
Subg	group	s – Cycli	ic Grou	ıps – Orde	r of an E	Element -	- Coset	ts and I	Lagrang	ge's Th	eorem	•
UNI	T 3										9	+3
	1	ubgroup	s and Ç	Quotient G	roups – I	Isomorp	nism –	Homo	norphi	sm.		
UNI		~										+3
Ŭ				xamples –		• • •				norphi	sm – T	ypes of
		aracteris	stic of	a ring – Su	ibrings –	- Ideals -	- Quoti	ent ring	gs.	I		_
UNI												+3
				als – Hon	-		-		of que	otients	of an	Integral
		-		zation dom	T			1				<i>(</i>)
	cture		45	Tutoria	l 15	Prac	tical)	Tota	1	60
Unit Uni	Lta Ur Ur III-C it IV - V -C	Arumug d., Chenn hit I -Cha hit II -Ch hapter 3 -Chapter	nai, 20 apter 3 apter 3 - Secti 4-Sect	d A. Than 03. - Sections 3 - Sections ions 3.9 to tions 4.1 to ions 4.9 to	3.1 to 3 s 3.5 to 3 3.11 o 4.8	.4 3.8		Algebr	a, SciT	ech Pu	blicati	ons Pvt.

- 1. N. Herstein, Topics in Algebra, John Wiley & Sons, Student 2nd edition, 1975.
- 2. Vijay, K. Khanna and S.K. Bhambri, A course in Abstract Algebra, Vikas Publishing House Pvt. Ltd, 2017.
- 3. Dr. R. Balakrishnan and N. Ramabadran, A text book of Modern Algebra, Vikas Publishing House Pvt. Ltd, New Delhi, 1994.

E-References

- 1. <u>https://courses.maths.ox.ac.uk/node/43944</u>[Oxford University]
- 2. <u>https://courses.maths.ox.ac.uk/node/43955</u> [Oxford University]

			(COs vs l	POs				
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	12	7	15	5	2	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1
0 - No Relation,	1 – Low	Relatio	on, 2- M	edium	Relatio	n, 3- Hi	gh Relat	ion	
$1-5 \rightarrow 1, 6-10 \rightarrow$	2, 11-15	$\rightarrow 3$							

Co	ourse	Name			Mecha	nics		L	Т	I	Р	С
Co	ours	e Code			XMT	402		3	1		0	4
С	Р	Α						L	Т	1	Р	Н
4	0	0						3	1		0	4
Prer	equ	isite	Basic	e Physics kno	owledg	e		I				I
On s	succe	ssful con	pletion	n of this cour	se, the	students will b	be able	e to:				
			Co	urse Outcon	nes			Doma	in		Lev	vel
CO1	l	moment	ts, coup		-	celeration, trigonometrica	ally	Cognit	ive	Un	derst	anding
CO2	2		n Newt	•		and equilibriu	ım	Cognit	ive	Un	derst	anding
CO3	3	Apply §	geomet	rical concept	s in pa			Cognit	ive	Ap	plyin	ıg
CO4	1		e for N	ewton's laws				Cognit	ive	An	alyzi	ng
CO5	5	1 0		uation of ce	ntral or	bits		Cognit	ive	An	alyzi	ng
UNI	T 1			-			L.				9+	-3
Cone UNI Moti Defin UNI	eoffr T 3 ion i nitio T 4	iction- Pr	opertie ht line projec	s and related under unifor tile-Range of	proble rm acco n an ino	gidbody-Frictions. eleration - New clined plane- P ies–Direct and	wton's Proper	s laws o ties and	f mot probl	cion. ems	9- Proj s. 9-	+3 ectiles: +3
	:gy–l			es and Simpl								+3
Diffe Law	erent of fo	ial equati prces- Pro	on of coperties	centralorbit-F and related	Pedal e Proble		itralorl	bit-Velo	cities	inac		ll orbit-
Le	ectur	e	45	Tutorial	15	Practical		0	То	tal		60
Text	t Boo	oks			l		1					
2 1 2. N	4. Unit Unit M.K. 4.	1: Chapte 2:Chapter Venkatar	rs2,3,4 rs 5,7 aman,"	Dynamics",	Agasthi	ublications,Tr arPublications Section4.3,Cha	s,Trich	ny,200				

Unit4:Chapter 8 Unit5:Chapter11

Units:Chapter

References

- 1. T.K.ManickavasagamPillai, "Statics", S.Viswanathan&Co., Chennai, 1980.
- 2. S.Narayanan, "Dynamics", S.Chand&Co., NewDelhi, 1980.

E-References

http://nptel.ac.in

			(COs vs I	POs				
	PO 1	PO2	PO3	PO4	PO	PO6	PO7	PO8	PO9
					5				
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	3	3	1	2	1	1
CO 5	3	3	3	3	3	1	2	1	1
TOTAL	15	15	13	10	15	5	5	5	5
SCALED		-	-	_			_		_
VALUE	3	3	3	2	3	1	1	1	1
0 - No Relation	n, 1 – Low	Relatio	n, 2- M	edium I	Relatio	n, 3- Hi	gh Relati	ion	

Co	ourse	Name	Ν	lathem	atical	Statis	tics -	II		L		Т	Р	C
С	ourse	Code			XMT	F403				3		1	0	4
C	Р	Α								L		Т	Р	н
4	0	0								3		1	0	4
Prer	equis	ite	Basic kn	nowledge	of ran	dom var	iables	and d	listril	outio	ns.			
			oletion of t	this cours	se, the s	students	will b	e able	e to:					
		-	-	Outcon						omai	n		Leve	1
CO1		Explain	the test of	f signific	ance fo	or large	sampli	ng	Co	gnitiv	ve	Un	derstai	nding
CO2	2	Explain	the chi sq	luare dist	ributio	n			Co	gnitiv	ve	Un	derstai	nding
CO3	5	Explain	the Stude	ent's t-dis	tributio	on			Co	gnitiv	ve	Un	derstai	nding
CO4	ļ	-	the F dist						Co	gnitiv	ve	Un	derstai	nding
CO5	5	Classify	the variou	us types o	of anal	ysis of v	varianc	e	Co	gnitiv	ve	Un	derstai	nding
UNI	T 1	Large sa	ampling t	heory									9+3	
Туре	es of s	ampling-	test of sig	nificance	e- null l	hypothe	sis- eri	ror in	sam	pling	- cr	itica	l regio	ns
and l UNI		of signific	cance- test	of signif	icance	for larg	e- sam	ples-	samj	oling	of	attril	outes. 9+3	
	licatio	n of χ^2 -	itive prope distributio t's t-distri	on: Infere										est.
			ribution -		s of t-d	istributi	on- lin	niting	of t-	distr	ibu	tion-		
of t-c	distrib	oution - te	st of single					0				1		
UNI	Т4	F- distri	ibution										9 +.	3
F-dis	stribut	tion - test	tribution- o t for equa	ality of t	wo po	pulation	varia	nce (only	sim	ple	-	-	
distr UNI	ibutio T 5	n). – Rela Analysi	ation betwo s of Varia	een t and	F and	relation	betwe	en F	and ·	ℓ te	sts.		9+.	2
		·	way, two-		eificati	ons – F	vnerin	nental	dee	ione	Ra	ndoi		
		atin squar				<u> </u>	APCIII			.5113.	ixa	1001		
Le	ecture	e 4	5 Tu	utorial	15	Prace	tical		0]	[ota	l	60
Text	Bool	KS	<u> </u>											
1			uls of math nd & Sons		statisti	cs, S.C	Gupta	, V. K	I. Ka	poor	(11	th ec	ition)	-

 Statistical Methods' Vol. II, Dr. S.P. Gupta, Sultan Chand & Sons 2008. Unit V:Chapter: 5, 6

Reference

1. Dr. P.R. Vittal "Mathematical Statistics" Margham Publications Chennai, 2009.

E-References

1.<u>https://acadinfo.wustl.edu/CourseListings/CourseInfo.aspx?sem=FL2020&sch=L&dept=L2</u> <u>4&crs=494</u>[Washington University]

2.https://www.maths.cam.ac.uk/undergrad/files/coursesIB.pdf [Cambridge]

			C	Os vs P	Os				
	PO 1	РО	PO3	PO4	PO	PO6	PO7	PO8	PO9
		2			5				
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	10	5	15	5	0	5	5
SCALED	-			_	-		0		
VALUE	3	3	2	1	3	1	0	1	1
0 - No Relation, 1	l – Low F	Relatio	n, 2- Me	edium R	elatio	n, 3- Hig	gh Relation	1	
$1-5 \rightarrow 1, 6-10 \rightarrow 2$	2, 11-15-	→ 3							

	Cour	se Name	Μ	athe	ematio	cal Sta	tisti	ics		L	Т		Р	C
				F	Practi	cal - II	[
	Cour	se Code			XM	T404				0	0		4	2
C	Р	Α								L	Т		Р	H
2	0	0								0	0		4	2
Pre	erequi	isite	Basic kr	nowle	dge of	random	n var	iables	and	distri	butions	5.		
On	succe	essful comple	tion of thi	is cou	rse, th	e studen	ts w	ill be a	able t	:0				
		(Course Ou	itcon	ies]	Doma	ain		Level	
CC)1	Explain the the related	-	of lar	ge san	nples and	d sol	ve	C	ogni	tive	Ap	plying	
CC)2	Solve the p	roblems b	y usii	$\log \chi^2$ I	Distribut	tion		C	logni	tive	Ap	plying	
CC)3	Solve the p mean, diffe		-	ngt- tes	st of sing	gle		C	ogni	tive	Ap	plying	
CC)4	Apply the simple prol	concept of		stributi	ion to so	olve		C	ogni	tive	Ap	plying	
CC)5	Explain the solve the provide the provided t	roblems by wo-way cl	y usin assifi	ng metl cations	hods suc	h as		C	cogni	tive	Ap	plying	
UN	NIT 1	Large sam	pling the	ory									6	
		sampling- te of significar								ampli	ing- Cr	itica	l regions	5
UN	1	² Distributi	ion										6	
T 2														
		ibution- Theo opulation va					plica	ation o	of χ^2	- dist	ributio	n: In	iference	
UN	NIT 3	Student's	t-distribu	tion									6	
De me		n of t-distrib	ution- app	licati	on of t	-distribu	ition	- test	of si	ngle	mean, c	liffe	rence of	;
UN	NI F	-distributio	n										6	
T 4	1													
		n of F-distril		-			butic	on - te	st for	equa	ality of	two	populat	ion
	NIT 5	(only simple Analysis of	-		aistri	oution).							6	
		ion - one-wa			assifica	ations –	Exp	erime	ntal d	lesig	ns: Rar	ndon		ock
des	sign - I	Latin squares	5.		1		-							
	Lectu	re 0	Tuto	orial	0	Practi	ca	3	60		То	tal		30
						1								

Text Books

1. Fundamentals of mathematical statistics, S.C Gupta, V. K. Kapoor (11th edition) - Sultan Chand & Sons2002.

Unit I:Chapter: 14 (Sec. 14.1 – 14.7.2)

- Unit II:Chapter: 15 (Sec. 15.1-15.4, 15.6(15.6.1-15.6.2))
- Unit III:Chapter: 16 (16.2, 16.3(16.3.1, 16.3.2))
- Unit IV:Chapter: 16(16.5-16.8)

 Statistical Methods' Vol. II, Dr. S.P. Gupta, Sultan Chand & Sons 2008. Unit V: Chapter: 5, 6

Reference

1. Dr. P.R. Vittal "Mathematical Statistics" Margham Publications Chennai, 2009.

E-References

1. <u>https://acadinfo.wustl.edu/CourseListings/CourseInfo.aspx?sem=FL2020&sch=L&de</u> <u>pt=L24&crs=494</u>[Washington University]

2. <u>https://www.maths.cam.ac.uk/undergrad/files/coursesIB.pdf</u> [Cambridge]

				COSV	/s PC	JS			
	P0 1	P02	P03	P04	PO5	P06	P07	P08	P09
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	1 5	15	10	1 5	5	5	5	5
SCALED		2	2	•	2	1	1	-	1
VALUE	3	3	3	2	3	1	1	1	1
0 - No Relation, 1	– Low Re	elatio	on, 2- I	Mediu	m Re	elation	, 3- High Relation	on	1
$1-5 \rightarrow 1, 6-10 \rightarrow 2$, 11-15→	3							

COs vs POs

0 2 P H 0 2 Level memberin memberin
0 2 Level memberin memberin
0 2 Level memberin memberin
Level memberin memberin
memberii
memberii
memberii
memberii
memberii
memberii
memberii
6
6
6
6
6
30
ļ

COs vs POs											
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		
CO 1	3	2	1	0	3	1	0	1	1		
CO 2	3	2	1	0	3	1	0	1	1		
CO 3	3	2	1	0	3	1	0	1	1		
CO 4	3	2	1	0	3	1	0	1	1		
CO 5	3	2	1	0	3	1	0	1	1		
TOTAL	15	10	5	0	15	5	0	5	5		
SCALED											
VALUE	3	2	1	0	3	1	0	1	1		
0 - No Relatio	n, 1 – Low	Relatio	on, 2- M	edium I	Relation	n, 3- Hig	sh Relati	on			

Course Name			Introduction to Entrepreneurship	L	Т	Р	C
			Development				
Co	ourse	Code	XUM004	1	0	0	1
С	Р	Α		L	Т	SS	H
1	0	0		1	0	1	1
Pre	erequ	isite	Basic skills like critical thinking, creativit	ty, risk	-takin	g, problem-solv	ving,
On	succe	essful co	networking, leadership. mpletion of this course, the students will be	e able t	0:		
			Course Outcomes	Dom		Level	
CO	1	Und	erstand the concept of Entrepreneurship	Cogn		Understand	ing
$\frac{co}{CO}$			erstand about an Entrepreneur	Cogn		Understand	0
			-	0			U
CO	3		erstand the characteristics of epreneur	Cogn	itive	Understand	ing
CO	94		erstand the ways to acquire skills of	Cogn	itive	Understand	ing
			epreneur	011			0
CO	95	Und	erstand the concept of Entrepreneurship	Cogn	itive	Understand	ing
UN	IT 1	INT	RODUCTION TO ENTREPRENEURS	HIP		3+3	
of I	Entrep	preneurs	ncept of Entrepreneurship, History of Entre hip in Economic Development, Myths about Management and Future of Entrepreneurs	ut Entre			
UN	IT 2	THE	E ENTREPRENEUR			3+3	
	sign T	Thinking	Entrepreneur, Skills/ Traits required for bei , Entrepreneurial Decision Process, Skill G	-	-		e and
	mons	and Sup	port System, Entrepreneurial Success Stori		ti y 515,	Kole Widdels,	
Me	TT 3	-		les.		3+3	
Me UN Intr bety Intr Ent bety Dif	TT 3 roduc ween raprer repre ween feren	CHA tion - Ch an Entre neur - Re neurship Entrepre ce betwe	port System, Entrepreneurial Success Stori	NEUR Entrepr en an I , Entrep and En Entrepr	eneur Entrep preneu ntrepro	3 +3 s - Differences reneur and an urial and eneur - Relation and Enterprise	
Me UN Intr betv Intr Ent betv Dif Ent	TT 3 roduct ween raprer repre ween	CHA tion - Ch an Entre neur - Re neurship Entrepre ce betwe neur	port System, Entrepreneurial Success Stori RACTERISTICS OF AN ENTREPREN aracteristic Features of Successful Indian H preneur and a Manager - Difference between lationship between the terms Entrepreneur, - Difference between a Scientist, Inventor eneur and Enterprise - Difference between I	NEUR Entrepr en an I , Entrep and En Entrepr	eneur Entrep preneu ntrepro	3 +3 s - Differences reneur and an urial and eneur - Relation and Enterprise	
Me UN Intr betv Intr Ent betv Diff Ent UN Bus – N Ski	IT 3 roduc ween raprer repre ween ferend repre IT 4 siness fetwo lls – (CHA tion - Ch an Entre neur - Re neur - Re skut custome Skut	port System, Entrepreneurial Success Stori RACTERISTICS OF AN ENTREPREN aracteristic Features of Successful Indian H preneur and a Manager - Difference betwee lationship between the terms Entrepreneur, - Difference between a Scientist, Inventor eneur and Enterprise - Difference between I en a Self-employed person and Entreprene	NEUR Entrepr een an I , Entrep and En Entrepr eur - Co stening	eneur Entrep preneu ntrepro reneur ommo g skill Skills	3+3 s - Differences oreneur and an urial and eneur - Relation to and Enterprise n Myths on 3+3 s - Risk-taking to - Creative Thir	skills

What is Intr Characteris	1	+		<u> </u>	-	-	• •	of Intrapre	neurs –
Lecture	15	Self - S		15			Total		30
Text Book									
1. Jayashre	e Suresh, E	ntrepren	eurial I	Develop	oment,	Margha	m Public	ations.	
References		•				0			
Essentials of	of Entreprer	neurship	and Sr	nall Bu	siness I	Manage	ment (6th	n Edition) l	oy Norman M
	h (Paperba	-				U			•
2. Entreprei	neurship an	d Small	Busine	ss Man	ageme	nt, Stud	ent Editio	on by Glen	coe McGraw
Hill (Hardc	over - Feb 2	24, 2005	5)		-			-	
3. Vasant D	esai, Dyna	mics of	Entrepi	reneurs	nip Dev	velopme	nt, Star I	Publication	, New Delhi.
E-Referen	ces								
1. <u>http</u>	s://in.indee	d.com/c	areer-a	dvice/ca	areer-de	evelopn	nent/entre	epreneur-sl	<u> cills</u>
2. http	s://www.in	vestoped	dia.com	/terms/	i/intrap	reneurs	hip.asp	-	
		<u> </u>			s vs PO				
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	2	1					1	2	1
CO 2	2	1							1
CO 3									
05	2	1					1		1
CO 4	2	2							1
CO 5	2	2							1
TOTAL	10	7	0	0	0	0	2	2	5
SCALED									
VALUE	2	2	0	0	0	0	1	1	1
0 - No Rela	tion, 1 – L	ow Rela	ation, 2	- Medi	um Re	lation, 3	3- High I	Relation	
	$10 \rightarrow 2, 11$	15 . 2							

	RSE C	ODE		COURSE NAME	L	Τ		Р	C
XMT	501			Probability and Statistics	2	0		0	2
С	Р	Α			L	Т	Р	SS	H
2	0	0			2	0	0	2	4
	-	SITE:Al	lg	ebra					
Cours	se outco	omes:			Doma	in	Leve	el	
CO1:	Define	and Exp	pla	ain Sample space, probability axioms, real	Cogni	tive	Rem	emberi	ing
	randor	n variabl	les	s (discrete and continuous), cumulative			Und	erstand	ing
	distribu	ition fund	nct	ion, and probability mass/density functions.					
CO2:	Define	and Exp	pla	ain Mathematical expectation, moments,	Cogni	tive	Rem	emberi	ing
mome	ent gene	rating fu	ine	ction, characteristic function.			Und	erstand	ing
CO3:	Define	and Exp	pla	ain Discrete distributions: uniform, binomial,	Cogni	tive	Rem	emberi	ing
	Poissor	n, continu	uc	ous distributions: uniform, normal, exponential.			Und	erstand	ing
CO4:	Define	and Exp	pl	ain Joint cumulative distribution function and	Cogni	tive	Rem	emberi	ing
	its prop	perties, jo	oiı	nt probability density functions, marginal and			Und	erstand	ing
	conditi	onal dist	tril	butions.					_
CO5:	Define	and Exp	pl	ain Expectation of function of two random	Cogni	tive	Rem	emberi	ing
variab	oles, cor	nditional	e	xpectations, and independent random			Und	erstand	ing
	variabl	es.							
UNIT	ΓI							6)
-	-	-		ity axioms, real random variables (discrete and co	ontinuou	is), c	umula	tive	
		unction, a	ar	nd probability mass/density functions.					
UNIT								6)
		l expecta	ati	on, moments, moment generating function, chara	cteristic	func	tion.		
UNIT								6)
Discre	ete distr	ibutions:	: t	pinomial, Poisson, continuous distributions: unifo	rm, nor	mal,	expon	ential.	
UNIT	IV							6	,
Joint o	cumulat	ive distri	rib	ution function and its properties, joint probability	density	/ fund	ctions	, margi	nal
		al distrib							
UNIT	V							6)
-		of functio	on	of two random variables, conditional expectation	ns, indep	pende	ent rar	ndom	
variab	oles.								
					LEC	TUR	E	TOT	ſAJ
							30		3
	FBOOF								
1.				Kapoor, "Fundamentals of Mathematical Statistic ad Sons, New Delhi, 2002.	s", tentł	n revi	sed ec	lition	
	DENC	ES							
REFF									

2. Sheldon Ross, "Introduction to Probability Model", 9th Ed., Academic Press, Indian Reprint, 2007.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1	1	1		1
CO 2	3	2	1	1	1	1	1		1
CO 3	3	2	1	1	1	1	1		1
CO 4	3	2	1	1	1	1	1		1
CO 5	3	2	1	1	1	1	1		1
Scaled Value	15	10	5	5	5	5	5	0	5
Total	3	2	1	1	1	1	1	0	1

TABLE 1: COs VS POs Mapping

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

COURSE CODE	COURSE NAME		L	Т	Р	C
XMT502B	Discrete Mathematics		4	2	0	6
C P A			L	Т	Р	Η
6 0 0			4	2	0	6
PREREQUISITE:	Logic and Sets					
Course Outcomes		Doma	in	Leve	1	
CO1:Define and A	pply truth tables and the rules of propositional	Cogni	tive	Rem	embe	ring
and predicat	e calculus.			Appl	ying	
	llowing methods direct proof, indirect proof, and ntradiction, and case analysis to formulate short	Cogni	tive	Appl	ying	
CO3:Solvelinear re homogeneo	currence relation with constant coefficients, non is recurrence relations and non homogeneous elations using methods of generating functions.	Cogni	tive	Appl	ying	
CO4: Explain Bas Principle, B	Cogni	tive	Unde	erstan	ding	
	an algebra, Logic gates and circuits al circuits, Boolean expression and karnaugh	Cogni	tive	Appl	ying	
UNIT I					18	
theory and predicat	ry of inference for the statement calculus- The part of calculus.	redicate c	alcul	us infe		e
UNIT III					18	
relation with consta	s and generating functions- recurrence relation- s nt coefficients- Non homogeneous recurrence rel rence relations- Methods of generating functions	ations so				ce
UNIT IV					18	
Basic theorems on	Boolean Algebra- Duality principle Boolean func	tions.			1	
UNIT V					18	
Boolean functions-	Applications of Boolean algebra- Logic gates an pression – karnaugh map.	d circuits	-con	nbinato		
	LECTURE	TUTO	RIA	L	ТО	TAI
	60			30		90
TEXT BOOK	y, R. Manohar, "Discrete Mathematical structure	1				ıt
Computer S 2007. REFERENCE	cience", Tata McGraw Hill, International edition			The	Natio	onal

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
	15	10	0	5	3	0	5	5	5

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

COU	RSE CO	ODE	COURSE NAME		L	Т	Р	С
XMT	'503A		Numerical Methods		4	2	0	6
С	Р	Α			L	Т	Р	Н
6	0	0			4	2	0	6
PRE	REQUI	SITE:	Differential Calculus and Integral	Calculus		-		
Cour	se Outc	omes:		Domain	Le	vel		
CO1	Explain	n and So	olve Algorithms, Convergence,	Cognitive	Rer	neml	pering	5
			nod, False position method, Fixed method, Newton's method.		Apj	olyin	g	
CO2	method	•	of linear equations using iterative -Jacobi, Gauss-Seidel and SOR ods.	Cognitive		neml olyin	pering g	5
CO3	-	0	ge and Newton interpolation: linear er, finite difference operators.	Cognitive		neml olyin	pering g	
CO4 :			difference, backward difference and nce to find Numerical differentiation:	Cognitive		dersta olyin	andin g	g
CO5		-	on using trapezoidal rule, Simpson's 's method.	Cognitive	Uno	dersta	andin	g
UNI	ΓΙ							18
0	rithms, (od, New	<u> </u>	ence, Bisection method, False position ethod.	method, Fixed	point	itera	ation	
UNI	T II							18
Secar	nt metho	d, LU d	ecomposition, Gauss-Jacobi, Gauss-Se	idel and SOR it	erativ	ve me	ethod	s.
UNI	ΓΙΠ							18
Lagra	inge and	Newton	n interpolation: linear and higher order.	, finite differenc	e op	erato	rs.	
TINIT					_			18
UNIT		forentia	tion forward difference heatward dif	forman and ann	tmo1 T);ffar		
		lierentia	tion: forward difference, backward dif	referice and cen	ITAT L	Jiie	ence	
UNIT			lat mile. Simmagn's mile. Euler's mothe					18
meg	auon: n	apezoio	al rule, Simpson's rule, Euler's method				то	ГАТ
			LECTURE	TUTORIAL			TO	
men.		20	60	30				90
1.B. I 20	007.	'A Frien	dly Introduction to Numerical Analysi				dia,	

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
	15	10	0	5	3	0	5	5	5

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

COUR	SE COI	DE	COURSE NAME		L	Т	Р	С
XMT5	04A		Linear Algebra		4	2	0	6
С	Р	Α			L	Т	Р	Н
6	0	0			4	2	0	6
PRERI	EQUISI	ΓE:Matr	ices			•		
COUR	SE OUT	COMES	:	Γ	omai	n]	Level	
CO1:D	efine and	d Explair	vector spaces, subspaces, linear	C	Cogniti	ive 1	Remem	bering
transfor	mation,	and span	of a set with examples.			1	Underst	anding
		inear Ind ank and N	ependence, Basis and Dimension and fullity.		Cogniti	ive 1	Remem	bering
CO3:E	xplain m	natrix of a	linear transformation ,Inner product	C	Cogniti	ive 1	Remem	bering
5	space and	l to Defin	e with examplesorthogonality, Gram	L		1	Underst	anding
		U	alisation process and orthogonal					
	complem							
		-	Matrices, Types of Matrices and to f a matrix and Rank of a matrix.	C	Cogniti	ive 1	Remem	bering
CO5: 1	Explain	Character	ristic equation and Cayley -Hamilton	C	Cogniti	ive 1	Remem	bering
t	heorem a	and to fin	d Eigen values and Eigen vectors.			1	Underst	anding
UNIT	Vecto	or Spaces						18
Vector	spaces –	Definitio	n and examples – Subspaces-linear t	ransf	ormati	ion –	Span of	a set.
UNIT	I Basis a	and Dim	ension					18
Linear	Independ	lence – B	asis and Dimension –Rank and Nulli	ty.				
UNIT	III: M	atrix and	l Inner Product Space					18
			rmation -Inner product space – Defin hmidt orthogonalisation process – O			-		1
UNIT	V : Th	eory of N	latrices					18
-			pes of Matrices – The Inverse of a M of a matrix.	atrix	– Eler	nenta	ry	I
UNIT	V: Chara	acteristic	equation and Bilinear forms					18
Charact	eristic ec	quation a	nd Cayley -Hamilton theorem – Eige	n valı	ues an	d Eig	en vect	ors
			LECTURE	TU	TORI	AL	,	ГОТАL
			60			30		90
	BOOK							

Unit1: Chapter 5, Sec 5.1 to 5.4

Unit2: Chapter 5, Sec 5.5 to 5.7

Unit3: Chapter 5, Sec 5.8, Chapter 6, Sec 6.1 to 6.3

Unit4: Chapter 7 Sec 7.1 to 7.5

Unit5: Chapter 7, Sec 7.7, 7.8

REFERENCE

1. I. N. Herstein, "Topics in Algebra", Second Edition, John Wiley & Sons (Asia), 1975.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Scaled Value	15	10		5	3		5	5	5
Total	3	2		1	1		1	1	1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

VI SEMESTER

COUR	RSE CO	DDE	COURSE NAME		L	Т		P	C
XMT	601		Graph Theory		2	0		0	2
С	Р	Α			L	Т	Р	SS	Η
2	0	0			2	0	0	2	4
PRER	EQUIS	ITE: M	latrices						
Cours	e outco	mes:		Do	omain	1 I	Level		
Graph	s and su	ainThe Konigsberg Bridge Problem, , Degrees, Subgraphs , Isomorphism. , coverings.	Cognitive Remember Applying					ng	
Walks		and Path	plain Matrices, Operations on Graphs, as, Connectedness and Components and	Cognitive			Rememberin Applying		
			lain Hamiltonian Graphs, ees and Centre of a Tree.	Ũ			Remembering Applying		
		and Ex on of Pla	Cognitive Unders Applyi			rstanding ving			
Proper	ties,Son	and Ex ne Appl ortest Pa	Cognitive Understa			standi	ing		

