

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.3	Average percentage of courses having focus on employability/ entrepreneurship/ skill Development offered by the Mechanical engineering

DEPARTMENT OF MECHANICAL ENGINEERING

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

S. No.	Programme Name
i.	Bachelor of Technology(Mechanical Engineering)(Full Time)
ii.	Master of Technology(Renewable Energy)(Full Time)
iii.	Master of Technology(Renewable Energy)(Part Time)

2. Syllabus of the courses as per the list.

Legend :	Words highlighted with Blue Color	-	Entrepreneurship

Words highlighted with Red Color-Employability

Words highlighted with Green Color - Skill Development

Name of the Course	Course Year of Code introducti		Activities/Content with direct bearing on Employability/ Entrepreneurship/ Skill development								
B.Tech. Mechanical Engineering (Full Time) 2022-23 ACADEMIC YEAR											
Calculus and Linear XMA101											
Algebra	AMAIOI	2018-19	Skill Development								
Programming for Problem Solving	XCP102	2018-19	Employability								
Applied Chemistry for	XAC103										
Engineers		2018-19	Skill Development								
Engineering Graphics and Design	XEG104										
6	XGS105	2018-19	Skill Development								
Speech Communication	AG\$105	2021-22	Skill Development								
	XUM106										
Constitution of India		2018-19	Skill Development								
Programming for Problem Solving Laboratory	XCP107	2021-22	Employability								
Applied Chemistry	XAC108										
Laboratory for Engineers		2021-22	Skill Development								
Calculus, Ordinary Differential Equations and Complex Variables	XMA201	2018-19	Skill Development								
Electrical and Electronic Engineering Systems	XBE202	2018-19	Skill Development								
Applied Physics for Engineers	XAP203										
Technical Communication	XGS204	2018-19	Skill Development								
Technical Communication	AG5204	2021-22	Skill Development								
Workshop Practices	XWP205	2008-09	Skill Development								
Engineering Mechanics	XEM206	2000-07	Skii Development								
Electrical and Electronic	XBE207	2018-19	Skill Development								
Engineering Systems Laboratory		2018-19	Skill Development								
Applied Physics for Engineers Laboratory	XAP208	2018-19	Skill Development								

Transforms and Partial	XMA301		
Differential Equations	AMASUI		
-		2022-23	Skill Development
Thermodynamics	XME302		
		2018-19	Skill Development
Strength of Materials	XME303		
		2018-19	Skill Development
Materials Engineering	XME304		
		2018-19	Skill Development
Machine Drawing	XME305	2010-17	Skii Development
indennie Drawing	11112505		
Entropy on which	XUM306	2021-22	Skill Development
Entrepreneurship Development	XUM300		
1		2022-23	Entrepreneurship
Universal Human Values 2	XUM307		
: Understanding Harmony and gender		2022-23	****
Strength of Materials	XME308	2022-25	
Laboratory	Millsoo		
-	XME200	2021-22	Skill Development
Computer Aided Drafting Laboratory	XME309		
		2022-23	****
	XME310		
In-plant Training - I		2018-19	Skill Development
Service Robotics with	XECHR1		
Drives and Sensors		2022-23	Skill Development
Probability Distribution	XMA401		I I I I I I I I I I I I I I I I I I I
and Statistical Methods		2021-22	Skill Development
Applied Thermodynamics	XME402	2021-22	Skii Development
		2010 10	
Fluid Mechanics and Fluid	XME403	2018-19	Skill Development
Machines	AIVIL403		
		2018-19	Skill Development
Instrumentation and Control	XME404		
Control		2018-19	Skill Development
Economics for Engineers	XUM405		
		2018-19	Skill Development
	XUM406		1
Disaster Management		2021-22	Skill Development
Thermal Engineering	XME407	2021-22	
Laboratory		2021 22	
Fluid Mechanics and Fluid	XME408	2021-22	Skill Development
Machines Laboratory	AIVIE4Uð		
		2021-22	Skill Development

Industrial Robotics and	XECHR2		
Automation		2022-23	Skill Development
Operations Research	XME501	2018-19	Employability/Entrepreneurship / Skill Development
Heat Transfer	XME502	2018-19	Employability/Entrepreneurship / Skill Development
Automobile Engineering	XME503	2018-19	Employability/Entrepreneurship / Skill Development
CAD/CAM	XME504	2018-19	Employability/Entrepreneurship / Skill Development
Kinematics &Theory of Machines	XME505	2018-19	Employability/Entrepreneurship / Skill Development
Constitution of India	XUM506	2018-19	Employability/Entrepreneurship / Skill Development
Mechanical Engineering Laboratory III (Strength of Materials)	XME507	2022-23	Skill Development
Mechanical Engineering Laboratory IV (Kinematics and Theory of Machines)	XME508	2022-23	Skill Development
Inplant Training – II (21 days)	XME509	2018-19	Employability
CNC Programming for Lathe Operations	XMEM01	2018-19	Employability/Entrepreneurship / Skill Development
Economics for Engineers	XUM601	2018-19	Employability/Entrepreneurship / Skill Development
Manufacturing Technology	XME602	2018-19	Employability/Entrepreneurship / Skill Development
Design of Machine Elements	XME603	2018-19	Employability/Entrepreneurship / Skill Development
Elective-I		2018-19	****
Elective-II		2018-19	****
Mechanical Engineering Laboratory V (Heat Transfer)	XME606	2022-23	Skill Development
Pneumatics and Hydraulics	XMEM02	2018-19	Employability/Entrepreneurship / Skill Development
Open Elective-I		2018-19	****

	VME702		
Automation in Manufacturing	XME702		Employability/Entrepreneurship
		2018-19	/ Skill Development
Elective III			
		2018-19	****
Elective-IV			
		2018-19	****
Elective V		2018-19	
		2018-19	****
Cyber Security	XUM706		Employability/Entrepreneurship
		2018-19	/ Skill Development
Mechanical Engineering	XME707		
Laboratory III			Employability/Entrepreneurship
(Manufacturing)		2018-19	/ Skill Development
Project phase – I	XME708		
		2018-19	Employability
Inplant Training – III (30	XME709		
days)		2018-19	Employability
Non Destructive Testing	XMEM03	2010 12	
6		2010 10	Employability/Entrepreneurship
Open Elective-II		2018-19	/ Skill Development
Open Elective-II			
		2018-19	****
Open Elective-III			
		2018-19	****
Elective VI			
		2018-19	****
Project phase – II	XME804		
5 1		2010 10	Employability
MTEC	H DENEWAB	2018-19	Employability (FULL TIME)
	2022-23 – A	CADEMIC Y	EAR
Solar Energy Systems	YRE101	2018-19	Employability
Wind, Ocean and		2010-17	
Geothermal Energy			
Systems	YRE102	2022-23	Employability
Process Modelling and			
Simulation in Energy			
Systems	YRE103	2018-19	Employability
Professional Elective – I		2018-19	****

Professional Elective – II		2018-19	****
	VDF106	2022 22	
Solar Energy Laboratory	YRE106	2022-23	Skill Development
Research Methodology and IPR	YRM107	2018-19	Entrepreneurship / Skill Development
English for Research Paper Writing	YEGOE1	2018-19	Entrepreneurship / Skill Development
Process Modelling and Simulation Laboratory	YRE109	2022-23	Skill Development
Bio Energy Systems	YRE201	2018-19	Employability
Computational Fluid Dynamics	YRE202	2018-19	Employability
Electrical Energy Technology	YRE203	2018-19	Employability
Professional Elective – III		2018-19	****
Professional Elective – IV		2018-19	****
Computational Fluid Dynamics Laboratory	YRE206	2022-23	Skill Development
Bio Energy Laboratory	YRE207	2022-23	Skill Development
Constitution of India	YPSOE1	2018-19	Employability
Project Phase – I	YRE301	2018-19	Employability/Entrepreneurship / Skill Development
Elective - V	YRE302***	2018-19	****
Open Elective Course(Student's Choice)	YREOE*** *	2018-19	****
Project Phase – II	YRE401	2018-19	Employability/Entrepreneurship / Skill Development
M	.Tech Renewab	le Energy (Pa	rt Time)
	2022-23 – AC	CADEMIC YE	EAR
Computational Fluid			
dynamics	QRE301	2018-19	Employability

	QREOE***		
Open Elective Course – I	*	2018-19	****
Elective – III	QRE303***	2018-19	****
Computational Fluid			
Dynamics Lab	QRE304	2018-19	Skill Development
Elective – IV	QRE401***	2018-19	****
Elective – V	QRE402***	2018-19	****
	QREOE***		
Open Elective Course – II	*	2018-19	****
MAT and SCI Lab	QRE404	2018-19	Skill Development
			Employability
Project Phase – I	PYRE501	2018-19	
			Employability
Project Phase – II	PYRE601	2018-19	

<u>SYLLABUS FOR B.TECH MECHANICAL (FT)</u> <u>ACADEMIC YEAR 2022-23</u>

Semester	I		
Subject Name	CALCULUS AND LIN	NEAR ALGEBRA	
Subject Code	XMA101		
L –T –	Р –С	C:P:A	L –T –P –H
3-1-	0-4	3:0.5:0.5	3-1-0-4

PREREQUISITE: Differentiation and Integration

Course	e Outcome	Domain/Level
		C or P or A
CO1	Apply orthogonal transformation to reduce quadratic form to canonical forms.	K1, K3
CO2	Apply power series to tests the convergence of the sequences	K1, K3
CO3	and series.Half range Fourier sine and cosine series.Find the derivative of composite functions and implicit	K1, P3
COS	functions.	KI , I 5
	Euler's theorem and Jacobian	
CO4	Explain the functions of two variables by Taylors expansion, by finding maxima and minima with and without constraints using Lagrangian Method.	K1, K2, A1
	Directional derivatives, Gradient, Curl and Divergence.	
CO5	Apply Differential and Integral calculus to notions of Curvature and to improper integrals.	K3
CO6	Analyze the given sequence is convergent or divergent by	K4
	using the appropriate tests	
UNIT	I Matrices	12 HRS
	Linear Transformation - Eigen values and Eigen vectors - F values and Eigen vectors - Cayley-Hamilton Theorem – Matrices – Real Matrices: Symmetric - Skew-Symmetric Quadratic form – canonical form - Nature of Quadratic form a of Quadratic form to Canonical form (Orthogonal only).	Diagonalisation of c and Orthogonal
UNIT	II Sequences and series	12 HRS
	Sequences: Definition and examples-Series: Types and conv positive terms – Tests of convergence: comparison test, D'Alembert's ratio test Fourier series: Half range sine Parseval's Theorem.	Integral test and
UNIT	III Multivariable Calculus: Partial Differentiation	12 HRS
	Limits and continuity –Partial differentiation – Total Derivative differentiation of Composite Functions: Change of Variables – Implicit Function - Euler's Theorem- Jacobian.	
UNIT	IV Multivariable Calculus: Maxima and Minima and Vector Calculus	12 HRS

Taylor's theorem for function of Two variables- Maxima, Minima of functions of two variables: with and without constraints - Lagrange's Method of Undetermined Multipliers – Directional Derivatives - Gradient, Divergence and Curl.

UNIT V Differential and Integral Calculus

12 HRS

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

L = 45 hrs T = 15 hrs P=0 hrs Total = 60 hrs

TEXT BOOKS

1. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill New Delhi, 11th Reprint, 2015. (Unit-1, Unit-3 and Unit-4).

2. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2014. (Unit-2).

3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40th Edition, 2010. (Unit-5). **REFERENCES BOOKS**

1. G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.

Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi, 2008.
 D. Poole, "Linear Algebra: A Modern Introduction", 2nd Edition, Brooks/Cole, 2005.

4. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

E REFERENCES

- 1. https://www.indiabix.com/c-programming/questions-and-answers/
- 2. https://www.javatpoint.com/c-programming-language-tutorial
- 3. https://www.w3schools.in/c-tutorial/

Mapping of COs with GA

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3	2			2					1		2
CO 2	3	1								1		1
CO 3	3	1								1		1
CO 4	3	2								1		1
CO 5	3	2			1					1		2
	15	8	0	0	3	0	0	0	0	5	0	7
Scaled Value	3	2			1					1		
$1-5 \rightarrow$	1,		6 – 10 –	→ 2,	r.	11 – 1	$5 \rightarrow 3$	•	•	1	•	1

Semester	I		
Subject Name	PROGRAMMING FOR I	PROBLEM SOLVING	
Subject Code	XCP102		
L –T –]	Р-С	C:P:A	L –T –P –H
3-0-0	0-3	3:0:0	3-0-0-3

course ou	tcome	Domain/Level
		C or P or A
•	<i>ine</i> programming fundamentals and <i>Solve</i> simple programs	K1, K2, K3
	ng I/O statements <i>ine</i> syntax and <i>write simple programs</i> using control	K1, K2, K3
	ctures and arrays <i>blain</i> and <i>write simple programs</i> using functions and	K1, K2, K3
poir	nters	K1, K2, K3
CO4 Exp unio	<i>blain</i> and <i>write simple programs</i> using structures and	K1, K2, K3
CO5 Exp sim	<i>blain</i> and <i>write simple programs</i> using files and <i>Build</i> ple projects	K1, K2, K3
The objecti	ve of this course	
✤ To le	earn programming language basics and syntax	
🛠 To i	gnite logical thinking	
To u	nderstand structured programming approach	
To d	eal with user defined data types	
🛠 Tok	now about data storage in secondary memory	
COURSE (CONTENT	
UNIT I	PROGRAMMING FUNDAMENTALS AND STATEMENTS	I/O 9HRS
	Introduction to components of a computer system, Program – code – Software – Introduction to C language – Chara Identifiers, Keywords, Constants, and Operators – sample Header files – Data Types- Variables - Output statements – In	cter set – Tokens: program structure -
U NIT II	CONTROL STRUCTURE AND ARRAYS	9HRS
	Control Structures – Conditional Control statements: Br Unconditional control structures: switch, break, continue, Arrays: One Dimensional Array – Declaration – Initialization Elements – Searching – Sorting – Two Dimensional arra Initialization – Matrix Operations – Multi Dimensional Arr Initialization. Storage classes: auto – extern – static. Strings: strings.	goto statements – n – Accessing Array ays - Declaration – rays - Declaration –
U NIT III	FUNCTIONS AND POINTERS	9HRS
	Functions: Built in functions – User Defined Functions - Para - Passing arrays to functions – Recursion - Programs using arr Pointers - Pointer declaration - Address operator - Pointer exp arithmetic - Pointers and function - Call by value - Call by Re arrays - Use of Pointers in self-referential structures-Notion of	ays and functions. ressions & pointer ference - Pointer to
	STRUCTURES AND UNIONS	9HRS
UNIT IV		

UNIT V FILES

9HRS

File management in C - File operation functions in C - Defining and opening a file - Closing a file - The getw and putw functions - The fprintf & fscanf functions - fseek function - Files and Structures.

L = 45 hrs T = 0 hrs P=0 hrs Total = 45 hrs

TEXT BOOKS

- 1. Byron Gottfried, "Programming with C", III Edition, (Indian Adapted Edition), TMH publications, 2010
- 2. Yeshwant Kanethker, "Let us C", BPB Publications, 2008

REFERENCES BOOKS

- 1. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill, 7th edition 2017.
- 2. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education Inc. 2005
- **3.** Johnson baugh R. and Kalin M., "Applications Programming in ANSI C", III Edition, Pearson Education India, 2003

E REFERENCES

- 1. https://www.indiabix.com/c-programming/questions-and-answers/
- 2. <u>https://www.javatpoint.com/c-programming-language-tutorial</u>
- 3. https://www.w3schools.in/c-tutorial/

Mapping of COs with PO

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	P O 12	PSO 1	PSO 2
CO1	3	2	0	0	3	0	0	0	0	0	2	3	2	0
CO2	3	2	0	0	2	0	0	0	0	0	2	3	2	0
CO3	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO4	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO5	2	2	1	0	2	0	0	1	0	2	2	2	2	0
Tota l	12	10	3	4	11	0	0	1	0	2	10	12	10	0

Semes	ter	Ι		
Subjec	et Name	APPLIED C	HEMISTRY FOR ENGINEERS	
Subjec	ct Code	XAC103		
	L –T –	-Р –С	C:P:A	L –T –P –H
	3-1-	0-4	2.5:1:0.5	3-1-0-4
Cours	e Outcome			Domain/Level
				C or P or A
CO1	•••		perties such as ionization energy, ion states and electro negativity.	K1, P1

Describe the various water quality parameters like hardness and alkalinity. Explain and Measure microscopic chemistry in terms of

- CO₂ K2, P2 atomic, molecular orbitals and intermolecular forces. *Interpret* bulk properties and processes using thermodynamic **CO3** K3, P4, A1 and kinetic considerations. Describe, Illustrate and Discuss the chemical reactions that are K1, K4, P1, A2 **CO4** used in the synthesis of molecules.
- Apply, Measure and Distinguish the ranges of the CO5 K1, K3, P4 electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques

The objective of this course

Understand the application of chemistry in engineering.

COURSE CONTENT

UNIT I PERIODIC PROPERTIES AND WATER CHEMISTRY 11 HRS

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries. Water Chemistry-Water quality parameters-Definition and explanation of hardness, determination of hardness by EDTA method-Introduction to alkalinity.

UNIT II **USE OF FREE ENERGY IN CHEMICAL EOUILIBRIA**

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Corrosion-Types, factors affecting corrosion rate and Control methods. Use of free energy considerations in metallurgy through Ellingham diagrams. Advantages of electroless plating, electroless plating of nickel and copper on Printed Circuit Board (PCB).

UNIT III ATOMIC AND MOLECULAR STRUCTURE

Schrodinger equation. Particle in a box solution and their applications for conjugated molecules and nanoparticles.. Molecular orbitals of diatomic molecules and plots of the multicenter orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic molecules. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

Intermolecular forces and potential energy surfaces

Ionic, dipolar and Vander waals interactions. Equations of state of real gases and critical phenomena. Potential energy surfaces of H₃, H₂F and HCN and trajectories on these surfaces.

UNIT IV **10 HRS** SPECTROSCOPIC TECHNIQUES AND APPLICATIONS

Principles of spectroscopy and selection rules. Electronic spectroscopy-chromophore, auxochromes, types of electronic transition and application. Fluorescence and its applications in medicine. Vibrational spectroscopy-types of vibrations. Instrumentation and applications. Rotational spectroscopy of diatomic molecules.

13 HRS

15 HRS

Nuclear magnetic resonance spectroscopy-concept of chemical shift and applicationsmagnetic resonance imaging. Diffraction and scattering.

UNIT V STEREOCHEMISTRY AND ORGANIC REACTIONS

11 HRS

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization reactions and ring opening reactions. Synthesis of a commonly used drug molecule- Aspirin and paracetamol.

L = 45 hrs T = 15 hrs P=0 hrs Total = 60 hrs

TEXT BOOKS

- 1. Puri B.R. Sharma, L.R., Kalia K.K. Principles of Inorganic Chemistry, (23rdedition), New Delhi, Shoban Lal Nagin Chand & Co., 1993.
- 2. Lee. J.D. Concise Inorganic Chemistry, UK, Black well science, 2006.
- 3. Trapp. C, Cady, M. Giunta. C, Atkins's Physical Chemistry, 10th Edition, Oxford publishers, 2014.
- 4. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd, 1983.
- 5. Morrison R.T. and Boyd R.N. Organic Chemistry (6th edition), New York, Allyn& Bacon Ltd., 1976.
- 6. Banwell. C.N, Fundamentals of Molecular Spectroscopy, (3th Edition), McGraw-Hill Book Company, Europe 1983.
- 7. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (4th edition), S./ Chand & Company Ltd. New Delhi, 1977.
- 8. P. S. Kalsi, Stereochemistry: Conformation and mechanism, (9th Edition), New Age International Publishers, 2017.

REFERENCES BOOKS

- **1.** Puri B R Sharma L R and Madan S Pathania, "Principles of Physical Chemistry", Vishalpublishing Co., Edition 2004.
- **2.** Kuriocose, J C and Rajaram, J, "Engineering Chemistry", Volume I/II, Tata McGraw-Hill Publishing Co. Ltd. New Delhi, 2000.

E REFERENCES

- 1. <u>http://www.mooc-list.com/course/chemistry-minor-saylororg</u>
- 2. <u>https://www.canvas.net/courses/exploring-chemistry</u>
- 3. http://freevideolectures.com/Course/2263/Engineering-Chemistry-I
- 4. http://freevideolectures.com/Course/3001/Chemistry-I
- 5. http://freevideolectures.com/Course/3167/Chemistry-II
- 6. <u>http://ocw.mit.edu/courses/chemistry/</u>

Mapping of COs with PO

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	P O 12	PSO 1	PSO 2
CO1	3	0	0	0	0	0	2	3	3	0	0	0	0	0

CO2	2	0	0	0	0	0	1	2	2	0	0	0	0	0
CO3	3	0	0	0	0	0	2	3	3	0	0	0	0	0
CO4	3	0	0	0	0	0	3	3	3	0	0	0	0	0
CO5	3	0	0	0	0	0	2	2	3	0	0	0	0	0
Tota 1	13	0	0	0	0	0	10	13	14	0	0	0	0	0

1 - Low, 2 – Medium, 3- High

Semest	er	Ι		
Subjec	t Name	Engineering G	raphics and Design	
Subjec	t Code	XEG104		
	L –T –	Р –С	C:P:A	L –T –P –H
	1-0 -2	2-3	1.75:1:0.25	1-0-4-5
Course	Outcome			Domain/Level
				C or P or A
CO1		national and inter arious curves	national standards, <i>construct</i> and	Cognitive (Apply) Psychomotor (Guided response) Affective (Responds to Phenomena)
CO2	- /	<i>construct</i> and <i>pra</i> aight lines and plan	actice orthographic projections of les.	,
CO3		<i>Sketch</i> and <i>Pract</i> and true shape of se	<i>ice</i> projection of solids in various ectioned solids.	Cognitive (Apply) Psychomotor (Complex over response) Affective (Responds to phenomena)
CO4	- /		<i>etice</i> the development of lateral ted solids, intersection of solids.	Cognitive (Understand) Psychomotor (Complex over response) Affective (Responds to phenomena)
CO5 Object	views of s	sketch and pra imple and truncated	<i>ctice</i> isometric and perspective d solids.	Cognitive (Apply) Psychomotor (Complex over response) Affective (Responds to phenomena)

 to prepare the student to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

- ✤ to prepare the student to communicate effectively
- to prepare the student to use the techniques, skills, and modern engineering tools necessary for engineering practice

COURSE CONTENT

UNIT I INTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE 12+6 hrs

Importance of graphics in engineering applications – use of drafting instruments – BIS specifications and conventions as per SP 46-2003.

Pictorial representation of engineering objects – representation of three dimensional objects in two dimensional media – need for multiple views – developing visualization skills through free hand sketching of three dimensional objects.

Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves – construction – drawing of tangents to the above curves. Practice on basic tools of CAD

UNIT II PROJECTION OF POINTS, LINES AND PLANE 12+6 hrs SURFACES

General principles of orthographic projection – first angle projection – layout of views – projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclinations to the planes of projection – traces – projection of polygonal surfaces and circular lamina inclined to both the planes of projection-CAD practice on points and lines

UNIT III PROJECTION OF SOLIDS AND SECTIONS OF SOLIDS

12+6 hrs

12+6 hrs

Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to one plane of projection – change of position & auxiliary projection methods – sectioning of above solids in simple vertical positions by cutting plane inclined to one reference plane and perpendicular to the other and above solids in inclined position with cutting planes parallel to one reference plane – true shapes of sections-CAD practice on solid models

UNIT IV DEVELOPMENT OF SURFACES AND INTERSECTION OF 12+6 hrs SOLIDS

<u>Need for development of surfaces – development of lateral surfaces of simple and</u> <u>truncated solids – prisms, pyramids, cylinders and cones – development of lateral</u> <u>surfaces of the above solids with square and circular cutouts perpendicular to their</u> <u>axes – intersection of solids and curves of intersection –prism with cylinder, cylinder</u> <u>& cylinder, cone & cylinder with normal intersection of axes and with no offset-CAD</u> <u>practice on intersection of solids.</u>

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS

Principles of isometric projection – isometric scale – isometric projections of simple solids, truncated prisms, pyramids, cylinders and cones – principles of perspective projections – projection of prisms, pyramids and cylinders by visual ray and vanishing point methods-CAD practice on isometric view

L = 30 hrs T = 0 hrs P=60 hrs Total = 90 hrs

TEXT BOOKS

1. Bhatt,N.D, "Engineering Drawing", Charotar Publishing House, 46th Edition-2003.

2. Natarajan,K.V, " A Textbook of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2006 .

3. <u>Dr. P.K. Srividhya, P. Pandiyaraj, "Engineering Graphics", PMU Publications, Vallam, 2013</u> **REFERENCES**

- 1. Luzadder and Duff, "Fundamentals of Engineering Drawing" Prentice Hall of India PvtLtd, XI Edition 2001.
- 2. Venugopal,K. and Prabhu Raja, V., "Engineering Graphics", New Age International(P) Ltd., 2008.
- 3. Gopalakrishnan.K.R,. "Engineering Drawing I & II", Subhas Publications, 1998.
- 4. Shah, M.B and Rana, B.C., "Engineering Drawing", Pearson Education, 2005.

E-REFERENCES

- 1. <u>http://periyarnet/Econtent</u>
- 2. http://nptel.ac.in/courses/112103019/

Mapping of COs with PO

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C01	3	3	3	2	3	2	3	1	1	2	3	3	3	
CO2	3	3	3	1	3	1	3	1	1	1	2	3	3	
CO3	3	3	3	1	3	1	3	1	1	1	2	3	3	
CO4	3	3	3	1	3	1	3	1	1	1	2	3	3	
CO5	3	3	3	1	3	1	3	1	1	1	2	3	3	
Tota l	15	15	15	6	15	6	15	5	5	6	11	15	15	

Semes	ter	I		
Subje	ct Name	XGS105		
Subje	ct Code	SPEECH CON	MMUNICATION	
	L –T –	Р –С	C:P:A	L –T –P –H
	0-1-	2-3	2.6:0.4:0	0-1-4-5
Cours	e Outcome			Domain/Level
				C or P or A
CO1	Ability to	recall the types of	speeches	K1
CO2	Apply the	techniques in pub	lic speaking	К3
CO3	<i>Identify</i> th	e common pattern	ns in organizing a speech	K1
CO4	Construct	the nature and sty	vle of speaking	K6
CO5	Practicing	the speaking skil	lls	P3
CO6	Apply the	techniques everyd	lay life	К3

COURSE CONTENT

UNIT I	Types of Speeches		9 HRS
	 1.1 – Four types of speeche 1.2 – Analyzing the audiene 1.3 - Developing ideas and 	ce	
UNIT II	Public Speaking		9 HRS
	2.1 - Introduction to Public2.2 - Competencies Needed2.3 - Speaking about every	l for successful speech making	ng
UNIT III	Organization of Speech		9 HRS
	 3.1 – Developing a speech 3.2 - Organizing the speech 3.3 – Introduction - develop 	h	
UNIT IV	Presentation		9 HRS
	 4.1 - Tips for preparing the 4.2 - Presentation technique 4.3 - Using examples from 	es using ICT tools	
UNIT V	Activities		9 HRS
Suggested F (i) Michael S	 5.1 – Reading activities 5.2 – Creative presentations 5.3 – Media presentation te T = 0 hrs P=0 hrs Total = Readings: Swan. <i>Practical English Usag</i> Kumar and Pushp Lata. <i>Com</i> 	chniques = 45 hrs ge. OUP. 1995	niversity Press. 2011
Semester	I		
Subject Nai	me CONSTITUTION	OF INDIA	
Subject Coo	de XUM106		
I	L –T –P –C	C:P:A	L –T –P –H
	0-0-0-0	0:0:0	3-0-0-3
Course Out	come		Domain/Level
GO1 T- (C or P or A
	Study History of Constitution		K2
CO1 11-1			V 1
	Explain the Union Executive		K1 K3
CO3 To	Explain the Union Executive Identify the concept of Union Analysis the Union Judiciary	n Legislature	K1 K3 K4

COURSE CONTENT

UNIT	I											81	HRS	
		Const	itution	al His	tory- 7	The Co	onstitut	tional	Rights-	Pream	ble- Fu	ndam	ental R	ights-
		Funda	amenta	l Dutie	s- Dire	ective ₁	princip	les of s	State Po	olicy.				
UNIT	II											9 H	RS	
		The U	J <mark>nion I</mark>	Executi	ive- Th	ne Pres	ident o	of India	a (pow	ers and	functior	1s)- V	vice-Pres	sident
		of Ind	lia-The	Coun	cil of N	/liniste	rs-Prin	ne Min	ister- F	owers a	and Fun	ctions	i.	
UNIT	III											1	0 HRS	
		Unior	n Legis	lature-	Struct	ure an	d Func	tions o	of Lok	Sabha- S	Structur	e and	Functio	ons of
		Rajya	Sabha	a- Leg	islative	e Proce	edure i	in Indi	a- Imp	ortant (Commit	tes of	f Lok S	abha-
		Speak	ter of the	he Lok	Sabha	L								
UNIT	IV											9	HRS	
		The U	J <mark>nion J</mark>	Judicia	ry- Po	wers o	f the S	Suprem	e Cou	rt- Origi	inal Juri	isdicti	on- Ap	pelete
		jurisd	ictions	- Advi	sory Ju	risdict	tion- Ju	idicial	review					
UNIT	V												9 HRS	
		Centr	e State	e relati	ons- P	olitical	l Partie	es- Ro	le of g	overnor	, power	s and	functio	ns of
		Chief	Minis	ter-Leg	gislativ	e Asse	embly-	State	Judicia	ary- Pov	wers and	d Fun	ctions of	of the
		High	Courts											
L = 45	5 hrs	$\mathbf{T} = 0 1$	nrs P	=0 hrs	Total	= 45 l	nrs							
REFE	RENC	CES BO	OOKS											
1. W.H	I.Morr	is Shoi	res- Go	overnm	ent and	d politi	ics of I	ndia, N	JewDel	lhi,B.1.F	Publishe	ers,19'	74.	
2. M.V	/.Pylee	e- Cons	stitution	nal Go	vernme	ent in I	ndia, E	Bomba	y, Asia	Publish	ing Hou	use, 1	977.	
3. R.T	hanker	- The (Govern	iment a	and pol	itics of	f India,	, Londe	on:Mac	millon,	1995.			
4. A.C	.Kapu	r- Seleo	ct Cons	stitutio	ns S,C	hand &	z Co.,N	JewDe	lhi, 199	€				
5. V.D	.Maha	jan- Se	elect M	odern	Govern	nments	s,S,Cha	und &C	Co, Nev	vDelhi,1	995.			
6. B.C	.Rout-	Demo	cractic	Const	itution	of Ind	ia.							
7. Gop	al K.P	uri- Co	onstitut	tion of	India,	India 2	2005.							
Mapp										Det	B C :	-	D <i>G</i> C	-
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	P 0 12	PSO 1	PSO 2
CO1	2			1										
CO2	2			1										

CO3 CO4

CO5	2	2	1		1	1			
Tota l	10	2	5		2	3			

1 - Low, 2 – Medium, 3- High

Semester Subject Name Subject Code	I Programmir XCP107	ng for Problem Solving Laboratory				
L –T -	-Р -С	C:P:A	L –T –P –H			
0-0-	- 1– 1	0.75:0.25:0	0-0-2-2			
Course Outcome	<u>)</u>		Domain/Level			
			C or P or A			
CO1 Solve sim	ple programs us	ing I/O statements	K3, A2			
CO1Solve simple programs using I/O statementsK3, A2CO2Solve programs using control structures and arraysK3, A2CO3Solve programs using functions and pointersK3, A2CO4Solve programs using structuresK3, A2CO5Solve programs using filesK3, A2CO6Solve simple programs using I/O statementsK3, A2COURSE OBJECTIVESK3K3						
• To ignite l	logical thinking	guage basics and syntax rogramming approach				

- To deal with user defined data types
- To know about data storage in secondary memory

COURSE CONTENT

EXP.NO	TITLE	CO RELATION
1	Program to display a Leave Letter as per proper format	CO1
2	i. Program for addition of two numbers	CO1
	ii. Program to solve any mathematical formula.	
3	Program to find greatest of 3 numbers using Branching Statements	CO2
4	Program to display divisible numbers between n1 and n2 using looping Statement	CO2
5	Program to search an array element in an array.	CO2
6	Program to find largest / smallest element in an array.	CO2
7	Program to perform string operations.	CO3
8	Program to find area of a rectangle of a given number use four function types.	CO3
9	Programs to pass and receive array and pointers using four function types	CO3
10	Programs using Recursion for finding factorial of a number	CO3
11	Program to read and display student mark sheet of a student	CO4

structures with variables

12	Program to read and display student marks of a class using structures	CO4
	with arrays	
13	Program to create linked list using structures with pointers	CO4
14	Program for copying contents of one file to another file.	CO5
15		

15 Program using files to store and display student mark list of a class CO5 using structures with array

TOTAL – 30 HRS TEXT BOOKS

- 1. Byron Gottfried, "Programming with C", III Edition, (Indian Adapted Edition), TMH publications, 2010
- 2. Yeshwant Kanethker, "Let us C", BPB Publications, 2008

REFERENCES

- 1. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill, 7th edition 2017.
- 2. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education Inc. 2005
- 3. Johnson baugh R. and Kalin M., "Applications Programming in ANSI C", III Edition, Pearson Education India, 2003

E RESOURCES

- 1. https://www.indiabix.com/c-programming/questions-and-answers/
- 2. <u>https://www.javatpoint.com/c-programming-language-tutorial</u>
- 3. https://www.w3schools.in/c-tutorial/

Mapping of COs with PO

	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	P 09	P 01 0	PO1 1	P 01 2	PS O1	PS O2
CO1	3	2	0	0	3	0	0	0	0	0	2	3	2	0
CO2	3	2	0	0	2	0	0	0	0	0	2	3	2	0
CO3	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO4	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO5	2	2	1	0	2	0	0	1	0	2	2	2	2	0
Total	12	10	3	4	11	0	0	1	0	2	10	12	10	0

Semester	Ι		
Subject Name	APPLIED CHE	MISTRY LABORATORY FOR	ENGINEERS
Subject Code	XAC108		
L –T –	-Р –С	C:P:A	L –T –P –H
0-0-	1–1	0.25:0.5:0.25	0-0-2-2
Course Outcome			Domain/Level
			C or P or A
•	Identify the principl	les of chemistry relevant to the ing	K1, P1

CO2	Analyze and Measure molecular/system properties such as	K4, P1, A1
	surface tension, viscosity, conductance of solutions, redox	
	potentials, extent of hardness, chloride content of water, etc.	
CO3	Analyze the synthetic procedure and rate constants of reactions	К3
	from concentration of reactants/products as a function of time	
	-	

COURSE CONTENT

EXP.NO	TITLE	CO RELATION
1	Determination of chloride ion present in the water sample by Argentometric method.	CO1
2	Determination of total, temporary and permanent hardness of water sample by EDTA method.	CO1
3	Determination of cell constant and conductance of solutions.	CO2
4	Potentiometry - determination of redox potentials and emfs.	CO2
5	Determination of surface tension and viscosity.	CO3
6	Adsorption of acetic acid by charcoal.	CO3
7	Determination of the rate constant of a reaction.	CO4
8	Estimation of iron by colorimetric method.	CO4
9	Synthesis of a polymer/drug.	CO5
10	Saponification/acid value of oil.	CO5
TOTAL – 3	0 HRS	

TEXT BOOKS

Laboratory Manual "ChemistryLab", Department of Chemistry, PMIST, Thanjavur.

