

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.3	Average percentage of courses having focus on employability/ entrepreneurship/ skill Development offered by the Mechanical engineering

DEPARTMENT OF MECHANICAL ENGINEERING

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

S. No.	Programme Name
1.	Bachelor of Technology(Mechanical Engineering)(Full Time)
I2.	Master of Technology(Renewable Energy)(Full Time)

2. Syllabus of the courses as per the list.

Legend	Words highlighted with Blue Color	-	Entrepreneurship
:	Words highlighted with Red Color	-	Employability
	Words highlighted with Green Color	-	Skill Development

Name of the Course	Course Code	Year of Introduction	Activities/Content with direct bearing on Employability/ Entrepreneurship/ Skill development
B.Tech. I	Mechanical Eng	gineering (Full]	lime)
Calculus and Linear Algebra	XMA101	2018-19	Skill Development
Programming for Problem Solving	XCP102	2018-19	Employability
Applied Chemistry for Engineers	XAC103	2018-19	Skill Development
Engineering Graphics and Design	XEG104	2018-19	Skill Development
Speech Communication	XGS105	2021-22	Skill Development
Constitution of India	XUM106	2018-19	Skill Development
Programming for Problem Solving Laboratory	XCP107	2021-22	Employability
Applied Chemistry Laboratory for Engineers	XAC108	2021-22	Skill Development
Calculus, Ordinary Differential Equations and Complex Variables	XMA201	2018-19	Skill Development
Electrical and Electronic Engineering Systems	XBE202	2018-19	Skill Development
Applied Physics for Engineers	XAP203	2018-19	Skill Development
Technical Communication	XGS204	2021-22	Skill Development
Workshop Practices	XWP205	2008-09	Skill Development
Engineering Mechanics	XEM206	2018-19	Skill Development
Electrical and Electronic Engineering Systems Laboratory	XBE207	2018-19	Skill Development
Applied Physics for Engineers Laboratory	XAP208	2018-19	Skill Development
Transforms and Partial Differential Equations	XMA301	2022-23	Skill Development
Thermodynamics	XME302	2018-19	Skill Development
Strength of Materials	XME303	2018-19	Skill Development
Materials Engineering	XME304	2018-19	Skill Development
Machine Drawing	XME305	2021-22	Skill Development
Entrepreneurship Development	XUM306	2022-23	Entrepreneurship
Universal Human Values 2 : Understanding Harmony and gender	XUM307	2022-23	****
Strength of Materials Laboratory	XME308	2021-22	Skill Development
Computer Aided Drafting Laboratory	XME309	2022-23	****
In-plant Training - I	XME310	2018-19	Skill Development
Service Robotics with Drives and Sensors	XECHR1	2022-23	Skill Development
Probability Distribution and Statistical Methods	XMA401	2021-22	Skill Development
Applied Thermodynamics	XME402	2018-19	Skill Development

1. LIST OF COURSES

Fluid Mechanics and Fluid Machines	XME403	2018-19	Skill Development
Instrumentation and Control	XME404	2018-19	Skill Development
Economics for Engineers	XUM405	2018-19	Skill Development
Disaster Management	XUM406	2021-22	Skill Development
Thermal Engineering Laboratory	XME407	2021-22	Skill Development
Fluid Mechanics and Fluid Machines Laboratory	XME408	2021-22	Skill Development
Industrial Robotics and Automation	XECHR2	2022-23	Skill Development
Heat Transfer	XME501	2018-19	Skill Development
Solid Mechanics	XME502	2018-19	Skill Development
Manufacturing Processes	XME503	2018-19	Skill Development
Kinematics and Theory of Machines	XME504	2018-19	Skill Development
Professional Elective Course – I		2018-19	****
Open Elective Course – I		2018-19	****
Heat Transfer and Refrigeration Laboratory	XME507	2023-24	Skill Development
Kinematics and Theory of Machines Laboratory	XME508	2022-23	Skill Development
In-plant Training – II	XME509	2018-19	Skill Development
Fundamentals of ROS and Embedded in Robotics	XECHR3	2023-24	Skill Development
Artificial Intelligence and Computer Vision for Robotics	XECHR4	2023-24	Skill Development
Manufacturing Technology	XME601	2018-19	Employability
Design of Machine Elements	XME602	2018-19	Employability
Professional Elective Courses - II		2018-19	****
Open Elective Courses – II		2018-19	****
Professional Skills	XGS605	2023-24	Skill Development
Cyber Security	XUM606	2018-19	Employability
Machine Tools and Metrology Laboratory	XME607	2023-24	Employability
Tool Design and Drawing Laboratory	XME608	2023-24	Employability
Deep Learning for Robotics	XECHR5	2023-24	Skill Development
Open Elective-I		2018-19	****
Automation in Manufacturing	XME702	2018-19	Employability
Elective III		2018-19	****
Elective-IV		2018-19	****
Elective V		2018-19	****
Cyber Security	XUM706	2018-19	Employability
Mechanical Engineering Laboratory VI (Special Machines)	XME707	2023-24	Employability
Project phase – I	XME708	2018-19	Employability
Inplant Training – III (30 days)	XME709	2018-19	Skill Development
Non Destructive Testing	XMEM03	2018-19	Employability
Open Elective-II		2018-19	****

Open Elective-III		2018-19	****
Elective VI		2018-19	****
Project phase – II	XME804	2018-19	Employability
M.TECH R	ENEWABLE H	ENERGY (FULI	L TIME)
Solar Energy Systems	YRE101	2018-19	Employability
Wind, Ocean, Hydro and Geothermal Energy Systems	YRE102	2023-24	Employability
Process Modelling in Energy Systems	YRE103	2023-24	Employability
Professional Elective – I		2018-19	****
Professional Elective – II		2018-19	****
Solar Energy Laboratory	YRE106	2022-23	Skill Development
Research Methodology and IPR	YRM107	2018-19	Entrepreneurship/ Skill Development
English for Research Paper Writing	YEGOE1	2018-19	Entrepreneurship/ Skill Development
Process Modelling and Simulation Laboratory	YRE109	2022-23	Skill Development
Bio Energy Systems	YRE201	2018-19	Employability
Computational Fluid Dynamics	YRE202	2018-19	Employability
Electrical Energy Technology	YRE203	2018-19	Employability
Professional Elective – III		2018-19	****
Professional Elective – IV		2018-19	****
Computational Fluid Dynamics Laboratory	YRE206	2022-23	Skill Development
Bio Energy Laboratory	YRE207	2022-23	Skill Development
Constitution of India	YPSOE1	2018-19	Employability
Dissertation Phase – I	YRE301	2018-19	Employability/ Entrepreneurship/ Skill Development
Professional Elective - V		2018-19	****
Open Elective Course		2018-19	****
Dissertation Phase – II	YRE401	2018-19	Employability/ Entrepreneurship/ Skill Development

2. SYLLABUS FOR B.TECH MECHANICAL (FT) ACADEMIC YEAR 2023-24

Semester	I									
Subject Name	oject Name CALCULUS AND LINEAR ALGEBRA									
Subject Code	XMA101									
L –T –P	-С	C:P:A	L –T –P –H							
3-1-0	- 4	3:0.5:0.5	3-1-0-4							

PREREQUISITE: Differentiation and Integration

Course	e Outcome	Domain/Level									
		C or P or A									
CO1	Apply orthogonal transformation to reduce quadratic form	K1, K3									
CO2	Apply power series to tests the convergence of the sequences and series. Half range Fourier sine and cosine series	K1, K3									
 CO3 Find the derivative of composite functions and implicit K1, 1 Euler's theorem and Jacobian 											
CO4	 CO4 Explain the functions of two variables by Taylors K1, K2, A1 expansion, by finding maxima and minima with and without constraints using Lagrangian Method. Directional derivatives Gradient Curl and Divergence 										
CO5	Apply Differential and Integral calculus to notions of Curvature and to improper integrals	К3									
CO6	Analyze the given sequence is convergent or divergent by using the appropriate tests	K4									
UNIT	I Matrices	12 HRS									
	Linear Transformation - Eigen values and Eigen vector Eigen values and Eigen vectors - Cayley-Hamil Diagonalisation of Matrices – Real Matrices: Syn Symmetric and Orthogonal Quadratic form – canonical Quadratic form and Transformation of Quadratic form to (Orthogonal only).	ors -Properties of ton Theorem – nmetric - Skew- form - Nature of to Canonical form									
UNIT	II Sequences and series	12 HRS									
	Sequences: Definition and examples-Series: Types a Series of positive terms – Tests of convergence: compar- test and D'Alembert's ratio test Fourier series: Half ran series- Parseval's Theorem.	and convergence- rison test, Integral ge sine and cosine									
UNIT	III Multivariable Calculus: Partial Differentiation	12 HRS									
	Limits and continuity –Partial differentiation – Total Deri differentiation of Composite Functions: Change of Variat	vative – Partial oles – Differentiation									

of an Implicit Function - Euler's Theorem- Jacobian.

UNIT IVMultivariable Calculus: Maxima and Minima and Vector12 HRSCalculusCalculusTaylor's theorem for function of Two variables- Maxima, Minima of functions
of two variables: with and without constraints - Lagrange's Method of
Undetermined Multipliers - Directional Derivatives - Gradient, Divergence
and Curl.UNIT VDifferential and Integral Calculus12 HRS

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

L = 45 hrs T = 15 hrs P=0 hrs Total = 60 hrs

TEXT BOOKS

1. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill New Delhi, 11th Reprint, 2015. (Unit-1, Unit-3 and Unit-4).

2. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2014. (Unit-2).

3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40th Edition, 2010. (Unit-5).

REFERENCES BOOKS

1. G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.

2. Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi, 2008.

3. D. Poole, "Linear Algebra: A Modern Introduction", 2nd Edition, Brooks/Cole, 2005.

4. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

E REFERENCES

- 1. https://www.indiabix.com/c-programming/questions-and-answers/
- 2. https://www.javatpoint.com/c-programming-language-tutorial
- 3. https://www.w3schools.in/c-tutorial/

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA1 0	GA1 1	GA1 2
CO 1	3	2			2					1		2
CO 2	3	1								1		1
CO 3	3	1								1		1
CO 4	3	2								1		1
CO 5	3	2			1					1		2
	15	8	0	0	3	0	0	0	0	5	0	7
Scale d Value	3	2			1					1		
$1-5 \rightarrow$	• 1,	•	6 – 10	$0 \rightarrow 2$,		. 11	- 15 -	→ 3		•		•

Mapping of COs with GA

Semes	ter	Ι										
Subjec	et Name	e PROG	PROGRAMMING FOR PROBLEM SOLVING									
Subjec	ct Code	XCP1	02									
	L –I	С –Р –С			C:P:A		L –T –P –H					
	3-0	- 0- 3			3:0:0		3-0-0-3					
Course	e Outco	me				_	Domain/Level					
							C or P or A					
CO1	Define	programn	ning fun	damentals	and Solve	simple	K1, K2, K3					
CO2	programs using I/O statementsD2Define syntax and write simple programs using controlK1, K2, F											
CO3	structur Explai	res and arra <i>n</i> and <i>write</i>	ys simple pi	rograms us	ing functions	and	K1, K2, K3					
CO4	<i>Explai</i>	s n and write	simple pi	rograms us	ing structures	and	K1, K2, K3					
CO5	 5 <i>Explain</i> and <i>write simple programs</i> using files and <i>Build</i> K1, K2, K3 											
The ob	ojective	of this cou	rse									
*	To lear	n programn	ning lang	uage basics	and syntax							
*	To igni	te logical th	ninking									
*	To und	erstand stru	ctured pr	ogramming	, approach							
*	To deal	l with user o	defined da	ata types								
*	To kno	w about dat	a storage	in seconda	ry memory							
COUR	RSE CO	NTENT										
UNIT	'I P S'	ROGRAM TATEMEN	MING NTS	FUNDA	MENTALS	AND	I/O 9HRS					
	Introduction to components of a computer system, Program – Flowchart – Pseudo code – Software – Introduction to C language – Character set – Tokens: Identifiers, Keywords, Constants, and Operators – sample program structure -Header files – Data Types- Variables - Output statements – Input statements.											
UNIT	II C	ONTROL	STRUC	FURE ANI	D ARRAYS		9HRS					
	C U A	ontrol Struc nconditiona rrays: One	ctures – C al control Dimensio	Conditional structures: onal Array	Control state switch, break – Declaration	ments: Bra , continue, – Initializ	nching, Looping - goto statements – ation – Accessing					

Array Elements – Searching – Sorting – Two Dimensional arrays -Declaration – Initialization – Matrix Operations – Multi Dimensional Arrays - Declaration – Initialization. Storage classes: auto – extern – static. Strings: Basic operations on strings.

UNIT III FUNCTIONS AND POINTERS

Functions: Built in functions – User Defined Functions - Parameter passing methods - Passing arrays to functions – Recursion - Programs using arrays and functions. Pointers - Pointer declaration - Address operator - Pointer expressions & pointer arithmetic - Pointers and function - Call by value - Call by Reference - Pointer to arrays - Use of Pointers in self-referential structures-Notion of linked list

UNIT IV STRUCTURES AND UNIONS

Structures and Unions - Giving values to members - Initializing structure -Functions and structures - Passing structure to elements to functions - Passing entire function to functions - Arrays of structure - Structure within a structure and Union.

UNIT VFILES9HRSFile management in C - File operation functions in C - Defining and opening a
file - Closing a file - The getw and putw functions - The fprintf & fscanf
functions - fseek function - Files and Structures.9HRS

L = 45 hrs T = 0 hrs P=0 hrs Total = 45 hrs

TEXT BOOKS

- 1. Byron Gottfried, "Programming with C", III Edition, (Indian Adapted Edition), TMH publications, 2010
- 2. Yeshwant Kanethker, "Let us C", BPB Publications, 2008

REFERENCES BOOKS

- 1. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill, 7th edition 2017.
- **2.** Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education Inc. 2005
- **3.** Johnson baugh R. and Kalin M., "Applications Programming in ANSI C", III Edition, Pearson Education India, 2003

E REFERENCES

- 1. https://www.indiabix.com/c-programming/questions-and-answers/
- 2. <u>https://www.javatpoint.com/c-programming-language-tutorial</u>
- 3. https://www.w3schools.in/c-tutorial/

Mapping of COs with PO

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	P O 12	PSO 1	PSO 2
CO 1	3	2	0	0	3	0	0	0	0	0	2	3	2	0
CO 2	3	2	0	0	2	0	0	0	0	0	2	3	2	0
CO 3	2	2	1	2	2	0	0	0	0	0	2	2	2	0

9HRS

9HRS

CO 4	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO 5	2	2	1	0	2	0	0	1	0	2	2	2	2	0
Tot al	12	10	3	4	11	0	0	1	0	2	10	12	10	0

1 - Low, 2 – Medium, 3- High

		_		
Semes	ster	I		
Subje	ct Name	APPLIED CHEMIST	RY FOR ENGINEER	S
Subje	ct Code			
	L –T –P	L –T –P –H		
	3-1-0	 4	2.5:1:0.5	3-1-0-4
Cours	e Outcome			Domain/Level
				C or P or A
CO1	<i>Identify</i> the electron at <i>Describe</i> hardness a	, K1, P1		
CO2	<i>Explain</i> atomic, mo	<i>nd Measure</i> microscopic plecular orbitals and inter	c chemistry in terms o rmolecular forces.	f K2, P2
CO3	<i>Interpret</i> thermodyn	bulk properties an amic and kinetic consider	nd processes using erations.	g K3, P4, A1
CO4	<i>Describe</i> , that are use	s K1, K4, P1, A2		
CO5	Apply, M electromag molecular techniques	<i>easure</i> and <i>Distinguis</i> gnetic spectrum used energy levels in	<i>h</i> the ranges of the for exciting differen various spectroscopie	e K1, K3, P4 t
I HC U	bjechve of i			

• Understand the application of chemistry in engineering.

COURSE CONTENT

UNIT I PERIODIC PROPERTIES AND WATER CHEMISTRY 11 HRS

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries. **Water Chemistry**-Water quality parameters-Definition and explanation of hardness, determination of hardness by EDTA method-Introduction to

alkalinity.

UNIT II USE OF FREE ENERGY IN CHEMICAL EQUILIBRIA 15 HRS

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Corrosion-Types, factors affecting corrosion rate and Control methods. Use of free energy considerations in metallurgy through Ellingham diagrams. Advantages of electroless plating, electroless plating of nickel and copper on Printed Circuit Board (PCB).

UNIT III ATOMIC AND MOLECULAR STRUCTURE

13 HRS

Schrodinger equation. Particle in a box solution and their applications for conjugated molecules and nanoparticles.. Molecular orbitals of diatomic molecules and plots of the multicenter orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic molecules. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

Intermolecular forces and potential energy surfaces

Ionic, dipolar and Vander waals interactions. Equations of state of real gases and critical phenomena. Potential energy surfaces of H_3 , H_2F and HCN and trajectories on these surfaces.

UNIT IV SPECTROSCOPIC TECHNIQUES AND 10 HRS APPLICATIONS

Principles of spectroscopy and selection rules. Electronic spectroscopychromophore, auxochromes, types of electronic transition and application. Fluorescence and its applications in medicine. Vibrational spectroscopy-types of vibrations, Instrumentation and applications. Rotational spectroscopy of diatomic molecules. Nuclear magnetic resonance spectroscopy-concept of chemical shift and applications-magnetic resonance imaging. Diffraction and scattering.

UNIT V STEREOCHEMISTRY AND ORGANIC REACTIONS 11 HRS

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization reactions and ring opening reactions. Synthesis of a commonly used drug molecule- Aspirin and paracetamol.

L = 45 hrs T = 15 hrs P=0 hrs Total = 60 hrs

TEXT BOOKS

- 1. Puri B.R. Sharma, L.R., Kalia K.K. Principles of Inorganic Chemistry, (23rdedition), New Delhi, Shoban Lal Nagin Chand & Co., 1993.
- 2. Lee. J.D. Concise Inorganic Chemistry, UK, Black well science, 2006.
- 3. Trapp. C, Cady, M. Giunta. C, Atkins's Physical Chemistry, 10th Edition, Oxford publishers, 2014.
- 4. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co.

Ltd, 1983.

- 5. Morrison R.T. and Boyd R.N. Organic Chemistry (6th edition), New York, Allyn& Bacon Ltd., 1976.
- 6. Banwell. C.N, Fundamentals of Molecular Spectroscopy, (3th Edition), McGraw-Hill Book Company, Europe 1983.
- 7. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (4th edition), S./ Chand & Company Ltd. New Delhi, 1977.
- 8. P. S. Kalsi, Stereochemistry: Conformation and mechanism, (9th Edition), New Age International Publishers, 2017.

REFERENCES BOOKS

- 1. Puri B R Sharma L R and Madan S Pathania, "Principles of Physical Chemistry", Vishalpublishing Co., Edition 2004.
- **2.** Kuriocose, J C and Rajaram, J, "Engineering Chemistry", Volume I/II, Tata McGraw-Hill Publishing Co. Ltd. New Delhi, 2000.

E REFERENCES

- 1. http://www.mooc-list.com/course/chemistry-minor-saylororg
- 2. <u>https://www.canvas.net/courses/exploring-chemistry</u>
- 3. http://freevideolectures.com/Course/2263/Engineering-Chemistry-I
- 4. http://freevideolectures.com/Course/3001/Chemistry-I
- 5. http://freevideolectures.com/Course/3167/Chemistry-II
- 6. <u>http://ocw.mit.edu/courses/chemistry/</u>

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	P O 12	PSO 1	PSO 2
CO 1	3	0	0	0	0	0	2	3	3	0	0	0	0	0
CO 2	2	0	0	0	0	0	1	2	2	0	0	0	0	0
CO 3	3	0	0	0	0	0	2	3	3	0	0	0	0	0
CO 4	3	0	0	0	0	0	3	3	3	0	0	0	0	0
CO 5	3	0	0	0	0	0	2	2	3	0	0	0	0	0
Tot al	13	0	0	0	0	0	10	13	14	0	0	0	0	0

Mapping of COs with PO

Semest	er	Ι					
Subject	t Name	Engineering Graphics	s and Design				
Subject	t Code	XEG104					
	L –T –P	-С	C:P:A	L –T –P –H			
	1-0-2-	- 3	1.75:1:0.25	1-0-4-5			
Course	Outcome			Domain/Level			
				C or P or A			
CO1	<i>Apply</i> the mand <i>practic</i>	national and internation verious curves	al standards, <i>construct</i>	Cognitive (Apply) Psychomotor (Guided response) Affective (Responds to Phenomena)			
CO2	<i>Interpret</i> , projections	<i>construct</i> and <i>p</i> of points, straight lines	<i>ractice</i> orthographic and planes.	Cognitive (Understand) Psychomotor (Mechanism) Affective (Responds to Phenomena)			
CO3	<i>Construct</i> various pos	<i>Sketch</i> and <i>Practice</i> Bitions and true shape of	projection of solids in sectioned solids.	Cognitive (Apply) Psychomotor (Complex over response) Affective (Responds to phenomena)			
CO4	<i>Interpret</i> , S surfaces of solids.	Sketch and Practice the f simple and truncated	development of lateral solids, intersection of	Cognitive (Understand) Psychomotor (Complex over response) Affective (Responds to phenomena)			

CO5	<i>Construct sketch</i> and <i>practice</i> isometric and perspective views of simple and truncated solids.	Cognitive (Apply) Psychomotor (Complex over response) Affective (Responds to phenomena)
Object	ives:	

- to prepare the student to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- ✤ to prepare the student to communicate effectively
- to prepare the student to use the techniques, skills, and modern engineering tools necessary for engineering practice

COURSE CONTENT

UNIT I INTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE 12+6 hrs CURVE

Importance of graphics in engineering applications – use of drafting instruments – BIS specifications and conventions as per SP 46-2003.

Pictorial representation of engineering objects – representation of three dimensional objects in two dimensional media – need for multiple views – developing visualization skills through free hand sketching of three dimensional objects.

Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves – construction – drawing of tangents to the above curves. Practice on basic tools of CAD

UNIT II PROJECTION OF POINTS, LINES AND PLANE 12+6 hrs SURFACES

General principles of orthographic projection – first angle projection – layout of views – projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclinations to the planes of projection – traces – projection of polygonal surfaces and circular lamina inclined to both the planes of projection-CAD practice on points and lines

UNIT IIIPROJECTION OF SOLIDS AND SECTIONS OF SOLIDS12+6 hrs

Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to one plane of projection – change of position & auxiliary projection methods – sectioning of above solids in simple vertical positions by cutting plane inclined to one reference plane and perpendicular to the other and above solids in inclined position with cutting planes parallel to one reference plane – true shapes of sections-CAD practice on solid models

UNIT IV DEVELOPMENT OF SURFACES AND INTERSECTION 12+6 hrs OF SOLIDS

<u>Need for development of surfaces – development of lateral surfaces of simple</u> and truncated solids – prisms, pyramids, cylinders and cones – development of lateral surfaces of the above solids with square and circular cutouts

prism with cylinder, cylinder & cylinder, cone & cylinder with normal intersection of axes and with no offset-CAD practice on intersection of solids. **ISOMETRIC AND PERSPECTIVE PROJECTIONS** 12+6

UNIT V

hrs

Principles of isometric projection - isometric scale - isometric projections of simple solids, truncated prisms, pyramids, cylinders and cones - principles of perspective projections – projection of prisms, pyramids and cylinders by visual ray and vanishing point methods-CAD practice on isometric view

perpendicular to their axes – intersection of solids and curves of intersection –

L = 30 hrs T = 0 hrs P=60 hrs Total = 90 hrs

TEXT BOOKS

1. Bhatt, N.D, "Engineering Drawing", Charotar Publishing House, 46th Edition-2003.

2. Natarajan, K.V, "A Textbook of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2006.

3. Dr. P.K. Srividhya, P. Pandiyaraj, "Engineering Graphics", PMU Publications, Vallam, 2013

REFERENCES

- 1. Luzadder and Duff, "Fundamentals of Engineering Drawing" Prentice Hall of India PvtLtd, XI Edition - 2001.
- 2. Venugopal,K. and Prabhu Raja, V., "Engineering Graphics", New Age International(P) Ltd., 2008.
- 3. Gopalakrishnan.K.R,. "Engineering Drawing I & II", Subhas Publications, 1998.
- 4. Shah, M.B and Rana, B.C., "Engineering Drawing", Pearson Education, 2005.

E-REFERENCES

- 1. <u>http://periyarnet/Econtent</u>
- 2. http://nptel.ac.in/courses/112103019/

Mapping of COs with PO

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO 1	3	3	3	2	3	2	3	1	1	2	3	3	3	
CO 2	3	3	3	1	3	1	3	1	1	1	2	3	3	
CO 3	3	3	3	1	3	1	3	1	1	1	2	3	3	
CO 4	3	3	3	1	3	1	3	1	1	1	2	3	3	
CO 5	3	3	3	1	3	1	3	1	1	1	2	3	3	
Tot al	15	15	15	6	15	6	15	5	5	6	11	15	15	

Semes	ster	I						
Subje	ct Name	XGS105						
Subje	ct Code	SPEECH COMM	IUNICATION					
	L –T –F	Р-С	C:P:A	L –T –P –H				
	0- 1 – 2	2-3	2.6:0.4:0	0-1-4-5				
Cours	e Outcome			Domain/Level				
				C or P or A				
CO1 <i>Ability</i> to recall the types of speeches K1								
CO2	Apply the	techniques in public	c speaking	К3				
CO3	<i>Identify</i> th	e common patterns	in organizing a speech	K1				
CO4	Construct	the nature and style	e of speaking	K6				
CO5	Practicing	the speaking skills		P3				
CO6	Apply the	techniques everyda	y life	К3				
COU	RSE CONT	ENT						
UNIT ITypes of Speeches9 HRS								
	 1.1 – Four types of speeches 1.2 – Analyzing the audience 1.3 - Developing ideas and supporting materials 							

UNIT II	Public Speaking	9 HRS
	 2.1 - Introduction to Public Speaking 2.2 - Competencies Needed for successful speech making 2.3 - Speaking about everyday life situations 	
UNIT III	Organization of Speech	9 HRS
	 3.1 – Developing a speech out line 3.2 - Organizing the speech 3.3 – Introduction - development – conclusion 	
UNIT IV	Presentation	9 HRS
	 4.1 - Tips for preparing the draft speech 4.2 - Presentation techniques using ICT tools 4.3 - Using examples from different sources 	
UNIT V	Activities	9 HRS
L = 45 hrs	 5.1 - Reading activities 5.2 - Creative presentations 5.3 - Media presentation techniques T = 0 hrs P=0 hrs Total = 45 hrs 	

Suggested Readings:

(i) Michael Swan. Practical English Usage. OUP. 1995

(ii) Sanjay Kumar and Pushp Lata. Communication Skills. Oxford University Press. 2011

a ,	-		
Semester	I		
Subject Nan	ne CONSTITUTI	ON OF INDIA	
Subject Cod	e XUM106		
L -	-Т –Р –С	C:P:A	L –T –P –H
0-	0 - 0 - 0	0:0:0	3-0-0-3
Course Out	come		Domain/Level
			C or P or A
CO1 To St	t udy History of Consti	tution	K2
CO2 To E	xplain the Union Exec	eutive	K1
CO3 To Id	lentify the concept of l	Union Legislature	К3
CO4 To A	nalysis the Union Judi	ciary	K4
CO5 To E	xplain the Centre State	e Relation	K5
COURSE C	ONTENT		
UNIT I			8 HRS
		The Constitutional Distance	December December 1

Constitutional History- The Constitutional Rights- Preamble- Fundamental Rights- Fundamental Duties- Directive principles of State Policy.

UNIT II										9 H	IRS	
	The Unior	n Exec	utive-	The I	Preside	ent of	India	(power	s and t	functi	ions)- V	/ice-
	President	of Inc	lia-Th	e Cou	incil o	of Mi	nisters	-Prime	Minis	ter-	Powers	and
	Functions.											
UNIT III										1	0 HRS	
	Union Leg	gislatu	re- St	ructur	e and	Func	tions	of Lok	Sabha	a- St	ructure	and
	Functions	of R	lajya	Sabha	I- Leg	gislati	ve Pr	ocedure	e in l	ndia-	· Impo	rtant
	Committee	of Lo	k Sabł	na- Spo	eaker o	of the	Lok Sa	abha				
UNIT IV										9	HRS	
	The Unior	ı Judio	ciary-	Powe	rs of	the Su	ipreme	e Court	- Orig	inal .	Jurisdic	tion-
	Appelete ju	urisdic	tions-	Advis	ory Ju	risdict	ion- Ju	udicial 1	review.			
UNIT V										9	9 HRS	
Centre State relations- Political Parties- Role of governor, powers and												
	functions of Chief Minister-Legislative Assembly- State Judiciary- Powers and											
	Functions	of the I	High C	Courts								
L = 45 hrs	T = 0 hrs	P=0 h	nrs To	otal =	45 hrs	5						
REFEREN	CES BOOI	KS										
1. W.H.Mo	rris Shores-	Gover	nment	and p	olitics	of Ind	ia, Ne	wDelhi	,B.1.Pu	ıblish	ers,197	4.
2. M.V.Pyle	ee- Constitut	tional (Govern	nment	in Ind	ia, Bo	mbay,	Asia P	ublishiı	ng Ho	ouse, 19	77.
3. R.Thank	er- The Gov	ernmei	nt and	politic	es of Ir	ndia, L	ondon	:Macm	illon, 1	995.		
4. A.C.Kap	ur- Select Co	onstitu	tions S	S,Char	nd & C	Ne	wDelh	i, 1995				
5. V.D.Mahajan- Select Modern Governments, S, Chand & Co, NewDelhi, 1995.												
6. B.C.Rout- Democractic Constitution of India.												
7. Gopal K.Puri- Constitution of India, India 2005.												
•												
Mapping of COs with PO												
PO 1	PO PO		PO 5	PO 6		PO	PO	POI		P	PSO 1	PSU

	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	0 0	POI 1	P 0 12	PSO 1	PSO 2
CO 1	2			1										
CO 2	2			1										
CO 3	2			1					1					
CO 4	2			1				1	1					

CO 5	2	2	1		1	1			
Tot al	10	2	5		2	3			

1 - Low, 2 – Medium, 3- High

Semes	ter	Ι								
Subjec	ct Name	Programming for Pro	oblem Solving Laboratory							
Subjec	ct Code	XCP107								
	L –T –P	'-С	C:P:A	L –T –P –H						
	0- 0 – 1-	-1	0.75:0.25:0	0-0-2-2						
Cours	e Outcome			Domain/Level						
				C or P or A						
CO1	Solve simp	ole programs using I/O s	tatements	K3, A2						
CO2	Solve prog	rams using control struc	tures and arrays	K3, A2						
CO3	Solve progr	rams using functions an	d pointers	K3, A2						
CO4	Solve progr	rams using structures		K3, A2						
CO5	Solve progr	K3, A2								
CO6	K3, A2									
COUR	COURSE OBJECTIVES									

• To learn programming language basics and syntax

- To ignite logical thinking
- To understand structured programming approach
- To deal with user defined data types
- To know about data storage in secondary memory

COURSE CONTENT

EXP.NO	TITLE	СО
		RELATION
1	Program to display a Leave Letter as per proper format	CO1
2	i. Program for addition of two numbers	CO1
	ii. Program to solve any mathematical formula.	
3	Program to find greatest of 3 numbers using Branching	CO2
	Statements	
4	Program to display divisible numbers between n1 and n2 using	CO2
	looping Statement	
5	Program to search an array element in an array.	CO2
6	Program to find largest / smallest element in an array.	CO2
7	Program to perform string operations.	CO3
8	Program to find area of a rectangle of a given number use four	CO3
	function types.	
9	Programs to pass and receive array and pointers using four	CO3
	function types	
10	Programs using Recursion for finding factorial of a number	CO3
11	Program to read and display student mark sheet of a student	CO4
	structures with variables	
12	Program to read and display student marks of a class using	CO4
	structures with arrays	
13	Program to create linked list using structures with pointers	CO4
14	Program for copying contents of one file to another file.	CO5
15	Program using files to store and display student mark list of a	CO5
	class using structures with array	
TOTAL -	30 HRS	

TEXT BOOKS

- 1. Byron Gottfried, "Programming with C", III Edition, (Indian Adapted Edition), TMH publications, 2010
- 2. Yeshwant Kanethker, "Let us C", BPB Publications, 2008

REFERENCES

- 1. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill, 7th edition 2017.
- Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education Inc. 2005
- 3. Johnson baugh R. and Kalin M., "Applications Programming in ANSI C", III Edition, Pearson Education India, 2003

E RESOURCES

- 1. https://www.indiabix.com/c-programming/questions-and-answers/
- 2. <u>https://www.javatpoint.com/c-programming-language-tutorial</u>
- 3. https://www.w3schools.in/c-tutorial/

Mapping of COs with PO

	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	P 09	P 01 0	PO1 1	P 01 2	PS O1	PS O2
CO1	3	2	0	0	3	0	0	0	0	0	2	3	2	0
CO2	3	2	0	0	2	0	0	0	0	0	2	3	2	0
CO3	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO4	2	2	1	2	2	0	0	0	0	0	2	2	2	0
CO5	2	2	1	0	2	0	0	1	0	2	2	2	2	0
Total	12	10	3	4	11	0	0	1	0	2	10	12	10	0

Semes	ter	I		
Subje	et Name	APPLIED CHEMIST	CRY LABORATORY F	OR ENGINEERS
Subje	ct Code	XAC108		
	L –T –P	-С	C:P:A	L –T –P –H
	0- 0 – 1-	- 1	0.25:0.5:0.25	0-0-2-2
Cours	e Outcome			Domain/Level
				C or P or A
CO1	Ability to I the study of Analyze an	dentify the principles of f science and engineerin d Measure molecular/sy	f chemistry relevant to ng vstem properties such as	K1, P1 K4 P1 A1
02	surface ten potentials, etc.	sion, viscosity, conduct extent of hardness, chlo	ance of solutions, redox ride content of water,	N 7, 11, A1
CO3	Analyze the reactions fr function of	e synthetic procedure ar rom concentration of rea time	nd rate constants of actants/products as a	К3

COURSE CONTENT

EXP.NO	TITLE	CO RELATION
1	Determination of chloride ion present in the water sample by Argentometric method.	CO1
2	Determination of total, temporary and permanent hardness of water sample by EDTA method.	CO1
3	Determination of cell constant and conductance of solutions.	CO2
4	Potentiometry - determination of redox potentials and emfs.	CO2
5	Determination of surface tension and viscosity.	CO3
6	Adsorption of acetic acid by charcoal.	CO3
7	Determination of the rate constant of a reaction.	CO4
8	Estimation of iron by colorimetric method.	CO4
9	Synthesis of a polymer/drug.	CO5
10	Saponification/acid value of oil.	CO5
TOTAL -	30 HRS	

TEXT BOOKS

Laboratory Manual "ChemistryLab", Department of Chemistry, PMIST, Thanjavur.

