

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.3	Average percentage of courses having focus on employability/ entrepreneurship/ skill Development offered by the Physics

DEPARTMENT OF PHYSICS

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

S. No.	Programme Name
i.	Bachelor of Science (Physics)(Full Time)
ii.	Master of Science (Physics)(Full Time)

2. Syllabus of the courses as per the list.

Legend :	Words highlighted with Blue Color	-	Entrepreneurship
	Words highlighted with Red Color	-	Employability
	Words highlighted with Green Color	-	Skill Development

S. No	Name of the Course	Course Code	Year of introduction	Activities/Content with direct bearing on Employability/ Entrepreneurship/ Skill development
		B.Sc. Phys		
1	Tamil - I	XGT101	2022-23	Skill Development
2	English - I	XGE102	2022-23	Skill Development
3	Properties of Matter and Sound	XPH103	2017-18	Employability
4	Mechanics and Relativity	XPH104	2021-22	Employability
5	Mechanics and Properties of Matter - laboratory	XPH105	2021-22	Employability
6	Algebra, Trigonometry Applications of Laplace Transforms and Fourier series	XMG106	2021-22	Employability
7	Human Ethics, Values, Rights, and Gender Equality	XUM001	2017-18	****
8	Tamil - II	XGT201	2022-23	Skill Development
9	English - II	XGE202	2022-23	Skill Development
10	Electricity and Magnetism	XPH203	2017-18	Employability
11	Atomic Physics	XPH204	2017-18	Employability
12	Electricity and Magnetism - laboratory	XPH205	2021-22	Employability
13	Calculus and Differential Equations	XMG206	2021-22	Employability
14	Environmental Studies	XUM002	2017-18	Employability
15	Physics Workshop Skills	XPH301	2017-18	Entrepreneurship
16	Inorganic, Organic and Physical Chemistry – I	XCG302	2017-18	Employability
17	Thermal Physics and Statistical Mechanics	XPH303	2022-23	Employability
18	Basic Electronics	XPH304	2022-23	Employability
19	Volumetric and Organic Qualitative Analysis Practical – I	XCG305	2017-18	Employability
20	Disaster Management	XUM306	2017-18	****
21	Thermal and Electronics -Lab	XPH307	2022-23	Employability
22	Electrical Circuit Network Skills	XPH401	2017-18	Employability
23	Inorganic, Organic and Physical Chemistry – II	XCG402	2017-18	Employability
24	Waves and Optics	XPH403	2022-23	Employability
25	Digital Electronics	XPH404	2022-23	Employability
26	Volumetric and Organic Qualitative Analysis –II Lab	XCG405	2017-18	Employability
27	Optics and Digital Electronics - Lab	XPH406	2022-23	Employability
28	Basic Instrumentation Skills	XPH501	2017-18	Entrepreneurship
29	Solid State Physics	XPH502A	2017-18	Employability

30	Atomic & Molecular	XPH502B	2017-18	Employability
31	Spectroscopy Nuclear and Particle Physics	XPH503A	2017-18	Employability
32			2017-18	
	Principles of Modern Physics	XPH503B	2017-18	Employability
33	Microprocessor and C programming	XPH504A	2017-18	Employability
34	Micro Processor and Microcontroller	XPH504B	2017-18	Employability
35	Physics Practical V A	XPH505	2017-18	Employability
36	Physics Practical V B	XPH506	2017-18	Employability
37	Renewable Energy	XPH601	2017-18	Entrepreneurship
38	Relativity & Quantum Mechanics	XPH602A	2017-18	Employability
39	Material Science	XPH602B	2017-18	Employability
40	Micro Electro Mechanical System	XPH603A	2017-18	Employability
41	Numerical methods in Physics	XPH603B	2017-18	Employability
42	Physics Practical VI A	XPH604	2017-18	Employability
43	Physics Practical VI B	XPH605	2017-18	Employability
44	Project	XPH606	2017-18	Entrepreneurship
		M.Sc. Physics		1 1
1	Mathematical Methods of Physics - I	YPH101	2021-22	Employability
2	Classical Mechanics	YPH102	2021-22	Employability
3	Electronics	YPH103	2021-22	Employability
4	Numerical Methods and Computation	YPH104A	2021-22	Employability
5	Thermodynamics and Statistical Mechanics	YPH104B	2021-22	Employability
6	Instrumental Methods of Analyses	YPH104C	2021-22	Employability
7	Basic General & Electronics Laboratory	YPH105	2017-18	Employability
8	Mathematical Methods of Physics-II	YPH201	2021-22	Employability
9	Quantum Mechanics - I	YPH202	2021-22	Employability
10	Microprocessor and Microcontroller	YPH203	2021-22	Employability
11	Physics and Technology of Thin films	YPH204A	2021-22	Employability
12	Crystal Growth and Characterization Techniques	YPH204B	2017-18	Employability
13	Nanoscience and Technology	YPH204C	2021-22	Employability
14	Digital & Microprocessor Laboratory	YPH205	2021-22	Employability