REFERENCES

- 1. Mendham, Denney R.C,. Barnes J.D and Thomas N.J.K., "Vogel's Textbook of Quantitative Chemical Analysis", 6th Edition, Pearson Education, 2004.
- 2. Garland, C. W.; Nibler, J. W.; Shoemaker, D. P. "Experiments in Physical Chemistry", 8th Ed.; McGraw-Hill: New York, 2003.

E-RESOURCES- MOOC's

- 1. <u>http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques</u>
- 2. <u>http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques</u>
- 3. <u>http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011</u>

Mapping of COs with PO

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C01	3	3	3	3	2	3	3	0	1	1	1	0	0	0
CO2	2	2	2	2	1	2	2	1	1	1	1	1	1	1
CO3	2	2	2	2	1	2	2	0	1	1	0	0	0	0
Tota 1	7	7	7	7	4	7	7	1	3	3	2	1	1	1

1 - Low, 2 – Medium, 3- High

Semester

II

9	t Name	CALCULUS, COMPLEX VA		DIFFERENTIAL	EQUATIONS AND		
Subjec	t Code	XMA201					
	L –T -	-Р –С	C	L –T –P –H			
	3-1-	0-4	3:0	.5:0.5	3-1-0-4		
PRER	EQUISITI	E: Calculus and Lir	near Algebra				
Course	Outcome				Domain/Level		
					C or P or A		
CO1	volume o and Stoke	ble and triple integration of the second sec	pplying Greens,	Gauss divergence	K1, K3		
CO2		t order differential ble for p, y, x and C	-	terent types which	К3		
CO3		econd order ordin oefficients using va		l equations with	K3		
CO4	Use CR Harmonic	equations to verif functions and harr al mapping of the	fy analytic func nonic conjugate.		K1, K3, P3		
CO5 CO6	Apply Cainvolving formula, functions	auchy residue theo sine and cosine fu Liouvilles theorem , singularities, Laur the inter-relationshi	nction and to sta . Taylor's series ent's series.	te Cauchy integral , zeros of analytic	K3, A1 K4		
006	and triple		ip amongst the m	ne integrai, double	N 4		
UNIT	I Mu	ltivariable Calculu	us (Integration)		12 HRS		
	in d (Car	louble integrals - C rtesian), Scalar line	Change of variab integrals - vector	oles (Cartesian to pol	of order of integration lar) - Triple integrals lar surface integrals - ces.		
UNIT	II Firs	st order ordinary o	differential equa	ations	12 HRS		
	deg		1	1	Equations not of first equations solvable for		
UNIT 1	III Ord	linary differential	equations of hig	gher orders	12 HRS		
	vari	ation of parameter	s - Cauchy-Eule		coefficients- method of eries solutions- Legendre erties.		
UNIT	IV Cor	nplex Variable – I	Differentiation		12 HRS		
	Diff find	Terentiation-Cauchy ing harmonic	-Riemann equat	tions- analytic functi	ons-harmonic functions		

UNIT V Complex Variable – Integration

Contour integrals - Cauchy-Goursat theorem (without proof) - Cauchy Integral formula (without proof)-Liouville's theorem (without proof)- Taylor's series- zeros of analytic functions- singularities- Laurent's series – Residues- Cauchy Residue theorem (without proof)- Evaluation of definite integral involving sine and cosine-Evaluation of certain improper integrals using the Bromwich contour.

12 HRS

L = 45 hrs T = 15 hrs P=0 hrs Total = 60 hrs

TEXT BOOKS

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40thth Edition, 2008.

REFERENCES BOOKS

1.G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.

2. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

3.W. E. Boyce and R. C. DiPrima, "Elementary Differential Equations and Boundary Value Problems", 9thEdn. Wiley India, 2009.

4. S. L. Ross, "Differential Equations", 3rd Ed., Wiley India, 1984.

5.E. A. Coddington, "An Introduction to Ordinary Differential Equations", Prentice Hall India, 1995.

6. E. L. Ince, "Ordinary Differential Equations", Dover Publications, 1958.

7.J. W. Brown and R. V. Churchill, "Complex Variables and Applications", 7th Ed., McGraw Hill, 2004.

8. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2008. Mapping of COs with GA

GA1 GA2 GA3 GA4 GA5 GA6 GA7 GA9 **GA10 GA11 GA12** GA8 2 3 2 2 1 **CO1** 3 1 1 1 **CO 2** 3 1 1 1 **CO3** 3 2 1 1 **CO**4 3 2 2 1 1 **CO** 5 15 8 0 0 3 0 0 0 0 5 0 7 2 1 1 3 Scaled Value $1 - 5 \rightarrow 1$. $6-10 \rightarrow 2$, $11-15 \rightarrow 3$ 1 - Low, 2 - Medium, 3- High Semester Π **ELECTRICAL AND ELECTRONICS ENGINEERING SYSTEMS Subject Name** Subject Code **XBE202** L - T - P - CC:P:A L - T - P - H3 - 1 - 0 - 43 - 1 - 0 - 43:1:0 **Course Outcome Domain/Level** C or P or A **Define and Relate** the fundamentals of electrical parameters **K2 CO1** and **build** and **explain** AC, DC circuits by Using measuring

devices

CO2	Define and Explain the operation of DC and AC machines.	K2
CO3	Recall and Illustrate various semiconductor devices and their	K2
	applications and displays the input output characteristics of	
	basic semiconductor devices.	
CO4	Relate and Explain the number systems and logic gates.	K2
	Construct the different digital circuit.	
CO5	Label and Outline the different types of microprocessors and	K2
	their applications.	
COUR	SE CONTENT	
UNIT	I FUNDAMENTALS OF DC AND AC CIRCUITS,	12 HRS
	MEASUREMENTS	
	Fundamentals of DC- Ohm's Law - Kirchhoff's Laws - Sources	- Voltage and
	Current Relations -Star/Delta Transformation - Fundamentals of	AC – Average

Current Relations –Star/Delta Transformation - Fundamentals of AC – Average Value, RMS Value, Form Factor - AC power and Power Factor, Phasor Representation of sinusoidal quantities, Simple Series, Parallel, Series Parallel Circuit - Operating Principles of Moving coil and Moving Iron Instruments (Ammeter, Voltmeter) and Dynamometer type meters (Watt meter and Energy meter).

UNIT II ELECTRICAL MACHINES

Construction, Principle of Operation, Basic Equations, Types and Application of DC Generators, DC motors - Basics of Single-Phase Induction Motor and Three Phase Induction Motor- Construction, Principle of Operation of Single-Phase Transformer, Three phase transformers, Auto transformer.

UNIT III SEMICONDUCTOR DEVICES

Classification of Semiconductors, Construction, Operation and Characteristics: PN Junction Diode – Zener Diode, PNP, NPN Transistors, Field Effect Transistors and Silicon Controlled Rectifier – Applications

UNIT IV DIGITAL ELECTRONICS

Basic of Concepts of Number Systems, Logic Gates, Boolean Algebra, Adders, Subtractors, multiplexer, demultiplexer, encoder, decoder, Flipflops, Up/Down counters, Shift Registers.

UNIT V MICROPROCESSORS

Architecture, 8085, pin diagram of 8085, ALU timing and control unit, registers, data and address bus, timing and control signals, Instruction types, classification of instructions, addressing modes, Interfacing Basics: Data transfer concepts – Simple Programming concepts.

L = 45 hrs T = 15 hrs P=0 hrs Total = 60 hrs

TEXT BOOKS

- 1. Metha V.K, Rohit Mehta, 2020. Principles of Electronics, 12th ed, S Chand Publishing.
- 2. Albert Malvino, David J.Bates., 2017. Electronics Principles. 7th ed, Tata McGraw-Hill. New Delhi.
- 3. Rajakamal, 2014. Digital System-Principle & Design. 2nd ed. Pearson education.
- 4. Morris Mano, 2015. Digital Design. Prentice Hall of India.
- 5. Ramesh, S. Gaonkar, 2013, Microprocessor Architecture, Programming and its Applications with the 8085, 6th ed , India: Penram International Publications.

REFERENCES BOOKS

12 HRS

12 HRS

12 HRS

1. Cotton, H.,2005 Electrical Technology. CBS Publishers & Distributors Pvt Ltd.

2. Syed, A. Nasar, 1998, Electrical Circuits. Schaum Series.

3. Jacob Millman and Christos, C. Halkias, 1967, Electronics Devices, New Delhi: Tata McGraw-Hill.

- 4. Millman, J. and Halkias, C. C., 1972. Integrated Electronics: Analog and Digital Circuits and Systems, Tokyo: McGraw-Hill, Kogakusha Ltd.
- 5. Mohammed Rafiquzzaman, 1999. Microprocessors Theory and Applications: Intel and Motorola. Prentice Hall International.

E REFERENCES

1. NTPEL, Basic Electrical Technology (Web Course), Prof. N. K. De, Prof. T. K. Bhattacharya and Prof. G.D. Roy, IIT Kharagpur.

2. Prof.L.Umanand, http://freevideolectures.com/Course/2335/Basic-Electrical-Technology#, IISc Bangalore.

- 3. http://nptel.ac.in/Onlinecourses/Nagendra/, Dr. Nagendra Krishnapura, IIT Madras.
- 4. Dr.L.Umanand, http://www.nptelvideos.in/2012/11/basic-electrical-technology.html, IISC Bangalore.

Mapping	of COs	with	PO	

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	P 0 12	PSO 1	PSO 2
C01	3	3	1	1	1	1			1	1	1			
CO2	3	3	1	1	1	1			1	1	1			
CO3	2	2	2	1	2	2	1	1	1	1	1			
CO4	2	2	1	1	1	1	1	1	1	1	1			
CO5	2	2	1	1	1	1	1	1	1	1	1			
Tota 1	12	12	6	5	6	6	3	3	5	5	5			

1 - Low, 2 – Medium, 3- High

Semester	II		
Subject Name	APPLIED PHYSIC	S FOR ENGINEERS	
Subject Code	XAP203		
L –T –I	Р-С	C:P:A	L –T –P –H
3-1-0	- 4	2.8:0.8:0.4	3-1-0-4

PREREQUISITE: Basic Physics in HSC level

Cours	Course Outcome						
		C or P or A					
C01	<i>Identify</i> the basics of mechanics, <i>explain</i> the principles of elasticity and <i>determine</i> its significance in engineering systems and technological advances.	K1,K2 P4					
CO2	<i>Illustrate</i> the laws of electrostatics, magneto-statics and electromagnetic induction; <i>use</i> and <i>locate</i> basic applications of electromagnetic induction to technology.	K1 , K4 P4 A1					
CO3	<i>Understand</i> the fundamental phenomena in optics by measurement and <i>describe</i> the working principle and application of various lasers and	K2, K3 P4					

CO4 An lat	are optics. <i>Palyse</i> energy bands in solids, <i>discuss</i> and <i>use</i> physics principles of est technology using semiconductor devices.	A1 K2,K4 P4 A1
for	<i>velop</i> Knowledge on particle duality and <i>solve</i> Schrodinger equation simple potential.	K2, K3
UNIT I	MECHANICS OF SOLIDS	12 HRS
	Mechanics: Force - Newton's laws of motion - work and energy momentum - torque - law of conservation of energy and momentum - Elasticity: Stress - Strain - Hooke's law - Stress strain diagram - elastic modulus - Moment, couple and torque - Torsion pendulum - torsion pendulum - Bending of beams - Experimental determina modulus: Uniform bending and non-uniform bending.	Friction. Classification of Applications of
UNIT II	ELECTROMAGNETIC THEORY	12 HRS
	Laws of electrostatics - Electrostatic field and potential of a de Polarisation, Dielectric constant, internal field - Clausius Mossotti E of magnetism - Ampere's Faraday's law; Lenz's law - Maxwell's electromagnetic waves; their transverse nature - expression for plan elliptically polarized light - quarter and half wave plates - production plane, circularly and elliptically polarized light.	Equation - Laws equation - Plane e, circularly and
UNIT III	OPTICS, LASERS AND FIBRE OPTICS	12 HRS
	 index and dispersive power of a prism- Interference of light in thin fit Diffraction: grating. LASER: Introduction - Population inversion -Pumping - Laser action - CO₂ laser - Applications Fibre Optics: Principle and propagation of light in optical fibre - Nu and acceptance angle - Types of optical fibre - Fibre optic commu (Block diagram). 	- Nd-YAG laser imerical aperture
UNIT IV	SEMICONDUCTOR PHYSICS	12 HRS
	 Semiconductors: Energy bands in solids - Energy band diagram of gainsulators and semiconductors - Concept of Fermi level - Intrinsic semiconductors - doping - Extrinsic semiconductors - P type semiconductors - Hall effect. Diodes and Transistors: P-N junction diode - Forward bias and Rectification action of diode - Working of full wave rectifier usindiodes - PNP and NPN transistors - Three different configurations common emitter configuration - working of NPN transistor as common emitter configuration. 	semiconductors - pe and N type I reverse bias - ng P N junction - Advantages of an amplifier in
UNIT V	QUANTUM PHYSICS	12 HRS
L = 45 hrs	 Introduction to quantum physics, black body radiation, Compton exhypothesis, wave – particle duality, uncertainty principle, Schrodinge (Time dependent and Time independent), particle in a box, Exhibiting dimension - Degeneracy. T = 15 hrs P=0 hrs Total = 60 hrs 	er wave equation
TEXT BO	OKS	
	K. and Gupta S. L., "Engineering Physics", Dhanpat Rai Publications, 20 anulu M. N. "Engineering Physics" (Volume I and II), S. Chand & Co	

Delhi, 2010.

REFERENCES BOOKS

1. Palanisamy P. K., "Engineering Physics", Scitech Publications (India) Pvt. Ltd, Chennai.

2. Arumugam M., "Engineering Physics" (Volume I and II), Anuradha Publishers, 2010.

3. Senthil Kumar G., "Engineering Physics", 2nd Enlarged Revised Edition, VRB Publishers, Chennai, 2011.

4. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2007.

E REFERENCES

NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

Mapping of CO's with PO

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS1	PS2
CO1	3	2	2	2	1	-	-	-	1	-	-	1		
CO2	3		1		1	-	-	-		-	-	1		
CO3	3	2	2	2	1	-	-	-	1	-	-	1		
CO4	3	2	2	2	1	-	-	-	1	-	-	1		
CO5	3		2			-	-	-		-	-	1		
Total	15	6	9	6	4				3			5		
Scaled to 0,1,2,3 scale	3	2	2	2	1				1			1		

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

Semes	ter	II					
Subjec	et Name	XGS204					
Subjec	ct Code	TECHNICAL	COMMUNICATION				
	L –T –I	Р-С	C:P:A	L –T –P –H			
	2-0-0)- 2	3:0:0	2-0-0-2			
Course	e Outcome			Domain/Level			
				C or P or A			
CO1	<i>Ability</i> to u	inderstand the bas	ic principles	K1			
CO2	Apply the t	echniques in writi	ng	К3			
CO3	<i>Identify</i> co	mmunicative style	es	K 1			
CO4	Construct	the nature of writi	ng	K6			
CO5	Ability to r	ecall the Techniqu	ies	K1			
CO6	CO6 Apply the techniques in practice K3						
COURSE CONTENT							
UNIT	'I Basic	Principles		9 HRS			

UNIT II	 1.1 – Basic Principles of Technical Writing 1.2 – Styles used in Technical Writing 1.3 – Language and Tone 	9 HRS
	Techniques	9 1185
	 2.1 – Special Techniques used in writing 2.2 – Definition & Description of mechanism 2.3 – Description- Classification-Interpretation 	
UNIT III	Communication	9 HRS
	3.1 – Modern development in style of writing3.2 - New letter writing formats	
UNIT IV	Report Writing	9 HRS
	4.1 – Types of Report writing 4.2 – Project writing formats	

Suggested Readings:

- John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009 Williams K.S, Communicating Business. Engage Learning India Pvt Ltd, 2012 (i)
- (ii)

Semes	ter	II						
Subjee	ct Name	Workshop Pract	tices					
Subjee	ct Code	XWP205						
	L –T -	-Р –С	C:P:A	L –T –P –H				
	1-0-	2-3	1:2:0	1-0-4-5				
Cours	e Outcome			Domain/Level				
				C or P or A				
CO1	Summarian operation		thods and <i>Practice</i> machining	K1, P3				
CO2	Defining		s, moulding methods and plications.	K1, P3				
CO3		c carpentry operation	ns and <i>Practice</i> carpentry	K1, P3				
CO4	-		nd <i>Practice</i> fitting operations.	K1, P3				
CO5	Summarian operation	• • •	ration and <i>Practice</i> welding	K1, P3				
CO6	•							
COUF	COURSE CONTENT							
EXP.	NO		TITLE	CO RELATION				
1	Intro	oduction to machinir	ng process	C01				
2	Plain turning using lathe operation CO1							

CO1

3 Introduction to CNC

4	Demonstration of plain turning using CNC	CO1
5	Study of metal casting operation	CO2
6	Demonstration of moulding process	CO2
7	Study of smithy operation	CO2
8 9 10	Study of carpentry tools Half lap joint – Carpentry Mortise and Tenon joint – Carpentry	CO3 CO3 CO3
11 12	Study of fitting tools Square fitting	CO4 CO4
13	Triangular fitting	CO4
14	STUDY OF WELDING TOOLS	CO5
15	Square butt joint – welding	CO5
16	Tee joint – Welding	CO5
17	Introduction to house wiring	CO6
18	One lamp controlled by one switch	CO6
19	Two lamps controlled by single switch	CO6
20	Staircase wiring	CO6

TEXT BOOKS

1. Workshop Technology I,II,III, by S K Hajra, Choudhary and A K Chaoudhary. Media Promoters and Publishers Pvt. Ltd., Bombay

2. Workshop Technology by Manchanda Vol. I,II,III India Publishing House, Jalandhar.

REFERENCES

1. Manual on Workshop Practice by K Venkata Reddy, KL Narayana et al; MacMillan India Ltd.

2. Basic Workshop Practice Manual by T Jeyapoovan; Vikas Publishing House (P) Ltd., New Delhi

3. Workshop Technology by B.S. Raghuwanshi, Dhanpat Rai and Co., New Delhi.

4. Workshop Technology by HS Bawa, Tata McGraw Hill Publishers, New Delhi.

E RESOURCES

1. http://nptel.ac.in/courses/112107145/

Mapping of COs with PO

	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	P 09	P 01 0	PO1 1	P 01 2	PS O1	PS O2
CO1	2	1	2	2	1			1	1		1	2	3	
CO2	2	1	2	2	1			1	1		1	2	3	
CO3	2	1	2	2	1			1	1		1	2	3	
CO4	2	1	2	2	1			1	1		1	2	3	
CO5	2	1	2	2	1			1	1		1	2	3	
CO6	2	1	2	2	1			1	1		1	2	3	
Total	12	6	12	12	6			6	6		6	12	18	

COURSE CODE	XEM206	L	Т	Р	C				
COURSE NAME	ENGINEERING MECHANICS	3	0	0	3				
PREREQUISITES	PREREQUISITES NIL L T P H								
C:P:A= 3:0:0 3 0 0 3									
COURSE OBJECTIVES									

Upon successful completion of the course, student will have:

- Ability to apply knowledge of mathematics, science, and engineering.
- Ability to design as well as to analyse and interpretdata.
- Ability to identify, formulate, and solve engineering problems.
- Ability to apply techniques and resources to solve complex mechanical engineering activities with an understanding of the limitations.

COUF	RSE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Explain</i> the principles forces, laws and theirapplications.	Cognitive	Understanding, Apply
CO2	<i>Classification</i> of friction, and <i>apply</i> the forces in Trusses and beams.	Cognitive	Understanding, Apply
CO3	<i>Explain</i> and <i>Apply</i> moment of Inertia and Virtual work	Cognitive	Understanding, Apply
CO4	Outline and Examine Dynamics	Cognitive	Understanding, Apply
CO5	<i>Explain</i> free and forced vibration	Cognitive	Remember, Understanding

UNIT I INTRODUCTION TO ENGINEERING MECHANICS

Force Systems Basic concepts, Particle equilibrium in 2-D & 3-D; Rigid Body equilibrium; System of Forces, Coplanar Concurrent Forces, Components in Space – Resultant- Moment of Forces and its Application; Couples and Resultant of Force System, Equilibrium of System of Forces, Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial Systems; Static indeterminacy.

UNIT II FRICTION AND BASIC STRUCTURAL ANALYSIS

Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack; Equilibrium in three dimensions; Method of Sections; Method of Joints; How to determine if a member is in tension or compression; Simple Trusses; Zero force members; Beams & types of beams; Frames & Machines.

UNIT III CENTROID, CENTRE OF GRAVITY AND VIRTUAL WORK AND ENERGY METHOD

9

Q

Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.

Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom. Active force diagram, systems with friction, mechanical efficiency. Conservative forces and potential energy (elastic and gravitational), energy equation for equilibrium. Applications of energy method for equilibrium. Stability of equilibrium.

Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3	UNI		EW OF PARTICLE TICS OF RIGID BO	DYNAMICS AND INTRODUC DIES	TION TO	9					
 curvilinear motion; Relative and constrained motion; Newton's 2nd law (rectangular, path, and po coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angula Impact (Direct and oblique). Types of motion, Instantaneous centre of rotation in plane motion a simple problems; D'Alembert's principle and its applications in plane motion and connected bodi Work energy principle and its application in plane motion of connected bodies; Kinetics of rig bodyrotation. UNIT V MECHANICAL VIBRATIONS Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedo Derivation for frequency and amplitude of free vibrations without damping and single degree freedom system, simple problems, types of pendulum, use of simple, compound and torsi pendulums. TEXT BOOKS I. Irving H. Shames (2006), Engineering Mechanics, 4th Edition, Prentice Hall 2. F. P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I - Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill REFERENCE BOOKS 1. R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. 3. Shanes and Rao (2006), Engineering Mechanics, Pearson Education 4. Hibler and Gupta (2010), Engineering Mechanics, Statics, Dynamics, Dxford University Press 3. Shanes and Rao (2006), Engineering Mechanics, Statics, Dynamics) by Pearson Education 5. Redy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics 6. Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications 7. Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. 8. Tayal A.K. (2010), Engineering Mechanics, S. Chand & Co. 8. Tayal A.K. (2010), Engineering Mechanics, Mesh Publications 5. RetFERENCES 1. https://archive.nptel.ac.in/courses/112/106/112106286/ 	Recti				polar coord	inates). 3-D					
Impact (Direct and oblique). Types of motion, Instantaneous centre of rotation in plane motion a simple problems; D'Alembert's principle and its applications in plane motion and connected bodi. Work energy principle and its application in plane motion of connected bodies; Kinetics of rigbodyrotation. UNIT V MECHANICAL VIBRATIONS Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedo Derivation for frequency and amplitude of free vibrations without damping and single degree freedom system, simple problems, types of pendulum, use of simple, compound and torsi pendulums. TEXT BOOKS 1. Irving H. Shames (2006), Engineering Mechanics, 4 th Edition, Prentice Hall 2. F. P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I - Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill REFERENCE BOOKS I. 1. R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. 2. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press 3. Shanes and Rao (2006), Engineering Mechanics (Statics, Dynamics) by Pearson Education 4. Hibler and Gupta (2010),Engineering Mechanics (Statics, Dynamics) by Pearson Education 5. Redy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics 6. Bansal R.K. (2010), A Text Book of Engineering Mechanics, Laxmi Publications		curvilinear motion; Relative and constrained motion; Newton's 2nd law (rectangular, path, and polar									
 simple problems; D'Alembert's principle and its applications in plane motion and connected bodie. Work energy principle and its application in plane motion of connected bodies; Kinetics of rigbodyrotation. UNIT V MECHANICAL VIBRATIONS Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedo Derivation for frequency and amplitude of free vibrations without damping and single degree freedom system, simple problems, types of pendulum, use of simple, compound and torsi pendulums. TEXT BOOKS I. Irving H. Shames (2006), Engineering Mechanics, 4th Edition, Prentice Hall 2. F. P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I - Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill REFERENCE BOOKS 1. R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. 2. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press 3. Shanes and Rao (2006), Engineering Mechanics (Statics, Dynamics) by Pearson Education 4. Hibler and Gupta (2010), Engineering Mechanics (Statics, Dynamics) by Pearson Education 5. Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics 6. Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications 7. Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. 8. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications E-REFERENCES 1. https://archive.nptel.ac.in/courses/112/106/112106286/ 	coord	linates). Work	-kinetic energy, powe	er, potential energy. Impulse-mon	mentum (line	ar, angular);					
 Work energy principle and its application in plane motion of connected bodies; Kinetics of rigbodyrotation. UNIT V MECHANICAL VIBRATIONS Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedo Derivation for frequency and amplitude of free vibrations without damping and single degree freedom system, simple problems, types of pendulum, use of simple, compound and torsi pendulums. TEXT BOOKS I. Irving H. Shames (2006), Engineering Mechanics, 4th Edition, Prentice Hall E. F. P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I - Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill REFERENCE BOOKS I. R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press Shanes and Rao (2006), Engineering Mechanics (Statics, Dynamics) by Pearson Education Hibler and Gupta (2010), Engineering Mechanics (Statics, Dynamics) by Pearson Education G. Bansal R.K. (2010), A Text Book of Engineering Mechanics, Laxmi Publications T. Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. 8. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications E-REFERENCES 1. https://archive.nptel.ac.in/courses/112/106/112106286/ 	Impa	ct (Direct and	oblique). Types of m	otion, Instantaneous centre of rot	ation in plane	e motion and					
bodyrotation. Image: Constraint of the end end of the end of the end of the end end of the end of											
UNIT V MECHANICAL VIBRATIONS Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedo Derivation for frequency and amplitude of free vibrations without damping and single degree freedom system, simple problems, types of pendulum, use of simple, compound and torsi pendulums. TEXT BOOKS 1. Irving H. Shames (2006), Engineering Mechanics, 4 th Edition, Prentice Hall 2. F. P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I - Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill REFERENCE BOOKS I. 1. R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. 2. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press 3. Shanes and Rao (2006), Engineering Mechanics (Statics, Dynamics) by Pearson Education 4. Hibler and Gupta (2010),Engineering Mechanics (Statics, Dynamics) by Pearson Education 5. Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics 6. Bansal R.K. (2010), A Text Book of Engineering Mechanics, Laxmi Publications 7. Khurmi R.S. (2010), Engineering Mechanics, Umesh Publications 7. Khurmi R.S. (2010), Engineering Mechanics, Umesh Publications 7. Khurmi R.S. (2010), Engineering Mechanics, Umesh Publications <t< td=""><td></td><td></td><th>iple and its application</th><th>on in plane motion of connected</th><th>bodies; Kine</th><th>etics of rigid</th></t<>			iple and its application	on in plane motion of connected	bodies; Kine	etics of rigid					
 Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedo Derivation for frequency and amplitude of free vibrations without damping and single degree freedom system, simple problems, types of pendulum, use of simple, compound and torsi pendulums. TEXT BOOKS Irving H. Shames (2006), Engineering Mechanics, 4th Edition, Prentice Hall F. P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I - Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill REFERENCE BOOKS R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press Shanes and Rao (2006), Engineering Mechanics, Pearson Education Hibler and Gupta (2010), Engineering Mechanics (Statics, Dynamics) by Pearson Education Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications https://archive.nptel.ac.in/courses/112/106/112106286/ 	~										
 Derivation for frequency and amplitude of free vibrations without damping and single degree freedom system, simple problems, types of pendulum, use of simple, compound and torsi pendulums. TEXT BOOKS Irving H. Shames (2006), Engineering Mechanics, 4th Edition, Prentice Hall F. P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I - Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill REFERENCE BOOKS R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press Shanes and Rao (2006), Engineering Mechanics, Pearson Education Hibler and Gupta (2010), Engineering Mechanics (Statics, Dynamics) by Pearson Education Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics Bansal R.K. (2010), A Text Book of Engineering Mechanics, Laxmi Publications Khurmi R.S. (2010), Engineering Mechanics, Umesh Publications F. KeFERENCES https://archive.nptel.ac.in/courses/112/106/112106286/ 					-	9					
 freedom system, simple problems, types of pendulum, use of simple, compound and torsi pendulums. TEXT BOOKS Irving H. Shames (2006), Engineering Mechanics, 4th Edition, Prentice Hall F. P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I - Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill REFERENCE BOOKS R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press Shanes and Rao (2006), Engineering Mechanics, Pearson Education Hibler and Gupta (2010), Engineering Mechanics (Statics, Dynamics) by Pearson Education Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics Bansal R.K. (2010), A Text Book of Engineering Mechanics, Laxmi Publications Khurmi R.S. (2010), Engineering Mechanics, Umesh Publications F. Kererences https://archive.nptel.ac.in/courses/112/106/112106286/ 											
 pendulums. TEXT BOOKS Irving H. Shames (2006), Engineering Mechanics, 4th Edition, Prentice Hall F. P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I - Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill REFERENCE BOOKS R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press Shanes and Rao (2006), Engineering Mechanics, Pearson Education Hibler and Gupta (2010), Engineering Mechanics (Statics, Dynamics) by Pearson Education Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics Bansal R.K. (2010), A Text Book of Engineering Mechanics, Laxmi Publications Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications EREFERENCES https://archive.nptel.ac.in/courses/112/106/112106286/ 											
 TEXT BOOKS Irving H. Shames (2006), Engineering Mechanics, 4th Edition, Prentice Hall F. P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I - Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill REFERENCE BOOKS R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press Shanes and Rao (2006), Engineering Mechanics, Pearson Education Hibler and Gupta (2010),Engineering Mechanics (Statics, Dynamics) by Pearson Education Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics Bansal R.K. (2010), A Text Book of Engineering Mechanics, Laxmi Publications Khurmi R.S. (2010), Engineering Mechanics, Umesh Publications EREFERENCES Intys://archive.nptel.ac.in/courses/112/106/112106286/ 			imple problems, type	es of pendulum, use of simple	, compound	and torsion					
 Irving H. Shames (2006), Engineering Mechanics, 4th Edition, Prentice Hall F. P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I - Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill REFENCE BOOKS R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press Shanes and Rao (2006), Engineering Mechanics, Pearson Education Hibler and Gupta (2010),Engineering Mechanics (Statics, Dynamics) by Pearson Education Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics Bansal R.K. (2010), A Text Book of Engineering Mechanics, Laxmi Publications Khurmi R.S. (2010), Engineering Mechanics, Umesh Publications F. RetFERENCES https://archive.nptel.ac.in/courses/112/106/112106286/ 	-										
 2. F. P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I - Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill REFERENCE BOOKS 1. R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. 2. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press 3. Shanes and Rao (2006), Engineering Mechanics, Pearson Education 4. Hibler and Gupta (2010), Engineering Mechanics (Statics, Dynamics) by Pearson Education 5. Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics 6. Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications 7. Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. 8. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications E-REFERENCES 1. https://archive.nptel.ac.in/courses/112/106/112106286/ 	ІСЛ	I DOORS									
Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill REFERENCE BOOKS 1. R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. 2. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press 3. Shanes and Rao (2006), Engineering Mechanics, Pearson Education 4. Hibler and Gupta (2010),Engineering Mechanics (Statics, Dynamics) by Pearson Education 5. Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics 6. Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications 7. Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. 8. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications E-REFERENCES I. 1. https://archive.nptel.ac.in/courses/112/106/112106286/	1.	Irving H. Shar	nes (2006), Engineerir	ng Mechanics, 4 th Edition, Prentice	e Hall						
Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill REFERENCE BOOKS 1. R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. 2. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press 3. Shanes and Rao (2006), Engineering Mechanics, Pearson Education 4. Hibler and Gupta (2010),Engineering Mechanics (Statics, Dynamics) by Pearson Education 5. Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics 6. Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications 7. Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. 8. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications E-REFERENCES I. 1. https://archive.nptel.ac.in/courses/112/106/112106286/	2.	F. P. Beer an	d E. R. Johnston (20	11), Vector Mechanics for Engir	neers, Vol I -	-					
 REFERENCE BOOKS R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press Shanes and Rao (2006), Engineering Mechanics, Pearson Education Hibler and Gupta (2010),Engineering Mechanics (Statics, Dynamics) by Pearson Education Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications https://archive.nptel.ac.in/courses/112/106/112106286/ 			,		,						
 Pearson Press. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press Shanes and Rao (2006), Engineering Mechanics, Pearson Education Hibler and Gupta (2010), Engineering Mechanics (Statics, Dynamics) by Pearson Education Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications https://archive.nptel.ac.in/courses/112/106/112106286/ 	REF		*								
 Pearson Press. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press Shanes and Rao (2006), Engineering Mechanics, Pearson Education Hibler and Gupta (2010), Engineering Mechanics (Statics, Dynamics) by Pearson Education Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications https://archive.nptel.ac.in/courses/112/106/112106286/ 	1.	R. C. Hibbler	(2006). Engineering N	Mechanics: Principles of Statics a	nd Dynamics.						
 University Press Shanes and Rao (2006), Engineering Mechanics, Pearson Education Hibler and Gupta (2010),Engineering Mechanics (Statics, Dynamics) by Pearson Education Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications https://archive.nptel.ac.in/courses/112/106/112106286/ 				r	, , , , , , , , , , , , , , , , , , ,	2					
 University Press Shanes and Rao (2006), Engineering Mechanics, Pearson Education Hibler and Gupta (2010),Engineering Mechanics (Statics, Dynamics) by Pearson Education Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications https://archive.nptel.ac.in/courses/112/106/112106286/ 	2.	Andy Ruina an	nd Rudra Pratap (2011), Introduction to Statics and Dyna	amics, Oxford	1					
 Hibler and Gupta (2010),Engineering Mechanics (Statics, Dynamics) by Pearson Education Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications E-REFERENCES https://archive.nptel.ac.in/courses/112/106/112106286/ 		University Pre	ess	•							
Education5.Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics6.Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications7.Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co.8.Tayal A.K. (2010), Engineering Mechanics, Umesh PublicationsE-REFERENCES1.https://archive.nptel.ac.in/courses/112/106/112106286/	3.	Shanes and Ra	ao (2006), Engineering	Mechanics, Pearson Education							
 5. Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics 6. Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications 7. Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. 8. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications E-REFERENCES 1. https://archive.nptel.ac.in/courses/112/106/112106286/ 	4.	Hibler and G	upta (2010), Engineeri	ng Mechanics (Statics, Dynamics	s) by Pearson	1					
 6. Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications 7. Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. 8. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications E-REFERENCES 1. https://archive.nptel.ac.in/courses/112/106/112106286/ 		Education			•						
 7. Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co. 8. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications E-REFERENCES 1. https://archive.nptel.ac.in/courses/112/106/112106286/ 	5.	Reddy Vijayk	umar K. and K. Suresh	Kumar(2010), Singer's Engineeri	ing Mechanics	8					
 8. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications E-REFERENCES 1. https://archive.nptel.ac.in/courses/112/106/112106286/ 	6.										
E-REFERENCES 1. https://archive.nptel.ac.in/courses/112/106/112106286/	7.	Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co.									
1. https://archive.nptel.ac.in/courses/112/106/112106286/	8.	8. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications									
2. https://onlinecourses.nptel.ac.in/noc23_me74/preview	1.										
	2.	https://onlinecourses.nptel.ac.in/noc23_me74/preview									
LECTURE: 45TUTORIAL: 0PRACTICAL: 0TOTAL:45	LEC										