REFERENCES

- 1. Mendham, Denney R.C,. Barnes J.D and Thomas N.J.K., "Vogel's Textbook of Quantitative Chemical Analysis", 6th Edition, Pearson Education, 2004.
- 2. Garland, C. W.; Nibler, J. W.; Shoemaker, D. P. "Experiments in Physical Chemistry", 8th Ed.; McGraw-Hill: New York, 2003.

E-RESOURCES- MOOC's

- 1. <u>http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques</u>
- 2. <u>http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques</u>
- 3. <u>http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-</u> 2011

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO 1	3	3	3	3	2	3	3	0	1	1	1	0	0	0
CO 2	2	2	2	2	1	2	2	1	1	1	1	1	1	1
CO 3	2	2	2	2	1	2	2	0	1	1	0	0	0	0
Tot al	7	7	7	7	4	7	7	1	3	3	2	1	1	1

Mapping of COs with PO

Semes	ter	II									
Subje	ct Name	CALCULU COMPLE	JS, ORDINARY X VARIABLE	Y DIFFERENTIAL	EQUATIONS AND						
Subje	ct Code	XMA201									
	L –T	–Р –С	(C:P:A	L –T –P –H						
	3-1-	- 0- 4	3:	0.5:0.5	3 - 1 - 0 - 4						
PREREQUISITE: Calculus and Linear Algebra											
Course Outcome Domain/Level											
					C or P or A						
CO1	Find do and vol divergen	wble and triple ume of an into ace and Stokes	integrals and to egral by Applyi theorem.	find line, surface ng Greens, Gauss	K1, K3						
CO2	Solve fi which a	rst order differ re solvable for	rential equations p, y, x and Claira	of different types ut's type.	К3						
CO3	Solve S	econd order of	rdinary differenti	ial equations with	K3						
CO4	 variable coefficients using various methods. CO4 Use CR equations to verify analytic functions and to find Harmonic functions and harmonic conjugate. Conformal mapping of translation and rotation. Mobius 										
CO5	Apply integrals Cauchy series, z series.	Cauchy residu s involving sin integral form eros of analytic	ue theorem to e and cosine fun ula, Liouvilles t c functions, singu	evaluate contour action and to state theorem. Taylor's alarities, Laurent's	K3, A1						
CO6	Analyze double a	e the inter-relation the triple integrated the triple integrated triple integrated the triple triple the triple trip	tionship amongst al.	the line integral,	K4						
UNIT	I Mu	ultivariable Ca	lculus (Integrat	ion)	12 HRS						
	Mu int Tri sca Ga	Iltiple Integration egration in dou ple integrals (lar surface int uss and Stokes)	ion: Double inte ble integrals - Cl Cartesian), Scala egrals - vector s	grals (Cartesian) - c hange of variables (C r line integrals - vec surface integrals - Tl	hange of order of artesian to polar) - tor line integrals - neorems of Green,						
UNIT	II Fin	rst order ordin	ary differential	equations	12 HRS						
	Ex of equ	act - linear and first degree: ations solvable	Bernoulli's equa equations solvat e for x and Claira	tions - Euler's equation ble for p - equation ut's type.	ons - Equations not as solvable for y-						
UNIT	III Or	dinary differe	ntial equations o	of higher orders	12 HRS						

Second order linear differential equations with variable coefficients- method of variation of parameters - Cauchy-Euler equation- Power series solutions-Legendre polynomials- Bessel functions of the first kind and their properties.

UNIT IV	Complex Variable – Differentiation	12 HRS
	Differentiation-Cauchy-Riemann equations- analytic functions-finding harmonic conjugate- elementary (exponential, trigonometric, logarithm) and their prop mappings- Mobius transformations and their properties.	functions-harmonic analytic functions perties- Conformal
UNIT V	Complex Variable – Integration	12 HRS
L = 45 hrs	Contour integrals - Cauchy-Goursat theorem (without proof formula (without proof)-Liouville's theorem (without proof zeros of analytic functions- singularities- Laurent's series - Residue theorem (without proof)- Evaluation of definite int and cosine- Evaluation of certain improper integrals us contour. T = 15 hrs P=0 hrs Total = 60 hrs	f) - Cauchy Integral of)- Taylor's series- – Residues- Cauchy egral involving sine sing the Bromwich

TEXT BOOKS

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40thth Edition, 2008.

REFERENCES BOOKS

1.G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.

2. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

3.W. E. Boyce and R. C. DiPrima, "Elementary Differential Equations and Boundary Value Problems", 9thEdn. Wiley India, 2009.

4. S. L. Ross, "Differential Equations", 3rd Ed., Wiley India, 1984.

5.E. A. Coddington, "An Introduction to Ordinary Differential Equations", Prentice Hall India, 1995.

6. E. L. Ince, "Ordinary Differential Equations", Dover Publications, 1958.

7.J. W. Brown and R. V. Churchill, "Complex Variables and Applications", 7th Ed., McGraw Hill, 2004.

8. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2008.

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA1 0	GA1 1	GA1 2
CO 1	3	2			2					1		2
CO 2	3	1								1		1
CO 3	3	1								1		1

Mapping of COs with GA

CO 4	3	2								1		1
CO 5	3	2			1					1		2
	15	8	0	0	3	0	0	0	0	5	0	7
Scale d Value	3	2			1					1		
$1-5 \rightarrow$	• 1,		6 – 10	$\rightarrow 2,$		11	- 15 -	$\rightarrow 3 1$	Low, 2	2-Med	ium, 3-	High

Semester	II
Subject Name	ELECTRICAL AND ELECTRONICS ENGINEERING SYSTEMS
Subject Code	XBE202

Ι		C:P:A	L –T –P –H								
	3-1-0-4	3:1:0	3-1-0-4								
Course Ou	itcome		Domain/Level								
			C or P or A								
CO1 Det par Usi	fine and Relate the ameters and build and ng measuring devices	e fundamentals of electrical d explain AC, DC circuits by	K2								
CO2 Def	fine and Explain th chines.	e operation of DC and AC	K2								
CO3 Reather the characteristics	CO3 Recall and Illustrate various semiconductor devices and their applications and displays the input output characteristics of basic semiconductor devices										
CO4 Rel	late and Explain the n	number systems and logic gates.	K2								
CO5 La	bel and Outline the difference of the difference	fferent types of microprocessors	K2								
COURSE	CONTENT										
UNIT I	FUNDAMENTALS	OF DC AND AC CIRC	CUITS, 12 HRS								
	Fundamentals of DC- Current Relations – Average Value, RM Phasor Representatio Parallel Circuit - O Instruments (Ammete and Energy meter).	- Onm's Law – Kirchnoff's Laws -Star/Delta Transformation - Fu S Value, Form Factor - AC pown n of sinusoidal quantities, Simple perating Principles of Moving er, Voltmeter) and Dynamometer t	- Sources - Voltage and indamentals of AC – wer and Power Factor, e Series, Parallel, Series coil and Moving Iron ype meters (Watt meter								
UNIT II	ELECTRICAL MA	CHINES	12 HRS								
	Construction, Princip of DC Generators, D Three Phase Inductio Phase Transformer, T	le of Operation, Basic Equations, C motors - Basics of Single-Phasen Motor- Construction, Principle Three phase transformers, Auto transformers, A	Types and Application se Induction Motor and of Operation of Single- nsformer.								
UNIT III	SEMICONDUCTO	R DEVICES									
			12 HRS								
	Classification of Sem PN Junction Diode Transistors and Silico	iconductors, Construction, Operat – Zener Diode, PNP, NPN Trong On Controlled Rectifier – Application	12 HRS ion and Characteristics: cansistors, Field Effect ons								
UNIT IV	Classification of Sem PN Junction Diode Transistors and Silico DIGITAL ELECTR	iconductors, Construction, Operat – Zener Diode, PNP, NPN Tr on Controlled Rectifier – Application CONICS	12 HRS ion and Characteristics: cansistors, Field Effect ons 12 HRS								
UNIT IV	Classification of Sem PN Junction Diode Transistors and Silico DIGITAL ELECTR Basic of Concepts of Subtractors, multiple counters, Shift Regist	iconductors, Construction, Operat – Zener Diode, PNP, NPN Tr on Controlled Rectifier – Application CONICS Number Systems, Logic Gates, Bo xer, demultiplexer, encoder, decoder ers.	12 HRS ion and Characteristics: cansistors, Field Effect ons 12 HRS polean Algebra, Adders, ler, Flipflops, Up/Down								
UNIT IV UNIT V	Classification of Sem PN Junction Diode Transistors and Silico DIGITAL ELECTR Basic of Concepts of Subtractors, multiple counters, Shift Regist	iconductors, Construction, Operat – Zener Diode, PNP, NPN Tr on Controlled Rectifier – Application CONICS Number Systems, Logic Gates, Bo xer, demultiplexer, encoder, decoders. ORS	12 HRS ion and Characteristics: cansistors, Field Effect ons 12 HRS oolean Algebra, Adders, ler, Flipflops, Up/Down 12 HRS								
UNIT IV UNIT V	Classification of Sem PN Junction Diode Transistors and Silico DIGITAL ELECTR Basic of Concepts of Subtractors, multiples counters, Shift Regist MICROPROCESSO Architecture, 8085, registers, data and ac classification of inst transfer concepts – Si T = 15 hrs P-0 hrs	iconductors, Construction, Operat – Zener Diode, PNP, NPN Tr on Controlled Rectifier – Application CONICS Number Systems, Logic Gates, Bocker, demultiplexer, encoder, decoders. ORS pin diagram of 8085, ALU time Idress bus, timing and control sign ructions, addressing modes, In mple Programming concepts. Total = 60 brs	12 HRS ion and Characteristics: cansistors, Field Effect ons 12 HRS oolean Algebra, Adders, ler, Flipflops, Up/Down 12 HRS ning and control unit, gnals, Instruction types, iterfacing Basics: Data								

1. Metha V.K, Rohit Mehta, 2020. Principles of Electronics, 12th ed, S Chand Publishing.

2. Albert Malvino, David J.Bates., 2017. Electronics Principles. 7th ed, Tata McGraw-Hill. New

Delhi.

- 3. Rajakamal, 2014. Digital System-Principle & Design. 2nd ed. Pearson education.
- 4. Morris Mano, 2015. Digital Design. Prentice Hall of India.

5. Ramesh, S. Gaonkar, 2013, Microprocessor Architecture, Programming and its Applications with the 8085, 6th ed , India: Penram International Publications.

REFERENCES BOOKS

1. Cotton, H.,2005 Electrical Technology. CBS Publishers & Distributors Pvt Ltd.

2. Syed, A. Nasar, 1998, Electrical Circuits. Schaum Series.

3. Jacob Millman and Christos, C. Halkias, 1967, Electronics Devices, New Delhi: Tata McGraw-Hill.

4. Millman, J. and Halkias, C. C., 1972. Integrated Electronics: Analog and Digital Circuits and

Systems, Tokyo: McGraw-Hill, Kogakusha Ltd.

5. Mohammed Rafiquzzaman, 1999. Microprocessors - Theory and Applications: Intel and Motorola. Prentice Hall International.

E REFERENCES

1. NTPEL, Basic Electrical Technology (Web Course), Prof. N. K. De, Prof. T. K. Bhattacharya

and Prof. G.D. Roy, IIT Kharagpur.

2. Prof.L.Umanand, http://freevideolectures.com/Course/2335/Basic-Electrical-Technology#, IISc Bangalore.

3. http://nptel.ac.in/Onlinecourses/Nagendra/, Dr. Nagendra Krishnapura, IIT Madras.

4. Dr.L.Umanand, http://www.nptelvideos.in/2012/11/basic-electrical-technology.html, IISC Bangalore.

TTapp	ing o			<u> </u>										
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	P O	PSO 1	PSO 2
												12		
CO 1	3	3	1	1	1	1			1	1	1			
CO 2	3	3	1	1	1	1			1	1	1			
CO 3	2	2	2	1	2	2	1	1	1	1	1			
CO 4	2	2	1	1	1	1	1	1	1	1	1			
CO 5	2	2	1	1	1	1	1	1	1	1	1			
Tot al	12	12	6	5	6	6	3	3	5	5	5			

Mapping of COs with PO

Semester	II						
Subject Name	APPLIED F	PHYSICS FOR ENGINEERS					
Subject Code	XAP203						
L –T –I	Р-С	C:P:A	L –T –P –H				
3-1-0)- 4	2.8:0.8:0.4	3-1-0-4				
PREREQUISITE: Basic Physics in HSC level							

Cours	e Outcome	Domain/Level
		C or P or A
CO1	<i>Identify</i> the basics of mechanics, <i>explain</i> the principles of elasticity and <i>determine</i> its significance in engineering systems and technological advances	K1,K2 P4
CO2	<i>Illustrate</i> the laws of electrostatics, magneto-statics and electromagnetic induction; <i>use</i> and <i>locate</i> basic applications of	K1 , K4 P4
CO3	electromagnetic induction to technology. <i>Understand</i> the fundamental phenomena in optics by measurement and <i>describe</i> the working principle and application	A1 K2, K3 P4
CO4	of various lasers and fibre optics. <i>Analyse</i> energy bands in solids, <i>discuss</i> and <i>use</i> physics principles of latest technology using semiconductor devices.	A1 K2,K4 P4
CO5	<i>Develop</i> Knowledge on particle duality and <i>solve</i> Schrodinger equation for simple potential.	K2, K3
UNIT	I MECHANICS OF SOLIDS	12 HRS
	 Mechanics: Force - Newton's laws of motion - work and energy momentum - torque - law of conservation of energy and momente Elasticity: Stress - Strain - Hooke's law - Stress strain diagram of elastic modulus - Moment, couple and torque - Torsi Applications of torsion pendulum - Bending of beams determination of Young's modulus: Uniform bending arbending. 	gy - impulse and ntum - Friction. a - Classification on pendulum - - Experimental ad non-uniform
UNIT	II ELECTROMAGNETIC THEORY	12 HRS
	Laws of electrostatics - Electrostatic field and potential of a d Polarisation, Dielectric constant, internal field - Clausius Mos Laws of magnetism - Ampere's Faraday's law; Lenz's law equation - Plane electromagnetic waves; their transverse nature plane, circularly and elliptically polarized light - quarter and he production and detection of plane, circularly and elliptically po	ipole; Dielectric ssotti Equation - v - Maxwell's - expression for alf wave plates - larized light.
UNIT	III OPTICS, LASERS AND FIBRE OPTICS	12 HRS
	Optics: Dispersion- Optical instrument: Spectrometer - D refractive index and dispersive power of a prism- Interference	etermination of e of light in thin

films: air wedge - Diffraction: grating.

LASER: Introduction - Population inversion -Pumping - Laser action - Nd-YAG laser - CO_2 laser - Applications

Fibre Optics: Principle and propagation of light in optical fibre - Numerical

aperture and acceptance angle - Types of optical fibre - Fibre optic communication system (Block diagram).

UNIT IV SEMICONDUCTOR PHYSICS

Semiconductors: Energy bands in solids - Energy band diagram of good conductors, insulators and semiconductors - Concept of Fermi level - Intrinsic semiconductors - Concept of holes - doping - Extrinsic semiconductors - P type and N type semiconductors - Hall effect.

Diodes and Transistors: P-N junction diode - Forward bias and reverse bias -Rectification action of diode - Working of full wave rectifier using P N junction diodes - PNP and NPN transistors - Three different configurations -Advantages of common emitter configuration - working of NPN transistor as an amplifier in common emitter configuration.

UNIT V QUANTUM PHYSICS

12 HRS

12 HRS

Introduction to quantum physics, black body radiation, Compton effect, de Broglie hypothesis, wave – particle duality, uncertainty principle, Schrodinger wave equation (Time dependent and Time independent), particle in a box, Extension to three dimension - Degeneracy.

L = 45 hrs T = 15 hrs P=0 hrs Total = 60 hrs

TEXT BOOKS

1.Gaur R. K. and Gupta S. L., "Engineering Physics", Dhanpat Rai Publications, 2009.

2. Avadhanulu M. N. "Engineering Physics" (Volume I and II), S. Chand & Company Ltd., New Delhi, 2010.

REFERENCES BOOKS

1. Palanisamy P. K., "Engineering Physics", Scitech Publications (India) Pvt. Ltd, Chennai.

<u>2. Arumugam M., "Engineering Physics" (Volume I and II), Anuradha Publishers, 2010.</u>
<u>3. Senthil Kumar G., "Engineering Physics", 2nd Enlarged Revised Edition, VRB</u>
<u>Publishers, Chennai, 2011.</u>

4. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2007.

E REFERENCES

NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS1	PS2
CO1	3	2	2	2	1	-	-	-	1	-	-	1		
CO2	3		1		1	-	-	-		-	-	1		
CO3	3	2	2	2	1	-	-	-	1	-	-	1		
CO4	3	2	2	2	1	-	-	-	1	-	-	1		
CO5	3		2			-	-	-		-	-	1		
Total	15	6	9	6	4				3			5		
Scaled to 0,1,2,3 scale	3	2	2	2	1				1			1		

Mapping of CO's with PO

Semester	II						
Subject Na	me XGS204						
Subject Co	de TECHNICAL	COMMUNICATION					
L	-Т -Р -С	C:P:A	L –T –P –H				
2	- 0 - 0 - 2	3:0:0	2-0-0-2				
Course Out	tcome		Domain/Level				
			C or P or A				
CO1 Abil	<i>ity</i> to understand the b	asic principles	K1				
CO2 App	ly the techniques in wi	riting	К3				
CO3 Iden	tify communicative st	yles	K 1				
CO4 Con	struct the nature of wr	iting	K6				
CO5 Abil	ity to recall the Technic	iques	K1				
CO6 App	ly the techniques in pr	actice	К3				
COURSE (CONTENT						
UNIT I	Basic Principles		9 HRS				
	1.1 – Basic Principles 1.2 – Styles used in T 1.3 – Language and T	s of Technical Writing Sechnical Writing					
UNIT II	Techniques		9 HRS				
	 2.1 – Special Technic 2.2 – Definition & De 2.3 – Description- Cl 						
UNIT III	Communication		9 HRS				
	3.1 – Modern develop 3.2 - New letter write	oment in style of writing ing formats					
UNIT IV	Report Writing		9 HRS				
	4.1 – Types of Repor 4.2 – Project writing	t writing formats					

$1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

Suggested Readings:

- (i) John Sealy, Writing and Speaking Author; Oxford University Press, New Delhi, 2009
- (ii) Williams K.S, Communicating Business. Engage Learning India Pvt Ltd, 2012

Semes	ster	II				
Subje	ct Name	Workshop Pra	actices			
Subje	ct Code	XWP205				
	L –T –I	Р-С	C:P:A	L –T –P –H		
	1-0 -2	2-3	1:2:0	1-0-4-5		
Cours	e Outcome	•		Domain/Level		
				C or P or A		
CO1	Summariz machining	<i>e</i> the machining goperation.	methods and <i>Practice</i>	K1, P3		
CO2	Defining in relatesCas	metal casting pro- sting and Smithy	cess, moulding methods and applications.	K1, P3		
CO3	<i>Plan</i> basic operations	c carpentry operat	tions and <i>Practice</i> carpentry	K1, P3		
CO4	K1, P3					
CO5	Summariz	e metal joining o	operation and <i>Practice</i> welding	K1, P3		
CO6	<i>Illustrate</i> appropriat	the electrical and the connections.	electronics basics and <i>Makes</i>	K1, P3		

COURSE CONTENT

EXP.NO	TITLE	CO RELATION
1	Introduction to machining process	CO1
2	Plain turning using lathe operation	CO1
3	Introduction to CNC	CO1
4	Demonstration of plain turning using CNC	CO1
5	Study of metal casting operation	CO2
6	Demonstration of moulding process	CO2
7	Study of smithy operation	CO2
8	Study of carpentry tools	CO3
9	Half lap joint – Carpentry	CO3
10	Mortise and Tenon Joint – Carpentry	003
11	Study of fitting tools	CO4
12	Square fitting	CO4
13	Triangular fitting	CO4
14	STUDY OF WELDING TOOLS	CO5
15	Square butt joint – welding	CO5
16	Tee joint – Welding	CO5

17	Introduction to house wiring	CO6
18	One lamp controlled by one switch	CO6
19	Two lamps controlled by single switch	CO6
20	Staircase wiring	CO6

TEXT BOOKS

1. Workshop Technology I,II,III, by S K Hajra, Choudhary and A K Chaoudhary. Media Promoters and Publishers Pvt. Ltd., Bombay

2. Workshop Technology by Manchanda Vol. I,II,III India Publishing House, Jalandhar.

REFERENCES

1. Manual on Workshop Practice by K Venkata Reddy, KL Narayana et al; MacMillan India Ltd.

2. Basic Workshop Practice Manual by T Jeyapoovan; Vikas Publishing House (P) Ltd.,New Delhi

3. Workshop Technology by B.S. Raghuwanshi, Dhanpat Rai and Co., New Delhi.

4. Workshop Technology by HS Bawa, Tata McGraw Hill Publishers, New Delhi.

E RESOURCES

1. http://nptel.ac.in/courses/112107145/

Mapping of COs with PO

	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	P 09	P O1 0	PO1 1	P 01 2	PS O1	PS O2
CO1	2	1	2	2	1			1	1		1	2	3	
CO2	2	1	2	2	1			1	1		1	2	3	
CO3	2	1	2	2	1			1	1		1	2	3	
CO4	2	1	2	2	1			1	1		1	2	3	
CO5	2	1	2	2	1			1	1		1	2	3	
CO6	2	1	2	2	1			1	1		1	2	3	
Total	12	6	12	12	6			6	6		6	12	18	

COURSE CODE	XEM206	L	Т	Р	С
COURSE NAME	ENGINEERING MECHANICS	3	0	0	3
PREREQUISITES	NIL	L	Т	Р	Η
C:P:A= 3:0:0		3	0	0	3
COURSE OBJECTI	VES				

Upon successful completion of the course, student will have:

- Ability to apply knowledge of mathematics, science, andengineering.
- Ability to design as well as to analyse and interpretdata.
- Ability to identify, formulate, and solve engineering problems.
- Ability to apply techniques and resources to solve complex mechanical engineering activities with an understanding of the limitations.

COUR	RSE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Explain</i> the principles forces, laws and	Cognitive	Understanding, Apply
	theirapplications.		
CON	Classification of friction, and apply the forces in	Cognitive	Understanding, Apply
002	Trusses and beams.		
001	Explain and Apply moment of Inertia and Virtual	Cognitive	Understanding, Apply
COS	work		
CO4	Outline and Examine Dynamics	Cognitive	Understanding, Apply
CO5	<i>Explain</i> free and forced vibration	Cognitive	Remember,
005			Understanding

UNIT IINTRODUCTION TO ENGINEERING MECHANICS9Force Systems Basic concepts, Particle equilibrium in 2-D & 3-D; Rigid Body equilibrium; System of
Forces, Coplanar Concurrent Forces, Components in Space – Resultant- Moment of Forces and its
Application; Couples and Resultant of Force System, Equilibrium of System of Forces, Free body
diagrams, Equations of Equilibrium of Coplanar Systems and Spatial Systems; Static indeterminacy.

UNIT II FRICTION AND BASIC STRUCTURAL ANALYSIS	9
Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Frict	tion; Motion of Bodies,
wedge friction, screw jack & differential screw jack; Equilibrium in three d	limensions; Method of
Sections; Method of Joints; How to determine if a member is in tension or	r compression; Simple
Trusses; Zero force members; Beams & types of beams; Frames & Machines.	

UNIT III CENTROID, CENTRE OF GRAVITY AND VIRTUAL WORK AND ENERGY METHOD

9

Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite

sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.

Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom. Active force diagram, systems with friction, mechanical efficiency. Conservative forces and potential energy (elastic and gravitational), energy equation for equilibrium. Applications of energy method for equilibrium. Stability of equilibrium.

UNIT IV REVIEW OF PARTICLE DYNAMICS AND INTRODUCTION TO KINETICS OF RIGID BODIES

9

9

TOTAL:45

Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3-D curvilinear motion; Relative and constrained motion; Newton's 2nd law (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique). Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D'Alembert's principle and its applications in plane motion and connected bodies; Work energy principle and its application in plane motion of connected bodies; Kinetics of rigid bodyrotation.

UNIT V MECHANICAL VIBRATIONS

Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedom; Derivation for frequency and amplitude of free vibrations without damping and single degree of freedom system, simple problems, types of pendulum, use of simple, compound and torsion pendulums.

TEXT BOOKS

- **1.** Irving H. Shames (2006), Engineering Mechanics, 4th Edition, Prentice Hall
- **2.** F. P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I Statics, Vol II, Dynamics, 9th Ed, Tata McGraw Hill

REFERENCE BOOKS

- **1.** R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press.
- **2.** Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press
- 3. Shanes and Rao (2006), Engineering Mechanics, Pearson Education
- 4. Hibler and Gupta (2010), Engineering Mechanics (Statics, Dynamics) by Pearson Education
- 5. Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics
- 6. Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications
- 7. Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co.
- 8. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications

E-REFERENCES

- 1. https://archive.nptel.ac.in/courses/112/106/112106286/
- 2. https://onlinecourses.nptel.ac.in/noc23_me74/preview
- LECTURE: 45 TUTORIAL: 0 PRACTICAL: 0

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

		PROGRAM OUTCOMES											
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	2	1	1	3	1	1	2	3	2	1	3	
CO2	3	2	1	1	3	1	1	2	3	2	1	3	
CO3	3	2	1	1	3	1	1	2	3	2	1	3	
CO4	3	2	1	1	3	1	1	2	3	2	1	3	

COF						
Correl	ation level - $1 - Low$	$\frac{1}{2} - Medium$ 3-	High			
			8			
Semes	ster II					
Subje	ct Name ELECTRIC	AL AND ELECTRONICS E	NGINEERING			
Subio	SYSTEMS I ct Code XBE207	LABORATORY				
Subje	L - T - P - C	С.Б.Ф	L _T _P _H			
$\mathbf{L} - \mathbf{I} - \mathbf{\Gamma} - \mathbf{U}$		1.5:1:0.5	0 - 0 - 2 - 2			
PRER	REOUISITE: Physics		•••			
COUI The co a. b. c. d.	RSE OBJECTIVES: Durse helps to Learn the basic concepts Understand the basic wir Study the characteristics Verify the working of sir	of electrical and electronics com ing methods and connection. of diodes, Zener diodes, NPN tra nple logic gates, adders and subt	ponents. Insistors. ractors.			
Cours	e Outcome		Domain/L	level		
			C or P or	r A		
CO1	Apply the fundamental various electronic compo	electrical concepts and differen onents.	ntiate the K2 P2 A3			
CO2	Implement and execute	the different types of wiring com	nections. K2 A3			
CO3	Demonstrate the Fluores	e. P2				
CO4	Characterize and displa PN junction and Zener di	orking of K2 P2 A3				
CO5	Implement and execute as Adders and Subtractor	the various digital electronic circ	cuits such K2 P2 A3			
]	List of Experiments				
1.	Study of Electrical Symb	ools, Tools and Safety Precaution	s, Power Supplies.			
2.	Study of Active and Pas Board.	sive elements – Resistors, Induc	tors and Capacitors, F	Bread		
3. 4.	Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter. Fluorescent lamp connection with choke					
-	Staircase Wiring					
5.	Stantease winning					
5. 6.	Forward and Reverse bia	s characteristics of PN junction c	liode.			

- 8. Input and Output Characteristics of NPN transistor.
- 9. Construction and verification of simple logic gates.
- 10. Construction and verification of adders and subtractors.

L = 0 hrs T = 0 hrs P=30 hrs Total = 30 hrs

Mapping of CO's with PO

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	3	1	1	1	1			1	1	1			
CO2	3	3	1	1	1	1			1	1	1			
CO3	2	2	2	1	2	2	1	1	1	1	1			
CO4	2	2	1	1	1	1	1	1	1	1	1			
CO5	2	2	1	1	1	1	1	1	1	1	1			
Total	12	12	6	5	6	6	3	3	5	5	5			
Scaled Value	3	3	2	1	2	2	1	1	1	1	1			

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

Semester	11		
Subject Name	APPLIED PHYSICS FO	OR ENGINEERS LAB	
Subject Code	XAP208		
L –T –]	Р-С	C:P:A	L –T –P –H
0- 0 – 2	l–1	0:2:0	0-0-2-2

PREREQUISITE: Basic Physics in HSC level

Cours	Domain/Level				
		C or P or A			
CO1	Determine the significance of elasticity in engineering systems	P4			
CO2	and technological advances. <i>use</i> and <i>locate</i> basic applications of electromagnetic induction to P4, A2 technology.				
CO3 CO4	Describethe working principle and application of various lasersP4and fibre optics.use physics principles of latest technology using semiconductorP4				
	devices.				
_					
1.	Torsional Pendulum - determination of moment of inertia and rigidit the given material of the wire.	y modulus of			
2.	Uniform Bending - Determination of the Young's Modulus of the material of the beam.				
3.	Non-Uniform Bending - Determination of the Young's Modulus of the material of the beam.				
4.	Meter Bridge - Determination of specific resistance of the material of the wire.				
5.	Spectrometer - Determination of dispersive power of the give prism.				
6.	Spectrometer - Determination of wavelength of various colours in Hg source using grating.				
7.	Air wedge - Determination of thickness of a given thin wire.				
8.	Laser - Determination of wavelength of given laser source and size of the given micro particle using Laser grating.				
9.	Post office Box - Determination of band gap of a given semiconductor.				
10.	PN Junction Diode - Determination of V-I characteristics of the given diode.				
L = 0 hrs $T = 0$ hrs $P=30$ hrs Total = 30 hrs					
REFERENCES BOOKS					

1. Samir Kumar Ghosh, "A text book of Advanced Practical Physics", New Central
Agency (P) Ltd, 2008.

- 2. Arora C.L., "Practical Physics", S. Chand & Company Ltd., New Delhi, 2013.
- 3. <u>Umayal Sundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012.</u>

E REFERENCES

NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	2	2	2	1	-	-	-	1	-	-	1		
CO2	3		1		1	-	-	-		-	-	1		
CO3	3	2	2	2	1	-	-	-	1	-	-	1		
CO4	3	2	2	2	1	I	-	-	1	-	-	1		
CO5	12	6	7	6	4				3			5		
Total	3	2	2	2	1				1			1		
Scaled to 0,1,2,3 scale	3	2	2	2	1	-	-	-	1	-	-	1		

Mapping of CO's with PO

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

Seme	ster	III		
Subje	ect Nam	e TRANSFO	ORMS AND PARTIAL DIFFEREN	NTIAL EQUATIONS
Subje	ct Code	2 XMA301		
	L –	Г –Р –С	C:P:A	L –T –P –H
	3-1	l – 0– 4	3:0.5:0.5	3-1-0-4
PREF	REQUIS	SITE: Algebra ,	Calculus and Laplace transforms	
Cours	se Outco	ome		Domain/Level
				C or P or A
CO1	Solve differe	standard types o ential equations v	f first order and second order partial with constant coefficients.	K3, P1
CO2	<i>State</i> I of the (-ℓ,ℓ)	Dirichlet's condi curve $y = f(x)$ in and $(0, \pi)$.	tion. Explain general Fourier series n the interval $(0,2\pi)$ $(-\pi, \pi)$, $(0, 2\ell)$,	K1 , K2 P1
CO3	Perform Solve in eng equation in Cart	m harmonic anal the standard Pa ineering Pro on and Heat flow tesian coordinate	lysis rtial Differential Equations, arising oblems, like one dimensional Wave w equation by Fourier series method	K3, A1
CO4	Classif Find cosine and its	fy second order of the Fourier t transforms of o	quasi pde. ransform and Fourier sine and f simple functions using definition	K1, K3
CO5	Apply transfo	the properties orm and inversions, and to solve	s of Z transform to <i>Find</i> theZ se Z transform of sequence and the difference equation using them.	K1, K3
CO6	Analy transfe	ze the periodiorms	ic and aperiodic signals using	K4
UNIT	ΓΙ Ρ	Partial Different	tial Equations	12 HRS
	F c p d	Formation of pa onstants and arb artial differentia ifferential equat	artial differential equations by elin pitrary functions – Solution of standar al equations – Lagrange's linear equa- tions of second and higher order with	nination of arbitrary rd types of first order ation – Linear partial constant coefficients.
UNIT	TI F	Sourier Series		12 HRS
	D H H	Dirichlet's condit Ialf range sine Iarmonic Analys	tions – General Fourier series – Odd series – Half range cosine series – sis.	and even functions – Parseval's identity –

UNIT III	Applications of Boundary Value Problems	12 HRS
	Classification of second order quasi linear partial different Solutions of one dimensional wave equation – One dimension – Steady state solution of two dimensional heat equation excluded) – Fourier series solutions in Cartesian coordinates .	tial equations – nal heat equation (Insulated edges
UNIT IV	Fourier Transform	12 HRS
	Fourier integral theorem (without proof) – Fourier transform Sine and Cosine transforms – properties – Transforms of sin Convolution theorem – Parseval's identity.	1 pairs – Fourier nple functions –
UNIT V	Transform and Difference Equations	12 HRS
L = 45 hrs	Z-transform – Elementary properties – Inverse Z – transform theorem – Initial and Final value theorems - Formation of diff – Solution of difference equations using Z-transform. T = 15 hrs P=0 hrs Total = 60 hrs	n – Convolution erence equations

- TEXT BOOKS
 - Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, New Delhi (2012).
 - 2. Narayanan, S., ManicavachagomPillay, T.K. and Ramaniah, G., "Advanced

Mathematics for Engineering Students", Volumes II and III, S.Viswanathan (Printers and Publishers) Pvt. Ltd., Chennai (2002).