UNIT I	6
Introduction - The Konigsberg Bridge Problem - Graphs and subgraph Examples - Degrees - Subgraphs – Isomorphism. –independent sets an	
UNIT II	6
Matrices - Operations on Graphs - Walks, Trails and Paths – Connecte - Eulerian Graphs.	edness and Components
UNIT III	6
Hamiltonian Graphs (Omit Chavatal Theorem) - Characterization of T	rees - Centre of a Tree
Hamiltonian Graphs (Omit Chavatal Theorem) - Characterization of T UNIT IV	rees - Centre of a Tree 6
	6
UNIT IV	6
UNIT IV Planarity: Introduction - Definition and Properties - Characterization of	6 of Planar Graphs. 6 me Applications:
UNIT IV Planarity: Introduction - Definition and Properties - Characterization o UNIT V: Directed Graphs: Introduction - Definitions and Basic Properties – Son	6 of Planar Graphs. 6 me Applications:

 S. Arumugam and S. Ramachandran, "Invitation to Graph Theory", SciTech Publications (India) Pvt. Ltd., Chennai, 2006.
 Unit-I Chapter-1 Sec 1.0, 1.1 and Chapter -2 Sec 2.0, 2.1, 2.2, 2.3, 2.4.2.6
 Unit-II Chapter-2 Sec 2.8,2.9 ,Chapter-4 Sec 4.1,4.2 and Chapter-5 Sec 5.0,,5.1
 Unit-III Chapter-5 Sec 5.2, Chapter-6 Sec 6.0, 6.1, 6.2.
 Unit-IV Chapter-8 Sec 8.0, 8.1, 8.2.
 Unit-V Chapter-10 Sec 10.0, 10.1 Chapter-11 Sec 11.0, 11.1, 11.2

REFERENCES

1. Narsingh Deo, "Graph Theory with applications to Engineering and Computer Science", Prentice Hall of India, 2004.

2. Gary Chartrand and Ping Zhang, "Introduction to Graph Theory", Tata McGraw-Hill Edition, 2004.

Table 1: CO Vs PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Scaled Value	15	10	0	5	3	0	5	5	5
Total	3	2		1	1		1	1	1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

COURS CODE	SE		COURSE NAME			L	Т	Р	С			
XMT60)2A		Complex Analysis			4	2	0	6			
С	Р	Α				L	Т	Р	Н			
6	0	0				4	2	0	6			
PRERE	EQU	ISITE	Differential Calculus and Ir	ntegral Calculus								
Course	outo	comes			Don	nain	Lev	vel				
	lytic	functi	tions in cartesian and polar c on and to Explain Harmonic cations.		Cog	nitive		Understanding Applying				
transfor									Understanding Applying			
	s int um 1	egral f	ntegral using cauchy's ir ormula and to Explain Liou s theorem and to apply	wille's theorem,	Cog	nitive		dersta plying	nding g			
	<u> </u>		s series and laurent's series series and to explain types	1	Cog	nitive	Apj	plying	5			
		-	ny residue theorem to Solve e involving cosx, sinx.	Integration of	Cog	nitive	Ap	plying	5			
UNIT I	: Aı	nalytic	Functions						18			
-			Cauchy Riemann Equation and applications.	in Cartesian and	polar	co-or	linate	es - H	armonic			
UNIT I	I : C	onfor	nal Mappings and Transfo	rmations					18			
			gs - Linear and Non-linear tra operties and applications	ansformations – E	Silinea	ır						
UNIT	III :	Comp	ex Integration						18			
-			Complex plane - Cauchy's - Maximum modulus theore	-		-			ormula -			
UNIT I	V : 0	Compl	x Differentiation						18			
-			nt's series - Expansion of fur operties of singularities - Ide	*		<u> </u>	ular p	oints	- Types			
UNIT V	V: Ca	alculu	of Residues						18			
			es: Residue theorem - Integ and problems relating to resid		ns of	the ty	pe in	volvii	ng cosx,			
				LECTURE	TUT	ORIA	L	r	ГОТАL			
				60		-	30		90			
TEXT	BOC	ЭK										

1. S. Narayanan & T.K. ManickavasagamPillai, "Complex Analysis", S. Viswanathan Publishers, Chennai, 1997.

Unit 1: Chapter 1 Unit 2: Chapter 2 Unit 3: Chapter 3 Unit 4: Chapter 4 Unit 5: Chapter 5

REFERENCES

- 1. S. Arumugam, A. Thangapandi Isaac& A. Somasundaram, "Complex Analysis", SciTech Publications, India, Pvt. Ltd., 2004.
- 2. S. Ponnusamy, "Foundations of Complex Analysis", 2ndEdition, Narosa Publication, New Delhi, 2005.
- 3. R. V. Churchill &J.W.Brown, "Complex variables and applications", 5thEdition, McGraw Hill, Singapore, 1990.

Table 1: CO Vs PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Scaled Value	15	10	0	5	3	0	5	5	5
Total	3	2		1	1		1	1	1

 $1-5 \rightarrow 1, \qquad 6-10 \rightarrow 2, \qquad 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COU	RSE C	ODE	COURSE NAME		L	Т	Р	C	
XMT	C603A		LINEAR PROGRAMMING		4	2	0	6	
С	Р	Α			L	Т	Р	Н	
5	0.5	0.5			4	2	0	6	
PRE	REQUI	SITE: 1	NIL						
Cour	se outco	omes:		Doma	in	L	evel		
		1	Solution, Solve LPP using Simplex Method, Phase Method.	Cognit	ive		emem pplyin		
			Programming problem Formulation of Primal nd Simplex Method.	Cognit Psycho		r G	Applying Guided Response		
soluti appro	ion us oximatio	ing N n metho	ation Problems, finding initial basic feasible orth West Corner Rule and Vogel's od, Solve unbalanced Transportation nt Problems and Routing Problems.	Cognit	ive	A	.pplyin	ıg	
CO4 mach	: Solve S ines, Pro	Sequence oblems	ing Problems, Problems with 'n' jobs and 'k' with 'n' jobs and 2 machines, Problems with s and Problems with 2 jobs and 3 machines.	nes, Problems with Affective F					
game	s , maxi s , Mixe	min and	Theory problems Two persons Zero sum minimax principle, Games without saddle gies, using Graphical method and Dominance	Cognit	ive	A	pplyin	ıg	
UNI	ГІ						18	8	
			ex sets - Mathematical Formulation of LPP - Grand hod - Two Phase Method.	raphical	Soluti	ion - S	Simple	x	
UNI	ГП						18	8	
	ity in Lii Il Simple		gramming: Formulation of Primal - Dual Pairs od	- Dualit	y and	Simp	lex Mo	ethod	
	ГШ						18	8	
UNI	portatio		ems: Mathematical formulation of the problem West Corner Rule and Vogel's approximation	method	-	ring to	wards		
Trans soluti Optin	ion using nality - V	Unbalar	ced Transportation Problems. Assignment Prol nment Problems - Assignment algorithm – Rou				ıl		
Trans soluti Optin formu	ion using nality - V ulation o	Unbalar	ced Transportation Problems. Assignment Pro				1 18	8	
Trans soluti Optin formu UNI Seque	ion using nality - 1 ulation c F IV encing P	Unbalar of Assig Problem	ced Transportation Problems. Assignment Pro	ting Pro	blems with '	n' job	18 s and 2		
Trans soluti Optin formu UNIT Seque mach	ion using nality - 1 alation c r IV encing P ines- Pro	Unbalar of Assig Problem	ced Transportation Problems. Assignment Prob nment Problems - Assignment algorithm – Rou s: Problems with 'n' jobs and 'k' machines - Pr	ting Pro	blems with '	n' job	18 s and 2	2	
Trans soluti Optin formu UNI Seque mach UNI Game	ion using nality - 1 alation o F IV encing P ines- Pro F V e Theory	Unbalar of Assig Problem oblems 7: Two J	ced Transportation Problems. Assignment Prob nment Problems - Assignment algorithm – Rou s: Problems with 'n' jobs and 'k' machines - Pr	oblems obs and	blems with ' 3 mac	s. n' job chines	18 s and 2 18	2 8	
Trans soluti Optin formu UNI Seque mach UNI Game	ion using nality - 1 alation o F IV encing P ines- Pro F V e Theory	Unbalar of Assig Problem oblems 7: Two J	ced Transportation Problems. Assignment Prob ment Problems - Assignment algorithm – Rou s: Problems with 'n' jobs and 'k' machines - Pr with 2 jobs and k machines - Problems with 2 j persons Zero sum games - maximin and minima	oblems obs and	blems with ' 3 mac ple - (n' job chines Game	18 as and 2 a. 18 s with	2 8	

TEXT BOOK

1. KantiSwarup, P. K. Gupta& Man Mohan, "Operations Research", Sultan Chand& Sons, New Delhi, Twelfth Revised Edition, 2005.

Unit 1: chapter 2: 2.1, 2.2, chapter 3: 3.2, chapter 4; 4.1, 4.4.

Unit 2: chapter 5: 5.2, 5.3, 5.7, 5.9.

Unit 3: Chapter 10: 10.2, 10.9, 10.14, Chapter 11: 11.2, 11.3.

Unit 4: Chapter 12: 12.1 – 12.6.

Unit 5: Chapter 17: 17.1 – 17.7.

REFERENCES

- 1. P. K. Gupta & D. S. Hira, "Operations Research", S. Chand & Company Ltd., New Delhi, 2002.
- 2. J. K. Sharma, "Operations Research theory and its applications", 2nd Edition, Macmillan, New Delhi, 2006.
- 3. R. Panneerselvam, "Operations Research", Prentice Hall of India Pvt. Ltd., New Delhi, 2002.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Scaled Value	15	10	0	5	3	0	5	5	5
Total	3	2		1	1		1	1	1

 $1 - 5 \to 1,$ $6 - 10 \to 2,$ $11 - 15 \to 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

M.SC (MATHEMATICS) I SEMESTER

CO	URSE NAI	ME		LINEA	R ALGE	BRA	L	Т	Р	С
CO	URSE CO	DE		Y	MA101		4	1	0	5
С	Р	Α					L	Т	Р	H
5	0	0					4	1	0	5
PREREQU	ISITE		Algebr	aic Structures						
in mathema	tics but als	o in other b rmations, d	oranches l iagonaliz	ike engineering, j ations of linear tra	physics ar	r algebra that provide nd computers, etc. Pa ions, matrices and de	rticular att terminant	tention is s.	s given to	canonical
		C	OURSE	OUTCOMES			DOM	AIN	LE	VEL
CO 1	Utilize pr	operties of	linear tra	nsformations to se	olve prob	lems.	Cogni			olying
CO 2				orime factorization	-		Cogni	tive	Under	standing
CO 3		the conceptistic values		eterminant find	the adjo	oint, inverse, and	Cogni			olying
CO 4	Compare	eSimultaneo	ous triang	ulations, diagonal	lization a	nd decomposition.	Cogni			standing
CO 5	Demonst	rate the Ra	tional and	d Jordan forms.			Cogni	tive	Under	standing
UNIT 1		ansformat								12 + 3
					nation - I	somorphism of vector	or spaces	 Representation 	sentation	s of linear
transformat				ional.						
UNIT 2	Algebra	of polynon	nials		T	in a fantani ati ar	1	it o		<u>12 + 3</u>
Algebras - Determinan			omiais –	olynomial ideals	- The pr	ime factorization of a	a polynon	mai - Co	ommutati	ve Rings -
UNIT 3	Determir									12 + 3
Permutation	ns and the	Uniquenes				nt of A (square) ma	trix – Inv	erse of a	an inverti	
			ic values	 Annihilating po 	lynomial	S.				12 + 3
UNIT 4	Diagonal									
Invariant su direct sums					neous dia	gonalization – Direct	-sum deco	ompositi	ons – Inv	ariant
UNIT 5		onal and J								12 + 3
Cyclic subst	paces – Cyo	clic decom	ositions (heorem (Stateme	nt only) -	- Generalized Cayley	– Hamilto	on theore	m - Ratio	nal
forms – Jor	· · · · · · · · · · · · · · · · · · ·				·, , ,					
LECT	URE	60]	TUTORIAL	15	PRACTICAL	0	TO	TAL	75
Text Book:			•							
1. Ke	nneth M H	offma <u>n</u> and	l Ray Kui	nze, Linear Algeb	ra, 2nd E	dition, Prentice-Hall	of India P	vt. Ltd, I	New Delh	i, 2013.
			Unit	Chapter(s)		Sections				
			Ι	3		3.1 - 3.5				
			Π	4 & 5	4.1,	4.2, 4.4, 4.5 and 5.1,	5.2			
			III	5&6		5.3, 5.4 and 6.1-6.3				
			IV	6		6.4 - 6.8				
			V	7		7.1 - 7.3				

References:

1.M.Artin, "Algebra", PrenticeHallofIndiaPvt.Ltd.,2005.
2.S.H.Friedberg, A.J.InselandL.ESpence, "LinearAlgebra", 4thEdition, Pritice-HallofIndiaPvt.Ltd.,2009.
3.I.N. Herstein, "Topics in Algebra", 2ndEdition, Wiley Eastern Ltd, NewDelhi, 2013.
4.J.J. Rotman, "Advanced Modern Algebra", 2ndEdition, Graduate Studies in Mathematics, Vol. 114, AMS, Providence, Rhode Island, 2010.
5.G.Strang, "IntroductiontoLinearAlgebra", 2ndEdition, PrenticeHallof IndiaPvt.Ltd, 2013.

E-References

- 1. <u>http://asian-university.org/wp-content/uploads/2018/02/Linear-Algebra_Fall18.pdf</u> [Asian women university]
- 2. <u>http://people.math.harvard.edu/~knill/teaching/math21b2010/21b_text.pdf</u> [Harvard University]

COs VS Pos												
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	
CO 1	3	3	2	0	1	3	3	3	3	3	0	
CO 2	3	2	1	0	0	2	2	2	3	2	0	
CO 3	3	3	2	0	1	3	3	3	3	3	0	
CO 4	3	2	1	0	0	2	2	2	3	2	0	
CO 5	3	2	1	0	0	2	2	2	3	2	0	
TOTAL	15	12	7	0	2	12	12	12	15	12	0	
SCALED VALUE	3	3	2	0	1	3	3	3	3	3	0	

(Course Name	•	REALANALY	7SIS	L	T P	С
	Course Code		YMA102		4 1	$\begin{array}{c c} 1 & r \\ \hline 1 & 0 \end{array}$	5
С	P	A			L	T P	H
5	0	0			4	1 0	5
PREREQ		A	gebraic Structures				
Objective:		(1	N 1		C.
			ortably with functions of bounded orm convergence and its interpla				gence of
			se, the students will be able to:	•	iting operatio		
On succes.	siui compici			· 			
		COU	RSE OUTCOMES		DOMAIN	LE	VEL
CO 1	Explain an	d evaluate func	tions of bounded variation and R	ectifiable Curves.	Cognitive		standing
CO 2	Demonstra	te the concept	of Riemann-Stieltjes integral and	l its properties.	Cognitive	Under	standing
CO 3	Demonstra and their in		of step function, upper function	, Lebesgue function	Cognitive	Under	standing
CO 4	Construct	various mathe	matical proofs using the prop		Cognitive	App	olying
CO 5			Levi monotone convergence theory of and properties of inner pro-		C'-'	TT 1	otond'-
0.05	measurable		reperies or miler pr	- acts, norms und	Cognitive	Under	standing
UNIT I	Functions	ofboundedva					12 + 3
			nic functions - Functions of b				
			n $[a, x]$ as a function of x - Fu		variation exp	pressed as the	•
			ns - Continuous functions of itional convergence - Dirichle		at Doomon	compant of	
			itionally convergent series.	a stest and Aber s u	st - Kearran	gement of	
UNIT 2		nn - Stieltjes I					12 + 3
		· · · · ·	heRiemann-Stieltjesintegral-Lind	earProperties-Integrati	on by parts-	Change of var	
Riemann	_	Stieltj	• •	-ReductiontoaRieman	• •	-	
	allvincreasin		perandlowerintegrals-Additivea				
	on -Compariso		r	jrr			
UNIT 3		nn - Stieltjes I					12 + 3
			ient conditions for the existence				
			theorems - integrals as a function				
			Mean Value Theorem for Rier sign-Lebesguecriterionforexister			itegrals depei	ang on a
UNIT 4		ries and infinit	<u> </u>	Nemanninegr			12 + 3
Double sec	juences - Dou	uble series - Re	arrangement theorem for double	series - A sufficient co	ondition for ec	uality of itera	ted series -
				series - Multiplicatio			
wiumpricat		Cesarosumm	aomity - minine products. I ower				
generated b	by a function	- Bernstein's th	eorem - Abel's limit theorem - T	auber's theorem.			
	by a function			auber's theorem.			12 + 3
generated b UNIT 5	Sequences	- Bernstein's th of Functions	eorem - Abel's limit theorem - T		nctions -Unifo	orm converger	12 + 3
generated b UNIT 5 Pointwise of	Sequences	- Bernstein's th of Functions of sequences of		ces of real - valued fu			12 + 3
generated t UNIT 5 Pointwise of continuity integration	Sequences convergence - Cauchy con - Non-unifo	- Bernstein's th of Functions of sequences of adition for uniform Convergence	eorem - Abel's limit theorem - T functions - Examples of sequen- orm convergence - Uniform conv e and Term-by-term Integration	ces of real - valued fur regence of infinite ser	ies of function	ns - Riemann	12 + 3 ice and - Stieltjes
generated to UNIT 5 Pointwise of continuity integration condition for	y a function Sequences - Cauchy con - Non-unifor for uniform c	- Bernstein's th of Functions of sequences of adition for unifor orm Convergence onvergence of a	eorem - Abel's limit theorem - T functions - Examples of sequen orm convergence - Uniform conv e and Term-by-term Integration a series - Mean convergence.	ces of real - valued fur rergence of infinite ser - Uniform convergence	ies of function and differer	ns - Riemann ntiation - Suff	12 + 3 ice and - Stieltjes cient
generated to UNIT 5 Pointwise of continuity integration condition to	Sequences convergence - Cauchy con - Non-unifo	- Bernstein's th of Functions of sequences of adition for uniform Convergence	eorem - Abel's limit theorem - T functions - Examples of sequen- orm convergence - Uniform conv e and Term-by-term Integration	ces of real - valued fur regence of infinite ser	ies of function	ns - Riemann	12 + 3 ice and - Stieltjes
generated to UNIT 5 Pointwise of continuity integration condition for	y a function Sequences - Cauchy con - Non-unifo for uniform c TURE :	- Bernstein's th of Functions of sequences of adition for uniform Convergence onvergence of a 60	eorem - Abel's limit theorem - T functions - Examples of sequence orm convergence - Uniform convergence - Uniform convergence and Term-by-term Integration a series - Mean convergence. TUTORIAL 15	ces of real - valued fur rergence of infinite ser - Uniform convergence PRACTICAL	ties of function and differer	ns - Riemann ntiation - Suffi TOTAL	12 + 3 ice and - Stieltjes cient
generated to UNIT 5 Pointwise of continuity integration condition for LEC	y a function Sequences - Cauchy con a – Non-unifo for uniform c TURE : TomM.A	- Bernstein's th of Functions of sequences of adition for uniform Convergence onvergence of a 60	eorem - Abel's limit theorem - T functions - Examples of sequen orm convergence - Uniform conv e and Term-by-term Integration a series - Mean convergence.	ces of real - valued fur rergence of infinite ser - Uniform convergence PRACTICAL	ties of function and differer	ns - Riemann ntiation - Suffi TOTAL	12 + 3 ice and - Stieltjes cient
generated to UNIT 5 Pointwise of continuity integration condition for LEC Text Book	y a function Sequences - Cauchy con a – Non-unifo for uniform c TURE : TomM.A	- Bernstein's th of Functions of sequences of adition for uniform Convergence onvergence of a 60	eorem - Abel's limit theorem - T functions - Examples of sequence orm convergence - Uniform convergence - Uniform convergence and Term-by-term Integration a series - Mean convergence. TUTORIAL 15	ces of real - valued fur rergence of infinite ser - Uniform convergence PRACTICAL	ties of function and differer	ns - Riemann ntiation - Suffi TOTAL	12 + 3 ice and - Stieltjes cient
generated to UNIT 5 Pointwise of continuity integration condition for LEC Text Book	y a function Sequences - Cauchy cor a – Non-unifo for uniform c TURE : TomM.A	- Bernstein's th of Functions of sequences of ndition for uniform Convergence onvergence of a 60 Apostol: <i>Mathen</i>	eorem - Abel's limit theorem - T functions - Examples of sequence orm convergence - Uniform convergence - Uniform convergence a series - Mean convergence. TUTORIAL 15	ces of real - valued fur ergence of infinite ser - Uniform convergenc PRACTICAL on-WesleyPublishing(ties of function and differer	ns - Riemann ntiation - Suffi TOTAL	12 + 3 ice and - Stieltjes cient
generated to UNIT 5 Pointwise of continuity integration condition for LEC Text Book	sequences convergence - Cauchy cor - Non-unifor for uniform c TURE : TomM.A	- Bernstein's th of Functions of sequences of adition for unifor onvergence of a 60 Apostol: <i>Mathen</i> Chapter	eorem - Abel's limit theorem - T functions - Examples of sequenter orm convergence - Uniform convergence - Uniform convergence a series - Mean convergence. TUTORIAL 15 paticalAnalysis,2 nd Edition,Addise	ces of real - valued fur rergence of infinite ser - Uniform convergence PRACTICAL on-WesleyPublishing Sections	ties of function and differer	ns - Riemann ntiation - Suffi TOTAL	12 + 3 ice and - Stieltjes cient
generated to UNIT 5 Pointwise of continuity integration condition for LEC Text Book	y a function Sequences - Cauchy cor a – Non-unifo for uniform c TURE : TomM.A	Bernstein's the of Functions of sequences of addition for uniform Convergence of a 60 Apostol:Mathem Chapter 6	eorem - Abel's limit theorem - T functions - Examples of sequent orm convergence - Uniform convergence - Uniform convergence. TUTORIAL 15 paticalAnalysis,2 nd Edition,Addise Sections6.1 to 6.8	ces of real - valued fur rergence of infinite ser - Uniform convergence PRACTICAL on-WesleyPublishing Sections	ties of function and differer	ns - Riemann ntiation - Suffi TOTAL	12 + 3 ice and - Stieltjes cient
generated to UNIT 5 Pointwise of continuity integration condition for LEC Text Book	y a function Sequences - Cauchy cor - Cauchy cor - Non-unifo for uniform c TURE : TomM.A Unit I II	- Bernstein's th of Functions of sequences of adition for unifor onvergence of a 60 Apostol: <i>Mathen</i> 6 8 7	eorem - Abel's limit theorem - T functions - Examples of sequentiation functions - Examples of sequentiation arr convergence - Uniform convergence. TUTORIAL 15 particalAnalysis,2 nd Edition,Addise Sections6.1 to 6.8 Sections8.8, 8.15, 8.17, 8.18 Sections7.1 to 7.14	ces of real - valued fur rergence of infinite ser - Uniform convergence PRACTICAL on-WesleyPublishing Sections	ties of function and differer	ns - Riemann ntiation - Suffi TOTAL	12 + 3 ice and - Stieltjes cient
generated to UNIT 5 Pointwise of continuity integration condition for LEC Text Book	y a function Sequences - Cauchy cor a – Non-unifor for uniform c TURE : TomM.A Unit I	- Bernstein's th of Functions of sequences of ndition for uniform Convergence onvergence of a 60 Apostol: <i>Mathen</i> Chapter 6 8	eorem - Abel's limit theorem - T functions - Examples of sequence orm convergence - Uniform convergence - Uniform convergence, TUTORIAL 15 eaticalAnalysis,2 nd Edition,Addise Sections6.1 to 6.8 Sections8.8, 8.15, 8.17, 8.18	ces of real - valued fur rergence of infinite ser - Uniform convergence PRACTICAL on-WesleyPublishing Sections	ties of function and differer	ns - Riemann ntiation - Suffi TOTAL	12 + 3 ice and - Stieltjes cient
generated to UNIT 5 Pointwise of continuity integration condition for LEC Text Book	y a function Sequences - Cauchy cor - Cauchy cor - Non-unifo for uniform c TURE : TomM.A Unit I II	- Bernstein's th of Functions of sequences of adition for unifor onvergence of a 60 Apostol: <i>Mathen</i> 6 8 7	eorem - Abel's limit theorem - T functions - Examples of sequentiation functions - Examples of sequentiation arr convergence - Uniform convergence. TUTORIAL 15 particalAnalysis,2 nd Edition,Addise Sections6.1 to 6.8 Sections8.8, 8.15, 8.17, 8.18 Sections7.1 to 7.14	ces of real - valued fur rergence of infinite ser - Uniform convergence PRACTICAL on-WesleyPublishing Sections	ties of function and differer	ns - Riemann ntiation - Suffi TOTAL	12 + 3 ice and - Stieltjes cient

References:

- 1. Walter Rudin, Principles of Mathematical Analysis, Tata McGraw Hill, New York, 1988.
- 2. G. de Barra, Measure Theory and Integration, Wiley Eastern Ltd., New Delhi 1981.
- 3. Tom M. Apostol, Mathematical Analysis, Narosa Publishing House, New Delhi, 1997.
- 4. H. L. Royden, Real Analysis, Third Edition, Macmillan Publishing Company, New Delhi, 1988.
- 5. Inder K. Rana, An Introduction to Measure and Integration, 2nd Edition, Narosa Publishing House, 2015.
- 6. Gelbaum, B. R. and J. Olmsted, Counter Examples in Analysis, Holden day, San Francisco, 1964.
- 7. Burkill. J. C, The Lebesgue Integral, Cambridge University Press, 1951.
- 8. Munroe. M. E, Measure and Integration, Addison- Wesley, Mass, 1971.