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

					PROC	GRAM	OUTC	OMES				
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1	1	3	1	1	2	3	2	1	3
CO2	3	2	1	1	3	1	1	2	3	2	1	3
CO3	3	2	1	1	3	1	1	2	3	2	1	3
CO4	3	2	1	1	3	1	1	2	3	2	1	3
CO5	2	2	2	1	3	1	1	3	3	3	1	3
Correla	tion lev	el -	1 - Low	/	2 - Me	edium		3 – Hi	gh			
Semest	er	IJ	[
Subjec	t Name		LECTI ABOR			LECT	RONIC	S EN	GINE	ERING	SYSTE	CMS

L -T -P -C C:P:A L -T -P -H 0.0 - 1-1 1.5:1:0.5 0.0 - 2 - 2 PREREQUISITE: Physics COURSE OBJECTIVES: The course helps to a. Learn the basic concepts of electrical and electronics components. b. Understand the basic wiring methods and connection. Course Colspan="2">Course concepts of electrical and electronics components. b. Understand the basic concepts of electrical concepts and subtractors. Course outcome Outcome Course outcome Cor P or A Course components. Cor P or A Cor	Subje	ct Code	XBE2	207											
PREREQUISITE: Physics COURSE OBJECTIVES: The course helps to a. Learn the basic concepts of electrical and electronics components. b. Understand the basic voring methods and connection. c. Study the characteristics of diodes, Zener diodes, NPN transistors. d. Verify the working of simple logic gates, adders and subtractors. Course Ourcome Domain/Level Coor P or A CO1 Apply the fundamental electrical concepts and differentiate the various electronic components. K2 CO2 Implement and execute the different types of wiring connections. P2 CO3 K2 K2 Demonstrate the Fluorescent lamp connection with choke. P2 Junction and Zener diode. A3 CO4 Characterize and display the basic knowledge on the working of PN junction and Zener diode. A3 CO5 Implement and execute the various digital electronic circuits such as Adders and Subtractors. K2 Adders and Subtractors. A3 Co 1 Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies. A3 2. Study of Active and Passive elements – Resistors, Inductors and Capacitors, Bread Board. Staircase Wiring 6. Forward		L–T	–Р –С				(C:P:A				L –T	`-Р-Н		
OURSE OBJECTIVES: The course helps to a. Learn the basic concepts of electrical and electronics components. b. Understand the basic wiring methods and connection. c. Study the characteristics of diodes, Zener diodes, NPN transistors. dotter components. Course Outcome Domain/Level Cor P or A COI Apply the fundamental electrical concepts and differentiate the various electronic components. COI Course Outcome Domain/Level Cor P or A COI Apply the fundamental electrical concepts and differentiate the various electronic components. COI Course Outcome COI Course Outcome Course Outcome <td colspand="" of="" on="" superstripped="" surger<="" surgers="" td="" the=""><td></td><td>0-0-</td><td>- 1- 1</td><td></td><td></td><td></td><td>1.</td><td>5:1:0.5</td><td></td><td></td><td></td><td>0- 0-</td><td>-2 - 2</td><td></td></td>	<td></td> <td>0-0-</td> <td>- 1- 1</td> <td></td> <td></td> <td></td> <td>1.</td> <td>5:1:0.5</td> <td></td> <td></td> <td></td> <td>0- 0-</td> <td>-2 - 2</td> <td></td>		0-0-	- 1- 1				1.	5:1:0.5				0- 0-	-2 - 2	
The course helps to a. Learn the basic concepts of electrical and electronics components. b. Understand the basic wiring methods and connection. c. Study the characteristics of diodes, Zener diodes, NPN transistors. d. Verify the working of simple logic gates, adders and subtractors. Course Outcome Cor P or A CO Apply the fundamental electrical concepts and differentiate the various electronic components. CO apply the fundamental electrical concepts and differentiate the various electronic components. CO apply the fundamental electrical concepts and differentiate the various electronic components. CO apply the fundamental electrical concepts and differentiate the various electronic components. CO apply the fundamental electrical concepts of wiring connections. CO apply the fundamental electrical concepts of wiring connections. CO apply the fundamental electrical concepts of wiring connections. CO apply the fundamental electrical concepts of wiring connections. CO apply the fundamental electrical concepts of wiring connections. CO apply the fundamental electrical concepts of wiring connections. CO apply the fundamental electrical concepts of wiring connections. CO apply the fundamental electrical concepts of wiring connections. CO apply the fundamental electrical concepts of wiring connections. CO apply the fundamental electrical spublic the basic knowledge on the working of PN pply the fundamentand execute the various digital electronic circuits such as pply the sand Subtractors. Co apply the fundamentand execute the various digital electronic circuits such as pply the sand Subtractors. Co apply the fundamental of the various digital electronic circuits such as pply the sand Subtractors. Co apply the fundamental of the various digital electronic circuits such as pply the sand Subtractors. Co apply the fundamental electrical Symbols, Tools and Safety Precautions, Power Supplies. Co apply the fundamental electrical Symbols, Tools and Safety Precautions, Power Supplies. Co apply the fundamentand execute in the ser	PRER	EQUISIT	'E: Physic	cs											
Domain/Level Course Outcome Domain/Level Cor P or A Cor Por A Cor Por A Cor Por A Cor Por Por Por Por Por Por Por Por Por P	The co a. b. c.	ourse helps Learn the Understar Study the	to basic con nd the basic character	cepts o ic wirir istics o	ng me f dioc	thods a les, Ze	and con ner dic	nnectio des, N	n. PN trai	nsistors					
CO1 Apply the fundamental electrical concepts and differentiate the various electronic components. K2 CO2 K2 Implement and execute the different types of wiring connections. A3 CO3 K2 Demonstrate the Fluorescent lamp connection with choke. P2 Junction and Zener diode. A3 CO4 Characterize and display the basic knowledge on the working of PN p2 junction and Zener diode. A3 CO5 Implement and execute the various digital electronic circuits such as A3 CO4 Characterize and Usplay. List of Experiments A3 1. Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies. 2. Study of Active and Passive elements – Resistors, Inductors and Capacitors, Bread Board. 3. Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter. 4. Fluorescent lamp connection with choke. 5. Staircase Wiring 6. Forward and Reverse bias characteristics of PN junction diode. 7. Forward and Reverse bias characteristics of zener diode. 8. Input and Output Characteristics of NPN transistor. 9. </td <td></td> <td></td> <td>0</td> <td>or sing</td> <td></td> <td></td> <td>.cs, auc</td> <td></td> <td>1 3000</td> <td><i>act</i>015.</td> <td></td> <td>D</td> <td>omain/I</td> <td>Level</td>			0	or sing			.cs, auc		1 3000	<i>act</i> 015.		D	omain/I	Level	
Apply the fundamental electrical concepts and differentiate the various electronic components. P2 CO2 K2 Implement and execute the different types of wiring connections. P2 CO3 K2 Demonstrate the Fluorescent lamp connection with choke. P2 CO4 Characterize and display the basic knowledge on the working of PN junction and Zener diode. K2 CO5 Implement and execute the various digital electronic circuits such as Adders and Subtractors. K2 Adders and Subtractors. K3 List of Experiments 1. Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies. 2. Study of Active and Passive elements – Resistors, Inductors and Capacitors, Bread Board. 3. Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter. 4. Fluorescent lamp connection with choke. 5. Staircase Wiring 6. Forward and Reverse bias characteristics of PN junction diode. 7. Forward and Reverse bias characteristics of zener diode. 8. Input and Output Characteristics of NPN transistor. 9. Construction and verification of adders and subtractors. <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(</td><td>C or P o</td><td>r A</td></t<>												(C or P o	r A	
Implement and execute the different types of wiring connections. P2 CO3 A3 CO4 Demonstrate the Fluorescent lamp connection with choke. P2 CO4 Characterize and display the basic knowledge on the working of PN junction and Zener diode. K2 CO5 Implement and execute the various digital electronic circuits such as Adders and Subtractors. K2 A3 K2 P2	CO1				lectri	cal con	cepts a	nd dif i	ferenti	ate the	variou	S	P2		
Demonstrate the Fluorescent lamp connection with choke.P2A3A3CO4Characterize and display the basic knowledge on the working of PN junction and Zener diode.K2 P2 A3CO5Implement and execute the various digital electronic circuits such as Adders and Subtractors.K2 P2 A3List of Experiments1.Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies.2.Study of Active and Passive elements – Resistors, Inductors and Capacitors, Bread Board.3.Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter.4.Fluorescent lamp connection with choke.5.Staircase Wiring6.Forward and Reverse bias characteristics of PN junction diode.7.Forward and Reverse bias characteristics of zener diode.8.Input and Output Characteristics of NPN transistor.9.Construction and verification of adders and subtractors.1.L = 0 hrsT = 0 hrsP=30 hrsT = 0 PO </td <td></td> <td>Impleme</td> <td>ent and ex</td> <td>ecute t</td> <td>the di</td> <td>fferent</td> <td>types</td> <td>of wirii</td> <td>ng com</td> <td>nection</td> <td>s.</td> <td></td> <td>P2 A3</td> <td></td>		Impleme	e nt and ex	ecute t	the di	fferent	types	of wirii	ng com	nection	s.		P2 A3		
 Characterize and display the basic knowledge on the working of PN junction and Zener diode. CO5 Implement and execute the various digital electronic circuits such as Adders and Subtractors. List of Experiments List of Experiments Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies. Study of Active and Passive elements – Resistors, Inductors and Capacitors, Bread Board. Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter. Fluorescent lamp connection with choke. Staircase Wiring Forward and Reverse bias characteristics of PN junction diode. Forward and Reverse bias characteristics of zener diode. Input and Output Characteristics of NPN transistor. Construction and verification of simple logic gates. Construction and verification of adders and subtractors. L=0 hrs T = 0 hrs P=30 hrs Total = 30 hrs Mapping of CO's with PO PO PO P	CO3	Demons	trate the I	Fluores	cent l	amp co	onnecti	on with	n chok	e.			P2 A3		
Implement and execute the various digital electronic circuits such as Adders and Subtractors. P2 A3 List of Experiments 1. Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies. Study of Active and Passive elements – Resistors, Inductors and Capacitors, Bread Board. Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter. Fluorescent lamp connection with choke. Staircase Wiring Forward and Reverse bias characteristics of PN junction diode. Forward and Reverse bias characteristics of zener diode. Input and Output Characteristics of NPN transistor. Construction and verification of simple logic gates. Construction and verification of adders and subtractors. L=0 hrs T = 0 hrs P=30 hrs Total = 30 hrs Mapping of CO's with PO PO1 PO	CO4			-	•	basic	knowl	edge o	n the	workin	g of Pl	N	P2		
 Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies. Study of Active and Passive elements – Resistors, Inductors and Capacitors, Bread Board. Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter. Fluorescent lamp connection with choke. Staircase Wiring Forward and Reverse bias characteristics of PN junction diode. Forward and Reverse bias characteristics of zener diode. Input and Output Characteristics of NPN transistor. Construction and verification of simple logic gates. Construction and verification of adders and subtractors. L = 0 hrs T = 0 hrs P=30 hrs Total = 30 hrs Mapping of CO's with PO 	CO5				the v	various	digita	l electr	onic c	ircuits	such a	S	P2		
 Study of Active and Passive elements – Resistors, Inductors and Capacitors, Bread Board. Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter. Fluorescent lamp connection with choke. Staircase Wiring Forward and Reverse bias characteristics of PN junction diode. Forward and Reverse bias characteristics of zener diode. Input and Output Characteristics of NPN transistor. Construction and verification of simple logic gates. Construction and verification of adders and subtractors. L = 0 hrs T = 0 hrs P=30 hrs Total = 30 hrs Mapping of CO's with PO 															
 Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter. Fluorescent lamp connection with choke. Staircase Wiring Forward and Reverse bias characteristics of PN junction diode. Forward and Reverse bias characteristics of zener diode. Input and Output Characteristics of NPN transistor. Construction and verification of simple logic gates. Construction and verification of adders and subtractors. L = 0 hrs T = 0 hrs P=30 hrs Total = 30 hrs Mapping of CO's with PO 	1.	Study of	Electrical	Symbo	ols, T	ools ar	nd Safe	ty Prec	aution	s, Powe	er Supp	lies.			
breadboard by using Voltmeter, Ammeter and Multimeter. 4. Fluorescent lamp connection with choke. 5. Staircase Wiring 6. Forward and Reverse bias characteristics of PN junction diode. 7. Forward and Reverse bias characteristics of zener diode. 8. Input and Output Characteristics of NPN transistor. 9. Construction and verification of simple logic gates. 10. Construction and verification of adders and subtractors. L = 0 hrs T = 0 hrs P=30 hrs Total = 30 hrs Mapping of CO's with PO PO PO P	2.	Study of	Active an	d Passi	ive el	ements	-Res	istors, l	inducto	ors and	Capaci	tors, E	Bread Bo	ard.	
5. Staircase Wiring 6. Forward and Reverse bias characteristics of PN junction diode. 7. Forward and Reverse bias characteristics of zener diode. 8. Input and Output Characteristics of NPN transistor. 9. Construction and verification of simple logic gates. 10. Construction and verification of adders and subtractors. L = 0 hrs T = 0 hrs P=30 hrs Total = 30 hrs Mapping of CO's with PO PO PO P		breadboa	ard by usin	ng Volt	meter	, Amn	neter ar		-		ors wh	ich are	e connec	ted in	
6.Forward and Reverse bias characteristics of PN junction diode.7.Forward and Reverse bias characteristics of zener diode.8.Input and Output Characteristics of NPN transistor.9.Construction and verification of simple logic gates.10.Construction and verification of adders and subtractors.L = 0 hrs T = 0 hrs P=30 hrs Total = 30 hrsMapping of CO's with POPO1POPOPO1POPOPO			_												
7.Forward and Reverse bias characteristics of zener diode.8.Input and Output Characteristics of NPN transistor.9.Construction and verification of simple logic gates.10.Construction and verification of adders and subtractors. $L = 0$ hrs $T = 0$ hrs $P=30$ hrs $Total = 30$ hrsMapping of CO's with POPO1POPOPOPOPOPOPO1POPOPOPOPOPOPO			U	rse bias	s char	acteris	tics of	PN iun	ction d	liode.					
 8. Input and Output Characteristics of NPN transistor. 9. Construction and verification of simple logic gates. 10. Construction and verification of adders and subtractors. L = 0 hrs T = 0 hrs P=30 hrs Total = 30 hrs Mapping of CO's with PO PO PO P								•							
9. Construction and verification of simple logic gates. 10. Construction and verification of adders and subtractors. L = 0 hrs $T = 0$ hrs $P=30$ hrs $Total = 30$ hrs Mapping of CO's with PO PO PO P															
10. Construction and verification of adders and subtractors. $L = 0$ hrs $T = 0$ hrs $P = 30$ hrs $T = 30$ hrsMapping of CO's with POPO PO P		•	•												
L = 0 hrs T = 0 hrs P=30 hrs Total = 30 hrs Mapping of CO's with PO PO1 PO							0	Ŭ							
Mapping of CO's with PO PO1 PO PSO1 PSO1								. active							
PO1 PO					I VIA	1 - 501									
	mapp		PO PO	PO									PSO1	PSO	

CO1	3	3	1	1	1	1			1	1	1		
CO2	3	3	1	1	1	1			1	1	1		
CO3	2	2	2	1	2	2	1	1	1	1	1		
CO4	2	2	1	1	1	1	1	1	1	1	1		
CO5	2	2	1	1	1	1	1	1	1	1	1		
Total	12	12	6	5	6	6	3	3	5	5	5		
Scaled Value	3	3	2	1	2	2	1	1	1	1	1		

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

Semester	II		
Subject Name	APPLIED PHYSICS FOR	ENGINEERS LAB	
Subject Code	XAP208		
L –T –I	Р-С	C:P:A	L –T –P –H
0- 0 – 1	l–1	0:2:0	0-0-2-2

PREREQUISITE: Basic Physics in HSC level

Cours	se Outcome	Domain/Level
		C or P or A
CO1 CO2	Determine the significance of elasticity in engineering systems and technological advances. use and locate basic applications of electromagnetic induction to technology.	P4 P4, A2
CO3	<i>Describe</i> the working principle and application of various lasers and fibre optics.	P4
CO4	<i>use</i> physics principles of latest technology using semiconductor devices.	P4
	LABORATORY	
1.	Torsional Pendulum - determination of moment of inertia and rigidity modes material of the wire.	lulus of the given
2.	Uniform Bending - Determination of the Young's Modulus of the material	of the beam.
3.	Non-Uniform Bending - Determination of the Young's Modulus of the ma beam.	terial of the
4.	Meter Bridge - Determination of specific resistance of the material of the	wire.
5.	Spectrometer - Determination of dispersive power of the give prism.	
6.	Spectrometer - Determination of wavelength of various colours in Hg sour	rce using grating.
7.	Air wedge - Determination of thickness of a given thin wire.	
8.	Laser - Determination of wavelength of given laser source and size of the particle using Laser grating.	given micro
9.	Post office Box - Determination of band gap of a given semiconductor.	

10. PN Junction Diode - Determination of V-I characteristics of the given diode.

L = 0 hrs T = 0 hrs P=30 hrs Total = 30 hrs

REFERENCES BOOKS

- 1. <u>Samir Kumar Ghosh, "A text book of Advanced Practical Physics", New Central Agency (P)</u> <u>Ltd, 2008.</u>
- 2. Arora C.L., "Practical Physics", S. Chand & Company Ltd., New Delhi, 2013.
- 3. <u>Umayal Sundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012.</u>

E REFERENCES

NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	2	2	2	1	-	-	-	1	-	-	1		
CO2	3		1		1	-	-	-		-	-	1		
CO3	3	2	2	2	1	-	-	-	1	-	-	1		
CO4	3	2	2	2	1	-	-	-	1	-	-	1		
CO5	12	6	7	6	4				3			5		
Total	3	2	2	2	1				1			1		
Scaled to 0,1,2,3 scale	3	2	2	2	1	-	-	-	1	-	-	1		

Mapping of CO's with PO

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

Semes	ter	III		
Subje	et Name	TRANSFORMS A	AND PARTIAL DIFFERENTI	AL EQUATIONS
Subje	ct Code	XMA301		
	L –T –I	?-С	C:P:A	L –T –P –H
	3-1-() 4	3:0.5:0.5	3-1-0-4
PRER	EQUISITE	: Algebra , Calculus	and Laplace transforms	
Cours	e Outcome			Domain/Level
				C or P or A
CO1	differential	dard types of first equations with cons n of arbitrary constar		K3, P1
CO2	State Diric the curve y and $(0, \pi)$.	chlet's condition. Ex y = f(x) in the interv	xplain general Fourier series of val $(0,2\pi)$ $(-\pi, \pi)$, $(0, 2\ell)$, $(-\ell, \ell)$	K1 , K2 P1
CO3		rmonic analysis standard Partial Di	fferential Equations, arising in	K3, A1

	and	ineering Problems, like one dimensional Wave equation Heat flow equation by Fourier series method in Cartesian rdinates.	
		ssify second order quasi pde.	
CO4	Fin cos	d the Fourier transform and Fourier sine and inetransforms of of simple functions using definition and its perties.	K1, K3
CO5	App inve	bly the properties of Z transform to <i>Find</i> the Z transform and erse Z transform of sequence and functions, and to solve the erence equation using them.	K1, K3
CO6		<i>ulyze</i> the periodic and aperiodic signals using transforms	K4
UNIT	ľ	Partial Differential Equations	12 HRS
		Formation of partial differential equations by elimination of and arbitrary functions – Solution of standard types of differential equations – Lagrange's linear equation – Linear equations of second and higher order with constant coefficients	first order partial partial differential
UNIT	II	Fourier Series	12 HRS
		Dirichlet's conditions – General Fourier series – Odd and ever range sine series – Half range cosine series –Parseval's id Analysis.	
UNIT	III	Applications of Boundary Value Problems	12 HRS
		Classification of second order quasi linear partial differential e one dimensional wave equation – One dimensional heat equation of two dimensional heat equation (Insulated edges exe solutions in Cartesian coordinates .	quation – Steady state
UNIT	IV	Fourier Transform	12 HRS
		Fourier integral theorem (without proof) – Fourier transform p Cosine transforms – properties – Transforms of simple fu theorem – Parseval's identity.	
UNIT	V	Transform and Difference Equations	12 HRS
L = 45	5 hrs	Z-transform – Elementary properties – Inverse Z – transform – – Initial and Final value theorems - Formation of difference e difference equations using Z-transform. T = 15 hrs P=0 hrs Total = 60 hrs	
ТЕХТ		DKS	
			Khanna Publishers, New
1.			maina i uunsheis, new
-		ii (2012).	
2	Nar	uvanan S. ManicavachagomPillay T.K. and Ramaniah G. "Ady	vanced

 Narayanan, S., ManicavachagomPillay, T.K. and Ramaniah, G., "Advanced Mathematics for Engineering Students", Volumes II and III, S.Viswanathan (Printers and Publishers) Pvt. Ltd., Chennai (2002).

3. Veerarajan. T., "Transforms and Partial Differential Equations", Second reprint, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2012.

REFERENCES BOOKS

- 1. Churchill, R.V. and Brown, J.W., "Fourier Series and Boundary Value Problems", Fourth Edition, McGraw Hill Book Co., Singapore (1987).
- Kandasamy, P., Thilagavathy, K., and Gunavathy, K., "Engineering Mathematics Volume III", S. Chand & Company Ltd., New Delhi (1996).
- 3. Bali N.P. and Manish Goyal, "A Text Book of Engineering Mathematics" 7th Edition Lakshmi Publications (P) Limited, New Delhi (2007).
- 4. Erwin Kreyszig, "Advanced Engineering Mathematics", 8 th Edition, Wiley India, 2007.
- **5.** Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012.

E REFERENCES

- 1. <u>www.nptel.ac.in</u>
- 2. Advanced Engineering Mathematics, Prof. Jitendra Kumar, Department of Mathematics, Indian Institute of Technology, Kharagpur, India.

Mappin	S OI CV	JS WITH	UII						1		1	1
	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3									1		1
CO 2	3									1		1
CO 3	3	2								1	1	2
CO 4	3	2			1					1	1	1
CO 5	3	2			1					1	1	1
	15	6	0	0	2	0	0	0	0	5	3	6
Scaled	3	2			1					1		
Value												
$1-5 \rightarrow$	1,		6 – 10 –	$\rightarrow 2$,		11 – 1	$5 \rightarrow 3$					

Mapping of COs with GA

Semes	ter	III		
Subje	ct Name	THERMODYNA	AMICS	
Subje	ct Code	XME302		
	L –T –I	Р-С	C:P:A	L –T –P –H
	3-1-0	0-4	3.5:0:0.5	3-1-0-4
Cours	e Outcome			Domain/Level
Cours	e Outcome			Domain/Level C or P or A
Cours CO1	The stude		balance to systems and control ng heat and workinteractions	

CO3	The students will be able to <i>study</i> the performance of energy conversiondevices	K1
CO4	The students will be able to <i>differentiate</i> between high grade and low grade energies.	K2
CO5	The students can <i>apply</i> the energy balance to systems	K3
CO6	The students will be able to <i>Classify</i> various thermodynamic cycles	K2
111		

The objective of this course

To learn about work and heat interactions, and balance of energy between system and its surroundings

- ✤ To learn about application of I law to various energy conversion devices
- ✤ To evaluate the changes in properties of substances in various processes
- ✤ To understand the difference between high grade and low grade energies and II law limitations on energy conversion

COURSE CONTENT

UNIT I	BASIC CONCEPTS7 hrs
UNIT II	Fundamentals - System & Control volume; Property, State & Process; Exact &Inexact differentials; Work - Thermodynamic definition of work; examples;Displacement work; Path dependence of displacement work and illustrations forsimple processes; electrical, magnetic, gravitational, spring and shaft work.LAWS OF THERMODYNAMICS8 hrs
UNIT III	Temperature, Definition of thermal equilibrium and Zeroth law; Temperature scalesVarious Thermometers- Definition of heat; examples of heat/work interaction insystems- First Law for Cyclic & Non-cyclic processes; Concept of total energy EDemonstration that E is a property; Various modes of energy, Internal energy andEnthalpy PROPERTIES OF SUBSTANCES AND STEAM TABLES 8 hrs
	Definition of Pure substance, Ideal Gases and ideal gas mixtures, Real gases and real gas mixtures, Compressibility charts- Properties of two phase systems - Const. temperature and Const. pressure heating of water; Definitions of saturated states; P-v-T surface; Use of steam tables and R134a tables; Saturation tables; Superheated tables; Identification of states & determination of properties, Mollier's chart.
UNIT IV	FLOW PROCESS AND THERMO DYNAMIC RELATIONS 10 hrs

First Law for Flow Processes - Derivation of general energy equation for a control volume; Steady state steady flow processes including throttling; Examples of steady flow devices; Unsteady processes; examples of steady and unsteady I law applications for system and control volume

Second law - Definitions of direct and reverse heat engines; Definitions of thermal efficiency and COP; Kelvin-Planck and Clausius statements; Definition of reversible process; Internal and external irreversibility; Carnot cycle; Absolute temperature scale.

UNIT V ENTROPY AND CYCLES

12 hrs

Clausius inequality; Definition of entropy S ; Demonstration that entropy S is a property; Evaluation of S for solids, liquids, ideal gases and ideal gas mixtures undergoing various processes; Determination of s from steam tables- Principle of increase of entropy; Illustration of processes in T-s coordinates; Definition of Isentropic efficiency for compressors, turbines and nozzles- Irreversibility and Availability, Availability function for systems and Control volumes undergoing different processes, Lost work. Second law analysis for a control volume. Exergy balance equation and Exergy analysis

Thermodynamic cycles - Basic Rankine cycle; Basic Brayton cycle; Basic vapor compression cycle and comparison with Carnot cycle.

L = 40 hrs T = 12 hrs P=0 hrs Total = 52 hrs

TEXT BOOKS / REFERENCES

1.Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, *Fundamentals of Thermodynamics*, John Wiley and Sons.

2. Jones, J. B. and Duggan, R. E., 1996, *Engineering Thermodynamics*, Prentice-Hall of India

3. Moran, M. J. and Shapiro, H. N., 1999, *Fundamentals of Engineering Thermodynamics*, John Wiley and Sons.

4. Nag, P.K, 1995, *Engineering Thermodynamics*, Tata McGraw-Hill Publishing Co. Ltd

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1	2	-	1	-	3	-	2	2	2	-	-	2
CO2	3	-	-	2	3	-	1	-	1	-	-	3
CO3	1	-	1	3	1	-	1	2	-	2	-	1
CO4	2	-	-	1	1	-	2	1	2	2	-	1
CO5	-	-	-	1	1	-	-	-	1	1	-	2
CO6	-	-	-	1	1	-	-	-	1	1	-	2
Total	8	-	2	8	10	-	6	5	7	6	-	11

Mapping of COs with PO

Semester	III								
Subject Name	STRENGTH OF	STRENGTH OF MATERIALS							
Subject Code	XME303								
L-T-	-Р-С	C : P : A	L-T-P-H						
3–1-	-04	4:0:0	3-1-0-4						
Course Outcome			Domain/Level						
			C or P or A						

CO1	Evaluate the deformation, strains and stresses due to axial	Cognitive
	loading and understand the concepts of principal planes and	(Remember, Understand,
	Mohr's circle	Apply)
CO2	Draw shear and moment diagrams of simple beams subjected to various loading conditions and evaluate the bending and shear stresses produced in beams	Cognitive (Remember, Understand, Apply)
CO3	Compute slopes and deflection of beams and determine moment of inertia of different sections	Cognitive (Remember, Understand, Apply)
CO4	Analyze torsional stresses, deformation and deflection of shafts and helical springs	Cognitive (Remember, Understand, Apply)
CO5	Evaluate the stresses and deformation in thin cylinders and spherical shells subjected to internal pressure	Cognitive (Remember, Understand, Apply)
CO6	Evaluate the stresses and deformation in thick cylinders and spherical shells subjected to internal pressure	Cognitive (Remember, Understand, Apply)

OBJECTIVES

- ✤ To understand the nature of stresses developed in simple geometries such as bars, cantilevers, beams, shafts, cylinders and spheres for various types of simple loads
- To calculate the elastic deformation occurring in various simple geometries for different typesof loading

COURSE CONTENT

UNIT I	STRESS, STRAIN AND DEFORMATION OF SOLIDS $L8 + T2 = 10$ hrs
	Deformation in solids- Hooke's law, stress and strain- tension, compression and shear stresses- elastic constants and their relations- volumetric, linear and shear strains- principal stresses and principal planes- Mohr's circle
UNIT II	BEAMS - LOADS AND STRESSES L8 + T3 = 11 hrs
	Beams and types, transverse loading on beams - shear force and bend moment diagrams- Types of beam supports, simply supported and over-hanging beams, cantilevers. Theory of bending of beams, bending stress distribution and neutral axis, shear stress distribution, point and distributed loads
UNIT III	DEFLECTIONOF BEAMS L8 + T3 = 11 hrs
	Moment of inertia about an axis and polar moment of inertia, deflection of a beam using double integration method, computation of slopes and deflection in beams, Maxwell's reciprocal theorems
UNIT IV	TORSION AND SHAFTSL8 + T2 = 10 hrs
	Torsion, stresses and deformation in circular and hollow shafts, stepped shafts, deflection of shafts fixed at both ends, stresses and deflection of helical springs
UNIT V	ANALYSIS OF STRESSES IN TWO DIMENSIONS L8 + T2 = 10 hrs
	Axial and hoop stresses in cylinders subjected to internal pressure, deformation of

thick and thin cylinders, deformation in spherical shells subjected to internal pressureLecture = 40 HoursTutorial = 12 HoursPractical = 0 HoursTotal = 52 Hours

TEXT BOOKS / REFERENCES

- 1. Egor P. Popov, Engineering Mechanics of Solids, Prentice Hall of India, New Delhi, 2001.
- 2. R. Subramanian, Strength of Materials, Oxford University Press, 2007.
- 3. Ferdinand P. Been, Russel Johnson Jr and John J. Dewole, Mechanics of Materials, Tata McGraw Hill Publishing Co. Ltd., New Delhi 2005.

PO PO2 PO3 PO6 **PO7 PO8 PO9** PO10 PO11 PSO1 PSO2 **PO1 PO4 PO5 CO1 CO2 CO3 CO4 CO5 CO6** Total

Table 1: Mapping of COs with PO

1 - Low, 2 – Medium, 3- High

Semest	er III	
Course	Name MATERIALS ENGINEERING	
Course	Code XME304	
L –T –	P–C C:P:A	L –T –P –H
3-0-	0-3 3:0:0	3-0-0-3
Course	Outcome	Domain/Level
		C or P or A
CO1	<i>Study</i> the basic crystal structures and different imperfections in solid	K1
CO2	<i>Outline</i> the mechanical properties and appropriate measurement methods.	K2
CO3	Summarize the static failure theories.	K2
CO4	<i>Illustrate</i> the phase diagrams and comprehend the phase transformations in alloys.	K2
CO5	<i>Compare</i> different heat treatment process and its applications.	K2
CO6	<i>Summarize</i> the modern engineering materials and their properties	K1
Object	ives	

1. Understanding of the correlation between the internal structure of materials, their mechanical properties and various methods to quantify their mechanical integrity and failure criteria.

2. To provide a detailed interpretation of equilibrium phase diagrams

3. Learning about different phases and heat treatment methods to tailor the properties of Fe-C

alloys.

COURSE CONTENT

UNIT I PROPERTIES OF METALLIC MATERIALS

Crystal Structure: Unit cells, Metallic crystal structures, Ceramics. Imperfection in solids:Point, line, interfacial and volume defects; dislocation strengthening mechanisms and slipsystems, critically resolved shear stress.

Mechanical Property measurement: Tensile, compression and torsion tests; Young'smodulus, relations between true and engineering stress-strain curves, generalized Hooke'slaw, yielding and yield strength, ductility, resilience, toughness and elastic recovery;Hardness: Rockwell, Brinell and Vickers and their relation to strength.

UNIT II STATIC FAILURE THEORIES

9 Hours

9 Hours

Static failure theories: Ductile and brittle failure mechanisms, Tresca, Von-mises, Maximum normal stress, Mohr-Coulomb and Modified Mohr-Coulomb; Fracture mechanics: Introduction to Stress-intensity factor approach and Griffith criterion.

Fatigue failure: High cycle fatigue, Stress-life approach, SN curve, endurance and fatigue limits, effects of mean stress using the Modified Goodman diagram; Fracture with fatigue, Introduction to non-destructive testing (NDT).

UNIT ALLOYS AND PHASE DIAGRAMS

9 Hours

Alloys, substitutional and interstitial solid solutions- Phase diagrams: Interpretation of binary phase diagrams and microstructure development; eutectic, peritectic, peritectoid and monotectic reactions.

Iron Iron-carbide phase diagram and microstructural aspects of ledeburite, austenite, ferrite and cementite, cast iron.