15	Solid State Physics	YPH301	2017-18	Employability
16	Quantum Mechanics - II	YPH302	2021-22	Employability
17	Electromagnetic Theory	YPH303	2017-18	Employability
18	Micro Electro Mechanical Systems (MEMS)	YPH304A	2021-22	Employability
19	Solar Thermal and Photovoltaic Technology	YPH304B	2021-22	Employability
20	Industrial Electronics	YPH304C	2021-22	Employability
21	Advanced General & Electronics Laboratory	YPH305	2017-18	Employability
22	Atomic and Molecular Spectroscopy	YPH401	2021-22	Employability
23	Nuclear and Particle Physics	YPH402	2017-18	Employability
24	Project Work and Viva voce	YPH403	2017-18	Employability

Course C	ode	XC	GT101		L	Т	Р	С
Course N	ame	தமீ	ີ່)ມູ່ - 1		3	0	0	3
Prerequis	ite				L	Т	Р	Н
C:P:A		3:0:0			3	0	0	3
COURSE	E OUTCC	OMES :			DOM	LEVEL		
After the	completi	on of the course, students	s will be able t	0				
CO1 Recognize (அடையாளம் காணுதல்) பல்வேறு அறிஞர் Cognitive Reme பெருமக்களின் தொண்டுகளைத் தமிழ்மொழி மூலம் அறிந்து கொள்ளல்.					Remem	ber		
CO2		(தெரிவு செய்தல்) பன்பு களை இலக்கியங்கள் மூ			Cogn	itive	Remem	ber
CO3	Describe	e (விளக்குதல்) தமிழ் ம செய்திகளை உணர்தல்.	களிரின் உரை		Cogn	itive	Unders	tand
CO4		விளக்குதல்) பல்வேறு ச , மண்ணின் பாடல்கள் கு			Cogn	itive	Apply	
CO5		் (பகுத்தல்) சிறுகதைகள நிலை நாடகங்கள் - க			Cogn	itive	Analyze	9
அ லகு-1	1	தமிழ் அறிஞர்களும் த	மிழ்த்தொண்டு	d				9
தெ.பொ.மீ	ீனாட்சி	தாசன், நாமக்கல் க சுந்தரம், கவிமணி தேசி ப் பெயர்கள்.	_	_				ய்யர், ிறந்த
அலகு-2	ക്ഖിൽ	தகள் (மரபுக்கவிதை, பு	துக்கவிதை)					9
· · ·	•	முடியரசன், வாணிதாசன்	· · ·	•	டடுமன	லை ந	ாராயண	ക്വി,
புதுக்கவி	தை : ந.เ	ல்யாண சுந்தரம், மருதகா பிச்சமூர்த்தி, சி.சு.செல்ல லந்தூர் மோகனரங்கன் (ப்பா, மு.மேத்த	ள, ஈரோடு தமி	ிழன்ப	ன், அட்	பதுல் ரகு	மான்,
		யாடல்கள், தமிழ் மகளி	•					9
ஜி.யு.போப்				யார், அண்ணா	п, (ц	த்துரா	மலிங்கக்	-
		சர், மா.பொ.சிவஞானம்,			<u> </u>	• • •	ſ	
-		அம்மையார், முவாலு				ழத்துல	ட்சுமி 🕼	ரெட்டி,
வேலுநாச்சியார், வள்ளியம்மை, ராணி மங்கம்மாள் சிறப்பு.								
அலகு-4 நாட்டுப்புறப்பாடல் 9							9	
தாலாட்டுப்		தொழில் பாடல், ஒப்பாரிப்	பாடல்.					
அலகு-5							9	
உரைநல	ட, சிறுக	தை, நாடகம், கவிதைகள்						
			LECTURE	TUTORIAL	PRA	CTICA	AL TOT	FAL
			45				45	

பாட நூல்கள்:

1 முனைவர் கா.செல்வகுமார் (தொ.ஆ.), பொதுத்தமிழ், மார்ச் - 2022, துரைகோ பதிப்பகம், அரும்பாக்கம், சென்னை – 106. 9884159972.

- 2 முனைவர் மு.அருணாசலம் (ப.ஆ.) தமிழ் இலக்கிய வரலாறு 2012, அருண் பதிப்பகம், தரைத்தளம், பாலாஜி நகர், ளுடீஜ காலனி, கண்டோன்மெண்ட், திருச்சி - 1. 9894440530
- 3 சு.சக்திவேல் நாட்டுப்புற இயல் ஆய்வு, மணிவாசகர் பதிப்பகம் 12, மேலசன்னதி வீதி, சிதம்பரம் - 1.
- 4 முனைவர் கோ.பெரியண்ணன் அடிப்படை எளிய தமிழ் இலக்கணம் 2003 –வனிதா பதிப்பகம், 11- நானா தெரு, பாண்டி பஜார், தி.நகர், சென்னை - 17.

பார்வை நூல்கள்:

- 2 முனைவர் ந.லெனின், தாலாட்டுப் பாடல், பிப்ரவரி 2015, பிருந்தா பதிப்பகம், தஞ்சாவூர் - 5.
- 3 கோ. வெங்கடாசலம் (தொ.ஆ.) 2005, தமிழ் இலக்கிய கைவிளக்கு, அன்னை சரஸ்வதி பதிப்பகம், குடியாத்தம்.
- 4 முனைவர் இராஜா வரதராஜா பயன்முறைத் தமிழ் ஜுன் 2015, சிவகுரு பதிப்பகம், 7∴40, கிழக்குச் செட்டித்தெரு, பரங்கிமலை, சென்னை – 16.