Website and e-Learning Source

- 1. <u>http://mathforum.org</u>,
- 2. http://ocw.mit.edu/ocwweb/Mathematics,
- 3. <u>http://www.opensource.org</u>,
- 4. <u>www.mathpages.com</u>

					CC	s VS PO	s						
		PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9]	PSO1	PSO2
CO 1		3	2	1	0	0	2	2	2	3		2	0
CO 2		3	2	1	0	0	2	2	2	3		2	0
CO 3		3	2	1	0	0	2	2	2	3		2	0
CO 4		3	3	2	0	1	3	3	3	3		3	0
CO 5		3	2	1	0	0	2	2	2	3		2	0
TOTAL		15	10	6	0	1	11	11	11	15		11	0
SCALED	VALUE	3	2	2	0	1	3	3	3	3		3	0
0 - No Re	lation, 1 – Lo	w Relation	, 2- Medi	ium Rela	tion, 3-	High Rel	ation						
1-5→1, 6-	10→2, 11-15	→3											
	Course Name		ORD	INARY	DIFFE	RENTI	ALEQU	JATION	NS	L	Т	Р	С
	Course Code				Y	MA103		4	1	0	5		
С	Р	Α								L	Т	Р	Н
5	0	0								4	1	0	5
PREREQ	-		UG leve	el Calcul	us and Di	ifferentia	l Equation	ns					
coefficie	: op a strong l nts and also	with regul	lar singu	ılar poir	its.			tial equa	tions w	ith const	ant a	nd vari	able
			OURSE (-			OMAIN		LEV	FI
	•									JIVIAIN			1917
CO 1	Explain th Equations.	e qualitati	ve behav	vior of	solutions	of syst	ems of	differenti	al C	ognitive		Underst	anding

00.0	•						
CO 2	Recall the dynamical s		omena modeled by d	lifferential equations and	Cognitive	Ren	nembering
CO 3	Analyze the	solutions of lin	ear equations with varial	ble coefficients.	Cognitive	A	nalyzing
CO 4	Formulate	Green's function	n for boundary value pro	blems.	Cognitive	C	creating
CO 5	Solve the approximation		ear equations by usir	ng method of successive	Cognitive	А	pplying
UNIT I			stant coefficients				12 + 3
	U	1		ems-Linear dependence an	nd independe	ence-Wron	skian and a
UNIT 2			eneous equation of orcestant coefficients	ler two.			12 + 3
Homogen	eous and no	n-homogeneou	is equation of order n	-Initial value problems-	Annihilator	method to	
			onstant coefficient op	erators.			
UNIT 3		ationwithvaria		N. 1			12 + 3
linear depe	endence – Rec			Solutions to solve a non-hom equation – Homogeneous e			
Legendre e UNIT 4		uation with r	egular singular poin	its			12 + 3
	-		0 0 1	oints –Exceptional cases – Be	and Function		
UNIT 5			ss of solutions to first		esser runction.		12 + 3
		-		-			12 0
			ation–Methodofsuccess tionsand theexistence the	iveapproximations-theLipsch	hitzcondition-		
	TURE	60		15 PRACTICAL	0	TOTAL	75
Text Book							
	Unit I II III IV	Chapter 2 2 3 4	SectionsSections 1 to 6Sections 7 to 12.Sections 1 to 8Sections 1 to 4 and 6to 8				
Reference	V	5					
			Sections 1 to 6				

	COs VS POs													
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2			
CO 1	3	2	1	0	0	2	2	2	3	2	0			
CO 2	2	1	0	0	0	1	1	1	2	1	0			
CO 3	3	3	3	1	2	3	3	3	3	3	1			
CO 4	3	3	3	3	3	3	3	3	3	3	3			
CO 5	3	3	2	0	1	3	3	3	3	3	0			
TOTAL	14	12	9	4	6	12	12	12	14	12	4			
SCALED VALUE	3	3	2	1	2	3	3	3	3	3	1			

	Course Name	•	CR	APH THEC	RV	L	Т	Р	С
	Course Code		GN	YMA104		4	1	0	5
С	P	A		1 11/1/104		L	T	P	H
5	0	0				4	1	0	5
PREREQ	UISITE	Cor	ncept of relation, m	apping, Dis	rete Structures			Ţ	
coefficiei	op a strong nts and also	with regular si	ngular points.		ar differential equ	ations with	consta	nt and v	variable
On succes	sful completi	ion of this cours	e, the students wil	l be able to		DOMAL	NT	TEX	
	Domonstruc		SE OUTCOMES			DOMAI	N	LEV	
CO 1			asic definitions and		orems.	Cognitiv	re	Understa	inding
CO 2			nodels for real life	problems.		Cognitiv	re	Apply	ving
CO 3	Analyze gr	aphs satisfying c	ertain properties.			Cognitiv	e	Analy	zing
CO 4	Apply core	theoretical know	vledge of graph the	ory to solve	problems.	Cognitiv	re	Apply	ving
CO 5	Demonstra	te the significan	ce of planar graphs			Cognitiv	e	Understa	unding
UNIT I	Graphs, su	b graphs and T	rees						12 + 3
					ymatrices–Subgraph	s–Vertex D	Degrees	– Pat	hs and
			s andBonds– Cutve		ley'sFormula.				
UNIT 2			and Hamilton Cy						12 + 3
			as – Whitney's The	orem – Eule	r Tours –Hamilton C	ycles – Dirac	s Theor	em – Clo	sure of a
graph –Ch UNIT 3	vatal'sTheore		~~					12	
UNIT 5 Matchings	Berge's The	s,EdgeColourin	gs and Coverings	in Rinartite	Graphs – Hall's T	heorem _Per	fect Ma	tchings -	<u>+ 3</u> . Tutte'
			Shromatic Number-			neorem –rei	leet ivia	unings -	- Tulle
UNIT 4			ues, Vertex Colou					12	+ 3
	-	-							
-			msey's Theorem–R	lamsey's gra	ph–Erdos's Theorem	-Chromatic	Number	– Critical	Graph
UNIT 5	PlanarGra	os'Conjecture.							12 + 3
UNIT 5	FlallarGra	pus						-	12 + 3
Plane and	l Planar Grap	hs–Planar Embed	lding of a graph –S	tereo graphi	c Projection-Dual Gr	aphs–Isomor	phic plai	ne graphs	with
					ge -Kuratowski's The				
	r conjecture			r		•	r		
	TURE	60	TUTORIAL	15	PRACTICAL	0	TOTA	L	75
Text Book		with Application	s, J. A. Bondy and	U. S. R. Mu	rty, Macmillan, Lond	lon,1976.			
	Unit	Chapter	Sections						
	1	1 2	Sec: 1.1 - 1.7 Sec: 2.1 - 2.4						
	2	3	Sec: 3.1 - 3.2						

 4
 7
 Sec: 7.1 - 7.2
 Sec: 8.1 - 8.3

 5
 9
 Sec: 9.1 - 9.5
 Sec: 9.1 - 9.5

 References:
 1.
 Balakrishnan R. and Ranganathan K., "A textbook of Grap

Sec: 4.1 - 4.2

Sec: 5.1 - 5.3

Sec: 6.1 - 6.2

4

5

6

3

- 1. Balakrishnan R. and Ranganathan K., "A textbook of Graph Theory", Springer, 2012.
- 2. D.B. West, Introduction to Graph Theory, II Ed., PHI, New Delhi, 2007.

- 3. J. Clark and D.A. Holton, A First look at Graph Theory, Allied Publishers, New Delhi, 1995.
- 4. F. Harary, Graph Theory, Addison Wesley, Reading Mass, 1969.
- 5. Graham R.L., Rothschild B.L and Spencer J.H., "Ramsey Theory", Wiley Publishers, Second Edition, 1990.
- **6.** Biggs N., "Algebraic Graph Theory", Cambridge Tracts in Mathematics 67, Cambridge University Press, 1994. MX8003 Algebraic Theory of Semigroups.

Website and e-Learning Source

- 1. https://www.zib.de/groetschel/teaching/WS1314/BondyMurtyGTWA.pdf
- 2. https://en.wikipedia.org/wiki/Graph_theory
- 3. <u>http://tezu.ernet.in/dmaths/programme/m.sc.syllabus-2019.pdf</u>[OxfordUniversity]
- 4. <u>https://www-wp.maths.cam.ac.uk/documents/schedules.pdf/[</u>CambridgeUniversity
- 5. GraphTheoryANPTELCoursebyS.A.Choudum,DepartmentofMathematicsIITMadras

Chennai,Indiahttps://nptel.ac.in/courses/111/106/111106050/

				CO	s VS PO	Os					
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO 1	3	2	1	0	0	2	2	2	3	2	0
CO 2	3	3	2	0	1	3	3	3	3	3	0
CO 3	3	3	3	1	2	3	3	3	3	3	1
CO 4	3	3	2	0	1	3	3	3	3	3	0
CO 5	3	2	1	0	0	2	2	2	3	2	0
TOTAL	15	13	9	1	4	13	13	13	15	13	1
SCALED VALUE	3	3	2	1	1	3	3	3	3	3	1
0 - No Relation, 1 -	Low Re	lation, 2	2- Medi	ium Re	lation, 3	3- High	Relatio	on			
$1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-$	15→3										

(Course Na	me	MATHEMA	TICAL S	TATISTICS	L	T	Р	C
	Course Co			MA1E1		3	1	0	4
С	P	Α				L	Т	P	Н
4	0	0				3	1	0	4
PRERE	QUISITE								
Objecti	ve:								
On suce	cessful con	npletion of t	his course, the stu	dents wil	l be able to:				
		COU	RSE OUTCOME	S		DOMA	IN	LEV	EL
CO 1	Demons	trate the know	vledge of probability	and statis	tical Distributions.	Cognitiv	ve	Understa	anding
CO 2		· ·	listributions of trans al distributions.	formed var	iables and various	Cognitiv	ve	Apply	ving
CO 3	Examin	e transforma	tions of variables u	using spec	ial distributions.	Cognitiv	ve	Analy	zing
CO 4	Elabora	te the concept	s of prob ability in n	nulti variat	le distribution.	Cognitiv	ve	Creat	ing
CO 5	Estimat	e probability	value using centra	al limit the	eorem.	Cognitiv	ve	Evalua	ting
UNIT I	Probab	ility and Dis	tributions						9+3
The pro-			- Randomvarial	bles–Distr	ibutionfunction-M	Iathematic	alexpe	ectation-	Special
			cialmathematicalex	spectation	s-Chebyshev'sine	quality.			
		ariate Distri							9 + 3
			es-Conditionaldistri				lomvai	riables-	
UNIT 3		pecial Distrib	omialandrelateddistr outions	<u>ibutions—</u>	The Poisson distribu				<u>9</u> + 3
Distribut	tionsofFunc		quare distributio mVariables:Samplin continuous type.		eNormaldistribution cansformations of				
UNIT 4			tions of Random V	ariables					9+
The Bet	a, t and F a	distributions.	- Distributions of	order stat	stics – The momen	nt generati	ng fur	iction tec	3 hnique
			2 - Expectations of				0-01		1
UNIT 5		g Distribution							9+3
			nvergence in Probab	ility – Lim	iting moment genera	ation functi	ons – T	The centra	l limit
			ting distributions.	· -	· /	-	_		
LEC	CTURE	45	TUTORIAL	15	PRACTICAL	0	TO	TAL	60
Text Bo 1. 1		to Mathemat	ical Statistics (Fifth	Edition) by	v Robert V. Hogg, A	llen T. Crai	ig.,		
	Unit	Chapter(s)	Section(s)		Page (s)				
	1	1	1.3, 1.5, 1.7, 1.8,	1.9, 1.10	12-17, 28-35, 44 64, 68-70	4-50, 52-56	, 57-		
	2	2	2.1, 2.2, 3.1, 3.2		74-81, 82-90,				
		3		4.2	116-124, 126-12		<u> </u>		
	3	3	3.3, 3.4, 4.1, 4.2,	4.3	131-136, 138-14	14, 146-150),		
		4			155-178				

	4	4	4.4	, 4.7, 4.8	3, 4.9		179-	184, 193	3-200, 20	3-220.			
	5	5	5.1	, 5.3, 5.4	1, 5.5		233-	255.					
	· I		1				I				1		
Referen	ces:												
1.		Probabi	lity theo	orv and	Mathem	natical S	tatistics	. John V	Wiley &	Sons N	lew		
1	York, 19		inty theo	ny una	ivitatiioii	iuticui c	latistic	, J O I I I	whey a	00115, 1			
2	,		nd S N	Michr	a Mode	rn Matl	amatic	al Static	tice Ioh	n Wilou	&.		
Ζ.		lewiczn a ew York.		. wiisiir	a, widde	an wiali	iematica	ai Statis	ues, jon	ur wriey	α		
2	,			notion (o Dere 1-	h:1:4 41	0.0000	1 1 4-4	m c 4 1	Stati-1			
3.		hatgi, Ai				•	eory an	u Mathe	ematical	Statisti	<i>:</i> \$,		
	wiley E	astern Li	inited, l	new De	eini, 198	ð.							
Wobsito	and e-Lear	ning Sol	1800										
	and e-Lean			105124	/								
	nptel.ac.in/cot												
2. <u>mups.//</u>			11/102/	111102	134								
					CO	s VS Pe	DS						
		PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO	1]	PSO2
CO 1		3	2	1	0	0	2	2	2	3	2		0
CO 2		3	3	2	0	1	3	3	3	3	3		0
CO 3		3	3	3	1	2	3	3	3	3	3		1
CO 4		3	3	3	3	3	3	3	3	3	3		3
CO 5		3	3	3	2	3	3	3	3	3	3		2
TOTAL		15	14	12	6	9	14	14	14	15	14		6
	D VALUE	3	3	3	2	2	3	3	3	3	3		2
0 - No R	elation, 1 –	Low Re	lation, 2	2- Medi	ium Re	lation, 3	3- High	Relatio	n				
1-5→1,	6-10→2, 11-	15→3											
	N.T.			FUZ	ZY SE'	TS ANI) THE	R		L	Т	D	С
L C	ourse Name	Ĵ.								1		P	C
	ourse Name	ġ.			APPL	ICATI	DNS			-	-		
	ourse Name Course Code					ICATI(IA1E1H				3		0	4
											1	0 P	4 H
0	Course Code	e								3	1 T	-	-
C 4	Course Code	A	Basic	knowle		IA1E1H	8	nalysis		3 L	1 T	P	Н
C 4 PRERE	Course Code P 0 QUISITE	A	Basic	knowle	YN	IA1E1H	8	nalysis		3 L	1 T	P	Н
C 4 PRERE Objectiv	Course Code P 0 QUISITE	A 0			YN	IA1E1H	8	nalysis		3 L	1 T	P	Н
C 4 PRERE Objectiv The ma	Course Code P 0 QUISITE re:	A 0 s of this c	ourse a	re to:	YM	IA1E1H set theo	3 ry & A	nalysis		3 L	1 T	P	Н
C 4 PRERE Objectiv The ma 1. To	Course Code P 0 QUISITE re: in objectives o understand	A 0 s of this c the basic	course a	re to: edge of	YN. edge in s	IA1E1I set theor	ry & A y.	<u>nalysis</u>		3 L	1 T	P	Н
C 4 PRERE Objectiv The ma 1. To 2. To	Course Code P 0 QUISITE re: in objectives o understand o gain know	A 0 s of this c the basic ledge in t	course a knowle fuzzy re	re to: edge of elations	YN edge in s fuzzy s and fuz	IA1E1I set theor et theor zy meas	ry & A y. sures.			3 L	1 T	P	Н
C 4 PRERE Objectiv The ma 1. To 2. To 3. To	Course Code P 0 QUISITE in objectives o understand o gain know o learn the ba	A 0 s of this c the basic ledge in t asics of p	course a knowl fuzzy re attern r	re to: edge of elations ecognit	YM edge in s fuzzy s and fuz ion and	Example 14 Set theor set theor zy meas decision	ry & A y. sures. n makin	g.		3 L	1 T	P	Н
C 4 PRERE Objectiv The ma 1. To 2. To 3. To 4. To	Course Code P 0 QUISITE in objectives o understand o gain know o learn the ba	A 0 s of this c the basic ledge in t asics of p relations	course a knowl fuzzy re attern r	re to: edge of elations ecognit: en crisp	YN edge in s fuzzy s and fuz ion and and fuz	et theor zy meas decision zy in ap	y. sures. n makin oplicatio	g. ms.		3 L	1 T	P	Н
C 4 PRERE Objectiv The ma 1. To 2. To 3. To 4. To	Course Code P 0 QUISITE in objectives o understand o gain know o learn the ba	A 0 s of this c the basic ledge in t asics of p relations letion of	course a c knowl fuzzy re attern r betwee this co	re to: edge of elations ecognit: en crisp urse, th	YN edge in s fuzzy s and fuz ion and and fuz ne stude	et theor zy meas decision zy in ap	y. sures. n makin oplicatio	g. ms.		3 L 3	1 T 1	P 0	H 4
C 4 PRERE Objectiv The ma 1. To 2. To 3. To 4. To	Course Code P 0 QUISITE in objectives o understand o gain know o learn the ba	A 0 s of this c the basic ledge in t asics of p relations letion of	course a knowl fuzzy re attern r	re to: edge of elations ecognit: en crisp urse, th	YN edge in s fuzzy s and fuz ion and and fuz ne stude	et theor zy meas decision zy in ap	y. sures. n makin oplicatio	g. ms.		3 L	1 T 1	P	H 4
C 4 PRERE Objectiv The ma 1. To 2. To 3. To 4. To	Course Code P 0 QUISITE in objectives o understand o gain know o learn the ba	A 0 s of this c the basic ledge in t asics of p relations letion of	course a c knowl fuzzy re attern r betwee this co	re to: edge of elations ecognit: en crisp urse, th	YN edge in s fuzzy s and fuz ion and and fuz ne stude	et theor zy meas decision zy in ap	y. sures. n makin oplicatio	g. ms.		3 L 3	1 T 1	P 0	H 4
C 4 PRERE Objectiv The ma 1. To 2. To 3. To 4. To	Course Code P 0 QUISITE in objectives o understand o gain know o learn the ba	A 0 s of this c the basic ledge in t asics of p relations letion of	course a c knowl fuzzy re attern r betwee this co	re to: edge of elations ecognit: en crisp urse, th	YN edge in s fuzzy s and fuz ion and and fuz ne stude	et theor zy meas decision zy in ap	y. sures. n makin oplicatio	g. ms.		3 L 3	1 T 1	P 0	H 4

CO 1	Demonstr							ions an	d Cog	gnitive	Underst	tanding
CO 2	properties					-	tions.		Co	gnitive	Underst	tanding
	Demonstr			7 1								0
CO 3	Compare	-								gnitive	Underst	tanding
CO 4	Compare making pro					rtainty, a	and the	decisior	¹⁻ Cog	gnitive	Underst	tanding
CO 5	Demonstr	ate the a	pplicati	ons of I	Fuzzy ii	n differe	nt fields	5.	Cog	gnitive	Underst	tanding
UNIT I	Crisp set	s and fu	zzy se	ts								9+3
	v of Classica					<u> </u>						zzy sets
	t – Level se				– Deco	mpositio	on Theo	rems, E	xtension	Principle	e.	
UNIT 2	Operatio				1	1				1 1	0.4	9+3
operations	fuzzy operati	ons – Un	ion, inte	ersection	and co	mplemer	nt – prop	erties of	De Mor	gan's laws	$s - \alpha$ -Cuts	of fuzzy
	Fuzzyrela	ations										9+3
	Product, Cri		ns – Ca	rdinality	v – oper	ations ar	nd prope	rties of	Crisp and	Fuzzy re	elations. In	
	nage of fuzzy			lefinition	ns of fu	zzy oper	ations –	General	izations -	- Non inte	eracting fu	zzy sets,
Tolerance UNIT 4	and equivale Decisionn			Enviro	nments	8						9+3
	Discussion -	– Individ	ual De	cision n	naking	– Multi	person	decisio	n makin	g – Mult	i criteria	
	Multi stage				-		-					
UNIT 5	Application	ons										9+3
Medicine	e – Economic	cs – Fuzzy	System	is and G	enetic A	lgorithm	ns – Fuzz	y Regre	ssion – In	terperson	al Commu	nication
– Other A	Applications.											
												1
	TURE	45	Т	UTOR	IAL	15	PRAC	CTICAL	0	T	OTAL	60
LEC [*] Text Boo	TURE	-										
LEC Text Boo 1. G	TURE	and Bo Y	uan, Fu									
LEC Text Boo 1. G	TURE ok: eorge J. Klir imited, New	and Bo Y	uan, Fu									
LEC Text Boo 1. G Li	TURE ok: eorge J. Klir imited, New ces:	and Bo Y	uan, Fu 09).	zzy sets	and Fuz	zzy Logic		and App	blications			
LEC Text Boo 1. G Li Reference	TURE ok: eorge J. Klir imited, New ces: A. K. Bl	and Bo Y Delhi (200	uan, Fuz 09). Fuzzy	zzy sets	and Fuz	zzy Logic	Theory Fuzzy	and App	blications	, PHI Lea		
LEC Text Boo 1. G Li Reference	TURE ok: eorge J. Klir imited, New ces: A. K. Bl Applica K. Pund	and Bo Y Delhi (200 nargava; tions, put ir and R.	uan, Fu 09). Fuzzy blished	zzy sets Set by S. C	and Fuz Theory hand P	zzy Logic y, vt. Limi	Theory Fuzzy ted (201	and App Logic 3).	olications,	, PHI Lean	ning Privat	
LEC Text Boo 1. G Li Reference 1.	TURE ok: eorge J. Klir imited, New ces: A. K. Bl Applica	and Bo Y Delhi (200 nargava; tions, put ir and R.	uan, Fu 09). Fuzzy blished	zzy sets Set by S. C	and Fuz Theory hand P	zzy Logic y, vt. Limi	Theory Fuzzy ted (201	and App Logic 3).	olications,	, PHI Lean	ning Privat	
LEC Text Boo 1. G Li Reference 1.	TURE eorge J. Klir imited, New ces: A. K. Bl Applica K. Pund edition (and Bo Y Delhi (200 nargava; tions, put ir and R.	uan, Fu 09). Fuzzy blished Pundir	Set by S. C. Fuzzy	and Fuz Theory hand P sets an	zzy Logic y, vt. Limi d their a	Fuzzy ted (201 pplication	and App Logic 3). on, Pub	and the second s	, PHI Lean neir 7 A Praga	ning Privat	
LEC Text Boo 1. G Li Reference 1. 2. 3.	TURE ok: eorge J. Klir imited, New ces: A. K. Bl Applicat K. Pund edition (H. J. Zir	and Bo Y Delhi (200 nargava; tions, put ir and R. 2012) nmermar	uan, Fuz 09). Fuzzy olished Pundir nn, Fuzz	zzy sets Set by S. C , Fuzzy zy set th	and Fuz Theory hand P sets an	zzy Logic y, vt. Limi d their a	Fuzzy ted (201 pplication	and App Logic 3). on, Pub	and the second s	, PHI Lean neir 7 A Praga	ning Privat	
LEC Text Boo 1. G Li Reference 1. 2. 3.	TURE eorge J. Klir imited, New ces: A. K. Bl Applica K. Pund edition (and Bo Y Delhi (200 nargava; tions, put ir and R. 2012) nmermar	uan, Fuz 09). Fuzzy olished Pundir nn, Fuzz	zzy sets Set by S. C , Fuzzy zy set th	and Fuz Theory hand P sets an	zzy Logic y, vt. Limi d their a	Fuzzy ted (201 pplication	and App Logic 3). on, Pub	and the second s	, PHI Lean neir 7 A Praga	ning Privat	
LEC Text Boo 1. G Li Reference 1. 2. 3.	TURE ok: eorge J. Klir imited, New ces: A. K. Bl Applicat K. Pund edition (H. J. Zir	and Bo Y Delhi (200 nargava; tions, put ir and R. 2012) nmermar	uan, Fuz 09). Fuzzy olished Pundir nn, Fuzz	zzy sets Set by S. C , Fuzzy zy set th	and Fuz Theory hand P sets an heory an	zy Logic y, vt. Limi d their a nd its ap	Theory Fuzzy ted (201 pplication	and App Logic 3). on, Pub	and the second s	, PHI Lean neir 7 A Praga	ning Privat	
LEC Text Boo 1. G Li Reference 1. 2. 3.	TURE ok: eorge J. Klir imited, New ces: A. K. Bl Applicat K. Pund edition (H. J. Zir	and Bo Y Delhi (200 nargava; tions, pub ir and R. 2012) nmermar ning Sou	uan, Fu 09). Fuzzy olished Pundir nn, Fuzz	zzy sets Set by S. C. , Fuzzy zy set th PTEL	and Fuz Theory hand P sets an heory an	zy Logic y, vt. Limi d their a nd its ap	Fuzzy ted (201 pplication plication	and App Logic 3). on, Pub ns, Sprin	and the distribution of th	PHI Lean neir A Praga 12).	ning Privat	ie
LEC Text Boo 1. G Li Reference 1. 2. 3. Website	TURE ok: eorge J. Klir imited, New ces: A. K. Bl Applicat K. Pund edition (H. J. Zir	and Bo Y Delhi (200 hargava; tions, pub ir and R. 2012) nmermar ning Sou	uan, Fu D9). Fuzzy Dlished Pundir nn, Fuzz Irce: N	zzy sets Set by S. C , Fuzzy zy set th	and Fuz Theory hand P sets an neory an CO PO4	vt. Limit d their a nd its ap	Fuzzy Fuzzy ted (201 pplication plication Ds PO6	and App Logic 3). on, Pub ns, Sprin	olications, and the lished by nger (20) PO8	PHI Lean neir A Praga 12). PO9	ning Privat tti PSO1	te PSO2
LEC Text Boo 1. G Li Reference 1. 2. 3. Website	TURE ok: eorge J. Klir imited, New ces: A. K. Bl Applicat K. Pund edition (H. J. Zir	and Bo Y Delhi (200 hargava; tions, pub ir and R. 2012) nmermar ning Sou PO 1 3	uan, Fu 09). Fuzzy olished Pundir in, Fuzz irce: N PO2 2	zzy sets Set by S. C. , Fuzzy zy set th PTEL PO3 1	and Fuz Theory hand P sets an heory an CO PO4 0	y, vt. Limit d their a nd its ap os VS PC PO5 0	Fuzzy Fuzzy ted (201 pplication plication Ds PO6 2	and App Logic 3). on, Pub ns, Sprin	olications, and the lished by nger (202 PO8 2	PHI Lean neir A Praga 12). PO9 3	ning Privat ti PSO1 2	te PSO2 0
LEC' Text Boo 1. G Li Reference 1. 2. 3. Website CO 1 CO 2	TURE ok: eorge J. Klir imited, New ces: A. K. Bl Applicat K. Pund edition (H. J. Zir	and Bo Y Delhi (200 nargava; tions, pub ir and R. 2012) nmermar ning Sou PO 1 3 3	uan, Fuz 09). Fuzzy olished Pundir nn, Fuzz urce: N PO2 2 2	zzy sets Set by S. C , Fuzzy zy set th PTEL PO3 1 1	and Fuz Theory hand P sets an heory an heory an CO PO4 0 0	zy Logic y, vt. Limit d their a nd its ap os VS P(PO5 0 0 0	Theory Fuzzy ted (201 pplication plication Ds PO6 2 2	and App Logic 3). on, Pub ns, Sprin	Plications, and the lished by nger (201) PO8 2 2	PHI Lean neir A Praga 12). PO9 3 3	ning Privat tti PSO1 2 2	te PSO2 0 0
LEC' Text Boo 1. G Li Reference 1. 2. 3. Website CO 1 CO 2 CO 3	TURE ok: eorge J. Klir imited, New ces: A. K. Bl Applicat K. Pund edition (H. J. Zir	and Bo Y Delhi (200 hargava; tions, pub ir and R. 2012) nmermar ning Sou PO 1 3 3 3	uan, Fuz 09). Fuzzy olished Pundir in, Fuzz ince: N PO2 2 2 2 2	Set by S. C , Fuzzy zy set th PTEL PO3 1 1 1	and Fuz Theory hand P sets an heory an heory an CO PO4 0 0 0	vt. Limit d their a nd its ap s VS P(PO5 0 0 0	E Theory Fuzzy ted (201 pplication plication Ds PO6 2 2 2 2	and App Logic 3). on, Pub ns, Sprin	Plications, and the lished by nger (20) PO8 2 2 2 2	PHI Lean neir A Praga 12). PO9 3 3 3 3	ning Privat ti PSO1 2 2 2	te PSO2 0 0 0 0
LEC' Text Boo 1. G Li Reference 1. 2. 3. Website CO 1 CO 2 CO 3 CO 4	TURE ok: eorge J. Klir imited, New ces: A. K. Bl Applicat K. Pund edition (H. J. Zir	and Bo Y Delhi (200 hargava; tions, put ir and R. 2012) nmermar ning Sou PO 1 3 3 3 3	uan, Fuz D9). Fuzzy Dished Pundir In, Fuzz Irce: N PO2 2 2 2 2 2 2 2	zzy sets Set by S. C , Fuzzy zy set th PTEL PO3 1 1	and Fuz Theory hand P sets an heory an CO PO4 0 0 0 0 0	y, vt. Limir d their a nd its ap os VS PC PO5 0 0 0 0 0	Fuzzy ted (201 pplication plication Ds PO6 2 2 2 2 2 2	and App Logic 3). on, Pub ns, Sprin	PO8 2 2 2 2 2	PHI Lean neir A Praga 12). PO9 3 3 3 3 3 3	ning Privat tti PSO1 2 2 2 2 2	PSO2 0 0 0 0
LEC' Text Boo 1. G Li Reference 1. 2. 3. Website CO 1 CO 2 CO 3	TURE ok: eorge J. Klir imited, New ces: A. K. Bl Applicat K. Pund edition (H. J. Zir	and Bo Y Delhi (200 hargava; tions, pub ir and R. 2012) nmermar ning Sou PO 1 3 3 3	uan, Fuz 09). Fuzzy olished Pundir in, Fuzz ince: N PO2 2 2 2 2	zzy sets Set by S. C. , Fuzzy zy set th PTEL PO3 1 1 1 1 1	and Fuz Theory hand P sets an heory an heory an CO PO4 0 0 0	vt. Limit d their a nd its ap s VS P(PO5 0 0 0	E Theory Fuzzy ted (201 pplication plication Ds PO6 2 2 2 2	and App Logic 3). on, Pub ns, Sprin	Plications, and the lished by nger (20) PO8 2 2 2 2	PHI Lean neir A Praga 12). PO9 3 3 3 3	ning Privat ti PSO1 2 2 2	te PSO2 0 0 0 0
LEC' Text Boo 1. G Li Reference 1. 2. 3. Website CO 1 CO 2 CO 3 CO 4 CO 5 TOTAL	TURE ok: eorge J. Klir imited, New ces: A. K. Bl Applicat K. Pund edition (H. J. Zir	and Bo Y Delhi (200 hargava; tions, put ir and R. 2012) mmermar ning Sou PO 1 3 3 3 3 3 3	uan, Fuz polished Pundir n, Fuzz urce: N PO2 2 2 2 2 2 2 2 2 2 2 2 2 2	zzy sets Set by S. C , Fuzzy zy set th PTEL PTEL 1 1 1 1 1 1 1	and Fuz Theory hand P sets an heory an CO PO4 0 0 0 0 0 0	zy Logic y, vt. Limit d their a nd its ap 0s VS PC PO5 0 0 0 0 0 0 0 0 0	Fuzzy ted (201 pplication plication Ds PO6 2 2 2 2 2 2 2 2 2	and App Logic 3). on, Pub ns, Sprin PO7 2 2 2 2 2 2 2 2 2	Pications, and the lished by nger (20) PO8 2 2 2 2 2 2 2 2 2 2 2	PHI Lean neir A Praga (2). PO9 3 3 3 3 3 3 3 3 3	ning Privat tti PSO1 2 2 2 2 2 2 2	re PSO2 0 0 0 0 0 0
LEC Text Boo 1. G Li Referenc 1. 2. 3. Website CO 1 CO 2 CO 3 CO 4 CO 5 TOTAL SCALEI	TURE eorge J. Klir imited, New ees: A. K. Bl Applicat K. Pund edition (H. J. Zir and e-Lear	and Bo Y Delhi (200 hargava; tions, pub ir and R. 2012) nmermar ning Sou PO 1 3 3 3 3 3 15 3	uan, Fuz 9). Fuzzy olished Pundir nn, Fuzz Irce: N: PO2 2 2 2 2 2 10 2 10 2	Set by S. C. , Fuzzy zy set th PTEL PO3 1 1 1 1 1 5 1	and Fuz Theory hand P sets an heory an CO PO4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	y, vt. Limir d their a nd its ap bs VS PC PO5 0 0 0 0 0 0 0 0 0 0 0	Fuzzy ted (201 pplication plication Ds PO6 2 2 2 2 2 2 10 2 10 2	and App Logic 3). on, Pub ns, Sprin PO7 2 2 2 2 2 2 2 10 2 10 2	PO8 2 2 2 2 2 10 2	PHI Lean neir A Praga (12). PO9 3 3 3 3 3 3 3 3 15	ning Privat ti PSO1 2 2 2 2 2 10	re PSO2 0 0 0 0 0 0 0 0 0

F									
	ourse Nan ourse Coo					L 3	T 1	P 0	C A
C	ourse Coo P	A	Y	MA1E1	L	J L	T T	P	4 H
4	0	0				3	1	0	4
PREREC	QUISITE	•				•		0	
Objectiv									
On succe	essful com	pletion of tl	nis course, the stu	dents wi	ll be able to:				
		COU	RSE OUTCOME	S		DOMA	IN	LEV	/EL
CO 1	Overview					Cogniti	ve	Underst	tanding
CO 2	Categoriz calculus.	ze knowledg	e using propositio	nal calcu	lus and predicate	Cogniti	ve	Analy	yzing
CO 3			ons of Learning mo			Cogniti	ve	Underst	tanding
CO 4		Linear R ative model.	egression Models	and P	robabilistic	Cogniti	ve	Appl	ying
CO 5			Learning and unsu	pervised	learning.	Cogniti	ve	Evalu	U
UNIT I		DUCTION	of AI The AI p						9 + 3
Syntax an Inference UNIT 3 Compone: and gradin learning generaliza UNIT 4 Linear R descent, discrimin classifier UNIT 5 Combinin stacking;	Rules; App FOUNDA nts of learn - Feasibili tion bound SUPERV egression Linear C ative mod - Support ENSEMI	s: Knowledge lying Resolut ATIONS OF ing – Learnin ing versus des ty of learnir – Approxima ISED LEAR Models: Lea Classification el - Logistic vector mach BLE TECHN e learners: M vised learnin	e Representation – F tion: Normal Form (LEARNING g models – Geome sign – Types of lear ng – error and no tition generalization (NING ast squares, single n Models: Discri- regression, Proba- nine, Decision Tree IQUES AND UNS Model combination g: K-means, Insta	Conversion tric model ming – Ss ise – Tra trade off – & multip iminant bilistic g e, Randon UPERVIS	n-Reasoning through s – Pprobabilistic m upervised – Unsupe ining versus testin bias and variance – ole variables, Bay function – Perce enerative model – n Forests SED LEARNING s, Voting, Ensemb	n Refutation nodels – Log rvised – rei ng – Ttheo Learning c esian linea eptron alg Naive Bay	gical m inforce ory of urve. ur regru gorithr yes, M g - ba	odels – (ment – T generali ession, (n, Prob aximum	9+3 Grouping Theory of Zation - $9+3$ Gradient abilistic margin $9+3$ oosting,
LEC	TURE	45	TUTORIAL	15	PRACTICAL	0	TO	TAL	60
Reference 1. S E 2. A	tephen Ma nd Hall/CF ces: tuart Russo dition (200 urélienGé	RC Machine ell & Peter N 99) ron - Hands-	achine Learning – Learning and Patte Jorvig, Artificial In On Machine Learn 9, Reilly Media, In	ern Recog ntelligenc	gnition Series, 201 e: A Modern App Scikit-Learn, Ker	4. roach, Prer	ntice-H	all, Thi	

3. Shai Shalev-Shwartz and Shai Ben-David," Understanding Machine Learning: From Theory to Algorithms", Cambridge University Press 2014.