UNIT IV	HEAT TREATMENT OF MATERIALS	9 Hours
	Heat treatment of Steel: Annealing, tempering, m isothermal transformation diagrams for Fe-C development. Continuous cooling curves and interpretation properties- austempering, martempering. Case hardening, carburizing, nitriding, cyaniding induction hardening, vacuum and plasma hardening	alloys and microstructure of final microstructures and
UNIT V		9 Hours
	Alloying of steel, properties of stainless steel and t cast irons; grey, white, malleable and spheroidal ca alloys; brass, bronze and cupro-nickel; Aluminium and Al-Cu – Mg alloys- Nickel based alloys.	st irons- copper and copper
L = 45 He	ours Tutorial = 0 Hours Total	l = 45 Hours
TEXT B	OOKS	

COUD

III

1. W. D. Callister, 2006, "Materials Science and Engineering-An Introduction", 6th Edition, Wiley India.

2. Kenneth G. Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 4th Indian Reprint, 2002.

3. V. Raghavan, "Material Science and Engineering', Prentice Hall of India Private Limited, 1999.

4. U. C. Jindal, "Engineering Materials and Metallurgy", Pearson, 2011.

REFERENCE BOOKS

1. Koch, C. C. Nanostructured materials: processing and applications: William Andrew Pub. 2.James F Shackelford, S "Introduction to materials Science for Engineers", 6 th Macmillan Publishing Company, New York, 2004

3.William D CallisterJr, "Materials Science and Engineering – An Introduction", John Wiley and Sons Inc., 6 th edition, New York, 2003

4. Jayakumar S, "Materials Science", RK Publishers, Coimbatore, 2004

5. Bolton, W., Engineering materials technology: Butterworth-Heinemann.

E RESOURCES

1.NPTEL courses, http://www.nptel.iitm.ac.in/courses.php?disciplineId=112: related web and video resources under Mechanical Engineering &Metallurgy and Material Science categories 2.<u>http://www.intechopen.com/books</u>

Mapping of COs with POs

	PO1	P02	P03	P04	PO5	P06	P07	P08	P09	PO 10	PO 11	PO 12	PS 01	PS
CO1	2	2	3	3	1	1	-	2	3	3	1	3	2	1
CO2	2	2	3	3	1	1	-	2	3	3	1	3	2	1
CO3	3	3	1	1	1	-	-	1	1	2	3	2	2	1
CO4	3	2	1	1	1	-	-	1	2	3	1	3	2	1
CO5	2	3	1	3	1	-	-	1	1	2	3	2	2	1
CO6	3	2	3	3	1	1	-	1	3	3	2	1	2	1
Tot	15	14	12	14	6	3	0	8	13	16	11	14	12	6

Semest	ter	III					
Subjec	t Name	Machine Drav	ving				
Subjec	t Code	XME305					
L –T –P –C			C:P:A	L –T –P –H			
1-0-	1-2		1:1:0 1-0-2-3				
Course	e Outcome			Knowledge Level			
CO1	To Understa	ind the codes and	d practices.	K2			
CO2	To apply tol	erances and fits	in the drawings.	K2			
CO3	To remembe	er the symbols of	K2				
CO4	To understar	nd the working f	asters	K2			

CO5 7	To understand the cotter joint, knuckle joint, etc.,	K2
CO6 7	To understand the working components	K2
COURS	E CONTENT	
UNIT I	CODES AND PRACTICES	9 hrs
	Indian standard code of practice for engineering drawing – presentation, conventional representations of threaded part common features. Abbreviations and symbols for use in Conventions for sectioning and dimensioning.	ts, springs, gear and
UNIT II	TOLERANCES	9 hrs
	Tolerances –types –representation of tolerances on drawings, –form and positional tolerances –datum, datum features, fits fits –allowances	s –types –selection of
UNIT II	I DRAWING SYMBOLS	9 hrs
	Maximum material principal-symbols and methods of indica surface finish symbols –welding symbols and methods of drawings	f indicating them on
UNIT IV	WORKING DRAWINGS OF FASTENERS	9 hrs
	Preparation of working drawing for the Fasteners like: Nuts, bolts screws, keys and keyways, joints –cotterjoint and knuckle join	
UNIT V	WORKING DRAWINGS OF MACHINE COMPONENT	fS 9 hrs
L = 45 h	Preparation of working drawings for the machine components Connecting rod, Plummer block, screw jack, cross head for h engines, swivel bearing, machine vice, lathe tail stock, toolh valve, safety valve, pressure relief valve. rs Total = 45 hr	norizontal and vertical
TEXT B	OOKS	
1. N	Iachine drawing by Gopalakrishnan, Subash Publishers,2002	
REFER	ENCES	
 Machi Revise 10711,10 	ne drawing, N.D. Bhatt, Charotar Publishing House, Anand ne drawing, N.Siddeswar, P.Kanniah, and V.V.S. Satry TataMcC ed IS codes: 0713,10714,9609,1165,10712,10715,10716,10717,11663,11668, .669,8043,8000	Graw Hill, 1980
	otel.iitm.ac.in	
<u>11(p.//1)</u>	<u>Jelintinae.iii</u>	
Mapping	g of COs with POs	

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO1	3	3	3	2	3	2	3	1	1	2	3	3	2	
CO2	3	3	3	1	3	1	3	1	1	1	2	3	2	
CO3	3	3	3	1	3	1	3	1	1	1	2	3	2	
CO4	2	2	2	1	2	1	2	1	1	1	1	2	1	
CO5	1	1	1	0	1	0	1	0	0	0	1	1	1	
CO6	3	3	3	1	3	1	3	1	1	1	2	3	2	
ТОТ	15	15	15	6	15	6	15	5	5	6	11	15	10	

Semest	er	III										
Subjec	t Name	ENTREPREN	EURSHIP DEVELOPMENT									
Subjec	t Code	XUM306										
L –T –	Р – С		C:P:A	L –Т –Р –Н								
2-0-	0-2		2:0:0	2-0-0-2								
Course	Outcom			Knowledge Level								
CO1	<i>Recognise</i> a for an entrep		role of innovation and motivation	K2								
CO2		and <i>appraise</i> yo entrepreneur.	our entrepreneurship interest with	K5								
CO3	Outline the	utlinethe importance of generation of new ideas forK4http://eneurship.and.illustratemarket assessment.										
CO4	<i>Explain</i> <i>sketch/demo</i> competition.	ch/demonstrate/comply business model for dealing with										
CO5	Describe an		re creation and launching of small t.	K1,K2								
CO6			us government policies and global urship Development	K1,K2								
COUR	SE CONTEN	NT										
UNIT	I INNOV	ATION AND E	NTREPRENEURSHIP	5 hrs								
	Definition of Innovation, Creativity and Entrepreneurship; role of innovation entrepreneurship development (2)- Entrepreneurial motivation (1)-Competenci and traits of an entrepreneur (1)-Role of Family and Society; Entrepreneurship as career and its role in national development (1).											
UNIT	II SELF INCLIN	ENT OF ENTREPRENEU	RIAL 4 hrs									
		-	preneurial inclination (1)-Presentation on rating (2)-Case study of successfu	-								
UNIT I		TION TO MARKET ASSESSM	IENT 9 hrs									
	Importa	nce of Idea ge	neration-filtering-refinement (1)-op	portunity recognition								

	(1)- Description of chosen idea - value proposition, customer-problem-Solution statement) (1)-benefits; development status; IP ownership (1)-Market Validation-Technology/ user/decision makers/ partners (1)-market need; segmentation (1)-market TAM,SAM and SOM (1)-case study on market segmentation by popular companies (1)														
UNIT IV		'OMEI	/)MPE	ΓΙΤΙΟ	N- BU	SINES	SS MO	DEL			9 h	rs		
	Customer-Target primary customer research, Decision making unit/ process-Beach head market; Cost of Customer Acquisition (2)-Competition- comparative analysis, competitive advantages-; (2)-Business model (1) -Financial planning (1)- Pitch documentation and presentation (3)VVENTURE CREATION AND LAUNCHING OF SMALL9														
UNIT V		TURE						HING	OF	SMAI		9 rs			
	New enterprise creation - organizational and legal matters (1)-Operational plan (1)-Sales and distribution plan (1)-Accounting (1)-Team recruitment and management (1)-Fund raising and management (1)-Profile of a startup – case studies (2).T VIGOVERNMENTINITIATIVESANDGLOBAL9 hrs														
UNIT VI	VIGOVERNMENTINITIATIVESANDGLOBAL9 hrsOPPORTUNITIESOPPORTUNITIES														
Incubators and accelerators - capacity building (2)-Startup policies- Startup India (2)-Support for MSME; GeMPortal(2) Funding–national and international sources(2)-Bilateral programmes by Govt. of India -Global reach for promoting cross-cultural entrepreneurship (1)															
L = 45 hrs															
REFEREN	REFERENCES														
1.A.P.Aruna www.brain 2.Thomas V Business Ma	<u>net</u> V. Zim	merer,	Norm	an M.	Scarbo	orough,							-		
3.John B	urnett,	"In	troduc	ing	Marke	ting",	Ope		ext	Book	avai	ilable	at		
http://solr.bo 7af7b02e31	-														
4.Toubia, C				-					', Mark	eting S	Science	e. Vol.	25.		
pp.411-425.							• •		0		A TT	11 1	6		
5.Alexander Visionaries,					0						A Har	Iddook	Ior		
6.Gerardus											, 2018	•			
Table.1. CO) PO n	nappin	g	1	r	1	1	1	1			•	I		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12			
CO1		1		1	1	1		1	1	1	1				
CO2		1		1	1	1		1	1	1	1				
CO3		1		1	1	1		1	2	2	1				
CO4		1		1	1	1		1	1	1	1				
CO5		1		1	1	1		1	1	2	1				

CO6		1		1	1	1		1	1	2	1		
Total		6		6	6	6		6	6	9	5		
Scaled to 0,1,2 and 3		2		2	2	2		2	2	2	1		
Total	0	1-6		7-12	1	3-18				L – Lecture; T- Tutorial;			
Scale	0	1		2		3				P-Practical;			
Relation	No	Low	Ν	Mediun	n l	High				SS-S	Self Stu	ıdy	

Semester	III	
Subject Name	Strength of Materials Laboratory	
Subject Code	XME308	
L –Т –Р –С	C:P:A	L –T –P –H
0-0-1-1	0:1:0	0-0-2-2
Course Outcome		Domain/Level
		C or P or A
deformation problem conditions.	echanical properties and <i>solve</i> various ns under different stress and loading the Hardness method for different	Coginitive (Remembering) (Applying) Psychomotor (Guided response) Coginitive (Understanding) Psychomotor
<i>Examine</i> deflection f	or different types of beam.	(Guided response) Coginitive (Understanding) Psychomotor
<i>Determine</i> torsion va	lue for different elements	(Perception) Coginitive (Understanding) Psychomotor
<i>Study</i> about fatigue strain relation	strength of Steel and Sketches stress	(Guided response) Coginitive (Understanding) Psychomotor (Guided response)

Objectives

(i) To understand the measurement of mechanical properties of materials

(ii) To understand the deformation behavior of materials

COURSE CONTENT

CO Relat	CO Relation												
LIST OF EXPERIMENTS													
1.	Tensile test on mild steel using Universal Testing Machine.	1											
2.	Compression test on brick/wooden specimen using Compression Testing Machine	1											
3.	Brinell hardness test	2											

4.	Rockwell hardness test	2
5.	Charpy and Izod Impact tests	2
6.	Deflection tests on simply supported beams	3
7.	Deflection tests on cantilever	3
8.	Torsion test on mild steel rod.	4
9.	Test on helical coiled springs	4
10.	Exercises on Mohr's circle	5
11.	Fatigue test on steel	5

TEXT BOOKS

S. Ramamrutham and R. Narayanan, (2003), Strength of Materials, Dhanpat Rai Publications.

REFERENCES

- 1. Rowland Richards, (2000), Principles of Solid Mechanics, CRC Press.
- 2.Timoshenko, S.P. and Young, D.H., (2000), Strength of Materials, East West Press Ltd
- 3. R.K. Bansal, (2000), Strength of Materials, Laxmi Publications

E-REFERENCES

1.http://nptel.iitm.ac.in/courses

Mapping of COs with POs

	P01	P02	P03	P04	P05	P06	P07	PO8	P09	P010	P011	P012	PSO1	PSO2
CO1	2	3	-	2	1	1	-	-	1	-	-1	1	2	
CO2	2	3	-	2	1	1	-	-	-	-	-1	1	2	
CO3	2	3	-	2	1	1	-	-	1	-	-	1	2	
CO4	2	3	2	1	1	1	-	-	1	-	-1	1	2	
CO5	2	3	-	2	1	1	-	-	-	-	-	1	2	
Tot	10	15	2	9	5	5			3		3	5	10	

Semester	III	
Subject Name	Inplant Training – I	
Subject Code	XME310	
L –Т –Р –С	C:P:A	L –T –P –H
0-0-1-1	0:1:0	0-0-0-0
Course Outcome		Domain/Level
		C or P or A

Objectives:

This course is aimed to provide more weightage for project work. The project work could be done in the form of a summer project or internship in the industry or even a minor practical project in the college. Participation in any technical event/ competition to fabricate and demonstrate an innovative machine or product could be encouraged under this course.

			L	T	P	C	
	XECHR1- Service Robotics with Drives and Sens	sors	1 L	0 T	2 P	3 H	
			1	0	4	5	
PREREQ	UISITE: -NIL-						
	COURSE OUTCOMES	DOMAIN		LE	VE	L	
After the o	completion of the course, students will be able to						
CO1				nowl	U		
CO1	<i>Understand</i> the Anatomy of a mobile robot	Cognitive	Comprehension				
CO2	Virtually Build and Program robots in	Psychomotor	Aŗ	plic	atio	n	
02	Coppelia Sim	Synthesis					
		Cognitive	Application				
CO3	Integrate Sensors and Motors with Arduino	Psychomotor		nthe			
		Affective	Ev	alua	te		
CO1	Develop Intelligent Behavior in service Robots and	Psychomotor		plic		n	
CO4	will be able to <i>program</i> using LUA	Affective	-	nthe			
				alys			
CO5			Knowledge				
	<i>Understand</i> the concept of drives and sensors	Cognitive	Comprehens				
			ion				
UNIT I	Principles of Robotics					3+6	

Introduction to Robotics – What is a robot , Field of Robotics , Robot Classification – Applications of Robots - Introduction to Coppelia Sim – Why we need simulations , How to make the best use of Simulation in Robotics , Difference between Proprietary and Open Source simulations , What is Coppelia Sim , Fundamentals of Coppelia Sim

, Building Blocks of Mobile Robot – Coppelia Sim – Station components of Coppelia Sim, Toolboxes in Coppelia - Work with Mobile Robots in Coppelia Sim –Robot Frames – Robot Assembly in Coppelia Sim – Building Blocks of a mobile Robot – Joints

- Primitive Shapes - Types of Locomotion - Differential Drive Principle and Locomotion

 What is a Differential Drive Robot – Mathematical Modelling of Differential Drive Mechanics – Mobile Robot Principles – Limitations of Mobile Robots

- Various Mobile Robot Paradigms – Programming a Differential Drive robot – Programming in Coppelia Sim – What is Lua Programming language – Scripts in Coppelia Sim – Teleoperation of a Differential Drive Robot I – Control of Virtual mobile Robot in Coppelia Sim using Keyboard – Programming the control structure for Robot Teleoperation – Teleoperation of a Differential Drive Robot II – Program debugging and error correction in coppelia sim

Lab:

- 1. Offline Programming with Coppelia Sim
- 2. Workspace building with Coppelia Sim
- 3. Modelling Differential Drive Robot in Coppelia Sim
- 4. Programming Differential Drive Robot in Coppelia Sim
- 5. Teleoperate a Mobile Robot

U	J NIT II	Robot Perception	3+12

Introduction to Braitenberg Robots – Braitenberg Principle – Examples of Braitenberg Robots -Different Robot Paradigms – Working with Reactive Paradigm – Imparting Intelligent Behaviors using Braitenberg Principle – Examples of Braitenberg Robots – Introduction to Robot Perception – What is a Sensor – Characteristics of a Sensor – Different sensors for Service Robots – Working with Proximity sensors – Principles and Types of Proximity Sensors – Object Detection in Coppelia Sim – Proximity sensors for detecting obstacles – Data Acquisition from Robots – Case Study – Introduction to Robot Mapping – Using proximity sensors for Robot Mapping – Obstacle Avoidance in Coppelia Sim – Different Obstacle Avoidance algorithms – Working with Bug 1 and Bug 2 algorithms – Maze Building - Using Vision sensors for Obstacle detection and Avoidance - Introduction to Vision Sensors -Fundamentals of Vision sensors – Principles of Camera and Image formation – Applications of Vision sensors in Robotics – Image Processing in Coppelia Sim – Object Detection using Vision – Braitenberg Robots – Line following – Principles of Line following Sensors used in Line Following – Applications of Line following robots in Industry – Visual Servoing – What is Visual Servoing – Sensors used in visual Servoing – Fundamentals of Object tracking – Gesture Recognition – Detecting Gestures using Camera – Introduction to Python – Python Crash course – Connecting Python with Coppelia Sim

– Gesture Recognition in Python – Working with Lidar in Coppelia Sim – Fundamentals of LIDAR – Principle of a LIDAR – Application of LIDAR in Autonomous Robots – Data Acquisition using LIDAR

Lab:

- 6. Robot Mapping
- 7. Performing Obstacle Avoidance in Coppelia Sim
- 8. Building and Programming a Line following robot in Coppelia Sim
- 9. Performing Visual Servoing in Coppelia Sim
- **10. Gesture Recognition Robot**
- **11. Robot Mapping using LIDAR**

UNIT III

Aerial & Bio Inspired Robots

3+6

Introduction to Aerial Vehicles - Parts of a quadcopter & Flying Techniques - Piloting Way point programming - Building of Drone Frame - Aerial Mapping - Inspection of quarantine zones – Bioinspired Robots - Control of legged robot in Coppelia Sim - What is a gait? - Different gait motions in animals & humans - Assembly of legged robot - Calibration and control of legged robot - Programming of legged robot - What is a Humanoid Robot – Principle of Humanoid Robot – Handling Gaits in Humanoid Robots – Challenges in Biped Motion **Lab:**

12. Building a Mobile Robot Motion model

13. Programming and Controlling an Unmanned Aerial Vehicle

14. Gait Analysis and Control of Bio inspired Robots

15. Working with Humanoid Robots

UNIT IV	Building Robots (Hardware)	3+9

Build Robots in Real Time – Arduino – Fundamentals of Arduino – Components in Prag Auxiliary Kit – Programming LED, Motors in Arduino – Working with a Potentiometer in Arduino – Programming sensors in Arduino – Build Robots in Real time – Robot Assembly – Assembling a Mobile Robot – Connecting Arduino with Ultrasonic Sensor – Connecting Arduino with Infra-red sensors – Understanding Omni Directional Motion in Mobile Robot – Building Braitenberg Robots in Real time – Robot Intelligence – Introduction to Teachable Machine – Beacon Based Navigation System – Robot Control with Gestures

Lab:

16. Working with Arduino basics

17. Building a Bluetooth-controlled Robot

18. Build an Obstacle Avoidance Robot

19. Build a Line Following Robot

20. Build a Light Following Robot

UNIT '	V			Dri	ves an	d Se	ensor	S			3+9
	2		 ~								

Principles of Hydraulics- Construction of Hydraulic circuits-valves-direction control valve, pressure release valve, pressure regulate valve, oil tank & filters - Principles on of pneumatics- Construction of pneumatic circuits- valves-direction control valve ,pressure release valve, pressure regulate valve, air compressors & filters – Introduction to Industrial sensors-study of characteristics of inductive, capacitive, resistive, photoelectric sensors and ultrasonic sensor.

Lab:

21. Hydraulic-Operation of single acting and double acting cylinders

22. Operation of electro hydraulics

- 23. Pneumatics-Operation of single acting and double acting cylinders
- 24. Operation of electro pneumatics
- 25. Sensors-inductive, capacitive, resistive

26. Sensors-photoelectric sensors and ultrasonic sensors

LECTURE	TUTORIAL	PRACTICAL	AL HOURS
12	0	33	60

TEXT BOOKS:

Springer Handbook on Robotics Industrial Automation Technologies, *edited By*, *Chanchal Dey*, *Sunit Kumar Sen*, ISBN9780367496074, Published February 1, 2022 by CRC Press 376 Pages 301 B/W Illustrations

REFERENCES:

Introduction to Robotics by J.J. Craig, Addison-Wesley Publishing Company, 1986 owozin and Lampert

J.Buchli (eds.): "Mobile Robots - Moving Intelligence", Published by Advanced Robotic Systems International Verlag, 2006

E-REFERENCES:

NPTEL :: Electrical Engineering - Industrial Automation and Control

Semester	IV		
Subject Name	PROBABILITY	<i>T</i> DISTRIBUTION AND S	TATISTICAL METHODS
Subject Code	XMA401		
L –T –	Р –С	C:P:A	L –T –P –H
3-1-	0-4	3:0.5:0.5	3-1-0-4

PREREQUISITE: NIL

Learning Objectives

- 1. Appreciate the importance of probability and statistics in computing and research
- 2. Develop skills in presenting quantitative data using appropriate diagrams, tabulations and summaries
- 3. Use appropriate statistical method in the analysis of simple datasets.
- 4. Interpret and clearly present output from statistical analyses in a clear concise and understandable manner
- 5. The main objective of this course is to provide students with the foundations of probabilities and statistical analysis mostly used in varied applications in engineering and science like disease modeling, climate prediction and computer networks etc.

Cours	se Outcome	Domain/Level
		C or P or A
CO1	Explain conditional probability, independent events; find expected values and Moments of Discrete random variables with their properties.	K1. K2
CO2	Find distribution function, Marginal density function, conditional density function and to define density function of conditional distribution functions normal, exponential and gamma distributions.	K1
CO3	Determine the statistical parameters of Binomial, Poisson and Normal and to find correlation, regression and Rank Correlation coefficient of two variables. Moments, skewness and Kurtosis.	K2, P3
CO4	Explain large sample test for single proportion, difference of proportion, single mean, difference of means and difference of standard deviations with simple problems.	K2
CO5	Explain small sample test for single mean, difference of mean and correlation coefficients, variance test, chi square test with simple problems.	K2, A1
CO6	Analyze the test of significance for comparing large sample test and small sample test	K4
UNI	FI Basic Probability	12 HRS
	Probability spaces, conditional probability, independence; Disc variables, Independent random variables, the multinomial Poisson approximation to the binomial distribution, infinite s	distribution,

variables, Independent random variables, the multinomial distribution, Poisson approximation to the binomial distribution, infinite sequences of Bernoulli trials, sums of independent random variables; Expectation of Discrete Random Variables, Moments, Variance of a sum, Correlation coefficient, Chebyshev's Inequality.

Continuous Probability Distributions & Bivariate 12 HRS Distributions
Continuous random variables and their properties, distribution functions and densities, normal, exponential and gamma densities. Bivariate distributions and their properties, distribution of sums and quotients, conditional densities, Bayes' rule.
Basic Statistics12 HRS
Measures of Central tendency: Moments, skewness and Kurtosis - Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions, Correlation and regression - Rank correlation
Applied Statistics12 HRS
Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations.
Small Samples12 HRS
Test for single mean, difference of means and correlation coefficients, test for ratio of variances - Chi-square test for goodness of fit and independence of attributes T = 15 hrs P=0 hrs Total = 60 hrs

TEXT BOOKS

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2015.

N.P. Bali and M. Goyal, "A text book of Engineering Mathematics", Laxmi Publications, 2010.

3. Veerarajan T., "Probability, Statistics and Random processes", Tata McGraw-Hill, New Delhi, 2010.

REFERENCES BOOKS

1. P. G. Hoel, S. C. Port and C. J. Stone, "Introduction to Probability Theory", Universal Book Stall, 2003.

2. S. Ross, "A First Course in Probability", Pearson Education India, 2002.

3. W. Feller, "An Introduction to Probability Theory and its Applications", Vol. 1, Wiley, 1968.

4. E. Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 2006. **E REFERENCES**

3. <u>www.nptel.ac.in</u>

4. Probability and Statistics by Prof.Someshkumar, Department of Mathematics, IIT Kharagpur. (http://nptel.ac.in/noc/noc_courselist.php)

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA1 0	GA1 1	GA1 2
CO 1	3	2	1						1	1		1
CO 2	3	2	1						1	1		1
CO 3	3	2	1	1					1	1		1
CO 4	3	2	1	1	1	1			1	1	1	1

Mapping of COs with GA

CO 5	3	2	1	1	1	1	1		1	1	1	1
	15	10	5	3	2	2	1		5	5	2	5
Scale d Value	3	2	1	1	1	1	1		1	1	1	1
$1-5 \rightarrow$	• 1,		6 – 10	$\rightarrow 2,$		11	- 15 -	→ 3 <i>1</i> -	Low, 2	2-Med	ium, 3- 1	High

Semester	ſ	IV						
Subject 1	Name	APPLIED TH	ERMODYNAMICS					
Subject	Code	XME402						
L –T –P	-C		C:P:A	L –T –	P –H			
3-1-0-	4		3.5:0:0.5	3-1-0	- 4			
Course (Outcome			Domai	n/Level			
				C or P	or A			
		U	types and Calculation of air		K1			
		es or combustion			K1			
		ng of various gas	pour power cycles		KI K1			
			ciples of psychometric and solving		K1 K2			
t	he	0						
		psychrometricc						
	compressible	ng phenomena e flow	occurring in high speed		K1			
CO6 /	Analyze ene combustors,	rgy conversion	in various thermal devices such as zles, diffusers, steam turbines and		K2			
Objectiv								
(1) To lea	arn about of	I law for reactin	g systems and heating value of fuels	5				
(2) To lea	arn about ga	s and vapor cycl	es and their first law and second law	v efficier	ncies			
(3) To un	derstand ab	out the propertie	es of dry and wet air and the principl	es of psy	/chrometry			
(4) To le	arn about g	as dynamics of a	ir flow and steam through nozzles					
(5) To lea	arn the abou	t reciprocating c	compressors with and without interco	ooling				
(6) To an	alyze the pe	erformance of ste	eam turbines					
COURS	E CONTEN	NT						
UNIT I	Fuels an	nd Stoichiometr	у		9 hrs			
	analysis- enthalpy	- First law ana tables- Adial	liquid and gaseous fuels– Stoich lysis of combustion reactions- He batic flame temperature- Chemi calculations using free energy	eat calcu	lations using			
UNIT II	Power c	ycles			9 hrs			

	Vapor power cycles Rankine cycle with superheat, reheat and regenera analysis. Super-critical and ultra super-critical Rankine cycle- Gas p Air standard Otto, Diesel and Dual cycles-Air standard Brayton cyc reheat, regeneration and intercooling- Combined gas and vapor power	ower cycles, cle, effect of
UNIT III	Psychyrometry and Refrigeration	9 hrs
	Properties of dry and wet air, use of pschyrometric chart, process heating/cooling and humidification/dehumidification, dew po compression refrigeration cycles, refrigerants and their properties	es involving int. Vapor
UNIT IV	Compressible flow and Shocks	9 hrs
	Basics of compressible flow. Stagnation properties, Isentropic flow gas through a nozzle, choked flow, subsonic and supersonic flows- nor use of ideal gas tables for isentropic flow and normal shock flow- Fl and refrigerant through nozzle, super saturation- compressible flow efficiency of nozzle and diffuser	rmal shocks- ow of steam
UNIT V	Compressors and Steam turbines	9 hrs
	Reciprocating compressors, staging of reciprocating compressors, o pressure ratio, effect of intercooling, minimum work for multistage r compressors and Analysis of steam turbines, velocity and pressure c of steam turbines	reciprocating

TEXT BOOKS / REFERENCES

1. Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, *Fundamentals of Thermodynamics*, John Wiley and Sons.

2. Jones, J. B. and Duggan, R. E., 1996, *Engineering Thermodynamics*, Prentice-Hall of India 3. Moran, M. J. and Shapiro, H. N., 1999, *Fundamentals of Engineering*

Thermodynamics, John Wiley and Sons.

4. Nag, P.K, 1995, *Engineering Thermodynamics*, Tata McGraw-Hill Publishing Co. Ltd. **Mapping of COs with PO**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1	3	2	1	2	0	0	0	1	3	0	3	3
CO2	3	3	1	0	2	0	0	2	3	0	3	3
CO3	3	3	1	0	2	0	0	2	3	0	3	3
CO4	3	3	1	1	1	0	0	2	3	0	3	3
CO5	3	3	1	0	0	0	0	0	3	0	3	3
CO6	1	2	1	0	0	0	0	3	3	0	3	3
Total	16	16	6	3	5	0	0	10	18	0	18	18

Semest	er	IV		
Course	Name	FLUID ME	CCHANICS &FLUID MACHINES	
Course	Code	XME403		
L –T –	Р-С		C:P:A	L –T –P –H
3 - 1 -	0-4		3.5:0.5:0	3-1-0-4
Course	Outcom	ie		Domain/Level
				C or P or A
CO1	Ability	to derive / s	solve problems related to fluid	K3
			im equation and Bernoulli's	
	equation	1.		
CO2	•		ve problems related to	K3
	-		and channel flow.	
CO3	-		solve problems related to	К3
	•	, ,	n and friction problems.	
CO4	•		/ solve problems related to	К3
GOF			and similitude.	
CO5	-		solve problems related to hydraulic pumps	K3
CO6	-	berformance.	he making aloted to budget is turkings	К3
	•	berformance.	olve problems related to hydraulic turbines	КJ
Object	-	citorinance.		
*		about the ap	oplication of mass and momentum conserva-	ation laws for fluid
*	To under	stand the imp	ortance of dimensional analysis	
*	To obtair	n the velocity	and pressure variations in various types of sin	nple flows
*	To analy	ze the flow in	water pumps and turbines.	
COUR	SE CON	TENT		
UNIT	I BA	SIC CONCE	PTS AND PROPERTIES OF FLUIDS	9 Hours
	flui and mor	ds, mass dens surface tens	d, Newton's law of viscosity, Units and dime sity, specific volume, specific gravity, viscos sion, Control volume- application of conti uation, Incompressible flow, Bernoulli	sity, compressibility nuity equation and
UNIT	II IN (COMPRESS	IBLE FLUID FLOW	9 Hours
			ions in channels and ducts, Couette and Pois cular conduits and circular annuli	uielle flow, laminar
		-	ndary layer – measures of boundary layer on, friction factor, Moody's diagram	thickness – Darcy

UNIT III	DIMENSI	ONAL	ANA	LYSI	S						6 Ho	ours		
	Need for d types of s parameters	imilitud	e Dii	nensi						•				
UNIT IV	HYDRAU	LIC PU	MPS								8 Ho	ours		
	Euler's equivelocity co pumps, wc Cavitation	mponen orking p	ts at e	entry a ple, w	and ex ork	tit of t lone l	he ro by th	otor, v ne imj	elocity peller,	triang perfor	les –	- Cent	rifuga	l
UNIT V	HYDRAU	LIC TU	RBI	NES							8 Ho	ours		
L = 45 Hou	Kaplan tun quantities, j		ance	curves	s for t			govern	-	urbine	•	ed, u	ınit	
TEXT BO	OKS / REFI	ERENC	E BO	OKS										
1. Stre	eter. V. L., a	nd Wyli	ie, E.I	3., Flu	uid Me	echani	cs, N	/lcGra	w Hill,	2003.				
2. Rath	nakrishnan. E	E. Fluid	Mech	anics.	, Prent	ice H	all of	f India	ı (II Ed.). 200	7.			
2. Kall		,								, _ 0 0				
3. Ram	amritham. S s, Delhi, 200	S, Fluid	Mec		s, Hyc		es an	d Flu	id Mac		Dha	anpat	Rai &	ż
 Ram Sons Som 		5, Fluid 8. Biswas	, G.,	hanics "Intro	oductio	lraulic				hines,		-		
 Ram Sons Som Tata Kun 	s, Delhi, 200 n, S.K., and	S, Fluid 8. Biswas ill, 2nd ngineeri	, G., Editio	hanics "Intro on, 20	oductio 04.	lraulic on to	Fluio	d Mec	chanics	hines, and F	Fluid	Mach	nines'	,
 Ram Sons Som Tata Kun Ltd. Ban 	s, Delhi, 200 n, S.K., and n McGraw-H nar. K.L., E	S, Fluid 8. Biswas ill, 2nd ngineeri , 2005. uid Mec	, G., Editic ing Fl	hanics "Intro on, 20 luid N	oductio 04. Mecha	draulic on to nics (Fluio VII	d Mec Ed.) I	ehanics Eurasia	hines, and F Publi	Fluid	Mach g Hou	nines" se (P	,)
 Ram Sons Som Tata Som Tata Kun Ltd. Bans New 	s, Delhi, 200 n, S.K., and n McGraw-H nar. K.L., E , New Delhi, sal, R.K., Flu	S, Fluid 8. Biswas ill, 2nd ngineeri 2005. uid Mec 3.	, G., Editic ing Fl	hanics "Intro on, 20 luid N	oductio 04. Mecha	draulic on to nics (Fluio VII	d Mec Ed.) I	ehanics Eurasia	hines, and F Publi	Fluid	Mach g Hou	nines" se (P	, ,
 Ram Sons Som Tata Som Tata Kun Ltd. Bans New 	s, Delhi, 200 n, S.K., and McGraw-H nar. K.L., E , New Delhi, sal, R.K., Flu Delhi, 2008	S, Fluid 8. Biswas ill, 2nd ngineeri 2005. uid Mec 3.	, G., Editic ing Fl	hanics "Intro on, 20 luid N	oductio 04. Mecha	draulic on to nics (Fluio VII	d Mec Ed.) I	ehanics Eurasia	hines, and F Publi	Fluid	Mach g Hou	nines" se (P	, ,

CO2

CO3

CO4

CO5

CO6

			1	T			•					n			
Tot		18	18	8	8	18	6	5	11		12	12	2 5	5	10 12
1 - Lo	w, 2 - M	Iedium , 3	8- High												
Semester		IV													
Course N	ame	INSTRU	UMEN	FAT	ION A	AND C	CONT	ROI							
Course C	ode	XME40	4												
L –T –P -	-C				C:P:	A									L –T –P –H
3-0-0-	3				3:0:0)									3-0-0-3
CO Number				C	co s	TATE	CMEN	T							Knowledge Level
C01	instrur technie	y to Ex nents, the ques for c	eir perfe	orma ng de	nce te evices	ermino]	logy -	- acc	urac	y &	ran	ge, a	and t	the	K2
CO2		y to Desc unctional				itation	syster	n and	d its	eler	nent	s alo	ng w	vith	К3
CO3		y to Diff		te v	arious	contr	ol sy	stem	s wi	th	their	app	licat	ion,	К3
CO4		and demo y to Dem		e var		irives	used I	Mech	atro	nics	svst	em	with	thei	К3
004	feature	es													110
CO5		y to Cho ystem req			Cont	rollers	in co	ontro	l sys	sten	n apj	prop	riate	to	К3
CO6		standing			entati	on sys	tem m	odel	s and	d the	eir fu	inctio	ons		K2
To getTo unemetho	ologies the kno derstand ds with rn and u ations. derstand	owledge o the conc various n inderstanc the instru	f instru epts of hechatro d the va	menta contr onics rious	ation s ol sys applic drive	system tems, v cations s used	and t variou in me	heir s cor chatı	vario ntroll conic	ous e ers s sy	elem appl: vstem	ents. icatio	ons a	ind v	various control
UNIT I		ASUREN	MENT	SYS	ГEMS	5 AND	CHA	RA	СТЕ	RIS	STIC	CS		9	Hours
	sour	ces.	-									racy	, ran	ige,	resolution, erro
UNIT II	INS	STRUM	ENTAT	ION	SYST	ΓEMS	AND	EL	EME	ENT	S			9	Hours
			•						omm		-		-		urements; Signa ydraulic, electric
								nent	s- act	tuat	015.]		mau		
UNIT III	DR	IVES AN		UA	rors			nent	s- act	tuat	015.		mau	91	Hours
UNIT III	Hyd mot	raulic and	D ACT d Pneun electric	natic and N	drives Magne	s, Elect tostric	trical . tive A	Actua	ators tors.	suc Dri	ch as ve ci	serv	o mo ts, H	otor	Hours and Stepper vare Structure,