COU	RSE (CODE	XGE102	L	Т	Р	SS	Н	C
COURSE NAME			English - I	3	0	0	0	3	3
C:P:A	A - 3:():0							
COU	RSE (OUTCOM	ES:	Dom	ain		Le	vel	
CO1	Rec	all the basic	grammar and using it in proper context	Cogni	tive	R	lemen	nberi	ng
CO2	Exp	lain the pro	cess of listening and speaking	Cogni	tive	U	nders	tandi	ing
CO3	Ada	<i>pt</i> importa	nt methods of reading	Cogni	tive		Crea	ating	
CO4	Den	<i>ionstrate</i> th	e basic writing skills	Cogni	tive	U	nders	tandi	ing
SYLL	ABU	S]	HOU	JRS
UNIT	Ι	Gramma							
i. Maj correc		sic grammat	ical categories ii. Notion of correctness and a	titude to	erro	:		9	
UNIT	II	Listening	and Speaking						
iii. Im	porta	nce of lister	ing skills iv. Problems of listening to unfamil	iar dialec	ts v.			9	
Aspec	ts of j		on and fluency in speaking vi. Intelligibility in	speaking	5				
UNIT III Basics of Reading									
vii. Introduction to reading skills viii. Introducing different types of texts - narrative,							9		
descriptive, extrapolative									
UNIT	UNIT IV Basics of Writing								
in Int	ix. Introduction to writing skills x. Aspects of cohesion and coherence xi. Expanding a							9	

complaints, appreciation, conveying sympathies etc.)	
Total Hours	36
Text books	
1. Acevedo and Gower M (1999) Reading and Writing Skills. London, Longman	
2. Deuter, M et.al. (2015). Oxford Advanced Learner's Dictionary of English	
(Ninth Edition). New Delhi, OUP	
3. Eastwood, John (2008). Oxford Practice Grammar. Oxford, OUP	
4. Hadefield, Chris and J Hadefield (2008). Reading Games. London, Longman	
5. Hedge, T (2005). Writing. Oxford, OUP	
6. Jolly, David (1984). Writing Tasks: Stuidents' Book. Cambridge, CUP	
7. Klippel and Swan (1984). Keep Talking. Oxford, OUP	
8. Saraswati, V (2005). Organized Writing 1. Hyderabad, Orient Blackswan	
9. Swan, Michael. (1980). Practical English Usage. Oxford, OUP	
10. Walter and Swan (1997). How English Works. Oxford, OUP	

COUI	RSE C	ODE	COURSE NAME	L	L T P			
X	PH10	3		3	1	0	4	
С	Р	Α	PROPERTIES OF MATTER AND SOUND	L	Т	P	Η	
3.7	0	0.3		3	1	0	4	
COU	COURSE OUTCOMES			DOM	AI	LEVEL		
On the	succe	ssful c	ompletion of this course students would able to	Ν		LE	VEL	
	<i>Identify</i> the principles of elasticity, <i>derive</i> expression for			Cogni	tiv	Reme	ember,	
CO1			buple and <i>determine</i> rigidity modulus of a wire.	e		Unde	rstand	
	twi	sting c	Supre and <i>determine</i> righting modulus of a write.			Ap	ply	
	De	velon k	<i>Cnowledge</i> on bending of beams, its properties	Cogni	tiv	Understand		
CO2		applic	° ° 1 1	e				
						apply		
	•		· •	ace tension, <i>recall</i> the concepts of low Cognitiv		Remember		
CO3	pre	ssure a	nd <i>explain</i> the methods of production of low	e	LI V	understand		
	r ·	ssure.		-		unde	Istund	
CO4	Un	derstar	nd flow of liquid, viscosity and identify its	Cogni	tiv	Understand		
04	app	olicatio	ns.	e		Ana	alyze	
CO5			he production, propagation, perception	Cognitiv Reme				
005	&a	nalysis	of acoustical wave and its application	e		ana	lyze	
UNIT – I: ELASTICITY						9	9 + 3	
Elastic	Elasticity - Stress - Strain - Hooke's law - Stress strain diagram - Factors affecting elasticity-							
Differe	Different moduli of elasticity - Relation between the Elastic moduli - Poisson's ratio Twisting						Fwisting	
couple	couple on a cylinder - Determination of rigidity modulus by Static torsion - Work done in						done in	
twistin	ng a w	vire –	Torsional oscillations of a body- Torsion pend	dulum -	– De	etermin	ation of	

Rigidity modulus and moment of inertia.

UNIT – II: BENDING OF BEAMS

Bending of beams – Expression for bending moment – Cantilever – Expression for depression of the loaded end of a cantilever – Young's modulus by measuring the tilt in a loaded cantilever – Oscillation of a cantilever – Non–uniform bending – Expression for depression – Uniform bending – Expression for elevation – Experimental determination of Young's modulus using pin and microscope method (Non-uniform bending - Uniform bending) - Determination of Young's modulus by Koenig's method.