3. Veerarajan. T., "Transforms and Partial Differential Equations", Second reprint, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2012.

REFERENCES BOOKS

- Churchill, R.V. and Brown, J.W., "Fourier Series and Boundary Value Problems", Fourth Edition, McGraw Hill Book Co., Singapore (1987).
- Kandasamy, P., Thilagavathy, K., and Gunavathy, K., "Engineering Mathematics Volume III", S. Chand & Company Ltd., New Delhi (1996).
- Bali N.P. and Manish Goyal, "A Text Book of Engineering Mathematics" 7th Edition Lakshmi Publications (P) Limited, New Delhi (2007).
- **4.** Erwin Kreyszig, "Advanced Engineering Mathematics", 8 th Edition, Wiley India, 2007.
- **5.** Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012.

E REFERENCES

- 1. <u>www.nptel.ac.in</u>
- 2. Advanced Engineering Mathematics, Prof. Jitendra Kumar, Department of Mathematics, Indian Institute of Technology, Kharagpur, India.

Mapping of COs with GA

	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA1 0	GA1 1	GA1 2
CO 1	3									1		1
CO 2	3									1		1
CO 3	3	2								1	1	2
CO 4	3	2			1					1	1	1
CO 5	3	2			1					1	1	1
	15	6	0	0	2	0	0	0	0	5	3	6
Scale	3	2			1					1		
d Value												

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11 - 15 \rightarrow 3$

1 - Low, 2 – Medium, 3- High

Semes	ter	III					
Subje	et Name	THERMO	DYNAMI	CS			
Subjec	ct Code	XME302					
	L –T –P	- C			C:P:A		L –T –P –H
	3-1-0	- 4		3	.5:0:0.5		3-1-0-4
Cours	e Outcome						Domain/Level
							C or P or A
CO1	The studen volumes, in	ts <i>apply</i> ene n situations i	ergy balance nvolving he	e to s eat ar	ystems an d workint	d control eractions	К3
CO2	The studen	nts can <i>stud</i> ofsubstances	<i>ly</i> the charge	nges	in thermo	odynamic	K 1
CO3	The studer energy con	nts will be versiondevid	able to <i>stu</i> ces	ady t	he perforr	mance of	K 1
CO4	The studen grade and l	nts will be a ow grade en	able to <i>difj</i> ergies.	feren	<i>tiate</i> betw	een high	K2
CO5	The studen	ts can <i>apply</i>	the energy	balaı	nce to syst	ems	К3
CO6	The stud thermodyn	ents will amic cycles	be able	to	Classify	various	K2
The of	ojective of t	his course					
*	To learn al and its surr	bout work a oundings	nd heat int	eract	ions, and	balance of	energy between system

✤ To learn about application of I law to various energy conversion devices

✤ To evaluate the changes in properties of substances in various processes

To understand the difference between high grade and low grade energies and II law * limitations on energy conversion

COURSE CONTENT

UNIT I	BASIC CONCEPTS7 hrs
	Fundamentals - System & Control volume; Property, State & Process; Exact & Inexact differentials; Work - Thermodynamic definition of work; examples; Displacement work; Path dependence of displacement work and illustrations for simple processes; electrical, magnetic, gravitational, spring and shaft work.
UNIT II	LAWS OF THERMODYNAMICS8 hrs
	Temperature, Definition of thermal equilibrium and Zeroth law; Temperature scales; Various Thermometers- Definition of heat; examples of heat/work interaction in systems- First Law for Cyclic & Non-cyclic processes; Concept of total energy E ; Demonstration that E is a property; Various modes of energy, Internal energy and Enthalpy
UNIT III	PROPERTIES OF SUBSTANCES AND STEAM TABLES 8 hrs
	Definition of Pure substance, Ideal Gases and ideal gas mixtures, Real gases and real gas mixtures, Compressibility charts- Properties of two phase systems - Const. temperature and Const. pressure heating of water; Definitions of saturated states; P-v-T surface; Use of steam tables and R134a tables; Saturation tables; Superheated tables; Identification of states & determination of properties, Mollier's chart.
UNIT IV	FLOW PROCESS AND THERMO DYNAMIC 10 hrs
	First Law for Flow Processes - Derivation of general energy equation for a control volume; Steady state steady flow processes including throttling; Examples of steady flow devices; Unsteady processes; examples of steady and unsteady I law applications for system and control volume Second law - Definitions of direct and reverse heat engines; Definitions of thermal efficiency and COP; Kelvin-Planck and Clausius statements; Definition of reversible process; Internal and external irreversibility; Carnot cycle; Absolute temperature scale.
UNIT V	ENTROPY AND CYCLES 12 hrs
	Clausius inequality; Definition of entropy S ; Demonstration that entropy S is a property; Evaluation of S for solids, liquids, ideal gases and ideal gas mixtures undergoing various processes; Determination of s from steam tables- Principle of increase of entropy; Illustration of processes in T-s coordinates; Definition of Isentropic efficiency for compressors, turbines and nozzles- Irreversibility and Availability, Availability function for systems and Control volumes undergoing different processes, Lost work. Second law analysis for a control volume. Exergy balance equation and Exergy analysis Thermodynamic cycles - Basic Rankine cycle; Basic Brayton cycle; Basic vapor compression cycle and comparison with Carnot cycle.
L = 40 hrs	T = 12 hrs P=0 hrs Total = 52 hrs
TEXT BOO	JKS / REFERENCES

1.Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, *Fundamentals of Thermodynamics*, John Wiley and Sons.

2. Jones, J. B. and Duggan, R. E., 1996, *Engineering Thermodynamics*, Prentice-Hall of India

3. Moran, M. J. and Shapiro, H. N., 1999, *Fundamentals of Engineering Thermodynamics*, John Wiley and Sons.

4. Nag, P.K, 1995, *Engineering Thermodynamics*, Tata McGraw-Hill Publishing Co. Ltd

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1	2	-	1	-	3	-	2	2	2	-	-	2
CO2	3	-	-	2	3	-	1	-	1	-	-	3
CO3	1	-	1	3	1	-	1	2	-	2	-	1
CO4	2	-	-	1	1	-	2	1	2	2	-	1
CO5	-	-	-	1	1	-	-	-	1	1	-	2
CO6	-	-	-	1	1	-	-	-	1	1	-	2
Total	8	-	2	8	10	-	6	5	7	6	-	11

Mapping of COs with PO

G	4	TTT				
Semes	ster	111				
Subje	ct Name	STRENGTH OF MAT	ERIALS			
Subje	ct Code	XME303				
	L–T–P	2-С	C : P : A	L–T–P–H		
	3-1-0-	-4	4:0:0	3-1-0-4		
Cours	e Outcome			Domain/Level		
				C or P or A		
CO1	Evaluate th	ne deformation, strains an	d stresses due to axial	Cognitive		
	loading an	d understand the concepts	of principal planes	(Remember,		
	and Mohr'	s circle		Understand, Apply)		
CO2	Draw shea	r and moment diagrams o	f simple beams	Cognitive		
	subjected t	o various loading condition	ons and evaluate the	(Remember,		
	bending an	nd shear stresses produced	in beams	Understand, Apply)		
CO3	Compute s	lopes and deflection of be	eams and determine	Cognitive (Remember,		
	moment of	f inertia of different section	ns	Understand, Apply)		
CO4	Analyze to	orsional stresses, deformat	ion and deflection of	Cognitive (Remember.		
	shafts and	helical springs		Understand, Apply)		
CO5	Evaluate th	ne stresses and deformation	on in thin cylinders and	Cognitive		
	spherical s	hells subjected to internal	pressure	(Remember,		
	1	5	1	Understand, Apply)		
CO6	Evaluate th	ne stresses and deformation	on in thick cylinders	Cognitive		
	and spheric	cal shells subjected to inte	ernal pressure	(Remember,		
	· ·	v	-	Understand, Apply)		
	L					

OBJECTIVES

- ✤ To understand the nature of stresses developed in simple geometries such as bars, cantilevers, beams, shafts, cylinders and spheres for various types of simple loads
- To calculate the elastic deformation occurring in various simple geometries for different types of loading

COURSE CONTENT

UNIT I	STRESS, STRAIN AND DEFOR	RMATION OF SOLIDS	L8 + T2 = 10 hrs
	Deformation in solids- Hooke's la and shear stresses- elastic constar and shear strains- principal stresses	w, stress and strain- tensi nts and their relations- ve and principal planes- Mc	ion, compression olumetric, linear bhr's circle
UNIT II	BEAMS - LOADS AND STRESS	SES	L8 + T3 = 11 hrs
	Beams and types, transverse load diagrams- Types of beam support cantilevers. Theory of bending of axis, shear stress distribution, point	ing on beams - shear for ts, simply supported and beams, bending stress di and distributed loads	rce and bend moment over-hanging beams, istribution and neutral
UNIT III	DEFLECTIONOF BEAMS		L8 + T3 = 11 hrs
	Moment of inertia about an axis ar beam using double integration met in beams, Maxwell's reciprocal the	nd polar moment of inertian hod, computation of slope orems	a, deflection of a es and deflection
TINIT/IN TX /			
UNITIV	TORSION AND SHAFTS		L8 + 12 = 10 hrs
UNITIV	TORSION AND SHAFTS Torsion, stresses and deformation i deflection of shafts fixed at both en	in circular and hollow shands, stresses and deflection	L8 + T2 = 10 hrs afts, stepped shafts, n of helical springs
UNIT IV	TORSION AND SHAFTS Torsion, stresses and deformation is deflection of shafts fixed at both en ANALYSIS OF STRESSES IN T	in circular and hollow shands, stresses and deflection	L8 + T2 = 10 hrs afts, stepped shafts, n of helical springs L8 + T2 = 10 hrs
UNIT IV	TORSION AND SHAFTS Torsion, stresses and deformation is deflection of shafts fixed at both en ANALYSIS OF STRESSES IN T Axial and hoop stresses in cylinder of thick and thin cylinders, deformation pressure	in circular and hollow shands, stresses and deflection WO DIMENSIONS Is subjected to internal pre- ation in spherical shells su	L8 + T2 = 10 hrs afts, stepped shafts, n of helical springs L8 + T2 = 10 hrs essure, deformation ubjected to internal
UNIT V UNIT V Lecture = 40	TORSION AND SHAFTS Torsion, stresses and deformation is deflection of shafts fixed at both en ANALYSIS OF STRESSES IN T Axial and hoop stresses in cylinder of thick and thin cylinders, deformation pressure Hours Tutorial = 12 Hours	in circular and hollow shands, stresses and deflection WO DIMENSIONS Is subjected to internal pre- ation in spherical shells su Practical = 0 Hours	L8 + T2 = 10 hrs afts, stepped shafts, n of helical springs L8 + T2 = 10 hrs essure, deformation abjected to internal Total = 52 Hours
UNIT V UNIT V Lecture = 40 TEXT BOO	TORSION AND SHAFTS Torsion, stresses and deformation i deflection of shafts fixed at both en ANALYSIS OF STRESSES IN T Axial and hoop stresses in cylinder of thick and thin cylinders, deformation pressure Hours Tutorial = 12 Hours	in circular and hollow shands, stresses and deflection CWO DIMENSIONS Is subjected to internal pre- ation in spherical shells su Practical = 0 Hours	L8 + T2 = 10 hrs afts, stepped shafts, n of helical springs L8 + T2 = 10 hrs assure, deformation abjected to internal Total = 52 Hours
UNIT V UNIT V Lecture = 40 TEXT BOO 1. Egor H 2001.	TORSION AND SHAFTS Torsion, stresses and deformation is deflection of shafts fixed at both en ANALYSIS OF STRESSES IN T Axial and hoop stresses in cylinder of thick and thin cylinders, deformation pressure Hours Tutorial = 12 Hours KS / REFERENCES P. Popov, Engineering Mechanics of	in circular and hollow shands, stresses and deflection WO DIMENSIONS Is subjected to internal pre- ation in spherical shells su Practical = 0 Hours f Solids, Prentice Hall o	L8 + T2 = 10 hrs ifts, stepped shafts, n of helical springs $L8 + T2 = 10 \text{ hrs}$ essure, deformation ubjected to internal $Total = 52 \text{ Hours}$ If India, New Delhi,

3. Ferdinand P. Been, Russel Johnson Jr and John J. Dewole, Mechanics of Materials, Tata McGraw Hill Publishing Co. Ltd., New Delhi 2005.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2
CO1	3	3	2	3	3	1	2	1	2	1	2	3	2	
CO2	3	3	2	3	3	1	2	1	2	1	3	3	2	
CO3	3	3	2	3	3	1	2	1	2	1	2	3	2	
CO4	3	3	2	3	3	1	2	1	2	1	2	3	2	
CO5	2	2	1	2	2	1	1	1	1		2	2	1	
CO6	1	1	1	1	1		1		1	1	1	1	1	
Total	15	15	10	15	15	5	10	5	10	5	12	15	10	

Table 1: Mapping of COs with PO

Semes	er III	
Cours	Name MATERIALS ENGINEERING	
Cours	e Code XME304	
L –T –	P–C C:P:A	L –T –P –H
3-0-	0-3 3:0:0	3-0-0-3
Cours	Outcome	Domain/Level
		C or P or A
CO1	<i>Study</i> the basic crystal structures and different imperfections in solid	K1
CO2	<i>Outline</i> the mechanical properties and appropriate measurement methods.	K2
CO3	Summarize the static failure theories.	K2
CO4	<i>Illustrate</i> the phase diagrams and comprehend the phase transformations in alloys.	K2
CO5	<i>Compare</i> different heat treatment process and its applications.	K2
CO6	<i>Summarize</i> the modern engineering materials and their properties	K1
Object	ives	

1. Understanding of the correlation between the internal structure of materials, their mechanical properties and various methods to quantify their mechanical integrity and failure criteria.

2. To provide a detailed interpretation of equilibrium phase diagrams

3. Learning about different phases and heat treatment methods to tailor the properties of Fe-C alloys.

COURSE CONTENT

UNIT I PROPERTIES OF METALLIC MATERIALS

9 Hours

Crystal Structure: Unit cells, Metallic crystal structures, Ceramics. Imperfection in solids:Point, line, interfacial and volume defects; dislocation strengthening mechanisms and slipsystems, critically resolved shear stress.

Mechanical Property measurement: Tensile, compression and torsion tests; Young'smodulus, relations between true and engineering stress-strain curves, generalized Hooke'slaw, vielding and vield strength, ductility, resilience, toughness and elastic recovery;Hardness: Rockwell, Brinell and Vickers and their relation to strength.

UNIT II **STATIC FAILURE THEORIES**

9 Hours

Static failure theories: Ductile and brittle failure mechanisms, Tresca, Von-mises, Maximum normal stress, Mohr-Coulomb and Modified Mohr-Coulomb; Fracture mechanics: Introduction to Stress-intensity factor approach and Griffith criterion.

Fatigue failure: High cycle fatigue, Stress-life approach, SN curve, endurance and fatigue limits, effects of mean stress using the Modified Goodman diagram; Fracture with fatigue, Introduction to non-destructive testing (NDT).

ALLOYS AND PHASE DIAGRAMS UNIT III

9 Hours

Alloys, substitutional and interstitial solid solutions- Phase diagrams: Interpretation of binary phase diagrams and microstructure development; eutectic, peritectic, peritectoid and monotectic reactions.

Iron Iron-carbide phase diagram and microstructural aspects of ledeburite, austenite, ferrite and cementite, cast iron.

HEAT TREATMENT OF MATERIALS 9 Hours UNIT IV

Heat treatment of Steel: Annealing, tempering, normalizing and spheroidising, isothermal transformation diagrams for Fe-C alloys and microstructure development.

Continuous cooling curves and interpretation of final microstructures and properties- austempering, martempering.

Case hardening, carburizing, nitriding, cyaniding, carbo-nitriding, flame and induction hardening, vacuum and plasma hardening

UNIT V **MODERN ENGINEERING MATERIALS**

Alloying of steel, properties of stainless steel and tool steels, maraging steelscast irons; grey, white, malleable and spheroidal cast irons- copper and copper alloys; brass, bronze and cupro-nickel;

Aluminium and Al-Cu - Mg alloys- Nickel based superalloys and Titanium alloys.

L = 45 Hours Total = 45 Hours **Tutorial = 0 Hours**

TEXT BOOKS

1. W. D. Callister, 2006, "Materials Science and Engineering-An Introduction", 6th Edition, Wiley India.

2. Kenneth G. Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 4th Indian Reprint, 2002.

3. V. Raghavan, "Material Science and Engineering', Prentice Hall of India Private Limited, 1999.

4. U. C. Jindal, "Engineering Materials and Metallurgy", Pearson, 2011.

REFERENCE BOOKS

1. Koch, C. C. Nanostructured materials: processing and applications: William Andrew Pub.

9 Hours

2.James F Shackelford, S "Introduction to materials Science for Engineers", 6 th Macmillan Publishing Company, New York, 2004

3.William D CallisterJr, "Materials Science and Engineering – An Introduction", John Wiley and Sons Inc., 6 th edition, New York, 2003

4. Jayakumar S, "Materials Science", RK Publishers, Coimbatore, 2004

5. Bolton, W., Engineering materials technology: Butterworth-Heinemann.

E RESOURCES

1.NPTEL courses, http://www.nptel.iitm.ac.in/courses.php?disciplineId=112: related web and video resources under Mechanical Engineering &Metallurgy and Material Science categories 2.http://www.intechopen.com/books

mapp	mg or c	205 11	ICH I	05		-		-						
	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO 10	PO 11	PO 12	PS 01	PS 02
CO1	2	2	3	3	1	1	-	2	3	3	1	3	2	1
CO2	2	2	3	3	1	1	-	2	3	3	1	3	2	1
CO3	3	3	1	1	1	-	-	1	1	2	3	2	2	1
CO4	3	2	1	1	1	-	-	1	2	3	1	3	2	1
CO5	2	3	1	3	1	-	-	1	1	2	3	2	2	1
CO6	3	2	3	3	1	1	-	1	3	3	2	1	2	1
Tot	15	14	12	14	6	3	0	8	13	16	11	14	12	6

Mapping of COs with POs

Semest	er	III						
Subjec	t Name	Machine Drav	ving					
Subjec	t Code	XME305						
L –T –	Р-С		C:P:A	L –Т –Р –Н				
1- 0 – 2	1-2		1:1:0	1-0-2-3				
Course	Outcome		Knowl	edge Level				
CO1	To Understa	l practices.		K2				
CO2	To apply tol	erances and fits	in the drawings.		K2			
CO3	To remember	machine drawing		K2				
CO4	To understar	nd the working f	asters		K2			
CO5	To understan	nd the cotter join	t, knuckle joint, etc.,		K2			
CO6	To understan	nd the working c	omponents		K2			
COUR	SE CONTEN	NT						
UNIT	I CODES	AND PRACTI	CES	9 hrs				
	Indian s presenta common Convent	tandard code of tion, conventior features. Abl ions for sectioni	practice for engineering drawing - nal representations of threaded par previations and symbols for use in ng and dimensioning.	-general ts, sprin 1 technic	principles of ags, gear and cal drawings,			
UNIT I	I TOLER	ANCES		9 hrs				
	Tolerances –types –representation of tolerances on drawings, Geometric tolerance –form and positional tolerances –datum, datum features, fits –types –selection of fits –allowances							
UNIT I	II DRAWING SYMBOLS 9 hrs							
	Maximu	m material prin	cipal-symbols and methods of indic	ating it	on drawing –			

	surface finish symbols –welding symbols and methods of indi-	cating them on							
UNIT IV	WORKING DRAWINGS OF FASTENERS	9 hrs							
	Preparation of working drawing for the Fasteners like: Nuts, bolts screws, keys and keyways, joints –cotterjoint and knuckle joint.								
UNIT V	UNIT V WORKING DRAWINGS OF MACHINE COMPONENTS 9 hrs								
L = 45 hrs	 Preparation of working drawings for the machine components like: Connecting rod, Plummer block, screw jack, cross head for horizon engines, swivel bearing, machine vice, lathe tail stock, toolhead of valve, safety valve, pressure relief valve. Total = 45 hr 	ntal and vertical f a shaper, stop							
TEXT BO	OKS								
1. Ma	chine drawing by Gopalakrishnan, Subash Publishers,2002								
REFERE	NCES								
 Machine Machine Revised 	e drawing , N.D. Bhatt, Charotar Publishing House, Anand e drawing, N.Siddeswar, P.Kanniah, and V.V.S. Satry TataMcGraw H IS codes:	Hill, 1980							
10711,107	13,10714,9609,1165,10712,10715,10716,10717,11663,11668, 69 8043 8000								
E RESOU	RCES								

http://nptel.iitm.ac.in

	104	P02	P03	P04	P05	904	704	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	3	3	3	2	3	2	3	1	1	2	3	3	2	
CO2	3	3	3	1	3	1	3	1	1	1	2	3	2	
CO3	3	3	3	1	3	1	3	1	1	1	2	3	2	
CO4	2	2	2	1	2	1	2	1	1	1	1	2	1	
CO5	1	1	1	0	1	0	1	0	0	0	1	1	1	
CO6	3	3	3	1	3	1	3	1	1	1	2	3	2	
ТОТ	15	15	15	6	15	6	15	5	5	6	11	15	10	

Mapping of COs with POs

Semester III									
Subjec	t Name	ENTREPREN	EURSHIP DEVELOPMENT						
Subjec	t Code	XUM306							
L –T –	Р-С		C:P:A	L –T –I	Р-Н				
2-0-	0-2		2:0:0	2-0-0-2					
Course	e Outcom			Knowle	dge Level				
CO1	CO1 <i>Recognise</i> and <i>describe</i> the role of innovation and motivationK2								
CO2	10r an entrepreneur.D2Self-assess and appraise your entrepreneurship interest withK5								
CO3	<i>Outline</i> th entrepreneu	e importance or rship and <i>illustra</i>	of generation of new ideas for <i>te</i> market assessment.		K4				
CO4	4 Explain the competition in business and K2,K3 sketch/demonstrate/comply business model for dealing with competition								
CO5	Describe ar	nd <i>Explain</i> ventu	re creation and launching of small	ł	K1,K2				
GOL	business and	d its managemen	t.		71 170				
006	opportunitie	es for Entreprene	us government policies and global urship Development	1	X1,KZ				
COUR	SE CONTE	NT	1 1						
UNIT	I INNOV	ATION AND E	NTREPRENEURSHIP		5hrs				
	Definiti entrepre and trai career a	on of Innovation eneurship develo ts of an entrepren nd its role in nati	n, Creativity and Entrepreneurship; pment (2)- Entrepreneurial motivat neur (1)-Role of Family and Society; ional development (1).	role of i ion (1)- C Entrepre	nnovation in Competencies neurship as a				
UNIT	II SELF INCLII	ASSESSME NINATION	NT OF ENTREPRENEU	RIAL	4 hrs				
	Self-assessment of entrepreneurial inclination (1)-Presentation by students on their entrepreneurial inclination rating (2)-Case study of successful entrepreneurs (1)								
UNIT	III NEW 1	IDEA GENERA	TION TO MARKET ASSESSM	ENT	9 hrs				
	Importa (1)- De	nce of Idea ge scription of chos	neration-filtering-refinement (1)-op sen idea - value proposition, custo	portunity mer-prob	recognition lem-Solution				

	statement) (1)-benefits; development status; IP ownership (1)-Market Technology/ user/decision makers/ partners (1)-market need; segme market TAM,SAM and SOM (1)-case study on market segmentation companies (1)	Validation- entation (1)- by popular						
UNIT IV	CUSTOMER – COMPETITION- BUSINESS MODEL	9 hrs						
	Customer-Target primary customer research, Decision making unit/ process-Beach head market; Cost of Customer Acquisition (2)-Competition- comparative analysis, competitive advantages-; (2)-Business model (1) -Financial planning (1)- Pitch documentation and presentation (3)							
UNIT V	VENTURE CREATION AND LAUNCHING OF SMALL BUSINESS AND ITS MANAGEMENT	9 hrs						
	New enterprise creation - organizational and legal matters (1)-Operational plan (1)-Sales and distribution plan (1)-Accounting (1)-Team recruitment and management (1)-Fund raising and management (1)-Profile of a startup – case studies (2)							
UNIT VI	GOVERNMENT INITIATIVES AND GLOBAL OPPORTUNITIES	9 hrs						
L = 45 hrs	Incubators and accelerators - capacity building (2)-Startup policies- S (2)-Support for MSME; GeMPortal(2) Funding–national and is sources(2)-Bilateral programmes by Govt. of India -Global reach fo cross-cultural entrepreneurship (1) T = 0 hrs P=0 hrs Total = 45 hrs	startup India international r promoting						
REFEREN	NCES							
1.A.P.Arur www.brain 2.Thomas Business M	na, "Lecture Notes on Entrepreneurship Development", available and <u>unet</u> W. Zimmerer, Norman M. Scarborough, "Essentials of Entrepreneursh Management", Pearson; 3rd edition, 2001.	s softcopy @						
3.John Burnett, "Introducing Marketing", Open Text Book available at http://solr.bccampus.ca:8001/bcc/file/ddbe3343-9796-4801-a0cb- 7af7b02e3191/1/Core%20Concepts%20of%20Marketing.pdf								
4.10001a, 0 pp.411-425	5. 10.1287/mksc.1050.0166, 2006.	ence. vol. 25.						
5.Alexande Visionaries	er Osterwalder and Yves Pigneur, "Business Model Generation: A I s, Game Changers, and Challengers", Wiley; 1st edition, 2010.	Handbook for						
6.Gerardus	Blokdyk,"3C's model The Ultimate Step-By-Step Guide"5starcooks, 20	018.						

Table.1. CO PO mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O4	PO 10	PO 11	PO 12
CO1		1		1	1	1		1	1	1	1	
CO2		1		1	1	1		1	1	1	1	
CO3		1		1	1	1		1	2	2	1	
CO4		1		1	1	1		1	1	1	1	
CO5		1		1	1	1		1	1	2	1	

CO6		1		1	1	1	1	1	2	1	
Total		6		6	6	6	6	6	9	5	
Scaled to 0,1,2 and 3		2		2	2	2	2	2	2	1	
Total	0	1-6		7-12	1	3-18			L – Le Tu	ecture; torial;	T-
Scale	0	1		2		3			P-P	ractical	l;
Relation	No	Low	, I	Mediun	n I	High			SS-S	Self Stu	ıdy

Semester	ш	
Subject Name	Strength of Materials Laboratory	
Subject Code	XME308	
L –Т –Р –С	C:P:A	L –T –P –H
0- 0 - 1 - 1	0:1:0	0-0-2-2
Course Outcome		Domain/Level
		C or P or A
<i>Define</i> different me deformation problem conditions. <i>Indentify</i> appropria materials. <i>Examine</i> deflection f	echanical properties and <i>solve</i> various ns under different stress and loading ate Hardness method for different for different types of beam.	Coginitive (Remembering) (Applying) Psychomotor (Guided response) Coginitive (Understanding) Psychomotor (Guided response) Coginitive (Understanding) Psychomotor (Perception)
<i>Determine</i> torsion va	lue for different elements	Coginitive (Understanding) Psychomotor (Guided response)
<i>Study</i> about fatigue strain relation	strength of Steel and Sketches stress	Coginitive (Understanding) Psychomotor (Guided response)

- (i) To understand the measurement of mechanical properties of materials
- (ii) To understand the deformation behavior of materials

COURSE CONTENT

CO Relation

LIST OF	EXPERIMENTS	СО
1.	Tensile test on mild steel using Universal Testing Machine.	1
2.	Compression test on brick/wooden specimen using Compression Testing Machine	1

3.	Brinell hardness test	2
4.	Rockwell hardness test	2
5.	Charpy and Izod Impact tests	2
6.	Deflection tests on simply supported beams	3
7.	Deflection tests on cantilever	3
8.	Torsion test on mild steel rod.	4
9.	Test on helical coiled springs	4
10.	Exercises on Mohr's circle	5
11.	Fatigue test on steel	5

S. Ramamrutham and R. Narayanan, (2003), Strength of Materials, Dhanpat Rai Publications.

REFERENCES

1. Rowland Richards, (2000), Principles of Solid Mechanics, CRC Press.

- 2. Timoshenko, S.P. and Young, D.H., (2000), Strength of Materials, East West Press Ltd
- 3. R.K. Bansal, (2000), Strength of Materials, Laxmi Publications

E-REFERENCES

1.http://nptel.iitm.ac.in/courses

Mapping of COs with POs

	P01	P02	P03	P04	PO5	90d	P07	PO8	60d	P010	P011	P012	PS01	PSO2
CO1	2	3	-	2	1	1	-	-	1	-	-1	1	2	
CO2	2	3	-	2	1	1	-	-	-	-	-1	1	2	
CO3	2	3	-	2	1	1	-	-	1	-	-	1	2	
CO4	2	3	2	1	1	1	-	-	1	-	-1	1	2	
CO5	2	3	-	2	1	1	-	-	-	-	-	1	2	
Tot	10	15	2	9	5	5			3		3	5	10	

Semester	III							
Subject Name	Inplant Training – I							
Subject Code	XME310							
L –Т –Р –С	C:P:A	L –T –P –H						
0-0-1-1	0:1:0	0-0-0-0						
Course Outcome		Domain/Level						
		C or P or A						

Objectives:

This course is aimed to provide more weightage for project work. The project work could be done in the form of a summer project or internship in the industry or even a minor practical project in the college. Participation in any technical event/ competition to fabricate and demonstrate an innovative machine or product could be encouraged under this course.