	Control systems – basic elements, open and closed loop control, design of block diagram control method. P, PI, PID, when to choose what, tuning of controllers													
UNIT V	MODELS	5								9 Hours				
	System models, transfer function and system response, frequency response; Nyquist diagrams and their use. 4 = 45 Hours Tutorial = 0 Hours Total = 45 Hours													
L = 45 Hou	rs		Tuto	orial = () Hou	rs			To	otal = 45 H	lours			
TEXT BOO)KS / REFI	ERENCE	BOOKS											
1.Instrumen August 2004 2.Thomas G Edition) 6th 3.Gregory K McGraw-Hi 4.Instrumen 5.Journal of 6. Mechatro (Thomson L 7. Mechatro	4 • Publishe 5. Beckwith, Edition, Per 5. McMillan 11: New Yor tation and co control system nics System earning Inc.	r: Elsevie Roy D. M arson Edu , Process/ k, 1999. ontrol sys em and c Design, 2	er Science & Marangoni, Ication Indi Industrial I tems by V. ontrol instr Devdas Sho	& Techr John H a, 2007 Instrume Sukuma umentat etty & R	nology . Lien ents an aran, V tion Richar	7 Book hardV nd Cor 7.Mura d A. K	cs , Mechantrols H alidharan Kolk, PW	anical andboo 1 /S Put	Measu ok, Fift olishing	th Edition,	th			

Image: Triangle intermediate intermedint intermediate intermediate intermediate intermediate intermedia	b b b c c c c c c c c c c			
CO1 I	1			
CO2 I	_			
CO3 1	1			
CO5 2 1	1			
COS 2 1 1 1 1 1 1 1 1 2 1 1 2 Total 12 6 6 6 6 6 6 6 12 6 6 12 Total 12 6 6 6 6 6 6 6 12 6 6 12 <i>I - Low, 2 - Medium, 3- High</i> Semester IV V V V V Subject Name Economics for Engineers V<	1			
Total 12 6 6 6 6 6 6 6 12 6 6 12 I - Low, 2 - Medium, 3- High	1			
1 - Low, 2 - Medium, 3- High Semester IV Subject Name Economics for Engineers Subject Code XUM405 L -T -P -C C:P:A L -T -P -H 3 - 0 - 0 - 3 2.64:0.24:0.12 3- 0 - 0 - 3 Course Outcome Domain/Leve C or P or A Domain/Leve	1			
SemesterIVSubject NameEconomics for EngineersSubject CodeXUM405L -T -P -CC:P:AL -T -P -H3 - 0 - 0 - 32.64:0.24:0.123-0-0-3Course OutcomeDomain/Leve C or P or A	6			
Subject Name Economics for Engineers Subject Code XUM405 L -T -P -C C:P:A L -T -P -H 3 - 0 - 0 - 3 2.64:0.24:0.12 3 - 0 - 0 - 3 Course Outcome Domain/Levent	·			
Subject Code XUM405 L -T -P -C C:P:A L -T -P -H 3 - 0 - 0 - 3 2.64:0.24:0.12 3 - 0 - 0 - 3 Course Outcome Domain/Leve C or P or A C or P or A				
L -T -P -C C:P:A L -T -P -H 3 - 0 - 0 - 3 2.64:0.24:0.12 3- 0 - 0 - 3 Course Outcome Domain/Leve C or P or A				
3 - 0 - 0 - 3 2.64:0.24:0.12 3 - 0 - 3 Course Outcome Domain/Leve C or P or A				
Course Outcome Domain/Leve C or P or A	L –T –P –H			
C or P or A	3-0-0-3			
	1			
CO1Explain the concepts of economics in engineering and identify element of cost to prepare cost sheetC(Understand P(Perception)	1			
CO2 Calculate and Explain the Break-even point and marginal C(Apply, Understand)				

CO4 1 CO5 0	Summarize and Use value engineering procedure for costP(Perception)Summarize and Use value engineering procedure for costC(Understand)A(Receive)A(Receive)Estimate replacement problemC(Understand)Compute, Explain and make Use of different methods ofC(Understand,Apply)Apply)E CONTENTCONTENT
UNIT I	INTRODUCTION TO ECONOMICS 8 hrs
UNIT II	Flow in an economy, Law of supply and demand, Concept of Engineering Economics – Engineering efficiency, Economic efficiency, Scope of engineering economics- types of costing, element of costs, preparation of cost sheet and estimation, Marginal cost, Marginal Revenue, Sunk cost, Opportunity cost BREAK-EVEN ANALYSIS&SOCIAL COST BENEFIT 12 hrs ANALYSIS
	 Margin of Safety, Profit, Cost & Quantity analysis-Product Mix decisions and CVP analysis, Profit/Volume Ratio (P/V Ratio), Application of Marginal costing, Limitations Social Cost Benefit Analysis: compare different project alternatives, Calculate direct, indirect and external effects; Monetizing effects; Result of a social cost benefit analysis.
UNIT III	VALUE ENGINEERING & COST ACCOUNTING10 hrs
UNIT IV	Value engineering – Function, aims, Value engineering procedure - Make or buy decision Business operating costs, Business overhead costs, Equipment operating costs REPLACEMENT ANALYSIS 7 hrs
	Replacement analysis –Types of replacement problem, determination of economic life of an asset, Replacement of an asset with a new asset.
UNIT V	DEPRECIATION 8 hrs
L = 45 h	Depreciation- Introduction, Straight line method of depreciation, declining balance method of depreciation-Sum of the year's digits method of depreciation, sinking fund method of depreciation, Annuity method of depreciation, service output method of depreciation. rs $T = 0$ hrs P=0hrs Total = 45 hrs
TEXT B	OOKS
Faridabad 2. S.P.Jai Calcutta, 3. Pannee 2001.	ota, Ajay Sharma & Satish Ahuja, "Cost Accounting", V K Global Publications, l, Haryana, 2012 n&Narang, "Cost accounting – Principles and Practice", Kalyani Publishers, 2012 orSelvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, m G.Sullivan, James A.Bontadelli& Elin M.Wicks, "Engineering Economy",

Prentice Hall International, New York, 2001.

REFERENCES

- 1. Luke M Froeb / Brian T Mccann, "Managerial Economics A problem solving approach" Thomson learning 2007
- 2. Truett&Truett, "Managerial economics- Analysis, problems & cases " Wiley India 8th

edition 2004.

- 3. Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2002.
- 4. Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2002

E-REFERENCES - 1. <u>http://nptel.iitm.ac.in/video.php</u>

Mapping of COs with POs

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	1	2	0	1	0	0	1	1	1	2	2	3
CO2	2	2	1	2	0	0	2	1	1	2	3	3
CO3	2	2	1	3	0	0	2	2	1	2	2	3
CO4	1	2	1	2	0	0	0	1	1	1	2	3
CO5	1	2	0	1	0	0	1	1	0	1	2	3
Total	7	10	3	9	0	0	6	6	4	8	11	15

Semes	ter	IV					
Subjec	et Name	DISASTER M	IANAGEMENT				
Subjec	ct Code	XUM406					
L –T –	-Р –С		C:P:A	L –T –F	Р-Н		
0-0-	0-0		3:0:0	3-0-0-	- 3		
Course	e Outcome			Domain	/Level		
After the	he completion	of the course, st	tudents will be able to	C or P o	or A		
CO1	Understand types	f disasters, their significance and		K2			
CO2	Understand disaster prev	b between vulnerability, disasters, reduction	K2				
CO3	Able to und Risk Reduct	• •	reliminary approaches of Disaster	r K2			
CO4	Develop aw	areness of institu	itional processes in the country	K2			
CO5	-	aldisaster respon	y to respond to their surroundings nse in areas where they live, with				
COUR	SE CONTE	ŇŤ					
UNIT	I Introdu	ction to Disaste	rs		6 HRS		
	Importa	nce &Significan	ce, Types of Disasters, Climate Char	nge, DM o	cycle		
UNIT	II Risk A	ssessment			12 HRS		
			pes of Risk, Risk identification, E sessment, Risk modelling.	Emerging	Risks, Risk		

UNIT III	Disaster Management	10 HRS									
	Phases, Cycle of Disaster Management, Institutional Framew Command System, DM Plan, Community Based DM, Communi- safety, Early Warning and Disaster Monitoring, Disaster Communit GIS and Remote Sensing, Do's and Don'ts in various disasters.	ity health and									
UNIT IV	Disaster Risk Management in India	10 HRS									
Hazard and Vulnerability profile of India, Components of Disaster Relief Food, Sanitation, Shelter, Health, Waste Management, Institutional arran (Mitigation, Response and Preparedness), Disaster Management Act and Other related policies, plans, programmes and legislation											
UNIT V	Disaster Management: Applications and Case Studies	7 HRS									
	Case Studies on Landslide Hazard Zonation, Earthquake Assessment of Buildings and Infrastructure, Drought Assessm Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Fl Fire, Man Made disasters, Space Based Inputs for Disaster M Management and field works related to disaster management.	ent, Coastal ooding, Forest									
L = 45 hrs	T = 0 hrs $P=0$ hrs $Total = 45$ hrs										
TEXT BO	OKS										
ISB 2. Tus Pvt 3. Guj NII 4. Kap	ghal J.P. Disaster Management, Laxmi Publications, 2010. ISBN- 8N-13: 978-9380386423 shar Bhattacharya, Disaster Science and Management, McGraw Hill . Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361) pta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Ri DM, New Delhi, 2011 purAnu Vulnerable India: A Geographical Study of Disasters, plishers, New Delhi, 2010	India Educatio sk Managemer									
Pol 2. Aru 3. Par refl 4. Gov 5. Gov	dhartha Gautam and K LeelakrishaRao, "Disaster Management P icies", Vista International Pub House, 2012 in Kumar, "Global Disaster Management", SBS Publishers, 2008 deepSahni, AlkaDhameja and Uma medury, "Disaster mitigation: 1 ections", PHI, 2000 vt. of India: Disaster Management Act, Government of India, New De vernment of India, National Disaster Management Policy,2009	Experiences a									
E-REFER	ENCES										
Dis	DM Publications at http://nidm.gov.in- Official Website of Natio aster Management (NIDM), Ministry of Home Affairs, Government o p://cwc.gov.in, http://ekdrm.net, http://www.emdat.be, http://www	f India									

						-						-		
	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 O	PO 10	PO 11	PO 12	PS01	PSO2
CO 1			2	1	1		1		1		1	1		
CO 2	1	1	3	2	3		1	1						

Mapping of CO with PO's

CO 3					2	1		1			
CO 4	1	1	2	2	2	1			1	1	
CO 5	2	3		2	3	1	2	1		2	
Total	4	5	7	7	11	5	3	3	2	4	
Scaled Value	1	1	2	2	3	1	1	1	1	1	

Semester		IV				
Subject N	lame	Thermal Engi	neering Laboratory			
Subject C	Code	XME407				
L –T –P –	-C		C:P:A	L –Т –Р –Н		
0-0-1-	1		0-0-2-2			
Course O	utcome			Domain/Level		
		C or P or A				
CO1	Measur	e flash and fire p	point of fuels.	P4		
CO2	Measur	e viscosity of fu	els.	P4		
CO3		he position of in v port and valve	nternal combustion engine timing diagram	Р3		
CO4		e the Performa	nce of different type of	P4		
CO5		e the Performa	nce of different type of	P4		
CO6		the basic conce	P2			

[1] Determine the valve and port timing diagram of SI engine & CI engine and Analyse

the influence of variations in TDC and BDC operations

[2] Calculate the IP, BP, brake thermal efficiency and Calculate & Compare the performance characteristics of engine.

[3] Experiment on IC engine load variations with Air fuel ratio.

- [4] Apply the concept of Morse test on SI engine.
- [5] Determine the flash and fire point of fuels.
- [6] Determine the viscosity of fuels
- [7] Study the principle of various parameters in boilers.

COURSE CONTENT

		CO Relation
1	Determination of flash and fire point open cup apparatus	CO1
2	Determination of flash and fire point closed cup apparatus	CO1
3	Determination of viscosity of given oil using Redwood viscometer	CO2
4	Drawing valve timing diagram of four stroke diesel engine	CO3

5	Drawing port timing diagram of two stroke cycle petrol engine	CO3
6	Performance test on single cylinder four stroke diesel engine- mechanical loading	CO4
7	Performance test on single cylinder four stroke diesel engine- eddy current loading	CO4
8	Retardation test on a diesel engine at slow speed	CO4
9	Performance test on four stroke twin cylinder diesel engine with hydraulic dynamometer loading	CO4
10	Performance test on four stroke petrol engine	CO5
11	Morse test on four stroke four cylinder petrol engine with hydraulic dynamometer loading	CO5
12	Study of boiler	CO6

TEXT BOOKS

- 1. Heywood J. B, "Internal Combustion Engine Fundamentals", McGraw Hill Book Co. NY, 1989
- 2. Rajput, R.K., Thermal Engineering, 6th Edition, Laxmi Publications, 2007
- 3. Ballaney, P.L., "Thermal Engineering", Khanna Publishers, 24th Edition, 2003.
- 4. K.K. Ramalingam, Internal Combustion Engine Fundamentals, Scitech Publications, 2002.

REFERENCES

- 1. Rudramoorthy, R., Thermal Engineering, 4th Edition, Tata McGraw Hill, New Delhi, 2006.
- 2. Kothandaraman , C.P., Domkundwar .S and A.v.Domkundwar", a course in thermal Engineering", Dhanpal Rai & sons, fifth edition, 2002.
- 3. R.B.Mathur and R.P. Sharma, Internal combustion Engines.

E-REFERENCES

1. https://nptel.ac.in/courses/112/103/112103262/

Mapping of COs with Pos

	P01	P02	P03	P04	P05	P06	P07	PO8	P09	P010	P011	P012	PS01	PSO2
CO1	1	1	2	1	2	1		1	1	2	2	1	1	3
CO2	1	1	2	1	2	1		1	1	2	2	1	1	3
CO3	1	1	2	1	1			1	1	1	1	1	2	2
CO4	3	3	2	1	3	1		2	2	1	3	3	3	3
CO5	3	3	2	1	3	1		2	2	1	3	3	3	3
CO6	1		1	1	1				1	1	1	1	2	3
Tota														
1	10	9	11	6	12	4	0	7	8	8	12	10	12	17

Semest	ter	IV							
Subject Name FLUID MECHANICS AND MACHINES LABORATORY									
Subject Code XME408									
L –T –	L –T –P –H								
0-0-	0- 0- 2-2								
COURSE OBJECTIVES									
This Course will provide									
1. Hands on experience on various Instruments in Fluid Mechanics lab.									
2.	We can test t	he flow on vario	us through various instruments.						
		of Bernoulli's the	-						
				¥7 1 1					
CO		CO	STATEMENT	Knowledge Level					
C01	Ability to m	easure discharge	through the flow measuring equipment –	P3					
001	orifice mete								
CO2	Ability to m	P3							
CO3									
CO4	pump, reciprocating pump, gear oil pump.O4Ability to measure the factors related to the efficiency of PeltonP3								
04	wheel, Francis turbine, Kaplan turbine.								
CO5	Ability to measure the flow through pipes and notches. P3								
CO6Ability to verify Bernoulli's equation through apparatus.P2									
COUR	SE CONTE	NT							
CO			COURSE DESCRIPTION						
1			fficient of discharge of given orifice meter	and venturi met					
2			factor and losses for a given set of pipes.						
3		ng experiments a sible pump	and drawing the characteristic curves of cer	itrifugal pump					
3			and drawing the characteristic curves of rec	iprocating					
pump.									
3 Conducting experiments and drawing the characteristic curves of Gear pump.									
4 Conducting experiments and drawing the characteristic curves of Pelton wheel.									
4 Conducting experiments and drawing the characteristics curves of Francis turbin									
4 Conducting experiments and drawing the characteristic curves of Kaplan turbin									
5 Determination of static and dynamic pressure on pitot tube.									
	5 Tests on flow through notches.								
5	5 Tests on flow through orifice and external mouthpiece.								
5 5		6 Verification of Bernoulli's theorem.							
5 5 6	Verificat								
5 5 6 $L = 0$	Verificat $\mathbf{T} = 0 \ \mathbf{hr}$	s P=30hrs Tot	al =30 hrs						
5 5 6 L = 0 h TEXT	Verificat T = 0 hr BOOKS /RF	s P=30hrs Tot EFERENCE BO	al =30 hrs OKS						
5 5 6 L = 0 h TEXT	Verificat T = 0 hr BOOKS /RF	s P=30hrs Tot EFERENCE BO	al =30 hrs	a, 2017.					
5 5 6 L = 0 h TEXT 1.	Verificat Trans T = 0 hr BOOKS /RE Streeter. Bed	s P=30hrs Tot EFERENCE BO ford, and Wylie,	al =30 hrs OKS						

Sons, Delhi, ninth edition, 2014.

- 4. Som, S.K., and Biswas, G., "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw-Hill, 3rd Edition, 2017.
- 5. Kumar. K.L., Engineering Fluid Mechanics (VII Ed.) Eurasia Publishing House (P) Ltd., New Delhi, 2005.
- 6. Bansal, R.K., Fluid Mechanics and Hydraulics Machines, Laxmi Publications (P) Ltd., New Delhi, 10th edition, 2018.

E-REFERENCES

http://nptel.iitm.ac.in/courses

Mapping of COs with POs

	P01	P02	P03	P04	PO5	P06	P07	PO8	P09	P010	P011	P012	PSO1	PSO2
CO1	3	3	1	1	3		2		3		1	2	2	
CO2	3	3	1	1	3		2		3		1	2	2	
CO3	3	3	1	3	2		2		2		1	3	3	
CO4	3	3	1	3	2		3		3		1	3	2	
CO5	3	2	2	2	3		2		1		0	3	2	
CO6	3	2	2	2	2		1		1		0	2	2	
ТОТ	18	16	8	12	15	0	12	0	13	0	4	15	13	0

^{1 -}Low, 2 – Medium, 3- High

				L T P C 1 0 2 3			
	L T P H 1 0 4 5						
PRERE	EQUISITI	Е:					
	LEVEL						
After th	ne comple	tion of the course, students will be able	to	·			
CO1	Understa	and the Anatomy of an Industrial Robot	Cognitive	Knowledge Comprehensio			
CO2	-	Industrial Robot (Robot Jogging, ogramming)	Psychomotor Affective	Comprehens ion Application			
CO3		<i>Commission</i> a Robot Work cell B Robot Studio	Psychomotor Affective	Application Synthesis			
CO4	Program	an Industrial Robot using RapidProgramming Language	Psychomotor Affective	Application Synthesis			
CO5	Unders using PLC	tand the construction of logic circuits	Cognitive	Knowledge Comprehens ion			
UNIT	Ι	Fundamentals of Industrial I	Robotics	3+6			

Basics of Industrial Robot - What is an Industrial Robot? - Building blocks of Industrial Robots

- Robot Modes & Manual Motion Types - Major Stakeholders of Industrial Robotics -RoboticsEnvironment & Career - Offline Simulation Tool - Industrial Robot Operation - Usage and Applications of Industrial Robots - Automatic Motion Types – Introduction to Robot Studio - Importing robot and virtual controller - Robot Specification - Robot Jogging - What is a Teach Pendent? - Creating targets & paths -Robot Frames - Modes of operation - Industrial Robot Programming Language - Types of Robot Programming - Various Robot Programming languages - Motion Commands in RAPID - Path planning

Lab:

- 1. Fundamentals of Robot Studio
- 2. Robot Jogging in ABB Robot Studio
- 3. Robot Modes of Operation
- 4. Online Programming using Virtual Teach Pendant
- 5. Creating & Teaching Targets and Paths

UNIT IIVirtual Commissioning using Industrial Robot3+12What is Virtual Commissioning - What is Robot Dispensing - Import Robot & -
Components - Dispensing - Dispensing Robot Work cell - Auto Path and Tool
Orientation Correction - Path Planning for Dispensing - Material Handling - Robot
Work cell - Smart Components Design - Gripper Integration with Robot - Pick & Place
with ABB Smart Gripper - Material stacking - Logical Design and Virtual Controller -
End Effector Communication - Material Stacking and Station Logic
Lab:

6. Virtual Commissioning of Robot Dispensing work cell

- 7. Auto path in ABB Robot Studio
- 8. Virtual Commissioning of Material Handling Operation
- 9. Virtual Commissioning of Material Stacking Operation

UNIT IIIBuild Robot Work cells using ABB Powerpacs3+6What is a Powerpac – Working on conveyor Tracking - What is Conveyor Tracking? -
Introduction to parallel Robots - Logic Formulation of Conveyor Tracking - Conveyor
Tracking in ABB Robot studio - Robot Powerpacs – Palletizing Introduction to
Palletizing operation - Component Checklist in Palletizing work cell - Virtual
commissioning of a Robot Palletizing Work cell - Cycle time analysis - Robot
Powerpacs - 3D printing - Introduction to Rapid Prototyping - Various Rapid
Prototyping Techniques - Fundamentals of 3D printing - Virtual commissioning of a
robot 3D printing work cell - Robot Powerpacs - Arc welding - Introduction to Arc
welding - Characteristics of Arc welding operation - Applications of Industrial Robots in
Arc welding Operation - Virtual Commissioning of Robot Arc welding Work cell Lab:

10. Conveyor Tracking in ABB Robot studio

11. Building a Palletizing operation using Palletization powerpac

12. Optimizing operation Cycle time

13. Building a robot 3D printing operation using 3D printing powerpac

14. Building an Arc welding operation using Arc welding powerpac

UNIT IV	Robot Operation	3+9

Robot Operation – Understanding the anatomy of industrial robot - Robot work envelope - Robot specifications - Remote operation of Manipulator - What is lead through programming? - Joint Interpolation and Linear Interpolation - Jogging of robots - Online programming - Path planning using lead through programming - Robot End Effector – Performing the robot application – Creating Tool Centre Point –Optimizing Cycle Time – Working with IRC5 – Working with Emergency and General Stops -Robot Safety Procedures - Robot Maintenance & Servicing Lab:

15. Robot Jogging of ABB Robot using Teach pendant

16. Robot Safety & Maintenance

17. Creating and calibrating Tool center point

18. Working with Industrial Robot Controller 5

19. Online Programming with Teach Pendant

20. Building Robot Application using ABB Robot

UNIT V	Programmable Logic Controllers

Introduction to Indra Logic – Understanding the construction of basic logic circuits – AND,OR,NOT etc – Logic circuit simulation- set, rest, latching, sub programming - Introduction to Hardware kit L20DB .Function-user define function and library function-timers –Ontimer,OFF timer, Counters-UP counter and Down counter,Triggers-Riseing trigger and falling triggers

15

Lab:

21.Traffic light signal control 22.Oil tank filling station

23.Double acting cylinders

23.Double acting cylinders

24.Integration of sensors with PLC

25.Smart room

LECTURE	TUTO RIAL	PRACTICA L	AL HOURS
12	0	33	60

TEXT BOOKS:

Introduction to Robotics by J.J. Craig, Addison-Wesley Publishing Company, 1986 owozin and Lampert

REFERENCES:

Programming and Virtual Commissioning Reference Material by Prag RoboticsABB Robot Studio Official Documentation

The Robotics Primer, Maja J. Mataric, MIT Press, 2007

E-REFERENCES:

Robot Modeling and Control", Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, 2005

NPTEL :: Electrical Engineering - Industrial Automation and Control

Semester V Course Name Operations Research Course Code XME501 L -T -P -C C:P:A L -T -P -H 3 - 1 - 0 - 4 3.5:0.25:0.25 3-1-0-4

Course	Outcome	Domain/Level
		C or P or A
CO1 CO2 CO3	 <i>Explain</i> the basic concepts of optimization and To Formulate and Solve linear programming problems. <i>Apply</i> the concepts of transportation problem, assignment problem and travelling salesman problem Participate in the class discussion in the transportation model. <i>Explain</i> and demonstrate the basic concepts of PERT- CPM and their applications in product planning control. 	C(Understand, Apply) C(Apply) A(Respond to phenomena) C(Understand)
CO4	<i>Solve</i> the Minimal Spanning Tree Problem, Shortest Route Problem, Maximal Flow Problem and Minimal Cost Capacitated Flow Problem. Reproduce the Network model.	C(Apply) P(Guided Response)
CO5 COUR	<i>Apply</i> the concepts of Game theory to Find the solution and saddle point. SE CONTENT	C(Apply, Remember)
UNIT	I LINEAR MODELS	12 Hours
		Mathematical
UNIT	Formulation of L.P.P, Graphical method, Simplex algorithm, D II TRANSPORTATION MODELS	uality. 12 Hours
UNIT		
TINIT	Transportation problem, Assignment problem, Travelling Sales	•
UNIT III	PROJECT SCHEDULING BY PERT-CPM	12 Hours
	PERT-CPM, product planning control with PERT-CPM.	
UNIT IV	NETWORK MODELS	12 Hours
	Network definition, Minimal Spanning Tree Problem, Shortes Problem, Maximal Flow Problem, Minimal Cost Capacitate Problem.	
UNIT	V GAME THEORY	12 Hours
L = 45	Introduction - competitive game - finite and infinite game - twgame - rectangular game - solution of game- saddle point, solugame with saddle point.HoursTutorial = 15 HoursTotal = 60 Hours	tion of a rectangular
TEXT	BOOKS	
1. 2.	Kantiswaroop,Gupta P.K and Manmohan, Operations Research, Su New Delhi, (2008).(Unit I,II,III & V) R.Paneerselvam, Operations Research,PHI Lea Limited,NewDelhi,(2010)(Unit IV)	ultan Chand & Sons, arning Private
KEFÉ	RENCE BOOKS	

1. Hadley G, Linear Programming, Narosa publishing House, (1995).

2. Hadley G, Nonlinear and Dynamic Programming, Addison-Wesley, Reading Mass, (1973).

3. Gupta R. K. "Linear Programming", Krishna Prakashan Media(P) Ltd., (2009).

E – REFERENCES

- 1. www.nptel.ac.in
- Fundamentals of Operations Research, Advanced Operation Research Prof.G.Srinivasan, Department of Management Studies, Indian Institute of Technology, Madras.

Mapping of COs with Pos

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P01 0	P01 1	P01 2	
CO1)1 3 1 1 1 1												
CO2	3	1	1										
CO3	3 1 1 1 1												
CO4	3	1		1			1		1		1		
CO5	3	1		1			1		1				
Tot	15	5	0	5	0	0	5	0	5	0	2	0	
	1 - Low, 2 – Medium, 3- High												
Semester V Subject Name Heat Transfer													
Subject Name Heat Transfer Subject Code XME502													
L –T –P	- C			С	:P:A				L	L –T –P –H			
3 - 1 - 0	- 4			3.	5:0.25:0).25			3-	3-1-0-4			
Course	Outcom	e							D	Domain/Level			
									С	or P o	or A		
	CO1 Understand the basic modes of heat transfer and Compute temperature distribution in steady-state and unsteady-state heat conduction.									(Rem))		
CO2								С	C (Rem)				
	O3 Understand the principles of radiation heat transfer and basics of mass transfer.							of C	C (Rem)				
CO4								C	(Unde	erstand)			
CO5	05 Understand the basic concepts of mass transfer								C	C (understand)			

Objectives:

(1) The aim of the course is to build a solid foundation in heat transfer exposing students to the three basic modes namely conduction, convection and radiation.

(2) Rigorous treatment of governing equations and solution procedures for the three modes

will be provided, along with solution of practical problems using empirical correlations.

(3) The course will also briefly cover boiling and condensation heat transfer, and the analysis and design of heat exchangers.

COURSE CONTENT

UNIT I CONDUCTION

Introduction to three modes of heat transfer, Derivation of heat balance equation-Steady onedimensional solution for conduction heat transfer in Cartesian, cylindrical and spherical geometry,concept of conduction and film resistances, critical insulation thickness, lumped system approximation and Biot number, heat transfer through pin fins- Two dimensional conductionsolutions for both steady and unsteady heat transfer-approximate solution to unsteady conductionheat transfer by the use of Heissler charts.

UNIT II CONVECTION

Heat convection, basic equations, boundary layers- Forced convection, external and internal flows-Natural convective heat transfer- Dimensionless parameters for forced and free convection heattransfer-Correlations for forced and free convection- Approximate solutions to laminar boundarylayer equations (momentum and energy) for both internal and external flow- Estimating heat transferrates in laminar and turbulent flow situations using appropriate correlations for free and forcedconvection.

UNIT III RADIATION

Interaction of radiation with materials, definitions of radiative properties, Stefan Boltzmann's law, black and gray body radiation, Calculation of radiation heat transfer between surfaces using radiative properties, view factors and the radiosity method.

UNIT IV HEAT EXCHANGERS

Types of heat exchangers, Analysis and design of heat exchangers using both LMTD and ε -NTU methods .Boiling and Condensation heat transfer, Pool boiling curve.

UNIT V MASS TRANSFER

Introduction mass transfer, Similarity between heat and mass transfer

L = 40 hrs T = 12 hrs P=0hrs Total = 52 hrs

TEXT BOOKS

1. A. Bejan, Heat Transfer John Wiley, 1993

2. J.P.Holman, Heat Transfer, Eighth Edition, McGraw Hill, 1997.

3. F.P.Incropera, and D.P. Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley, Sixth Edition, 2007.

4. MassoudKaviany, Principles of Heat Transfer, John Wiley, 2002

5. Yunus A Cengel, Heat Transfer: A Practical Approach, McGraw Hill, 2002. **E-REFERENCES**

1. http://nptel.iitm.ac.in/courses

8+5 hrs

5+4 hrs

10+5 hrs

8+5 hrs

9+5 hrs

Mapping of COs with POs

	P01	P02	P03	P04	P05	P06	P07	PO8	P09	P010	P011	P012	PSO1	PSO2
CO1	3	2	2	2	1	1	-	-	1	-	-	1		2
CO2	3	2	-	2	1	1		-	-	-	-	1		2
CO3	2	3	3	2	1	1	1	-	1	-	-	1		2
CO4	2	3	3	2	1	1	1	-	1	-	-	1		2
CO5	3	2	2	1	1	1	1	-	-	-	-	1		2
Total	13	12	14	9	5	4	3		3			5		10

1 - Low, 2 – Medium, 3- High

Semester	V	
Subject Name	Automobile Engineering	
Subject Code	XME503	
L –Т –Р –С	C:P:A	L –T –P –H
3 - 0 - 0 - 3	3:0:0	3-0-0-3
Course Outcome		Domain/Level

		C or P or A
CO1	Define and identifies the vehicle construction, types and	C(Knowledge)
	specification of engines.	P(Perception)
CO2	Differentiate and calibrates Ignition, Fuel Supply and Emission	C(Comprehension)
	Control System.	P(Guided response)
CO3	Categories and illustrate the various types of clutches and gear	C(Synthesis)
	boxes.	P(Mechanism)
CO4	Characterize and determine the suspension, steering geometry	C(Knowledge)
	and wheel specification.	P(Perception)
CO5	Assembles and Summarize the Electrical systems and Dash	C(Evaluation)
	board instrumentations.	P(Guided response)

COURSE CONTENT

UNIT I	Introduction to Vehicle structure	9 hrs				
	Types of automobiles, vehicle construction and layouts, chass vehicle aerodynamics, IC engines-components, function and valve timing (VVT).					
UNIT II	Ignition, Fuel Supply and Emission Control System	9hrs				
	Engine auxiliary systems, electronic injection for SI and CI engines, unit inject system, rotary distributor type and common rail direct injection system, transist based coil ignition & capacitive discharge ignition systems, turbo chargers (WG VGT), engine emission control by 3-way catalytic converter system, Emission norms (Euro & BS).					
UNIT III	Transmission System	9 hrs				
	Transmission systems, clutch types & construction, gear	boxes- manual and				

Transmission systems, clutch types & construction, gear boxes- manual and automatic gear shift mechanisms, Over drive, transfer box, flywheel, torque

converter, propeller shaft, slip joints, universal joints, differential and rear axle, Hotchkiss drive and Torque tube drive.

UNIT IV Steering, Suspension and Braking System

Advances in Automobile Engineering

Steering geometry and types of steering gear box, power steering, types of front axle, types of suspension systems, pneumatic and hydraulic braking systems, antilock braking system (ABS), electronic brake force distribution (EBD) and

traction control.

9 hrs

9 hrs

Alternative energy sources, natural gas, LPG, biodiesel, bio-ethanol, gasohol and hydrogen fuels in automobiles, modifications needed, performance, combustion & emission characteristics of alternative fuels in SI and CI engines, Electric and Hybrid vehicles, application of Fuel Cells

L = 45 hrs T = 0 hrs P=0 hrs Total = 45 hrs

TEXT BOOKS

UNIT V

1. Kirpal Singh, Automobile Engineering, 7th ed., Standard Publishers, New Delhi, 1997.

- 2. Jain K.K. and Asthana R.B., Automobile Engineering, Tata McGraw Hill, New Delhi, 2002.
- 3. Heitner J., Automotive Mechanics, 2nd ed., East-West Press, 1999.
- 4. Heisler H., Advanced Engine Technology, SAE International Publ., USA, 1998.

E-REFERENCES

1. http://nptel.iitm.ac.in/courses

Mapping of COs with POs

	P01	P02	P03	P04	P05	P06	P07	PO8	60d	PO10	P011	P012	PSO1	PSO2
CO1	3	3	2	3	3	1	3	1	1	2	2	3	2	
CO2	3	3	2	3	3	1	3	1	1	2	2	3	2	
CO3	3	3	2	3	3	1	3	1	1	2	2	3	2	
CO4	3	3	2	3	3	1	3	1	1	2	2	3	2	
CO5	3	3	2	3	3	1	3	1	1	2	2	3	2	
Total	15	15	10	15	15	5	15	5	5	10	10	15	10	

Semester	V		
Subject Name	CAD / CAM		
Subject Code	XME504		
L –Т –Р –С	C:P:A	L –T –P –H	
3 - 0 - 0 - 3	3:0:0	3-0-0-3	
Course Outcome	Domain/Level		
		C or P or A	
of design	esign Process, CAD, CAM and <i>explain</i> various stages and different types of design process <i>explain</i> the cept CAM along with benefits of CAD	C(Remember, Understand)	

transformations systems along with complex geometry Understand) generation techniques.

Classify and *outline* the various Data structure and management systems.

- Define modeling and Classify different types of geometric **CO3** models also outline different features of solid modeling packages
- **CO4** Explain and contrast NC CNC DNC also illustrate various tools, devices and mechanisms used inside NC, CNC and DNC
- **CO5** *List* important NC Codes and *create* CNC code for simple CNC C(Remember, operations like turning and facing.

COURSE CONTENT

UNIT I **DESIGN PROCESS**

The design process - Morphology of design - Product cycle - Sequential and concurrent engineering - Role of computers - Computer Aided Engineering -Computer Aided Design - Design for Manufacturability - Computer Aided Manufacturing - Benefits of CAD.