UNIT – III: SURFACE TENSION

9 + 3

9 + 3

Definition – Molecular forces – Explanation of surface tension on kinetic theory – Surface energy - Work done on increasing the area of a surface - Angle of contact - Neumann's triangle-Excess pressure inside a liquid drop and soap bubble – Excess pressure inside a curved liquid surface – Force

between two plates separated by a thin layer of a liquid – Experimental determination of surface tension – Jaegar's method – Drop-weight method – Capillary rise method – Variation of surface tension with temperature.

UNIT – IV: VISCOSITY	9 + 3
Newton's law of viscous flow - streamlined and turbulent motion - Reynold	's number –
Poiseuille's formula for the flow of a liquid through a horizontal capillary tube -	Experimental
determination of co-efficient of a liquid by Poiseuille's method - Ostwald's	viscometer –
Terminal velocity and Stokes formula - Viscosity of gases - Meyer's formula	- Rankine's
method -Variation of viscosity with temperature and pressure - Lubrication.	Equation of
continuity of flow - Euler's equation for unidirectional flow - Bernoulli's theorem -	- Filter pump
and Wings of Aeroplane – Torricelli's theorem – Pitot tube.	

9 + 3

Acoustics: Classification of sound – Characteristics of musical sound – Loudness – Weber Fechner law - Decibel - Absorption co-efficient - Reverberation - Reverberation time -Sabine's formula (growth & decay) – Factors affecting acoustics of buildings (reverberation time, loudness, focusing, echo, echelon effect, resonance and noise) and their remedies.

Ultrasonics: Production: Magnetostriction and Piezoelectric methods - Acoustical grating-Determination of velocity – Applications: Ultrasonic flaw Detector, SONAR, Ultrasound scan.

	LECTUR	TUTORIA	TOTAL
HOURS	Ε	L	
	45	15	60

TEXT BOOKS

- 1. Murugeshan R, "Properties of Matter For B. Sc. Students", S Chand & Company Limited, Mohan Co-Operative Industrial Estate, New Delhi - 110 044, First edition 1994, Reprint 2022.
- 2. R. Murugeshan, Er. Kiruthiga Siva Prasath, "Properties of Matter and Acoustics", S.Chand & Company Ltd, Ram Nagar, New Delhi - 110 055, First edition 2005, Second Edition 2012.
- 3. Brij Lal, N. Subrahmanyam, "Properties of Matter", Eurasia Publishing House Limited, 1993.

Textbook of Sound, D. R. Khanna, R. S. Bedi, Atma Ram & Sons, 1971.

REFERENCE BOOKS

- 1. DS Mathur, "Elements of Properties of Matter", S. Chand Limited, S. Chand & Company Pvt. Ltd., Ram Nagar, New Delhi - 110 055, First edition 1949, Reprint 2016.
- 2. Brij Lal, N Subrahmanyam, "A Textbook of Sound" 2nd Edition, Vikas Publishing House Pvt. Ltd.A-27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi-110044, 2018 - 2019.
- 3. David Halliday, Robert Resnick, Jearl Walker, "Fundamentals of Physics", Publisher:Wiley, 2013.
- 4. Satyendra Nath Maiti, "Classical Mechanics and General Properties of Matter", New Age International (P) Limited Publisher, Published in 2007.
- 5. N Subrahmanyam, "A Textbook Of Sound", Vikas Publishing House Pvt Limited, 1999.

E REFERENCES

- 1. Biswanath Banerjee and Amit Shaw, Department of Civil Engineering IIT Kharagpur, " THEORY OF ELASTICITY", National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/courses/105/105/105105177/
- 2. https://chem.libretexts.org/
- 3. http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html#hph.

Mapping with Programme Outcomes

Course Outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	3	2	0	0	3	0	1
CO ₂	3	1	0	2	3	3	0	1
CO ₃	3	3	3	0	0	3	3	2
CO ₄	3	3	0	0	3	3	0	2
CO ₅	1	3	3	1	2	3	0	2
Total	13	13	8	3	8	15	2	8
Scaled to 1, 2, 3	3	3	2	4	2	3	1	2

0 - No relation 1 - Low relation 2 - Medium relation

(COU COI		COURSE NAME	L	Т	Р	С	
	XPH	104		3	1	0	4	
С	P	Α	MECHANICS AND RELATIVITY	L	Т	Р	Н	
3.7	0	0.3		3	1	0	4	
COI	IDSI	E OUTCO	OMES	DOMA		T.	EVEL	
	he su		completion of this course students would	N	XI	L		
CO	01		<i>and</i> basic concepts of dynamics and ts <i>applications</i> .	Cogniti	ve	Understanding analyze		
CO	02	-	various laws of gravitation and <i>how</i> it is ne latest Science of satellite launching.	Cogniti	ve	Remembering understanding		
СО	03		e laws of floatation ad <i>construct</i> models are variations	Cogniti	ve	unde	embering, rstanding apply	
СО	04	expressio	the principles of elasticity, <i>derive</i> n for twisting couple and <i>determine</i> nodulus of a wire.				rstanding	
СО	_	Understa transform equivaler		Cogniti	ve		embering rstanding	

 UNIT – I: INTRODUCTION TO DYNAMICS
 9 + 3

 Newton's Laws of Motion – Forces – work and energy – Conservation of Momentum –

 Friction– Laws of friction – Impulse – Impact – Direct and oblique impact – Final velocity and loss of kinetic energy.