Website and e-Learning Source; <u>https://nptel.ac.in</u>

				CO	s VS PO	Os					
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO 1	3	2	1	0	0	2	2	2	3	2	0
CO 2	3	3	3	1	2	3	3	3	3	3	1
CO 3	3	2	1	0	0	2	2	2	3	2	0
CO 4	3	3	2	0	1	3	3	3	3	3	0
CO 5	3	3	3	2	3	3	3	3	3	3	2
TOTAL	15	13	10	3	6	13	13	13	15	13	3
SCALED VALUE	3	3	2	1	2	3	3	3	3	3	1
0 - No Relation, 1 -	Low Re	lation, 2	2- Medi	ium Re	lation, 3	3- High	Relatio	on			
$1-5\rightarrow 1, 6-10\rightarrow 2, 11-$	15→3										

Course Name COMPUTER PROGRAMMING (C++ Theory and Lab) L T P C Course Code YMAIE2A 3 1 0 4 C P A L T P H 4 0 0 3 1 0 4 PREREQUISITE Basic knowledge from C Language Objectiv: To develop programming skills in C++ and is object-oriented concepts. Course Course Courcomes DOMAIN LEVEL C0 Explain C++ programming fundamentals. Cognitive Understanding Cognitive Understanding C0.2 Apply structure and union for various functions. Cognitive Understanding Cognitive Understanding C0.4 Explain Destructors & Operator Over loading and Types Cognitive Understanding Cognitive Understanding C0.5 Explain Extending Classes and Pointers, Virtual Functions and Cognitive Understanding Pointonion of C++ A simple C++ Program— An Example with Class- Structures of C++ Program-Creating the Source File Compiling and Linking-Introduction - Token and Keyword. UNTT 2 [Purcetion sin C++ and classes] 9+3	C	ourse Nam		COMDUTE						
Course Code YMAIE2A 3 1 0 4 C P A I 0 4 C P A I 0 4 C PREREQUISITE Basic knowledge from C Language DMAIN 4 Objective: To develop programming skills in C++ and its object-oriented concepts. Course Course COURSE DOMAIN LEVEL C0 Explain C++ programming fundamentals. Cognitive Understanding C0.2 Apply structure and union for various functions. Cognitive Understanding C0.3 Explain Destructors & Operator Over loading and Types Cognitive Understanding C0.4 Explain Destructors & Operator Over loading and Types Cognitive Understanding C0.5 Explain bestoneding Classes and Pointers, Virtual Functions and Cognitive Understanding Polymorphism. Other H Program. An Explain Bit Mit C++ & Grokens, Expressions and Control Structures 9+3 Applications of C++ A simple C++ Program. Cal mode and Keyword. 9+3 Introduction - Maxing Membership functions. Ar	C	ourse man	IE			L	Т	P	C	
4 0 0 3 1 0 4 PREREQUISITE Basic knowledge from C Language Objective: To develop programming skills in C++and its object-oriented concepts. CO Explain C++ programming fundamentals. DOMAIN LEVEL CO1 Explain C++ programming fundamentals. Cognitive Understanding CO2 Apply structure and union for various functions. Cognitive Understanding CO3 Explain Destructors & Operator Over loading and Types Cognitive Understanding CO4 Explain Destructors & Operator Over loading and Types Cognitive Understanding Polymorphism. Polymorphism. 9 + 3 Introduction of C++ Program—A ne Example with Class- Structures 9 + 3 Introduction sin C++and classes Introduction - Token on Prototyping-Call by Reference-Return by Reference-Inline Function-Defaults Arguments- const Arguments- Function Overloading- Friend and Virtual Functions- C Structures 9 + 3 Introduction - Memory Allocation for Objects- Static Data Member Functions- Arrays with an Class. 9 + 3 Introduction - Memory Allocation for Objects- Static Data Member Sup Constructors in a class- Constructors-Objects as Function Arguments- Friendly Punctions- Returning Objects- const. Member Functions- Private Member Functions- Arrays with an Class. 9 + 3<	С	ourse Cod	le			3	1	0	4	
PREREQUISITE Basic knowledge from C Language Objective: DOMAIN LEVEL CO develop programming skills in C++and its object-oriented concepts. DOMAIN LEVEL CO 1 Explain C++ programming fundamentals. Cognitive Understanding CO 2 Apply structure and union for various functions. Cognitive Understanding CO 3 Explain the concept of objects and constructors. Cognitive Understanding CO 4 Explain Destructors & Operator Over loading and Types Cognitive Understanding CO 5 Explain Extending Classes and Pointers, Virtual Functions and Polymorphism. Cognitive Understanding UNIT 1 Beginning with C++ & Tokens, Expressions and Control Structures 9+3 Applications of C++ A simple C++ Program— An Example with Class- Structure of C++ Program-Creating the Source File-Compting and Linking-Introduction—Token and Keyword. UNIT 2 Function sin C++and Classes 9+3 Introduction—the Main Function—Function Prototyping—Call by Reference-Return by Reference-Inline Functions-Private Member Functions-Arrays with an Class. 9+3 Introduction—Infine—Nesting of Member Functions-Private Member Functions-Arrays with an Class. 9+3 Introduction—Infine—Nesting of Member Functions-P										
Objective: To develop programming skills in C++and its object-oriented concepts. COURSE OUTCOMES DOMAIN LEVEL COURSE OUTCOMES DOMAIN LEVEL COURSE OUTCOMES DOMAIN LEVEL CO1 Explain C++ programming fundamentals. Cognitive Understanding CO3 Explain Destructors & Operator Over loading and Types Cognitive Understanding CO4 Explain Extending Classes and Pointers, Virtual Functions and Cognitive Understanding Copreline Cognitive	-	Ű	0	D • • • • • •		3	1	0	4	
To develop programming skills in C++ and its object-oriented concepts. COURSE OUTCOMES DOMAIN LEVEL COURSE OUTCOMES DOMAIN LEVEL COURSE OUTCOMES DOMAIN LEVEL COURSE OUTCOMES Cognitive Understanding CO 4 Explain the concept of objects and constructors. Cognitive Understanding CO 4 Explain Extending Classes and Pointers, Virtual Functions and Cognitive Understanding Onversions. Cognitive Understanding UNIT 1 Beginning with C++ & Tokens, Expressions and Control Structures 9 + 3 Applications of C++ A simple C++ Program. An Example with Class- Structure of C++ Program-Creating the Source File- Compiling and Linking-Introduction-Token and Keyword. UNIT 2 Function sin C++and classes 9 + 3 Introduction- the Main Function Protryping- Call by Reference-Return by Reference-Inline Function-Defaults Arguments. Source File- Compiling and Linking-Introduction-Token and Keyword. UNIT 3 Objects- Cost. <td co<="" td=""><td></td><td>-</td><td></td><td>Basic knowledg</td><td>e from C Language</td><td></td><td></td><th></th><td></td></td>	<td></td> <td>-</td> <td></td> <td>Basic knowledg</td> <td>e from C Language</td> <td></td> <td></td> <th></th> <td></td>		-		Basic knowledg	e from C Language				
COURSE OUTCOMES DOMAIN LEVEL CO1 Explain C++ programming fundamentals. Cognitive Understanding CO2 Apply structure and union for various functions. Cognitive Understanding CO3 Explain be concept of objects and constructors. Cognitive Understanding CO4 Explain Destructors & Operator Over loading and Types Cognitive Understanding CO5 Explain Destructors & Operator Over loading and Types Cognitive Understanding CO5 Explain Destructors & Operator Over loading and Types Cognitive Understanding ONTS 1 Beginning with C++ & Tokens, Expressions and Control Structures 9+3 Applications of C++ A simple C++ Program— An Example with Class- Structure of C++ Program- Creating the Source File-Compiling and Linking-Introduction– Token and Keyword. 9+3 Introduction - the Main Function Prototyping—Call by Reference-Return by Reference- Inline Function- Defaults Arguments- const Arguments- Function Prototyping—Call by Reference-Return by Reference- Inline Functions- Revisited—Specifying a Class - Defining Membership Functions Arrays with an Class. 9+3 Introduction - Memory Allocation for Objects- Static Data Member - Static Member Functions- Pointers of Members- Local Classes- Constructors - Derator Oser Loading and Types Conversions 9+3	0		ammino	skills in C++and i	ts object-oriented concer	nts				
CO 2 Apply structure and union for various functions. Cognitive Applying CO 3 Explain the concept of objects and constructors. Cognitive Understanding CO 4 Explain Extending Classes Operator Over loading and Types Cognitive Understanding CO 5 Explain Extending Classes and Pointers, Virtual Functions and Polymorphism. Ognitive Understanding UNIT 1 Beginning with C++ & Tokens, Expressions and Control Structures 9+3 Applications of C++- A simple C++ Program— An Example with Class- Structure of C++ Program— Creating the Source File- Compiling and Linking–Introduction- Token and Keyword. 9+3 Introduction- the Main Function Function Prototyping- Call by Reference-Return by Reference- Inline Function-Defaults Arguments - Const Arguments - Function Overloading - Friend and Virtual Functions- C Structures Revisited - Specifying a Class - Defining Membership Functions- A C++ Program with Class- Making an Outside Function Inline- Nesting of Member Functions- Private Member Functions- Arrays with an Class. 9+3 Introduction - Memory Allocation for Objects- Static Data Member- Static Member Functions- Arrays of Objects-Objects as Function Arguments. 9+3 Introduction - Dynamic Initialization of Objects- Destructors - Multiple constructors in a class - Constructors with Default Arguments. 9+3 Introduction - Dynamic Initialization of Objects- Destructors - Overloading Binary Operators - Overloading Binary Operators - Overloading Ope	10 4070	nop progr					N	LEV	EL	
CO 3 Explain the concept of objects and constructors. Cognitive Understanding CO 4 Explain Destructors & Operator Over loading and Types Conversions. Cognitive Understanding CO 5 Explain Extending Classes and Pointers, Virtual Functions and Polymorphism. Cognitive Understanding UNT 1 Beginning with C++ & Tokens, Expressions and Control Structures 9+3 Applications of C++- A simple C++ Program— An Example with Class- Structure of C++ Program— Creating the Source File-Compiling and Linking—Introduction- Token and Keyword. 9+3 Introduction- the Main Function- Function Prototyping— Call by Reference—Return by Reference—Inline Function- Defaults Arguments— const Arguments— Function Overloading — Friend and Virtual Functions— C Structures Revisited—Specifying a Class— Defining Membership Functions— Arays with an Class. 9+3 Introduction- Memory Allocation for Objects- Static Data Member - Static Member Functions— C Structures with Default Arguments. 9+3 Introduction - Memory Allocation for Objects- Copy Constructors - Multiple constructors in a class-Constructors with Default Arguments. 9+3 Introduction - Dynamic Initialization of Objects- Copy Constructor - Dynamic Constructors—Constructing Two - Dimensional Arrays – constant Objects— Destructors – Multiple constructors—Constructing Two - Dimensional Arrays – constant Objects— Destructors – Overloading Binary Operators - Overloading Planary Operators - Overloading Binary Operators – Overloading Planary Operators - Overloading Binary Op	CO 1	Explain	C++ prog	ramming fundament	als.	Cognitiv	ve L	Jndersta	inding	
CO 4 Explain Destructors & Operator Over loading and Types Conversions. Cognitive Understanding CO 5 Explain Extending Classes and Pointers, Virtual Functions and Oplymorphism. Cognitive Understanding UNIT 1 Beginning with C++ & Tokens, Expressions and Control Structures 9+3 Applications of C++ A simple C++ Program— An Example with Class– Structure of C++ Program— Creating the Source File- Compiling and Linking–Introduction– Token and Keyword. 9+3 Introduction- the Main Function - Function Prototyping- Call by Reference-Return by Reference- Inline Function- Defaults Arguments- const Arguments- Function Overloading – Friend and Virtual Functions- C Structures Revisited Specifying a Class- Defining Membership Functions- Arrays with an Class. 9+3 Introduction - Memory Allocation for Objects- Static Data Member - Static Member Functions- Pointers of Members- Local Classes - Constructors – Parameterized Constructors – Multiple constructors in a class – Constructors Members- Local Classes - Constructors – Parameterized Constructors – Multiple constructors – Constructors With Default Arguments. 9+3 UNIT 4 Destructors & Operator Over loading and Types Conversions 9+3 Introduction - Dynamic Initialization of Objects- Copy Constructors – Onstructors – Constructors With Default Arguments. 9+3 UNIT 5 Inheritance- Multiple Inheritance-Making a Private Member Inheritance-Making a Private Member Inheritable- Multilevel Inheritance-Making a Private Member Inheritance-Making a Private Member Inheritable- Multi	CO 2	Apply str	ructure an	d union for various f	functions.	Cognitiv	/e	Apply	ing	
Conversions. Conversions. <thconversions.< th=""> Conversions. <thc< td=""><td>CO 3</td><td>Explain t</td><td>the concept</td><td>ot of objects and con</td><td>structors.</td><td>Cognitiv</td><td>ve L</td><th>Jndersta</th><td>inding</td></thc<></thconversions.<>	CO 3	Explain t	the concept	ot of objects and con	structors.	Cognitiv	ve L	Jndersta	inding	
UNT 1 Beginning with C++ & Tokens, Expressions and Control Structures 9+3 Applications of C++- A simple C++ Program— An Example with Class- Structure of C++ Program- Creating the Source File. Compiling and Linking-Introduction—Token and Keyword. 9+3 Introduction- the Main Function– Function Prototyping— Call by Reference—Return by Reference—Inline Function— Defaults Arguments— const Arguments— Function Overloading— Friend and Virtual Functions— C Structures Revisited—Specifying a Class—Defining Membership Functions—A C++ Program with Class—Making an Outside Function Inline—Nesting of Member Functions—Private Member Functions—Arrays with an Class. 9+3 Introduction— - Memory Allocation for Objects— Static Data Member—Static Member Functions—Arrays of Objects- Objects as Function Arguments—Friendly Functions— Returning Objects— const. Member Functions—Pointers of Members— Local Classes—Constructors—Parameterized Constructors—Multiple constructors in a class—Constructors with Default Arguments. 9+3 UNIT 4 Destructors & Operator Over loading and Types Conversions 9+3 Introduction — Dynamic Initialization of Objects—Copy Constructor—Dynamic Constructors—Constructing Two — Dimensional Arrays — constant Objects—Destructors — Introduction — Defining Operator Overloading Priends—Manipulation of Strings Using Operators—Rules for Overloading Operators—Type Conversions. 9+3 Introduction—Defining Derived Classes—Single Inheritance—Making a Private Member Inheritance—Multiple Inheritance—Multiple Inheritance—Hybrid Inheritance— Virtual Base Classes—Storet Classes—Constructors in Derived Classes—Neture of Overoloading Operators—Uper Ovverloading Operators—Proverio	CO 4	-		rs & Operator Over	loading and Types	Cognitiv	ve L	Jndersta	Inding	
Applications of C++ A simple C++ Program An Example with Class- Structure of C++ Program-Creating the Source File-Compiling and Linking-Introduction- Token and Keyword. UNIT 2 Function sin C++and classes 9+3 Introduction- the Main Function-Function Prototyping- Call by Reference-Return by Reference- Inline Function-Defaults Arguments- const Arguments- Function Overloading- Friend and Virtual Functions-C Structures Revisited-Specifying a Class- Defining Membership Functions- A C++ Program with Class- Making an Outside Function Inline-Nesting of Member Functions- Private Member Functions- Arrays with an Class. UNIT 3 Objects, Constructors 9+3 Introduction Memory Allocation for Objects- Static Data Member- Static Member Functions- Arrays of Objects-Objects as Functian Arguments- Friendly Functions- Returning Objects- const. Member Functions- Pointers of Members- Local Classes- Constructors- Parameterized Constructors- Multiple constructors in a class- Constructors with Default Arguments. 9+3 UNIT 4 Destructors & Operator Over loading and Types Conversions 9+3 Introduction - Dynamic Initialization of Objects- Copy Constructor- Dynamic Constructors-Constructing Two - Dimensional Arrays - constant Objects- Destructors - Introduction - Defining Operators - Overloading Binary Operators - Overloading Binary Operators Using Friends- Manipulation of Strings Using Operators- Rules for Overloading Operators- Type Conversions. 9+3 Introduction-Defining Derived Classes - Single Inheritance-Making a Private Member Inheritance-Hybrid Inheritance-Virtual Base Classes-Nesting of Classes-Single Inheritance-Member Classes: Nesting of Classes-Intro	CO 5	-		g Classes and Point	ers, Virtual Functions and	Cognitiv	ve L	Jndersta	Inding	
Creating the Source File- Compiling and Linking-Introduction- Token and Keyword. 9+3 UNIT 2 Function sin C++and classes 9+3 Introduction- the Main Function- Frunction Prototyping- Call by Reference-Return by Reference- Inline Functions- C Structures 8+3 Revenuestary and Linking-Introduction- the Main Function- Private Member Structures 9+3 Introduction- Nesting of Member Functions- Private Member Functions- A C++ Program with Class- Making an Outside Function- Nesting of Member Functions- Private Member Functions- Arrays with an Class. 9+3 Introduction Memory Allocation for Objects- Static Data Member- Static Member Functions- Pointers of Objects- Objects as Function Arguments - Friendly Functions- Returning Objects- const. Member Functions- Pointers of With Default Arguments. 9+3 UNIT 4 Destructors & Operator Over loading and Types Conversions 9+3 Introduction Dynamic Initialization of Objects- Copy Constructors - Multiple constructors-Constructing Two - Dimensional Arrays - constant Objects- Destructors - Introduction - Defining Operator Overloading Binary Operators - Overloading Binary Operators - Overloading Binary Operators - Type Conversions. 9+3 Introduction-Defining Derived Classes- Single Inheritance-Making a Private Member Classes- Networks to Objects- this Pointers to Derived Classes-Virtual Functions- Pure Virtual Functions- Pure Virtual Functions. Introduction-Defining Deri							·			
Introduction- the Main Function- Function Prototyping- Call by Reference-Return by Reference- Inline Function-Defaults Arguments- const Arguments- Function Overloading- Friend and Virtual Functions- C Structures Revisited-Specifying a Class- Defining Membership Functions- A C++ Program with Class- Making an Outside Function Inline-Nesting of Member Functions- Private Member Functions- Arrays with an Class. UNIT 3 Objects, Constructors 9+3 Introduction Memory Allocation for Objects- Static Data Member- Static Member Functions-Arrays of Objects-Objects as Function Arguments- Friendly Functions- Returning Objects- const. Member Functions- Pointers of Members- Local Classes- Constructors- Parameterized Constructors- Multiple constructors in a class- Constructors with Default Arguments. 9+3 UNIT 4 Destructors & Operator Over loading and Types Conversions 9+3 Introduction Dynamic Initialization of Objects- Destructors - Introduction - Defining Operators - Overloading Binary Operators - Type Conversions. 9+3 Introduction-Defining Derived Classes and Pointers, Virtual Functions and Polymorphism 9+3 Introduction-Defining Derived Classes- Single Inheritance-Making a Private Member Inheritance-Mating Classes- Constructors in Derived Classes- Nember Classes: Nesting of Classes- Introduction- Pointers to Objects-this Pointer-Pointers to Derived Classes- Virtual Functions- Pure Virtual Functions. 9+3							re of C	C++ Pro	ogram–	
Defaults Arguments- const Arguments- Function Overloading- Friend and Virtual Functions- C Structures Revisited-Specifying a Class- Defining Membership Functions- A C++ Program with Class- Making an Outside Function Inline- Nesting of Member Functions- Private Member Functions- Arrays with an Class- 9 + 3 Introduction Memory Allocation for Objects- Static Data Member- Static Member Functions- Arrays of Objects- 9 + 3 Objects: as Function Arguments- Friendly Functions- Returning Objects- const. Member Functions- Pointers of 9 + 3 Introduction - Decal Classes- Constructors- Parameterized Constructors- Multiple constructors in a class- Constructors with Default Arguments. 9 + 3 Introduction - Dynamic Initialization of Objects- Copy Constructor- Dynamic Constructors-Constructing Two - Dimensional Arrays - constant Objects- Destructors - Introduction - Defining Operator Overloading Binary Operators - Overloading Binary Operators - Voerloading Binary Operators - Voerloading Binary Operators - Type Conversions. 9 + 3 Introduction-Defining Derived Classes- Single Inheritance-Making a Private Member Inheritance-Making						-				
Revisited – Špecifying a Class – Ďefining Membership Functions – A C++ Program with Class – Making an Outside Function Inline – Nesting of Member Functions – Private Member Functions – Arrays with an Class. 9 + 3 UNIT 3 Objects, Constructors 9 + 3 Introduction – Memory Allocation for Objects – Static Data Member – Static Member Functions – Pointers of Members – Local Classes – Constructors – Parameterized Constructors – Multiple constructors in a class – Constructors with Default Arguments. 9 + 3 UNIT 4 Destructors & Operator Over loading and Types Conversions 9 + 3 Introduction — Dynamic Initialization of Objects – Copy Constructor – Dynamic Constructors – Constructing Two – Dimensional Arrays – constant Objects – Destructors – Introduction – Defining Operator Overloading – Overloading Unary Operators – Overloading Binary Operators – Overloading Binary Operators Using Friends – Manipulation of Strings Using Operators – Rules for Overloading Operators – Type Conversions. 9 + 3 UNIT 5 Inheritance: Extending Classes and Pointers, Virtual Functions and Polymorphism 9 + 3 Introduction – Defining Derived Classes – Single Inheritance – Making a Private Member Inheritance – Making a Private Member Inheritable – Multilevel Inheritance – Multiple Inheritance – Hierarchical Inheritance – Hybrid Inheritance– Virtual Base Classes – Abstract Classes – Constructors in Derived Classes – Member Classes: Nesting of Classes – Introduction – Pointers to Objects – this Pointer Pointers to Derived Classes – Member Classes: Nesting of Classes – Introduction – Pointers to Object Oriented Programming with C++, 4th Edition, The McGraw – Hill Company Ltd, New Delhi, 2008. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <th></th> <td></td>										
Function InlineNesting of Member FunctionsPrivate Member FunctionsArrays with an Class. 9+3 Introduction Memory Allocation for Objects- Static Data Member- Static Member FunctionsArrays of Objects- Objects- Objects as Function Arguments- Friendly Functions- Returning Objects- const. Member Functions- Pointers of Members- Local Classes- Constructors- Parameterized Constructors- Multiple constructors in a class- Constructors with Default Arguments. 9+3 UNIT 4 Destructors & Operator Over loading and Types Conversions 9+3 Introduction Dynamic Initialization of Objects- Copy Constructor- Dynamic Constructors-Constructing Two - Dimensional Arrays - constant Objects- Destructors - Introduction - Defining Operator Overloading Binary Operators - Overloading Binary Operators Using Friends- Manipulation of Strings Using Operators- Rules for Overloading Operators - Type Conversions. 9+3 Introduction-Defining Derived Classes and Pointers, Virtual Functions and Polymorphism 9+3 Introduction-Defining Derived Classes-Single Inheritance-Making a Private Member Inheritance-Making a Private Member Inheritance-Making a Private Member Inheritance-Making a Private Member Classes-Abstract Classes- Constructors in Derived Classes-Member Classes: Nesting of Classes-										
UNIT 3 Objects, Constructors 9 + 3 Introduction – Memory Allocation for Objects– Static Data Member– Static Member Functions–Arrays of Objects- Objects as Function Arguments– Friendly Functions– Returning Objects– const. Member Functions– Pointers of Members– Local Classes– Constructors– Parameterized Constructors– Multiple constructors in a class– Constructors with Default Arguments. 9 + 3 UNIT 4 Destructors & Operator Over loading and Types Conversions 9 + 3 Introduction – Dynamic Initialization of Objects– Copy Constructor– Dynamic Constructors–Constructing Two – Dimensional Arrays – constant Objects– Destructors – Introduction – Defining Operator Overloading – Overloading Unary Operators – Overloading Binary Operators – Overloading Binary Operators Using Friends– Manipulation of Strings Using Operators– Rules for Overloading Operators– Type Conversions. 9 + 3 UNIT 5 Inheritance: Extending Classes and Pointers, Virtual Functions and Polymorphism 9 + 3 Introduction–Defining Derived Classes– Single Inheritance–Making a Private Member Inheritance–Making a Private Member Inheritable– Multiple Unheritance–Making a Private Member Classes: Nesting of Classes– Introduction–Pointers to Objects–this Pointer-Pointers to Derived Classes–Virtual Functions– Pure Virtual Functions– Prived Classes–Abstract Classes–Constructors in Derived Classes–Virtual Functions– Pure Virtual Functions– McGraw–Hill Company Ltd, New Delhi, 2008. 0 TOTAL 60 References: 1. V. Ravichandran, Programming with C++, Second Edition Tata McGraw – Hill, New Delhi, 2006. Virtual Function Tata McGraw – Hill, New Delhi, 2006.								ing an v	Juiside	
Objects as Function Arguments– Friendly Functions– Returning Objects– const. Member Functions– Pointers of Members– Local Classes– Constructors– Parameterized Constructors– Multiple constructors in a class– Constructors with Default Arguments. 9+3 UNIT 4 Destructors & Operator Over loading and Types Conversions 9+3 Introduction – Dynamic Initialization of Objects– Copy Constructor– Dynamic Constructors–Constructing Two – Dimensional Arrays – constant Objects– Destructors – Introduction – Defining Operators Overloading Binary Operators – Overloading Binary Operators – Overloading Operators– Type Conversions. 9+3 UNIT 5 Inheritance: Extending Classes and Pointers, Virtual Functions and Polymorphism 9+3 Introduction–Defining Derived Classes– Single Inheritance–Making a Private Member Inheritance–Making a Private Member Inheritance–Making a Private Member Inheritance–Multiple Inheritance–Making a Private Member Classes- Nesting of Classes– Introduction–Pointers to Objects–this Pointer–Pointers to Derived Classes–Virtual Functions– Pure Virtual Functions. 9 LECTURE 45 TUTORIAL 15 PRACTICAL 0 TOTAL 60 Text Book: 1. E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw–Hill Company Ltd, New Delhi, 2008. 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10									9+3	
Members- Local Classes- Constructors- Parameterized Constructors- Multiple constructors in a class- Constructors with Default Arguments. 9+3 UNIT 4 Destructors & Operator Over loading and Types Conversions 9+3 Introduction Dynamic Initialization of Objects- Copy Constructor- Dynamic Constructors-Constructing Two - Dimensional Arrays - constant Objects- Destructors - Introduction - Defining Operator Overloading Operators - Overloading Binary Operators - Overloading Binary Operators - Overloading Binary Operators - Overloading Operators - Type Conversions. 9+3 UNIT 5 Inheritance: Extending Classes and Pointers, Virtual Functions and Polymorphism 9+3 Introduction-Defining Derived Classes- Single Inheritance-Making a Private Member Inheritance-Making a Private Member Inheritance-Making a Private Member Inheritance-Multiple Inheritance-Multiple Inheritance-Hierarchical Inheritance- Hybrid Inheritance-Virtual Base Classes-Abstract Classes- Constructors in Derived Classes- Virtual Functions- Pure Virtual Functions. 9 LECTURE 45 TUTORIAL 15 PRACTICAL 0 TOTAL 60 Text Book: 1. E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw-Hill Company Ltd, New Delhi, 2008. New Delhi, 2006. New Delhi, 2006.										
with Default Arguments. 9+3 Introduction — Dynamic Initialization of Objects— Copy Constructor— Dynamic Constructors—Constructing Two – Dimensional Arrays – constant Objects— Destructors – Introduction – Defining Operator Overloading – Overloading Unary Operators – Overloading Binary Operators – Overloading Binary Operators Using – Overloading Unary Operators – Overloading Binary Operators – Overloading Operators – Type Conversions. 9+3 UNIT 5 Inheritance: Extending Classes and Pointers, Virtual Functions and Polymorphism 9+3 Introduction—Defining Derived Classes—Single Inheritance—Making a Private Member Inheritance—Making a Private Member Inheritance—Making a Private Member Inheritance—Making a Private Member Classes—Abstract Classes—Constructors in Derived Classes—Member Classes. 9+3 Introduction—Defining Derived Classes—Constructors in Derived Classes—Member Classes. 9+3 Introduction—Pointers to Objects—this Pointer—Pointers to Derived Classes—Wintual Functions. 9+3 Introduction—Pointers to Objects—this Pointer—Pointers to Derived Classes—Virtual Functions. 9+3 Introduction—Pointers to Objects—this Pointer—Pointers to Derived Classes—Virtual Functions. 9+3 Introduction—Virtual Functions. 9 9 Introduction—Pointers to Objects—this Pointer-Pointers to Derived Classes—Virtual Functions. 9 60 Text Book: 15 PRACTICAL 0 TOTAL 60 References:										
UNIT 4 Destructors & Operator Over loading and Types Conversions 9+3 Introduction — Dynamic Initialization of Objects- Copy Constructor- Dynamic Constructors-Constructing Two – Dimensional Arrays – constant Objects- Destructors – Introduction – Defining Operator Overloading Binary Operators – Overloading Binary Operators Using – Overloading Unary Operators – Overloading Binary Operators – Overloading Operators – Type Conversions. UNIT 5 Inheritance: Extending Classes and Pointers, Virtual Functions and Polymorphism 9+3 Introduction-Defining Derived Classes- Single Inheritance-Making a Private Member Inheritance-Making a Private Member Inheritable- Multilevel Inheritance-Multiple Inheritance-Hierarchical Inheritance-Hybrid Inheritance-Virtual Base Classes-Abstract Classes- Constructors in Derived Classes-Wember Classes: Nesting of Classes-Introductor-Pointers to Objects-this Pointer-Pointers to Derived Classes-Virtual Functions- Pure Virtual Functions. 60 Text Book: 1. E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw-Hill Company Ltd, New Delhi, 2008. 60 References: 1. V. Ravichandran, Programming with C++, Second Edition Tata McGraw – Hill, New Delhi, 2006.				structors rarametern	ed constructors multiple e	onstructors n		s cons	il uctors	
Two – Dimensional Arrays – constant Objects– Destructors – Introduction – Defining Operator Overloading – Overloading Unary Operators – Overloading Binary Operators – Overloading Binary Operators Using Friends– Manipulation of Strings Using Operators– Rules for Overloading Operators– Type Conversions. UNIT 5 Inheritance: Extending Classes and Pointers, Virtual Functions and Polymorphism 9 + 3 Introduction–Defining Derived Classes– Single Inheritance–Making a Private Member Inheritance–Making a Private Member Inheritance– Multiplevel Inheritance–Multiple Inheritance–Hierarchical Inheritance– Hybrid Inheritance– 9 + 3 Introduction–Defining Derived Classes– Constructors in Derived Classes– Member Classes: Nesting of Classes– 9 + 3 Introduction– Pointers to Objects–this Pointer–Pointers to Derived Classes– Member Classes: Nesting of Classes– 9 Introduction– Pointers to Objects–this Pointer–Pointers to Derived Classes–Virtual Functions– Pure Virtual Functions. 9 LECTURE 45 TUTORIAL 15 PRACTICAL 0 TOTAL 60 Text Book: 1. E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw–Hill Company Ltd, New Delhi, 2008. 1. V. Ravichandran, Programming with C++, Second Edition Tata McGraw – Hill, New Delhi, 2006.	UNIT 4	Destruct	tors & O	perator Over load	ing and Types Conversion	ons			9+3	
 Overloading Unary Operators – Overloading Binary Operators – Overloading Binary Operators Using Friends– Manipulation of Strings Using Operators– Rules for Overloading Operators– Type Conversions. UNIT 5 Inheritance: Extending Classes and Pointers, Virtual Functions and Polymorphism 9 + 3 Introduction–Defining Derived Classes– Single Inheritance–Making a Private Member Inheritance–Making a Private Member Inheritable– Multilevel Inheritance–Multiple Inheritance–Hierarchical Inheritance–Hybrid Inheritance– Virtual Base Classes–Abstract Classes– Constructors in Derived Classes– Member Classes: Nesting of Classes– Introduction– Pointers to Objects–this Pointer–Pointers to Derived Classes–Virtual Functions– Pure Virtual Functions. LECTURE 45 TUTORIAL 15 PRACTICAL 0 TOTAL 60 Text Book: E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw–Hill Company Ltd, New Delhi, 2008. References: V. Ravichandran, Programming with C++, Second Edition Tata McGraw – Hill, New Delhi, 2006. 	Introduct	ion — Dyr	namic Init	ialization of Objects	- Copy Constructor- Dyna	mic Constru	ictors-(Construe	cting	
Friends- Manipulation of Strings Using Operators- Rules for Overloading Operators- Type Conversions. UNIT 5 Inheritance: Extending Classes and Pointers, Virtual Functions and Polymorphism 9 + 3 Introduction-Defining Derived Classes- Single Inheritance-Making a Private Member Inheritance-Making a Private Member Inheritance-Making a Private Member Inheritance-Multiple Inheritance-Hierarchical Inheritance-Hybrid Inheritance-Virtual Base Classes-Abstract Classes- Constructors in Derived Classes- Member Classes: Nesting of Classes-Introduction- Pointers to Objects-this Pointer-Pointers to Derived Classes-Virtual Functions- Pure Virtual Functions. IECTURE 45 TUTORIAL 15 PRACTICAL 0 TOTAL 60 Totat Book: 1. E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw-Hill Company Ltd, New Delhi, 2008. Feferences: 1. V. Ravichandran, Programming with C++, Second Edition Tata McGraw – Hill, New Delhi, 2006. Fill				5			*		<u> </u>	
UNIT 5 Inheritance: Extending Classes and Pointers, Virtual Functions and Polymorphism 9 + 3 Introduction-Defining Derived Classes – Single Inheritance–Making a Private Member Inheritance–Hierarchical Inheritance–Hybrid Inheritance–Virtual Base Classes–Abstract Classes– Constructors in Derived Classes– Member Classes: Nesting of Classes–Introduction– Pointers to Objects–this Pointer–Pointers to Derived Classes–Virtual Functions– Pure Virtual Functions. 9 + 3 LECTURE 45 TUTORIAL 15 PRACTICAL 0 TOTAL 60 Text Book: 1. E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw–Hill Company Ltd, New Delhi, 2008. References: 1. V. Ravichandran, Programming with C++, Second Edition Tata McGraw – Hill, New Delhi, 2006. Hill, New Delhi, 2006.			• •	U	• •	· ·			<u> </u>	
Introduction-Defining Derived Classes- Single Inheritance-Making a Private Member Inheritance-Multiple Inheritance-Hierarchical Inheritance-Hybrid Inheritance-Virtual Base Classes-Abstract Classes- Constructors in Derived Classes-Member Classes: Nesting of Classes-Introduction-Pointers to Objects-this Pointer-Pointers to Derived Classes-Virtual Functions- Pure Virtual Functions. LECTURE 45 TUTORIAL 15 PRACTICAL 0 TOTAL 60 Text Book: 1. E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw-Hill Company Ltd, New Delhi, 2008. References: 1. V. Ravichandran, Programming with C++, Second Edition Tata McGraw – Hill, New Delhi, 2006.								nversio		
Member Inheritable– Multilevel Inheritance–Multiple Inheritance–Hierarchical Inheritance– Hybrid Inheritance– Virtual Base Classes–Abstract Classes– Constructors in Derived Classes– Member Classes: Nesting of Classes– Introduction– Pointers to Objects–this Pointer–Pointers to Derived Classes–Virtual Functions– Pure Virtual Functions. LECTURE 45 TUTORIAL 15 PRACTICAL 0 TOTAL 60 Text Book: 1. E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw–Hill Company Ltd, New Delhi, 2008. Feferences: 1. V. Ravichandran, Programming with C++, Second Edition Tata McGraw – Hill, New Delhi, 2006. Keferences	UNII 5	Inneritan	ce: Extend	ing Classes and Pon	iters, virtual runctions and	Polymorphi	ISIII		9+3	
Virtual Base Classes–Abstract Classes– Constructors in Derived Classes– Member Classes: Nesting of Classes– Introduction– Pointers to Objects–this Pointer–Pointers to Derived Classes–Virtual Functions– Pure Virtual Functions. LECTURE 45 TUTORIAL 15 PRACTICAL 0 TOTAL 60 Text Book: 1. E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw–Hill Company Ltd, New Delhi, 2008. Image: Classes–Virtual Functions– Pure Virtual Functions– Pure Virtual Functions– McGraw–Hill Company Ltd, New Delhi, 2008. Image: Classes–Virtual Functions– Pure Virtual Functions– McGraw – Hill, New Delhi, 2006.			•		0			-		
Introduction– Pointers to Objects–this Pointer–Pointers to Derived Classes–Virtual Functions– Pure Virtual Functions. LECTURE 45 TUTORIAL 15 PRACTICAL 0 TOTAL 60 Text Book: 1. E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw–Hill Company Ltd, New Delhi, 2008. Image: Company Ltd, New Delhi, 2006. Image: Company Ltd, New Delhi, 2006. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <th></th> <td></td>										
LECTURE45TUTORIAL15PRACTICAL0TOTAL60Text Book:1.E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw-Hill Company Ltd, New Delhi, 2008.60References:1.V. Ravichandran, Programming with C++, Second Edition Tata McGraw – Hill, New Delhi, 2006.							-			
 E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw–Hill Company Ltd, New Delhi, 2008. References: V. Ravichandran, Programming with C++, Second Edition Tata McGraw – Hill, New Delhi, 2006. 										
 E.Balagurusamy, Object Oriented Programming with C++, 4th Edition, The McGraw–Hill Company Ltd, New Delhi, 2008. References: V. Ravichandran, Programming with C++, Second Edition Tata McGraw – Hill, New Delhi, 2006. 	Toyt Boo	Jz.								
 V. Ravichandran, Programming with C++, Second Edition Tata McGraw – Hill, New Delhi, 2006. 		E.Balag	•		e e	Edition, The	•			
New Delhi, 2006.	Reference	ces:								
	1.			0 0	C++, Second Edition Tata I	McGraw – H	Hill,			
	2.		,		of C++, Tata–McGraw–Hil	l publishing				