INTERACTIVE COMPUTER GRAPHICS AND DATA UNIT II 9hrs **STRUCTURES**

Creation of Graphic Primitives - Graphical input techniques - Display transformation in 2-D and 3-D – Viewing transformation - Clipping - hidden line elimination - Mathematical formulation for graphics - Curve generation techniques.

Model storages and Data structure - Information system. Engineering Data Management System. Hierarchical data structure. Network data structure -Relational data structure. Data storage, search and retrieval methods. Recent trends in Data Structures.

UNIT III SOLID MODELING

Geometric Modeling - Wireframe, Surface and Solid models - CSG and B-REP Techniques - Features of Solid Modeling Packages - Parametric and features -Interfaces to drafting, Design Analysis.

UNIT IV CONSTRUCTIONAL FEATURES OF CNC MACHINES

Numerical Control (DNC Systems). Design considerations of CNC machines for improving machining accuracy-Structural members-Slideways - Sides linear bearings - Ball screws - Spindle drives and feed drives - work holding devices and tool holding devices -Automatic Tool changers. Feedback devices - Principles of Operation-Machining Centres - Tooling for CNC machines.

UNIT V PART PROGRAMMING FOR CNC MACHINES

Numerical control codes - Standards - Manual Programming - Canned cycles and subroutines - Computer Assisted Programming, CAD / CAM approach to NC part programming - APT language, machining from 3D models. Validation of Programs.

L = 45 hrs T = 0 hrs P=0 hrs Total = 45 hrs

TEXT BOOKS

- 1. Ibrahim Zeid, " CAD CAM Theory and Practice ", Tata McGraw-Hill Publishing Co. Ltd., 1998.
- 2. Sadhu Singh, " Computer Aided Design and Manufacturing ", Khanna Publishers, New

C(Understand)

Create)

9 hrs

9 hrs

9 hrs

9 hrs

Delhi, 1998.

REFERENCES

- 1. P.Radhakrishnan, "Computer Numerical Control", New Central Book Agency, 1992.
- 2. Groover and Zimmers, " CAD / CAM : Computer Aided Design and Manufacturing Prentice Hall of India, New Delhi, 1994.

E-REFERENCES

1. <u>http://nptel.iitm.ac.in/video.php?subjectId=112102101</u>

2.http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-

Delhi/Computer%20Aided%20Design%20&%20ManufacturingI/index.htm

3.http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-

Delhi/Computer%20Aided%20Design%20&%20ManufacturingII/index.htm

Mapping of COs with POs

	P01	P02	P03	P04	P05	P06	P07	PO8	P09	P010	P011	P012	PSO1	PSO2
CO1	3	2	2	3	2	1	3	1	1	2	2	3	3	
CO2	3	2	2	3	3	1	3	1	1	3	2	3	3	
CO3	3	2	2	3	2	1	3	1	1	3	2	3	3	
CO4	3	2	2	3	3	1	3	1	1	2	2	3	3	
CO5	3	3	2	3	2	1	3	1	2	3	3	3	3	
Total	15	11	10	15	12	5	15	5	6	13	11	15	15	

1 - Low, 2 – Medium, 3- High

Semes	ter	V	
Subjec	et Name	KINEMATICS AND THEORY OF MACHINE	S
Subjec	ct Code	XME505	
L –T –	-Р –С	C:P:A	L –T –P –H
3-1-	0-4	4:0:0	3-1-0-4
Course	e Outcome		Domain/Level
			C or P or A
CO1		and the kinematics and rigid- body dynamics of ly driven machine	C (Understand),
CO2		nd the motion of linked mechanisms in terms of the nt, velocity and acceleration at any point in a rigid	C (Understand)
CO3	To be able	e to design some linkage mechanisms and cam generate specified output motion	C (Apply)
CO4	To understa	nd the kinematics of gear trains	C (Understand)
CO5	To understa brakes	nd the friction mechanisms in bearing clutches and	C (understand)

Objectives:

- ✤ To understand the kinematics and rigid- body dynamics of kinematically driven machine components
- To understand the motion of linked mechanisms in terms of the displacement, velocity and acceleration at any point in a rigid link
- To be able to design some linkage mechanisms and cam systems to generate specified output motion
- To understand the kinematics of gear trains

COURSE CONTENT

UNIT I	BASICS OF MECHANISMS	9+3 hrs		
	Classification of mechanisms-Basic kinematic concepts and definition freedom, mobility-Grashof's law, Kinematic inversions of four ba- slider crank chains-Limit positions-Mechanical advantage-Transm Description of some common mechanisms-Quick return mechanism generators-Universal Joint-Rocker mechanisms	ar chain and ission angle- , straight line		
UNIT II	KINEMATICS OF PLANE MECHANISMS	9+3 hrs		
	Displacement, velocity and acceleration analysis of simple mechanism velocity analysis using instantaneous centers, velocity and accelerat using loop closure equations kinematic analysis of simple mechan crank mechanism dynamics-Coincident points- Coriolis con acceleration- introduction to linkage synthesis- three position graphic for motion and path generation	tion analysis nisms- slider mponent of		
UNIT III	CAMS	9+3 hrs		
	Classification of cams and followers-Terminology and definitions a diagrams- Uniform velocity, parabolic, simple harmonic and cycloi derivatives of follower motions specified contour cams- circular and t pressure angle and undercutting, sizing of cams, Graphical and analytic profile synthesis for roller and flat face followers.	idal motions- angent cams-		
UNIT IV	GEARS	9+3 hrs		
	Involute and cycloidal gear profiles, gear parameters, fundamental la and conjugate action, spur gear contact ratio and interference/ helical, bevel, worm, rack & pinion gears, epicyclic and regula kinematics	undercutting-		
UNIT V	FRICTION IN BEARING CLUTHES AND BRAKES	9+3 hrs		
L = 45 hrs	Surface contacts- sliding and rolling friction- friction drives- lubrication- friction clutches- belt and rope drives- friction in brakes T = 15hrs Total = 60 hrs	bearings and		
TEXT BOOKS				

1. Thomas Bevan, Theory of Machines, 3rd edition, CBS Publishers & Distributors, 2005.

- 2. CleghornW.L., Mechanisms of Machines, Oxford University Press, 2005.
- 3. Robert L. Norton, Kinematics and Dynamics of Machinery, Tata McGrawHill, 2009.

4. Ghosh A. and Mallick A.K., Theory of Mechanisms and Machines, Affiliated East-West Pvt. Ltd, New Delhi, 1988.

REFERENCES

1. Rao.J.S. and Dukkipati.R.V. 'Mechanisms and Machine Theory', Wiley-Eastern Ltd., New Delhi, 2003.

2. John Hannah and Stephens R.C., 'Mechanics of Machines', Viva Low-Prices StudentEdition, 2003.

E-REFERENCES

1. http://nptel.iitm.ac.in/courses

Mapping of COs with POs

	P01	P02	P03	P04	PO5	P06	P07	PO8	909	PO10	P011	P012	PSO1	PSO2
CO1	3	1	1	-	2	1	-	2	1	-	2	3	2	
CO2	3	2	3	-	2	1	-	2	1	-	2	3	2	
CO3	3	2	3	-	2	1	-	1	1	-	2	3	2	
CO4	3	2	3	-	3	1	-	2	2	-	2	3	2	
CO5	3	2	2	-	3	1	-	2	1	-	2	3	2	
	15	9	12	-	12	5	-	9	6	-	10	15	10	

1 - Low, 2 – Medium, 3- High

Semester	V	
Subject Name	Constitution of India	
Subject Code	XUM506	
L –T –P –C	C:P:A	L –T –P –H
2-0-0-0	0:0:0	2-0-0-2
Course Outcome		Domain/Level
		C or P or A

COURSE CONTENT

CO Relation

- 1. Meaning of the constitute
- 2. on law and constitutionalism
- 3. Historical perspective of the Constitution of India
- 4. Salient features and characteristics of the Constitution of India
- 5. Scheme of the fundamental rights
- 6. The scheme of the Fundamental Duties and its legal status

7.	The Directive Principles of State Policy – Its importance and implementation				
8.	Federal structure and distribution of legislative and financial powers between the Union and the States				
9.	Parliamentary Form of Government in India – The constitution powers and status of the President of India				
10.	Amendment of the Constitutional Powers and Procedure				
11.	The historical perspectives of the constitutional amendments in India				
12.	Emergency Provisions:NationalEmergency,President Rule, Financial Emergency				
13.	Local Self Government – Constitutional Scheme in India				
14.	Scheme of the Fundamental Right to Equality				
15.	Scheme of the Fundamental Right to certain Freedom under Article 19				
16.	Scope of the Right to Life and Personal Liberty under Article 21.				
TEXT BOOKS					
	oduction to Constitution of India, D.D. Basu, Lexis Nexus				

2. The Constitution of India, PM Bhakshi, Universal Law

Semester	V				
Subject Name	Mechanical Engineering Laboratory	y III (Strength of Materials)			
Subject Code	XME507				
L –Т –Р –С	C:P:A	L –T –P –H			
0-0-1-1	0:1:0	0-0-2-2			
Course Outcome		Domain/Level			
		C or P or A			
Experiment on tens	Coginitive				
<i>Experiment</i> on hardness and impact loading (Remembering)					

Experiment with bending loads on beams	(Applying)
Experiment with torsional load and strain gauge	Psychomotor (Guided response)
Examine microscopic structure of specimens	(Canada Tesponse)

		CO Relation
1.	Uniaxial tension test on mild steel rod	CO1
2.	Compression test on mild steel / wooden specimen	CO1
3.	Impact test on a metallic specimen	CO2
4.	Brinnell and Rockwell hardness tests on metallic specimen	CO2
5.	Bending deflection test on beams	CO3
6.	Bending deflection test on Cantilevers	CO3
7.	Torsion test on MS rod	CO4
8.	Strain measurement using Rosette strain gauge	CO4
9.	Microscopic examination of untreated metallic samples	CO5
10.	Microscopic examination of heat-treated metallic samples	CO5

TEXT BOOKS

1. Egor P. Popov, Engineering Mechanics of Solids, Prentice Hall of India, New Delhi, 2001.

2. R. Subramanian, Strength of Materials, Oxford University Press, 2007.

3. S. Ramamrutham and R. Narayanan, (2003), Strength of Materials, Dhanpat Rai Publications.

4. W. D. Callister, 2006, "Materials Science and Engineering-An Introduction", 6th Edition, Wiley India

REFERENCES

1. Rowland Richards, (2000), Principles of Solid Mechanics, CRC Press.

2. Timoshenko, S.P. and Young, D.H., (2000), Strength of Materials, East West Press Ltd

3. R.K. Bansal, (2000), Strength of Materials, Laxmi Publications

4. James F Shackelford, S "Introduction to materials Science for Engineers", 6 th Macmillan Publishing Company, New York, 2004.

E-REFERENCES

1.NPTEL courses, http://www.nptel.iitm.ac.in/courses.php?disciplineId=112: related web and video resources under Mechanical Engineering &Metallurgy and Material Science categories

2.http://nptel.iitm.ac.in/courses Mapping of COs with Pos

CO1 2 3 - 2 1 1 - - 1 - - 1 2 CO2 2 3 - 2 1 1 - - 1 - 1 2 CO3 2 3 - 2 1 1 - - 1 2 2 CO4 2 3 2 1 1 1 - - 1 2 2	
CO3 2 3 - 2 1 1 - - 1 - 1 2 CO4 2 3 2 1 1 1 - - 1 2 1 </td <td></td>	
CO4 2 3 2 1 1 1 1 - 1 2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Tot 10 15 2 9 5 5 3 5 1	0

Study about various velocity ratiosC or P or AStudy about various kinematic mechanisms and cam –follower motions.Coginitive (Remembering (Applying))Study and Experiment with various cam-follower arrangements and or arrangements andPsychomotor	Semester	V	
L - T - P - CC:P:AL - T - P - H0 - 0 - 1 - 10:1:00-0-2 - 2Course OutcomeDomain/LeveCourse OutcomeC or P or AStudy about various velocity ratiosC or P or AStudy about various kinematic mechanisms and cam - follower motionsCoginitive (Remembering (Applying)) Psychomotor (Guided responder)Study and Experiment with various cam-follower arrangementsPage and the frequencies of various kinematic systems.Drafting kinematic synthesis based or application requirementCO Relation	Subject Name	•	atics and Theory of
0-0-1-10:1:00-0-2-2Course OutcomeDomain/LeveStudy about various velocity ratiosC or P or AStudy about various kinematic mechanisms and cam –follower motions.Coginitive (Remembering (Applying))Study and Experiment with various cam-follower arrangements and GyroscopesCoginitive (Remembering (Applying))Determine the frequencies of various kinematic systems.Psychomotor (Guided respondent)Drafting kinematic synthesis based on application requirementCO Relation	Subject Code	XME508	
Course OutcomeDomain/LevelStudy about various velocity ratiosC or P or AStudy about various kinematic mechanisms and cam –follower motions.Coginitive (Remembering (Applying))Study and Experiment with various cam-follower arrangements and GyroscopesPsychomotor (Guided respondent)Determine the frequencies of various kinematic systems.Drafting kinematic synthesis based on application requirementCO Relation	L –Т –Р –С	C:P:A	L –T –P –H
Study about various velocity ratiosCoginitive (Remembering (Applying))Study about various kinematic mechanisms and cam –follower motions.Study and Experiment with various cam-follower arrangements and GyroscopesPsychomotor (Guided respondent)Determine the frequencies of various kinematic systems.Drafting kinematic synthesis based on application requirementCO Relation	0-0-1-1	0:1:0	0-0-2-2
Study about various velocity ratiosCoginitive (Remembering (Applying))Study about various kinematic mechanisms and cam –follower motions.Coginitive (Remembering (Applying))Study and Experiment with various cam-follower arrangements and GyroscopesPsychomotor (Guided respondent)Determine the frequencies of various kinematic systems.Drafting kinematic synthesis based on application requirementCO Relation	Course Outco	ne	Domain/Level
Study about various kinematic mechanisms and cam –follower motions.(Remembering (Applying)Study and Experiment with various cam-follower arrangements and Gyroscopes(Remembering (Applying)Determine the frequencies of various kinematic systems.Psychomotor (Guided respondent)Drafting kinematic synthesis based on application requirementCO Relation			C or P or A
	Study about va Study and E: Gyroscopes Determine the	(Remembering) (Applying)	
			CO Relation
2. Velocity ratios of epicyclic and differential gear trains CO1			

3.	Kinematics of four bar, slider crank, crank rocker and double crank	CO2
4.	Kinematics of double rocker and oscillating cylinder mechanisms	CO2
5.	Cam & follower and motion studies	CO3
6.	Gyroscope – finding radius of gyration	CO3
7.	Determination of natural frequency and damping coefficient for a	CO4
8	spring-mass-damper system	CO4

Determination of torsional natural frequency of single rotor CO4 systems
 Determination of torsional natural frequency of double rotor CO4

systems10.Study and drafting of kinematic synthesisCO5

TEXT BOOKS

1. Thomas Bevan, Theory of Machines, 3rd edition, CBS Publishers & Distributors, 2005.

2. CleghornW.L., Mechanisms of Machines, Oxford University Press, 2005.

REFERENCES

1. Ghosh.A, and A.K.Mallick, 'Theory of Mechanisms and Machines', Affiliated East-West Pvt. Ltd., New Delhi, 2007.

E-REFERENCES

1. http://nptel.iitm.ac.in/courses

Mapping of COs with Pos

	P01	P02	PO3	PO4	PO5	PO6	PO7	PO8	P09	P010	P011	P012	PSO1	PSO2
CO1	2	3	-	2	1	1	-	-	1	-	-	1	2	
CO2	2	3	-	2	1	1	-	-	-	-	-	1	2	
CO3	2	3	-	2	1	1	-	-	1	-	-	1	2	
CO4	2	3	2	1	1	1	-	-	1	-	-	1	2	
CO5	2	3	-	2	1	1	-	-	-	-	-	1	2	
Tot	10	15	2	9	5	5			3			5	10	

Semester	V	
Subject Name	Inplant Training – II	
Subject Code	XME509	
L –Т –Р –С	C:P:A	L –T –P –H
0 - 0 - 2 - 0	0:2:0	0-0-2-0
Course Outcome		Domain/Level
		C or P or A

Objectives:

This course is aimed to provide more weightage for project work. The project work could be done in the form of a summer project or internship in the industry or even a minor practical project in the college. Participation in any technical event/ competition to fabricate and demonstrate an innovative machine or product could be encouraged under this course.

XMEM01	CNC Programming for Lathe Operations	L	Т	Р	С
		0	0	2	0

CNC Machines

Numerical control – definition – components of NC systems, Development of NC, DNC, CNC, and adaptive control systems, Working principle of a CNC system, features and advantages of CNC machines Introduction to CNC systems - Fanuc OI, Siemens 840D, Heidenhein, current trends in programming, Human Machine Interface software – Siemens – Fanuc systems

CNC Hardware System

CNC system elements, Drives, Slide ways, Feedback devices, ATC and Tool Magazines, and Machine Control Units

CNC Part Programming for lathe operations

Part program structure, CNC program procedure – coordinate system, Sequence number, preparatory functions and G codes, miscellaneous functions and M codes, NC dimensioning – reference points – machine zero, work zero, tool zero and tool offsets, Types of motion control: point-to-point, paraxial and contouring Part Program – tool information – speed – feed data – interpolations, Macro – subroutines – canned cycles - Mirror images –Sample programs for lathe operations , Conversational automatic programming, and APT programming- Introduction to Computer assisted part programming – EdgeCAM, Master CAM etc.,

Subject Na	me Economics for Engineers						
Subject Co	ode XUM601						
L –T –P –	C C:P:A	L –T –P –H					
3 - 0 - 0 - 3	2.64:0.24:0.12	3-0-0-3					
Course Ou	tcome	Domain/Level					
		C or P or A					
	<i>plain</i> the concepts of economics in engineering and <i>identify</i> ment of cost to prepare cost sheet	C(Understand) P(Perception)					
CO2 Ca	C(Apply, Understand) P(Perception)						
an	<i>mmarize</i> and <i>Use</i> value engineering procedure for cost alysis <i>timate</i> replacement problem	C(Understand) A(Receive) C(Understand)					
CO5 Compute, Explain and make Use of different methods of C(Understand, depreciation C(Understand, Apply) COURSE CONTENT COURSE CONTENT							
UNIT I	INTRODUCTION TO ECONOMICS	8 hrs					
UNIT II	Economics – Engineering efficiency, Economic efficiency, economics- types of costing, element of costs, preparation estimation, Marginal cost, Marginal Revenue, Sunk cost, Oppo BREAK-EVEN ANALYSIS&SOCIAL COST BENE ANALYSIS	on of cost sheet and ortunity cost					
	Margin of Safety, Profit, Cost & Quantity analysis-Product M analysis, Profit/Volume Ratio (P/V Ratio), Application Limitations Social Cost Benefit Analysis : compare different project direct, indirect and external effects; Monetizing effects; Re benefit analysis.	of Marginal costing alternatives, Calculate					
UNIT III	VALUE ENGINEERING & COST ACCOUNTING	10 hrs					
	Value engineering – Function, aims, Value engineering prod decision Business operating costs, Business overhead costs, Equipment	·					
UNIT IV	REPLACEMENT ANALYSIS	7 hrs					
	Replacement analysis –Types of replacement problem, deter life of an asset, Replacement of an asset with a new asset.	mination of economi					
UNIT V	DEPRECIATION	8 hrs					
	Depreciation- Introduction, Straight line method of depreciat method of depreciation-Sum of the year's digits method of fund method of depreciation, Annuity method of depreci	depreciation, sinking					

TEXT BOOKS

1. Sp Gupta, Ajay Sharma & Satish Ahuja, "Cost Accounting", V K Global Publications, Faridabad, Haryana, 2012

2. S.P.Jain&Narang, "Cost accounting – Principles and Practice", Kalyani Publishers, Calcutta, 2012

3. PanneerSelvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2001.

4. William G.Sullivan, James A.Bontadelli& Elin M.Wicks, "Engineering Economy", Prentice Hall International, New York, 2001.

REFERENCES

- 5. Luke M Froeb / Brian T Mccann, "Managerial Economics A problem solving approach" Thomson learning 2007
- 6. Truett&Truett, "Managerial economics- Analysis, problems & cases " Wiley India 8th edition 2004.
- 7. Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2002.
- 8. Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2002

E-REFERENCES - 1. http://nptel.iitm.ac.in/video.php

Mapping of COs with POs

The phase of the p	, ,								1	1		
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	1	2	0	1	0	0	1	1	1	2	2	3
CO2	2	2	1	2	0	0	2	1	1	2	3	3
CO3	2	2	1	3	0	0	2	2	1	2	2	3
CO4	1	2	1	2	0	0	0	1	1	1	2	3
CO5	1	2	0	1	0	0	1	1	0	1	2	3
Total	7	10	3	9	0	0	6	6	4	8	11	15
1 Low	2 14.	dium 2	Uich									

1 - Low, 2 – Medium, 3- High Semester VI

Semes	ler	V1	
Subjec	t Name	Manufacturing Technology	
Subjec	t Code	XME 602	
L –T –	Р – С	C:P:A	L –T –P –H
4-0-	0-4	4:0:0	4-0 -0-4
Course	e Outcome		Domain/Level
			C or P or A
CO1	Construct clamping, j jigs, locate	C(Creating) A(Receiving)	
CO2	Explain the various line distinguish	C (Evaluating) P (Perception)	

CO3 *Explain* the Assembly of different components

C (Remembering)

- **CO4** *Explain* and demonstrate the basic concepts of PERT- CPM C (Understand) and their applications in product planning control.
- **CO5** *Explain* the basic concepts of optimization and To Formulate C (understand) and Solve linear programming problems.

Objectives

- (i) To provide knowledge on machines and related tools for manufacturing various components.
- (ii) To understand the relationship between process and system in manufacturing domain.
- (iii) To identify the techniques for the quality assurance of the products and the optimality of the process in terms of resources and time management.

COURSE CONTENT

UNIT I JIGS, FIXTURES AND PRESS TOOLS

Tooling for conventional and non-conventional machining processes: Mould and die design, Press tools, Cutting tools; Holding tools: Jigs and fixtures, principles, applications and design; press tools – configuration, design of die and punch; principles of forging die design

UNIT II FORM MEASUREMENT

Dimensions, forms and surface measurements, Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; Metrology in tool wear and part quality including surface integrity, alignment and testing methods; tolerance analysis in manufacturing and assembly. Process metrology for emerging machining processes such as microscale machining, Inspection and workpiece quality

UNIT III ASSEMBLY PRACTICES

Manufacturing and assembly, process planning, selective assembly, Material handling and devices

UNIT IV LINEAR MODELS, PROJECT SCHEDULING BY PERT- 8 hrs CPM

Linear programming, objective function and constraints, graphical method, Simplex and duplex algorithms, transportation assignment, Travelling Salesman problem; Network models: shortest route, minimal spanning tree, maximum flow model- Project networks: CPM and PERT, critical path scheduling

UNIT V Production planning& control

Forecasting models, aggregate production planning, materials requirement planning. Inventory Models: Economic Order Quantity, quantity discount models, stochastic inventory models, practical inventory control models, JIT. Simple queuing theory models

L = 50 hrs T = 0 hrs P=0 hrs Total = 50 hrs

12 hrs

hrs

6 hrs

8 hrs

16

TEXT BOOKS

1. Donaldson C and Le Cain C H, "Tool Design", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2004.

2. Jain R.K., "Engineering Metrology", Khanna Publishers, 2005

3.Kalpakjian and Schmid, Manufacturing processes for engineering materials (5th Edition)-Pearson India, 2014

4. Taha H. A., Operations Research, 6th Edition, Prentice Hall of India, 2003.

5. Shenoy G.V. and Shrivastava U.K., Operations Research for Management, Wiley Eastern, 1994.

6.Automation, Production Systems, & CIM by Grover; Prentice Hall 2. CAD CAM by C. McMahon and J. Browne; published by Addison-Wesley.

REFERENCES

1. Bhattacharyya A, "Metal Cutting Theory and Practice", New Central Books Agency (P) Ltd, Calcutta, 2000.

2. Fundamentals of Operations Research, Advanced Operation Research Prof.G.Srinivasan, Department of Management Studies, Indian Institute of Technology, Madras.

3.Modern Production/ Operations Management, E. S. Buffa and R. K. Sarin, John Wiley International, 1994.

E-REFERENCES

http://nptel.iitm.ac.in/courses

	P01	P02	P03	P04	P05	904	P07	P08	604	P010	P011	P012	PSO1	PSO2
CO1	2	1	-	-	-	1	-	-	1	-	-	1	3	
CO2	2	2	-	-	-	1	1	-	-	-	-	1	3	
CO3	2	1	-	-	2	1	1	-	-	-	-	1	3	
CO4	2	1	-	-	1	1	1	-	1	-	-	1	3	
CO5	1	-	-	-	1	1	-	-	1	-	-	1	3	
Tot	9	5			4	5	3	3				5	15	

Mapping of COs with Pos

1 - Low, 2 – Medium, 3- High

Semest	ter					
Subjec	t Name	Design of Ma	chine Elements			
Subjec	t Code					
L –T –P –C			C:P:A	L –Т –Р –Н		
3-1-0-4 3:1:0				3-1-0-4		
Course	e Outcome	Domain/Level				
				C or P or A		
CO1		0 1	s, material selection, calculation of tions under variable loading.	C (Understand)		
CO2	Design the speeds also contact bear	C (Synthesis)				
CO3	Summarize	the knowledge	in helical, leaf, disc and torsional	C (Understand)		

	prings									
jo	analyze bolted joints in eccentric loading. Examine the welded bints for vessels and steel structures. Differentiate rigid and exible couplings and also the knuckle joints.	C (Analysis)								
A b	ecognize the need for friction drives and positive drives. Apply BIS standards and catalogues in design and selection of elts and chain for requirement, Select suitable drive combination based on requirement.	C (Understand)								
Objective	es									
	se seeks to provide an introduction to the design of machine ed in mechanical engineering practice, through	e elements commonly								
	strong background in mechanics of materials based failure crit fety-critical design of machine components	teria underpinning the								
	n understanding of the origins, nature and applicability of empir sed on safety considerations	ical design principles,								
🎸 Aı	n overview of codes, standards and design guidelines for differe	nt elements								
✤ Aı	appreciation of parameter optimization and design iteration									
· · · Al	appreciation of the relationships between component leve	el design and overall								
	n appreciation of the relationships between component leve achine system design and performance	el design and overall								
ma	•••••••••••••••••••••••••••••••••••••••	el design and overall								
ma	achine system design and performance									
ma COURSE	Achine system design and performance CONTENT Steady Stresses and Variable Stresses in Machine Membe design considerations - limits, fits and standardization, Revi	ers 6+0								
ma COURSE	Achine system design and performance C CONTENT Steady Stresses and Variable Stresses in Machine Membe	ers 6+0								
ma COURSE UNIT I	Achine system design and performance CONTENT Steady Stresses and Variable Stresses in Machine Member design considerations - limits, fits and standardization, Revi for static and dynamic loading (including fatigue failure)	ers 6+0 ew of failure theories 9+3								
ma COURSE UNIT I	 Achine system design and performance CONTENT Steady Stresses and Variable Stresses in Machine Member design considerations - limits, fits and standardization, Revision for static and dynamic loading (including fatigue failure) Shafts and bearings design of shafts under static and fatigue loadings, Analysis and rolling contact bearings 	ers 6+0 ew of failure theories 9+3								
ma COURSE UNIT I	 achine system design and performance CONTENT Steady Stresses and Variable Stresses in Machine Member design considerations - limits, fits and standardization, Revi for static and dynamic loading (including fatigue failure) Shafts and bearings design of shafts under static and fatigue loadings, Analysis and rolling contact bearings 	ers 6+0 ew of failure theories 9+3 and design of sliding								
ma COURSE UNIT I	achine system design and performance CONTENT Steady Stresses and Variable Stresses in Machine Member design considerations - limits, fits and standardization, Revi for static and dynamic loading (including fatigue failure) Shafts and bearings design of shafts under static and fatigue loadings, Analysis and rolling contact bearings Energy storing Elements helical compression, tension, torsional and leaf springs	ers 6+0 ew of failure theories 9+3 and design of sliding								
ma COURSE UNIT I UNIT II	achine system design and performance CONTENT Steady Stresses and Variable Stresses in Machine Member design considerations - limits, fits and standardization, Revi for static and dynamic loading (including fatigue failure) Shafts and bearings design of shafts under static and fatigue loadings, Analysis and rolling contact bearings Energy storing Elements helical compression, tension, torsional and leaf springs	ers 6+0 ew of failure theories 9+3 and design of sliding 6+3 9+3								
ma COURSE UNIT I UNIT II	 Achine system design and performance CONTENT Steady Stresses and Variable Stresses in Machine Member design considerations - limits, fits and standardization, Revi for static and dynamic loading (including fatigue failure) Shafts and bearings design of shafts under static and fatigue loadings, Analysis and rolling contact bearings Energy storing Elements helical compression, tension, torsional and leaf springs Temporary and Permanent Joints threaded fasteners, pre-loaded bolts and welded joints, Ana 	ers 6+0 ew of failure theories 9+3 and design of sliding 6+3 9+3								
ma COURSE UNIT I UNIT II UNIT III	achine system design and performance CONTENT Steady Stresses and Variable Stresses in Machine Member design considerations - limits, fits and standardization, Revi for static and dynamic loading (including fatigue failure) Shafts and bearings design of shafts under static and fatigue loadings, Analysis and rolling contact bearings Energy storing Elements helical compression, tension, torsional and leaf springs Temporary and Permanent Joints threaded fasteners, pre-loaded bolts and welded joints, Analof power screws and couplings	ers 6+0 ew of failure theories 9+3 and design of sliding 6+3 9+3 lysis and applications 15+6								
ma COURSE UNIT I UNIT II UNIT III UNIT V	achine system design and performance CONTENT Steady Stresses and Variable Stresses in Machine Member design considerations - limits, fits and standardization, Revi for static and dynamic loading (including fatigue failure) Shafts and bearings design of shafts under static and fatigue loadings, Analysis and rolling contact bearings Energy storing Elements helical compression, tension, torsional and leaf springs Temporary and Permanent Joints threaded fasteners, pre-loaded bolts and welded joints, Ana of power screws and couplings Transmission elements spur, helical, bevel and worm gears; belt and chain drives,	ew of failure theories 9+3 and design of sliding 6+3 9+3 lysis and applications 15+6								

[1] Shigley, J.E. and Mischke, C.R., Mechanical Engineering Design, Fifth Edition, McGraw-Hill International; 1989.

[2] Deutschman, D., Michels, W.J. and Wilson, C.E., Machine Design Theory and Practice, Macmillan, 1992.

REFERENCES

[1] Juvinal, R.C., Fundamentals of Machine Component Design, John Wiley, 1994.
[2] Spottes, M.F., Design of Machine elements, Prentice-Hall India, 1994.
[5] R. L. Norton, Mechanical Design – An Integrated Approach, Prentice Hall, 1998

E-REFERENCES

1. https://nptel.ac.in/downloads/112105125/

Mapping of COs with POs

	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO1	2	2	3	2	2	1	2	2	1	2	2	2	2	
CO2	3	2	3	1	2	1	2	2	1	2	2	2	2	
CO3	3	2	3	1	2	1	2	2	1	2	2	2	2	
CO4	3	2	3	1	2	1	2	2	1	2	2	2	2	
CO5	3	2	2	1	2	1	2	2	1	2	2	2	2	
	14	10	14	6	10	5	10	10	5	10	10	10	10	

1 - Low, 2 – Medium, 3- High

Semester	VI						
Subject Name	Mechanical E	ngineering Laborato	ry V (Heat Transfer)				
Subject Code	XME606						
L – Т – Р – С		C:P:A	L-T-P-H				
0-0-1-1		0:1:0	0-0-2-2				
Course Outcome		Domain/Level					
			C or P or A				
<i>Measure</i> the The conditions	rmal conductiv	ity under varying	Coginitive (Understanding) Psychomotor (Guided response)				
<i>Determine</i> the Heat apparatus	transfer coefficio	ent using appropriate					
<i>Measure</i> the effectiv	reness of differen	nt Heat exchanger	Coginitive (Understanding) Psychomotor (Guided response)				
<i>Determine</i> Stefan-B grey Surface.	oltzmann consta	nt and Emissivity of	Coginitive (Understanding) Psychomotor (Guided response)				
DetermineperformancecharacteristicsofaVapourcompressionrefrigerationsystemandDescribetheworking of vapouradsorptionrefrigerationsystem(Mechanism)Objectives:Objectives:Objectives:Objectives:							
1. Understand problems.	the various for	ms of heat transfer	and their applications in real life				

- 2. Analyze different methods to calculate the heat transfer coefficient in various heat transfer problems.
- 3. Analyze the theoretical knowledge and apply it in conducting experiments in heat transfer and Refrigeration studies.

COURSE CONTENT

		CO Relation
1	Thermal conductivity measurement by guarded plate method	CO1
2	Thermal conductivity of pipe insulation using lagged pipe apparatus	CO1
3	Natural convection heat transfer from a vertical cylinder	CO2
4	Forced convection inside tube	CO2
5	Heat transfer from pin-fin Apparatus - natural convection mode	CO2
6	Heat transfer from pin-fin Apparatus - forced convection mode	CO2
7	Effectiveness of Parallel flow heat exchanger	CO3
8	Effectiveness of Counter flow heat exchanger	CO3
9	Determination of Stefan-Boltzmann constant	CO4
10	Determination of emissivity of a grey surface	CO4
11	Determination of the performance characteristics of a vapour compression system	CO5
12	Study of vapour adsorption refrigeration system	CO5
TEVT	BOOKS	

TEXT BOOKS

- 1. Sachdeva R C, "Fundamentals of Engineering Heat and Mass Transfer" New Age International, 1995.
- 2. Yadav R "Heat and Mass Transfer" Central Publishing House, 1995.
- 3. Holman J.P "Heat and Mass Transfer" Tata McGraw-Hill, 2000.
- 4. Rajput, R.K., Thermal Engineering, 6th Edition, Laxmi Publications, 2007
- 5. Ballaney, P.L., "Thermal Engineering", Khanna Publishers, 24th Edition, 2003
- 1. Nag P.K, "Heat Transfer", Tata McGraw-Hill, New Delhi, 2002
- 2. Kothandaraman C.P "Fundamentals of Heat and Mass Transfer" New Age International, New Delhi, 1998
- 3. Rudramoorthy, R., Thermal Engineering, 4th Edition, Tata McGraw Hill, New Delhi, 2006.