Rigid body: Moment of Inertia – Kinetic energy and angular momentum of rotating body – Theorems of perpendicular and parallel axes – Acceleration of a body rolling down an inclined plane without slipping – Oscillations of a small sphere on a large concave smooth surface – Compound pendulum – Centre of suspension and centre of oscillation – Centre of percussion – Minimum period of a compound pendulum.

UNIT – II: CENTRE OF GRAVITY, CENTRE OF PRESSURE, FLOATING BODIES, ATMOSPHERIC PRESSURE

9+3

Centre of gravity of a body – Centre of gravity of a trapezoidal lamina – C.G. of a solid hemisphere – C.G. of a solid tetrahedron – C.G. of a solid cone. Centre of pressure – rectangular lamina – triangular lamina – triangular lamina immersed in a liquid. Conditions of equilibrium of a floating body – Stability of equilibrium of a floating body – Meta-centre –

Experimental determination of a meta-centric height of a ship – Variation of atmospheric pressure with altitude

UNIT - III: GRAVITATION9 + 3Newton's law of gravitation - Mass and density of earth - Inertial and Gravitation mass -
Determination of G-Boy's experiment - Kepler's Laws of planetary motion - Deduction of
Newton's law of gravitation from Kepler's Law - Gravitation - Field - potential - Intensity of
Gravitational field - gravitational potential due to a point mass - Equipotential surface -
Gravitational potential and field due to a spherical shell and solid sphere - Escape velocity -
Orbital velocity.

UNIT – IV: MOTION ON A PLANE CURVE	9 + 3
Centripetal and centrifugal forces - Hodograph - Expression for nor	rmal acceleration -
Motion of a cyclist along a curved path – Motion of a railway carriage ro	und a curved track-
upsetting of a carriage - Motion of a carriage on a banked up curve	- Effect of earth's

rotation on the value of the acceleration due to gravity – Variation of 'g' with altitude, latitude and depth.

9 + 3

Lorentz co-ordinate and physical significance of Lorentz invariance – Length contraction – Time dilation – Twin paradox – Velocity addition theorem Variation of mass with velocity – Mass energy equivalence – Transformation of relativistic momentum and energy – Relation between relativistic momentum and energy, Mass, velocity, momentum and energy of zero rest mass

	LECTUR	TUTORIA	TOTAL			
HOURS	Ε	L				
	45	15	60			

TEXT BOOKS

- 1. M. Narayanamoorthy and N. Nagarethnam, "Dynamics", 8th Edition, National publishing Company, Chennai, 2002.
- 2. M. Narayanamoorthy and N.Nagarethinam, "Statics, Hydrostatics and Hydrodynamics", National Publishing company, Chennai, 2005.
- 3. Soni, Vidwan Singh, "Mechanics", PHI Learning Pvt. Ltd, 2019.
- 4. Timon Idema, "Mechanics and Relativity", Publisher: TU Delft Open, 2018 2019.

REFERENCE BOOKS

- R. Murugeshan ," Mechanics & Mathematical Physics",3rd Edition, S. Chand Publishing , A–27, 2nd Floor, Mohan Co–operative Industrial Estate, New Delhi – 110044, 2014.
- **2.** Antonio Romano, Mario Mango Furnari, "The Physical and Mathematical Foundations of the Theory of Relativity", Publisher:Springer International Publishing, 2019.
- **3.** R. Shankar, "Fundamentals of Physics Mechanics, Relativity, and Thermodynamics", Publisher: Yale University Press, 2019.

- **4.** Paul Fleisher, "Relativity and Quantum Mechanics Principles of Modern Physics", Publisher:Living Book Press, 2018 2019.
- **5.** Shangwu Qian, "Essentials Of Quantum Mechanics And Relativity", <u>World Scientific</u> <u>Publishing Company</u>, 2020.

E REFERENCES

- 1. Shiva Prasad, Department of Physics, IIT Bombay, "Special theory of Relativity", National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/courses/115/101/115101011/
- 2. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html#hph</u>

Mapping with Programme Outcomes

Course Outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	3	1	2	3	2	0	1
CO ₂	3	2	1	2	3	3	0	1
CO ₃	3	3	2	2	3	3	3	2
CO ₄	3	3	0	2	3	2	0	2
CO ₅	3	2	2	2	3	3	0	2
Total	15	13	6	10	15	13	2	8
Scaled to 1, 2, 3	3	3	2	2	3	3	1	2