	· · · · · · · · · · · · · · · · · · ·		L	Τ	P	С						
	VECUD1 Service Debetics with Drives and Sensors											
	XECHR1- Service Robotics with Drives and Sensors											
			1	0	4	5						
PREREQ	PREREQUISITE: -NIL-											
	COURSE OUTCOMES DOMAIN											
After the c	ompletion of the course, students will be able to	·										
			Kı	nowl	edg	e						
CO1	Understand the Anatomy of a mobile robot	Comprehension										
CO^2	Virtually Build and Program robots in	Psychomotor	Application									
	Coppelia Sim	Synthesis										
		Cognitive	Application									
CO3	Integrate Sensors and Motors with Arduino	Synthesis										
		Affective	Εv	valua	te							
	Develop Intelligent Behavior in service Pobots and	Davahomotor	A	oplic	atio	n						
CO4	will be able to program using LUA	A ffactive	Sy	nthe	sis							
	will be dole to program doing Left	Allective	Aı	Analysis								
CO5			Kr	nowl	edge)						
	<i>Understand</i> the concept of drives and sensors	Cognitive	Co	mpr	eher	IS						
			ion									
UNIT I	Principles of Robotics					3+6						

Introduction to Robotics – What is a robot , Field of Robotics , Robot Classification – Applications of Robots - Introduction to Coppelia Sim – Why we need simulations , How to make the best use of Simulation in Robotics , Difference between Proprietary and Open Source simulations , What is Coppelia Sim , Fundamentals of Coppelia Sim

, Building Blocks of Mobile Robot – Coppelia Sim – Station components of Coppelia Sim, Toolboxes in Coppelia - Work with Mobile Robots in Coppelia Sim –Robot Frames – Robot Assembly in Coppelia Sim – Building Blocks of a mobile Robot – Joints

Primitive Shapes – Types of Locomotion – Differential Drive Principle and Locomotion
 What is a Differential Drive Robot – Mathematical Modelling of Differential Drive Mechanics – Mobile Robot Principles – Limitations of Mobile Robots

- Various Mobile Robot Paradigms – Programming a Differential Drive robot – Programming in Coppelia Sim – What is Lua Programming language – Scripts in Coppelia Sim – Teleoperation of a Differential Drive Robot I – Control of Virtual mobile Robot in Coppelia Sim using Keyboard – Programming the control structure for Robot Teleoperation – Teleoperation of a Differential Drive Robot II – Program debugging and error correction in coppelia sim Lab:

- 1. Offline Programming with Coppelia Sim
- 2. Workspace building with Coppelia Sim
- 3. Modelling Differential Drive Robot in Coppelia Sim
- 4. Programming Differential Drive Robot in Coppelia Sim
- 5. Teleoperate a Mobile Robot

UNIT II

Robot Perception

3+12

Introduction to Braitenberg Robots – Braitenberg Principle – Examples of Braitenberg Robots – Different Robot Paradigms – Working with Reactive Paradigm – Imparting Intelligent Behaviors using Braitenberg Principle – Examples of Braitenberg Robots –Introduction to Robot Perception - What is a Sensor - Characteristics of a Sensor - Different sensors for Service Robots -Working with Proximity sensors – Principles and Types of Proximity Sensors – Object Detection in Coppelia Sim – Proximity sensors for detecting obstacles – Data Acquisition from Robots – Case Study – Introduction to Robot Mapping – Using proximity sensors for Robot Mapping – Obstacle Avoidance in Coppelia Sim – Different Obstacle Avoidance algorithms – Working with Bug 1 and Bug 2 algorithms – Maze Building – Using Vision sensors for Obstacle detection and Avoidance – Introduction to Vision Sensors – Fundamentals of Vision sensors – Principles of Camera and Image formation – Applications of Vision sensors in Robotics – Image Processing in Coppelia Sim – Object Detection using Vision – Braitenberg Robots – Line following – Principles of Line following Sensors used in Line Following – Applications of Line following robots in Industry – Visual Servoing – What is Visual Servoing – Sensors used in visual Servoing – Fundamentals of Object tracking – Gesture Recognition -Detecting Gestures using Camera – Introduction to Python – Python Crash course – Connecting Python with Coppelia Sim

– Gesture Recognition in Python – Working with Lidar in Coppelia Sim – Fundamentals of LIDAR – Principle of a LIDAR – Application of LIDAR in Autonomous Robots – Data Acquisition using LIDAR

Lab:

- 6. Robot Mapping
- 7. Performing Obstacle Avoidance in Coppelia Sim
- 8. Building and Programming a Line following robot in Coppelia Sim
- 9. Performing Visual Servoing in Coppelia Sim
- **10. Gesture Recognition Robot**
- **11.** Robot Mapping using LIDAR

UNIT III									
	Aerial & Bio Ins	pired Robots	3+6						
Introduction to Aerial Vehicles - Parts of a quadcopter & Flying Techniques - PilotingWay point									
programming - Building of Drone Frame - Aerial Mapping - Inspection of quarantine zones -									
Bioinspired Robots - Control of legged robot in Coppelia Sim - What is a gait? - Different gait									
motions in animals & hun	nans - Assembly of legged	robot - Calibration and	d control of legged						
robot - Programming of lo	egged robot - What is a H	umanoid Robot – Prin	ciple of Humanoid						
Robot – Handling Gaits in 1	Humanoid Robots – Challer	ges in Biped Motion	-						
Lab:									
12. Building a Mobile Robot Motion model									
13. Programming and Controlling an Unmanned Aerial Vehicle									
14. Gait Analysis and Control of Bio inspired Robots									
15. Working with Humanoid Robots									
UNIT IV	Building Robots	s (Hardware)	3+9						
Build Robots in Real Tir	me – Arduino – Fundame	ntals of Arduino – Co	omponents in Prag						
Auxiliary Kit – Program	ming LED, Motors in Ar	duino – Working wit	h a						
Potentiometer in Arduino -	- Programming sensors in A	rduino – Build Robots	in Real						
time – Robot Assembly –	Assembling a Mobile Rob	ot – Connecting Ardui	no with Ultrasonic						
Sensor – Connecting Ar	duino with Infra-red sen	sors – Understanding	Omni Directional						
Motion in Mobile Robot –	Building Braitenberg Robot	s in Real time							
– Robot Intelligence – Intr	oduction to Teachable Mac	hine – Reacon Based N	Javigation System -						
Robot Control with Gesture		Inne Deucon Duseu I	u vigution bystem						
Lah.	65								
16 Working with Arduin	o basics								
17 Building a Blustooth	o Dasics								
19 Puild on Obstacle Ave	oidanaa Dahat								
10. Duild a Lina Fallowin	a Dobot								
20 Ruild a Line Followin	g Robot								
20. Dullu a Light Followi	During and Sama		2 - 0						
Dringinglag of Hadrondian C	Drives and Senso		<u>3+9</u>						
Principles of Hydraulics- Co	onstruction of Hydraulic circ	uits-valves-direction con	trol valve, pressure						
release valve, pressure regula	ate valve, oil tank & filters -	Principles onor pneumati	cs- Construction of						
pneumatic circuits- valves-d	frection control valve, pressu	re release valve, pressure	e regulate valve, air						
compressors & filters – In	itroduction to industrial sen	sors-study of characteri	stics of inductive,						
Labe	secure sensors and ultrasonic s	ensor.							
21 Hydroulia Operation	of single esting and double (ating avlindars							
22. Operation of electro h	vdroulies	icting cynnuers							
22. Operation of electron	yurauncs	esting arlindors							
23. The matter operation	noumatics	acting cynnuers							
25 Sonsors-inductive con	neumanes								
26 Sonsors-photoelectric	sonsors and ultrasonic sons	NPC .							
I FCTURF		PRACTICAL	AL HOURS						
12			60 AL 110 CKS						
14	U	55	VV						
FEVT DOOKS.									
TEXT BOOKS:	tion Induction Automation To	almala sina a dita d Da. Cl							
TEXT BOOKS: Springer Handbook on Robo	tics Industrial Automation Te	echnologies, edited By, Cl	hanchal Dey, Sunit						
TEXT BOOKS: Springer Handbook on Robo <i>Kumar Sen</i> , ISBN978036749	tics Industrial Automation Te 96074,Published February 1,	echnologies,e <i>dited By</i> , <i>Cl</i> 2022 by CRC Press 376	<i>hanchal Dey,Sunit</i> Pages 301 B/W						
TEXT BOOKS: Springer Handbook on Robo <i>Kumar Sen</i> , ISBN978036749 Illustrations	tics Industrial Automation Te 96074,Published February 1,	echnologies,e <i>dited By</i> , <i>Cl</i> 2022 by CRC Press 376	<i>hanchal Dey,Sunit</i> Pages 301 B/W						

Introduction to Robotics by J.J. Craig, Addison-Wesley Publishing Company, 1986owozin and Lampert

J.Buchli (eds.): "Mobile Robots - Moving Intelligence", Published by AdvancedRobotic Systems International Verlag, 2006

E-REFERENCES:

NPTEL :: Electrical Engineering - Industrial Automation and Control

Semester	IV								
Subject Name	PROBABILITY DISTRIBUTION AND STATISTICAL METHODS								
Subject Code	XMA401								
L –T –P	-С	C:P:A	L –T –P –H						
3-1-0	- 4	3:0.5:0.5	3-1-0-4						

PREREQUISITE: NIL

Learning Objectives

- 1. Appreciate the importance of probability and statistics in computing and research
- 2. Develop skills in presenting quantitative data using appropriate diagrams, tabulations and summaries
- 3. Use appropriate statistical method in the analysis of simple datasets.
- 4. Interpret and clearly present output from statistical analyses in a clear concise and understandable manner
- 5. The main objective of this course is to provide students with the foundations of probabilities and statistical analysis mostly used in varied applications in engineering and science like disease modeling, climate prediction and computer networks etc.

Cours	e Outcome	Domain/Level
		C or P or A
CO1	Explain conditional probability, independent events; find expected values and Moments of Discrete random variables with their properties.	K1. K2
CO2	Find distribution function, Marginal density function, conditional density function and to define density function of conditional distribution functions normal, exponential and gamma distributions.	K1
CO3	Determine the statistical parameters of Binomial, Poisson and Normal and to find correlation, regression and Rank Correlation coefficient of two variables. Moments, skewness and Kurtosis.	K2, P3
CO4	Explain large sample test for single proportion, difference of proportion, single mean, difference of means and difference of standard deviations with simple problems.	K2
COF	Explain small sample test for single mean difference of mean and	K2 A1

CO5 Explain small sample test for single mean, difference of mean and K2, A1

correlation coefficients, variance test, chi square test with simple problems.

CO6 Analyze the test of significance for comparing large sample test and small sample test

UNIT I Basic Probability

Probability spaces, conditional probability, independence; Discrete random variables, Independent random variables, the multinomial distribution, Poisson approximation to the binomial distribution, infinite sequences of Bernoulli trials, sums of independent random variables; Expectation of Discrete Random Variables, Moments, Variance of a sum, Correlation coefficient, Chebyshev's Inequality.

UNIT II Continuous Probability Distributions & Bivariate 12 HRS Distributions

Continuous random variables and their properties, distribution functions and densities, normal, exponential and gamma densities. Bivariate distributions and their properties, distribution of sums and quotients, conditional densities, Bayes' rule.

UNIT III Basic Statistics

Measures of Central tendency: Moments, skewness and Kurtosis - Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions, Correlation and regression – Rank correlation

UNIT IV Applied Statistics

Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations.

UNIT V Small Samples

Test for single mean, difference of means and correlation coefficients, test for ratio of variances - Chi-square test for goodness of fit and independence of attributes

L = 45 hrs T = 15 hrs P=0 hrs Total = 60 hrs

TEXT BOOKS

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2015.

2. N.P. Bali and M. Goyal, "A text book of Engineering Mathematics", Laxmi Publications, 2010.

3. Veerarajan T., "Probability, Statistics and Random processes", Tata McGraw-Hill, New Delhi, 2010.

REFERENCES BOOKS

1. P. G. Hoel, S. C. Port and C. J. Stone, "Introduction to Probability Theory", Universal Book Stall, 2003.

2. S. Ross, "A First Course in Probability", Pearson Education India, 2002.

3. W. Feller, "An Introduction to Probability Theory and its Applications", Vol. 1, Wiley, 1968.

4. E. Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 2006.

E REFERENCES

12 HRS

12 HRS

12 HRS

K4

12 HRS

3. <u>www.nptel.ac.in</u>

4. Probability and Statistics by Prof.Someshkumar, Department of Mathematics, IIT Kharagpur. (http://nptel.ac.in/noc/noc_courselist.php)

1114551												
	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA1 0	GA1 1	GA1 2
CO 1	3	2	1						1	1		1
CO 2	3	2	1						1	1		1
CO 3	3	2	1	1					1	1		1
CO 4	3	2	1	1	1	1			1	1	1	1
CO 5	3	2	1	1	1	1	1		1	1	1	1
	15	10	5	3	2	2	1		5	5	2	5
Scale	3	2	1	1	1	1	1		1	1	1	1
d Value												
$1 - 5 \rightarrow$	× 1,		6 – 1	$0 \rightarrow 2$,		11	1 - 15 -	$\rightarrow 3 1$	- Low,	$2-\overline{Med}$	ium, 3-	High

Mapping of COs with GA

Semest	er	IV			
Subjec	t Name	APPLIED TH	ERMODYNAMICS		
Subjec	t Code	XME402			
L –T –	Р-С		C:P:A	L –T –P –H	
3-1-0	- 4		3.5:0:0.5	3-1-0-4	
Course	Outcome			Domain/Lev	el
				C or P or A	
CO1	Understandi	ng of basic fuel	types and Calculation of air	K1	
CO2	Fuel mixture	es or combustion	nour power evelos	V1	
CO_2	Understandi	ng of various ga	s power cycles	<u>K1</u> K1	
CO4	Understandi	ng of basic princ	ciples of psychometric and solving	K2	
	the		1		
C05	Problems of Understandi	psychrometricc	hart. occurring in high speed	K1	
	compressible	e flow	in ingit spool	131	
CO6	Analyze ene combustors,	aircoolers, noz	in various thermal devices such as zles, diffusers, steam turbines and	K2	
Object	ives	g compressors.			
(1) To]	learn about of	I law for reactin	ng systems and heating value of fuels	5	
(2) To]	learn about ga	and vapor cvcl	les and their first law and second law	efficiencies	
(3) To	understand ab	out the propertie	es of dry and wet air and the principl	es of psychron	netry
(4) To	learn about g	as dynamics of a	ir flow and steam through nozzles		-
(5) To]	learn the abou	it reciprocating c	compressors with and without interco	oling	
(6) To a	analyze the pe	erformance of ste	eam turbines	-	
COUR	SE CONTEN	NT			
UNIT	I Fuels ar	nd Stoichiometr	у	9 hr:	s
	Introduc analysis- enthalpy equilibri	tion to solid, First law ana tables- Adial um composition	liquid and gaseous fuels– Stoich lysis of combustion reactions- He batic flame temperature- Chemi calculations using free energy	iometry, exha at calculatior cal equilibrit	nust gas as using am and
UNIT	II Power c	ycles		9 hrs	
	Vapor p analysis Air stan reheat, r	ower cycles Ran . Super-critical a dard Otto, Diese egeneration and	kine cycle with superheat, reheat and and ultra super-critical Rankine cyc el and Dual cycles-Air standard Br intercooling- Combined gas and vap	d regeneration le- Gas power ayton cycle, e or power cycl	, enregy r cycles, effect of es-
UNIT	III Psychyr	ometry and Re	frigeration	9 h	rs
	Propertie heating/compres	es of dry and v cooling and sion refrigeration	vet air, use of pschyrometric chart humidification/dehumidification, n cycles, refrigerants and their prope	, processes ir dew point. rties	volving Vapor

UNIT IV	Compressible flow and Shocks	9 hrs						
	Basics of compressible flow. Stagnation properties, Isentropic flow of a perfect gas through a nozzle, choked flow, subsonic and supersonic flows- normal shocks- use of ideal gas tables for isentropic flow and normal shock flow- Flow of steam and refrigerant through nozzle, super saturation- compressible flow in diffusers, efficiency of nozzle and diffuser							
UNIT V	Compressors and Steam turbines	9 hrs						
	Reciprocating compressors, staging of reciprocating compressors, optimal stage pressure ratio, effect of intercooling, minimum work for multistage reciprocating compressors and Analysis of steam turbines, velocity and pressure compounding of steam turbines							
L = 45 hrs	T = 15 hrs P = 0 hrs Total = 60 hrs							

TEXT BOOKS / REFERENCES

1. Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, *Fundamentals of Thermodynamics*, John Wiley and Sons.

Jones, J. B. and Duggan, R. E., 1996, *Engineering Thermodynamics*, Prentice-Hall of India
 Moran, M. J. and Shapiro, H. N., 1999, *Fundamentals of Engineering Thermodynamics*, John Wiley and Sons.

4. Nag, P.K, 1995, Engineering Thermodynamics, Tata McGraw-Hill Publishing Co. Ltd.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1	3	2	1	2	0	0	0	1	3	0	3	3
CO2	3	3	1	0	2	0	0	2	3	0	3	3
CO3	3	3	1	0	2	0	0	2	3	0	3	3
CO4	3	3	1	1	1	0	0	2	3	0	3	3
CO5	3	3	1	0	0	0	0	0	3	0	3	3
CO6	1	2	1	0	0	0	0	3	3	0	3	3
Total	16	16	6	3	5	0	0	10	18	0	18	18

Mapping of COs with PO

Semester IV								
Course	e Name	FLUID ME	CHANICS &FLUID MACHINES					
Course	e Code	XME403						
L –T –	P-C		C:P:A	L –Т –Р –Н				
3 - 1 -	0-4		3.5:0.5:0	3-1-0-4				
Course	e Outcon	ie		Domain/Level				
				C or P or A				
CO1	Ability	to derive / s	olve problems related to fluid	К3				
	properti	es, momentu	m equation and Bernoulli's					
CO2	equation	1. to dorivo / sol	va problems related to	K3				
02	incomp	NJ						
CO3	Ability	to derive /	solve problems related to	К3				
	bondary	v layer probler	n and friction problems.					
CO4	Ability	to derive	/ solve problems related to	К3				
CO5	dimensi	onal analysis	and similitude.	K3				
0.05	and its r	berformance.	orve problems related to hydraune pumps	K5				
CO6	O6 Ability to derive / solve problems related to hydraulic turbines K3							
	and its p	performance.						
Object	tives							
*	To learn flows	about the ap	oplication of mass and momentum conserv	ation laws for fluid				
*	To under	stand the imp	ortance of dimensional analysis					
*	To obtain	n the velocity	and pressure variations in various types of sin	mple flows				
*	To analy	ze the flow in	water pumps and turbines.					
COUR	SE CON	TENT						
UNIT	I BA	SIC CONCE	PTS AND PROPERTIES OF FLUIDS	9 Hours				
	Det flui and mo itsa	finition of flui ds, mass dens surface tens mentum equipplications	d, Newton's law of viscosity, Units and dime sity, specific volume, specific gravity, visco sion, Control volume- application of conti- uation, Incompressible flow, Bernoulli	nsions-Properties of sity, compressibility inuity equation and i's equation and				
UNIT	II IN	COMPRESS	IBLE FLUID FLOW	9 Hours				
	Exa flow	act flow solution with the solution of the sol	ions in channels and ducts, Couette and Pois sular conduits and circular annuli	suielle flow, laminar				
	con We	cept of bour isbach equation	ndary layer – measures of boundary layer on, friction factor, Moody's diagram	thickness - Darcy				
UNIT	III DI	MENSIONAI	LANALYSIS	6 Hours				

	Need for dimensional analysis – methods of dimension analy types of similitude Dimensionless parameters – application parameters – Model analysis	sis – Similitude – of dimensionless							
		0.77							
UNIT I	HYDRAULIC PUMPS	8 Hours							
	Euler's equation - theory of Rotodynamic machines - varie	ous efficiencies –							
	velocity components at entry and exit of the rotor, velocity triar	igles – Centrifugal							
	pumps, working principle, work done by the impeller, perfe	ormance curves –							
	Cavitation in pumps- Reciprocating pump – working principle								
UNIT V	HYDRAULIC TURBINES	8 Hours							
	Classification of water turbines, heads and efficiencies, velo	ocity triangles-							
	Axial, radial and mixed flow turbines- Pelton wheel, Franc	is turbine and							
	Kaplan turbines, working principles – draft tube- Specific speed, unit								
	quantities, performance curves for turbines – governing of turbin	nes							
L = 45 H	ours Tutorial = 15 Hours Total = 60 Hour	S							
TEXT E	OOKS / REFERENCE BOOKS								
1. S	treeter. V. L., and Wylie, E.B., Fluid Mechanics, McGraw Hill, 200	3.							
2. F	athakrishnan. E, Fluid Mechanics, Prentice Hall of India (II Ed.), 20	07.							
3. F S	amamritham. S, Fluid Mechanics, Hydraulics and Fluid Machine ons, Delhi, 2008.	s, Dhanpat Rai &							
4. S T	om, S.K., and Biswas, G., "Introduction to Fluid Mechanics and ata McGraw-Hill, 2nd Edition, 2004.	Fluid Machines",							
5. K L	umar. K.L., Engineering Fluid Mechanics (VII Ed.) Eurasia Pub td., New Delhi, 2005.	lishing House (P)							
5. K L 6. E N	umar. K.L., Engineering Fluid Mechanics (VII Ed.) Eurasia Pub td., New Delhi, 2005. ansal, R.K., Fluid Mechanics and Hydraulics Machines, Laxmi Pul few Delhi, 2008.	lishing House (P) plications (P) Ltd.,							

Mapping	of COs	with	POs
---------	--------	------	-----

	POI	P02	P03	P04	P05	PO6	PO7	P08	P09	PO10	P011	P012	PS01	PSO2
CO1	3	3	1	1	3	1	1	1	1	1	1	1		2
CO2	3	3	2	1	3	1	1	2	2	2	1	2		2
CO3	3	3	2	1	3	1	1	2	2	2	1	2		2
CO4	3	3	0	1	3	1	0	2	1	1	0	1		2
CO5	3	3	1	2	3	1	1	2	2	2	1	2		2
CO6	3	3	2	2	3	1	1	2	2	2	1	2		2

Tot		18 18 8	8 18 6 5 11 12 12 5	10 12					
1 - Lov	v, 2 - M	Iedium, 3- High							
Somostor		IV							
Course No	ama	IV INSTRUMENTAT	ION AND CONTROL						
Course Co	anic odo								
	C	XIV112404	C.D.A						
$\mathbf{L} - \mathbf{I} - \mathbf{F} - \mathbf{I}$				$\mathbf{L} = \mathbf{I} = \mathbf{F} = \mathbf{H}$					
3-0-0-	3		3:0:0	3-0-0-3					
СО				Knowledge					
Number		(CO STATEMENT	Level					
<u> </u>									
COI	Ability	y to Explain the	measurement of various quantities using $\frac{1}{2}$	ig K2					
	technie	ques for controlling de	evices.						
CO2	Ability	y to Describe the inst	rumentation system and its elements along wi	th K3					
CO3	their fu	unctional requirement	S.	on K2					
COS	merits	and demerits.	arrous control systems with their application)II, K 3					
CO4	Ability	y to Demonstrate va	rious drives used Mechatronics system with t	hei K3					
CO5	Ability	v to Choose various	Controllers in control system appropriate t	to K3					
COS	their s	ystem requirements	controllers in control system appropriate						
CO6	Under	standing the instrum	nentation system models and their functions	K2					
Objective	S								
To unc	lerstand	the importance of me	easurements, measurement system and their p	erformance					
termin	ologies								
✤ To get	the kno lerstand	wledge of instrument	tation system and their various elements.	d various control					
• To une method	ds with	various mechatronics	applications.						
To lear	rn and u	inderstand the various	drives used in mechatronics system with their	r respective					
applica	ations.								
\sim 10 unc	CONT	The instrumentation s	system models and their functions						
UNIT I	ME	ASUREMENT SYS	TEMS AND CHARACTERISTICS	9 Hours					
	Mea	asurement systems an	nd performance terminology – accuracy, rang	e, resolution, error					
UNIT II	SOURCES. INSTRUMENTATION SYSTEMS AND FLEMENTS 9 Hours								
	Inst	rumentation system a	lements - sensors for common angineering me	asurements: Signal					
	proc	cessing and conditioni	ing; correction elements- actuators: pneumatic	, hydraulic, electric					
UNIT III	DR	IVES AND ACTUA	TORS	9 Hours					
	Hyd	Iraulic and Pneumatic	drives, Electrical Actuators such as servo mot	or and Stepper					

	motor, Piezoelectric and Magnetostrictive Actuators. Drive circuits, H	ardware Structure,
	Software Design and Communication, Programmable Logic Devices.	
UNIT IV	CONTROLLERS	9 Hours
	Control systems – basic elements, open and closed loop control, design control method. P, PI, PID, when to choose what, tuning of controllers	gn of block diagram;
UNIT V	MODELS	9 Hours
	System models, transfer function and system response, frequency diagrams and their use.	response; Nyquist
L = 45 Hour	rs Tutorial = 0 Hours To	otal = 45 Hours
TEXT BOO	DKS / REFERENCE BOOKS	
1.Instrument	ation and control systems by W. Bolton, 2nd edition, ISBN: 075066432	0 • Pub. Date:
August 2004	 Publisher: Elsevier Science & Technology Books 	4
2.Thomas G	. Beckwith, Roy D. Marangoni, John H. LienhardV, Mechanical Measu	rements (6 th
Edition) 6th	Edition, Pearson Education India, 2007	
3.Gregory K	. McMillan, Process/Industrial Instruments and Controls Handbook, Fif	th Edition,
McGraw-Hi	ll: New York, 1999.	
4.Instrument	ation and control systems by V.Sukumaran, V.Muralidharan	
5.Journal of	control system and control instrumentation	
6. Mechatron	nics System Design, Devdas Shetty & Richard A. Kolk, PWS Publishing	g Company
(Thomson L	earning Inc.)	

(Thomson Learning Inc.)7. Mechatronics: A Multidisciplinary Approach, William Bolton, Pearson Education.

	POI	P02	P03	P04	PO5	PO6	PO7	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	2	1	1	1	1	1	1	1	1	2	1	1	2	1
CO2	2	1	1	1	1	1	1	1	1	2	1	1	2	1
CO3	2	1	1	1	1	1	1	1	1	2	1	1	2	1
CO4	2	1	1	1	1	1	1	1	1	2	1	1	2	1
CO5	2	1	1	1	1	1	1	1	1	2	1	1	2	1
CO6	2	1	1	1	1	1	1	1	1	2	1	1	2	1
Total	12	6	6	6	6	6	6	6	6	12	6	6	12	6

Mapping of COs with POs

Semester	IV	
Subject N	ame Economics for Engineers	
Subject C	ode XUM405	
L –T –P –	C C:P:A	L –T –P –H
3 - 0 - 0-	3 2.64:0.24:0.12	3-0-0-3
Course O	utcome	Domain/Level
		C or P or A
CO1 <i>E</i> el CO2 <i>C</i>	<i>xplain</i> the concepts of economics in engineering and <i>identify</i> ement of cost to prepare cost sheet <i>alculate and Explain</i> the Break-even point and marginal	C(Understand) P(Perception) C(Apply,
CO3 S an CO4 E CO5 C dd COURSE	<i>ummarize</i> and <i>Use</i> value engineering procedure for cost nalysis <i>stimate</i> replacement problem <i>ompute, Explain</i> and <i>make Use of</i> different methods of epreciation CONTENT	Understand) P(Perception) C(Understand) A(Receive) C(Understand) C(Understand, Apply)
UNIT I	INTRODUCTION TO ECONOMICS	8 hrs
UNIT II	Flow in an economy, Law of supply and demand, Co Economics – Engineering efficiency, Economic efficiency, economics- types of costing, element of costs, preparation estimation, Marginal cost, Marginal Revenue, Sunk cost, Opp BREAK-EVEN ANALYSIS&SOCIAL COST BENI ANALYSIS	ncept of Engineering Scope of engineering on of cost sheet and ortunity cost EFIT 12 hrs
	 Margin of Safety, Profit, Cost & Quantity analysis-Product M analysis, Profit/Volume Ratio (P/V Ratio), Application Limitations Social Cost Benefit Analysis: compare different project direct, indirect and external effects; Monetizing effects; R benefit analysis. 	Aix decisions and CVP of Marginal costing, alternatives, Calculate esult of a social cost
UNIT III	VALUE ENGINEERING & COST ACCOUNTING	10 hrs
	Value engineering – Function, aims, Value engineering pro decision Business operating costs, Business overhead costs, Equipment	cedure - Make or buy t operating costs
UNIT IV	REPLACEMENT ANALYSIS	7 hrs
	Replacement analysis –Types of replacement problem, deter life of an asset, Replacement of an asset with a new asset.	rmination of economic
UNIT V	DEPRECIATION	8 hrs
L = 45 hr	Depreciation- Introduction, Straight line method of depreciation method of depreciation-Sum of the year's digits method of fund method of depreciation, Annuity method of depreci method of depreciation. T = 0 hrs P=0hrs Total = 45 hrs	tion, declining balance f depreciation, sinking iation, service output

1. Sp Gupta, Ajay Sharma & Satish Ahuja, "Cost Accounting", V K Global Publications, Faridabad, Haryana, 2012

2. S.P.Jain&Narang, "Cost accounting – Principles and Practice", Kalyani Publishers, Calcutta, 2012

3. PanneerSelvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2001.

4. William G.Sullivan, James A.Bontadelli& Elin M.Wicks, "Engineering Economy", Prentice Hall International, New York, 2001.

REFERENCES

- 1. Luke M Froeb / Brian T Mccann, "Managerial Economics A problem solving approach" Thomson learning 2007
- 2. Truett&Truett, "Managerial economics- Analysis, problems & cases " Wiley India 8th edition 2004.
- 3. Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2002.
- 4. Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2002

E-REFERENCES - 1. http://nptel.iitm.ac.in/video.php

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	1	2	0	1	0	0	1	1	1	2	2	3
CO2	2	2	1	2	0	0	2	1	1	2	3	3
CO3	2	2	1	3	0	0	2	2	1	2	2	3
CO4	1	2	1	2	0	0	0	1	1	1	2	3
CO5	1	2	0	1	0	0	1	1	0	1	2	3
Total	7	10	3	9	0	0	6	6	4	8	11	15

Mapping of COs with POs

Semest	ter		IV					
Subjec	t Nam	e	DISASTER M	IANAGEMENT				
Subjec	t Code	e	XUM406					
L –T –	Р-С			C:P:A	L –T –F	•-Н		
0-0-	0-0			3:0:0	3-0-0-	- 3		
Course	e Outco	ome			Domain	Domain/Level		
After th	ne com	pletion	of the course, st	udents will be able to	C or P o	or A		
CO1	Unde types	erstand	the concepts of	f disasters, their significance and		K2		
CO2	Unde disast		К2					
CO3	Able Risk	to und Reduct	lerstanding of p ion (DRR)	reliminary approaches of Disaster		K2		
CO4	Deve	lop awa	areness of institu	tional processes in the country		K2		
CO5 Develop ru- with potent due sensitiv			limentary ability aldisaster respo ity		К3			
COUR	SE CO	ONTEN	NT					
UNIT	I I	ntrodu	ction to Disaste	rs		6 HRS		
	Ir	nportai	nce &Significand	ce, Types of Disasters, Climate Char	nge, DM	cycle		
UNIT	II R	Risk As	ssessment		12 HRS			
	R A	kisk, V Assessm	ulnerability, Tyj lent, Damage As	pes of Risk, Risk identification, E sessment, Risk modelling.	Emerging	Risks, Risk		
UNIT	III D	Disaste		10 HRS				
	P C sa G	hases, Commar afety, E HS and	Cycle of Dis nd System, DM Early Warning ar Remote Sensing	aster Management, Institutional Plan, Community Based DM, Co ad Disaster Monitoring, Disaster Co g, Do's and Don'ts in various disaster	Framewo ommunity mmunica s.	rk, Incident y health and tion, Role of		
UNIT	IV D	Disaster	· Risk Managen	nent in India		10 HRS		
	H F (I C	lazard a ood, Sa Mitigat)ther re	and Vulnerabilit anitation, Shelte ion, Response an lated policies, pl	y profile of India, Components of D r, Health, Waste Management, Insti nd Preparedness), Disaster Manager ans, programmes and legislation	Disaster R itutional a nent Act	elief: Water, arrangements and Policy –		
UNIT	V D	Disaster	· Management:	Applications and Case Studies		7 HRS		
	C A F F N	Case S Assessm Tooding Tire, M Manager	tudies on Lan ent of Building g: Storm Surge A fan Made disas ment and field w	dslide Hazard Zonation, Earth gs and Infrastructure, Drought A Assessment, Floods: Fluvial and Plu sters, Space Based Inputs for Dis orks related to disaster management	hquake Assessme uvial Floo saster M	Vulnerability nt, Coastal oding, Forest itigation and		
L = 45	hrs 7	$\Gamma = 0 h$	rs P=0 hrs To	tal = 45 hrs				

- 1. Singhal J.P. Disaster Management, Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, Disaster Science and Management, McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10**: 1259007367, **ISBN-13**: 978-1259007361)
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. KapurAnu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010

REFERENCES

- 1. Siddhartha Gautam and K LeelakrishaRao, "Disaster Management Programmes and Policies", Vista International Pub House, 2012
- 2. Arun Kumar, "Global Disaster Management", SBS Publishers, 2008
- 3. PardeepSahni, AlkaDhameja and Uma medury, "Disaster mitigation: Experiences and reflections", PHI, 2000
- 4. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
- 5. Government of India, National Disaster Management Policy,2009

E-REFERENCES

- NIDM Publications at http://nidm.gov.in- Official Website of National Institute of Disaster Management (NIDM), Ministry of Home Affairs, Government of India
- http://cwc.gov.in, http://ekdrm.net, http://www.emdat.be, http://www.nws.noaa.gov, http://pubs.usgs.gov, http://nidm.gov.ini http://www.imd.gov.ini

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1			2	1	1		1		1		1	1		
CO 2	1	1	3	2	3		1	1						
CO 3					2		1		1					
CO 4	1	1	2	2	2		1				1	1		
CO 5	2	3		2	3		1	2	1			2		
Total	4	5	7	7	11		5	3	3		2	4		
Scaled Value	1	1	2	2	3		1	1	1		1	1		

Mapping of CO with PO's

Semester		IV					
Subject N	ame	Thermal Engi	neering Laboratory				
Subject C	ode	XME407					
L –T –P –	C		C:P:A	L –T –P –H			
0-0-1-	1		0:1:0	0-0-2-2			
Course O	utcome			Domain/Leve	el		
				C or P or A			
CO1	Measur	e flash and fire p	point of fuels.]	P4		
CO2	Measur	e viscosity of fu	els.]	P4		
CO3	CO3 Trace the position of internal combustion engine						
CO4	and drav	w port and valve e the Performation	nce of different type of		P4		
	Diesel e	ngines					
CO5	Measur Petrol er	e the Performangines	nce of different type of]	P4		
CO6	Explain	the basic conce	ots of boiler]	P2		
Objective	s:						
[1] De	termine th	e valve and port	timing diagram of SI engine	e & CI engine a	and Analyse		
the	influence	of variations in	TDC and BDC operations				
[2] Ca	lculate the	IP, BP, brake th	ermal efficiency and Calcul	ate & Compare	the		
per	formance	characteristics o	f engine.				
[3] Ex	periment c	on IC engine load	l variations with Air fuel rat	io.			
[4] Ap	ply the co	ncept of Morse t	est on SI engine.				
[5] De	termine th	e flash and fire p	oint of fuels.				
[6] De	termine th	e viscosity of fue	els				
[7] Stu	dy the prin	nciple of various	parameters in boilers.				
COURSE	CONTE	NT					
					CO Relation		
1 De	eterminatio	on of flash and fi	re point open cup apparatus		C01		
2 De	terminatio	on of flash and fi	re point closed cup apparatu	S	C01		
3 De	terminatio	on of viscosity of	given oil using Redwood vi	iscometer	CO2		
4 Dr	awing valv	ve timing diagram	n of four stroke diesel engin	ie	CO3		
5 Dr	CO3						
6 Pe me	rformance chanical l	test on singlo oading	e cylinder four stroke d	iesel engine-	CO4		
7 Pe cu	rformance rrent loadi	test on single ong	cylinder four stroke diesel	engine- eddy	CO4		
8 Re	tardation t	est on a diesel er	ngine at slow speed		CO4		

9	Performance test on four stroke twin cylinder diesel engine with hydraulic dynamometer loading	CO4
10	Performance test on four stroke petrol engine	CO5
11	Morse test on four stroke four cylinder petrol engine with hydraulic dynamometer loading	CO5
12	Study of boiler	CO6

- 1. Heywood J. B, "Internal Combustion Engine Fundamentals", McGraw Hill Book Co. NY, 1989
- 2. Rajput, R.K., Thermal Engineering, 6th Edition, Laxmi Publications, 2007
- 3. Ballaney, P.L., "Thermal Engineering", Khanna Publishers, 24th Edition, 2003.
- 4. K.K. Ramalingam, Internal Combustion Engine Fundamentals, Scitech Publications, 2002.