E-REFERENCES

1. <u>http://nptel.iitm.ac.in/courses</u>

Mapping of COs with Pos

	P01	P02	PO3	P04	P05	904	P07	P08	60d	P010	P011	P012	IOSd	PSO2
CO1	2	3	-	2	1	1	-	-	1	-	-	1		2
CO2	2	3	-	2	1	1	-	-	-	-	-1	1		2
CO3	2	3	-	2	1	1	-	-	1	-	-	1		2
CO4	2	3	2	1	1	1	-	-	1	-	-1	1		2
CO5	2	3	-	2	1	1	-	-	-	-	-1	1		2
Tot	10	15	2	9	5	5			3		3	5		10

1 - Low, 2 – Medium, 3- High

XMEM02

Pneumatics and Hydraulics

L T P C 0 0 2 0

S.No	Theory Session	Lab Session
1.	Introduction about Automation	Basic Hydraulics and Hydraulic equipments such as Pumps, motor, Cylinders, Check valves, Direction control valves
2.	Basic Hydraulics and Hydraulic equipments: Pilot operated check valves, throttle valves, solenoid valves, etc.,	Hydraulic Lab : Simple hydraulic circuits using hydraulic equipments, cylinder and motor by manual operation
3.	Development of Hydraulic circuits using Check valves, direction control valves, Pilot operated check valves, throttle valves etc.,	Hydraulic Lab : Hydraulic circuits using Check valves, throttle valve, meter in and meter out circuits
4.	Working principles of solenoid valves, Relay and development of relay logic circuits	Hydraulic Lab : Hydraulic circuits using relay logic
5.	Timers : Switch On delay and Switch off delay	Hydraulic Lab: Hydraulic circuits using on delay and off delay
6.	Sensors: Different types of Proximate sensors	Sensoric Lab: Identification of metal and non metal using sensors, Calculation of range of sensors.
7.	Development of hydraulic circuits using sensors	Hydraulic Lab: Hydraulic circuits using sensors
8.	Pressure Switches	Hydraulic Lab: Hydraulic circuits using Pressure switch
9.	Development of hydraulic circuits by Combination of two cylinders	Hydraulic Lab: Sequential hydraulic circuits using two cylinders
10.	Introduction about Pneumatics	Basic Pneumatics and Pneumatics equipments such as Pumps, motor, Cylinders, Check valves, Direction control valves
11.	Basic Pneumatics and Pneumatics equipments: Pilot operated check valves, throttle valves, solenoid valves, etc.,	Pneumatics Lab : Simple Pneumatics circuits using Pneumatics equipments, cylinder and motor by manual operation

12.	Development of Pneumatics circuits using	Pneumatics Lab: Pneumatics circuits
12.	Check valves, direction control valves, Pilot	using Check valves, throttle valve,
	operated check valves, throttle valves, throttle valves, throttle valves, throttle valves etc.,	meter in and meter out circuits
13.	Working principles of solenoid valves,	Pneumatics Lab: Pneumatics circuits
15.	Relay and development of relay logic	using relay logic
	circuits	using rotay togic
14.	Timers : Switch On delay and Switch off	Pneumatics Lab:
	delay	Pneumatics circuits using on delay and
		off delay
15.	Sensors: Different types of Proximate	Sensoric Lab: Identification of metal
	sensors	and non metal using sensors,
		Calculation of range of sensors.
16.	What is PLC?	Basic concepts of PLC
		Graphical Symbols of Pneumatics
		Circuits, Working of PLC & General
		Applications
17.	Indra control PLC's – Technical Details	Hardware Details of L10/L20
		Documentation provided in CD
10		Related Software for PLC
18.	Related Software for PLC	Detailed presentation on inline
		products, Technical & hardware
		details on
		-digital I/O
		-analog I/o
		-Bus couplers -Function modules
19.	Indra works Software Installation	Indraworks Software features
17.	India works Software Instantion	explanation in detail, Indralogic
		standard settings, Project development
		in Indraworks
		Hardware Configuration
20.	Project Development in Indra logic	Logic Development
		- Ladder Diagram
		- Addressing of Digital I/O's
		Creating Parallel Paths (Network)
		- Programming Language
		Selection/Conversion
21.	Logic Development	- Function Blocks (Timers, Counters
	- Variable Declaration (Local/Global)	etc.)
	- Declaration in Tabular Format	- Exercises
		Segregation of programs based on functionality or application
22.	Set ,Reset concepts	Communication parameters settings
	- Exercises	Communication parameters settings
23.	Logic Development	
	- Addressing Digital I/O's	Working with Digital I/O's,
		Configuring Digital I/O's, -
		Exercises
	Exercise	Exercise

25.	Exercise	TesT And feedback session
26.	Introduction to Sensorics What are Sensors? Classification of Sensors Different types of sensors used in Automation Technologies Characteristics of Inductive, Capacitive, Ultrasonic, Photo electric and Magnetic proximity sensors Comparison of sensors	Experiment 01 : Behavior of the capacitive sensor
27.	Behavior of resistive sensors	Behavior of inductive sensor
28.	Role of the Sensors in Mechatronixcs, Robotics and Automation	Real time problems and solutions
29.	Exercise	Experiment 01 : Behavior of the capacitive sensor
30.	Test And feedback session	

Semes	ter	VII	
Subjec	et Name	Automation in manufacturing	
Subjec	ct Code	XME702	
L –T –	-Р –С	C:P:A	L –T –P –H
3 – 0 –	- 0- 3	3:0:0	3-0-0-3
Course	e Outcome		Domain/Level
			C or P or A
CO1	Define auto	C (Rem),	
	along with	recent trends of automation in manufacturing.	C(U)
CO2	Classify a manufactur	nd describe computer aided technologies in ing.	C (Rem), C(U)
CO3	•	d explain different automation technologies and ocks of systems.	C (Rem), C(U)
CO4	Describe p manufactur	roduct modelling and simulation techniques in ing	C (Rem), C(U)
CO5	Define ad advanceme	C (Rem), C(U)	
Object	tives		
1 To	wa danatan d	the importance of automation in the of field	mashing tool board

1. To understand the importance of automation in the of field machine tool based manufacturing

2. To get the knowledge of various elements of manufacturing automation – CAD/CAM, sensors, pneumatics, hydraulics and CNC

3. To understand the basics of product design and the role of manufacturing automation

COURSE CONTENT

UNIT I BASIC CONCEPTS AND PROPERTIES OF FLUIDS

Introduction: Why automation- Current trends-CAD, CAM, CIM- Rigid automation- Part handling, Machine tools- Flexible automation- Computer control of Machine Tools and Machining Centers-NC and NC part programming, CNC-Adaptive Control- Automated Material handling. Assembly-Flexible fixturing.

UNIT II COMPUTERS IN MANUFACTURING

Computer Aided Design- Fundamentals of CAD - Hardware in CAD-Computer Graphics Software and Data Base-Geometric modelling for downstream applications and analysis methods- Computer Aided Manufacturing- CNC technology- PLC- Micro-controllers- CNC-Adaptive Control

UNIT III AUTOMATION

Low cost automation: Mechanical & Electro mechanical Systems, Pneumatics and Hydraulics, Illustrative Examples and case studies

UNIT IV MODELLING AND SIMULATION

Introduction to Modelling and Simulation-Product design- process route modelling- Optimization techniques-Case studies & industrial applications.

UNIT V Additive Manufacturing

Additive Manufacturing-3Dprinting-Classification of 3D printers-components of basic 3D printer-Preparation of geometry for 3D printing-STL, STEP file generation-Managing of inter exchangeable formats for 3D printing, open source resources for 3D printing.

L = 45 hrs Total = 45 hrs

TEXT BOOKS

1. Mikell P. Groover, Automation, Production Systems, and Computer-integrated Manufacturing, prentice Hall.

2. Serope Kalpakjian and Steven R. Schmid, Manufacturing – Engineering and Technology, 7th edition,Pearson

REFERENCES

1. Yoram Koren, Computer control of manufacturing system, 1st edition.

2. Ibrahim Zeid , CAD/CAM : Theory & Practice, 2nd edition.

E-REFERENCES

https://nptel.ac.in/courses/112102011/

Mapping of COs with POs

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	3	2	-	2	1	-	-	-	1	-	-	-	3	

9 hrs

9hrs

hrs

9 hrs

9

hrs

9

C O2	3	2	-	2	1	-	-	-	1	-	1	1	3	
CO3	3	1	-	1	1	-	-	1	1	-	1	1	3	
CO4	3	2	-	2	1	-	-	-	1	-	-	-	3	
CO5	3	3	3	3	2	-	-	2	1	-	3	3	3	
	15	10	3	10	6			3	5		5	5	15	
1 - I	Low, 2 ·	– Medi	um, 3-	High							•			
Sem	emester VII													
Subject Name Cyber Security														
Sub	ject Co	ode	XU	M706										
L –]	Г –Р –	С			L –T	-P -F	ł							
3-0	0 - 0- 0	0			3-0-	0-3								
Cou	rse Ou	itcome			Domain/Level									
		C or P or A												
CO		Able to <i>understand</i> the Cyber Security Policy, Laws and C(Remember) Regulations												
CO2		0		he Cyb	er Secu	rity Ma	nagem	ent Coi	ncepts		C(Un	C(Understand)		
CO	3 At	ole to <i>u</i>	ndersta	nd the	Cyber (Crime a	ind Cyt	er wel	fare		C(Un	C(Understand)		
CO4		ole to oncepts	discuss	s on is	sues re	elated	to Info	ormatio	n Sec	curity	C(Un	dersta	nd)	
CO		-	ndersta	nd vari	ious sec	curity th	reats				C(Un	dersta	nd)	
CO	URSE	CONT	ENT											
UN	IT I	INTRODUCTION											rs	
		Cyber Security – Cyber Security policy – Domain of Cyber Security Policy – Laws and Regulations – Enterprise Policy – Technology Operations – Technology Configuration - Strategy Versus Policy – Cyber Security Evolution – Productivity – Internet – E commerce – Counter Measures – Challenges												
UNI	IT II													
												9hr:	S	
		Cyber Security Metrics – Security Management Goals – Counting Vulnerabilities – Security Frameworks – E Commerce Systems – Industrial Control Systems – Personal Mobile Devices – Security Policy Objectives – Guidance for Decision												

Makers – Tone at the Top – Policy as a Project– Cyber Security Management – Arriving at Goals – Cyber Security Documentation – The Catalog Approach – Catalog Format – Cyber Security Policy Taxonomy.

UNIT III CYBER SECURITY POLICY CATALOG

hrs

9

Cyber Governance Issues – Net Neutrality – Internet Names and Numbers – Copyright and Trademarks – Email and Messaging - Cyber User Issues -Malvertising - Impersonation – Appropriate Use – Cyber Crime – Geo location – Privacy - Cyber Conflict Issues – Intellectual property Theft – Cyber Espionage – Cyber Sabotage – Cyber Welfare

UNIT IV INFORMATION SECURITY CONCEPTS

Information Security Overview: Background and Current Scenario - Types of Attacks - Goals for Security - E-commerce Security - Computer Forensics – Steganography

UNIT V SECURITY THREATS AND VULNERABILITIES

Overview of Security threats -Weak / Strong Passwords and Password Cracking -Insecure Network connections - Malicious Code - Programming Bugs - Cyber crime and Cyber terrorism - Information Warfare and Surveillance

L = 45 hrs Total = 45 hrs

REFERENCES

- Jennifer L. Bayuk, J. Healey, P. Rohmeyer, Marcus Sachs, Jeffrey Schmidt, Joseph Weiss "Cyber Security Policy Guidebook" John Wiley & Sons 2012.
- 2. Rick Howard "Cyber Security Essentials" Auerbach Publications 2011.
- Richard A. Clarke, Robert Knake "Cyberwar: The Next Threat to National Security & What to Do About It" Ecco 2010
- Dan Shoemaker Cyber security The Essential Body Of Knowledge, 1st ed. Cengage Learning 2011
- 5. Rhodes-Ousley, Mark, "Information Security: The Complete Reference", Second Edition, McGraw-

E REFERENCE

- 1. https://www.coursera.org/specializations/cyber-security
- 2. www.nptel.ac.in
- 3. <u>http://professional.mit.edu/programs/short-programs/applied-cybersecurity</u>

CO PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO 1	3	2	2	3	0	1	2	0	1	0	1	1
CO 2	3	2	1	3	0	1	2	0	1	0	1	1
CO 3	3	2	1	3	0	1	2	1	1	0	1	1
CO 4	3	2	1	2	0	1	2	1	1	0	1	1
CO 5	3	2	1	2	0	1	2	0	1	0	1	1
Tot	15	10	6	13	0	5	10	2	5	0	5	5

1 - Low, 2 – Medium, 3- High

9

hrs

Semester	VII								
Subject Name Mechanical Engineering Laboratory VI (Special Machines)									
Subject Code	XME707								
L –Т –Р –С	C:P:A	L –T –P –H							
0- 0 - 1 - 1	0:1:0	0- 0- 2- 2							
Course Outcome		Domain/Level							
		C or P or A							
<i>Experiment</i> with s	haper and drilling machine	Coginitive							
<i>Experiment</i> on gri	nding	(Remembering) (Applying)							
<i>Experiment</i> on mi	Psychomotor								
<i>Experiment</i> on CN	(Guided response)								
<i>Understand</i> the operation of pick and place robot and EDM (Perception)									

Objectives

1. To provide an understanding of advanced manufacturing methods.

2. To get an idea of the dimensional & form accuracy of products

COURSE CONTENT

		CO Relation
1.	Shaping a block	CO1
2.	Radial drilling on a block	CO1
3.	Cylindrical grinding	CO2
4.	Surface grinding	CO2
5.	Contour milling using milling machine	CO3
6.	Spur gear cutting in milling machine	CO3
7.	CNC part programming – Step and taper turning	CO4
8.	CNC part programming – Threading	CO4
9.	Drilling of a small hole using wire EDM	CO5
10.	Microprocessor controlled pick & place robot	CO5

TEXT BOOKS

1. Hajra Choudhury S.K and Hajra Choudhury. A.K., "Elements of Workshop Technology, Volume I and II", Media Promoters and Publishers Private Limited, Mumbai.

2. HMT – "Production Technology", Tata McGraw-Hill, 1998.Dr. B.C.Punmia, "Surveying – Volume I", Laxmi Publications, New Delhi, 2005

3. Mikell. P. Groover, Automation Production Systems, and Computer Integrated Manufacturing, Prentice Hall of India Ltd., New Delhi, 1998.

4. Pandey P.C. and Shan H.S. "Modern Machining Processes" Tata McGraw-Hill, New Delhi, 2007.

REFERENCES

1. Paul Degarma E, Black J.T. and Ronald A. Kosher, Materials and Processes, in Manufacturing

Prentice – Prentice Hall of India.

2. Sharma, P.C., A Text book of Production Technology, S. Chand and Co. Ltd.,

3. Milton C.Shaw, 'Metal Cutting Principles', Oxford University Press, Second edition, 2005.

4. Rao, P.N. "Manufacturing Technology", Metal Cutting and Machine Tools, Tata McGraw-Hill, New Delhi, 2003.

6. Deb, Robotics Technology and Flexible Automation, Tata McGraw Hill, New Delhi, (1994).7. Benedict. G.F. "Nontraditional Manufacturing Processes", Marcel Dekker Inc., New York, 1987.

E-REFERENCES

1.http://nptel.iitm.ac.in/courses

Mapping of COs with Pos

	P01	P02	P03	P04	P05	P06	P07	PO8	60d	P010	P011	P012	PSO1	PSO2
CO1	2	3	-	2	1	1	-	-	1	-	-	1	3	
CO2	2	3	-	2	1	1	-	-	-	-	-	1	3	
CO3	2	3	-	2	1	1	-	-	1	-	-	1	3	
CO4	2	3	2	1	1	1	-	-	1	-	-	1	3	
CO5	2	3	-	2	1	1	-	-	-	-	-	1	3	
Tot	10	15	2	9	5	5			3			5	15	

1 - Low, 2 – Medium, 3- High

Semester	VII	
Subject Name	Project phase – I	
Subject Code	XME708	
L –Т –Р –С	C:P:A	L –T –P –H
0-0-8-4	0:8:0	0-0-8-8
Course Outcome		Domain/Level
		C or P or A

Objectives:

It is intended to start the project work early in the seventh semester and carry out both design and fabrication of a mechanical device whose working can be demonstrated. The design is expected to be completed in the seventh semester and the fabrication and demonstration will be carried out in the eighth semester.

Semester	VII	
Subject Name	Inplant Training – III	
Subject Code	XME709	
L –Т –Р –С	C:P:A	L –T –P –H
0-0-4-2	0:4:0	0-0-4-4
Course Outcome		Domain/Level

Objectives:

This course is aimed to provide more weightage for project work. The project work could be done in the form of a summer project or internship in the industry or even a minor practical project in the college. Participation in any technical event/ competition to fabricate and demonstrate an innovative machine or product could be encouraged under this course. **Total hrs – 90**

XMEM03	Non Destructive Testing	L T P C 0 0 2 0
Introduction and Rad	iography	
Introduction to NDT -	need – advantages and limitations Radiograph	ny – Sources – IR192,
cobalt 60 – X-ray film -	 processing – testing methods – film interpretat 	tion
Ultrasonic testing		
A,B,C scan, immersion	Testing, Normal and Angle Probe Testing	
Magnetic particle		
Testing Methods – part	icles - wet, dry and fluorescent	
Dye penetrant testing		
Surface preparation –Te	esting procedure - types of penetrant.	
Other NDT methods		
Thermography, Image p	processing TOFD and Phased Array - leak testin	ıg – Halogen, Helium
Someston V	111	

Semester	VIII	
Subject Name	Project phase – II	
Subject Code	XME804	
L –Т –Р –С	C:P:A	L –T –P –H
0-0-6-6	0:6:0	0-0-12-12
Course Outcome		Domain/Level
		C or P or A

Objectives:

It is intended to start the project work early in the seventh semester and carry out both design and fabrication of a mechanical device whose working can be demonstrated. The design is expected to be completed in the seventh semester and the fabrication and demonstration will be carried out in the eighth semester.

SYLLABUS FOR

M.Tech Renewable Energy (FT) – 2022-23 – ACADEMIC YEAR

Semest	ster I						
Course	arse Name Solar Energy Systems						
Course	Course Code YRE101						
L –T –]	Р-С		C:P: A	L –T –	-PH		
3-0-	0-3		3:0:0	3-0-0	0-3		
CO Num ber	CO ST.	ATEMENT		Knowl	ledge Level		
CO1	Identify	v proper solar	radiation site		K3		
CO2	Design	solar flat plate	e collectors		K3		
CO3	Design	solar concenti	ric collectors		K3		
CO4	Apply systems	1	ted to solar energy storage		K3		
CO5	Apply th	he concepts fo	r selection of PV systems		К3		
CO6	Apply th	he economics	concepts for PV systems		К3		
COUR	SE CON	TENT		I			
UNIT	I SO	LAR RADIA	TION		9 Hours		
terrestri horizon radiatio global,	al radiat tal radi n and co direct a	tion-radiation ation and in omponents o and diffuse	th relationship- extra terrestrial radiation.– A on a horizontal surfaces and inclined clined surfaces – relations between mor f the radiations– solar charts – Critical r solar radiation- pyroheliometer, pyranom er – an overview of solar radiation data in I	planes- nthly, c adiation neter, p	relations between daily and hourly n-Measurement of		
UNIT I	I SO	LAR COLLI	ECTORS – FLAT PLATE COLLECTORS	5	9 Hours		
Design considerations – classification- Flat plate collectors- air heating collectors liquid heating – Temperature distributions- Heat removal rate- Useful energy gain – Losses in the collectors-for efficiency of flat plate collectors – selective surfaces – tubular solar energy collectors analysis of concentric tube collector – testing of flat plate collectors. Solar green house. Solar tracking. solar kilns							
UNIT I		ONCENTRIC PLICATION	SOLAR COLLECTORS AND THEF	RMAL	9 Hours		
Concentric collectors-Limits to concentration – concentrator mounting – tracking mechanism - performance analysis focusing solar concentrators: Heliostats. Solar powered absorption A/C system (Ammonia/water) solar water pump, solar chimney, solar drier, solar dehumidifier, solar still, solar cooker.							
UNIT I	V SIN	MULATION	AND ENERGY STORAGE		9 Hours		

Simulation in Solar Process Design- TRANSYS- Design of active systems- f chart methods for liquid and air heaters- phi bar, of chart method - sensible, latent heat and thermo-chemical storagepebble bed etc. materials for phase change- Glauber's salt-organic compounds -solar ponds.

UNIT V **SOLAR PV SYSTEM**

9 Hours

Photovoltaic cell - characteristics -maximum power- tracking-cell arrays-power electric circuits for output of solar panels--inverters-batteries-charge regulators, Construction concepts. Latest trends in PV systems, Life cycle analysis of solar energy system time value of money, evaluation of carbon credit of solar energy system.

TEXT BOOKS

- 1. DuffieJ.A and Beckman, W.A., "Solar Engineering of Thermal Processes", 2nd Edition, John Wiley& Sons Inc., Newyork, 1991
- 2. G.N. Tiwari." Solar Energy; Fundamentals, design, modelilg and applications "Third RePrint, Narosa Publishing House, New Delhi,2006

REFERENCE BOOKS

- 1. Edward E.Anderson, "Fundamentals for Solar Energy Conversion", Addison Wesley pubCO.,1983.
- 2. Fank Kreith, Jan F.Kreider, Principles of solar Engg", 1978.
- 3. Koushika M.D," Solar Energy Principles and Applications", IBT publications and distributors, 1988.

Mapping of COs with POs							
	P01	PO2	P03	P04	PO5	P06	PO7
CO1	3	3	2	2	3	2	3
CO2	3	3	2	2	3	2	3
CO3	3	3	2	2	3	2	3
CO4	3	3	2	2	3	2	3
CO5	3	3	2	2	3	2	3
CO6	3	3	2	2	3	2	3
Tot	18	18	12	12	18	12	18
1-10	$w^2 - 1$	Modium	n 3_ Hi	ah			

1 - Low, 2 – Medium, 3- High

	Ι				
Semester					
Course Name	WIND, OCEAN AND GEOTHERMAL ENERGY SYSTEMS				
Course Code	YRE102				
L – Т – Р – С		C:P:A	L –T –P –H		
3-0-0-3		3:0:0	3-0-0-3		

CO Num ber	CO STATEMENT	Knowledge Level				
CO1	<i>Identify</i> the wind resource assessment methods.	K3				
CO2	<i>Develop</i> the wind flow models.	К3				
CO3	<i>Select</i> the optimum design for variable operations of wind turbine	К3				
CO4	<i>Choose</i> the suitable site for the layout of wind farm.	K3				
CO5	<i>Identify</i> the electrical and control systems for wind energy conversion.	К3				
CO6	<i>Categorize</i> the ocean energy systems and geothermal energy systems	K4				
Object	ives					
* *	Understand and apply basic concepts of hydrogen energy and storag Apply the concept of nuclear energy for power generation by optim following safety norms. Understand the concept of nuclear waste management and use pr efficient management.	izing the design and				
COURSE CONTENT						
UNIT	I WIND RESOURCE AND ASSESSMENT	9 Hours				
	Introduction – Modern Wind Turbines – Betz Constant, Limit Wind vs. Traditional Generation – Technology Advancements Wind Energy Penetration Levels – Applications. Wind Resource Assessment – Introduction – Characteristics	– Material Usage – of Steady Wind –				

Weibull Wind Speed Distribution Function – Vertical Profiles of the steady Wind – Wind Rose – Energy Pattern Factor – Energy Content of the Wind Resource

	Assessment.					
UNIT II	AERODYNAMICS	9 Hours				
	Introduction - Aerofoil - Wind Flow Models - Axial Mon	mentum Theory –				
	Momentum Theory for a Rotating Wake - Blade Element The	ory – Strip Theory				
	- Tip Losses - Tip Losses Correction - Drag Translator Devic	e – Wind Machine				
	Characteristics.					
UNIT III	WIND TURBINE, SITING AND WIND FARM DESIGN	10 Hours				
	Introduction - Classification of Wind Turbines - Turbine Co	omponents – Wind				
	Turbine Design – Rotor Torque and Power – Optimum Design for Variable					
	Operation - Influence of Reynolds Number - Cambered Aerofoils - Load					
	Calculation - Cost Modelling - Power Control - Braking Systems - Turbine					
	Blade design – Rotor Hub.					
	Wind Flow Modelling - Capacity Factor - Planning of Wind	Farm – Sitting of				
	Wind Turbines – Ecological Indicators – Site Analysis – Methodology – Layout					
	of Wind Farm - Initial Site Selection - Measure Correlate Predict (MCP)					
	Technique – Micrositing – Wake Models.					

TINITT IN	ECONOMICS			CONTROL	0 Houng				
UNIT IV	ECONOMICS , SYSTEMS	ELECTRICAL	AND	CONTROL	9 Hours				
	Cost Calculation –	Annual Energy Ou	itmut (AF	EO) –Capital 1	Recovery Factor –				
	Depreciation – Life Cycle Costing – Environmental Impact - Biological Impact – Surface Water and Wetlands – Visual Impact – Sound Impact – Communication								
	Impact.	vietands visual i	mpace	Sound Impact	Communication				
	Classification of Ge	enerators – Synchro	nous Gei	perators – Indi	uction Generator -				
	Variable Speed Ge	•							
	Earthing of Wind Fa				Systems				
UNIT V	OCEAN AND GEO				8 Hours				
	Wave energy -Tidal								
	from Sea – Tidal				•••				
1	conversion (OTEC)		-	-	•				
	development Altern		ology - I	Problems and	solutions - Recent				
	Trends and Develop			.					
	A compulsory semin		-	•	• ••				
	any one of the Wind		DTEC - C						
Lecture = 4	15 Hours T	utorial = 0 Hours		Total = 45	Hours				
TEXT BO	OKS								
1 Sirai Δh	med "Wind Energy T	"heory and Practice"	June 20	13					
-	Bhadra, D.Kastha,	-			stems", Oxford				
	ty,Press,2014.	5.Daneijee, wi		cettreal by	stems, Oxford				
	Earnest and Tore Wi	zelius "Wind Powe	r Plants	and Project F	evelonment" PHI				
	Pvt. Ltd., New Delh		1 1 141105		, rin				
4. J. F. Ma	nwell, J. G. McGov	van and A. L. Rog	ers, "Wi	nd Energy Ex	plained – Theory,				
-	nd Application", Wil	•							
	il "Power plant techr								
6. G. D Rai	"Non Conventional I	Energy sources" Kha	ınna publ	ishers. New D	elhi				
	REFERENCES:								
1. Freris. L.	L., "Wind Energy Co	onversion Systems",	Prentice	Hall 1990.					
2. Earnest J	oshua, "Wind Power	r Technology", Seco	ond edition	on, PHI Learn	ing Pvt. Ltd., New				
Delhi,									
2015.									
3. Spera I	D. A., "Wind Turbi	ine Technology: Fu	indamen	tal Concepts	of Wind Turbine				
Engineering",									
ASME Press, New York, 2009.									
4. Voker Quashning, "Understanding Renewable Energy Systems", Earthscan, Second									
edition, 2016.									
-	arton, David Sharpe,	, Nick Jenkins, Erv	in Bossa	unyi, "Wind E	Energy Handbook"				
	JOHN								
	& SONS, LTD , Seco								
6. S.Rao &	B.B.Parulekar,"Energ	gy Technology", 3rd	6. S.Rao & B.B.Parulekar, "Energy Technology", 3rd edition,Khanna publishers,1995.						
			,	···· · · · · ·	1015,1995.				

Mapping of COs with POs

	P01	P02	P03	P04	P05	P06	P07
CO1	3	3	2	2	3	3	3
CO2	3	3	2	2	3	3	3
CO3	3	3	2	2	3	3	3
CO4	3	3	2	2	3	3	3
CO5	3	3	2	3	2	2	3
CO6	3	3	2	2	2	2	3
Tot	18	18 Madium	12	13	16	16	18

1 - Low, 2 – Medium, 3- High

Semest	ter	Ι							
Course	e Name	PROCESS SYSTEMS	MODELLING AND SIMULATION	N IN ENERGY					
	Course Code YRE103								
L –T –			C:P:A	L –T –P –H					
3 - 0 - 0			3:0:0	3-0-0-3					
CO	CO STA	ATEMENT		Knowledge Level					
Num									
ber	1	11 1.	1	17.0					
CO1	solve pro	oblems related	d to modelling	К3					
CO2	solve pr	roblems relat	ed to different types of models such as	K3					
			nodels and steady, dynamic state models						
CO3	-		ed to various systems involving variety of	K3					
	elements								
CO4			d to model building	K3					
CO5			ated to Solution strategies for lumped	K3					
	1	er models							
CO6	-		ted to Solution strategies for distributed	K3					
		er models.							
Object		11	1 11						
		about the mod	e						
			at types of models, systems and its elements as of modelling related problems						
		• 1	ated to model building						
	SE CON	1	tied to model building						
UNIT		DELLING		7 Hours					
		nodelling, a systematic approach to model bu							
			elling Techniques-Response function and N						
			nciples, thermodynamic principles of process						
UNIT			FEMS AND ELEMENTS	11 Hours					
	Intr	oduction to d	evelopment of steady state and dynamic lun	nped and distributed					
	para	ameters mode	els based on first principles, Analysis of ill-c	conditioned systems,					
	Blo	ck diagrams	and computer simulation, Modelling of	f process elements					

	consisting of Mechanical (translational and rotational) electro-	Mechanical, fluid				
	flow, thermal and chemical reaction system elements					
UNIT III	MODEL DEVELOPMENT	9 Hours				
	Development of grey box models. Empirical model building.					
	calibration and validation. Population balance models. Example					
UNIT IV	SOLUTION STRATEGIES-I	9 Hours				
	Solution strategies for lumped parameter models. Stiff diffe Solution methods for initial value and boundary value problem R-K method. shooting method, finite difference methods. Solvi MATLAB/ SCILAB	s. Euler's method. ng problems using				
UNIT V	SOLUTION STRATEGIES-II	9 Hours				
	Solution strategies for distributed parameter models. Solving and hyperbolic partial differential equations. Finite element methods.					
Lecture $= 4$	5 Hours Tutorial = 0 Hours Total = 45	Hours				
TEXT BOO	OKS					
1. K.M. Har	ngos and I.T Cameron," Process Modelling and Model analysis".	academic Press				
2001.						
2. W. L Lu Edn,	yben, "Process Modelling, Simulation and control for chemica	al Engineers" 2 nd				
McGraw Hi	ll Book Co, New York,1990					
3.W.F Ram	irez "Computational Methods for Process Simulation" Butterwor	rths,1995				
REFEREN	CES					
1. Mark E. &	Davis," Numerical Methods and Modelling for Chemical Eng	ineers" JohnWiley				
Sons,1984.						
2. Singiresu	S. Rao "Applied Numerical Methods for Engineers and Scientist	ts" Prentice hall,				
Upper saddle River, NJ 2001						
3. Francis v	anek, Louis D. Albright," Energy systems Engineering" McGraw	7- Hill book				
Company, N	J.Y 2008					
4. "Power \$ 2008.	System Engineering" 2 nd Ed.D.P Kothari, I.J. Nagrath, Tata	MaGraw- Hill Co				

P02 PO5 P06 PO7 P04 P03 P01 CO1 **CO2** CO3

Mapping of COs with POs

CO4	3	3	2	2	3	2	3
CO5	3	3	2	2	3	2	3
CO6	3	3	2	2	3	2	3
Tot	18	18	12	12	18	12	18

1 - Low, 2 – Medium, 3- High

Semester		I				
Subject N	ΓORY					
Subject C	Code	YRE106				
L –T –P –	-C	C:P:A	L –T –P –H			
0-0-2-	2	0:1:0	0-0-2-4			
Course O	utcome		Domain/Level			
			C or P or A			
CO1	<i>identify</i> t	he performance of various solar	collectors.	P3		
CO2	••	the performance of various sola oker and solar PV panels.	r gadgets like air	P3		
CO3	Experim	<i>ent</i> the Charging characteristics panel and various effects on it.	of a battery using	P3		
CO4	1					
CO5						
CO6	0	PV cell using Matlab / Simulinh	k software.	P3		

Objectives

- Study the performance of solar thermal energy applications flat plate and concentric type collectors.
- Study the performance solar photovoltaic (PV) panels at different combinations and conditions.
- Study and Optimize the performance of various Solar energy gadgets.
- ✤ Model the Solar PV cell using software.

COURSE CONTENT

CO Relation

LIST OI	FEXPERIMENTS	СО
1.	Performance evaluation of solar flat plate collector	1
2.	Performance evaluation of concentrating solar collector	1
3.	Performance evaluation of solar box cooker	2
4.	Performance evaluation air dryer	2
5.	Performance evaluation of a solar PV panel in series and parallel combination	2
6.	Charging characteristics of a battery using PV panel	3

7.	Effect of tilt angle and Effect of shadow on solar PV panel	3
8.	Solar Energy Measurements - Pyrheliometer	4
9.	Solar Energy Measurements - Pyranometer	4
10.	Parabolic Trough -Flow Rate	4
11.	External Compound Parabolic Collector (XCPC) - Oil and Water	5
12.	Mathematical modeling of photovoltaic cell/module/arrays with tags in	6
	Matlab /Simulink	

TOTAL HOURS - 30

TEXT BOOKS

- 1. DuffieJ.A and Beckman, W.A., "Solar Engineering of Thermal Processes", 2nd Edition, John Wiley& Sons Inc., Newyork, 1991
- 2. G.N. Tiwari."Solar Energy ; Fundamentals ,design,modelling and applications " Third RePrint , Narosa Publishing House, New Delhi,2006

REFERENCES

- 1. Edward E.Anderson, "Fundamentals for Solar Energy Conversion", Addison Wesley pub CO., 1983.
- 2. Fank Kreith, Jan F.Kreider, Principles of solar Engg", 1978.
- 3. Koushika M.D," Solar Energy Principles and Applications", IBT publications and distributors, 1988.
- 4. Kaushik S.C, Tiwari G. N and Nayak J.K, "Thermal control in passive solar buildings" .IBT Publishers & Distributors, 1988.