0 - No relation

1 – Low relation

2 – Medium relation

CO	OURSE CODE COURSE NAME				Т	Р	С
	XPH	105	MECHANICS AND PROPERTIES OF	0	0	2	2
С	P	Α	MATTER - LABORATORY	L	Т	Р	Η
0	1.5	0.5	WATTER - LADORATORT	0	0	3	3
		COUTCO	Dom	ain	L	evel	
CO	CO1 Understand basic concepts of physics and identify its Psychomotor Mechanis						hanism
CO			e principles of elasticity, <i>derive</i> expression for aple and <i>determine</i> rigidity modulus of a wire.	Psychon Affec		Mec	alyze, hanism spond
CO		evelop Ki nd applica	Psychon Affec		Mec	pply hanism eceive	
CO	p	•	face tension, <i>recall</i> the concepts of low d <i>explain</i> the methods of production of low	f low Psychomotor: Analyze			

CO5	Understand flow of liquid, viscosity and identify its	Davahamatan	Analyze
	applications.	Affective:	Mechanism
			Receive

Ex. No	Experime		Cos			
1.	Compound Pendulum – Determination of	of g and K.		CO1		
2.	Screw Gauge and Vernier Caliper (Measurements).					
3.	Torsional pendulum – Determination of the rigidity modulus of thin wire.					
4. Young's modulus – Non uniform bending –Pin and microscope.						
5.	5. Young's modulus – Non uniform bending – Scale and telescope					
6.	Koenigs – Uniform Bending Method – Young's Modulus.					
7.	Surface tension and interfacial Surface Tension by Drop weight method.					
8. Determination of Surface Tension of water by capillary rise method						
9. Stokes method – Determine the viscosity of the given liquid.						
10.Determination of Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille"s method).						
	1	LECTURE	PRACTICAL	TOTAL		
	HOURS	0	45	45		

TEXT BOOKS

- 1. C. L. Arora, "B.Sc .Practical Physics", S. Chand & Company Ltd. Ram Nagar, New Delhi– 110055. 2007.
- R. K. Shukla & Anchal Srivastava. "Practical Physics," New Age International (P) Ltd, Publishers, (Formerly Wiley Eastern Limited), 4835/24, Ansari Raod, Daryagani, New Delhi– 11002. 2006.

REFERENCE BOOKS

- 1. Geeta Sanon, "B. Sc., Practical Physics", 1st Edition, S. Chand and Company, 2007.
- Chattopadhyay, D., Rakshit, P. C. and Saha, B., "An Advanced Course in Practical Physics," 8th Edition, Books & Allied Ltd., Calcutta, 2007.

3. G. L. Squires, "Practical Physics", Fourth edition, Cambridge University Press, 2001.

4. Indu Prakash and Ramakrishna, "A Text Book of Practical Physics," 11th Edition, Kitab

Mahal, New Delhi, 2011.

5. C. Ouseph,K. Rangarajan, "A Text Book of Practical Physics", Volume I,II, S.Viswanathan Publishers,1997.

E-Resources:

1. Amal Kumar Das , Department of Physics, IIT Kanpur, "Introduction to Electromagnetic Theory", National Programme on Technology Enhanced Learning (NPTEL), <u>https://onlinecourses.nptel.ac.in/noc20_ph16/preview</u>

Course Outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	1		2	1	2	3	3
CO ₂	3	1		2	1	2	3	2
CO ₃	3	1		1	1	2	2	1
CO ₄	3	1		2	1	2	3	2
CO ₅	3	1		2	1	2	3	2
Total	15	5		9	5	10	14	10
Scaled to 1, 2, 3	3	1		2	1	2	3	2

Mapping of COs with POs

0 - Not	relation
---------	----------

1 – Low relation

2 – Medium relation

COU	URSE (CODE	COURSE NAME		L	Т	Р	С	
	XMG1)6	ALGEBRA, TRIGONOMETRY,		4	1	0	5	
С	Р	A	APPLICATIONS OF LAPLACE		L	Т	SS	Н	
4.7	0	0.3	TRANSFORMS AND FOURIER SER	IES	4	1	0	5	
COU	RSE OI	UTCOM	FS			-	·		
			pletion of this course students would able to	DOMA	IN	LEVEL			
CO1			ts of the polynomial equations with real <i>Explain</i> the transformation of equations and	Cognit	ive	Remembering Understanding			
	to <i>so</i>	ve the re	ciprocal equations using Newton's method.			Applying			
CO2		v Cayley	lues and eigen vectors of the matrices and Hamilton theorem to find the inverse of a	Cognit	ive	Remembering Applying			
CO3	-		igonometric functions, hyperbolic and polic functions and to <i>find</i> the series of	Cognit	ive	Remembering Understanding			

	trigonometric functions.		
	Find the Laplace transforms and inverse Laplace		Remembering
CO4	transforms of standard functions and to <i>find</i> the Laplace	Cognitive	Kemennbernig
	transforms of $tf(t)$, $f(t)/t$ and derivatives.		
	Apply Laplace transforms to solve the differential		Remembering
CO5	equations of first and second order and to <i>find</i> Fourier	Cognitive	Applying
	series of a functions.		Apprying