Company Ltd. New Delhi, 2003.

- 3. S.B. Lipman and J.Lafer, C++ Primer, Addition Wesley, Mass., 1998.
- 4. Ashok N.Kamthane, Object Oriented Programming with ANSI and TURBO C++, Pearson Education(P) Ltd, 2003.
- 5. BjarmeStroustrup, The C++ Programming Language, AT & T Labs, Murray Hills, NewJersey, 1998.

Website and e-Learning Source: <u>https://nptel.ac.in</u>

				CO	s VS PC	Os					
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO 1	3	2	1	0	0	2	2	2	3	2	0
CO 2	3	3	2	0	1	3	3	3	3	3	0
CO 3	3	2	1	0	0	2	2	2	3	2	0
CO 4	3	2	1	0	0	2	2	2	3	2	0
CO 5	3	2	1	0	0	2	2	2	3	2	0
TOTAL	15	11	6	0	1	11	11	11	15	11	0
SCALED VALUE	3	3	2	0	1	3	3	3	3	3	0
0 - No Relation, 1 -	Low Rel	lation, 2	2- Medi	um Re	lation, .	3- High	Relatio	n			

1-5→1, 6-10→2, 11-15→3

C	ourse Nar	ne		R THEORY AN PTOGRAPHY	ND	L	Т	Р	С
C	Course Co	de	Ŋ	YMA1E2B		3	1	0	4
С	Р	Α				L	Т	Р	Η
4	0	0				3	1	0	4
PRERE	QUISITE		Basic knowledge	e from C Lang	uage				
Objectiv									
-		-	for keeping inform				_		
			ues for determinin					with.	
3. To e	xplain fur		ls of cryptography		tion to netw			T TX/I	
		CO	URSE OUTCOME	d'		DOMAI	IN	LEVI	L
CO 1			pt and properties		hmetic in	Cognitiv	e	Apply	ing
		<u> </u>	to find the solution.						0
CO 2	•		cepts of public key	cryptography,	RSA and	Cognitiv	e	Analyz	ing
<u> </u>	-	curve cryp				Caracteria	. T	T., .1	
CO 3			concepts of Pseudo p			Cognitiv	e l	Jndersta	nung
CO 4			ies of finite fields for t	factoring polynom	ials	Cognitiv	e	Apply	ing
	over finit		a mathed for colvin	a the allintic aum	va digarata				
CO 5		n problem	no method for solving	g me emptic curv	ve disciele	Cognitiv	e	Apply	ing
UNIT I	Cryptog		•						9+3
	mple Crvi	otosystems	s: Basic notions –	Digraph transfo	rmation – E	Encipherin	g Mati	ices –	Linear
algebra r		· · · · J · · · · · ·		8		F	0		
	Public K	Key							9 + 3
			y: Classical versus pul						
			– Discrete Log: Diffle	-Hellman key excl	hange system	- Massey-	Omura	cryptosys	stem –
UNIT 3			al signature standard						9+3
			Propositions – The rho	o method.					7+5
	Factorin								9+3
Fermat fa	actorizatio	n and fact	or bases – Factor bas	se algorithm – He	euristic time	estimate –	Conti	ued Fra	ction
			factoring algorithm.	-			001111		
UNIT 5	Elliptic C	Curves	0 0						9+3
	_		D: A	T T A 1	CD:CO II	11 1	1		
		•	yptosystems: Discrete L Gamel cryptosystem	<u> </u>	0	•			log of
		45	TUTORIAL		CTICAL	0		ΓAL	60
		ULL ST				v	10		00
Text Bo				$C \rightarrow 1$	1 1.4.	с ·	X 7 1	NT NZ	1
	014.	A Course 1	in Number Theory and	Cryptography", S	econd edition	, Springer-	verlag	, New Yo	ork,
	Unit	Chapter	Sections						
	I	III	Sec 1-2 (Pages :	54-74)					
	II	IV	Sec 1-2 (Pages)						
	III	V		126-134, 138-142))				
	IV	v	Sec 3-4 (Pages		,				
	V	v VI		143-139) 166-182, 191-192))				
Referen	ces:	* *		100 102, 171-172)	,				
1.		tinson "C	ryptography", CRC	Press New Yor	k. 1995				
L1.	D.R.0		-JEroBruphij, Cite		, 1770.				

- 2. A. J Meneze, P.R.Oorche and S.A Vans ton " Hand book of applied Cryptography", Crc Press New York, 1995.
- 3. William Stallings, "**Cryptograpy and Network Security Principles and Practice**" Prentice Hall, Fifth Edition, New Delhi, 2011.

Website and e-Learning Source

- 1. <u>http://abel.harvard.edu/quals/index.html[HavardUniversity]</u>
- 2. <u>https://www-wp.maths.cam.ac.uk/documents/schedules.pdf/[</u>CambridgeUniversity]

				CO	s VS PO	Os					
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO 1	3	3	2	0	1	3	3	3	3	3	0
CO 2	3	3	3	1	2	3	3	3	3	3	1
CO 3	3	2	1	0	0	2	2	2	3	2	0
CO 4	3	3	2	0	1	3	3	3	3	3	0
CO 5	3	3	2	0	1	3	3	3	3	3	0
TOTAL	15	14	10	1	5	14	14	14	15	14	1
SCALED VALUE	3	3	2	1	1	3	3	3	3	3	1
0 - No Relation, 1 -		lation, 2	2- Medi	ium Re	lation, 3	3- High	Relatio	n		1	1

 $1 \xrightarrow{-5 \to 1, 6 \xrightarrow{-10 \to 2, 11 \xrightarrow{-15 \to 3}}}$

AUTOMATA THEORY YMA1E2CIIIICourse CodeYMA1E2C310CPALTP400310PREREUISITEKnowledge about Set theory, Relations, functions and basic concepts of Grammars.Objective:The purpose of this course is to acquaint the student with an overview of the theoretical foundations of computer science from the perspective of formal languages.· Classify machines by their power to recognize languages.·DOMAINLEVCO1Explain deterministic and non-deterministic machines.Oomation··CO2Construct NFA to DFA and minimization DFACognitiveUnderstCO3Determine Parse Trees and normal forms of Context Free GrammarsCognitiveEvalueCO4Analyze the Equivalence of PDA's and CFG'sCognitiveCognitiveEvalueUNIT IFinite Automata and Regular ExpressionsCognitiveEvalueFinite state systems- Deterministic Finite state Automata- Non deterministic Finite Automata Automata with Epsilon-Transitions – Regular Expressions- Finite Automata and Regular Expressions-Evaluation and Regular Expressions-Finite Automata and Regular Expressions-	anding ying ating
CPALTP400310PREREQUISITEKnowledge about Set theory, Relations, Functions and basic concepts of Grammars.Objective: roncepts of Grammars.Objective: concepts of Grammars.Colspan="4">Objective: concepts of Grammars.Objective: roncepts of this course is to acquain the student with an overview of the theoretical foundations of computer science from the perspective of formal languages.Classify machines by their power to recognize languages.Classify machines by their power to recognize languages.Employ finite state machines to solve problems in computing.Explain deterministic and non-deterministic machines.COURSE OUTCOMESCognitiveCognitiveCognitiveCognitiveCognitiveCognitiveCognitiveCognitiveCognitiveCognitiveFinite Automata and regular expressionsCognitiveCognitiveCognitiveCognitiveCognitiveApplCO1Explain finite automata and regular expressionsCognitiveCognitiveCognitiveFini	H 4 7EL anding ying ating
400310PREREQUISITEKnowledge about Set theory, Relations, functions and basic concepts of Grammars.Objective: The purpose of this course is to acquaint the student with an overview of the theoretical foundations of computer science from the perspective of formal languages. • Classify machines by their power to recognize languages. • Employ finite state machines to solve problems in computing. • Explain deterministic and non-deterministic machines.DOMAINLEVCOURSE OUTCOMESDOMAINLEVCognitiveCognitiveUnderstCognitiveApplCO4Analyze the Equivalence of PDA's and CFG'sCognitiveAnalyzCognitiveEvaluUNIT 1Finite Automata and Regular ExpressionsFinite state systems- Deterministic Finite state Automata- Non deterministic Finite Automata	TEL anding ying ating
concepts of Grammars.Objective:The purpose of this course is to acquaint the student with an overview of the theoretical foundations of computer science from the perspective of formal languages.• Classify machines by their power to recognize languages.• Classify machines by their power to recognize languages.• Employ finite state machines to solve problems in computing.• Explain deterministic and non-deterministic machines.• Explain deterministic and non-deterministic machines.DOMAINLEVCOURSE OUTCOMESDOMAINLEVCO1Explain finite automata and regular expressionsCognitiveUnderstCO2Construct NFA to DFA and minimization DFACognitiveApplCO3Determine Parse Trees and normal forms of Context Free GrammarsCognitiveEvaluCO4Analyze the Equivalence of PDA's and CFG'sCognitiveAnalyzCO5Determine the Pumping Lemma for Context-free LanguagesCognitiveEvaluUNIT IFinite Automata and Regular ExpressionsFinite state systems- Deterministic Finite state Automata- Non deterministic Finite Automata	anding ying ating
Objective: The purpose of this course is to acquaint the student with an overview of the theoretical foundations of computer science from the perspective of formal languages. • Classify machines by their power to recognize languages. • Classify machines by their power to recognize languages. • Employ finite state machines to solve problems in computing. • Explain deterministic and non-deterministic machines. COURSE OUTCOMES DOMAIN LEV C0 1 Explain finite automata and regular expressions Cognitive Underst C0 2 Construct NFA to DFA and minimization DFA Cognitive Appl C0 3 Determine Parse Trees and normal forms of Context Free Grammars Cognitive Evalu C0 4 Analyze the Equivalence of PDA's and CFG's Cognitive Analyze C0 5 Determine the Pumping Lemma for Context-free Languages Cognitive Evalu UNIT 1 Finite Automata and Regular Expressions Finite Automata and Regular Expressions Finite Automata	anding ying ating
The purpose of this course is to acquaint the student with an overview of the theoretical foundations of computer science from the perspective of formal languages.• Classify machines by their power to recognize languages.• Employ finite state machines to solve problems in computing.• Explain deterministic and non-deterministic machines.COURSE OUTCOMESDOMAINCO1Explain finite automata and regular expressionsCO2Construct NFA to DFA and minimization DFACO3Determine Parse Trees and normal forms of Context Free GrammarsCO4Analyze the Equivalence of PDA's and CFG'sCO5Determine the Pumping Lemma for Context-free LanguagesUNIT IFinite Automata and Regular ExpressionsFinite state systems- Deterministic Finite state Automata- Non deterministic Finite Automata-	anding ying ating
COURSE OUTCOMESDOMAINLEVCO1Explain finite automata and regular expressionsCognitiveUnderstCO2Construct NFA to DFA and minimization DFACognitiveApplCO3Determine Parse Trees and normal forms of Context Free GrammarsCognitiveEvaluCO4Analyze the Equivalence of PDA's and CFG'sCognitiveAnalyzCO5Determine the Pumping Lemma for Context-free LanguagesCognitiveEvaluUNIT IFinite Automata and Regular ExpressionsFinite state systems- Deterministic Finite state Automata- Non deterministic Finite Automata-	anding ying ating
CO1Explain finite automata and regular expressionsCognitiveUnderstCO2Construct NFA to DFA and minimization DFACognitiveApplCO3Determine Parse Trees and normal forms of Context Free GrammarsCognitiveEvalueCO4Analyze the Equivalence of PDA's and CFG'sCognitiveEvalueCO5Determine the Pumping Lemma for Context-free LanguagesCognitiveEvalueUNIT IFinite Automata and Regular ExpressionsEvalueEvalue	anding ying ating
CO 2Construct NFA to DFA and minimization DFACognitiveAppleCO 3Determine Parse Trees and normal forms of Context Free GrammarsCognitiveEvaluCO 4Analyze the Equivalence of PDA's and CFG'sCognitiveAnalyzeCO 5Determine the Pumping Lemma for Context-free LanguagesCognitiveEvaluUNIT IFinite Automata and Regular ExpressionsEvaluFinite state systems- Deterministic Finite state Automata- Non deterministic Finite Automata-	ying ating
CO 3Determine Parse Trees and normal forms of Context Free GrammarsCognitiveEvaluCO 4Analyze the Equivalence of PDA's and CFG'sCognitiveAnalyzeCO 5Determine the Pumping Lemma for Context-free LanguagesCognitiveEvaluUNIT IFinite Automata and Regular ExpressionsEvaluFinite state systems- Deterministic Finite state Automata- Non deterministic Finite Automata	ating
GrammarsCognitiveEvaluationCO 4Analyze the Equivalence of PDA's and CFG'sCognitiveAnalyzeCO 5Determine the Pumping Lemma for Context-free LanguagesCognitiveEvaluationUNIT IFinite Automata and Regular ExpressionsEvaluationFinite state systems- Deterministic Finite state Automata- Non deterministic Finite Automata-Automata-	U
CO 5 Determine the Pumping Lemma for Context-free Languages Cognitive Evalu UNIT I Finite Automata and Regular Expressions Finite state systems- Deterministic Finite state Automata- Non deterministic Finite Automata-	zing
UNIT I Finite Automata and Regular Expressions Finite state systems- Deterministic Finite state Automata- Non deterministic Finite Automata-	
Finite state systems- Deterministic Finite state Automata- Non deterministic Finite Automata-	ating
	9+3
Automata with Epsilon-Transitions – Regular Expressions- Finite Automata and Regular Expressions.	
UNIT 2 Properties of Regular Languages	9+3
The Pumping Lemma for Regular Languages – Application of the Pumping Lemma – Closure Properties of F Languages – Reversal – Homomorphism – Decision properties of Regular Languages – Converting NFA's to I – Minimization of DFA's.	
UNIT 3 Context Free Grammars and Languages	9+3
Context Free Grammars – Parse Trees – Normal forms for Context Free Grammars – Chomsky Normal Greibach Normal Form.	Form –
UNIT 4 Pushdown Automata	9+3
Definition – The languages of a PDA – Equivalence of PDA's and CFG's – Deterministic Pushdown	715
Automata.	
UNIT 5 Properties of Context-Free Languages	9+3
The Pumping Lemma for Context-free Languages – Closure Properties of Context- Free Languages	
– Decision properties of CFL's.	
LECTURE 45 TUTORIAL 15 PRACTICAL 0 TOTAL	60
Text Book:	1
 John. E. Hopcraft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory, Languages and Computation, Pearson Education, 2013. 	
References:	
 A Salomaa, Formal Languages, Academic press, New York, 1973 John C. Martin, Introduction to Languages and theory of Computations (2ndEdn), Tata – McGraw Hill 	
company Ltd., New Delhi, 1997.	
Website and e-Learning Source: NPTEL Courses and MOOC Courses.	