REFERENCES

- 1. Rudramoorthy, R., Thermal Engineering, 4th Edition, Tata McGraw Hill, New Delhi, 2006.
- 2. Kothandaraman , C.P., Domkundwar .S and A.v.Domkundwar", a course in thermal Engineering", Dhanpal Rai & sons, fifth edition, 2002.
- 3. R.B.Mathur and R.P. Sharma, Internal combustion Engines.

E-REFERENCES

1. https://nptel.ac.in/courses/112/103/112103262/

Mapping of	COs with Pos
------------	--------------

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	1	1	2	1	2	1		1	1	2	2	1	1	3
CO2	1	1	2	1	2	1		1	1	2	2	1	1	3
CO3	1	1	2	1	1			1	1	1	1	1	2	2
CO4	3	3	2	1	3	1		2	2	1	3	3	3	3
CO5	3	3	2	1	3	1		2	2	1	3	3	3	3
CO6	1		1	1	1				1	1	1	1	2	3
Tota l	10	9	11	6	12	4	0	7	8	8	12	10	12	17

Semest	ter	IV						
Subjec	t Name	FLUID MECI	HANICS AND MACHINES LABORAT	ORY				
Subjec	t Code	XME408						
L –T –	Р-С		C:P:A	L –T –P –H				
0-0-	1_1		0:1:0	0-0-2-2				
	SE OBJECT	TVES						
This Co	ourse will pro	vide						
1	Handa on ovr	orienee on verie	aug Instruments in Eluid Mashanias lah					
1.	Hands on exp	perience on vario	bus instruments in Fluid Mechanics fab.					
2.	We can test t	he flow on vario	ous through various instruments.					
3.	Verification of	of Bernoulli's th	eorem					
CO		CO	STATEMENT	Knowledge				
				Level				
CO1	Ability to m	easure discharge	e through the flow measuring equipment –	P3				
	orifice meter	r, venturi meter.						
CO2	Ability to m	easure losses in	pipe flow.	P3				
CO3	Ability to n	neasure factors	affecting the efficiency of a centrifugal	P3				
<u> </u>	pump, recip	rocating pump, g	gear oil pump.					
CO4	Ability to 1 wheel Fran	measure the fac	an turbine	P3				
CO5	Ability to m	easure the flow	through pipes and notches.	P3				
<u>CO6</u>	Ability to ve	erify Bernoulli's	equation through apparatus	P2				
	SE CONTEN		equation integra apparatus.	12				
CO			COURSE DESCRIPTION					
1	Determin	nation of the Coe	fficient of discharge of given orifice meter	and venturi met				
2	Determin	ation of friction	factor and losses for a given set of pipes.					
3		sible nump	and drawing the characteristic curves of cer	innugai pump				
3	Conducti	ng experiments	and drawing the characteristic curves of rec	viprocating				
5	pump.	ing experiments	and drawing the characteristic curves of rec	iprocating				
3	Conducti	ng experiments	and drawing the characteristic curves of Ge	ar nump				
4	Conducti	ng experiments	and drawing the characteristic curves of Pe	ton wheel				
4	Conducti	ng experiments	and drawing the characteristics curves of F	rancis turbine				
4	Conducti	ng experiments :	and drawing the characteristic curves of Ka	plan turbine.				
5	Determin	ation of static at	nd dynamic pressure on pitot tube.	r the thread of the				
5	Tests on	flow through no	tches.					
5 Tests on flow through orifice and external mouthpiece								
6	Verificat	ion of Bernoulli	's theorem.					
$\frac{0}{L=0h}$	T = 0 hr	s P=30hrs Tot	tal =30 hrs					
TEXT	BOOKS /RF	FERENCE BO	OOKS					
1	Streeter Red	ford and Wylie	Eluid Mechanics McGraw Hill Oth edition	2017				
1. 2	Rathakrichno	n E Fluid Meet	hanics Prentice Hall of India (II Ed.) 2007	., 2017.				
2. 2	Domonial -		abanics, Hudrowlice and Elaid Masking	Dhonnat Dat				
3.	Ramamrithar	n. S, Fluid Me	chanics, Hydraulics and Fluid Machines,	Dhanpat Rai				
Sons, Delhi, ninth edition, 2014.

- 4. Som, S.K., and Biswas, G., "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw-Hill, 3rd Edition, 2017.
- 5. Kumar. K.L., Engineering Fluid Mechanics (VII Ed.) Eurasia Publishing House (P) Ltd., New Delhi, 2005.
- 6. Bansal, R.K., Fluid Mechanics and Hydraulics Machines, Laxmi Publications (P) Ltd., New Delhi, 10th edition, 2018.

E-REFERENCES

http://nptel.iitm.ac.in/courses

Mapping of COs with POs

	P01	P02	P03	P04	PO5	P06	P07	PO8	P09	P010	P011	P012	PSO1	PSO2
CO1	3	3	1	1	3		2		3		1	2	2	
CO2	3	3	1	1	3		2		3		1	2	2	
CO3	3	3	1	3	2		2		2		1	3	3	
CO4	3	3	1	3	2		3		3		1	3	2	
CO5	3	2	2	2	3		2		1		0	3	2	
CO6	3	2	2	2	2		1		1		0	2	2	
ТОТ	18	16	8	12	15	0	12	0	13	0	4	15	13	0

1 -Low, 2 – Medium, 3- High

	L	Т	P	С
	1	0	2	3
XECHR2- Industrial Robotics and Automation	L	Т	P	Η
	1	0	4	5
PREREQUISITE:				