UNIT – I: THEORY OF EQUATIONS			12+3
Polynomial Equations with real coefficients irration	onal roots, comp	lex roots – symmet	tric function
of roots - Transformation of equations by incr	reasing or decr	easing roots by a	constant –
Reciprocal Equations - Newton's method to find a	i root approxima	tely.	
UNIT – II: MATRICES			12+3
Eigen Values and eigen vectors, Cayley-Hamilton	on theorem (with	nout proof) – Veri	fication and
computation of inverse.			
UNIT – III: TRIGONOMETRY			12+3
Expansion in Series – Expansion of $\cos^n\theta$, $\sin^n\theta$, in	n a series of cosi	nes and sines of m	ultiples of θ
– Expansions of $\cosn\theta$ and $\sinn\theta$ in powers of	sines and cosine	es – Hyperbolic fu	inctions and
inverse hyperbolic functions.			
UNIT – IV: LAPLACE TRANSFORMS			12+3
Definition - Laplace Transform of Standard fu	nctions – Linea	arity property – F	irst shifting
theorem - Transform of tf(t), f(t) / t and derivat	ives – Inverse I	aplace transforms	of standard
functions.			
UNIT - V: APPLICATIONS OF LAPLACE T			
	RANSFORMS	AND FOURIER	12+3
SERIES	RANSFORMS	AND FOURIER	12+3
SERIES Applications of Laplace transforms of differential			
Applications of Laplace transforms of differential			
Applications of Laplace transforms of differential	equations of fin	st and second orde	er – Finding
Applications of Laplace transforms of differential the Fourier series of functions.	equations of fin	rst and second orde	er – Finding TOTAL
Applications of Laplace transforms of differential the Fourier series of functions.	equations of fin	rst and second orde	er – Finding TOTAL
Applications of Laplace transforms of differential the Fourier series of functions. HOURS	equations of fine LECTURE 60	TUTORIAL 15	er – Finding TOTAL 75
Applications of Laplace transforms of differential the Fourier series of functions. HOURS TEXT BOOKS	equations of fine LECTURE 60	TUTORIAL 15	er – Finding TOTAL 75
Applications of Laplace transforms of differential the Fourier series of functions. HOURS TEXT BOOKS 1. Kandasamy. P, Thilagavathi. K, "Allied Ma	equations of fine LECTURE 60	TUTORIAL 15	er – Finding TOTAL 75
Applications of Laplace transforms of differential the Fourier series of functions. HOURS TEXT BOOKS 1. Kandasamy. P, Thilagavathi. K, "Allied Ma	equations of fine LECTURE 60	TUTORIAL 15	er – Finding TOTAL 75

1. Manichavasagam Pillai T.K. and Narayanan S., "Trigonometry", Viswanathan Publishers and Printers Pvt. Ltd.

2. Narayan S. and Manicavachagam Pillay T.K., "Ancillary Mathematics," Viswanathan

Publishers and Printers Pvt. Ltd.

WEBSITE

www.NPTEL.ac.in

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2		1		2			2
CO2	2		1		2			2
CO3	2		1		2			2
CO4	2		1		2			2
CO5	2		1		2			2
Total	10		5		10			10
Scaled to 1, 2, 3	2		1		2			2

Mapping of COs with POs

0 - No relation 1 - Low relation 2 - Medium relation 3 - High relation

COUI	RSE CODE	XUM001		L	Т	Р	SS	С
COUI	RSE NAME	HUMAN ETHICS, VALUES, RIG	HTS AND	1	0	0	1	1
		GENDER EQUALITY						
PRER	REQUISITES	Not Required	L	Т	Р	SS	Η	
C:P:A	L	0.8:0.1:0.1		1	0	0	1	2
COUI	RSE OUTCOM	ES	Domain			Lev	/el	
CO1	Relate and In	terpret the human ethics and human	Cognitive		Re	emei	nber,	
	relationships		Cogintive		U	nder	stand	
CO2		<i>pply</i> gender issues, equality and violence	Cognitive		Ur	nders	stand,	,
002	against women		Cogintive	Apply				
CO3 <i>Classify</i> and <i>Develop</i> the identify of women issues and Cognitive				-				
005	challenges		Affective	Receive				
CO4		Dissect human rights and report on	Cognitive	Understand,				,
001	violations.					Anal	•	
		spond to family values, universal	Cognitive &				nber,	
CO5		ght against corruption by common man	Affective		F	Resp	ond	
	and good gover						-	
UNIT		AN ETHICS AND VALUES					3+.	3
-	AN ETHICS A							
		ues - Family and Society, Social service,			<u> </u>		0	
	•	Courage, Time Management, Co-opera		nen	t, S	ymp	athy	and
-	<i>.</i>	Self-Confidence, Personality Developmen	nt					2
UNIT	II GE	NDER EQUALITY					3+.	5

Gender Discrimination in society and in family, Gender equity, equality, and empowerment. Social and Economic Status of Women in India in Education, Health, Employment, Definition of HDI, GDI and GEM. Contributions of Dr.B.R. Ambethkar, Thanthai Periyar and Phule to Women Empowerment.

UNIT III WOMEN ISSUES AND CHALLENGES

3+3

Women Issues and Challenges- Female Infanticide and Feticide, Violence against women, Domestic violence, Sexual Harassment, Trafficking, Remedial Measures – Acts related to women: Political Right, Property Rights, and Rights to Education, Dowry Prohibition Act.