COs VS POs												
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	
CO 1	3	2	1	0	0	2	2	2	3	2	0	
CO 2	3	3	2	0	1	3	3	3	3	3	0	
CO 3	3	3	3	2	3	3	3	3	3	3	2	
CO 4	3	3	3	1	2	3	3	3	3	3	1	
CO 5	3	3	3	2	3	3	3	3	3	3	2	
TOTAL	15	14	12	5	9	14	14	14	15	14	5	
SCALED VALUE	SCALED VALUE 3 3 3 1 2 3 3 3 3 1											
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation												
	15.0											

 $1 - 5 \rightarrow 1, 6 - 10 \rightarrow 2, 11 - 15 \rightarrow 3$

SEMESTER II

C	ourse N	ame		ADVAN	CED AI	JGEBRA	L	Т	P		C
	ourse C				YMA201		4	1	0		5
С	Р	Α					L	Т	Р		Н
5	0	0					4	1	0		5
PRERE	QUISIT	Έ	Ba	asic knowledge	e from C	C Language					
Objectiv	e:										
	•				•	l extension, roots					
			ision r	ings, solvabilit	y by rad	icals and to deve	lop comp	utatio	nal ski	ll iı	1
abstract	algebra				~						
		(COURS	SE OUTCOMES	8		DOMA	IN	LE	VE	L
CO 1	_	-	-	s of Extension Fiel			Cogniti	ve	Under	stan	ding
CO 2				ions by radicals alonstructions.	ong with	the understanding	Cogniti	ve	App	olyiı	ıg
CO 3	Expla	in the basi	c aspec	ts of elements of C	Galois the	ory.	Cogniti		Under		U
CO 4				n's theorem on fini		6	Cogniti		Under		U
CO 5		nstrate the luare theor		mathematical idea	s tor theo	rem of Frobenius	Cogniti	ve	Under		U
UNIT I										12	+ 3
	n fields ·	– Transce	ndence	of e.							
UNIT 2		1 14	1 .							12	+ 3
UNIT 3	Polynomi	als More	e about	roots.						12	+ 3
Elements	of Galois	theory								14	+ 3
UNIT 4		, theory.								12	+ 3
	lds - We	edderburn	's theor	em on finite divi	ision ring	gs.					
UNIT 5										12	+ 3
	· ·	licals - A t er theradic		of Frobenius - Inte	egral Qua	ternions and the Fou	ır- Square tl	heorem	•		
LEC	TURE	(50	TUTORIAL	15	PRACTICAL	0	TOT	AL	(50
	N. Herst	-		, ,	VileyEas	tern Limited,New	Delhi,1975	•			
	Unit	Chapter	Section								
	I	<u>5</u> 5		on 5.1 and 5.2 ons5.3 and 5.5							
	II										
	III	5	Section								
	IV	7		ons7.1and7.2(Theo		only)					
	V	5 7		on5.7(omitLemma na5.7.2andTheore							
		/		ons7.3 and7.4	mJ.7.1)						
 References: M.Artin,Algebra,PrenticeHallofIndia,1991. P.B.Bhattacharya,S.K.Jain,andS.R.Nagpaul,BasicAbstractAlgebra(II Edition)Cambridge UniversityPress, 1997. (Indian Edition) I.S.LutherandI.B.S.Passi,Algebra,Vol.I–Groups(1996);Vol.IIRings,NarosaPublishingHouse, 											

NewDelhi, 1999

- 4. D.S.Malik, J.N.Mordeson and M.K.Sen, Fundamental of Abstract Algebra, McGraw Hill (Internat ional Edition), New York. 1997.
- 5. N.Jacobson, BasicAlgebra, Vol. I&II

HindustanPublishingCompany,NewDelhi.

Website and e-Learning Source

- 1. <u>http://mathforum.org</u>,
- 2. <u>http://ocw.mit.edu/ocwweb/Mathematics</u>
- 3. <u>http://www.opensource.org</u>,
- 4. <u>www.algebra.com</u>

COs VS POs													
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2		
CO 1	3	2	1	0	0	2	2	2	3	2	0		
CO 2	3	3	2	0	1	3	3	3	3	3	0		
CO 3 3 2 1 0 0 2 2 2 3 2 0													
CO 4	3	2	1	0	0	2	2	2	3	2	0		
CO 5	3	2	1	0	0	2	2	2	3	2	0		
TOTAL	15	11	6	0	1	11	11	11	15	11	0		
SCALED VALUE 3 3 2 0 1 3 3 3 3 0													
0 - No Relation, 1 -	Low Rel	lation, 2	2- Medi	ium Re	lation, 3	3- High	Relatio	on					

 $1 ext{-}5 ext{-}1, 6 ext{-}10 ext{-}2, 11 ext{-}15 ext{-}3$

C	ourse Nan	ne	COMPLEX ANALYSIS	L	Т	Р	С
C	ourse Coo	de	YMA202	4	1	0	5
С	Р	Α		L	Т	Р	Η
5	0	0		4	1	0	5
PRERE	QUISITE		Basics laws of arithmetic - Geometric re				
			numbers - Differentiation and Integration	n – A mixtı	ire o	f geome	etric
			feeling and computational skill.				
Objectiv							
Ŭ	students 1						
-	•	-	icular the theory of <u>conformal mappings</u> , ha	as many phy	vsical	applica	tions
		0	t <u>analytic number theory</u> . become very popular through a new bo	ost from co	mnle	v dynau	mice
			als produced by iterating holomorphic fun		mpic	<u>x uyna</u>	
			ation of complex analysis is in <u>string theory</u>		lies c	onform	al
	-	ntum field				011101111	ui
	<u>quan</u>		URSE OUTCOMES	DOMAIN	I	LEVE	EL
CO 1	Demons	strate the ba	asic concept of line integrals, rectifiable arcs with	Cognitive	T	Jndersta	ndino
	example	s and prove	Cauchy's theorems.	Cogintive		Jildeista	inding
CO 2	Demons theorem.		omology in complex plain and prove residue	Cognitive	τ	Jndersta	nding
CO 3			cal products and gamma functions with examples.	Cognitive	τ	Jndersta	nding
CO 4	Illustrat	te the use of	the reflection principle and prove Riemann	Cognitive	τ	Jndersta	nding
		g theorem.	and the full die formations			T 1 /	1.
CO 5		-	properties of elliptic functions.	Cognitive	l	Jndersta	U
UNIT I		x Integrati		·	-		2 + 3
			chy's Theorem for a Rectangle- Cauchy's Theorem				
			t with respect to a closed curve – The Integral for Functions:Removable Singularities- Taylors's				
			ximum Principle.	1 lieofeili – Z		ind poles	, –
			-				
UNIT 2		x Integrati			~		2 + 3
			'heorem: Chains and cycles- Simple Continuity - Ho	•••			
-		ent principl	uchy's theorem - Locally exact differentials- Multil	pry connected	regio	ns - Kesi	uue
	•	· · ·	and Harmonic Functions: Evaluation of definite inte	grals - Definit	tion of	f Harmon	ic
			Iean value property - Poisson formula.	8			
UNIT 3			Developments				2 + 3
			ctions: Partial fractions - Infinite products - Cano				
			s Theorem.Riemann Theta Function and Normal			•	
			e plane – The zeros of zeta function – Equicontinu	ity – Normali	ty and	l compac	tness –
			analytic functions – The Classical Definition.			1/	
UNIT 4		al mapping					2 + 3
			Statement and Proof – Boundary Behaviour – U				-
			gons: Behaviour at an angle – Schwarz- Christof		-	ping on	a
	1		s: Functions with mean value property – Harna	ck's principle	e.		
UNIT 5	Elliptic f	unctions					2 + 3
			Representation by Exponentials-The Fourier De				
			ns:The Period Module-Unimodular Transformatio WeierstrassTheory:TheWeierstrass @-function				
Topernes	or Emptic	a uncuons.	weierstrass riteory. The weierstrass go-fulletion	i neruneti0i	10 5	(s)anu	5 (8)-

Thedifferentialequation	on – The	modular	equatio	n $\lambda(\tau)$	– TheC	onforma	lmappin	gby $\lambda(\tau)$					
LECTURE	60	Т	UTORI	IAL	15	PRAC	CTICAI	L 0	TC	DTAL	60		
Text Book:		L		•		•							
1. Lars F. Ahlfors, Complex Analysis, (3rd Edition) McGraw Hill Book Company, New York, 1979													
References:													
1. H.A. Presfly, Introduction to complex Analysis, Clarendon Press, ford, 1990.													
2. J.B. Corway, Functions of one complex variables, Springer - Verlag, International student Edition, Narosa													
Publishing Co.													
3. E. Hille, Analytic fu		•	-										
4. M.Heins, Complex f			Academi	c Press,	New Yo	ork, 1968	•						
Website and e-Lear	ning Sou	irce											
https://nptel.ac.in													
				CO	s VS PO)s							
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2		
CO 1	3	2	1	0	0	2	2	2	3	2	0		
CO 2	3	2	1	0	0	2	2	2	3	2	0		
CO 3	3	2	1	0	0	2	2	2	3	2	0		
CO 4	3	2	1	0	0	2	2	2	3	2	0		
CO 5	3	2	1	0	0	2	2	2	3	2	0		
TOTAL	15	10	5	0	0	10	10	10	15	10	0		
SCALED VALUE	3	2	1	0	0	2	2	2	3	2	0		

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

 $1 \text{-} 5 \rightarrow 1, 6 \text{-} 10 \rightarrow 2, 11 \text{-} 15 \rightarrow 3$

C	ourse Nam	e	PARTIAL DIFFE	ERENTL	AL EQUATIONS	L	Т	Р	С
C	ourse Cod	e		YMA203		4	1	0	5
С	Р	Α				L	Т	Р	Н
5	0	0				4	1	0	5
	QUISITE		The only prerequisi	ite is a go	od course in Calcu	lus.			
Objectiv		11 /							
1 ne stude	ents can be		ustom using Dartial	1 Differer	tial Equations				
1. 2.			system using Partial subsequently solv			hehavior o	oon he de	ecribed	1 by
2.	Partial Dif			e physice	i situations whose			scribed	roy
			1						
		COU	RSE OUTCOME	S		DOMA	IN	LEV	EL
CO 1		e basic con with examp	ncept of first order les.	P.D.E an	d classification of	Cognitiv	ve R	ememt	bering
CO 2	Explain t	he origin of	second order P.D.E	with exan	ples.	Cognitiv	ve U	ndersta	inding
CO 3	Apply th problems.	-	of Laplace equation	n to solv	e boundary value	Cognitiv	ve	Apply	ing
CO 4	Classify v	wave equati	on with examples.			Cognitiv	ve	Analyz	zing
CO 5	Appraise	the elemen	tary solution of diffu	sion equa	ion.	Cognitiv	ve	Evalua	ting
UNIT I			RENTIAL EQUAT						2 + 3
		-	Origins of First O		-	· · · · · · · · · · · · · · · · · · ·			
-			ions of the first ord		· · · · · · · · · · · · · · · · · · ·	· · · · ·			st
			aracteristics – Comp cobi's method.	patible sy	stem of First order	Equations	s – Solut	ions	
Satisfyili	g Ulvell Col	liuition, Ja	cool s methou.						
UNIT 2	PARTIA	LDIFFI	ERENTIALEQU		NSOFTHE2nd	ORDER		1	2 + 3
The Origi			tions – Linear partia				coefficier	its –	
· ·			ents – Separation of v	ariables -	The method of Integ	gral Transfo	orms – N	on – lin	ear
	of the secon		ΓΙΟΝ					1	<u></u>
	LAPLAC		e equation – Famil	lies of F	uinotential Surface	s = Rounc	larv valı		$\frac{2+3}{1-2}$
			e Boundary Value P						
			's Function for Lapla						
UNIT 4	THE WAY	VE EQUAT	TION					1	2 + 3
The Occu	urrence of the	he wave eq	uation in Physics –	- Element	ary solutions of the	e one – din	nensiona	l wave	1
-		•	ne, Application of t	he calcul	us of variations – T	Three-dime	ensional	probler	n –
General s	solutions of	the wave e	equation.						
								1	<u></u>
UNIT 5	I HE DIFI	FUSION E	QUATION						2 + 3
	•		e Diffusion Equant's functions.	ation– S	eparation of vari	ables – '	The use	e of Iı	ntegral
LEC	TURE	60	TUTORIAL	15	PRACTICAL	0	ТОТА	L	75
<u></u>		I					1	I	

Text Book:

1. K. Sankara Rao, Introduction to Partial Differential Equations, Second edition – Prentice – Hall of India, New Delhi 2006

References:

- 1. Ian Sneddon Elements of Partial Differential Equations McGraw Hill International Book Company, New Delhi, 1983
- 2. M.D. Raisinghania Advanced Differential Equations S. Chand and Company Ltd., New Delhi, 2001
- **3.** J.N. Sharma & K. Singh Partial Differential Equations for Engineers & Scientists, Narosa Publishing House, 2001
- 4. R. Dennemeyer, Introduction to Partial Differential Equations and Boundary value Problems, McGraw Hill Book Company, New York, 1968.

Website and e-Learning Source: ;https://nptel.ac.in

COs VS POs												
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	
CO 1	2	1	0	0	0	1	1	1	2	1	0	
CO 2	3	2	1	0	0	2	2	2	3	2	0	
CO 3	3	3	2	0	1	3	3	3	3	3	0	
CO 4	3	3	3	1	2	3	3	3	3	3	1	
CO 5	3	3	3	2	3	3	3	3	3	3	2	
TOTAL	14	12	9	3	6	12	12	12	14	12	3	
SCALED VALUE	SCALED VALUE 3 3 2 1 2 3 3 3 3 1											
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation												

 $1 ext{-}5 ext{-}1, 6 ext{-}10 ext{-}2, 11 ext{-}15 ext{-}3$

	ourse Nam		ADVANCED N	UMERI	CAL METHODS	L	Т	Р	С
C	ourse Cod	e		YMA204	l i	4	1	0	5
С	P	Α				L	Т	Р	H
5	0	0				4	1	0	5
	QUISITE		Knowledge about	<u>ıt Numb</u>	er system, polyn	omials a	nd matr	ices.	
Objectiv		•		1	-4-4:	4	1		
			to develop Numeri nterpolation by poly						
		-	Interpolation by pory Integration.	nonnais,	the solution of non	innear equa	uions, in	umenc	ai
			URSE OUTCOME	S		DOMA	[N	LEVI	EL
CO 1			ue theorem for deriva verify this point lies in			Cognitiv	ve	Apply	ing
CO 2			c polynomials using a			Cognitiv	ve	Evalua	ting
CO 3	Analyze methods.		n of nonlinear equation	ons by the	appropriate	Cognitiv	ve	Analyz	zing
CO 4	Examine	the triang	ular factorization is u	nique.		Cognitiv	ve	Analyz	zing
CO 5	Estimate	the value	of the given integrals	using app	copriate methods.	Cognitiv	ve	Evalua	ting
UNIT I			and Errors						2 + 3
			s -The Representati						
-			gation – Computatio			ation-Some	e comme	nts on	
	· · · · · ·		me mathematical pr	eliminario	es.			1	2+3
	-		olynomials d Uniqueness of the Ii	nternolatir	a polynomial-The di	vided diffe	ence tabl		
			Interpolation in a func						ciroi
UNIT 3			inear equations					1	2 + 3
A survey Method.	of iterative	methods-	Fixed point iteration-	Polynomi	al Equations: Real H	Roots-Comp	olex roots	and N	Iuller's
UNIT 4	Matrices	and Syster	ns of Linear equatio	ns				1	2 + 3
The solut	tion of line	ar systems	by elimination-The	e pivotin	g strategy - The t	riangular f	actorizat	ion.	
UNIT 5	Differenti	ation and	Integration					1	2 + 3
Numerica	l differentia	tion- Nume	erical Integration: Son	ne basic ru	lles-Composite rules.				
LEC	TURE	60	TUTORIAL	15	PRACTICAL	0	TOTA	L	75
Text Boo	ok:			<u>.</u>					
1. Ele	•		alysis-An algorithmic 6, 3.1, 3.3, 3.6, 3.7, 4.		•		e Boor, So	ections	1.1 to
Reference			,						
1. Azı	mysackleh e	t al, Classi	cal and modern Nume	rical Anal	ysis, CRC Press,Cop	oyright 2009).		
Website	and e-Lea	rning Sou	arce; <u>https://nptel.ac</u>	: <u>.in</u>					

COs VS POs												
PO 1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PS01 PS02												
CO 1	3	3	2	0	1	3	3	3	3	3	0	
CO 2	3	3	3	2	3	3	3	3	3	3	2	
CO 3	3	3	3	1	2	3	3	3	3	3	1	
CO 4	3	3	3	1	2	3	3	3	3	3	1	
CO 5	3	3	3	2	3	3	3	3	3	3	2	
TOTAL	15	15	14	6	11	15	15	15	15	15	6	
SCALED VALUE 3 3 3 2 3 3 3 3 3 2												
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation												

C	ourse Nam	ne			E MANA CHNIQU	AGEMENT UES	L	Т	Р	С
C	ourse Cod	le		Y	MA2E1	Α	3	1	0	4
С	P	Α					L	Т	P	Н
4	0	0					3	1	0	4
	QUISITE		Ba	sic knowledge	e about 1	linear programm	ing proble	ems.		
	To introduc					er to get best results			l pos	sible
			-			and constrained pro-				
						a from its physical o		ons and		
	-		-	0		ving these problem	s.			
3.	ro equip in	ie know	ledge (of various types	of queun	ng problem				
		С	OURS	E OUTCOMES	S		DOMAI	NI	EVE	EL
CO 1	Identify	the opti	mal all	ocation using se	quencing	g problems.	Cognitiv	re A	pplyi	ing
CO 2	Apply D programm	-	progr	amme to find t	the solut	ion of L.P.P. by	Cognitiv	re A	pplyi	ing
CO 3		-	-	licy to find the se			Cognitiv	ve A	pplyi	ing
CO 4	problems.					th suitable simple	Cognitiv	e A	nalyz	ing
CO 5				of problems or inventory theory		inisticmodels and	Cognitiv	ve A	pplyi	ing
UNIT I	Sequenci									9 + 3
		lgorithm	– njob	s and two machin	es – n joł	os and m machines –	- solved pro	blems – tw	ojob a	and m
machine UNIT 2	s. Dynamic	Drogr	mmin	a a a a a a a a a a a a a a a a a a a					0	+3
	on - Recursi	ive relat	ionship	<u>– Dynamic progr</u>	amming a	lgorithms – solved p	roblems – S	olution of		
	programmin		-onomp	D Jamino Progra		-gorioning sorrow p				,
	Replacem									9 + 3
				for equipment w l staffing – Solved		teriorates gradually s.	 Replacent 	nent of ite	ms th	nat fail
UNIT 4	Queuing 7		<u> </u>	0	1				9	9 + 3
Introduct	tion – Class	sificatio	n of Q	ueues – Queuing	g Problen	ns -(M/M/1): (∞/FC	CFS) – (M/	M/1): (N/I	FCFS) –
/				(N/FCFS) - solv	ed proble	ems of the above ty	pes.		-	
UNIT 5	Inventory	v Contro	bl						9	9 + 3
	on–Determi			Purchasing proble tages–Production		o shortages – Produc	ction proble a ges –			
				obabilisticmodels			u 500		101010	lering
LEC	TURE	4	5	TUTORIAL	15	PRACTICAL	0	TOTAL		60
Text Bo	ok:									
		operati	ions Re	esearch, PK Gup	ta & Ma	n Mohan, Fourteen	th			
	Edition,Sul	ltanCha	nd &S	ons, New Delhi,	2014.					
		г	** •				1			
		F	Unit	Chapter		Pages				
		ŀ	I	Chapter 17		383 - 399				
		F	II	Chapter18		409 - 428				
		F	III	Chapter24		<u>619 - 630</u> <u>535 - 556</u>				
			IV	Chapter22		333 - 330				

		V C	hapter2	3		571 –	600				
References:											
1. Operation	nsResearc	ch–AnIn	troducti	on–H.A.	Taha–Pi	enticeHa	allPublic	ation.			
2. Operation	nsResearc	ch–S.D.S	Sharma–	Kedarna	thRamn	ath&Co.	,				
3. Operation	nsResearc	ch –PK.0	Guptaan	dD.S.Hi	ra –Sulta	nChand	&Sons.				
4. Operation	nsReseard	ch–	-								
PathakH.	K,Pradee		iandShar	rma.C,Sł	nreeShik	shaSahit	yaPraka	shan, Me	erut, Seco	ond	
edition,2											
Website and e-Lear 1. <u>http://ww</u>	0		18-19/dr	nt/cxmat	h111941	ntm[The]	Universi	tvofEdinl	hurohl		
-	-		-					-	ourginj		
2. <u>maths.ca</u>	<u>m.ac.uk/u</u>	indergra	<u>d/files/s</u>	chedules	<u>.par</u> [Un	lversityo	iC <u>a</u> mbri	agej			
				CO	s VS PO	<u>)</u> s					
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO 1	3	3	2	0	1	3	3	3	3	3	0
CO 2	3	3	2	0	1	3	3	3	3	3	0
CO 3	3	3	2	0	1	3	3	3	3	3	0
CO 4	3	3	3	1	2	3	3	3	3	3	1
CO 5	3	3	2	0	1	3	3	3	3	3	0
TOTAL	15	15	11	1	6	15	15	15	15	15	1
SCALED VALUE	3	3	3	1	2	3	3	3	3	3	1
0 - No Relation, 1 –	Low Re	lation, 2	2- Med	ium Re	lation, 3	3- High	Relatio	n			
1-5→1, 6-10→2, 11-	15→3										

	Course Nar	no	DATA SCIENCE USING R								
	Course Mar	ne	PROGRAMMING	L	Т	Р	C				
	Course Co	de	YMA2E1B	3	1	0	4				
C	Р	A		L	Τ	Р	H				
4	0	0		3	1	0	4				
PRER	EQUISITE		Knowledge about basic computer progra operators.	mming co	omma	nds and					
Object	ive: Learn Fund	lamentals o									
			ferent functions in R, how to read data into R, a	ccessing R	packag	ges, writi	ing R				
		00 0	and organizing data using R functions.								
			atistical data analysis with examples. ill give an idea to collect, compile and visualize	data using	statist	col func	tions				
4.	The whole	synabus w	In give an idea to conect, complie and visualize	data using	statist		lions.				
		CO	URSE OUTCOMES	DOMAI	N	LEVI	EL				
CO 1	Explain	the basics	of R.	Cognitiv	ve I	Understa	nding				
CO 2	Apply t	he R Da	ta Types Vectors, Lists, Matrices, Arrays,	Cognitiv	70	Apply	inα				
	Factors,	Data Fram	e.	Coginav		rippiy	ing				
CO 3	Make us	e of R-Fu	nction, R Strings R Matrices, and R Arrays.	Cognitiv	/e	Apply	ing				
CO 4	Make use R.	e of CSV Fi	ile and Excel Loading and handling Data in	Cognitiv	ve .	Apply	ing				
CO 5	Determi	ne measur	es of central tendency and dispersion.	Cognitiv	/e	Evalua	ting				
UNIT	I						9+3				
comma to get s – Enter	and Prompt, started: insta ring Data fro	R script fil lled.packa	 Why R? – Advantages of R over Other Prograde, comments – Handling Packages in R: Installiges(), packageDescription(), help(), find.packagerd – Printing fewer digits or more digits – Spectral Sector Printing fewer digits or more digits – Spectral Sector Printing fewer digits or more digits – Spectral Sector Printing fewer digits or more digits – Spectral Sector Printing fewer digits or more digits – Spectral Sector Printing fewer digits or more digits – Spectral Sector Printing fewer digits or more digits – Spectral Sector Printing fewer digits – Spect	ng a R Pac ge(), library	kage, H v() - Inj	Few com	mands Output				
and –ir							9+3				
R Data	Types Vecto		atrices, Arrays, Factors, Data Frame – R - Variables				types				
Logical stateme	Operator, As	signment C statement,	(), Deleting Variables - R Operators: Arithmetic Ope Operators, Miscellaneous Operators - R Decision Mal switch statement – R Loops: repeat loop, while loop	king: if state	ement, i	f – else					
UNIT		1 0		~ ~ ~			9 + 3				
calling Manipu function List Tag Matrice R Array	R-Function : function definition, Built in functions: mean(), paste(), sum(), min(), max(), seq(), user-defined function, calling a function without an argument, calling a function with argument values - R-Strings – Manipulating Text in Data: substr(), strsplit(), paste(), grep(), toupper(), tolower() - R Vectors – Sequence vector, rep function, vector access, vector names, vector math, vector recycling, vector element sorting - R List - Creating a List, List Tags and Values, Add/Delete Element to or from a List, Size of List, Merging Lists, Converting List to Vector - R Matrices – Accessing Elements of a Matrix, Matrix Computations: Addition, Subtraction, Multiplication and Division-R Arrays: Naming Columns and Rows, Accessing Array Elements, Manipulating Array Elements, Calculation Across Array Elements - R Factors.										
UNIT	4						9+3				
ncol(),	str(), Summ	ary(), nam	ame, Data Frame Access, Understanding Data ir es(), head(), tail(), edit() functions - Extract Data dd Row - Joining columns and rows in a Data fra	a from Data	a Fram	e, Expan	w(),				

Merging Data frames			<u> </u>					<u> </u>		<u> </u>		
Getting and Setting the												
Reading a CSV File,		-					ax(), ra	nge(), m	ean(), mo	edian(), ap	pry() -	
Writing into a CSV File – R -Excel File – Reading the Excel file.											9+3	
		F		N 1		1 3 4 1		A 1 *	T · 0	· •		
Descriptive Statistics: NA Option, Median -		0	A						0		• •	
	visually Checking Distributions for a single Variable - R –Pie Charts: Pie Chart title and Colors – Slice Percentages and Chart Legend, 3D Pie Chart – R Histograms – Density Plot - R – Bar Charts: Bar Chart Labels, Title and Colors.											
LECTURE	45		UTOR		15		CTICA			TOTAL	60	
Text Book:												
 Sandip Rakshit, R Programming for Beginners, McGraw Hill Education (India), 2017, ISBN: 978-93-5260-455-5. References: Seema Acharya, Data Analytics using R, McGrawHill Education (India), 2018, ISBN: 978-93-5260-524-8. Website and e-Learning Source <u>https://www.tutorialspoint.com/r/r_tutorial.pdf</u> 												
1. Seema Ac 5260-524 Website and e-Lear	-8. ning Sou	irce				wHill E	Educatio	n (India)), 2018, I	SBN: 978	-93-	
1. Seema Ac 5260-524 Website and e-Lear	-8. ning Sou	irce		itorial.p			Educatio	n (India)), 2018, I	SBN: 978	-93-	
1. Seema Ac 5260-524 Website and e-Lear	-8. ning Sou	irce		itorial.p	<u>df</u>		Educatio	n (India) PO8), 2018, I	SBN: 978	-93- PSO2	
1. Seema Ac 5260-524 Website and e-Lear	-8. ning Sou utorialsp PO 1 3	PO2 2	m/r/r_tu	torial.p CO	df s VS P(Ds PO6 2	PO7 2					
1. Seema Ad 5260-524 Website and e-Lear 1. <u>https://www.t</u> CO 1 CO 2	-8. ning Sou utorialsp PO 1 3 3	irce point.com PO2	m/r/r_tu PO3	torial.p CO PO4	df s VS PG PO5	Ds PO6	PO7	PO8	P09	PSO1	PSO2	
1. Seema Ad 5260-524 Website and e-Lear 1. <u>https://www.t</u>	-8. ning Sou utorialsp PO 1 3 3 3	PO2 2 3 3	m/r/r_tu PO3	torial.p CO PO4 0	<u>df</u> s VS P0 PO5 0	PO6 2 3 3	PO7 2 3 3	PO8 2	PO9 3	PSO1 2	PSO2 0	
1. Seema Ad 5260-524 Website and e-Lear 1. <u>https://www.t</u> CO 1 CO 2 CO 3 CO 4	-8. ning Sou tutorialsp PO 1 3 3 3 3 3	PO2 2 3 3 3	m/r/r_tu PO3 1 2	CO PO4 0	<u>df</u> s VS PC PO5 0 1	Ds PO6 2 3	PO7 2 3	PO8 2 3 3 3 3	PO9 3 3	PSO1 2 3	PSO2 0 0	
1. Seema Ac 5260-524 Website and e-Lear 1. https://www.t	-8. ning Sou utorialsp PO 1 3 3 3	PO2 2 3 3	PO3 1 2 2	CO PO4 0 0 0	df s VS P0 PO5 0 1 1	PO6 2 3 3	PO7 2 3 3	PO8 2 3 3	PO9 3 3 3	PSO1 2 3 3	PSO2 0 0 0	