	COURSE OUTCOMES	DOMAIN	LEVEL		
After t	he completion of the course, students will be a	able to			
CO1	Understand the Anatomy of an Industrial Rob	^{Dot} Cognitive	Knowledge Comprehensio		
COI		e ognin e	n		
	Operate Industrial Robot (Robot Jogging,	Psychomotor	Comprehens		
CO2	OnlineProgramming)	Affective	ion		
	() initial regramming)	Allective	Application		
~~~	Virtually Commission a Robot Work cell	Psychomotor	Application		
CO3	usingABB Robot Studio	Affective	Synthesis		
COA	<b>Program</b> an Industrial Robot using	Psychomotor	Application		
CO4	RapidProgramming Language	Affective	Synthesis		
CO5	Understand the construction of logic circuits	3	Knowledge		
	using	Cognitive	Comprehens		
	PLC		ion		
UNIT	' I Fundamentals of Industri	al Robotics	3+6		

Basics of Industrial Robot - What is an Industrial Robot? - Building blocks of Industrial Robots

- Robot Modes & Manual Motion Types - Major Stakeholders of Industrial Robotics -RoboticsEnvironment & Career - Offline Simulation Tool - Industrial Robot Operation - Usage and Applications of Industrial Robots - Automatic Motion Types – Introduction to Robot Studio - Importing robot and virtual controller - Robot Specification - Robot Jogging - What is a TeachPendent? - Creating targets & paths -Robot Frames - Modes of operation - Industrial Robot Programming Language - Types of Robot Programming - Various Robot Programming languages - Motion Commands in RAPID - Path planning

Lab:

1. Fundamentals of Robot Studio

2. Robot Jogging in ABB Robot Studio

3. Robot Modes of Operation

4. Online Programming using Virtual Teach Pendant

5. Creating & Teaching Targets and Paths

|--|

What is Virtual Commissioning - What is Robot Dispensing - Import Robot & -Components – Dispensing - Dispensing Robot Work cell - Auto Path and Tool Orientation Correction - Path Planning for Dispensing - Material Handling - Robot Work cell - Smart Components Design - Gripper Integration with Robot - Pick & Place with ABB Smart Gripper - Material stacking - Logical Design and Virtual Controller -End Effector Communication - Material Stacking and Station Logic Lab:

# 6. Virtual Commissioning of Robot Dispensing work cell

- 7. Auto path in ABB Robot Studio
- 8. Virtual Commissioning of Material Handling Operation
- 9. Virtual Commissioning of Material Stacking Operation

**Build Robot Work cells using ABB Powerpacs** UNIT III

What is a Powerpac – Working on conveyor Tracking - What is Conveyor Tracking? Introduction to parallel Robots - Logic Formulation of Conveyor Tracking - Conveyor Tracking in ABB Robot studio - Robot Powerpacs – Palletizing Introduction to Palletizing operation - Component Checklist in Palletizing work cell - Virtual commissioning of a Robot Palletizing Work cell - Cycle time analysis - Robot Powerpacs - 3D printing - Introduction to Rapid Prototyping - Various Rapid Prototyping Techniques - Fundamentals of 3D printing - Virtual commissioning of a robot 3D printing work cell - Robot Powerpacs - Arc welding - Introduction to Arc welding - Characteristics of Arc welding operation - Applications of Industrial Robots in Arc welding Operation - Virtual Commissioning of Robot Arc welding Work cell Lab:

3+6

**10. Conveyor Tracking in ABB Robot studio** 

11. Building a Palletizing operation using Palletization powerpac

12. Optimizing operation Cycle time

13. Building a robot 3D printing operation using 3D printing powerpac

14. Building an Arc welding operation using Arc welding powerpac

UNIT IV	Robot Operation	3+9					
Robot Operation – Understanding the anatomy of industrial robot - Robot work							
envelope - Robot specifications - Remote operation of Manipulator - What is lead							
through program	through programming? - Joint Interpolation and Linear Interpolation - Jogging of robots						
- Online program	mming - Path planning using lead through programming -	Robot End					
Effector – Perfo	Effector – Performing the robot application – Creating Tool Centre Point – Optimizing						
Cycle Time - Working with IRC5 - Working with Emergency and General Stops -							
Robot Safety Procedures - Robot Maintenance & Servicing							
Lah:							

15. Robot Jogging of ABB Robot using Teach pendant

16. Robot Safety & Maintenance

17. Creating and calibrating Tool center point

**18. Working with Industrial Robot Controller 5** 

**19. Online Programming with Teach Pendant** 

20. Building Robot Application using ABB Robot **Programmable Logic Controllers** 15 UNIT V Introduction to Indra Logic – Understanding the construction of basic logic circuits -AND,OR,NOT etc – Logic circuit simulation- set, rest, latching, sub programming -Introduction to Hardware kit L20DB .Function-user define function and library functiontimers –Ontimer, OFF timer, Counters-UP counter and Down counter, Triggers-Riseing trigger and falling triggers

Lab: 21.Traffic light signal control 22.Oil tank filling station 23.Double acting cylinders 24.Integration of sensors with PLC

25.Smart room

LECTURE	TUTO RIAL	PRACTICA L	AL HOURS
12	0	33	60

# **TEXT BOOKS:**

Introduction to Robotics by J.J. Craig, Addison-Wesley Publishing Company, 1986 owozin and Lampert

# **REFERENCES:**

Programming and Virtual Commissioning Reference Material by Prag RoboticsABB Robot Studio Official Documentation

The Robotics Primer, Maja J. Mataric, MIT Press, 2007

# **E-REFERENCES:**

Robot Modeling and Control", Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, 2005

NPTEL :: Electrical Engineering - Industrial Automation and Control

Semester		V						
Subject Name		Heat Transfer	Heat Transfer					
Subject	Code	XME501						
L –T –I	Р-С		C:P:A	L –T –P –H				
3 - 1 - 0	) 4		3.5:0.25:0.25	3-1-0-4				
Course	Outcome			Domain/Level				
		C or P or A						
CO1	Understand th	K2						
CO2	Compute tem heat conduction	K1						
CO3	Interpret and	К3						
CO4	Understand th transfer.	K2						
CO5	Apply the LM	К3						
CO6	Understand th	K2						

# **Objectives:**

(1) The aim of the course is to build a solid foundation in heat transfer exposing students to the three basic modes namely conduction, convection and radiation.

(2) Rigorous treatment of governing equations and solution procedures for the three modes will be provided, along with solution of practical problems using empirical correlations.

(3) The course will also briefly cover boiling and condensation heat transfer, and the analysis and design of heat exchangers.

## **COURSE CONTENT**

UNIT I	CONDUCTION	9+3 hrs					
	Introduction to three modes of heat transfer, Derivation of heat balance equation- Steady one dimensional solution for conduction heat transfer in Cartesian, cylindrical and spherical geometry, concept of conduction and film resistances, critical insulation thickness, lumped system approximation and Biot number, heat transfer through pin fins- Two dimensional conduction solutions for both steady and unsteady heat transfer- approximate solution to unsteady conduction heat transfer by the use of Heissler charts.						
UNIT II	CONVECTION						
	Heat convection, basic equations, boundary layers- Forced convection, external and internal flows-Natural convective heat transfer- Dimensionless parameters for forced and free convection heattransfer-Correlations for forced and free convection- Approximate solutions to laminar boundary layer equations (momentum and energy) for both internal and external flow- Estimating heat transfer rates in laminar and turbulent flow situations using appropriate correlations for free and forced convection.						
UNIT III	RADIATION	9+3 hrs					
	Interaction of radiation with materials, definitions of radiative properties, Stefan						

	Boltzmann's law, black and gray body radiation, Calculation of radiation between surfaces using radiative properties, view factors and the radiosity me	heat transfer ethod.				
UNIT IV	HEAT EXCHANGERS	9+3 hrs				
	Types of heat exchangers, Analysis and design of heat exchangers using both LMTD and ε-NTU methods .Boiling and Condensation heat transfer, Pool boiling curve.					
UNIT V	MASS TRANSFER	9+3 hrs				
	Introduction mass transfer, Similarity between heat and mass transfer					
L = 45 hrs	L = 45 hrs T = 15 hrs P=0hrs Total = 60 hrs					
TEXT BOOKS						
<ol> <li>A. Bejan,</li> <li>J.P.Holman</li> <li>F.P.Incrop Edition, 200</li> </ol>	Heat Transfer John Wiley, 1993 an, Heat Transfer, Eighth Edition, McGraw Hill, 1997. pera, and D.P. Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley, S 7.	Sixth				

4. MassoudKaviany, Principles of Heat Transfer, John Wiley, 20025. Yunus A Cengel, Heat Transfer: A Practical Approach, McGraw Hill, 2002.

**E-REFERENCES** 

1. http://nptel.iitm.ac.in/courses

# Mapping of COs with POs

	104	P02	P03	P04	P05	90d	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	3	2	2	2	1	1	-	-	1	-	-	1		2
CO2	3	2	-	2	1	1		-	-	-	-	1		2
CO3	3	2	-	2	1	1		-	-	-	-	1		2
CO4	2	3	3	2	1	1	1	-	1	-	-	1		2
CO5	2	3	3	2	1	1	1	-	1	-	-	1		2
CO6	3	2	2	1	1	1	1	-	-	-	-	1		2
Total	16	14	14	11	6	6	3		3			6		12

1 - Low, 2 – Medium, 3- High

Semest	er	IV			
Course	Course Name SOLID MECHANICS				
Course	e Code	XME502			
L –T –	Р –С	C:P:A	L –T –P –H		
3 - 1 -	0-4	3.5:0.25:0.25	3-1-0-4		
Course Outcome		Domain/Level			
			C or P or A		
CO1	Underst	and the basic concept of stress and strain	K2		
CO2	Apply C	К3			
CO3	Understand constitutive relations for simple geometries K2				
CO4	Apply the deformation concepts for plane stress and plane strain K3 problems				
CO5	Apply the deformation concepts for complex cases K3				
CO6	Understand energy and potential methods. K2				
Objectives:					

The objective is to present the mathematical and physical principles in understanding the linear continuum behavior of solids.

## **COURSE CONTENT**

UNIT I	STRAIN AND STRESS	9+3 = 12 Hours					
	Introduction to Cartesian tensors, Strains: Concept of strain, deriv tensor and compatibility, Stress:	ation of small strain					
	Derivation of Cauchy relations and equilibrium and symmetry equation and directions	ons, principal stresses					
UNIT II	CONSTITUTIVE EQUATIONS	9+3 = 12 Hours					
	Constitutive equations: Generalized Hooke's law, Linear elasticity, Material symmetry; Boundary Value Problems: concepts of uniqueness and superposition.						
UNIT III	PLANE STRESS AND PLANE STRAIN9+3= 12 Hou						
	Plane stress and plane strain problems, introduction to governing eq and spherical coordinates, axisymmetric problems.	uations in cylindrical					
UNIT IV	APPLICATION TO COMPLEX CASES	9+3 = 12 Hours					
	Application to thick cylinders, rotating discs, torsion of non-circular concentration problems, thermo-elasticity, 2-d contact problems.	cross-sections, stress					
UNIT V	ENERGY METHODS	9+3 = 12 Hours					
	Solutions using potentials. Energy methods. Introduction to plasticity.						
L = 45 Ho	urs Tutorial = 15 Hours Total = 60 Hours						
TEXT BOOKS							
1. G. Ed	1. G. T. Mase, R. E. Smelser and G. E. Mase, Continuum Mechanics for Engineers, Third Edition, CRC Press, 2004.						

- 2. Y. C. Fung, Foundations of Solid Mechanics, Prentice Hall International, 1965.
- 3. Lawrence. E. Malvern, Introduction to Mechanics of a Continuous Medium, Prentice Hall

international, 1969.

# REFERENCES

1. <u>S. M. A. Kazimi</u>, Solid Mechanics, First Edition, Tata McGraw Hill Publications, 2001.

# **E-REFERENCES**

- 1. https://nptel.ac.in/courses/112107147
- 2. https://nptel.ac.in/syllabus/105101003

	P01	P02	P03	P04	PO5	P06	P07	PO8	P09	P01 0	P01 1	P01 2	PSO 1	PSO 2
CO1	3	2	-	2	1	-	-	-	1	-	-	-	2	
CO2	3	2	-	2	1	-	-	-	1	-	-	-	2	
CO3	3	2	-	2	1	-	-	-	1	-	1	1	2	
CO4	3	1	-	1	1	-	-	1	1	-	1	1	2	
CO5	3	2	-	2	1	-	-	-	1	-	-	-	2	
CO6	3	3	3	3	2	-	-	2	1	-	3	3	2	
	18	12	3	12	7			3	6		5	5	12	

## Mapping of COs with POs

1 - Low, 2 – Medium, 3- High

Semeste	er	V		
Subject	Name	MANUFACTU	RING PROCESSES	
Subject	Code	XME503		
L –T –I	Р-С		C:P:A	L –Т –Р –Н
3 - 0 - 0	-3		3:0:0	3-0-0-3
Course	Outcome			Domain/Level
				C or P or A
CO1	Summarize th	ne metal casting pr	rocesses.	K2
CO2	Understand Metallurgy.	various Metal	Forming processes and Powder	К2
CO3	К2			
CO4	Compare var	ous additive man	ufacturing and joining process	K2
CO5	Explain elect machining pr	trical energy an ocess	d chemical based unconventional	K2
CO6	Explain mec machining pr	chancial and the ocess	rmal energy based unconventional	K2
Objecti	ves:			
desirabl COURS UNIT	e product by co SE CONTENT CASTIN	onventional or und ר וG AND METAL	conventional manufacturing methods	10 hrs
	Casting solidifica	and moulding: 1 tion, shrinkage, ri	Metal casting processes and equipme ser design, casting defects and residual	ent, Heat transfer and stresses.
	Introduct fundamen (forging, principle	ion to bulk and ntals of hot and rolling, extrusion s of powder metal	sheet metal forming, plastic deforma cold working processes; load estima , drawing) and sheet forming (shearing, lurgy.	tion and yield criteria; ation for bulk forming deep drawing, bending)
UNIT I	I METAL	CUTTING		10 hrs
	Single a formation tool mate	nd multi-point c n, Tool wear and prials, Cutting flui	utting; Orthogonal cutting, various for tool life, Surface finish and integrity, ds, Coating.	orce components: Chip Machinability, Cutting
	Lathe, dr	illing machine, m	illing machine, shaper, slotter and plane	r.
	Machine	tool operations - 7	Furning, Drilling, Milling, Shaping and	finishing processes.
	Introduct	ion to CNC mach	ining	
UNIT I	II ADDITI	VE AND JOININ	NG PROCESSES	9 hrs
	Rapid pr	ototyping and rap	id tooling – 3D printing.	
	Physics of considera Brazing a	of welding - arc an ations in welding. and soldering.	nd gas welding processes - advantages a Solid and liquid state joining process	and limitations - Design es - Adhesive bonding.

UNIT IV	MECHANICALANDTHERMALENERGYBASED8 hrsUNCONVENTIONALMANUFACTURING PROCESSES888
	Introduction to Unconventional Machining Techniques – Types, comparison with conventional machining techniques
	Laser Beam Machining (LBM), Plasma Arc Machining (PAM) and Electron Beam Machining.
	Abrasive Jet Machining, Water Jet Machining, Abrasive Water Jet Machining, Ultrasonic, Machining, principles and process parameters
UNIT V	ELECTRICAL AND ELECTROCHEMICAL ENERGY BASED8 hrsUNCONVENTIONAL MANUFACTURING PROCESSES8
	Electrical Discharge Machining, principle and processes parameters, dielectric, power and control circuits, wire EDM.
	Electro-chemical machining (ECM), etchant & maskant, process parameters.
L = 45 hrs	T = 0 hrs $P=0$ hrs Total = 45 hrs

# **TEXT BOOKS**

1. Kalpakjian and Schmid, Manufacturing processes for engineering materials (6th Edition)-Pearson India,2018

2.	Mikell	P.	Groover,	Fundamentals	of	Modern	Manufacturing:	Materials,	Processes,	and	Systems
3.	Degarm	o, 1	Black &Ko	ohser, Materials	and	d Process	es in Manufactur	ing			
R	FFRE	NC	ES								

- 1. Paul Degarma E, Black J.T. and Ronald A. Kosher, Elighth Edition, Materials and
- 2. Processes, in Manufacturing Prentice Hall of India, 2003.
- 3. Sharma, P.C., A Text book of Production Technology, S. Chand and Co. Ltd., 2004.
- 4. P.N. Rao, Manufacturing Technology- Foundry, Forming and Welding, TMH-2003; 2nd Edition, 2003
- 5. Roy. A. Lindberg, Processes and Materials of Manufacture, PHI / Pearson Education, 2006.
- 6. Benedict. G.F. "Nontraditional Manufacturing Processes", Marcel Dekker Inc., New York, 1987.
- 7. Mc Geough, "Advanced Methods of Machining", Chapman and Hall, London, 1998
- 8. Paul De Garmo, J.T.Black, and Ronald.A.Kohser, "Material and Processes in Manufacturing" Prentice Hall of India Pvt. Ltd., 8thEdition, New Delhi, 2001.

# **E-REFERENCES**

1. http://nptel.iitm.ac.in/courses

# Mapping of COs with POs

	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	3	3	3	-	2	-	-	2	-	1	2	3	3	
CO2	3	3	3	1	2	-	-	2	-	1	2	3	3	
CO3	3	3	3	1	2	-	-	2	-	1	2	3	3	
CO4	3	3	3	-	2	-	-	2	-	1	2	3	3	
CO5	3	3	3	-	2	-	-	2	-	1	2	3	3	
CO6	3	3	3	-	2	-	-	2	-	1	2	3	3	
	18	18	18	2	12	-	-	12	-	6	12	18	18	

1 - Low, 2 – Medium, 3- High

Semest	er	V	
Subject	t Name	KINEMATICS AND THEORY OF MACHINES	
Subject	t Code	XME504	
L –T –]	Р-С	C:P:A	L –T –P –H
3-1-0	) 4	4:0:0	3-1-0-4
Course	Outcome		Domain/Level
			C or P or A
CO1	Define vario	ous components of mechanisms	K1
CO2	Develop me	chanisms to provide specific motion	К3
CO3	Outline the mechanisms	velocity and acceleration diagrams of various	K2
<b>CO4</b>	Outline the	cam profile for the specific follower motion	K2
CO5	Analyse for	<b>K</b> 4	
<b>CO6</b>	Select appro	К5	

- **Objectives:** 
  - * To understand the kinematics and rigid- body dynamics of kinematically driven machine components
  - * To understand the motion of linked mechanisms in terms of the displacement, velocity and acceleration at any point in a rigid link
  - ✤ To be able to design some linkage mechanisms and cam systems to generate specified output motion
  - ✤ To understand the kinematics of gear trains
  - ✤ To understand the friction mechanisms in bearing clutches and brakes

# **COURSE CONTENT**

UNIT I	BASICS OF MECHANISMS	9+3 hrs
	Classification of mechanisms-Basic kinematic concepts and definit freedom, mobility-Grashof's law, Kinematic inversions of four bar chain chains-Limit positions-Mechanical advantage-Transmission angle-Desc common mechanisms-Quick return mechanism, straight line generators- Rocker mechanisms	tions-Degree of and slider crank ription of some -Universal Joint-
UNIT II	KINEMATICS OF PLANE MECHANISMS	9+3 hrs
	Displacement, velocity and acceleration analysis of simple mechan velocity analysis using instantaneous centers, velocity and acceleration loop closure equations kinematic analysis of simple mechanisms- slider c dynamics-Coincident points- Coriolis component of acceleration- introdu- synthesis- three position graphical synthesis for motion and path generation	nisms, graphical n analysis using prank mechanism function to linkage on
UNIT III	CAMS	9+3 hrs
	Classification of cams and followers-Terminology and definition diagrams- Uniform velocity, parabolic, simple harmonic and cyc derivatives of follower motions specified contour cams- circular and pressure angle and undercutting, sizing of cams, Graphical and analytical synthesis for roller and flat face followers.	s Displacement loidal motions- l tangent cams- disc cam profile

#### 9+3 hrs

#### UNIT IV GEARS

9+3 hrs

Involute and cycloidal gear profiles, gear parameters, fundamental law of gearing and conjugate action, spur gear contact ratio and interference/undercutting- helical, bevel, worm, rack & pinion gears, epicyclic and regular gear train kinematics

## UNIT V FRICTION IN BEARING CLUTHES AND BRAKES

9+3 hrs

Surface contacts- sliding and rolling friction- friction drives- bearings and lubrication-friction clutches- belt and rope drives- friction in brakes

# L = 45 hrs T = 15 hrs Total = 60 hrs

# **TEXT BOOKS**

1. Thomas Bevan, Theory of Machines, 3rd edition, CBS Publishers & Distributors, 2005.

2. CleghornW.L., Mechanisms of Machines, Oxford University Press, 2005.

3. Robert L. Norton, Kinematics and Dynamics of Machinery, Tata McGrawHill, 2009.

4. Ghosh A. and Mallick A.K., Theory of Mechanisms and Machines, Affiliated East-West Pvt.

Ltd, New Delhi, 1988.

# REFERENCES

1. Rao.J.S. and Dukkipati.R.V. 'Mechanisms and Machine Theory', Wiley-Eastern Ltd., New Delhi, 2003.

2. John Hannah and Stephens R.C., 'Mechanics of Machines', Viva Low-Prices StudentEdition, 2003. **E-REFERENCES** 

1. http://nptel.iitm.ac.in/courses

## Mapping of COs with Pos

	P01	P02	P03	P04	P05	P06	P07	P08	PO9	PO10	P011	P012	PS01	PSO2
CO1	3	1	1	-	2	1	-	2	1	-	2	3	2	
CO2	3	1	1	-	2	1	-	2	1	-	2	3	2	
CO3	3	2	3	-	2	1	-	2	1	-	2	3	2	
CO4	3	2	3	-	2	1	-	1	1	-	2	3	2	
CO5	3	2	3	-	3	1	-	2	2	-	2	3	2	
CO6	3	2	2	-	3	1	-	2	1	-	2	3	2	
	18	10	13	-	14	6	-	11	7	-	12	18	12	

1 - Low, 2 – Medium, 3- High

Semest	er	V					
Subject	t Name	Heat Transfer a	and Refrigeration Labo	oratory			
Subject	t Code	XME507					
L –T –]	Р –С		C:P:A	L –T –P –H			
<b>0- 0</b> – 2	1–1		0:1:0	0-0-2-2			
Course	Outcome			Domain/Level			
CO1	<i>Measure</i> th conditions	К2,Р3					
CO2	<i>Determine</i> appropriate		K2,P3				
CO3	<i>Measure</i> texchanger	he effectiveness	of different Heat		K2,P3		
CO4	Determine S	Stefan-Boltzmann	constant.		K2,P3		
CO5	<b>Determine</b> t	he Emissivity of g	grey Surface.		K2,P3		
CO6	<i>Determine</i> compression adsorption r	performance charant refrigeration efrigeration system	acteristics of a Vapour system and vapour n		K2,P4		
Object	ives:						
3. COUR	problems. Analyze the th Refrigeration s SE CONTENT	neoretical knowled studies. Г	lge and apply it in cond	ucting experimer	its in heat transfer and		
					CO Relation		
1	Thermal c	conductivity measu	rement by guarded plate	e method	C01		
2	Thermal apparatus	conductivity of	pipe insulation using	g lagged pipe	C01		
3	Natural co	onvection heat tran	asfer from a vertical cyli	nder	CO2		
4	Forced co	nvection inside tu	be		CO2		
5	Heat trans	fer from pin-fin A	pparatus - natural conve	ection mode	CO2		
6	Heat trans	ction mode	CO2				
7	Effectiven		CO3				
8	Effectiven	CO3					
9	Determination of Stefan-Boltzmann constant CO4						
10	Determina	ation of emissivity	of a grey surface		CO5		
11	Determina compressi	ation of the per on system	formance characteristic	es of a vapour	CO6		
12	2 Study of vapour adsorption refrigeration system CO6						
TEXT	BOOKS						

- 1. Sachdeva R C, "Fundamentals of Engineering Heat and Mass Transfer" New Age International, 1995.
- 2. Yadav R "Heat and Mass Transfer" Central Publishing House, 1995.
- 3. Holman J.P "Heat and Mass Transfer" Tata McGraw-Hill, 2000.
- 4. Rajput, R.K., Thermal Engineering, 6th Edition, Laxmi Publications, 2007
- 5. Ballaney, P.L., "Thermal Engineering", Khanna Publishers, 24th Edition, 2003
- 1. Nag P.K, "Heat Transfer", Tata McGraw-Hill, New Delhi, 2002
- 2. Kothandaraman C.P "Fundamentals of Heat and Mass Transfer" New Age International, New Delhi, 1998
- 3. Rudramoorthy, R., Thermal Engineering, 4th Edition, Tata McGraw Hill, New Delhi, 2006.

# **E-REFERENCES**

1. http://nptel.iitm.ac.in/courses

## Mapping of COs with Pos

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO1	2	3	-	2	1	1	-	-	1	-	-	1		2
CO2	2	3	-	2	1	1	-	-	-	-	-1	1		2
CO3	2	3	-	2	1	1	-	-	1	-	-	1		2
CO4	2	3	2	1	1	1	-	-	1	-	-1	1		2
CO5	2	3	2	1	1	1	-	-	1	-	-1	1		2
CO6	2	3	-	2	1	1	-	-	-	-	-1	1		2
Tot	12	18	4	10	6	6			4		4		6	12

1 - Low, 2 - Medium, 3- High

Semester		V					
Subject Na	ame	Kinematics and	l Theory of Machines Lab				
Subject Co	ode	XME508	XME508				
L –T –P –	С		C:P:A	L –Т –Р –Н			
0-0-1-1	l		0:1:0	0-0-2-2			
Course Ou	ıtcome			Domain/Level			
				C or P or A			
CO1	<b>Recall</b> ba	sics of different	types of mechanisms and Sketches the	КЗ,			
	velocity a	nd acceleration in	planar mechanisms.	P5			
CO2	Construct	cam profile for s	pecific follower motion.	К3			
CO3	Describes	and Solve problem	ms in gears and gear trains.	P7			
CO4	Calculate and turnin	the inertia force g moments in fly	es in reciprocating and rotating masses wheels.	K4, P7			
CO5	Balance	reciprocating an	d rotating masses and <i>analyze</i> free	K4,P4			
vibration systems and <i>meas</i>			<i>ure</i> the frequency of damped and forced				
vibration systems.							
CO6 <i>Recognize</i> the gyroscop			effect in mechanical applications and	K1, P7			
	identifyin	g the equilibrium	speed using governors.				
Objectives	•						

To understand the principles in mechanisms used for governing of machines. To impart the knowledge about the effect of forces on the machines and the methods to control them.

# **COURSE CONTENT**

		CO Relation
1	Drawing of some common mechanisms	CO1
2	Kinematics of Four Bar, Slider Crank, Crank Rocker, Double crank, Double rocker, Oscillating cylinder Mechanisms	CO1
3	Drawing displacement, velocity and acceleration diagrams	C01
4	Drawing of various cam profiles and motion curves	CO2
5	Cam - Study of jump phenomenon	CO2
6	Constructing simple and epicyclic gear trains	CO3
7	Determination of velocity ratios - simple, compound, Epicyclic and differential gear trains.	CO3
8	Determination of Mass moment of inertia of Fly wheel and Axle system.	CO4
9	Transverse vibration of free Beam.	CO4
10	Whirling of shaft-Determination of critical speed of shaft with concentrated loads.	CO5
11	Balancing of reciprocating and rotating masses.	CO5
12	Motorised Gyroscope - Determination of gyroscopic couple.	CO6
13	Governors - Determination of sensitivity, effort, etc. for Watt, Porter, Proell, Hartnell governors	CO6
TEXT	BOOKS	

- 1. Ambekar A.G, "Mechanism and Machine Theory" Prentice Hall of India, New Delhi, 2007.
- 2. Shigley J.E. ,Pennock G.R.and Uicker.J.J., 'Theory of Machines and Mechanisms', Oxford University Press, 2003.

# REFERENCES

- 1. Thomas Bevan, 'Theory of Machines', CBS Publishers and Distributors, 2008.
- 2. Ghosh.A, and A.K.Mallick, 'Theory of Mechanisms and Machines', Affiliated East-West Pvt. Ltd., New Delhi, 2007.
- 3. Rao.J.S. and Dukkipati.R.V. 'Mechanisms and Machine Theory', Wiley-Eastern Ltd., New Delhi, 2003.
- 4. John Hannah and Stephens R.C., 'Mechanics of Machines', Viva Low-Prices Student
- 5. Edition, 2003.

# **E-REFERENCES**

1. http://nptel.iitm.ac.in/courses

Mapping	of COs	with Pos
---------	--------	----------

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO1	2	3	-	2	1	1	-	-	1	-	-	1	2	
CO2	2	3	-	2	1	1	-	-	-	-	1	1	2	
CO3	2	3	-	2	1	1	-	-	-	-	1	1	2	
<b>CO4</b>	2	3	-	2	1	1	-	-	1	-	-	1	2	
CO5	2	3	2	1	1	1	-	-	1	-	1	1	2	
CO6	2	3	-	2	1	1	-	-	-	-	1	1	2	
Tot	12	18	2	11	6	6	-	-	3	-	4	6	12	

1 - Low, 2 - Medium, 3- High

Semester	V	
Subject Name	Inplant Training – II	
Subject Code	XME509	
L –Т –Р –С	C:P:A	L –Т –Р –Н
0-0-1	0:1:0	0-0-0-0
Course Outcome		Domain/Level
		C or P or A

## **Objectives:**

UNIT I

This course is aimed to provide more weightage for project work. The project work could be done in the form of a summer project or internship in the industry or even a minor practical project in the college. Participation in any technical event/ competition to fabricate and demonstrate an innovative machine or product could be encouraged under this course.

			L 1	T 0	P 2	C 3
	XECHR3-Fundamentals of ROS and Embedded in	Robotics	-	, and the second		
			L 1	1 0	Р 4	н 5
PRERE	QUISITE:					
	COURSE OUTCOMES	DOMAIN		LE	VEI	
After the	e completion of the course, students will be able to					
CO1	<i>Design</i> Robot architecture based on the Environment condition	Psychomotor	Ap Sy	oplica nthes	ation sis	l
CO2	<i>Understand</i> uncertainty in sensors and <i>develop</i> sensor models	Cognitive Psychomotor	Kr Cc ior Aţ	nowle ompro n oplica	edge ehen ation	.S
CO3	<i>Perform</i> Path planning and navigation in unknown environment	Psychomotor	Ap Sy	oplica	ation sis	l
CO4	Build Robot Software using Robot OperatingSystem	Psychomotor Affective	Ap Sy	oplica nthes	ation sis	l
CO5	<b>Understand</b> the programming concept infirebird V kit	Cognitive Psychomotor	Kr Co ior	nowl ompr n	edge eher	

3+6

Essentials for Robot Operating System

Introduction to Mobile Robots - What is a Mobile Robot? - Different Types of Mobile Robot -Applications of Mobile Robots - Architecture of a Mobile Robot - Challenges in Mobile Robotics -Different Robot Drives – Wheeled Robotics - Characteristics of a Wheeled Robot - Different Types of Mobile Robot Drives - Holonomic and Non- Holonomic Motion - Various Steering Mechanisms – Robot Paradigms - What is a Robot Paradigm? - Working with Reactive Paradigm -Introduction to Deliberative Paradigm - Working with Hybrid Paradigm – Introduction to ROS -What is Simulation? - Need for Simulation - Simulation Environments for Robotics - What is ROS? - Features of ROS - ROS - Types, Distributions & Programming languages – Software Installation - Installing Virtual Machine - Installing Ubuntu - Installing ROS

- Checking of ROS Installation - Installing VS Code - Explain Basic Movement – Linux Basics -Understanding File Hierarchy and Navigation - Understanding File Permissions - File and Folder Handling - Administrative Management - Package Management – C++ basics - Enabling C++ Extensions - Datatypes & Variables – Loops

- Conditional Statements

Lab:

- 1. Crash course on Linux management
- 2. Foundations of C++
- **3.** Crash Course on Python

UNIT II	Fundamentals of Robot Operating System	4+6
Fundamentals of RC	OS - Creating Catkin Workspace - Understanding Packages - Create	
ROS Package - Bui	lding Environment in Gazebo - Installation of TurtleBot Packages -	Import In-
built Robots in ROS	- Installing Teleoperation Dependencies - Teleoperation	

of Mobile Robot in ROS - Understanding ROS Nodes - Intuition of ROS Topics - ROS Services and Parameters - ROS Launch - Introduction to ROS Message and SRV - ROS Publisher and Subscriber - Build Custom Robot in ROS - Principle of Differential DriveRobot - Building URDF File and Robot Base - Building Robot Wheels - Joining Wheels and Base - Test URDF File -Creating Launch File and Launching Code - Visualization using RViz - Creating Macro-Based Files - Programming Robot Macro File - Programming Gazebo Macro File - Converting Macro File to URDF - Creating Launch Files and Folder - Creating Launch File for Gazebo - Creating Launch File for Environment - Creating Robot World - Launching Gazebo Environment -Programming Mobile Robot Macro File - Teleoperation of Mobile Robots

Lab:

- 4. Fundamental Operations of Robot operating system
- 5. Teleoperation of Turtle Bot in ROS
- 6. Building a URDF file for Mobile Robot
- 7. Foundations of Rviz and Gazebo
- 8. Programming Gazebo Macro files

9.	Programn	ning Differential Robot Macro file
UNIT I	П	Robot Percention in Robot Operating System

5+9

Introduction to Robot Perception - What is Robot Perception? - Sensor Classification Characterizing sensor performance - Representing Uncertainty - Introduction to Proximity sensors - Modifying Robot Macro File for SONAR - Modifying Gazebo Macro File for SONAR -Executing SONAR Robot – Robot Vision in ROS - Vision Sensors for Robotics - Basic Image Processing Operations in OpenCV - What is CV Bridge? - Video Processing in ROS -Understanding Template Matching - TemplateMatching using CV Bridge – Uncertainty in Robot Sensors – Handling Sensors using -Probability – Robot Localization - What is Localization? -Challenges in Robot Localization – What is Kalman Filter – Kalman Gain - Kalman Filter Localization Adaptive Monte Carlo Localization – Introduction to Robot Mapping - What is RobotMapping? - Map Representation - Autonomous Mapping techniques - Introduction to - Occupancy Grid maps - Creating Launch File

Lab:

10. Obstacle detection and Avoidance in Robot Operating System

- 11. Foundations of Robot Vision in ROS
- 12. Template matching in ROS
- 13. Kalman Filter Localization in ROS
- 14. Building Map using LIDAR and Gmapping Package
- **15.** Adaptive Monte Carlo Localization in Robot Operating System

UNIT IV Path planning and Navigation	5+12
--------------------------------------	------

Path planning and Navigation - What is Robot Path planning? - Road Map path planning - Visibility Graphs - Potential Field Path planning - Obstacle Avoidance - Working with Bug Algorithms - Dynamic Window approach - Understanding Navigation Architectures - Navigation Stack in ROS – Introduction to SLAM - What is Simultaneous Localization and Mapping - Challenges in Simultaneous Localization and Mapping - Various SLAM Techniques - Performing Simultaneous Localization and mapping in ROS – Working with Visual SLAM - Understanding Visual Odometry

- Challenges in Simultaneous localization and Mapping Lab:

16. Path Planning of Mobile Robot using Local planner

- 17. Working with Dynamic Window approach in ROS
- 18. Working with Navigation stack in ROS
- **19. Application of SLAM in ROS**

20. Visual Odometry in ROS

UNIT VEmbedded system programming using e-yantra10Introduction to Eyantra team-Architecture of Fire bird V kit-sensors in firebird V kit-<br/>encoders- Introduction to embedded system coding and burning of code.10

Lab:

**21.Line tracking robot** 

- 22.Programming for s curved motion
- 23.Programming for obstacle detection

# 24.Material handling system

25.Service/Survey bot

LECTURE	TUTORIAL	PRACTICA L	AL HOURS
17	0	33	60

# TEXT BOOKS:

Introduction to Autonomous Mobile Robots, 2nd Edition, Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza, MIT Press, 2011

**REFERENCES:** 

Modern Robotics: Mechanics, Planning, and Control, Kevin M. Lynch and Frank C.Park, Cambridge University Press, 2017, ISBN 9781107156302 Planning Algorithms, Steven M. LaValle, Cambridge University Press, 2006 Computational Principles of Mobile Robotics, Gregory Dudek and Michael Jenkin, Cambridge University Pres, 2010

## **E-REFERENCES:**

Thrun, Burgard, Fox: Probabilistic Robotics, MIT Press, 2005 NPTEL :: Electrical Engineering - Industrial Automation and Control

			L	Т	Р	С
XEC	CHR4- Artificial Intelligence and Computer Vision fo	rRobotics	1	0	2	3
			-	-		
				T	P 4	H 5
PREREC	DUISITE		1	U	4	3
	COURSE OUTCOMES	DOMAIN		LE	VEI	
After the	completion of the course, students will be able to					
CO1	Student can <i>define</i> and <i>describe</i> intelligence and <i>explain</i> how it can be imparted in Machines	Cognitive	Co ior Kr Ar	ompro n lowle alys	ehen edge is	S
CO2	Build, Deploy and Tune Machine LearningModels	Psychometer Affective	Ap Sy An	plica nthes alys	ation sis is	l
CO3	<i>Build</i> and <i>Integrate</i> Vision pipelines with Digitalimag processing techniques	eCognitive Psychomotor Affective	Ap Sy	plic:	ation sis	l
CO4	<i>Extract</i> and <i>Detect</i> Features from Images, Videosand <i>compare</i> feature extraction methods	Cognitive Psychomotor Affective	Ap Ev	plica alua	ation tion	l
CO5	Develop Deep learning Based Robot Applications	Psychometer Affective	Ap Sy	plicanthe	ation sis	l
UNIT I	Foundations of Artificial Intelligence					3+6

Introduction to Artificial Intelligence - What is Artificial Intelligence? - Different paradigms in Artificial Intelligence - Applications of Artificial Intelligence in Robotics – Elements of Artificial Intelligence - What is an Agent - Different types of Agents - What is an Environment - Nature of the environments – Search Algorithms in Robotics What is Search - Uninformed Search - Different Uninformed Search Algorithms - Implementation of BFS algorithm in Python - Greedy search algorithm - A* Algorithm Finding Optimal Path using Search algorithms - Robot Navigation using A* Algorithm – What is State estimation? – Noise in Robot Sensors – Working with particle Filters

Lab:

- 1. Implementation of Breadth First Search Algorithm in Python
- 2. Robot Navigation using A* algorithm
- **3.** Implementation of Particle filter in Python

citil if tuances for machine Learning	UNIT II N	Nuances for Machine Learning	
---------------------------------------	-----------	------------------------------	--

3+9

Introduction to Machine learning - What is Machine Learning? - Paradigms in Machine learning -Difference between classical AI and Machine Learning - Applications of Machine Learning -Introduction to Python Packages – NumPy - What is NumPy? - Arrays in NumPy - Creating Vectors – Matrices - Matrix Operations - Trace, Determinant, Inverse - Sparse Matrix - ndimensional array - Introduction to Python Packages – Pandas - Introduction to Data frames, Data structures - Data sorting - Data Iteration - Handling Text data - Introduction to Machine Learning -Basics of Machine Learning - Types of Machine Learning - Machine Learning Algorithms -Mathematical foundations - Supervised Learning – Classification - Difference between regression and classification - Introduction to Logistic Regression and support vector machine -Mathematical foundations-Logistic Regression - Programming of Logistic Regression in Python-scikit learn Lab:

- 4. Essentials of Python for Machine Learning NumPy
- 5. Essentials of Python for Machine Learning Pandas
- 6. Building a Logistic Regression Model in Python
- 7. Building a Support Vector Machines Model in Python

UNIT IIIComputer Vision for Robotics2+6Fundamentals of Computer Vision - Introduction to Computer vision - Applications of Computer<br/>vision - Difference between computer vision and Digital Image Processing - Introduction to Image<br/>formation - Introduction to vision sensors - Whatis an Image? - How is an Image formed? - Image<br/>formation using Lens - Pinhole & Perspective projection – Depth of Field - Image parameters -<br/>Primitives and Transformations - Geometric Image formation - Camera Model – Image sensing -<br/>Image sensing Pipeline - Types of Image sensors - Characteristics of an Image sensor - Sensing<br/>Color - Camera response and stereo imaging - Fundamentals of Image operations - Image<br/>Processing - Installation of OpenCV - Reading Images - Reading Videos - Changing Color spaces<br/>- Image Resizing - Color Change - Pixel Manipulation

-Blurring Image – Blending - Subtraction – Image – Thresholding & Filtering - What is Thresholding - Working and Types of Thresholding - Introduction to Simple

Thresholding - Programming Simple Thresholding – Color - What is Adaptive Thresholding - Types of Adaptive Thresholding - Adaptive Thresholding - Gaussian & Mean -What is an Image Filter - Noise in Images = Working with Gaussian Filter - Working with Sobel Filter - Working with Prewitt Filter

Lab:

- 8. Fundamentals of Image Processing in OpenCV
- 9. Image Thresholding and Filtering

**10.** Morphological Operations in OpenCV

UNIT IV	Feature Extraction and Object Recognition	3+12
Feature Extraction -	- Introduction to Feature extraction - Various Feature Extraction 7	Fechniques -
What is Edge de	tection? - Various Edge detection techniques - Boundary l	Detection –
Skeletonization - In	troduction to Histogram of Gradients - Understanding Feature Mat	ching Using
HOG - Introduction	n to SIFT detector - Image Stitching - Motion Detection - What	at is Motion
Detection? - Motio	n field - Introduction to Optical Flow - Optical Flow constrain	t equation -
Introduction to Den	se Optical Flow - Applications of Optical Flow - Image Recogniti	on I – What
is Image recognition	on - Challenges in Image Recognition - Feature Extraction - Int	roduction to
Dimensionality Red	uction - Principle Component Analysis - Creating final Datase	t for Image