	P01	P02	P03	P04	PO5	P06	P07
CO1	2	3	3	1	2	2	3
CO2	2	3	3	1	2	2	3
CO3	2	3	3	1	2	2	3
CO4	2	3	3	1	2	2	3
CO5	2	3	3	1	2	2	3
CO6	2	3	3	1	2	2	3
Tot	12	18	18	6	12	12	18

Mapping of COs with POs

COURSE CODE	COURSE NAME	L	Т	Р	C
YRM107	RESEARCH METHODOLOGY AND IPR	2	0	0	2

After completion of the course, a student will be able to

- 1. Identify and formulate a research problem, collect data, identify research gap for the identified problem
- 2. Able to consolidate literature survey and provide inference on own words
- 3. Describe Patents, Designs, Trade and Copyright

4. Appraise, discuss and categorize Patent Rights
5. Identify and describe new developments in IPR OUNIT I
UNIT I Meaning of research problem, Sources of research problem, Criteria-Characteristics of a good
research problem, Errors in selecting a research problem, Scope and objectives of research
problem. Approaches of investigation of solutions for research problem, data collection,
analysis, interpretation, Necessary instrumentations
UNIT II
Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective
echnical writing, how to write report, Paper Developing a Research Proposal, Format of
research proposal, a presentation and assessment by a review committee.
UNIT III 6
Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting
and Development: technological research, innovation, patenting, development. International
Scenario: International cooperation on Intellectual Property. Procedure for grants of patents,
Patenting under PCT.
UNIT IV 6
Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent
nformation and databases. Geographical Indications.
UNIT V 6
New Developments in IPR: Administration of Patent System. New developments in IPR; IPR
of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and
LECTURE TUTORIAL TOTAL
REFERENCES
1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for
science & engineering students'"
2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for
beginners"

- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

CO	Vs PO	Mapp	oing

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1				1	3	3	3
CO2				1	3	3	3
CO3				1	3	3	3
CO4				1	3	3	3
CO5				3	3	3	3

CODE YEGOE1	E	COURSE	NAM	E					L	Τ	Р	C
	1	ENGLIS WRITIN		OR	RES	EARCH	P	APER	2	0	0	0
UNIT I			0						1			6
-	ences, l	paration, W Being Con								-		-
UNIT II	5											6
	y Who	Did Wha	t. Hig	hlighti	ng Yo	ur Find	ings.	Hedgir	ng an	d (Criticiz	
	-	Plagiarism,	· ·	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>			6
UNIT III												6
Review of	f the Lite	erature, Met	hods, R	esults,	, Discu	sion, Co	nclusio	ons, The	e Fina	l Ch	eck.	
UNIT IV												6
•		ded when v ded when w	-		-					-		
the Litera			U			,				U		
UNIT V												6
Skills are	needed	when writin	g the M	lethods	s, skills	needed v	when v	riting t	he Re	sults	s, skill	s ar
pnrases, h		isure paper	is as go	od as i	t could	possibly	be the	first- ti	ime su	ıbmı	ssion	
pnrases, h		isure paper	is as go	od as 1	t could	possibly LECT		TUT			TOT	AL
pnrases, r		isure paper	is as go	od as 1	t could							AL
		isure paper	is as go	od as 1	t could	LECT		TUT			TOT	AL
REFERE	NCES					LECT 30	URE	TUT 0	ORIA		TOT 30	
REFERE 1. Go	NCES	R (2006) W1				LECT 30	URE	TUT 0	ORIA		TOT 30	
REFERE 1. Go Bo	Z NCES oldbort F ooks)	R (2006) W1	iting fo	r Scier	nce, Ya	LECT 30	URE rsity Pr	TUT 0 ress (av	ORIA ailabl	L e on	TOTA 30 Googl	le
REFERE 1. Go Bo 2. Da	ENCES oldbort F ooks) ay R (20		iting fo	r Scier	nce, Ya	LECT 30	URE rsity Pr	TUT 0 ress (av	ORIA ailabl	L e on	TOTA 30 Googl	le
REFERE 1. Go Bo 2. Da Pr	D NCES oldbort F ooks) ay R (20 ess	R (2006) W1 06) How to	iting fo Write a	r Scier Ind Pul	nce, Ya blish a	LECT 30 le Univer	URE rsity Pr c Paper	TUTO 0 ress (av	ORIA ailabl	L e on Univ	TOT 30 Googl	le
REFERE 1. Go Bo 2. Da Pr 3. Hi	CNCES oldbort F ooks) ay R (20 ess ighman l	R (2006) W1	iting fo Write a andboo	r Scier nd Pul k of W	nce, Ya blish a ⁷ riting f	LECT 30	URE rsity Pr c Paper athema	TUTO 0 ress (av r, Camb	o RIA ailable ridge	L e on Univ	TOTA 30 Googl versity [AM.	le
REFERE 1. Go Bo 2. Da Pr 3. Hi 4. Ao	CNCES oldbort F ooks) ay R (20 ress ighman I drian Wa	R (2006) W1 06) How to N (1998), H	iting fo Write a andboo glish for	r Scier nd Pul k of W	nce, Ya blish a ⁷ riting f ng Rese	LECT 30	URE rsity Pr c Paper athema	TUTO 0 ress (av r, Camb	o RIA ailable ridge	L e on Univ	TOTA 30 Googl versity [AM.	le
REFERE 1. Go Bo 2. Da Pr 3. Hi 4. Ao Do	ENCES oldbort F ooks) ay R (20 ess ighman I drian Wa ordrecht	R (2006) W1 06) How to N (1998), H allwork, Eng	iting fo Write a andboo glish for	r Scier nd Pul k of W	nce, Ya blish a ⁷ riting f ng Rese	LECT 30	URE rsity Pr c Paper athema	TUTO 0 ress (av r, Camb	o RIA ailable ridge	L e on Univ	TOTA 30 Googl versity [AM.	le
REFERE 1. Go Bo 2. Da Pr 3. Hi 4. Ao Do	ENCES oldbort F ooks) ay R (20 ess ighman I drian Wa ordrecht	R (2006) W1 06) How to N (1998), H allwork, Eng Heidelberg	iting fo Write a andboo glish for	r Scier nd Pul k of W	nce, Ya blish a /riting f ng Rese	LECT 30	URE rsity Pr c Paper athema pers, Sj	TUTO 0 ress (av r, Camb	o RIA ailable ridge	L e on Univ es, Sl York	TOTA 30 Googl versity [AM.	le
REFERE 1. Go Bo 2. Da Pr 3. Hi 4. Ao Do Co	ENCES oldbort F ooks) ay R (20 ess ighman I drian Wa ordrecht	R (2006) W1 06) How to N (1998), H allwork, Eng Heidelberg) Mapping	iting fo Write a andboo glish for Londor	r Scier nd Pul k of W Writi h, 2011	nce, Ya blish a Vriting f ng Rese l	LECT 30	URE rsity Pr c Paper athema pers, Sj	TUTO 0 ress (av c, Camb ntical So pringer	o RIA ailabl ridge cience New	L e on Univ es, Sl York	TOTA 30 Googl versity [AM.	le
REFERE 1. Go Bo 2. Da Pr 3. Hi 4. Ao Do Co	ENCES oldbort F ooks) ay R (20 ess ighman I drian Wa ordrecht O Vs PC	R (2006) W1 06) How to N (1998), H allwork, Eng Heidelberg) Mapping	iting fo Write a andboo glish for Londor	r Scier nd Pul k of W Writi h, 2011	nce, Ya blish a ⁷ riting f ng Rese	LECT 30 le Univer Scientific or the Ma earch Pap PO4	URE rsity Pr c Paper athema pers, Sj	TUTO 0 ress (av c, Camb ntical So pringer	oridge cience New	L e on Univ es, Sl York	TOTA 30 Googl versity [AM. 2 PO7	le
REFERE 1. Go Bo 2. Da Pr 3. Hi 4. Ao Do Co	ENCES oldbort F ooks) ay R (20 ess ighman I drian Wa ordrecht O Vs PC	R (2006) W1 06) How to N (1998), H allwork, Eng Heidelberg) Mapping	iting fo Write a andboo glish for Londor	r Scier Ind Pul k of W Writi h, 2011 PO 3	nce, Ya blish a Vriting f ng Rese	LECT 30 le Univer Scientific or the Ma earch Pap PO4 1	URE rsity Pr c Paper athema pers, Sj	TUTO 0 ress (av c, Camb atical So pringer PO5 3	ailabl ridge cience New PO 2	L e on Univ es, Sl York	TOTA 30 Googl versity [AM. 2	le
REFERE 1. Go Bo 2. Da Pr 3. Hi 4. Ao Do Co	NCES oldbort F ooks) ay R (20 ess ighman I drian Wa ordrecht O Vs PC	R (2006) W1 06) How to N (1998), H allwork, Eng Heidelberg) Mapping	iting fo Write a andboo glish for Londor	r Scier nd Pul k of W Writi h, 2011 PO 3 3	nce, Ya blish a Vriting f ng Reso l	LECT 30 le Univer Scientific or the Ma earch Pap PO4 1 1	URE rsity Pr c Paper athema pers, Sj	TUTO 0 ress (av c, Camb ntical So pringer PO5 3 2	ORIA ailabl ridge cience New PO 2 3	L e on Univ es, Sl York	TOTA 30 Googl versity [AM. 2 3	le

Semester	I						
Course Nar	me Process Mo	Process Modelling and Simulation Laboratory					
Course Cod	de YRE109						
L –T –P –C	1 -	C:P:A	L –T –P –H				
0 - 0 - 2 - 2		0:1:0	0-0-2-4				
CO	CO STATEMEN	TATEMENT Knowledge Lev					

Number								
C01		ot-finding a	algorithms				K6	
CO2		Code root-finding algorithms Code integration algorithms					K6	
CO3							K3	
005	Simulate Continuously Stirred Tank ReactorK3(CSTR) under gravity conditions							
CO4	Simulate Continuously Stirred Tank Reactor K3							
	(CSTR) under 3D isothermal (open loop and							
	closed lo	oop) condit	ions					
CO5			•			STR) under	K3	
<u> </u>			nonisother					
CO6	Simulate	an inhous	e biomass e	energy rela	ted proble	m.	K3	
LABOR	ATORY E	XERCISI	ES					
1. Iterativ	ve bubble p	oint calcul	ation using	"Newton-	Raphson"	optimizatio	on algorithr	n.
2. Iterative bubble point calculation using "interval-halving" algorithm.								
3. First-o	rder explic	it Euler int	egration of	a given fu	nction.			
4. Runge	-kutta integ	gration algo	orithm of a	given func	tion.			
5.Simulat	tion of Gra	vity-flow t	ank simula	tion				
6.Simulation of Three-isothermal CSTR (Open loop)								
7. Simulation of Three-isothermal CSTR (closed loop)								
8. Simula	ation of nor	nisotherma	I CSTR (O	pen loop)				
9. Simula	ation of Ro	ot locus pr	ogram for t	hree-CSTF	R process.			
10.Study	of biomass	s gasificati	on plant					
11. Prepa	ration of P	rocess mo	delling syst	em for bio	mass gasif	ication plar	nt	
12. Simu condition		rocess mod	lelling syst	em for bio	mass gasi	fication pla	nt under va	arying loa
Lecture :	= 0 Hours		Tutorial =	0 Hours	Pract	ical =30 He	ours	Total = 3
Hours								
REFERI	ENCES							
1.W. L I Edn,	Luyben, "P	Process Mo	delling, Si	mulation a	and contro	ol for chem	ical Engin	eers" 2 n
	Hill Book	Co. New Y	7 ork, 1990					
McGraw								
	g of COs w	ith POs						1
Mapping	g of COs w PO1	ith POs PO2	PO3	PO4	PO5	PO6	PO7	
	g of COs w	ith POs	PO3 3	PO4	PO5 0	PO6 2	PO7 2	

CO3

CO4	3	3	3	1		2	2
CO5	3	3	3	1	0	2	2
CO6	3	3	3	1	0	2	2
Total	18	18	18	6	0	12	12

Semest	ter	II				
Course	e Name					
Course	irse Code YRE201					
L –Т –Р –С		L	C:P:A	L – T – P – H		
3-0-0-3			3:0:0	3-0-0-3		
CO	COSTATEMENT			Knowledge Level		
CO1	Identify	different Bi	К3			
	propertie	es				
CO2	Summar	rize the Gove	K3			
	of bio fuel in India.					
CO3	Categor	K4				
	properties and applications					
CO4	<i>Develop</i> bioenergy conversion through biochemical K3					
	route.					
CO5	Develop	bioenergy co	K3			
CO6	<i>Plan</i> to improve the thermal efficiency by designing suitable K3					
	systems for heat recovery and co-generation					
Object	Objectives					

✤ Describe the fundamentals of biofuel types and their generations.

- ✤ Identify the sources and definitions used for biomass and basic biomass conversion.
- Clearly define the extent of bioenergy use worldwide and the incentives or disincentives for use in India.
- Detail the digestion and fermentation Technologies in biogas plants.
- Detail the combustion and Gasification Technologies in common use.
- Describe the power generation scenario, the layout components of power plant and analyze Cogeneration cycle.

COURSE CONTENT

UNIT I	BIO FULES	9 Hours			
	Bio fuels: types, Properties and sources- Bio fuels first,	second and third			
	generation production processes and technologies- Bio diesel comparison with				
	diesel - Biofuel applications - Bio diesel and Ethanol as a fuel for I.C. engines -				
	Relevance with Indian Economy - Bio-based Chemicals	and Materials -			
	Commercial and Industrial Products - Govt. Policy and S	Status of Bio-fuel			

	technologies in India.	
UNIT II	CHARACTERISATION OF BIOMASS	9 Hours
	Biomass: Sources and Classification. – Properties - Energy Preparation of biomass. Size reduction- Briquetting of loose storage and handling of biomass. Conversion of biomass. Biomain liquid and gaseous fuel production. Effect of particle size products obtained – Processing of various biomass for gas produced and Electrical application.	biomass - Drying, hass processing for , temperature, on uction for Thermal
UNIT III	BIOGAS TECHNLOGY	9 Hours
	Feed stock for biogas production, animal residues, Aqueous biodegradable organic matter- Microbial and biochemical as operating parameters for biogas production- Kinetics and mecha fermentation. Digesters-types-digesters for rural application – I for industrial waste water treatment	pects- factors and anism-Dry and wet
UNIT IV	GASIFICATION OF BIOMASS	9 Hours
	Thermo chemical Principles: Effect of pressure, temperatures steam and oxygen. Design and operation of fixed and fluid circulating fluidized bed gasifiers, Safety aspects, operating moving bed and fluidized bed gasifier- different type disadvantages- performance analysis of gasifiers.	ized bed Gasifier, characteristics of s- advantages and
UNIT V	COMBUSTION OF BIOMASS & COGENERATION SYSTEMS	9 Hours
Lecture =4	Combustion of woody biomass – theory, calculations and des Cogeneration in biomass processing industries. – Econom Combustion of rice husk. Use of bagasse for cogeneration. 5 Hours Tutorial = 0 Hours Total = 45 J	nic Case studies:
Bion 2. Mitt publ REFEREN 1. Ven	kraverthy A, "Biotechnology and Alternative Technologies mass or Agricultural Wastes", Oxford & IBH publishing Co, 1989 al K.M "Biogas Systems: "Principles and Applications" New ishers (P) Ltd 1996, Nijaguna, B.T Biogas Technology, New ishers (P) Ltd CE BOOKS kata Ramana P and Srinivas S.N, "Biomass Energy Systems", IS 5, Tata Energy Research Institute, 1996.	9. 7 age international 7 age International
	ss D.L and Emert G.M, "Fuels from Biomass and Wastes", Ann Michigan, 1985.	Arbor Since Publ.

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	3	2	1	2	1	2	1
CO2	2	1	1	3	3	3	3

CO3	2	2	2	1	2	1	3
CO4	2	2	2	1	2	1	3
CO5	2	2	2	1	2	1	3
CO6	3	3	2	1	3	2	2
Total	14	12	10	9	13	10	15

YRE 202 - COMPUTATIONAL FLUID DYNAMICS3 0 0 3

UNIT - I GOVERNING DIFFERENTIAL EQUATION AND FINITE DIFFERENCE METHOD

Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerical Errors, Grid Independence Test.

UNIT - II CONDUCTION HEAT TRANSFER

Steady one-dimensional conduction, Two and Three-dimensional steady state problems, Transient one-dimensional problem, Two-dimensional Transient Problems.

UNIT - III INCOMPRESSIBLE FLUID FLOW

Governing Equations, Stream Function - Vorticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and Spalding, Computation of Boundary layer flow, Finite deference approach.

UNIT - IV CONVECTION HEAT TRANSFER AND FEM

Steady One-Dimensional and Two-Dimensional Convection - Diffusion, Unsteady onedimensional convection -Diffusion, Unsteady two-dimensional convection - Diffusion -Introduction to finite element method - Solution of steady heat conduction by FEM -Incompressible flow - Simulation by FEM.

UNIT - V TURBULENCE MODELS

Algebraic Models - One equation model, K-I Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes.

L:45; T:15; Total :60

TEXT BOOK

1. Anderson ,D.A Tannehill, I I and Pletcher , R,H "Computational Fluid Mechanics and Heat transfer" Narosa Publication House, NewYork, USA,1984

REFERENCES:

- 1. Muralidhar, K.,and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa PublishingHouse, New Delhi1995.
- 2. Ghoshdasdidar, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw-Hill PublishingCompany Ltd., 1998.
- 3. Anderson, D.A., Tannehill, I.I., and Pletcher, R.H., "Computational Fluid Mechanics and Heat Transfer", Hemishphere Publishing Corporation, New York, USA, 1984.

10

7

8

10

10

- Semester Π ELECTRICAL ENERGY TECHNOLOGY Course Name Course Code **YRE203** L - T - P - CC:P:A L - T - P - H3-0-0-3 3:0:0 3 - 0 - 0 - 3**Course Outcome Domain/Level** C or P or A **CO1** Demonstrate the power system and its fundamentals. K2 **CO2** *Illustrate* the various electric energy conversion devices K2 and its applications. *Classify* various Solid-state Power Converters and drives CO3 K2 and its importance. **CO4** Demonstrate the various Hybrid Power generation K2 methods and its importance. Demonstrate the various Smart grid systems and its CO5 K2 importance. **Relate** various Power quality improvements methods and CO6 K2 its significances. The objective of this course ✤ To learn about work various power system components. To learn about application of various electric energy conversion devices To classify about various Power converters and drives. ✤ To understand the various methods of hybrid power generation and power quality improvement. **COURSE CONTENT** UNIT I **7 HRS** POWER SYSTEM FUNDAMENTALS Single line representation - power flow study - power factor improvement, Protection, types of relays, symmetrical components, asymmetrical components, Introduction: Hybrid power system. HVDC introduction, various coupling methods. **UNIT II** ELECTRIC ENERGY CONVERSION DEVICES 9 HRS Transformers – Parallel operation, auto transformers, DC machines, Applications of DC machines – performance equation - generator characteristics - motor characteristics - applications of Synchronous machines - alternators – Induction machines. UNIT III SOLID-STATE POWER CONVERTERS AND DRIVES 9 HRS
- 4. Flectcher, C.A.J., "Computational Techniques for Different Flow Categories, Springer-Verlage 1987.

	Controlled	d rectifiers	s, chopper	s, inverter	s, voltage	regulator	s and cy	clo -			
	converters				-	-					
	-				- converte	er fed chop	per -fed co	ontrol			
	Inverter –ac voltage regulators, VFD.										
UNIT IV	HYBRID POWER GENERATION6 HRS										
	Types of hybrid systems, Integration issues - Steady state performance of Wind-driven induction generators. Grid connected solar photo voltaic system - line commutated converters - Boost converters- selection of inverter. Three phase AC voltage controllers for wind power plants - uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.										
UNIT V	SMART (GRIDS					3 HRS				
	Micro Grids, Intelligent Grids, Smart grids, Phase Monitoring Unit (PMU), Case studies										
UNIT V	POWER	QUALITY	IMPRO	VEMENT			11 HR	S			
publ 2. T.JE 3. M.H 4. Arin	filters: pa compensa FACT con Status of a IS hrs Tut OKS i J Graign ishinig con C. Miller "F. I.Rasheed " dam Ghosh demic Publi	tion using atrolled de application torial = 0 I ner and a apany, 199 ACT contr Power Elec a "Power Q ishers, 200	ive and h STATCOM vices, DVF of custom mrs Practi W.D Stev 4. olled devic ctronics" T quality Enh	ybrid filte 1 / DSTAT R. UPQC c power dev ical=0 hrs enson "Po e" Johan w ata Mc Gra	ers. Custo COM, Vol control stra ices. Total = 45 ower syste villey Publi	em analysications.	devices: ttion. FC, P-Q th	Load neory, awHill			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7				
CO1	3	2	3	3	2	1	3	1			
CO2	3	2	3	2	2	1	2	1			
CO3	3	2	3	2	2	1	2]			
CO4	3	2	3	3	2	1	3				
CO5	3	1	3	3	2	1	3				
CO6	3	3	3	2	2	1	2				
Total	18	12	18	15	12	6	15				

Semester	II						
Course Name Computational Fluid Dynamics Laboratory							
Course Code	YRE206						
L –T –P –C		C:P:A	L –T –P –H				

0-0-	2-2	1:0:0						0-0-2-4
CO	CO STATEMENT							Knowledge Level
CO1	Simulate lid-driven of	cavity and co	onvecti	on proc	cess			К3
CO2	Simulate incompress		K3					
COA	problems in pipe							
CO3	<i>Simulate</i> incompre- problems in pipe	ssible turbu	ilent f	luid fl	OW			K3
CO4	Simulate wind turbi	ne models in	n comp	oressibl	e fluid			K3
	flow environment		-					
CO5	Simulate draining ta	nk, falling ba	all exp	eriment	ts and C	CSTR.		K3
CO6	Explain various c	onvection a	spects	of R	lenewa	ble En	ergy	K3
	systems. List of Experiments							
1.	Simulation of lid-driv	on opvitu						
	Simulation of heat co	-	20	distor				
2.					11			
	Incompressible lamin							
	Incompressible lamin						e.	
	Incompressible turbu							
	Incompressible turbu		w simi	llation	in I-sn	aped pi	pe.	
	Wind Turbine simula							
	Draining of a 3D flui							
	Falling ball experime		lon.					
	Simulation of 3D CS							
	Study of Natural con-							
	Study of forced conv							
Lectur	re = 0 Hours Tuto	rial = 0 Hou	rs	Prac	tical =3	30 Hou	rs	
To	otal = 45 Hours							
REFE	RENCES							
1.	https://cfd-training.co	0m/2018/08/	12/turb	ulent-f	low-in-	a-90-be	end/	
2.	https://www.openfoa	m.com/docu	mentat	ion/tuto	orial-gu	ide/		
	Mapping of COs with	th PO						_
	P		PO3	PO4	PO5	PO6	PO7	

CO1

CO2

CO3	3	3	2	2	3	1	1
CO4	3	3	2	2	3	1	1
CO5	3	3	2	2	3	1	1
CO6	3	3	2	2	3	1	1
Total	18	18	12	12	18	6	6

1 - Low, 2 – Medium, 3- High

Semester	I							
Subject Nan	ne BIO ENERGY LABORATORY	BIO ENERGY LABORATORY						
Subject Cod	le YRE207							
L –T –P –C	C:P:A	L –T –P –H						
0-0-2-2	0:1:0	0-0-2-4						
Course Out	come	Domain/Level						
		C or P or A						
CO1	Calibrate the performance of Flue gas analysis and							
CO2	properties of given sample. <i>identify</i> the chemical, Biological oxygen demand and calorific values of given fuel.	P3 P3						
CO3	<i>identify</i> the Effect P_H levels on total dissolved solids	P3						
CO4	<i>identify</i> effect of milling time and particle size.	P3						
CO5	<i>identify</i> High Heating Value of given sample.	P3						
CO6	<i>Demonstrate</i> the operations in briquetting, biomass gasifier and biomethanation plant.	Р3						
Objectives								

Study the performance of Flue gas analysis
Study the performance Bio fuels Flash point, Fire point and Calorific value

COURSE CONTENT CO Relation

LIST O	F EXPERIMENTS	CO
1.	Flue gas analysis – IC engine and gasifier	1
2.	Determine the Density and Specific Gravity of a given sample	1
3.	Proximate and Ultimate analysis of given sample	1
4.	Analysis of chemical oxygen demand (COD)	2
5.	Analysis of biological oxygen demand (BOD)	2
6.	Determining the Flash point, Fire point and Calorific value of Biofuel	2
7.	Effect of P _H on total dissolved solids (TDS)	3
8.	Determine the effect of milling time on the Particle size and size reduction of	4

	given sample using Ball milling machine	
9.	Determine the higher heating value (HHV) of unleaded gasoline (or a similar fuel supplied by the instructor) using the adiabatic oxygen bomb calorimeter.	5
10.	Briquetting operation demonstration and study	6
11.	Biomethanation plant demonstration and study	6
12.	2kW Biomass gasifier demonstration and study	6

TOTAL HOURS - 30

TEXT BOOKS

- 1. Chakraverthy A, "Biotechnology and Alternative Technologies for Utilisation of Biomass or Agricultural Wastes", Oxford & IBH publishing Co, 1989.
- 2. Mittal K.M "Biogas Systems: "Principles and Applications" New age international publishers (P) Ltd 1996, Nijaguna, B.T Biogas Technology, New age international publishers (P) Ltd

REFERENCES

1. Venkata Ramana P and Srinivas S.N, "Biomass Energy Systems", ISBN 81-85419-25-6, Tata Energy Research Institute, 1996.

2. Klass D.L and Emert G.M, "Fuels from Biomass and Wastes", Ann Arbor Since Publ. Inc. Michigan, 1985.

3. O.P.Chawla, "Advances in Bio-gas Technology" I.C.A.R., New Delhi, 1970.

FF	Mapping of COS with 1 OS									
	P01	P02	P03	P04	P05	P06	P07			
CO1	3	1	3	3	1	2	1			
CO2	3	3	2	2	1	2	1			
CO3	3	3	2	2	1	2	1			
CO4	3	3	3	3	1	2	3			
CO5	3	2	3	3	1	2	1			
CO6	3	3	2	2	1	2	1			
Tot	18	15	15	15	6	12	8			

Mapping of COs with POs

COURSE	COURSE NAME	L	Т	Р	С
CODE					
YPSOE1	CONSTITUTION OF INDIA	2	0	0	0
UNIT I HIST	ORY AND PHIOLOSOPHY				6
History of Making	ng of the Indian Constitution: History-Draft	ing Committee, (Comp	ositio	n &
Working) Philos	ophy of the Indian Constitution: Preamble-S	alient Features			
UNIT II CONT	OURS OF CONSTITUTIONAL RIGHTS	S & DUTIES:			6
Fundamental Rig	thts -Right to Equality-Right to Freedom-Ri	ght against Explo	oitation	n-Rigl	nt to
Freedom of Rel	igion-Cultural and Educational Rights-Rig	ght to Constitution	onal F	Remed	lies-
Directive Princip	les of State Policy-Fundamental Duties.				
UNIT III ORG	ANS OF GOVERNANCE:				6

Commissioners. State Election Commission: Role the welfare of SC/ST/OBC and women.	LECTURE	TUTORIAL	TOTA						
Commissioners State Election Commission, Rold	e and Function	ng. Institute and	Bodies :						
Election Commission: Role and FunctioningC									
UNIT V ELECTION COMMISSION: 6									
level: Role of Elected and Appointed officials, Importance of grass root democracy									
e e e e e e e e e e e e e e e e e e e	· · · · · · · · · · · · · · · · · · ·	L	1 A A A A A A A A A A A A A A A A A A A						
Position and role. Block level: Organizational I			•						
Introduction, PRI: Zila Pachayat. Elected offic		1	•						
and role of Elected Representative, CEO of	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						
District's Administration head: Role and Import	anceMunicipa	alities: Introduct	tion. May						
UNIT IV LOCAL ADMINISTRATION									
Judges, Qualifications-Powers and Functions									
Executive-President-Governor-Council of Ministers-Judiciary, Appointment and Transfer of									
Executive-President-Governor-Council of Minister	Parliament-Composition-Qualifications and Disqualifications-Powers and Functions-								

1. The Constitution of India, 1950 (Bare Act), Government Publication.

- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

CO Vs PO N	Aapping						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1				3		1	1
CO2				3		1	1
CO3				3		1	1
CO4				3		1	1
CO5				3		1	1

Semester		III				
Course Na	ame	Project Phase – I				
Course Co	ode	YRE301				
L –T –P –	C		C:P:A	L –T –P –H		
0-0-10-	· 10		2:0.5:0.5	0-0-20-20		
CO Number	CO	STATEMENT		Knowledge Level		
CO1	<i>Ident</i> whicl proje	К3				
CO2	<i>Desci</i> probl	К3				
CO3	Selec differ	К3				
CO4	Design the project model with relevant detailed subassemblies and technical drawings with detailed action plan for implementation.					
CO5	<i>Identify</i> the methods and materials required for manufacturing the project work K3					
CO6	-	<i>Prepare</i> a consolidated technical report of the project apart from developing a presentation				
Objective	S					

- To collect various literatures in the research interest area, study, understand the works already prevailing in the interested project work area.
- To get the knowledge about various elements of research works, various methods in proceeding the project work and selecting suitable one with action plan
- Understand and able to apply the basics concepts of design in the role of making the project into reality.
- ✤ To prepare a project report and presentation with the collected data ,with available details

LOOK INTO THE FOLLOWING DETAILS TO MEET THE OUTCOMES IDENTIFICATION OF PROJECT WORK AREA

Overview of various renewable energy topics for performance improvement, optimality, etc. Hydropower systems-Wind energy systems, Solar energy systems, and other systems about Project Feasibility-Literature review collections

SELECTION OF RELEVANT PROJECT TITLE

Based on the detailed literature review, Identification of gap area and formulation of suitable project title

DESIGN THE PROJECT WORK MODEL WITH DETAILED DRAWINGS / CHARECTERIZATION METHODS

Design the project model with its assemblies into sketches /technical drawings with dimensions with CAD tools. For performance and analysis characterization projects, needs to identify the characterization sequences

IDENTIFICATION OF METHODS AND MATERIALS REQUIRED TO MANUFACTURE THE PROJECT

Identification of suitable methods and bill of materials, cost involved and suitable manufacturing method, to make the design model into reality and performing the activities, Execution of the activities production and running of the system.

DATA COLLECTION, ANALYSIS, PROJECT REPORT PREPARATION

Checking the working of the system/model, Fundamental knowledge of data collection, analysis, interpretation of data with details and project report writing and making ready the power point presentation

TEXT BOOKS / REFERENCE BOOKS

- 7. Old approved project reports of our department and other department project report copies.
- 8. Refer other university and engineering college project reports.

Mapping of COs with POs

					10		
	P01	PO2	£O3	P04	SOJ	90d	PO7
CO1	2	2	1	1	1	1	1
CO2	2	2	1	1	1	1	1
CO3	2	2	1	1	1	1	1
CO4	2	2	1	1	1	1	1

CO5	2	2	1	1	1	1	1
CO6	2	2	1	1	1	1	1
Total	12	12	6	6	6	6	6

1 - Low, 2 – Medium, 3- High

Semester	IV			
Course Nat	me Project Phase – II			
Course Co	de YRE401			
L –T –P –C	C	C:P:A	L –T –P –H	
0-0-16-	16	0:1.5:1.5	0-0-32-32	
СО	CO CO STATEMENT			
CO1	build individual parts or sam	P5		
CO2	Assemble individual parts to	P5		
	<i>Perform</i> characterization study or design calculation on objects related to project.			
	<i>Compose</i> the important findings as scientific drawing, chart, plot and table			
CO5	Prepare a consolidated tech	A4		
CO6	Present a consolidated tech	A2		

Objectives

To prepare sample / parts related to project work.

✤ To characterize prepared samples or parts related to project work.

- ✤ To compose important findings as scientific data.
- ✤ To prepare and present technical report of the project.

Mapping of COs with POs

Mapping of COS with 1 OS									
	PO1	P02	P03	P04	P05	P06	P07		
CO1	2	1	2	1	1	1	1		
CO2	3	2	2	2	1	1	1		
CO3	2	3	2	1	1	1	1		
CO4	3	3	2	2	3	1	1		
CO5	3	1	3	3	2	1	1		
CO6	3	1	2	3	1	1	1		
Total	16	11	1 3	12	9	6	6		
1 Low 2 Medium 3 High									

1 - Low, 2 – Medium, 3- High

SYLLABUS FOR

M.Tech Renewable Energy (PT) – 2022-23-ACADEMIC YEAR

QRE 301 - COMPUTATIONAL FLUID DYNAMICS 3 0 0 3

UNIT - I GOVERNING DIFFERENTIAL EQUATION AND FINITE DIFFERENCE METHOD 10

Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerical Errors, Grid Independence Test.

UNIT - II CONDUCTION HEAT TRANSFER

Steady one-dimensional conduction, Two and Three-dimensional steady state problems, Transient one-dimensional problem, Two-dimensional Transient Problems.

UNIT - III INCOMPRESSIBLE FLUID FLOW

Governing Equations, Stream Function - Vorticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and Spalding, Computation of Boundary layer flow, Finite deference approach.

UNIT - IV CONVECTION HEAT TRANSFER AND FEM

Steady One-Dimensional and Two-Dimensional Convection - Diffusion, Unsteady onedimensional convection -Diffusion, Unsteady two-dimensional convection - Diffusion -Introduction to finite element method - Solution of steady heat conduction by FEM -Incompressible flow - Simulation by FEM.

UNIT - V TURBULENCE MODELS

Algebraic Models - One equation model, K-I Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. L:45; T:15; Total :45

TEXT BOOK

1. Anderson ,D.A Tannehill, I I and Pletcher , R,H "Computational Fluid Mechanics and Heat transfer" Narosa Publication House, NewYork, USA,1984

REFERENCES:

1.Muralidhar, K.,and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa PublishingHouse, New Delhi1995.

2.Ghoshdasdidar, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw-Hill PublishingCompany Ltd., 1998.

3.Anderson, D.A., Tannehill, I.I., and Pletcher, R.H., "Computational Fluid Mechanics and Heat Transfer", Hemishphere Publishing Corporation, New York, USA, 1984.

4.Flectcher, C.A.J., "Computational Techniques for Different Flow Categories, Springer-Verlage 1987.

QRE 304- COMPUTATIONAL FLUID DYNAMICS LAB 0 0 4 2

The fluid engineering laboratory serves to provide the tools needed to analyze and solve fluid

flow problems in different engineering applications and to provide the link between theories with real life applications. The laboratory introduces the students to the fundamentals of

8

10

laminar and turbulent flow as well as state of art flow measurement techniques and equipment. The laboratory also includes state of the art computational fluid dynamics (CFD) software as important and effective tool in studying complex flow problems encountered in most industrial applications. The experiments involve th study of viscous flow applications, boundary layers, lift and drag on immersed bodies.

1.Introduction to fluid mechanics laboratory.

- 2.Experiments on flow patterns.
- 3. Velocity profile in an air pipe.
- 4. Wind tunnel calibration.
- 5.Draining of a tank.
- 6.Pipe friction.
- 7.Boundary layer studies.
- 8.Falling ball experiments.
- 9.Viscosity measurements. P:45; Total:45

QRE404 – MAT and SCI LAB 0 0 4 2

- 1. Integration Techniques: Trapezoidal method, Simpson's 1/3rd rule, Simpson's 3/8 rule
- 2. Finding root of Arithmetic Equation
- 3. Optimization Techniques
- 4. LPP methods
- 5. Transportation problems.
- 6. Image process of Bio gasification process

PYRE501 PROJECT PHASE – I 0 0 20 9

Guidelines:

The Project Work will start in semester III and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M. Tech. The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.

PYRE601 PROJECT PHASE – II 0 0 32 16

Guidelines:

It is a continuation of Project work started in semester III. He has to submit the report in prescribed format and also present a seminar. The dissertation should be presented in standard format as provided by the department. The candidate has to prepare a detailed project report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up or numerical details as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study. The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a guide, co-guide etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his guide.