SCALED VALUE 3 3

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

 $1 ext{-}5 ext{-}1, 6 ext{-}10 ext{-}2, 11 ext{-}15 ext{-}3$

	Course Name PYTHON FOR MATHEMATICS L T P							C		
	ourse Nam ourse Cod		ł		OR MAT			Т 1	Р 0	C 4
C C	P	e A		1			S L	T T	P	H H
4	0	0					3	1	0	4
PREREC	QUISITE		Basic	Computer I	Knowledg	ge				
Objectiv										
	luce a usefu			-						
				ata formats v						
3. teach	now to use	lists, tupi	les and (dictionaries	in Python	programs				
		COU	URSE (DUTCOME	S		DOMAI	N	LEV	EL
CO 1	Explain th	ne overvie	ew of py	thon.			Cognitiv	ve U	Jndersta	nding
CO 2	Make use	of Contro	ol Stater	nents & Fun	ctions.		Cognitiv	ve	Apply	ving
CO 3	Explain S	trings and	l Lists.				Cognitiv	ve l	Jndersta	nding
CO 4	Create Gra	phs with N	Aatplotli	b – Plotting v	vith Formu	las.	Cognitiv	ve	Creat	ing
CO 5	Describe with Sym		h Statis	tics and Alg	gebra and	Symbolic Math	Cognitiv	ve t	Jndersta	nding
UNIT I										9 + 3
	· · · · ·			-	-	thon -Comments				
		les – Stan	dard Da	ata Types-O	perators: '	Types of Operator	s - Stateme	ent and	Express	sions –
String Op	Control S	totomonte	& Fund	tions						9+3
					vboard I	Function's introdu	uction - I	Quilt_in	Funct	
						meters and Argum				
-	t – Python I									
UNIT 3	Strings an	d Lists								9 + 3
				-	ts. Tuples	and Dictionaries:	Tuples – D	Dictiona	ries.	
UNIT 4	Visualizin	g Data wit	th Grap	hs						9+3
	ding the Ca vith Formula		ordinate	Plane – Work	ting with L	ist and Tuples – Cre	eating Graph	ns with l	Matplotli	ib —
UNIT 5			h Statis	tics and Alge	bra and S	ymbolic Math with	SymPy			9 + 3
-		inding the	Median	- Finding the	Mode and	Creating a Frequen	cy Table. De	efining	Symbols	and
Symbolic. LEC	TURE	45	Т	UTORIAL	15	PRACTICAL	0	TO	ΓAL	60
Text Boo	ok:									
	1. E.Balag			tiontoComputate Limited, 1		blem-SolvingUsing 2017).	Python", Mo	cGraw-		
	2. AmitSal	na,"DoingN	Mathwitl	hPython",1 st e	dition,nost	archpress.				
	Uni		ext ook	Chapter		Sections				
	Ι		1	3	3.1-3	3.11Pg.no.(36-64)				
	Π	-	1	3 4	4.1-4	-3.15Pg.no.(65-74) 4.8Pg.no.(82-98)				
	III		1	5 6		5.2Pg.no.(112-132) 5.2Pg.no.(148-166)				
	IV		2	2		0.(43-73)				

					3	Pan	o.(82-93))				
	V		2		4		5.(82-95) 5.(117-1)					
					т	1 g.m	5.(117-1.	57)				
	Deferences											
References:												
1.	FabioNell	i," Pythe	onDataA	nalytics'	",Apress	,Second	Edition.	(2018)				
2.	H.P.Langt	angen,"/	APrimer	onScien	tificProg	grammin	gwithPy	thon",Se	econdedit	ion,Spr		
i	inger, 201	6.			_					_		
3.	Ashok Na	mdevKa	mthane,	Amit A	shok Ka	mthane,	"Program	mming a	and			
]	ProblemS	olvingwi	thPytho	n",McG	raw-		-	-				
]	HillEduca	tion(Indi	ia)Privat	eLimite	d,Secon	edition(2	2017).					
4. 7	ThomasN	ield,"Ess	sential M	lathforD	ata Scie	nce", O'	ReillyM	edia (20	22).			
Website and	l e-Learn	ing Sou	ırce									
	https://fan			ython/bo	ok/Intro	duction-	-to-Pytho	on-for-C	omputatio	onal-		
	Science-a	nd-Engin	neering.p	<u>odf</u>					_			
2.	https://site	es.google	e.com/a/a	icte-ind	ia.org/sv	vayamre	po/big-da	ata-anal	ytics-for-s	mart-grid		
	https://you						-			-		
4.	https://we	smckinn	ey.com/l	book/plc	otting-an	d-visual	ization.h	<u>tml</u>				
					CO	s VS PO	Դո					
		PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
		3			r04		2	2				
CO 1			2	$\frac{1}{2}$	0	0	3		$\frac{2}{3}$	3	$\frac{2}{3}$	0
		2			0	1	3	3				0
CO 2		3	3			0	0	0	0			
CO 3		3	2	1	0	0	2	2	2	3	2	
CO 3 CO 4		3	2 3	1 3	03	3	3	3	3	3	3	3
CO 3 CO 4 CO 5		3 3 3	2 3 2	1 3 1	0 3 0	3 0	3 2	3 2	3 2	3 3	3 2	3 0
CO 3 CO 4 CO 5 TOTAL		3 3 3 15	2 3 2 12	1 3 1 8	0 3 0 3	3 0 4	3 2 12	3 2 12	3 2 12	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA		3 3 3 15 3	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3	3 2	3 0
CO 3 CO 4 CO 5 TOTAL		3 3 3 15 3	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3
CO 3 CO 4 CO 5 TOTAL SCALED VA 0 - No Relati	ion, 1 – I	3 3 15 3 Low Rel	2 3 2 12 3	1 3 1 8 2	0 3 0 3 1	3 0 4 1	3 2 12 3	3 2 12 3	3 2 12 3	3 3 15	3 2 12	3 0 3

	Course Nan Course Cod				LYSIS U (MA2E2	USING SPSS	L 3	T 1	P 0	C 4
C	P	A		L		A	L	T	D P	H
4	0	0					3	1	0	4
PRERE	QUISITE	Ŭ	Prob	ability and Sta	tistics		- C		Ū	-
Objecti	ve:		•							
				ch how to exp ocial Sciences)		lyze, and understa	nd data and	l how	the softw	are
		CO	URSE	OUTCOME	S		DOMA	IN	LEV	EL
	Explain	basic cor	ncepts	of SPSS, wor	king wit	h the Data Editor				
CO 1	and Plotti	ing of Ch	arts usi	ng Bar and Pi	e diagran	n.	Cognitiv	ve	Understa	anding
CO 3	Explain	measure	es of	central tende	encies a	nd measures of	Understa	ndi	TT 1 (1.
CO 2	dispersion	n using S	PSS.				ng		Understa	anding
	Utilize c	oncept o	of testin	ng hypothesis	s for fin	ding significance				
CO 3	level for	the give	en data	using one s	ample t-	test, independent	Cognitiv	ve	Apply	ving
		•		-test in SPSS.						U
GO 4	Apply On	ne-way AN	NOVA,	two-way ANC	OVA and	Chi-square test for	<u> </u>			
CO 4	the given of	data in SP	SS.				Cognitiv	ve	Apply	/ing
CO 5	Compare	e the re	elations	hip for the	data us	sing methods of	Cognitiv	10	Apply	ina
05	correlatio	on and reg	gressior	n in SPSS.			Cognitiv	ve	Apply	mg
UNIT I										9 + 3
			0			s – Working with ple Bar diagram,				
Diagram		0		0		, , , , , , , , , , , , , , , , , , ,				
UNIT 2										9 + 3
						leasures of centra				
						leasures of Disper		e, inte	er quartile	range
UNIT 3		i Standard	a devia	uon. Measure	es of Ske	wness and Kurtosi	S.			9 + 3
		s: Type I o	error an	d Type II Erro	rs – Conc	ept of p values – B	asic Concep	ts of (One Sampl	
•	• •	• •		• •		ith interpretation.			1	
UNIT 4					-					9 + 3
Analysis	s of Varianc	e: Basic o	concept	ts of ANOVA	– One W	ay and Two-Way	ANOVA u	sing S	SPSS with	1
•						ites using SPSS.		U		
UNIT 5										9 + 3
			efficient	of Correlation	– Spearm	nan's Rank correlati	on – Simple	linear	Regressio	on using
	th interpretat	10n. 45	l r	FUTORIAL	15	PRACTICAL	Δ	Т	OTAL	60
LEC		43	· · ·		15	FRACIICAL	0	10	JIAL	60
Text Bo										

References:

1. Andy Field. (2011); Discovering Statistics Using SPSS, Sage Publications.

2. Hinton P R, Brownlow C, McMurray, I. and Cozens, B. (2004) SPSS Explained, Routledge

Website and e-Learning Source : ; <u>https://nptel.ac.in</u>

COs VS POs														
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2			
CO 1	3	2	1	0	0	2	2	2	3	2	0			
CO 2 3 2 1 0 0 2 2 3 2 0														
CO 3	3	3	2	0	1	3	3	3	3	3	0			
CO 4	3	3	2	0	1	3	3	3	3	3	0			
CO 5	3	3	2	0	1	3	3	3	3	3	0			
TOTAL	15	13	8	0	3	13	13	13	15	13	0			
SCALED VALUE	3	3	2	0	1	3	3	3	3	3	0			
0 - No Relation, 1 –	Low Re	lation, 2	2- Medi	ium Re	lation, (3- High	Relatio	n						

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

Co	urse N	ame	NUMERICAL METHODS PRACTICAL USING MAT LABLTP							
Ca	ourse C	ode	YMA2E2B	2	0	2	4			
<u> </u>	P		1 WIA2E2D		T	<u> </u>	H			
4	r	A 0			1	<u> </u>	<u>п</u> 4			
-	-	-	Working Imperciation of some basis or	-		-	-			
PRER	EQUIS	MIE	Working knowledge of some basic ap							
			Basic knowledge of computer program matrix and linear algebra are highly b	0	an ui	iderstandi	ng oi			
Object 1. 2. 3.	Unders Being a	able to do	he MATLAB environment o simple calculations using MATLAB rry out simple numerical computations and		ing M	ATLAB				
	Dung		JRSE OUTCOMES	DOMA	-	LEV	ET.			
	-	00								
				Cognitive		Understa	inding			
CO 1			ne main features of the MATLAB	Psychomo	otor	Guided				
	devel	opment	environment.	Affective		Respons				
						Respond				
				Cognitive		Understa	nding			
CO 2	Use f	һе МАТ	LAB GUI effectively.	Psychomo	otor	Guided				
	0.50 1					Respons				
						Respond				
				Cognitive		Applying	g			
CO 3	Desig	n simpl	e algorithms to solve problems.	Psychomo	otor	Guided				
	20012	5p.		Affective		Respons				
						Respond				
				Cognitive		Applying				
CO 4		-	programs in MATLAB to solve	Psychomo	otor	Guided				
	scien	tific and	mathematical problems.	Affective		Respons				
				~		Respond				
				Cognitive		Applying				
CO 5	-	-	resentations and tips for designing and	Psychomo	otor	Guided	~			
	Imple	menung	g MATLAB code.	Affective		Respons				
THEO	DV					Respond	-			
THEO		-: Th	MATIAD	4		- 17	30			
constar Matrix functio Toolbo	nts, ope and lin ons in ox struc	erators a near alge MATLA ture, MA	e MATLAB environment, Basic computed and simple calculations, Formulas and febra review, Vectors and matrices in MAB Reading and writing data, file has ATLAB graphic functions.	functions, I ATLAB, N	MAT Iatrix	LAB tool	boxes ns and ctions			
EXPE							30			
			on to MATLAB							
	•		ix operations							
		near equa		datamina	daac	20				
			equations for Underdetermined and over		u casi					
			igen values and Eigen vectors of a squar nee Equations.	C maulx.						
			the Equations.							
			tial equation using 4th order Runge- Ku	tta method						
			ots of a polynomial.	and memou	•					
			polynomial using method of Least Squar	e Curve Fi	tting					
			polynomial fit, analyzing residuals, expo		-		ls			
11.20			originomiai int, analyzing residuais, enpe				4 0			

LECTURE	30	TUTORIAL	0	PRACTIC	30	TOTAL	60
				AL			
Text Book:			1	l	1		
1. Amos Gil	at 'MA	ATLAB, An	Introduc	tion with Ap	oplication	ns',3 rd editio	n, Wiely
publishers,2008							
1	apman	' MATLAB Prog	grammir	ng for Engineer	s' 5 th edi	tion, Cengaug	ge
learninb,2016			th				
	'MATI	LAB for Enginee	ers', $5^{\rm m}$ e	edition, Pearsor	n, 2012		
References:							
1 "Intr	oduction	nToMatlabforEng	ineeringS	Students",David	HoucqueN	lorthwester	
n							
	-	version 1.2, Augu					
	•	tedwithMATLAB					
-		oductionforScienti		• •			
	-	fordUniversityPre	ess,NewD	Delhi,2010.			
3. "Intr							
		®forEngineers",V		PalmIII,Universi	ityofRhod	eIsland,Mc	
Grav	v Hill, T	hirdEdition, 2011	l.				
Website and e-	Learni	ing Source					
1. <u>https:</u>	//nptel.a	ac.in/courses/1221	106033				
		youtube.com/wate					
3. <u>https:</u>	//archiv	e.nptel.ac.in/cours	ses/103/1	06/103106118/			

4. <u>https://www.youtube.com/watch?v=qpZUQTjFk6Q</u>

COs VS POs															
	Р	PO	PO	PO	PO	PO	PO	PO8	PO9	PSO	PSO2				
	0	2	3	4	5	6	7			1					
	1														
CO1 3 2 1 0 0 2 2 2 3 2 0															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
CO 3															
CO 4	3	3	2	0	1	3	3	3	3	3	0				
CO 5	3	3	2	0	1	3	3	3	3	3	0				
TOTAL	1	14	8	0	3	14	14	14	15	14	0				
	5														
SCALED	3	3	2	0	1	3	3	3	3	3	0				
VALUE															
0 - No Relation, 1	- L	ow Re	elatior	n, 2- M	lediur	n Rela	tion, 3	3- High I	Relation						
$1-5\rightarrow 1, 6-10\rightarrow 2, 1$	11-1:	5→3													

Со	urse Name	e Name DATA ANALYTICS PRACTICAL L T						
	A 1							
	urse Code	YMA2E2C	2	0	2	4		
С	P A		L	Т	P	Н		
4	0 0		2	0	2	4		
PRER	EQUISITE	Basic knowledge of programming, s	statistics & m	nathema	tics			
LeaLea	g Objectives rn the implement rn the implement	ation of basics of Python and text pre-proc ation of classification and clustering algori ation of visualization	U U					
- Lou		RSE OUTCOMES	DOMAIN	LE	VEI	_		
CO 1	Demonstrate data analysis.	the basics of python for performing	Cognitive	Apply				
CO 2	Demonstrate regression.	the use of text preprocessing,	Cognitive	Apply				
CO 3	Demonstrate	the use of classification algorithms.	Cognitive	Apply				
UNIT						9		
Analysi generat	is, understandin	Understanding and Preprocessing H ag structured and unstructured data, D Dataset: Importing and Exporting Data	ata Analysis , Basic Insigh	process	, Dat	taset		
	ig and Preparing	g the Data: Identify and Handle Missing	g Values.		1	12		
UNIT 2					L	12		
Linear H	Regression, Mode	learning- Supervised and Unsupervised Lea el Visualization, Prediction and Decision M						
UNIT		Model Selection.				9		
3								
		isualization Data Formatting, Explorator						
		sing Pandas. Data Visualization: Basic	Visualization '	Tools, S	pecia	lized		
		porn Creating and Plotting Maps.						
S. No.	List of Experi	iments	Course Outcome		30			
1.	Write a progra with TF-IDF	m to Implement Text Pre-processing	CO1		•			
2.	Write a progra regression	m to Implement Linear and Logistics	CO1					
3.	Classification	m to Implement Decision Tree	CO2					
4.	Write a progra Classification	m to Implement Naïve Bayes	CO2					
5.	Write a progra Analysis	m to Implement Principal Component	CO2					
6.	Write a progra Clustering	m to Implement K-Means	CO2					

7.	Introdu Python		o Matplotlib, Sea	ckages in	CO3				
LEC	TURE	30	TUTORIAL	0	PRACTIC	30	TOTAL	60	
					AL				
Text B	ooks:				II		1		
	•		roduction to Com			ng using	Python ", McC	braw-Hil	
Educati	on (India)	Private	ELimited, 1st editi	ion (2017	7).				
2. Thon	nas Nield,	"Essen	tial Math for Data	Science	", O'Reilly Medi	a (2022).			
	o Nelli," P	•	Data Analytics", A Primer on Scientif	•		hon", Se	cond edition, S	pringer,	
			ane, , Amit Ashok Education (India) F		· •	•	•	with	
	te and e-	Learni	ing Source						
1.				packtpu	ib.com/produc	t/pythor	<mark>n-data-analyt</mark>	ics-and	
<u>visuali</u>	zation/97								
	s•//vontu	ı.be/oC	<u>'oQm7Ro_ME</u>						
			com/module/co		1701 (0 /0				

COs VS POs													
	PO 1	P02	PO3	P04	P05	P06	P07	P08	P09	PS01	PSO2		
CO 1	3	3	2	0	1	3	3	3	3	3	0		
CO 1	3	3	2	0	1	3	3	3	3	3	0		
CO 2	3	3	2	0	1	3	3	3	3	3	0		
CO 2	3	3	2	0	1	3	3	3	3	3	0		
CO 3	3	3	2	0	1	3	3	3	3	3	0		
TOTAL	1 5	15	10	0	5	15	15	15	15	15	0		
SCALED VALUE	3	3	2	0	1	3	3	3	3	3	0		
0 - No Relation, 1	– L	ow Re	elation	n, 2- M	lediur	n Rela	tion, 1	3- High I	Relatio	n			
1-5→1, 6-10→2, 1	1-15	5→3											

COUR	SE NA	AME		TO)POLO(GY	L	Т	Р	C
COUR	SE C	ODE			YMA301	L	4	1	0	5
С	Р	Α					L	Т	Р	Н
5	0	0					4	1	0	5
PRERE	QUIS	ITE	Basic	c concepts of se	ets					
On succe	essful	comple	tion o	f this course, t	he stude	nts will be able to:				
			COU	RSE OUTCON	MES		DOMA	IN	LE	VEL
CO 1	Iden	tify wh	ether a	a given family	of subset	ts is a topology or	Cognit		Apr	lying
	not						Cogint	lve	Арр	olying
CO 3	App	ly the	conce	pts of continu	uous fun	ction on product	Comit		A	1
CO 2	topo	logy an	d metr	ic topology			Cognit	lve	Арр	olying
<u> </u>	Exp	lain th	e con	cepts of local	connec	tedness and path	Carrit	т	T., .1.,	
CO 3	conr	nectedne	ess				Cognit	ive (Jnder	standing
<u> </u>	Exp	lain the	conce	epts of limit po	oint comp	pactness and local	a :		т 1	. 1.
CO 4	com	pactness	8				Cognit	ive l	Jnder	standing
	Арр	ly the c	oncept	of separation a	axiom and	d normal spaces to				
CO 5	prov	e the	Ury	sohnmetrizatio	ntheorem	and the Tietz	Cognit	ive	App	olying
	exte	nsion th	eorem							
UNIT 1				To	opologica	ll Spaces				12+3
Topologi	cal sp	aces - I	Basis f	or a topology -	The orde	er topology - The p	roduct to	pology	on X :	x Y - Th
subspace	topol	ogy.								
UNIT 2				Con	tinuous	Functions				12+3
Closed s	ets an	d limit	points	-Continuous fu	nctions -	the product topolo	gy - The	metric	topolo	ogy - Th
metric to	polog	y (conti	nued) ·	- Uniform limit	theorem					
UNIT 3					Connect	edness				12+3
Connected	spaces	- connec	ted subs	paces of the Real	line - Com	ponents and local conne	ectedness.			
UNIT 4					Compac	etness				12+3
Compact	space	es - com	pact si	ubspaces of the	Real line	e - Limit Point Com	pactness	– Local	Comp	actness.
UNIT 5				Countabili	ty and S	eparation Axiom				12+3
The Count	ability .	Axioms -	The sep	paration Axioms -	Normal sp	aces - The Urysohn Ler	nma - The		I	
		I		e Tietz extension t						
LECTU	JRE	6	0	TUTORIAL	15	PRACTICAL	0	ТОТ	AL	75
ТЕХТ В	00K									
1.James	R. Mu	nkres, "	Topol	ogy", (2nd Edit	tion) PHI	Learning Pvt. Ltd.,	(Third In	ndian Re	print)	

NewDelhi,2014

Unit I - Chapter 2: Sections 12 to 17

Unit II - Chapter 2: Sections 18 to 21 (Omit Section 22)

Unit III - Chapter 3: Sections 23 to25

Unit IV - Chapter 3: Sections 26 to 29

Unit V - Chapter 4: Sections 30 to 35

REFERENCES

- 1. J. Dugundji, "Topology", Prentice Hall of India, New Delhi, 1975.
- George F.Simmons, "Introduction to Topology and Modern Analysis", McGraw Hill Book Co., 1963.
- 3. J.L. Kelly, "General Topology", Van Nostrand, Reinhold Co., NewYork.1995
- 4. L.Steen and J.Subhash, "Counter Examples in Topology", Holt, Rinehart and Winston, New York, 1970.
- 5. S.Willard, "General Topology", Addison Wesley, Mas. 1970.

COs VS POs									
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	14	9	15	5	4	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1

0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation

 $1\textbf{-}5 {\rightarrow} 1, \textbf{6-}10 {\rightarrow} 2, 11\textbf{-}15 {\rightarrow} 3$

COU	DOE NA			Ŧ	т	р	C
COUP	RSE NA	IVIE	INTEGRAL EQUATIONS, CALCULUS OF VARIATIONS AND TRANSFORMS	L	Т	Р	С
COU	RSE CO	JDE	YMA302	4	1	0	5
C	P	A	1 1/1/4302	- L	T T	P	З Н
5	г 0	A 0		L 4	1	Г 0	5
PRERE			Multivariable calculus and vector calculus	-	1	U	J
	-		etion of this course, the students will be able to:				
on suc	cessiui ·	compi	COURSE OUTCOMES	DOMA	IN	LEV	ΈL
CO 1	Iden	tifv m	axima and minima of functionals	Cogniti		Appl	
		·	urier transform for solving boundary value	0		II.	0
CO 2	probl			Cogniti	ve	Appl	ying
CO 3			el function integrals over a finite interval	Cogniti	ve	Appl	ying
	Iden	tify ei	genvalues and eigenfunction of the homogeneous	U			
CO 4	integ	ral equ	ations with degenerate kernels	Cogniti	ve	Appl	ying
a .	Solve	eVolte	rra integral equation and Fredholm integral	a			
CO 5	equa	tions b	y using method of successive approximations	Cogniti	ve	Appl	yıng
UNIT 1						1	2+3
Calculu	s of va	riation	s – Maxima and Minima – the simplest case – N	Natural b	oundar	y and t	ransition
conditio	ons - vai	riation	al notation – more general case – constraints and L	agrange'	s multi	pliers –	variable
end poir	nts – Stu	urm-Li	ouville problems				
UNIT 2	2					1	2+3
Fourier	transfo	rm -	Fourier sine and cosine transforms - Properties	Convolu	ition -	Solving	integral
equation	ns - Fii	nite Fo	ourier transform - Finite Fourier sine and cosine	e transfo	rms -	Fourier	integral
theorem	1 - Parse	val's i	dentity				
UNIT 3	5					1	2+3
			tion – Inverse formula – Some important results for Bessel f		-		– Hankel
UNIT 4		lerivativ	es of the function –Hankel Transform of differential operator	s – Parseva	al s Theo		2+3
		Fauati	ons - Definition, Regularity conditions – special k	ind of ke	rnels _		
	-	-	volution Integral – the inner and scalar product			-	
-			n of Algebraic equations – examples– Fredholi				
approxi			n of fingeorate equations champles freation			enumpi	
UNIT 5						1	2+3
		sive app	roximations: Iterative scheme – examples – Volterra Integra	al equation	– exam		
about the	resolver	nt kerne	l. Classical Fredholm Theory: the method of solution of Fr	edholm –	Fredhol	m's first	theorem -

second theorem – third theorem

LECTURE 60 TUTORIAL 15 PRACTICAL 0 TOTAL 75

TEXT BOOKS

- 1. Ram.P.Kanwal Linear Integral Equations Theory and Practice, Academic Press 1971.
- 2. F.B. Hildebrand, Methods of Applied Mathematics II ed. PHI, ND 1972.
- 3. A.R. Vasishtha, R.K. Gupta, Integral Transforms, Krishna Prakashan Media Pvt Ltd, India, 2002.
- UNIT I Chapter 2: Sections 2.1 to 2.9 of [2]
- UNIT II Chapter 7 of [3]
- UNIT III Chapter 9 of [3];
- UNIT IV -Chapters 1 and 2 of [1]
- UNIT V Chapters 3 and 4 of [1]

REFERENCES

- 1. S.J. Mikhlin, Linear Integral Equations (translated from Russian), Hindustan Book Agency, 1960.
- 2. I.N. Snedden, Mixed Boundary Value Problems in Potential Theory, North Holland, 1966.

COs VS POs									
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	10	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1
0 - No Relation, 1 – L	ow Relatio	on, 2- Me	edium Re	elation, 3	- High R	elation	1	1	1
1-5→1, 6-10→2, 11-1	5→3								

COU	RSE N	AME		FUNCTIO	NAL A	NALYSIS	L	Т	' P		С
COU	RSE C	ODE		Y	MA303	;	4	1	0		5
C	Р	Α					L	Т	' P		Η
5	0	0					4	1	0		5
PRERI	EQUIS	ITE	Basic	concepts of alg	ebra				I		
On suc	cessful	comple	tion of	this course, th	e stude	nts will be able to:					
			COUR	RSE OUTCOM	IES		DOMA	IN	L	EV	EL
CO 1	Exp	lain No	rmed S	paces and Hahr	ı – Bana	ch Theorems.	Cogniti	ve	Under	stan	ding
CO 2	Exp	lain Clo	sed Gr	aph and Open M	Aapping	Theorems.	Cogniti	ve	Under	stan	ding
CO 3		lain Bo nded Op			orem –	Spectrum of a	Cogniti	ve	Under	stan	ding
CO 4	-	lain Ini orems.	ner Pro	oduct Spaces a	and Rie	sz Representation	Cognitiv	ve	Under	stan	ding
CO 5	Exp	lain Bo	unded (Operators and S	elf-adjo	int Operators.	Cogniti	ve	Under	stan	ding
UNIT 1	1						<u> </u>		<u> </u>	12	+3
Norme	1 Space	s – Cont	tinued	of Linear Maps	– Hahn	– Banach Theorem	s.			1	
UNIT 2	2									12	+3
Banach	Spaces	s – Unifo	orm Bo	undedness Prin	ciple – C	Closed Graph and O	pen Map	ping	Theore	ms.	
UNIT 3	3									12	+3
Bounded	Inverse	Theorem	– Spectr	um of a Bounded (Operator.						
UNIT 4										12	+3
Inner P	roduct	Spaces –	- Ortho	normal Sets – P	rojectio	n and Riesz Repres	entation 7	Theo	rems.		
UNIT :	5									12	+3
				rmal, Unitary and		-					
LECI	URE	6	0	TUTORIAL	15	PRACTICAL	0	Т	OTAL		75
	BOOK					1 10 11:1			• • •		<u> </u>
TEXT	-1 ×		ve. "Fi	unctional Anal	ysis", 3	rd Edition, New	Age Inte	ernat	ional (r) 1	Limit
1.Balm		w Delhi									
1.Balm Publish	ers, Ne	w Delhi									
1.Balm Publish REFEI	ers, Ne RENCI	w Delhi. E S	, 2017	on to Topology	and M	lodern Analysis",N	IcGraw I	Hill	Internat	iona	l Bo
1.Balm Publish REFEI 1. G.F	ers, Ne RENCI .Simmo	w Delhi. E S	, 2017		and M	lodern Analysis",N	IcGraw I	Hill	Internat	iona	l Bo
1.Balm Publish REFEI 1. G.F Cor	ers, Ne RENCI .Simmo npany,	w Delhi E S Dons,"Intr New Yo	, 2017 roductio prk, 196	53.		lodern Analysis",N Hill Publishing Cor					

 H. C. Goffman and G.Fedrick, "First Course in Functional Analysis", Prentice Hall of India, New Delhi, 1987

COs VS POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	2	1	3	1	0	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	10	5	15	5	0	5	5
SCALED VALUE	3	3	2	1	3	1	0	1	1
0 - No Relation, 1 - L	ow Relatio	on, 2- Me	edium Re	lation, 3	- High R	elation	I	I	I
1-5→1, 6-10→2, 11-1	5→3								