Recognition - Intro	oduction to Support Vector Machines - Mathematical Intuition	of SVM -
Generation of Eiger	Faces using PCA - Image recognition using SVM in Python	
- Confusion Matrix	X .	

Lab:

- 11. Feature Extraction using Edge detection in Open CV
- 12. Implementation of Scale Invariant Fourier Transform in Open CV

13. Implementation of FAST in OpenCV

14. Implementation of Dense Optical Flow in OpenCV

**15. Image Recognition using PCA and SVM** 

UNIT V	Deep Learning for Robotics	4+12
Artificial Neural N	letworks for Images - What is an Artificial Neural Network - S	tructure of a
Neural Network - 1	Introduction to Deep Learning - Applications of Deep Learning in	n Robotics -
Perceptron Networl	x - Activation function - Backpropagation algorithm - Application	ons of Deep
learning for Comp	uter vision - Introduction to Convolutional Neural networks -	Structure of
CNN - Implementa	ation of Object detection using CNN - Robot Vision - Lane Detection	on - What is
Lane Detection? -	Video Analysis of Lanes - Video Pre-processing - Implementat	ion of Lane
Detection - Robot	Vision - Collision Avoidance - What is Collision Avoidance	? - Various
sensors for - Dete	cting obstacles - Vision sensors for Collision and Obstacle	detection -
Implementation of	collision detection and avoidance using vision - Image Segment	ation - What
is Image segmenta	tion - Applications of Image segmentation - Region of Intere	st - Various
algorithms for Image	e segmentation – Scene Segmentation using Deep learning	
Lab:		

## 16. Building an Object Detection model using CNN

17. Working on Fundamentals of NVIDIA Jetson Nano

**18.** Lane Detection using Deep Learning

**19.** Collision Detection and Avoidance using Deep Learning

20. Scene Segmentation using Deep Learning

LECTURE	TUTORIAL	PRACTICAL	AL HOURS
15	0	45	60

## **TEXT BOOKS:**

Deep Learning, An MIT Press book, Ian Goodfellow and Yoshua Bengio and AaronCourville http://www.deeplearningbook.org

Machine Learning, Tom Mitchell

## **REFERENCES:**

Computer Vision: Algorithms and Applications, by Richard Szeliski Machine Learning: A Probabilistic Perspective, Kavin P. Murphy Comput.

Machine Learning: A Probabilistic Perspective, Kevin P. Murphy Computer Vision: A Modern Approach, by David Forsyth and Jean Ponce

# **E-REFERENCES:**

Machine Learning, Tom Mitchell

Semest	sr VI	
Subject	Name Manufacturing Technology	
Subject	Code XME601	
L –T –l	P-C C:P:A	L –T –P –H
4-0-0	- 4 4:0:0	4-0-0-4
Course	Outcome	Domain/Level
		C or P or A
CO1	<b>Construct</b> the Degrees of freedom, principles of location an clamping, principles of jig design, fool proofing, elements of jig locates fixture design.	d <b>K6</b>
CO2	<b>Explain</b> the basic principles of measurements classify the variou linear and angular measuring equipments.	s <b>K5</b>
CO3	<b>Distinguish</b> their principle of operation and applications.	K4
CO4	<i>Explain</i> the Assembly of different components.	K1
CO5	<i>Explain</i> and demonstrate the basic concepts of PERT- CPM and their applications in product planning control.	А К2
CO6	<i>Explain</i> the basic concepts of optimization and To Formulate an Solve linear programming problems.	d K2
Objecti	ves	

- (i) To provide knowledge on machines and related tools for manufacturing various components.
- (ii) To understand the relationship between process and system in manufacturing domain.
- (iii) To identify the techniques for the quality assurance of the products and the optimality of the process in terms of resources and time management.

#### **COURSE CONTENT**

# UNIT I JIGS, FIXTURES AND PRESS TOOLS

Tooling for conventional and non-conventional machining processes: Mould and die design, Press tools, Cutting tools; Holding tools: Jigs and fixtures, principles, applications and design; press tools – configuration, design of die and punch; principles of forging die design

## UNIT II FORM MEASUREMENT

Dimensions, forms and surface measurements, Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; Metrology in tool wear and part quality including surface integrity, alignment and testing methods; tolerance analysis in manufacturing and assembly. Process metrology for emerging machining processes such as microscale machining, Inspection and workpiece quality

## UNIT III ASSEMBLY PRACTICES

Manufacturing and assembly, process planning, selective assembly, Material handling and devices

# UNIT IV LINEAR MODELS, PROJECT SCHEDULING BY PERT-CPM

Linear programming, objective function and constraints, graphical method, Simplex and duplex algorithms, transportation assignment, Travelling Salesman problem; Network models: shortest route, minimal spanning tree, maximum flow model- Project networks:

1.1

**12 hrs** 

#### 16 hrs

6 hrs

8 hrs

CPM and PERT, critical path scheduling

## UNIT V PRODUCTION PLANNING& CONTROL

8 hrs

Forecasting models, aggregate production planning, materials requirement planning. Inventory Models: Economic Order Quantity, quantity discount models, stochastic inventory models, practical inventory control models, JIT. Simple queuing theory models T = 0 has D = 0 has

# L = 50 hrs T = 0 hrs P=0 hrs Total = 50 hrs

# **TEXT BOOKS**

1. Donaldson C and Le Cain C H, "Tool Design", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2004.

2. Jain R.K., "Engineering Metrology", Khanna Publishers, 2005

3.Kalpakjian and Schmid, Manufacturing processes for engineering materials (5th Edition)-Pearson India, 2014

4. Taha H. A., Operations Research, 6th Edition, Prentice Hall of India, 2003.

5. Shenoy G.V. and Shrivastava U.K., Operations Research for Management, Wiley Eastern, 1994.

6.Automation, Production Systems, & CIM by Grover; Prentice Hall 2. CAD CAM by C. McMahon and J. Browne; published by Addison-Wesley.

# REFERENCES

1. Bhattacharyya A, "Metal Cutting Theory and Practice", New Central Books Agency (P) Ltd, Calcutta, 2000.

2. Fundamentals of Operations Research, Advanced Operation Research Prof.G.Srinivasan, Department of Management Studies, Indian Institute of Technology, Madras.

3.Modern Production/ Operations Management, E. S. Buffa and R. K. Sarin, John Wiley

## International, 1994.

## **E-REFERENCES**

http://nptel.iitm.ac.in/courses

#### Mapping of COs with Pos

	P01	P02	F03	P04	204	90d	707	80d	60d	P010	P011	P012	PSO1	PSO2
CO1	2	1	-	1	-	1	1	1	1	-	I	1	3	
CO2	2	2	-	-	-	1	1	-	-	-	-	1	3	
CO3	2	2	-	-	-	1	1	-	-	-	-	1	3	
CO4	2	1	-	-	2	1	1	-	-	-	-	1	3	
CO5	2	1	-	-	1	1	1	-	1	-	-	1	3	
CO6	1	-	-	-	1	1	-	-	1	-	-	1	3	
Tot	11	7	-	-	4	6	4	-	3	-	-	6	18	

1 - Low, 2 - Medium, 3- High

Semester	VI							
Subject Name	Design of Machine Elements							
Subject Code	XME602	XME602						
L –T –P –C		C:P:A	L –T –P –H					
3-1-0-4		3:1:0	3-1-0-4					
Course Outcome			Domain/Level					
			C or P or A					

CO1	Describe the design process, material selection, calculation of stresses and stress concentrations under variable loading.	К3
CO2	Design the Shafts, Keys and Bearings.	К3
CO3	Design helical, leaf, disc and torsional springs	К3
CO4	Analyze Couplings, Fasteners and welded joints.	К3
CO5	Apply BIS standards and catalogues in design and selection of belts and chain for requirement, Select suitable drive combination based on requirement.	К3
CO6	Select appropriate friction drives and positive drives based on the applications.	К3
01.		

## **Objectives**

This course seeks to provide an introduction to the design of machine elements commonly encountered in mechanical engineering practice, through

- ✤ A strong background in mechanics of materials based failure criteria underpinning the safetycritical design of machine components
- An understanding of the origins, nature and applicability of empirical design principles, based on safety considerations
- ✤ An overview of codes, standards and design guidelines for different elements
- ✤ An appreciation of parameter optimization and design iteration
- An appreciation of the relationships between component level design and overall machine system design and performance

# **COURSE CONTENT**

UNIT I	Steady Stresses and Variable Stresses in Machine Members	6+0
	Design considerations - limits, fits and standardization, Review of failu static and dynamic loading (including fatigue failure)	re theories for
UNIT II	Shafts and bearings	9+3
	Design of shafts under static and fatigue loadings, Analysis and design rolling contact bearings	of sliding and
UNIT III	Energy storing Elements	6+3
	Helical compression, tension, torsional and leaf springs	
UNIT IV	Temporary and Permanent Joints	9+3
	Threaded fasteners, pre-loaded bolts and welded joints, Analysis and power screws and couplings	applications of
UNIT V	Transmission elements	15+6
	Spur, helical, bevel and worm gears; belt and chain drives, Analysis of brakes	of clutches and
L =45 hrs 7	$\Gamma = 15 hrs \qquad Total = 60 hrs$	

# TEXT BOOKS

[1] Shigley, J.E. and Mischke, C.R., Mechanical Engineering Design, Fifth Edition, McGraw-Hill International; 1989.

[2] Deutschman, D., Michels, W.J. and Wilson, C.E., Machine Design Theory and Practice, Macmillan, 1992.

## REFERENCES

[1] Juvinal, R.C., Fundamentals of Machine Component Design, John Wiley, 1994.

[2] Spottes, M.F., Design of Machine elements, Prentice-Hall India, 1994. [5] R. L. Norton, Mechanical Design – An Integrated Approach, Prentice Hall, 1998

## **E-REFERENCES**

1. https://nptel.ac.in/downloads/112105125/

#### P012 PSO2 P010 **PSO1** P011 P02 P05 P06 **PO8** P09 **P01** P03 P04 P07 **CO1** CO2 CO3 **CO4** CO5 **CO6** TOT

### Mapping of COs with POs

1 - Low, 2 – Medium, 3- High

Semester	VI		
Subject Nan	ne XGS605		
Subject Cod	e PROFESSIONA	L SKILLS	
L	-Т-Р-С	C:P:A	L –T –P –H
1	- 0 - 2 - 3	2.6:0.4:0	1-0-4-5
Course Outo	come		Domain/Level
			C or P or A
CO1 Abili	<i>ty</i> to understand communi	cations	K1
CO2 Appl	v the known skills for care	er	К3
CO3 Iden	<i>tify</i> inner strength		K1
CO4 Cons	struct the attitude as a prof	essional	К6
CO5 Prac	ticing Etiquettes		P3
CO6 Abili	<i>ty</i> to prepare the contents		K1
COURSE C	ONTENT		
UNIT I	Communication		9 HRS
	1.1 – Brainstorming		
	1.2 LORW		
UNIT II	Career Skills		9 HRS
	2.1 – Resume & CV prep	aring Skills	
	2.2 - Interview Skills 2.3 - Exploring Career O	pportunities	
UNIT III	Team Skills		9 HRS
	31 - Listening as a Team	Skill	
	3.2 – Team Building at w	ork place	
UNIT IV	Professional Skills		9 HRS
	4.1 – Attitude and Goal S	etting	
	4.2 - Verbal and Non Verb	rbai Communications	
UNIT V	<b>Professional Etiquettes</b>		9 HRS
	Social Etiquettes Cultural Ethics at work p	lace	
Suggested R (i) H	<b>eadings:</b> Er. A. K. Jain, Dr. Pravin S Skills S. Chand Publicatior	. R. Bhatia, Dr. A. M. Sheikh F	Professional Communication

 (ii) Alan Pannett. Key Skills for Professionals: How to Succeed in Professional Services, Kogan Page; 1st edition, 2013

Semes	ster	VI		
Subje	ct Name	CYBER SECU	RITY	
Subje	ct Code	XUM606		
	L –T –]	Р –С	C:P:A	L –T –P –H
	0-0-0	0-0	0:0:0	3-0-0-3
Cours	e Outcome			Domain/Level
				C or P or A
CO1	Understand technologi	d the fundamentates.	als of Cyber Security and the	ne K2
CO2	Understand	d the organizationa	K2	
CO3	Understand	d the Cyber Securi	K2	
<b>CO4</b>	Understand	d the Indian IT act	K2	
CO5	Understand	d and Apply the Cy	yber security practices	K2, K3

To give knowledge on the cyber space and its security. To learn about application of I law to various energy conversion devices

- ✤ To understand the cyber security structure of organization
- ✤ To Understand the security policy of Organisation
- ✤ To aware of the Cyber security initiatives and IT Act.
- ✤ To make the students to know cyber security Practices.

# **COURSE CONTENT**

UNITI	INTRODUCTION 9HRS
	Cyber Security – Cyber Security policy – Domain of Cyber Security Policy – Laws and Regulations – Enterprise Policy – Technology Operations – Technology Configuration - Strategy Versus Policy – Cyber Security Evolution – Productivity – Internet – E commerce – Counter Measures – Challenges
UNIT II	CYBER SECURITY OBJECTIVES AND GUIDANCE9HRS
	Cyber Security Metrics – Security Management Goals – Counting Vulnerabilities – SecurityFrameworks – E Commerce Systems – Industrial Control Systems – Personal Mobile Devices – Security Policy Objectives – Guidance for Decision Makers – Tone at the Top – Policy as a Project– Cyber Security Management – Arriving at Goals – Cyber Security Documentation – The Catalog Approach – Catalog Format – Cyber Security Policy Taxonomy.
UNIT III	CYBER SECURITY POLICY CATALOG9HRS
UNIT III	CYBER SECURITY POLICY CATALOG9HRSCyber Governance Issues – Net Neutrality – Internet Names and Numbers – Copyright andTrademarks – Email and Messaging - Cyber User Issues - Malvertising - Impersonation –Appropriate Use – Cyber Crime – Geo location – Privacy - Cyber Conflict Issues – Intellectual property Theft – Cyber Espionage – Cyber Sabotage – Cyber Welfare- Computer Forensics – Steganography
UNIT III UNIT IV	CYBER SECURITY POLICY CATALOG9HRSCyber Governance Issues – Net Neutrality – Internet Names and Numbers – Copyright andTrademarks – Email and Messaging - Cyber User Issues - Malvertising - Impersonation – Appropriate Use – Cyber Crime – Geo location – Privacy - Cyber Conflict Issues – Intellectual property Theft – Cyber Espionage – Cyber Sabotage – Cyber Welfare- Computer Forensics – SteganographyCYBER SECURITY INITIATIVES AND IT ACT9HRS

to Incident Response.

## UNIT V SECURITY PRACTICES

#### 9HRS

Guidelines to choose web browsers, Securing web browser ,Antivirus ,Email security ,Guidelines for setting up a Secure password ,Two-steps authentication ,Password Manager ,Wi-Fi Security ,Guidelines for social media security ,Tips and best practices for safer Social Networking.

Basic Security for Windows, User Account Password Introduction to mobile Smartphone Security, Android Security, IOS Security Online Banking Security ,Mobile Banking Security ,Security of Debit and Credit Card ,UPI Security Security of Micro ATMs e-wallet Security Guidelines Security Guidelines for Point of Sales(POS)

L = 45 hrs T = 0 hrs P=0 hrs Total = 45 hrs

# **TEXT BOOKS / REFERENCES**

1. Jennifer L. Bayuk, J. Healey, P. Rohmeyer, Marcus Sachs , Jeffrey Schmidt, Joseph Weiss "Cyber Security Policy Guidebook" John Wiley & Sons 2012.

2. Rick Howard "Cyber Security Essentials" Auerbach Publications 2011.

3. Cyber Laws & Information Technology, Jothi Rathan, Vijay Rathan, Bhrath Pubishers, 7th Edition January 2019.

4. Modern Cyber security Practices by Pascal Ackerman, BPB Publications, 2020

5. Dan Shoemaker Cyber security The Essential Body Of Knowledge, 1st ed. Cengage Learning 2011

6. Rhodes-Ousley, Mark, "Information Security: The Complete Reference", Second Edition, McGraw-Hill, 2013.

wicolaw-fill, 2015.

# **E REFERENCES**

https://www.coursera.org/specializations/cyber-security

www.nptel.ac.in

http://professional.mit.edu/programs/short-programs/applied-cybersecurity

https://us.norton.com/internetsecurity-how-to-cyber-security-best-practices-for-employees.html https://www.meity.gov.in/content/cyber-laws

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	0	0	0	0	0	2	0	3	0	0	0	0	0	0
CO2	0	0	0	0	0	0	2	0	1	0	0	0	0	0
CO3	3	0	0	0	0	2	3	0	1	0	0	0	3	0
CO4	0	0	0	0	0	0	0	0	0	2	0	0	0	0
CO5	3	0	0	0	0	0	0	0	0	0	0	0	3	0
Total	6	0	0	0	0	4	5	3	2	2	0	0	6	0

#### Mapping of COs with PO

1 - Low, 2 – Medium, 3- High

Semest	er	VI						
Subject	Name	Machina Tools and Matrology Laboratory						
		National Tools and Metrology Europatory						
Subject	t Code	XME607						
L –T –I	P-C	C:P:A	L –T –P –H					
0-0-1	l–1	0.1:0.9:0	0-0-2-2					
Course	Outcome		Domain/Level					
			C or P or A					
<b>CO1</b>	<i>Experiment</i> a forces involv	K2, K3 P5,P7						
CO2	Create and correspondin	K2 P5						
CO3	Experiment	the sample with EDM.	K2 P7					
CO4	Understand	the operation of pick and place robot.	K2 P5					
CO5	Explain the	basic principles of measurements classify the various	K5					
	linear measu	P7						
<b>CO6</b>	<b>Explain</b> the	basic principles of measurements classify the various	K5					
	angular measuring equipments and <b>distinguish</b> their principle of <b>P7</b> operation and applications.							
Objecti	ves							

1. To provide an understanding of advanced manufacturing methods.

2. To get an idea of the dimensional & form accuracy of products

# **COURSE CONTENT**

		CO Relation
1.	Taper turning and external thread cutting using lathe	CO1
2.	Contour milling using vertical milling machine	CO1
3.	Spur gear cutting in milling machine	CO1
4.	Measurement of cutting forces in Milling/ Turning process	CO1
5.	CNC part programming	CO2
6.	Drilling of a small hole using wire EDM	CO3
7.	Microprocessor controlled pick & place robot	CO4
8.	Use of Tool Maker's Microscope	CO5
9.	Comparator and sine bar	CO5
10.	Surface finish measurement equipment	CO6
11.	Bore diameter measurement using micrometer and telescopic gauge	CO6
12.	Use of Autocollimator	CO6
TEXT	BOOKS	

1. Hajra Choudhury S.K and Hajra Choudhury. A.K., "Elements of Workshop Technology, Volume I and II", Media Promoters and Publishers Private Limited, Mumbai.

2. HMT – "Production Technology", Tata McGraw-Hill, 1998.Dr. B.C.Punmia, "Surveying – Volume I", Laxmi Publications, New Delhi, 2005

3. Jain R.K., "Engineering Metrology", Khanna Publishers, 2005

4. Mikell. P. Groover, Automation Production Systems, and Computer Integrated Manufacturing, Prentice Hall of India Ltd., New Delhi, 1998.

5. Pandey P.C. and Shan H.S. "Modern Machining Processes" Tata McGraw-Hill, New Delhi, 2007.

# REFERENCES

1. Paul Degarma E, Black J.T. and Ronald A. Kosher, Materials and Processes, in Manufacturing Prentice – Prentice Hall of India.

2. Sharma, P.C., A Text book of Production Technology, S. Chand and Co. Ltd.,

3. Milton C.Shaw, 'Metal Cutting Principles', Oxford University Press, Second edition, 2005.

4. Rao, P.N. "Manufacturing Technology", Metal Cutting and Machine Tools, Tata McGraw–Hill, New Delhi, 2003.

5. Gupta S.C, "Engineering Metrology", Dhanpat rai Publications, 2005

6. Deb, Robotics Technology and Flexible Automation, Tata McGraw Hill, New Delhi, (1994).

7. Benedict. G.F. "Nontraditional Manufacturing Processes", Marcel Dekker Inc., New York, 1987.

## **E-REFERENCES**

1.http://nptel.iitm.ac.in/courses

## Mapping of COs with Pos

	P01	P02	P03	P04	P05	P06	P07	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	2	3	-	2	1	1	-	-	1	-	-	1	3	
CO2	2	3	-	2	1	1	-	-	-	-	-	1	3	
CO3	2	3	-	2	1	1	-	-	1	-	-	1	3	
CO4	2	3	2	1	1	1	-	-	1	-	-	1	3	
CO5	2	3	-	2	1	1	-	-	-	-	-	1	3	
CO6	2	3	-	2	1	1	-	-	-	-	-	1	3	
Tot	12	18	2	11	6	6			3			6	18	

1 - Low, 2 - Medium, 3- High

Semes	ster		VI								
Subje	ect Name		TOOL DESIGN AND DRAWING LABORATORY								
Subje	ect Code		XME608								
L –T -	-Р-С			C:P:A	L –T –P –H						
0-0-	- 1 1			0:1:0	0-0-2-2						
Cours	se Outcom	e			Domain/Level						
					C or P or A						
CO1		Desi	cutting type tools	K2 P5							
CO2		Com	pare, progressiv	e tool with compound tool	K2 P5						
CO3		Desi	gn of Non cuttin	g dies (Bending and drawing dies)	K2 P5						
CO4		Desi	gn of fixture for	different applications	K2 P5						
CO5		Desi	gn of limit gaug	K2 P5							
CO6		K3									
[1] COU	To give ex <b>RSE CON</b>	posur TEN	e to tool design a T	nd draw it manually and using software							
					CO Relation						
1.	Design ar	nd dra	wing of Blanking	and Piercing Tools	C01						
2.	Design of	f Prog	ressive Tool - Co	mpound Tool	CO2						
3.	Design V	bend	ing and Edge ben	ding tools	<u>CO3</u>						
4. 5	Design of	f Drav	v dies - Shallow d	rawing and deep drawing	C03						
5. 6	Design of	f Milli	ing fixture		CO4						
7.	Design of	f Grin		CO4							
8.	Design of and IS 70	f Plair )18 : F	er IS 3455, IS 6137, IS 6244, IS 6246	CO5							
9.	Design of IS 3485	f snap	CO5								
10.	Drawing	CO6									
TEXT	<b>F BOOK</b> S										
1.J.R. 2.Dor	.Paquin, D naldson, T	vie de: ool D	sign fundamenta Design , Tata Mc	lls, Industrial Press Inc, 1990. Graw-hill Book company, 23rd edition	n, 2006						
4. Ind and IS	lian Standa S 3485.	ard Sj	pecifications IS	3455, IS 6137, IS 6244, IS 6246 ,IS 7(	)18 : Part 2, IS 3477						

REFERENCES

1.Donald F. Eary., Edward A. Reed, Techniques of Press working sheet metal, Prentice-Hall,Inc.,Second Edition, 1974.

# **E-REFERENCES**

http://nptel.iitm.ac.in/courses

# Mapping of COs with Pos

	P01	P02	P03	P04	PO5	P06	P07	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO1	2	3	-	2	1	1	-	-	1	-	-	1	0	
CO2	2	3	-	2	1	1	-	-	-	-	-1	1	0	
CO3	2	3	-	2	1	1	-	-	1	-	-	1	1	
CO4	2	3	2	1	1	1	-	-	1	-	-1	1	1	
CO5	2	3	-	2	1	1	-	-	-	-	-1	1	1	
CO6	2	3	3	2	2	1	2	2	2	1	3	2	3	
Tot	12	18	5	11	7	6	2	2	5	1	6	7	6	

1 - Low, 2 - Medium, 3- High

a .												
Semester		VII										
Subjec	t Name	Automation in manufacturing										
Subjec	t Code	XME702										
L –T –	Р –С	C:P:A	L –T –P –H									
3-0-	0-3	3:0:0	3-0-0-3									
Course	Outcome		Domain/Level									
		C or P or A										
CO1	Define autor	C (Rem),										
	along with re	C(U)										
CO2	Classify and describe computer aided technologies in C (Rem), C(U) manufacturing.											
CO3	Classify and explain different automation technologies and building blocks of systems.											
<b>CO4</b>	Describe product modelling and simulation techniques in C (Rem), C(U) manufacturing											
CO5	Define additive manufacturing and explain the recent C (Rem), C(U) advancements in additive manufacturing.											
<b>01</b>	•											

#### **Objectives**

1. To understand the importance of automation in the of field machine tool based manufacturing

2. To get the knowledge of various elements of manufacturing automation – CAD/CAM, sensors, pneumatics, hydraulics and CNC

3. To understand the basics of product design and the role of manufacturing automation

# COURSE CONTENT

UNIT I	BASIC CONCEPTS AND PROPERTIES OF FLUIDS	9 hrs
--------	-----------------------------------------	-------

Introduction: Why automation- Current trends-CAD, CAM, CIM- Rigid automation- Part handling, Machine tools- Flexible automation- Computer control of Machine Tools and Machining Centers-NC and NC part programming, CNC-Adaptive Control- Automated Material handling. Assembly-Flexible fixturing.

# UNIT II COMPUTERS IN MANUFACTURING

Computer Aided Design- Fundamentals of CAD - Hardware in CAD-Computer Graphics Software and Data Base-Geometric modelling for downstream applications and analysis methods- Computer Aided Manufacturing- CNC technology- PLC- Micro-controllers- CNC-Adaptive Control

# UNIT III AUTOMATION

Low cost automation: Mechanical & Electro mechanical Systems, Pneumatics and Hydraulics, Illustrative Examples and case studies

9hrs

#### **7** m s

hrs

9

# UNIT IV MODELLING AND SIMULATION

Introduction to Modelling and Simulation-Product design- process route modelling- Optimization techniques-Case studies & industrial applications.

# **UNIT V** Additive Manufacturing

Additive Manufacturing-3Dprinting-Classification of 3D printers-components of basic 3D printer-Preparation of geometry for 3D printing-STL, STEP file generation-Managing of inter exchangeable formats for 3D printing, open source resources for 3D printing.

# L = 45 hrs Total = 45 hrs

# **TEXT BOOKS**

1. Mikell P. Groover, Automation, Production Systems, and Computer-integrated Manufacturing, prentice Hall.

2. Serope Kalpakjian and Steven R. Schmid, Manufacturing – Engineering and Technology, 7th edition,Pearson

## REFERENCES

1. Yoram Koren, Computer control of manufacturing system, 1st edition.

2. Ibrahim Zeid , CAD/CAM : Theory & Practice, 2nd edition.

# **E-REFERENCES**

https://nptel.ac.in/courses/112102011/

	P01	P02	P03	P04	P05	PO6	P07	PO8	60d	P010	P011	P012	PSO1	PSO2
CO1	3	2	-	2	1	-	-	-	1	-	-	-	3	
CO2	3	2	-	2	1	-	-	-	1	-	1	1	3	
CO3	3	1	-	1	1	-	-	1	1	-	1	1	3	
CO4	3	2	-	2	1	-	-	-	1	-	-	-	3	
CO5	3	3	3	3	2	-	-	2	1	-	3	3	3	
	15	10	3	10	6			3	5		5	5	15	

## Mapping of COs with POs

1 - Low, 2 – Medium, 3- High

9 hrs

9

hrs
Semest	er	VII				
Subject	t Name	Cyber Security				
Subject	t Code	XUM706				
L –T –]	Р – С	C:P:A	L –T –P –H			
3-0-	0-0	3:0:0	3-0-0-3			
Course	Outcome		Domain/Level			
			C or P or A			
CO1	Able to <i>un</i>	derstand the Cyber Security Policy, Laws and	C(Remember)			
CO2	Able to <i>disci</i>	uss the Cyber Security Management Concepts	C(Understand)			
CO3	Able to <b>unde</b>	erstand the Cyber Crime and Cyber welfare	C(Understand)			
CO4	Able to <i>dis</i> Concepts	cuss on issues related to Information Security	C(Understand)			
CO5	Able to <i>unde</i>	erstand various security threats	C(Understand)			
COUR	SE CONTEN	NT				
UNIT	I INTRO	DUCTION	9 hrs			
	Cyber Security – Cyber Security policy – Domain of Cyber Security Policy – Laws and Regulations – Enterprise Policy – Technology Operations – Technology Configuration - Strategy Versus Policy – Cyber Security Evolution – Productivity – Internet – E commerce – Counter Measures – Challenges					
UNIT I	I CYBEF	<b>R SECURITY OBJECTIVES AND GUIDANCE</b>				

Cyber Security Metrics - Security Management Goals - Counting Vulnerabilities - Security Frameworks - E Commerce Systems - Industrial Control Systems -Personal Mobile Devices - Security Policy Objectives - Guidance for Decision Makers - Tone at the Top - Policy as a Project- Cyber Security Management -Arriving at Goals - Cyber Security Documentation - The Catalog Approach -Catalog Format – Cyber Security Policy Taxonomy.

#### **CYBER SECURITY POLICY CATALOG** UNIT III

Cyber Governance Issues - Net Neutrality - Internet Names and Numbers -Copyright and Trademarks - Email and Messaging - Cyber User Issues -Malvertising - Impersonation - Appropriate Use - Cyber Crime - Geo location -Privacy - Cyber Conflict Issues - Intellectual property Theft - Cyber Espionage -Cyber Sabotage – Cyber Welfare

#### **INFORMATION SECURITY CONCEPTS UNIT IV**

Information Security Overview: Background and Current Scenario - Types of Attacks - Goals for Security - E-commerce Security - Computer Forensics -Steganography

#### UNIT V SECURITY THREATS AND VULNERABILITIES

hrs

9

9hrs

9

9 hrs

hrs

Overview of Security threats -Weak / Strong Passwords and Password Cracking -Insecure Network connections - Malicious Code - Programming Bugs - Cyber crime and Cyber terrorism - Information Warfare and Surveillance

#### L = 45 hrs Total = 45 hrs

#### REFERENCES

- Jennifer L. Bayuk, J. Healey, P. Rohmeyer, Marcus Sachs, Jeffrey Schmidt, Joseph Weiss "Cyber Security Policy Guidebook" John Wiley & Sons 2012.
- 2. Rick Howard "Cyber Security Essentials" Auerbach Publications 2011.
- Richard A. Clarke, Robert Knake "Cyberwar: The Next Threat to National Security & What to Do About It" Ecco 2010
- Dan Shoemaker Cyber security The Essential Body Of Knowledge, 1st ed. Cengage Learning 2011
- 5. Rhodes-Ousley, Mark, "Information Security: The Complete Reference", Second Edition, McGraw-

#### **E REFERENCE**

- 1. https://www.coursera.org/specializations/cyber-security
- 2. www.nptel.ac.in
- 3. <u>http://professional.mit.edu/programs/short-programs/applied-cybersecurity</u>

#### **CO PO MAPPING**

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	P10	P11	P12
CO 1	3	2	2	3	0	1	2	0	1	0	1	1
CO 2	3	2	1	3	0	1	2	0	1	0	1	1
CO 3	3	2	1	3	0	1	2	1	1	0	1	1
<b>CO 4</b>	3	2	1	2	0	1	2	1	1	0	1	1
CO 5	3	2	1	2	0	1	2	0	1	0	1	1
Tot	15	10	6	13	0	5	10	2	5	0	5	5

1 - Low, 2 – Medium, 3- High

Semester Subject Name Subject Code	VII Mechanical Engineering Laboratory VI XME707	(Special Machines)		
L –Т –Р –С	C:P:A	L –T –P –H		
0-0-1-1	0:1:0	0- 0- 2- 2		
<b>Course Outcome</b>	Domain/Level			
		C or P or A		
<i>Experiment</i> with sha	aper and drilling machine	Coginitive		
Experiment on grind	ling	(Remembering)		
<i>Experiment</i> on milli	ng	Psychomotor		
Experiment on CNC	(Guided response)			
<i>Understand</i> the operation of pick and place robot and EDM (Perception)				

#### **Objectives**

1. To provide an understanding of advanced manufacturing methods.

2. To get an idea of the dimensional & form accuracy of products

#### **COURSE CONTENT**

	CO Relation
Shaping a block	CO1
Radial drilling on a block	CO1
Cylindrical grinding	CO2
Surface grinding	CO2
Contour milling using milling machine	CO3
Spur gear cutting in milling machine	CO3
CNC part programming – Step and taper turning	CO4
CNC part programming – Threading	CO4
Drilling of a small hole using wire EDM	CO5
Microprocessor controlled pick & place robot	CO5
	<ul> <li>Shaping a block</li> <li>Radial drilling on a block</li> <li>Cylindrical grinding</li> <li>Surface grinding</li> <li>Contour milling using milling machine</li> <li>Spur gear cutting in milling machine</li> <li>CNC part programming – Step and taper turning</li> <li>CNC part programming – Threading</li> <li>Drilling of a small hole using wire EDM</li> <li>Microprocessor controlled pick &amp; place robot</li> </ul>

#### **TEXT BOOKS**

1. Hajra Choudhury S.K and Hajra Choudhury. A.K., "Elements of Workshop Technology, Volume I and II", Media Promoters and Publishers Private Limited, Mumbai.

2. HMT – "Production Technology", Tata McGraw-Hill, 1998.Dr. B.C.Punmia, "Surveying – Volume I", Laxmi Publications, New Delhi, 2005

3. Mikell. P. Groover, Automation Production Systems, and Computer Integrated Manufacturing, Prentice Hall of India Ltd., New Delhi, 1998.

4. Pandey P.C. and Shan H.S. "Modern Machining Processes" Tata McGraw-Hill, New Delhi, 2007.

#### REFERENCES

1. Paul Degarma E, Black J.T. and Ronald A. Kosher, Materials and Processes, in Manufacturing

Prentice – Prentice Hall of India.

2. Sharma, P.C., A Text book of Production Technology, S. Chand and Co. Ltd.,

3. Milton C.Shaw, 'Metal Cutting Principles', Oxford University Press, Second edition, 2005.

4. Rao, P.N. "Manufacturing Technology", Metal Cutting and Machine Tools, Tata McGraw-Hill, New Delhi, 2003.

6. Deb, Robotics Technology and Flexible Automation, Tata McGraw Hill, New Delhi, (1994).7. Benedict. G.F. "Nontraditional Manufacturing Processes", Marcel Dekker Inc., New York, 1987.

#### **E-REFERENCES**

1.http://nptel.iitm.ac.in/courses

	P01	P02	P03	P04	P05	P06	P07	P08	909	P010	P011	P012	PSO1	PSO2
CO1	2	3	-	2	1	1	-	-	1	-	-	1	3	
CO2	2	3	-	2	1	1	-	-	-	-	-	1	3	
CO3	2	3	-	2	1	1	-	-	1	-	-	1	3	
CO4	2	3	2	1	1	1	-	-	1	-	-	1	3	
CO5	2	3	-	2	1	1	-	-	-	-	-	1	3	
Tot	10	15	2	9	5	5			3			5	15	

#### Mapping of COs with Pos

1 - Low, 2 – Medium, 3- High

Semester	VII	
Subject Name	Project phase – I	
Subject Code	XME708	
L –Т –Р –С	C:P:A	L –T –P –H
<b>0- 0 - 8- 4</b>	0:8:0	0-0-8-8
<b>Course Outcome</b>		Domain/Level
		C or P or A

#### **Objectives:**

It is intended to start the project work early in the seventh semester and carry out both design and fabrication of a mechanical device whose working can be demonstrated. The design is expected to be completed in the seventh semester and the fabrication and demonstration will be carried out in the eighth semester.

Semester	VII	
Subject Name	Inplant Training – III	
Subject Code	XME709	
L –Т –Р –С	C:P:A	L –T –P –H
0-0-4-2	0:4:0	0-0-4-4
Course Outcome		Domain/Level
		C or P or A

#### **Objectives:**

This course is aimed to provide more weightage for project work. The project work could be done in the form of a summer project or internship in the industry or even a minor practical project in the college. Participation in any technical event/ competition to fabricate and demonstrate an innovative machine or product could be encouraged under this course. **Total hrs – 90** 

XMEM03	Non Destructive Testing	LTPC
		0020
<b>Introduction and R</b>	adiography	
Introduction to ND7	Γ – need – advantages and limitations Radiograp	phy - Sources - IR192,
cobalt 60 – X-ray fil	m – processing – testing methods – film interpret	ation
Ultrasonic testing		
A,B,C scan, immers	ion Testing, Normal and Angle Probe Testing	
Magnetic particle		
Testing Methods - p	articles - wet, dry and fluorescent	
Dye penetrant test	ing	
Surface preparation	-Testing procedure - types of penetrant.	
<b>Other NDT method</b>	ls	
Thermography, Imag	ge processing TOFD and Phased Array - leak test	ing – Halogen, Helium

Semester

VIII

Subject Name	Project phase – II	
Subject Code	XME804	
L –Т –Р –С	C:P:A	L –T –P –H
0-0-6-6	0:6:0	0-0-12-12
<b>Course Outcome</b>		Domain/Level
		C or P or A

#### **Objectives:**

It is intended to start the project work early in the seventh semester and carry out both design and fabrication of a mechanical device whose working can be demonstrated. The design is expected to be completed in the seventh semester and the fabrication and demonstration will be carried out in the eighth semester.

#### SYLLABUS FOR

#### M.Tech Renewable Energy (FT) – 2023-24 – ACADEMIC YEAR

Semest	Semester I						
Course	e Name	Solar Energ	gy Systems				
Course Code YRE101							
L –T –	Р-С		C:P: A	L –Т –Р –Н			
3 - 0 -	0-3		3:0:0	3-0-0-3			
CO Num ber	CO STA	ATEMENT		Knowledge Level			
CO1	Identify	proper solar	radiation site	К3			
CO2	Design	solar flat plate	e collectors	К3			
CO3	Design	solar concenti	ric collectors	К3			
CO4	Apply	concepts rela	ted to solar energy storage	К3			
C05	systems Annly th	ne concepts fo	r selection of PV systems	К3			
CO6	Annly th	e economics	concepts for PV systems	K3			
COUR	SE CON	TENT					
UNIT	I so		TION	9 Hours			
Source terrestr horizor radiatio global, pyradio	of radiat ial radiat ntal radia on and co direct a ometer-su	ion – Sun ear ion-radiation ation and in omponents o and diffuse nshine record	th relationship- extra terrestrial radiation.– A on a horizontal surfaces and inclined clined surfaces – relations between mor f the radiations– solar charts – Critical r solar radiation- pyroheliometer, pyranom er – an overview of solar radiation data in I	Atmospheric attenuation – planes-relations between othly, daily and hourly adiation-Measurement of neter, pyrogeometer, net ndia.			
UNIT	II SO	LAR COLLI	ECTORS – FLAT PLATE COLLECTORS	5 9 Hours			
Design considerations – classification- Flat plate collectors- air heating collectors liquid heating – Temperature distributions- Heat removal rate- Useful energy gain – Losses in the collectors-for efficiency of flat plate collectors – selective surfaces – tubular solar energy collectors analysis of concentric tube collector – testing of flat plate collectors. Solar green house. Solar tracking. solar kilns							
UNIT	III CO AP	NCENTRIC PLICATION	SOLAR COLLECTORS AND THER	MAL 9 Hours			
Concer perform (Ammo cooker.	Concentric collectors-Limits to concentration – concentrator mounting – tracking mechanism - performance analysis focusing solar concentrators: Heliostats. Solar powered absorption A/C system (Ammonia/water) solar water pump, solar chimney, solar drier, solar dehumidifier, solar still, solar cooker.						
TINIT	IV SIN	<b>ITT ATTON</b>	AND ENERCY STODACE	Ollours			

Simulation in Solar Process Design- TRANSYS- Design of active systems- f chart methods for liquid and air heaters- phi bar, of chart method - sensible, latent heat and thermo-chemical storage-pebble bed etc. materials for phase change- Glauber's salt-organic compounds -solar ponds.

#### UNIT V SOLAR PV SYSTEM

9 Hours

Photovoltaic cell – characteristics -maximum power- tracking-cell arrays-power electric circuits for output of solar panels--inverters-batteries-charge regulators, Construction concepts. Latest trends in PV systems, Life cycle analysis of solar energy system time value of money, evaluation of carbon credit of solar energy system.

Lecture =45 Hours	Tutorial = 0 Hours	Total = 45 Hours	

#### **TEXT BOOKS**

- DuffieJ.A and Beckman, W.A., "Solar Engineering of Thermal Processes", 2nd Edition, John Wiley& Sons Inc., Newyork, 1991
- 2. G.N. Tiwari."Solar Energy ; Fundamentals ,design,modelilg and applications "Third RePrint , Narosa Publishing House, New Delhi,2006

#### **REFERENCE BOOKS**

- 1. Edward E.Anderson, "Fundamentals for Solar Energy Conversion", Addison Wesley pubCO.,1983.
- 2. Fank Kreith, Jan F.Kreider, Principles of solar Engg", 1978.
- 3. Koushika M.D," Solar Energy Principles and Applications", IBT publications and distributors, 1988.

mapping of CO3 with 1 O3									
	P01	P02	P03	P04	PO5	P06	PO7		
CO1	3	3	2	2	3	2	3		
CO2	3	3	2	2	3	2	3		
CO3	3	3	2	2	3	2	3		
<b>CO4</b>	3	3	2	2	3	2	3		
CO5	3	3	2	2	3	2	3		
CO6	3	3	2	2	3	2	3		
Tot	18	18	12	12	18	12	18		

#### Mapping of COs with POs

1 - Low, 2 – Medium, 3- High

Semester		Ι						
Course N	ame	WIND, OC	EAN, HYDRO AND GEOTHERMAL ENER	GY SYSTEMS				
Course C	ode	YRE102						
L –T –P –	-C		C:P:A	L –T –P –H				
3-0-0-	3		3:0:0	3-0-0-3				
CO Number	CO STA	ATEMENT		Knowledge Level				
- (unito er								
CO1	Identify	the wind reso	urce assessment methods.	K3				
CO2	Develop	the wind flow	v models.	K3				
CO3	Select th	ne optimum de	sign for variable operations of wind turbine	K3				
CO4	Choose	the suitable si	te for the layout of wind farm.	К3				
CO5	<i>Identify</i> conversi	<i>Identify</i> the electrical and control systems for wind energy <b>K3</b> conversion.						
CO6	Categor	<i>ize</i> the ocea	n energy systems and geothermal energy	K4				
Objective	systems							
Objective	s							

#### • Understand and apply basic concepts of hydrogen energy and storage cells.

- ✤ Apply the concept of nuclear energy for power generation by optimizing the design and following safety norms.
- Understand the concept of nuclear waste management and use proper techniques for efficient management.

#### **COURSE CONTENT**

UNIT I	WIND RESOURCE AND ASSESSMENT	9 Hours
	Introduction - Modern Wind Turbines - Betz Constant, Limit -	Wind Resource -
	Wind vs. Traditional Generation – Technology Advancements –	- Material Usage –
	Wind Energy Penetration Levels – Applications.	-
	Wind Resource Assessment - Introduction - Characteristics of	of Steady Wind -
	Weibull Wind Speed Distribution Function – Vertical Profiles of	the steady Wind -
	Wind Rose - Energy Pattern Factor - Energy Content of th	ne Wind Resource
	Assessment.	
UNIT II	AERODYNAMICS	9 Hours
	Introduction – Aerofoil – Wind Flow Models – Axial Mon Momentum Theory for a Rotating Wake – Blade Element Theor Tip Losses – Tip Losses Correction – Drag Translator Device Characteristics.	mentum Theory – y – Strip Theory – e – Wind Machine
UNIT III	WIND TURBINE, SITING AND WIND FARM DESIGN	10 Hours