COUL	RSE N.	AME	l	DIFFEREN	TAL GE	OMETRY	L	Τ		Р	С
COU	RSE C	ODE		Ŋ	(MA304		4	1		0	5
С	Р	Α					L	Т		Р	Н
5	0	0					4	1		0	5
PRERE	EQUIS	ITE	Multiv	ariable Calcul	us and Ve	ector Calculus					
On suc	cessful	comple	tion of f	this course, th	e studen	ts will be able to:					
			COUR	SE OUTCOM	IES		DOMA	IN		LE	VEL
CO 1	Ider	n tify inv	olutes a	nd evolutes of	a given c	eurve	Cogniti	ve	App	lyin	g
CO 2	Exp	lain the	concept	t of Helicoids a	and Famil	lies of curves	Cogniti	ve	Und	lersta	anding
CO 3		ntifyGeo faces of c		curvature, C	Gaussian a given cu	curvature and	Cogniti	ve	App	olyin	g
CO 4	Exp	lain non	intrins	ic properties of	f a surface	e	Cogniti	ve	Und	lersta	anding
CO 5	Exp	lain con	npact su	urface and com	plete surf	face	Cogniti	ve	Und	lersta	anding
UNIT 1	SPA	CE CU	RVES								12+3
Fundam UNIT 2	ental E 2 INT	en curve Existence	s and su e Theore C PROF	urfaces – tange em for space co PERTIES OF	ent surfac urves – H A SURF.		evolutes	— in	ıtrinsi	ic eq	uations
Fundar UNIT 2 Definiti coefficio	ental E INT on of s ents -	en curve Existence RINSIC surface -	s and su e Theore C PROF - Curves s of cu	urfaces – tange em for space co PERTIES OF s on a surface urves - Isome	ent surfac urves – H A SURF. - Surfac	ce – involutes and felics. ACE	evolutes	– in 1s –	ntrinsi Metr	ic eq ic -	uations 12+3 Directio
Fundam UNIT 2 Definiti coeffici Canonic	ental F INT on of s ents - cal geo	en curve Existence RINSIC surface - Familie	s and su e Theore C PROF - Curves s of cu uations.	urfaces – tange em for space co PERTIES OF s on a surface urves - Isome	ent surfac urves – H A SURF. - Surfac	ce – involutes and felics. ACE es of revolution -	evolutes	– in 1s –	ntrinsi Metr	ic eq ic - Ge	uations 12+3 Directio
Fundam UNIT 2 Definiti coeffici Canonic UNIT 3 Normal p	ental E INT on of s ents - cal geo GE GE	en curve Existence TRINSIC Surface - Familie desic equ DDESIC of geode	s and su e Theore C PROF - Curves s of cu uations. CS sic - Exi	urfaces – tange em for space cu PERTIES OF s on a surface urves - Isome	ent surfac urves – H A SURF. - Surfac etric corre - Geodesic	ce – involutes and felics. ACE es of revolution - espondence - Intr c parallels - Geodesid	evolutes - Helicoio tinsic pro	– in ls – operti	ntrinsi Metr ies –	ic eq ic - Ge	12+3 Directio odesics 12+3
Fundam UNIT 2 Definiti coeffici Canonic UNIT 3 Normal p Gaussian	ental E INT on of s ents - cal geo GE GE property curvatur	en curve Existence FRINSIC Surface - Familie desic equ ODESIC of geode re - Surfac	s and su e Theore C PROF - Curves s of cu uations. CS sic - Exi ces of con	urfaces – tange em for space co PERTIES OF s on a surface irves - Isome stence theorems istant curvature -	ent surfac urves – H A SURF. - Surfac etric corre - Geodesic Conformal	ce – involutes and felics. ACE es of revolution - espondence - Intr e parallels - Geodesic mapping - Geodesic 1	evolutes - Helicoio tinsic pro	– in ls – operti	ntrinsi Metr ies –	ic eq ic - Ge	uations 12+3 Directio odesics 12+3 theorem
Fundam UNIT 2 Definiti coeffici Canonic UNIT 3 Normal p Gaussian UNIT 4	ental E INT on of s ents - cal geod GEO property curvatur NO	en curve Existence FRINSIC Surface - Familie desic equ ODESIC of geode re - Surfac N-INTR	s and su e Theore C PROF - Curves s of cu uations. CS sic - Exi ces of con INSIC	urfaces – tange em for space cu PERTIES OF s on a surface arves - Isome stence theorems astant curvature - PROPERTIE	ent surfac urves – H A SURF. - Surfac etric correct - Geodesic Conformal CS OF A S	ce – involutes and felics. ACE es of revolution - espondence - Intr e parallels - Geodesic mapping - Geodesic 1 SURFACE	evolutes - Helicoid tinsic pro	– in ls – operti	Metr ies –	ic eq ic - Ge	uations 12+3 Directio odesics 12+3 theorem 12+3
Fundam UNIT 2 Definiti coeffici Canonic UNIT 3 Normal p Gaussian UNIT 4 Second	ental E INT on of s ents - cal geod GEO property curvature I NO fundar	en curve Existence FRINSIC Surface - Familie desic equ ODESIC of geode re - Surfac N-INTR mental f	s and su e Theore C PROF - Curves s of cu uations. CS sic - Exi ces of con INSIC form - F	urfaces – tange em for space cu PERTIES OF s on a surface urves - Isome stence theorems istant curvature - PROPERTIE Principal curva	ent surfac urves – H A SURF. - Surfac etric corre - Geodesic Conformal CS OF A S atures- Li	ce – involutes and felics. ACE es of revolution - espondence - Intr e parallels - Geodesic mapping - Geodesic r SURFACE ines of curvature	evolutes - Helicoio finsic pro e curvature napping. – Develo	– in ls – opert: - Ga	Metri ies – iuss B	ic eq ic - Ge	uations 12+3 Directio odesics 12+3 theorem 12+3 elopable
Fundam UNIT 2 Definiti coeffici Canonic UNIT 3 Normal p Gaussian UNIT 4 Second associat	ental E INT on of s ents - cal geoo GEO property curvature I NO fundar ced with	en curve Existence Existence Familie desic equ ODESIC of geode re - Surfac N-INTR nental f h space	s and su e Theore C PROF - Curves s of cu uations. CS sic - Exi ces of con INSIC form - F curves -	em for space co PERTIES OF s on a surface arves - Isome stence theorems astant curvature - PROPERTIE Principal curva	ent surfac urves – H A SURF. - Surfac etric correct Conformal CS OF A S atures- Li s associat	ce – involutes and felics. ACE es of revolution - espondence - Intr e parallels - Geodesic mapping - Geodesic 1 SURFACE	evolutes - Helicoio tinsic pro curvature napping. – Develo surfaces	– in ls – opert: - Ga	Metri ies – iuss B	ic eq ic - Ge	uations 12+3 Directio odesics 12+3 theorem 12+3 elopable
Fundam UNIT 2 Definiti coeffici Canonic UNIT 3 Normal p Gaussian UNIT 4 Second associat ruled su	ental E INT on of s ents - cal geoo GEO property curvature I NO fundar fundar red with	en curve Existence Existence Familie desic equ ODESIC of geode re - Surfac N-INTR nental f h space - Fundar	s and su Theore C PROF - Curves s of cu uations. CS sic - Exi ces of con INSIC form - F curves - nental e	em for space co PERTIES OF s on a surface arves - Isome stence theorems astant curvature - PROPERTIE Principal curva	ent surfac urves – H A SURF. - Surfac etric correct Conformal CS OF A S atures- Li s associat urface the	ce – involutes and felics. ACE es of revolution - espondence - Intr c parallels - Geodesic mapping - Geodesic SURFACE ines of curvature ed with curves on ory - Parallel surfa	evolutes - Helicoio tinsic pro curvature napping. – Develo surfaces	– in ls – opert: - Ga	Metri ies – iuss B	ic eq ic - Ge Dev l sur	uations 12+3 Directio odesics 12+3 theorem 12+3 elopable
Fundam UNIT 2 Definiti coefficio Canonic UNIT 3 Normal p Gaussian UNIT 4 Second associat ruled su UNIT 5 Compac or mea	INT on of s ents - cal geod cal geod GEQ oroperty curvatur INO fundar red with urfaces DIF ct surfa n curv	en curve Existence Existence Familie desic equ ODESIC of geode re - Surfac N-INTR mental f h space - Fundar FEREN ces who	s and su e Theore C PROF - Curves s of cu uations. CS sic - Exi ces of con INSIC form - F curves - mental e TIAL (ose poin Complet	em for space compensations of surves of some surfaces of some surface some stence theorems astant curvature of the some sequations of Surves of Su	ent surfac urves – H A SURF. - Surfac etric correct - Geodesic Conformal CS OF A S atures - Li s associat urface the OF SUR s - Hilbert	ce – involutes and felics. ACE es of revolution - espondence - Intr c parallels - Geodesic mapping - Geodesic SURFACE ines of curvature ed with curves on ory - Parallel surfa	evolutes - Helicoid insic pro curvature napping. - Develo surfaces aces. ct surface	– in ls – opert - Ga opabl - Mi	Metries – ies – iuss Bo les - nimal	ic eq ic - Ge onnet Dev I sur tant	uations 12+3 Directio odesics 12+3 theorem 12+3 elopable faces an 12+3 Gaussia
Fundam UNIT 2 Definiti coefficio Canonic UNIT 3 Normal p Gaussian UNIT 4 Second associat ruled su UNIT 5 Compac or mea	ental E INT on of s ents - cal geo GE GE CONTRIBUTION CULVATION fundant red with urfaces DIF ct surfa n curv ate point	en curve Existence FRINSIC surface - Familie desic equ ODESIC of geode re - Surfac N-INTR mental f h space - Fundar FEREN ces who ature- C	s and su e Theore C PROF - Curves s of cu uations. CS sic - Exi ces of con INSIC form - H curves - nental e TIAL of se poin Complet codesics	em for space compensations of surves of some surfaces of some surface some stence theorems astant curvature of the some sequations of Surves of Su	ent surfac urves – H A SURF. - Surfac etric correct - Geodesic Conformal CS OF A S atures - Li s associat urface the OF SUR s - Hilbert	ce – involutes and felics. ACE es of revolution - espondence - Intr e parallels - Geodesic mapping - Geodesic SURFACE ines of curvature ed with curves on ory - Parallel surfa RFACES 's lemma- Compa	evolutes - Helicoid insic pro curvature napping. - Develo surfaces aces. ct surface	- in ls - operti - Ga opabl - Mi es of es-	Metries – ies – iuss Bo les - nimal	ic eq ic - Ge onnet Dev I sur tant rt's	uations 12+3 Directio odesics 12+3 theorem 12+3 elopable faces an 12+3 Gaussia
Fundam UNIT 2 Definiti coeffici Canonic Canonic UNIT 3 Normal p Gaussian UNIT 4 Second associat ruled su UNIT 5 Compac or mea Conjuga	ental E INT on of s ents - cal geo GE GE CONTRIBUTION CUTVATURE	en curve Existence Existence Familie desic equ DESIC of geode re - Surfac N-INTR mental f h space - Fundar FEREN ces who ature- C nts on ge 6	s and su e Theore C PROF - Curves s of cu uations. CS sic - Exi ces of con INSIC form - H curves - nental e TIAL of se poin Complet codesics	em for space co PERTIES OF s on a surface urves - Isome stence theorems istant curvature - PROPERTIE Principal curva - Developables equations of Su GEOMETRY ts are umbilices e surfaces- C	ent surfac urves – H A SURF. - Surfac etric correct - Geodesic Conformal CS OF A S atures - Li s associat urface the OF SUR s - Hilbert Characteriz	ce – involutes and felics. ACE es of revolution - espondence - Intr c parallels - Geodesic mapping - Geodesic SURFACE ines of curvature ed with curves on ory - Parallel surfa RFACES 's lemma- Compa zation of comple	evolutes - Helicoid insic pro curvature napping. - Develo surfaces ices. ct surfaces	- in ls - operti - Ga opabl - Mi es of es-	Metrinsi Metries – iuss B les - nimal	ic eq ic - Ge onnet Dev I sur tant rt's	uations 12+3 Directio odesics 12+3 i theorem 12+3 elopable faces an 12+3 Gaussia theorem

REFERENCES

- 1. Do Carmo, "Geometry of curves and surfaces", Academic Press, 2017.
- 2. D.Somasundaram, "Differential Geometry", Narosa Publ. House, Chennai, 2005.
- 3. J.A. Thorpe, "Elementary Topics in Differential Geometry", Springer Verlag, New York, 1979.

COs VS POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	2	1	3	1	0	1	1
CO 5	3	3	2	1	3	1	0	1	1
TOTAL	15	15	12	7	15	5	2	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1
0 - No Relation, 1 – L	ow Relatio	on, 2- Me	edium Re	elation, 3	- High R	elation	1	1	I

 $1 ext{-}5 ext{-}1, 6 ext{-}10 ext{-}2, 11 ext{-}15 ext{-}3$

COUR	SE NA	AME		COMPL	EX ANA	LYSIS	L	L T P					
COUR	SE C	ODE		Ŋ	/MA305		4	1	0	5			
С	Р	Α					L	Т	Р	Н			
5	0	0					4	1	0	5			
PRERE	QUIS	ITE	Basic	concepts of rea	al number	S							
On succ	essful	comple	tion of	this course, th	ne studen	ts will be able to:							
			COU	RSE OUTCON	IES		DOMA	IN	LE	VEL			
CO 1	Exp	lain Ca	uchy's	Theorem for re	ctangle ar	nd disc	Cognit	ive	Unders	tanding			
CO 2		•	•	ntegral formula order derivative	•	lor's theorem for	Cognit	ive	App	lying			
CO 3	Expl regio		cally E	Exact Differenti	ials – Mu	ltiply Connected	Cognit		App	lying			
CO 4			•	Ũ		Cauchy' theorem	Cognit	ive	Anal	yzing			
CO 5			•	Series and the the given prob		Series for finding	Cognit	ive	App	lying			
UNIT 1									1	12+3			
Line Int Cauchy' UNIT 2				rc – Line integ	rals as fu	inctions of arc- C	auchy's	Theore		ectangle-			
	ex of	a noint	- Inte	gral Formula –	- Higher	derivatives – Ren	novable s	singula					
		-			-	e Maximum Princ		Jingunu		ragior s			
UNIT 3									1	12+3			
Chains an	d Cycle	s – Simp	le Conne	ectivity – Homolog	gy – The G	eneral Statement of C	auchy's Tl	neorem -	- Proof o	f Cauchy's			
	- Locall	y Exact I	Different	ials – Multiply Co	nnected Re	gions							
UNIT 4										12+3			
				-	-	aluation of Definit	-	ls – Th	e Mean	– value			
UNIT 5		0 IX					- r		1	12+3			
		eorem –	The Ta	ylor Series – The	Laurent S	eries – Partial Fraction	ons- Jense	n's Forr					
Theorem													
LECT	URE	6	0	TUTORIAL	15	PRACTICAL	0	TO	ΓAL	75			
TEXT E	BOOK												
1.LarsV.	Ahlfoi	rs, "Con	nplex A	Analysis", 3rd E	Edition M	cGraw Hill Educat	ion (Indi	a) Priva	ate Ltd.2	2013.			
Chapter	4 - Sec	tion 1.1	to 1.5	, Section 2.1 to	2.3, Sect	ion 3.1 to 3.4, Sect	ion 4.1 to	o 4.7, S	ection 5	5.1			
to 5.3, Section 6.1 to 6.5. Chapter 5 - Section 1.1 to 1.3, Section 2.1, Section 3.1 & 3.2.													

REFERENCE

1.S. Ponnusamy, "Complex Analysis", Alpha Science International Ltd; 2nd Revised edition, 2005

COs VS POs	D O 4			D O 1	DO	D O (D O F		
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	3	3	1	2	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	14	10	15	5	5	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1
0 - No Relation, 1 – L	ow Dolotic	n 2 M	dium Da	lation 3	High P	alation			

COU	RSE N	AME	ELF	EMENTS OF S	ТОСНА	STIC PROCESS	L	Т	Р	С
COU	RSE C	ODE		Ŋ	MA3E1		3	0	0	3
С	Р	Α					L	Т	Р	Н
3	0	0					3	0	0	3
PRERI	EQUIS	ITE	Proba	bility and Stati	stics					
On suc	cessful	comple	etion of	this course, th	e studen	ts will be able to:				
			COU	RSE OUTCOM	IES		DOMA	IN	LEV	/EL
CO 1	Util TPN		tinuous	s time Markov	/ model	for constructing	Cognit	ive	App	ying
CO 2	-	olain re mples	enewal	process and	long-terr	n analysis with	Cognit	ive	Unders	tanding
CO 3	Арр	oly diffe	rent me	thods and solve	e Birth an	d Death queues	Cognit	ive	App	ying
CO 4		mine the Network		•	1/G/1 an	d G/M/1 Queues	Cognit	ive	Anal	yzing
CO 5	Con Tim		he idea	a of Brownian	Motion a	and First Passage	Cognit	ive	Evalu	ating
UNIT 1	l Cor	ntinuous	s-Time	Markov Mode	els					9
Continu	ious Ti	me Mar	kov Ch	ain, Examples,	Transien	t Analysis, Occupa	ncy Tim	es, Lii	miting Be	havior
UNIT 2	2 Gen	neralized	d Marl	xov Models						9
Renewa	al Proce	ess, Cun	nulative	e Process, Semi	-Markov	Process, Examples	and Lor	g-terr	n Analys	is.
UNIT 3	3 Que	eueing N	Aodels							9
Queueing	g System	ns, Single-	Station	Queues, Birth and	Death queu	es with Finite and Infi	nite Capac	ity.		
UNIT 4	l Que	eueing N	Aodels	(Contd)						9
M/G/1	and G/I	M/1 Que	eues an	d Network of Q	ueues.					
UNIT :		wnian N								9
		-		ian Motion and Fi	_					
LECI			5	TUTORIAL	0	PRACTICAL	0		TOTAL	45
TEXT	BOOK									
1.V. G.	Kulka	rni, Intro	oductio	n to Modeling a	and Analy	vsis of Stochastic S	ystems, S	Secon	d Edition	,
Springe	er, 2011									
REFEI	RENCI	ES								
1. J. N	Iedhi, S	Stochast	ic Proc	esses, New Age	e, 2009.					
2. S.N	A. Ross	s, Stocha	astic Pro	ocesses, Wiley	Series in	Probability and Sta	tistics, 1	996		

COs VS POs									
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	3	3	1	2	1	1
CO 5	3	3	3	3	3	1	3	1	1
TOTAL	15	15	14	11	15	5	7	5	5
SCALED VALUE	3	3	3	3	3	1	2	1	1
0 - No Relation, 1 – L	ow Relatio	on, 2- Me	edium Re	elation, 3	- High R	elation			I
1-5→1, 6-10→2, 11-1	5→3								

COUR	SE NAME		MATHEMAT	FICAL I	MODELING	L	Т	P	С
COUR	SE CODE		Y	MA3E2	2	3	0	0	3
С	P A					L	Т	Р	Η
3	0 0					3	0	0	3
PRERE	QUISITE	YMA	A103						
On succ	essful compl	etion o	f this course, th	e studer	nts will be able to:				
		COU	RSE OUTCOM	IES		DOMA	IN	LEV	/EL
<u> </u>	Compare	models	s that can be	constru	cted by ordinary	G :			
CO 1	differential	equation	ons of first order	under s	udy	Cognit	ive	Appl	yıng
<u> </u>	Utilize con	npartme	ent models to so	lve the p	problems involved	~ .			
CO 2	in economi	cs and 1	medicine			Cognit	ive	Appl	ying
	Analyze n	nathema	atical models the	nat can	be developed by				
CO 3	second orde	er linea	r differential equ	uations		Cognit	ive	Analy	zing
	Apply line	ear dif	ference equation	on to so	olve problems in				
CO 4	finance and	l econo	mics		-	Cognit	ive	Appl	ying
	Identify th	ne solut	tions of the give	ven prob	lems that can be				
CO 5	modeled th		-	-		Cognit	ive	Appl	ying
UNIT 1	Mathematica	al Model	ing through Ordin	nary Diffe	rential Equations of F	`irst order			9
Linear C	browth and E	Decay N	Iodels – Non-L	inear Gi	owth and Decay N	Iodels –	Compa	rtment I	Models
Dynamic	s problems –	- Geom	etrical problems						
UNIT 2	Mathematica	al Model	ing through Syste	ms of Ord	linaryDifferential Equ	ations of]	First Or	der	9
Populatio	on Dynamics	– Epid	emics – Compa	rtment N	Iodels – Economics	s –Medic	ine, Ar	ms Race	e, Battle
and Inter	national Trac	de−Dy	namics						
UNIT 3	Mathematica	al Model	ing through Ordin	nary Diffe	rential Equationsof Se	econd Ord	er		9
Planetary	Motions – Cir	cular M	otion and Motion	of Satell	ites – Mathematical I	Modeling	through	Linear I	Differenti
Equations	of Second Orde	r –Misce	ellaneous Mathema	tical Mode	ls				
UNIT 4	Mathematica	al Model	ing through Diffe	rence Equ	ations				9
Simple N	Iodels – Bas	ic Theo	ry of Linear Dif	ference	Equations with Con	stantCoe	fficien	ts – Eco	nomics
	nce – Popula	tion Dy	mamics and Ger	etics –P	robability Theory				
and Fina	Mathematics	al Model	ing through Grap	hs					9
	mathematic				cal Modeling inTerms	of Direct	ed Grap	hs, Signe	d Graph
UNIT 5		odeled th	nrough Graphs – 1	Vlathemati	car modeling interms				
UNIT 5 Solutions	that can be Mo Digraphs and U			Vlathemati	PRACTICAL			OTAL	

1.J.N. Kapur, Mathematical Modeling, Wiley Eastern Limited, New Delhi, 1988

REFERENCE

1.J. N. Kapur, Mathematical Models in Biology and Medicine, Affiliated East –West Press Pvt Limited, New Delhi, 19

COs Vs POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	3	2	3	1	1	1	1
CO 2	3	3	3	2	3	1	1	1	1
CO 3	3	3	3	3	3	1	2	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	15	11	15	5	6	5	5
SCALED VALUE	3	3	3	3	3	1	2	1	1
0 - No Relation, 1 – L	ow Relatio	on, 2- Me	dium Re	lation, 3	- High R	elation	1	1	1

 $1 ext{-}5 ext{-}1, 6 ext{-}10 ext{-}2, 11 ext{-}15 ext{-}3$

	COURSE NAME DATA ANALYSIS USING SPSS			L	Т	Р	С		
COURSE CODE			YMA3E3	3 0		0	3		
С	Р	Α		L	Т	Р	Н		
3	0	0		3	0	0	3		
PRER	REQUIS	SITE	Probability and Statistics						
On su	ccessfu	l compl	etion of this course, the students will be able t	:					
	COURSE OUTCOMES DOMAIN LEVE								
<u> </u>	Exp	Explain basic concepts of SPSS, working with the Data							
CO 1	Edi	tor and I	Plotting of Charts using Bar and Pie diagram	Cogniti	ve	Understanding			
<u> </u>	Exp	olain m	easures of central tendencies and measures of	TT. J	1	TT. J			
CO 2	disp	persion u	using SPSS	Understan	Understanding		Understanding		
	Uti	lize co	ncept of testing hypothesis for finding						
CO 3	sign	nificance	e level for the given data using one sample t-	Cognitive		Applying			
	test	test, independent sample t-test and paired t-test in SPSS							
CO 4	Ap	ply One	-way ANOVA, two-way ANOVA and Chi-	Caraciti		A			
CO 4	CO 4If yCognitiveApplysquare test for the given data in SPSSCognitiveApply								
CO 5	Compare the relationship for the datausing methods of					A			
05	corr	correlation and regression in SPSS Cognitive Applyi							
	1								
UNIT	1						9		
		o SPSS	- Starting SPSS - SPSS Main Menus - Wor	king with t	he Da	nta Edito			
Introdu	uction t		– Starting SPSS – SPSS Main Menus – Wor nd Exporting data. Plotting of Charts: Simple E	-			r – SPSS		
Introdu Viewe	uction t	orting a		-			r – SPSS		
Introdu Viewe and Pie	uction to er – Imp e Diagra	orting a		-			r – SPSS		
Introdu Viewe and Pie UNIT	uction t er – Imp e Diagra 2	orting a am.		Bar diagram	ı, Mul	tiple Bar	r – SPSS Diagran 9		
Introdu Viewe and Pie UNIT Descri	uction to er – Imp e Diagra 2 iptive St	orting a am. tatistics	nd Exporting data. Plotting of Charts: Simple E	Bar diagram	n, Mul	tiple Bar	r – SPSS Diagram 9 tic mean		
Introdu Viewe and Pie UNIT Descri Media	uction to er – Imp e Diagra 2 aptive St n, Mode	orting a am. tatistics e, Geon	nd Exporting data. Plotting of Charts: Simple E and Frequencies using SPSS. Measures of ce	Bar diagram	n, Mul	tiple Bar	r – SPSS Diagran 9 tic mean		
Introdu Viewe and Pie UNIT Descri Media	uction to er – Imp e Diagra 2 aptive St n, Mode Mean I	orting a am. tatistics e, Geon	nd Exporting data. Plotting of Charts: Simple E and Frequencies using SPSS. Measures of ce netric mean and Harmonic Mean. Measures o	Bar diagram	n, Mul	tiple Bar	r – SPSS Diagran 9 tic mean		
Introdu Viewe and Pie UNIT Descri Media range, UNIT	uction to er – Imp e Diagra 2 aptive St n, Mode Mean I 3	orting a am. tatistics e, Geon Deviatio	nd Exporting data. Plotting of Charts: Simple E and Frequencies using SPSS. Measures of ce netric mean and Harmonic Mean. Measures o	Bar diagram	n, Mul ncies: n: Ra osis.	tiple Bar Arithme nge, inte	r – SPSS Diagran 9 tic mean r quartile 9		
Introdu Viewe and Pie UNIT Descri Media range, UNIT Testing Indepen	uction to er – Impre e Diagra 2 iptive St n, Mode Mean I 3 of Hypo	orting a am. tatistics e, Geon Deviatio	nd Exporting data. Plotting of Charts: Simple E and Frequencies using SPSS. Measures of ce netric mean and Harmonic Mean. Measures o n and Standard deviation. Measures of Skewnes	Bar diagram	n, Mul ncies: n: Ra osis.	tiple Bar Arithme nge, inte	r – SPSS Diagran 9 tic mean r quartile 9		
Introdu Viewe and Pie UNIT Descri Media range, UNIT Testing	uction to er – Impre e Diagra 2 iptive St n, Mode Mean I 3 of Hypo	orting a am. tatistics e, Geon Deviatio	nd Exporting data. Plotting of Charts: Simple E and Frequencies using SPSS. Measures of cen netric mean and Harmonic Mean. Measures o n and Standard deviation. Measures of Skewnes ype I error and Type II Errors – Concept of p values	Bar diagram	n, Mul ncies: n: Ra osis.	tiple Bar Arithme nge, inte	r – SPSS Diagran 9 tic mean r quartile 9		
Introdu Viewe and Pie UNIT Descri Media range, UNIT Testing Indepen UNIT	uction to er – Impre e Diagra 2 iptive St n, Mode Mean I 3 of Hypo ndent Sam 4	orting a am. tatistics e, Geon Deviatio othesis: T uples t-tes	nd Exporting data. Plotting of Charts: Simple E and Frequencies using SPSS. Measures of cen netric mean and Harmonic Mean. Measures o n and Standard deviation. Measures of Skewnes ype I error and Type II Errors – Concept of p values	Bar diagram ntral tender f Dispersionss and Kurt – Basic Con	n, Mul ncies: n: Ra osis.	Arithme nge, inte	r – SPSS Diagran 9 tic mean r quartile 9 mple t-test 9		
Introdu Viewe and Pie UNIT Descri Media range, UNIT Testing Indepen UNIT Analys	uction to er – Impre e Diagra 2 iptive St n, Mode Mean I 3 of Hypo ndent Sam 4 sis of Va	orting a am. tatistics e, Geon Deviatio othesis: T aples t-tes ariance:	nd Exporting data. Plotting of Charts: Simple E and Frequencies using SPSS. Measures of centric mean and Harmonic Mean. Measures of n and Standard deviation. Measures of Skewnes ype I error and Type II Errors – Concept of p values t, Paired samples t-test using SPSS with interpretation.	Bar diagram ntral tender f Dispersionss and Kurt – Basic Com o-Way AN	n, Mul ncies: n: Ra osis.	Arithme nge, inte	r – SPSS Diagram 9 tic mean r quartile 9 mple t-test 9		

LECTURE	45	TUTORIAL	0	PRACTICAL	0	TOTAL 45					
TEXT BOOK											
1.Ajai J Gaur ar	nd Sanjay	S. Gaur (2008): S	Statistic	al Methods for Prac	ctice and Re	esearch:A guide	o data				
analysis using SPSS, First Edition, Sage Publications											
REFERENCES	5										
	(2011), D	isoovoring Statisti	cs Usin	og SPSS Sage Publi	cations						
3. Andy Field.	(2011); D	iscovering Statisti	CS USIN	ig 51 55, 5age 1 uon	cations.						

COs VS POs									
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	3	2	1	3	1	0	1	1
CO 2	3	3	2	1	3	1	0	1	1
CO 3	3	3	3	2	3	1	1	1	1
CO 4	3	3	3	2	3	1	1	1	1
CO 5	3	3	3	2	3	1	1	1	1
TOTAL	15	15	13	8	15	5	3	5	5
SCALED VALUE	3	3	3	2	3	1	1	1	1
0 - No Relation, 1 – I	low Rela	tion, 2- N	Aedium	Relation	, 3- High	Relation	1	1	<u>I</u>
$1 ext{-}5 ext{-}1, 6 ext{-}10 ext{-}2, 11 ext{-}1$	5→3								

SEMESTER	COURSE CODE	COURSE NAME		Т	Р	Н	С
IV	YMA401	PROJECT WORK	0	0	0	30	8
		TOTAL				30	8