	Introduction – Classification of Wind Turbines – Turbine Co Turbine Design – Rotor Torque and Power – Optimum Design for – Influence of Reynolds Number – Cambered Aerofoils – Load Modelling – Power Control – Braking Systems – Turbine Blade des Wind Flow Modelling – Capacity Factor – Planning of Wind Farm Turbines – Ecological Indicators – Site Analysis – Methodology Farm – Initial Site Selection – Measure Correlate Predict (M Micrositing – Wake Models.	<ul> <li>mponents – Wind</li> <li>Variable Operation</li> <li>Calculation – Cost</li> <li>sign – Rotor Hub.</li> <li>n – Sitting of Wind</li> <li>– Layout of Wind</li> <li>MCP) Technique –</li> </ul>

UNIT IV	ECONOMICS, ELECTRICAL AND CONTROL SYSTEMS	9 Hours
	Cost Calculation – Annual Energy Output (AEO) –Capital I Depreciation – Life Cycle Costing – Environmental Impact - E Surface Water and Wetlands – Visual Impact – Sound Impact Impact. Classification of Generators – Synchronous Generators – Indu Variable Speed Generators – Control Systems – Power Collection of Wind Farms – Embedded Wind Generation.	Recovery Factor – Biological Impact – – Communication action Generator – Systems – Earthing
UNIT V	HYDRO, OCEAN AND GEOTHERMAL ENERGY SYSTEMS	8 Hours
Lecture = 45	Introduction-HydroEnergy-HydelPowerPlant-Performanceenergy -Tidal changes – Ecological changes – Types Tidal Power– Tidal Turbines – Tidal Power Generation - Ocean thermal(OTEC) - construction and operational problems – history of CAlternative energy technology - Problems and solutions - FDevelopments.A compulsory seminar / assignment on design / case study/analysisone of the Wind energy, Tidal and OTEC -Geothermal energy systeHoursTutorial = 0 HoursTotal = 45 Hours	evaluation, Wave – Energy from Sea energy conversion DTEC development Recent Trends and s /application in any ems.
TEXT BOOL		
<ol> <li>Siraj Ahm</li> <li>S.N.Bhadra</li> <li>Joshua Ear Pvt. Ltd., I</li> <li>J. F. Manw Applicatio</li> <li>E.L Wakil</li> <li>G. D Rai "1</li> </ol>	ed "Wind Energy Theory and Practice". June 2013. a, D.Kastha, S.Banerjee, "Wind Electrical Systems", Oxford Universit nest and Tore Wizelius, "Wind Power Plants and Project Developm New Delhi, 2011. /ell, J. G. McGowan and A. L. Rogers, "Wind Energy Explained – ' n", Wiley, 2009. "Power plant technology", McGrawGill Publishers, New York Non Conventional Energy sources" Khanna publishers. New Delhi	y,Press,2014. Ient", PHI Learning Theory, Design and
REFERENC	ES	
<ol> <li>Freris. L. L</li> <li>Earnest Jos 2015.</li> <li>Spera D. A ASME Pre</li> <li>Voker Qua</li> <li>Tony Burto WILEY &amp;</li> <li>S.Rao &amp; B</li> </ol>	", "Wind Energy Conversion Systems", Prentice Hall 1990. hua, "Wind Power Technology", Second edition, PHI Learning Pvt. 1 ., "Wind Turbine Technology: Fundamental Concepts of Wind Turbi ss, New York, 2009. ashning, "Understanding Renewable Energy Systems", Earthscan, Sec on, David Sharpe, Nick Jenkins, Ervin Bossanyi, "Wind Energy Hand SONS, LTD , Second Edition,2011. .B.Parulekar,"Energy Technology", 3rd edition,Khanna publishers,19	Ltd., New Delhi, ne Engineering", cond edition, 2016. book" JOHN 995.

#### Mapping of COs with POs

	P01	P02	P03	P04	PO5	PO6	P07
CO1	3	3	2	2	3	3	3
CO2	3	3	2	2	3	3	3

CO3	3	3	2	2	3	3	3
<b>CO4</b>	3	3	2	2	3	3	3
CO5	3	3	2	3	2	2	3
CO6	3	3	2	2	2	2	3
Tot	18	18	12	13	16	16	18

1 - Low, 2 - Medium, 3- High

Semest	er	Ι						
Course	Name	PROCESS N	MODELLING IN ENERGY SYSTEMS					
Course	Code	<b>YRE103</b>						
L –T –I	Р-С		C:P:A	L –T –P –H				
3 - 0 - 0	0-3		3:0:0	3-0-0-3				
CO	CO STA	TEMENT		Knowledge Level				
Numb								
er								
CO1	Solve pr	oblems related	to modelling	K3				
CO2	Solve p	roblems relate	d to different types of models such as lumped,	K3				
	distribut	ed models and	steady, dynamic state models					
CO3	Solve pr	oblems related	to various systems involving variety of elements.	K3				
CO4	Solve pr	oblems related	to model building	K3				
CO5	Solve pr	oblems using n	umerical methods	K3				
CO6	Solve pr	oblems related	to differential equation and finite element method	K3				
Objecti	ves							
*	To under	stand different	types of models, systems and its elements					
*	To solve	different types	of modelling related problems					
*	To solve	problems relate	ed to model building					
*	To solve	problems relate	ed to numerical methods and finite element method.					
COURS	SE CONI	TENT						
UNIT	I MO	DELLING		7 Hours				
	Intr	oduction to mo	delling, a systematic approach to model building,	classification of models.				
	Мо	delling Techni	ques-Response function and Numerical methods-	Conservation principles,				
	the	modynamic pr	inciples of process systems					
UNIT I	I MO	DDELS, SYST	11 Hours					
	Intr	Introduction to development of steady state and dynamic lumped and distributed parameters						
	mo	models based on first principles, Analysis of ill-conditioned systems, Block diagrams and						
	con	nputer simulati	on, Modelling of process elements consisting of N	Iechanical (translational				
	and	rotational) e	ectro- Mechanical, fluid flow, thermal and ch	emical reaction system				
	elei	nents.		0.11				
UNITI		DEL DEVEL	OPMENT	9 Hours				
	Dev	recomment of g	rey box models. Empirical model building. Stati	stical model calibration				
	and validation. Population balance models. Examples.							
	<b>T</b> 7 <b>D</b> 7 <b>T</b> 7	MEDICAL						
UNIT I	V NU	MERICAL M	ETHODS	9 Hours				
UNIT I	V NU Rui	MERICAL M	ETHODS nods for system of IVPs, numerical stability, Ada	9 Hours ums-Bashforth multistep				
UNIT I	V NU Run met	MERICAL M nge Kutta Meth hod, solution o	<b>ETHODS</b> nods for system of IVPs, numerical stability, Ada of stiff ODEs, shooting method, BVP: Finite differe	9 Hours ums-Bashforth multistep ence method, orthogonal				
UNIT I	V NU Run met coll	MERICAL M nge Kutta Met hod, solution c ocation metho	<b>ETHODS</b> nods for system of IVPs, numerical stability, Ada of stiff ODEs, shooting method, BVP: Finite different od, orthogonal collocation with finite element in	<b>9 Hours</b> Ims-Bashforth multistep ence method, orthogonal method, Galerkin finite				
	V NU Run met coll eler	MERICAL M nge Kutta Met hod, solution o ocation method.	<b>ETHODS</b> nods for system of IVPs, numerical stability, Ada of stiff ODEs, shooting method, BVP: Finite different od, orthogonal collocation with finite element r	9 Hours ms-Bashforth multistep ence method, orthogonal nethod, Galerkin finite				
UNIT I	V NU Run coll eler V DII	MERICAL M nge Kutta Meth hod, solution of ocation method. FERENTIAL	ETHODS nods for system of IVPs, numerical stability, Ada of stiff ODEs, shooting method, BVP: Finite different od, orthogonal collocation with finite element of EQUATIONS AND FINITE ELEMENT	9 Hours ms-Bashforth multistep ence method, orthogonal nethod, Galerkin finite 9 Hours				

Parabolic equations: explicit and implicit finite difference methods, weighted average approximation - Dirichlet and Neumann conditions – Two dimensional parabolic equations – ADI method; First order hyperbolic equations – method of characteristics, different explicit and implicit methods; Wave equation: Explicit scheme- Stability of above schemes.

Lecture = 45 HoursTutorial = 0 HoursTotal = 45 HoursTEXT BOOKS

- 1. K.M. Hangos and I.T Cameron," Process Modelling and Model analysis".academic Press 2001.
- 1. W. L. Luyben, "Process Modelling, Simulation and control for Chemical Engineers" 2nd Edn, McGraw Hill Book Co, New York,2013
- 2. W.F. Ramirez "Computational Methods for Process Simulation", 2nd Edition, Butterworths, 1997
- 3. Burden, R.L., and Faires, J.D., "Numerical Analysis Theory and Applications", Cengage Learning, India Edition, New Delhi, 2009.
- 4. Morton K.W. and Mayers D.F., "Numerical solution of partial differential equations", Cambridge University press, Cambridge, 2002.

#### REFERENCES

- 1. Mark E. Davis," Numerical Methods and Modelling for Chemical Engineers" John Wiley & amp; Sons, 1984.
- 2. Singiresu S. Rao "Applied Numerical Methods for Engineers and Scientists" Prentice Hall, Upper saddle River, NJ 2001
- Francis Vanek, Louis D. Albright," Energy systems Engineering" McGraw-Hill book Company, N.Y 2008
- 4. Saumyen Guha and Rajesh Srivastava, "Numerical methods for Engineering and Science", Oxford Higher Education, New Delhi, 2010.

	P01	P02	P03	P04	P05	P06	P07
CO1	3	3	2	2	3	2	3
CO2	3	3	2	2	3	2	3
CO3	3	3	2	2	3	2	3
CO4	3	3	2	2	3	2	3
CO5	3	3	2	2	3	2	3
CO6	3	3	2	2	3	2	3
Tot	18	18	12	12	18	12	18

#### Mapping of COs with POs

1 - Low, 2 - Medium, 3- High

Semester		Ι					
Subject N	Name	SOLAR ENERGY LABORA	TORY				
Subject C	Code	YRE106					
L –T –P –	-C	C:P:A	L –T –P –H				
0-0-2-	2	0:1:0	0-0-2-4				
Course O	utcome		Domain/Level				
			C or P or A				
CO1	identify	the performance of various solar	collectors.	P3			
CO2	<i>identify</i> dryer, co	the performance of various solatoker and solar PV panels.	ar gadgets like air	Р3			
CO3	<i>Experin</i> Solar P	<i>nent</i> the Charging characteristics <i>V</i> panel and various effects on it.	of a battery using	Р3			
CO4	<i>identify</i> also sola	the direct normal, global horizon ar tracking accuracy using solar e	ntal irradiance and energy gadgets.	P3			
CO5	<i>Optimize</i> the flow rate for maximum heat absorption <b>P3</b> using various samples						
CO6	Simulate PV cell using Matlab / Simulink software. P3						

#### **Objectives**

- Study the performance of solar thermal energy applications flat plate and concentric type collectors.
- Study the performance solar photovoltaic (PV) panels at different combinations and conditions.
- Study and Optimize the performance of various Solar energy gadgets.
- Model the Solar PV cell using software.

#### **COURSE CONTENT**

LIST OF	EXPERIMENTS	CO
1.	Performance evaluation of solar flat plate collector	1
2.	Performance evaluation of concentrating solar collector	1
3.	Performance evaluation of solar box cooker	2
4.	Performance evaluation air dryer	2
5.	Performance evaluation of a solar PV panel in series and parallel combination	2
6.	Charging characteristics of a battery using PV panel	3
7.	Effect of tilt angle and Effect of shadow on solar PV panel	3
8.	Solar Energy Measurements - Pyrheliometer	4
9.	Solar Energy Measurements - Pyranometer	4
10.	Parabolic Trough -Flow Rate	4
11.	External Compound Parabolic Collector (XCPC) - Oil and Water	5

12.	Mathematical	modeling	of	photovoltaic	cell/module/arrays	with	tags	in	6
	Matlab /Simul	ink							

#### **TOTAL HOURS - 30**

#### **TEXT BOOKS**

- 1. DuffieJ.A and Beckman, W.A., "Solar Engineering of Thermal Processes", 2nd Edition, John Wiley& Sons Inc., Newyork, 1991
- 2. G.N. Tiwari."Solar Energy ; Fundamentals ,design,modelling and applications "Third RePrint , Narosa Publishing House, New Delhi,2006

#### REFERENCES

- 1. Edward E.Anderson, "Fundamentals for Solar Energy Conversion", Addison Wesley pub CO., 1983.
- 2. Fank Kreith, Jan F.Kreider, Principles of solar Engg", 1978.
- 3. Koushika M.D," Solar Energy Principles and Applications", IBT publications and distributors, 1988.
- 4. Kaushik S.C, Tiwari G. N and Nayak J.K, "Thermal control in passive solar buildings" .IBT Publishers & Distributors, 1988.

	P01	P02	P03	P04	PO5	P06	P07
CO1	2	3	3	1	2	2	3
CO2	2	3	3	1	2	2	3
CO3	2	3	3	1	2	2	3
CO4	2	3	3	1	2	2	3
CO5	2	3	3	1	2	2	3
CO6	2	3	3	1	2	2	3
Tot	12	18	18	6	12	12	18

#### Mapping of COs with POs

COURSE	COURSE NAME			L	Т	P	C
CODE VPM107	DESEADCH METHODOLO	CV AND IDI	>	2		<u> </u>	
After completion	of the course a student will be at	le to		4	U	U	4
1. Identify	and formulate a research problem.	collect data. ic	lentify re	searc	h gan	for th	ne
identifie	l problem	concer duiu, n	ionitry rea	seure	n gup	101 11	
2. Able to c	onsolidate literature survey and pr	ovide inferenc	e on own	wor	ds		
3. Describe	Patents, Designs, Trade and Copy	right					
4. Appraise	, discuss and categorize Patent Rig	hts					
5. Identify	and describe new developments in	IPR					
UNIT I							6
Meaning of rese	arch problem, Sources of research	problem, Crite	eria-Char	acter	istics	of a g	jood
research problem	n, Errors in selecting a research p	problem, Scop	e and ob	jectiv	ves of	resea	arch
problem. Appro	aches of investigation of solutio	ns for researc	h proble	m, c	lata c	ollect	ion,
analysis, interpr	station, Necessary instrumentation	5					
UNIT II							6
Effective litera	ure studies approaches, analysis	s Plagiarism,	Research	h etl	hics,	Effec	tive
technical writin	g, how to write report, Paper De	veloping a Re	esearch P	ropo	sal, F	forma	t of
research propos	il, a presentation and assessment b	y a review con	amittee.				
			• 1 · T		C		6
Nature of Intelle	ctual Property: Patents, Designs,	Irade and Co	pyright. F	roce	ss of	Paten	ting
and Developme	it: technological research, innovation of lastice	10n, patenting	, develop	omen	t. Inte	ernatio	onal
Detenting under		Property. Pro	cedure 10	or gra	ants o	i pate	ms,
							6
Patent Rights	Scope of Patent Rights Licen	sing and tran	sfer of	tech		v Pa	tent
information and	databases Geographical Indication		5101 01	teem	10105	y. 1a	tent
UNIT V	autouses. Geographical malearier	10.					6
New Developme	ents in IPR: Administration of Pate	nt System. Ne	w develo	ome	nts in	IPR:	IPR
of Biological Sy	stems, Computer Software etc. Tra	aditional know	ledge Ca	se St	udies	, IPR	and
IITs.	, I		U			·	
		LECTURE	TUTC	RIA	<b>L</b> [	ΓΟΤΑ	۱L
		30	0		3	30	
REFERENCES	)						
1. Stuart M	elville and Wayne Goddard, "Re	esearch metho	odology:	an ii	ntrodu	iction	for
science d	t engineering students"						
2. Wayne C	oddard and Stuart Melville, "Rese	arch Methodo	logy: An	Intro	oducti	on"	
3. Ranjit K	umar, 2nd Edition, "Research N	fethodology:	A Step	by S	tep (	Guide	for
beginner	5"			<b>-</b>			
4. Halbert,	"Resisting Intellectual Property", 7	aylor & Fran	2, 21s Ltd	007.			
$\begin{array}{c} \textbf{5.}  \text{Mayall,} \\ \textbf{6.}  \textbf{1.}  \textbf{1.}  \textbf{1.} \\ \end{array}$	Industrial Design", McGraw Hill,	1992.					
b. Niebel,	"Introduction to Design", McGraw Hill, 19	$\frac{1}{10}$					
7. Asimov,	Introduction to Design [*] , Prentice	пан, 1962.	Intalla at	al D	0.000		Ja
8. Kobert H	. Merges, Peter S. Menell, Mark	A. Lemiey,	interiectu	ai Pr	opert	y in f	New

Technological Age", 2016. 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

#### **CO Vs PO Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>
CO1				1	3	3	3
CO2				1	3	3	3
CO3				1	3	3	3
CO4				1	3	3	3
CO5				3	3	3	3

COURSE	COURSE NA	AME			L	Τ	P	C
CODE								
YEGOE1	ENGLISH	FOR	RESEARCH	PAPER	2	0	0	0
	WRITING							
UNIT I								6
Planning and Prep	paration, Word	Order, br	eaking up long se	ntences, Str	uctur	ing P	aragra	phs
and Sentences, H	Being Concise	and Ren	moving Redundar	ncy, Avoidi	ng A	Ambig	guity	and
vagueness								
UNIT II								6
Clarifying Who	Did What, I	Highlighti	ng Your Findin	gs, Hedgin	g ai	nd C	riticiz	ing,
Paraphrasing and I	Plagiarism, Sec	tions of a	Paper, Abstracts. I	ntroduction				
UNIT III								6
Review of the Lite	erature, Method	s, Results	, Discussion, Conc	lusions, The	e Fina	al Che	eck.	
UNIT IV								6
key skills are need	ded when writi	ng a Title	e, key skills are ne	eded when	writi	ng an	Abst	ract,
key skills are need	led when writin	ng an Intr	oduction, skills ne	eded when	writi	ng a F	Review	v of
the Literature,						_		
UNIT V								6
Skills are needed v	when writing th	e Method	s, skills needed wh	en writing t	he Re	esults,	skills	are
needed when writing the Discussion, skills are needed when writing the Conclusions. useful							eful	
phrases, how to ensure paper is as good as it could possibly be the first- time submission								
			LECTU	RE   TUT(	DRIA	L	ΓΟΤΑ	۱L
			30	0			30	
REFERENCES								
		~ ~ ·					~ 1	

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

#### **CO Vs PO Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>
CO1			3	1	3	2	2
CO2			3	1	2	3	3
CO3			3	1	2	3	3
CO4			3	1	3	3	3
CO5			3	3	2	3	3

Semester		Ι				
Course Na	ame	Process Mo	delling and Simulatior	n Laboratory		
Course C	ode	<b>YRE109</b>				
L –T –P –	-C		C:P:A		L –T –P –H	
0-0-2-	2		0:1:0		0-0-2-4	
СО	COS	STATEMEN'	Г		Knowledge Level	
Number						
CO1	Code	root-finding	algorithms		K6	
CO2	Code	integration a	lgorithms		K6	
CO3	Simu	late Continuo	ously Stirred Tank Rea	ictor	К3	
	(CST	R) under grav	vity conditions			
CO4	Simu	late Continu	ously Stirred Tank	Reactor	K3	
	(CST	R) under 3I	D isothermal (open lo	op and		
	close	$\frac{d \log p}{d \log p}$ condi	tions	(CCTD) and a	V2	
005	3D is	othermal and	nonisothermal condition	ns	K)	
CO6	Simu	<i>late</i> an inhous	e biomass energy relate	d problem.	К3	
LABORA	TORY	Y EXERCIS	ES			
1. Iterative	e bubb	le point calcu	lation using "Newton-R	aphson" optimization	algorithm.	
2. Iterative	e bubb	le point calcu	lation using "interval-ha	lving" algorithm.	C	
3. First-or	der exp	plicit Euler in	tegration of a given fund	ction.		
4. Runge-l	kutta ii	ntegration alg	orithm of a given functi	on.		
5.Simulati	on of (	Gravity-flow	tank simulation			
6.Simulati	on of 7	Three-isother	mal CSTR (Open loop)			
7. Simulat	ion of	Three-isother	mal CSTR (closed loop	)		
8. Simulat	ion of	nonisotherma	l CSTR (Open loop)			
9. Simulat	ion of	Root locus pr	ogram for three-CSTR	process.		
10.Study of	of bion	nass gasificati	on plant			
11. Prepar	ation o	of Process mo	delling system for biom	ass gasification plant		
12. Simula	ation o	of Process mo	delling system for biom	ass gasification plan	t under varying load	
conditions						
Lecture =	0 Hou	urs	<b>Tutorial = 0 Hours</b>	Practical =30 Ho	urs Total = 30	
Hours						
REFERE	NCES					
1.W. L L	uyben,	"Process M	odelling, Simulation an	d control for chemic	cal Engineers" 2 nd	
Edn,						

McGraw Hill Book Co, New York, 1990

## Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>
CO1	3	3	3	1	0	2	2
CO2	3	3	3	1	0	2	2
CO3	3	3	3	1	0	2	2
CO4	3	3	3	1		2	2
CO5	3	3	3	1	0	2	2
CO6	3	3	3	1	0	2	2
Total	18	18	18	6	0	12	12

Semest	ter	II					
Demes							
Course	e Name	BIO ENER	GY SYSTEMS				
Course	Course Code YRE201						
L –T –	P-C		C:P:A	L – T – P – H			
3-0-	0-3		3:0:0	3-0-0-3			
CO	CO STA	TEMENT		Knowledge Level			
CO1	Identify	different Bi	ofuel types and explain their	K3			
	propertie	es					
CO2	Summar	rize the Gove	rnment Policies and status	K3			
	of bio fu	el in India.					
CO3	Categor	ize Biomass	types and explain their	K4			
	propertie	es and applica	ations				
CO4	Develop	bioenergy c	onversion through biochemical	K3			
	route.						
CO5	Develop	bioenergy co	onversion through thermochemical route.	K3			
CO6	Plan to	improve the	thermal efficiency by designing suitable	K3			
	systems	for heat recov	very and co-generation				
Object	tives						
*	Describe	the fundament	ntals of biofuel types and their generations.				
*	Identify t	he sources an	d definitions used for biomass and basic bior	nass conversion.			
*	Clearly	define the	extent of bioenergy use worldwide and	the incentives or			
	disincenti	ives for use in	ı India.				

- ✤ Detail the digestion and fermentation Technologies in biogas plants.
- ✤ Detail the combustion and Gasification Technologies in common use.
- Describe the power generation scenario, the layout components of power plant and analyze Cogeneration cycle.

### **COURSE CONTENT**

UNIT I	BIO FULES	9 Hours
	Bio fuels: types, Properties and sources- Bio fuels first, generation production processes and technologies- Bio diesel	second and third comparison with
	diesel - Biofuel applications – Bio diesel and Ethanol as a fuel for Relevance with Indian Economy - Bio-based Chemicals Commercial and Industrial Products - Govt. Policy and S technologies in India.	and Materials - tatus of Bio-fuel
UNIT II	CHARACTERISATION OF BIOMASS	9 Hours
	Biomass: Sources and Classification. – Properties - Energy Preparation of biomass. Size reduction- Briquetting of loose storage and handling of biomass. Conversion of biomass. Biom liquid and gaseous fuel production. Effect of particle size products obtained – Processing of various biomass for gas products	ergy plantation - biomass - Drying, ass processing for , temperature, on action for Thermal

	and Electrical application.	
UNIT III	BIOGAS TECHNLOGY	9 Hours
	Feed stock for biogas production, animal residues, Aqueous biodegradable organic matter- Microbial and biochemical as operating parameters for biogas production- Kinetics and mecha fermentation. Digesters-types-digesters for rural application – I for industrial waste water treatment	wastes containing pects- factors and anism-Dry and wet High rate digesters
UNIT IV	GASIFICATION OF BIOMASS	9 Hours
	Thermo chemical Principles: Effect of pressure, temperature steam and oxygen. Design and operation of fixed and fluid circulating fluidized bed gasifiers, Safety aspects, operating moving bed and fluidized bed gasifier- different type disadvantages- performance analysis of gasifiers.	e and introducing, ized bed Gasifier, characteristics of s- advantages and
UNIT V	COMBUSTION OF BIOMASS & COGENERATION SYSTEMS	9 Hours
	Combustion of woody biomass – theory, calculations and des Cogeneration in biomass processing industries. – Econom Combustion of rice husk. Use of bagasse for cogeneration.	ign of equipment, nic Case studies:
Lecture =4	5 Hours Tutorial = 0 Hours Total = 45 I	Hours
TEXT BO	OKS	

- 1. Chakraverthy A, "Biotechnology and Alternative Technologies for Utilisation of Biomass or Agricultural Wastes", Oxford & IBH publishing Co, 1989.
- Mittal K.M "Biogas Systems: "Principles and Applications" New age international publishers (P) Ltd 1996, Nijaguna, B.T Biogas Technology, New age International publishers (P) Ltd

#### **REFERENCE BOOKS**

- 1. Venkata Ramana P and Srinivas S.N, "Biomass Energy Systems", ISBN 81-85419-25-6, Tata Energy Research Institute, 1996.
- 2. Klass D.L and Emert G.M, "Fuels from Biomass and Wastes", Ann Arbor Since Publ. Inc. Michigan, 1985.
- 3. O.P.Chawla, "Advances in Bio-gas Technology" I.C.A.R., New Delhi, 1970.

### Mapping of COs with POs

	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	1	2	1	2	1
CO2	2	1	1	3	3	3	3
CO3	2	2	2	1	2	1	3
<b>CO4</b>	2	2	2	1	2	1	3
CO5	2	2	2	1	2	1	3
<b>CO6</b>	3	3	2	1	3	2	2
Total	14	12	10	9	13	10	15

#### **YRE 202 - COMPUTATIONAL FLUID DYNAMICS**

#### **UNIT - I GOVERNING DIFFERENTIAL EQUATION AND FINITE DIFFERENCE METHOD**

Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerical Errors, Grid Independence Test.

#### **UNIT - II CONDUCTION HEAT TRANSFER**

Steady one-dimensional conduction, Two and Three-dimensional steady state problems, Transient one-dimensional problem, Two-dimensional Transient Problems.

#### **UNIT - III INCOMPRESSIBLE FLUID FLOW**

Governing Equations, Stream Function - Vorticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and Spalding, Computation of Boundary layer flow, Finite deference approach.

#### **UNIT - IV CONVECTION HEAT TRANSFER AND FEM**

Steady One-Dimensional and Two-Dimensional Convection - Diffusion, Unsteady onedimensional convection -Diffusion, Unsteady two-dimensional convection - Diffusion -Introduction to finite element method - Solution of steady heat conduction by FEM -Incompressible flow - Simulation by FEM.

#### **UNIT - V TURBULENCE MODELS**

Algebraic Models - One equation model, K-I Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes.

#### **TEXT BOOK**

1. Anderson ,D.A Tannehill, I I and Pletcher , R,H "Computational Fluid Mechanics and Heat transfer" Narosa Publication House, NewYork, USA, 1984

#### **REFERENCES:**

- 1. Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa PublishingHouse ,New Delhi1995.
- 2. Ghoshdasdidar, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw-Hill PublishingCompany Ltd., 1998.
- 3. Anderson, D.A., Tannehill, I.I., and Pletcher, R.H., "Computational Fluid Mechanics and Heat Transfer", Hemishphere Publishing Corporation, New York, USA, 1984.
- 4. Flectcher, C.A.J., "Computational Techniques for Different Flow Categories, Springer-Verlage 1987.

8

7

10

#### 10

L:45; T:15; Total :60

10

#### 3003

Semes	ster		II			
Cours	se Name	e	ELECTRICA	AL ENERGY TECHNOLOGY		
Cours	e Code		YRE203			
	L –	Г –Р	-С	C:P:A	L	-Т -Р -Н
	3- (	0-0-	- 3	3:0:0	3	6-0-0-3
Cours	e Outco	ome			Do	main/Level
					С	or P or A
CO1	Demo	nstra	<i>tte</i> the power s	ystem and its fundamentals.	K	2
CO2	Illustr	ate	the various ele	ectric energy conversion devices	K	2
	and its	s app	lications.			
CO3	Classi	fy va	arious Solid-sta	ate Power Converters and drives	K	2
CO4	and its	s imp nstra	ortance.	us Hybrid Power generation		
	metho	ds ai	nd its important	ce.	K	2
CO5	Demo	nstra	<i>te</i> the variou	s Smart grid systems and its	V	2
	import	tance	2.		К	2
CO6	Relate	var	ious Power qua	ality improvements methods and	K	2
The o	hiective	e of t	his course			
*	To lea	rn al	out work vario	ous power system components.		
*	To lea	rn al	out application	of various electric energy convers	sion devi	ces
	To clar	ccifv	about various	Power converters and drives		
		3511 y	about various	a methodo of hybrid norman conce		d
···	improv	veme	and the variou	is methods of hybrid power gener	ation an	a power quanty
COUR	RSE CC	)NT	FNT			
			ETTI VED SVSTEM			7 HPS
		mpro	e line repres	entation – power flow study	– pov trical co	ver factor
	a	.sym	metrical compo	onents, Introduction: Hybrid powe	er system	n. HVDC -
	iı	ntroc	luction, various	s coupling methods.		
UNIT	UNIT IIELECTRIC ENERGY CONVERSION DEVICES9 HRS					
	Т	rans	formers – F	Parallel operation, auto transfo	ormers,	DC machines,
	A	Appli	cations of I	DC machines – performance	equatio	n - generator
		nara altei	mators – Induc	tion machines.	1 Synchi	onous machines
UNIT	III S	SOL	<b>ID-STATE PC</b>	WER CONVERTERS AND DR	IVES	9 HRS
	C	Contr	olled rectifier	s, choppers, inverters, voltage	regulato	rs and cyclo -
	с	onve	erters.		C	2
	Speed control of dc motors and ac motors – converter fed chopper –fed contro					

	Inverter –ac voltage regulators, VFD.	
UNIT IV	HYBRID POWER GENERATION	6 HRS
	Types of hybrid systems, Integration issues - Steady state per Wind-driven induction generators. Grid connected solar photo ver line commutated converters - Boost converters- selection of it phase AC voltage controllers for wind power plants - uncontro PWM Inverters, Grid Interactive Inverters-matrix converters.	erformance of oltaic system - nverter. Three illed rectifiers,
UNIT V	SMART GRIDS	3 HRS
	Micro Grids, Intelligent Grids, Smart grids, Phase Monitoring	Unit (PMU),
	Case studies	
UNIT V	POWER QUALITY IMPROVEMENT	11 HRS
Lecture = 4	Introduction – Characterisation of Power Quality, impacts, Type filters: passive, Active and hybrid filters. Custom power of compensation using STATCOM / DSTATCOM, Voltage regulati FACT controlled devices, DVR. UPQC control strategies, UPF Status of application of custom power devices. IS hrs Tutorial = 0 hrs Practical=0 hrs Total = 45 hrs	s of Harmonic devices: Load ion. C, P-Q theory,
TEXT BO	OKS	

1. John J Graigner and W.D Stevenson "Power system analysis" McGrawHill publishinig company, 1994.

- 2. T.JE. Miller "FACT controlled device" Johan willey Publications.
- 3. M.H.Rasheed "Power Electronics" Tata Mc Graw Hill.
- 4. Arindam Ghosh "Power Quality Enhancement Using Custom Power Devices", kluwer Academic Publishers, 2002.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	3	3	2	1	3
CO2	3	2	3	2	2	1	2
CO3	3	2	3	2	2	1	2
CO4	3	2	3	3	2	1	3
CO5	3	1	3	3	2	1	3
CO6	3	3	3	2	2	1	2
Total	18	12	18	15	12	6	15

#### Mapping of COs with PO

Semest	er	II						
Course	e Name	Computatio	onal Fluid Dynamics Laboratory					
Course	ourse Code YRE206							
L –T –	Р-С		C:P:A	L –T –P –H				
0-0-	2-2		1:0:0	0-0-2-4				
СО	CO STA	TEMENT		Knowledge Level				
CO1	Simulate	e lid-driven ca	wity and convection process	К3				
CO2	Simulate	e incompressi	ble laminar fluid flow	K3				
	problem	s in pipe						
CO3	Simulate	e incompress	ible turbulent fluid flow	К3				
CO4	Simulate	wind turbin	e models in compressible fluid	К3				
	flow env	vironment	•					
CO5	Simulate	e draining tan	k, falling ball experiments and CSTR.	К3				
CO6	Explain	various co	nvection aspects of Renewable Energy	К3				
	systems.	monta						
1	<u>List of E</u>	<u>xperiments</u>						
1.	Simulatio		in cavity.					
2.	Simulatio	on of heat con	vection for 3D radiator.					
3.	Incompre	essible lamina	r fluid flow simulation in elbow pipe.					
4.	Incompre	essible lamina	r fluid flow simulation in T-shaped pipe.					
5.	Incompre	essible turbule	ent fluid flow simulation in elbow pipe.					
6.	Incompre	essible turbule	ent fluid flow simulation in T-shaped pipe.					
7.	Wind Tu	rbine simulati	on.					
8.	Draining	of a 3D fluid	filled tank.					
9.	Falling ba	all experimen	tal simulation.					
10.	Simulatio	on of 3D CST	R.					
11.	Study of	Natural conve	ection in Renewable energy systems.					
12.	Study of	forced conveo	ction in Renewable Energy systems.					
Lectur	e = 0 Hou	ırs Tutori	al = 0 Hours Practical =30 Hours					
Total = 45 Hours								
REFE	RENCES							
1.	https://cfo	d-training.cor	n/2018/08/12/turbulent-flow-in-a-90-bend/					
2.	https://ww	ww.openfoam	.com/documentation/tutorial-guide/					

## Mapping of COs with PO

	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>
CO1	3	3	2	2	3	1	1
CO2	3	3	2	2	3	1	1
<b>CO3</b>	3	3	2	2	3	1	1
CO4	3	3	2	2	3	1	1
CO5	3	3	2	2	3	1	1
CO6	3	3	2	2	3	1	1
Total	18	18	12	12	18	6	6

1 - Low, 2 – Medium, 3- High

Semester	I			
Subject Nam	e BIO ENERGY LABORATORY			
Subject Code	e YRE207			
L –T –P –C	C:P:A	L –T –P –H		
0-0-2-2	0:1:0	0-0-2-4		
Course Outc	ome	Domain/Level		
		C or P or A		
CO1 CO2	Calibratethe performance of Flue gas analysis andproperties of given sample.P3identify the chemical, Biological oxygen demand andP3			
CO3	<i>identify</i> the Effect $P_H$ levels on total dissolved solids	P3		
<b>CO4</b>	<i>identify</i> effect of milling time and particle size.	P3		
CO5	<i>identify</i> High Heating Value of given sample.	P3		
CO6	<i>Demonstrate</i> the operations in briquetting, biomass gasifier and biomethanation plant.	Р3		
Objectives				
<ul><li>Study</li></ul>	the performance of Flue gas analysis			

Study the performance Bio fuels Flash point, Fire point and Calorific value

## **COURSE CONTENT**

CO Relat	CO Relation							
LIST OF	' EXPERIMENTS	СО						
1.	Flue gas analysis – IC engine and gasifier	1						
2.	Determine the Density and Specific Gravity of a given sample	1						

3.	Proximate and Ultimate analysis of given sample	1
4.	Analysis of chemical oxygen demand (COD)	2
5.	Analysis of biological oxygen demand (BOD)	2
6.	Determining the Flash point, Fire point and Calorific value of Biofuel	2
7.	Effect of P _H on total dissolved solids (TDS)	3
8.	Determine the effect of milling time on the Particle size and size reduction of given sample using Ball milling machine	4
9.	Determine the higher heating value (HHV) of unleaded gasoline (or a similar fuel supplied by the instructor) using the adiabatic oxygen bomb calorimeter.	5
10.	Briquetting operation demonstration and study	6
11.	Biomethanation plant demonstration and study	6
12.	2kW Biomass gasifier demonstration and study	6

#### **TOTAL HOURS - 30**

#### **TEXT BOOKS**

- 1. Chakraverthy A, "Biotechnology and Alternative Technologies for Utilisation of Biomass or Agricultural Wastes", Oxford & IBH publishing Co, 1989.
- 2. Mittal K.M "Biogas Systems: "Principles and Applications" New age international publishers (P) Ltd 1996, Nijaguna, B.T Biogas Technology, New age international publishers (P) Ltd

#### REFERENCES

1. Venkata Ramana P and Srinivas S.N, "Biomass Energy Systems", ISBN 81-85419-25-6, Tata Energy Research Institute, 1996.

2. Klass D.L and Emert G.M, "Fuels from Biomass and Wastes", Ann Arbor Since Publ. Inc. Michigan, 1985.

3. O.P.Chawla, "Advances in Bio-gas Technology" I.C.A.R., New Delhi, 1970.

	P01	P02	P03	P04	P05	P06	P07		
CO1	3	1	3	3	1	2	1		
CO2	3	3	2	2	1	2	1		
CO3	3	3	2	2	1	2	1		
CO4	3	3	3	3	1	2	3		
CO5	3	2	3	3	1	2	1		
CO6	3	3	2	2	1	2	1		
Tot	18	15	15	15	6	12	8		

#### Mapping of COs with POs

COURSE	COURSE NAME		 	L	Т	P	C
CODE							
YPSOE1	CONSTITUTION OF INDIA	L		2	0	0	0
UNIT I HISTORY AND PHIOLOSOPHY						6	
History of Making	g of the Indian Constitution: Hist	ory-Drafting C	Committe	e, (C	ompo	ositio	n &
Working) Philosop	phy of the Indian Constitution: Pr	eamble-Salient	t Feature	S			
<b>UNIT II CONTO</b>	URS OF CONSTITUTIONAL	<b>RIGHTS &amp; D</b>	<b>UTIES</b> :	:			6
Fundamental Righ	ts -Right to Equality-Right to Free	eedom-Right a	gainst Ex	<b>kploit</b>	ation	-Rigl	it to
Freedom of Relig	gion-Cultural and Educational F	Rights-Right to	o Constit	tutior	ial R	emec	lies-
Directive Principle	es of State Policy-Fundamental D	uties.					
UNIT III ORGA	NS OF GOVERNANCE:						6
Parliament-Compo	osition-Qualifications and Di	squalifications	-Powers	and	1 F	uncti	ons-
<b>Executive-Preside</b>	nt-Governor-Council of Minister	s-Judiciary, A	ppointme	ent ar	ıd Tr	ansfe	r of
Judges, Qualificat	ions-Powers and Functions						
UNIT IV LOCAI	<b>L</b> ADMINISTRATION						6
District's Adminis	stration head: Role and Importa	nce, -Municipa	alities: Ir	ntrod	uctio	n, Ma	ayor
and role of Ele	cted Representative, CEO of	Municipal C	orporatio	on. F	Pacha	yati	raj:
Introduction, PRI	: Zila Pachayat. Elected officia	ils and their i	oles, Cl	EO Z	Zila I	Pacha	yat:
Position and role	. Block level: Organizational H	ierarchy (Diffe	erent dep	partm	ents)	, Vil	lage
level: Role of Elec	ted and Appointed officials, Imp	ortance of gras	s root de	mocr	acy		
UNIT V ELECT	ION COMMISSION:						6
Election Commiss	sion: Role and FunctioningCh	nief Election C	Commiss	ioner	and	Elec	tion
Commissioners. S	tate Election Commission: Role	and Functionin	ng. Instit	ute a	nd B	odies	for
the welfare of SC/ST/OBC and women.							
LECTURE TUTORIAL TOTAL							۱L
	30 0 30						
REFERENCES							
1. The Constitution of India, 1950 (Bare Act), Government Publication.							

2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.

3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.

4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

#### **CO Vs PO Mapping**

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>
CO1				3		1	1
CO2				3		1	1
CO3				3		1	1
CO4				3		1	1
CO5				3		1	1

Semester		III				
Course Na						
Course C	Course Code YRE301					
L –T –P –	C		C:P:A	L –T –P –H		
0 - 0 - 10 -	- 10		2:0.5:0.5	0-0-20-20		
CO Number	СО	STATEMENT		Knowledge Level		
CO1	<i>Identify</i> an open ended problem in the area of renewable energy which requires further investigation –(Identification of relevant K3 project title)					
CO2	Descr probl	К3				
CO3	Selec differ	<i>t</i> the optimal model of rent solutions.	f the project work from the proposed	К3		
CO4	Desig techn	n the project model w ical drawings with det	vith relevant detailed subassemblies and tailed action plan for implementation.	К3		
CO5	<i>Ident</i> proje	<i>ify</i> the methods and m ct work	naterials required for manufacturing the	K3		
CO6	Prepa devel	<i>are</i> a consolidated tech oping a presentation	nnical report of the project apart from	K3		
Objective	c					

To collect various literatures in the research interest area, study, understand the works already prevailing in the interested project work area.

- To get the knowledge about various elements of research works, various methods in proceeding the project work and selecting suitable one with action plan
- Understand and able to apply the basics concepts of design in the role of making the project into reality.
- ✤ To prepare a project report and presentation with the collected data ,with available details

#### LOOK INTO THE FOLLOWING DETAILS TO MEET THE OUTCOMES IDENTIFICATION OF PROJECT WORK AREA

Overview of various renewable energy topics for performance improvement, optimality, etc. Hydropower systems-Wind energy systems, Solar energy systems, and other systems about Project Feasibility-Literature review collections

### SELECTION OF RELEVANT PROJECT TITLE

Based on the detailed literature review, Identification of gap area and formulation of suitable project title

# DESIGN THE PROJECT WORK MODEL WITH DETAILED DRAWINGS / CHARECTERIZATION METHODS

Design the project model with its assemblies into sketches /technical drawings with dimensions with CAD tools. For performance and analysis characterization projects, needs to identify the characterization sequences

# **IDENTIFICATION OF METHODS AND MATERIALS REQUIRED TO MANUFACTURE THE PROJECT**

Identification of suitable methods and bill of materials, cost involved and suitable manufacturing method, to make the design model into reality and performing the activities, Execution of the activities production and running of the system.

DATA COLLECTION, ANALYSIS, PROJECT REPORT PREPARATION

Checking the working of the system/model, Fundamental knowledge of data collection, analysis, interpretation of data with details and project report writing and making ready the power point presentation

**TEXT BOOKS / REFERENCE BOOKS** 

1. Old approved project reports of our department and other department project report copies.

2. Refer other university and engineering college project reports.

#### Mapping of COs with POs

	P01	P02	PO3	P04	PO5	P06	P07
CO1	2	2	1	1	1	1	1
CO2	2	2	1	1	1	1	1
CO3	2	2	1	1	1	1	1
CO4	2	2	1	1	1	1	1
CO5	2	2	1	1	1	1	1
CO6	2	2	1	1	1	1	1
Total	12	12	6	6	6	6	6

1 - Low, 2 – Medium, 3- High

Semester		IV				
Course N						
Course C	ode	YRE401				
L –T –P –	-C		C:P:A	L –T –P –H		
0-0-16-	- 16		0:1.5:1.5	0-0-32-32		
СО	СО	Knowledge Level				
CO1	build	P5				
CO2	Asser	nble individual parts t	o finished assembly related to project	P5		
CO3	Perfo relate	<i>rm</i> characterization st d to project.	udy or design calculation on objects	A5		
CO4	Comp table	<i>Compose</i> the important findings as scientific drawing, chart, plot and table				
CO5	Prepa	A4				
CO6	Prese	A2				
Objective	Objectives					
🏼 🎸 To	prepar	re sample / parts relate	ed to project work.			

- ✤ To characterize prepared samples or parts related to project work.
- ✤ To compose important findings as scientific data.
- ✤ To prepare and present technical report of the project.

#### Mapping of COs with POs

	P01	P02	P03	P04	PO5	P06	P07
CO1	2	1	2	1	1	1	1
CO2	3	2	2	2	1	1	1
CO3	2	3	2	1	1	1	1
CO4	3	3	2	2	3	1	1
CO5	3	1	3	3	2	1	1
CO6	3	1	2	3	1	1	1
Total	16	11	1 3	12	9	6	6

1 - Low, 2 – Medium, 3- High