UNIT IV HUMAN RIGHTS

3+3

3+3

Human Rights and Duties, Universal Declaration of Human Rights (UDHR), Civil, Political, Economical, Social and Cultural Rights, Rights against torture, Forced Labour, Child helpline-Intellectual Property Rights (IPR) and its types. National Policy on occupational safety and health.

UNIT V GOOD GOVERNANCE

Good Governance - Democracy, People's Participation, Transparency in governance and audit, Corruption, Impact of corruption on society and Remedial measures, Government system of Redressal. Creation of People friendly environment and universal brotherhood.

LECTURE	SELF STUDY	TOTAL
15	15	30

REFERENCES

- 1. Aftab A, (Ed.), Human Rights in India: Issues and Challenges, (New Delhi: Raj Publications, 2012).
- 2. Bajwa, G.S. and Bajwa, D.K. Human Rights in India: Implementation and Violations (New Delhi: D.K. Publications, 1996).
- 3. Chatrath, K. J. S., (ed.), Education for Human Rights and Democracy (Shimala: Indian Institute of Advanced Studies, 1998).
- 4. Jagadeesan. P. Marriage and Social legislations in Tamil Nadu, Chennai: Elachiapen Publications, 1990).
- 5. Kaushal, Rachna, Women and Human Rights in India (New Delhi: Kaveri Books, 2000)
- 6. Mani. V. S., Human Rights in India: An Overview (New Delhi: Institute for the World Congress on Human Rights, 1998).
- 7. Singh, B. P. Sehgal, (ed) Human Rights in India: Problems and Perspectives (New Delhi: Deep and Deep, 1999).
- 8. Veeramani, K. (ed) Periyar on Women Right, (Chennai: Emerald Publishers, 1996)
- 9. Veeramani, K. (ed) Periyar Feminism, (Periyar Maniammai University, Vallam, Thanjavur: 2010).
- 10.Planning Commission report on Occupational Health and Safety http://planningcommission.nic.in/aboutus/committee/wrkgrp12/wg_occup_safety.p
- 11. Central Vigilance Commission (Gov. of India) website: <u>http://cvc.nic.in/welcome.html</u>.
- 12. Weblink of Transparency International: https://www.transparency.org/
- 13. Weblink Status report: https://www.hrw.org/world-report/2015/country-chapters/india

a	ode			X	GT201		L	Т	Р	С
Course Na	me	தமிழ்	- II				3	0	0	3
Prerequisi	ite						L	Т	Р	Н
C:P:A		3:0:0)				3	0	0	3
COURSE	OUTC	OMES	5				DON	IAIN	LEVE	L
After the c	ompleti	on of t	he course,	students	s will be able	to				
குற	ப்புகள்,	்கலை		ாக்க உ <i>த</i>	பல்வேறு இல த்திகள் போன் ால்.		Cog	nitive	Reme	ember
ഖേ	<i>oose</i> (ெ றுபாடறி ாள்ளல்.		செய்தல்) பழந்தமிழ்			சாற்கள், ஒலி லம் அறிந்து	Cog	nitive	Reme	ember
	s cribe (னர்தல்.	விளக்கு	ததல்) தி	ருக்குறள்	மூலம் அற	ச்செய்திகளை	Cog	nitive	Under	rstand
			ல்) பல்லே தெளிவு டெ		லுவல் சார்ந்த	5 கடிதபபிரிவு	Cog	nitive	Ар	ply
நின					தோற்றம் மற் தெளிவு பெறு	றும் வளர்ச்சி தல்.	Cogr	itive	Analyz	ze
myF-1	இலக்	கணம்;	;							9
எதிர்ச்சொல்	ை எ நீக்குதஎ சொற்ச	டுத்து ல், ஒரு ஹை ந	எழுதுக, மை பன்	பொருந்த	ாச் சொல்லை	குறிக்கப்பெறும் லக் கண்டறிதல் ததல், மரபுப் ப	, പിത	ழத் தி	ரத்தம்,	சந்திப்
ஆங்கிலச் பொருளை	ப சொல்ؤ அறித	லுக்கு ல், ஓ	நேரான ரெழுத்து	ஒருமெ	ாழிக்குரிய செ	அறிதல் - ஒல பொருளைக் க சைப்படுத்துதல்.	ி வே ண்டறி	றுபாட தல்		ட்ச ரியான ச்சொல்
	இலக்	கியம்								0
myF-3				. 0 .0					•	9
myF-3 திருக்குறள்	தொட	ாபான	செய்திக	ന ഗേദ്ദ	கோள்கள் தெ	நாடரை நிரப்புத	5ல், ఆ	அன்பு,	⊔ഞ്ഞവ്പ,	9 கல்வி,
திருக்குறள் கேள்வி, ஆ ஊக்கமுடை	அறிவு, _மை, _	அடக்ச இன்னா	கம், ஒழு 1 செய்யா	க்கம், செ எமை. உ	பாறை, நட்ட அறநூல்கள்:	ļ, கேள்வி, உ நாலடியார், நா	அறிவு	- வா	பணபு, ப்மை, க, பழ	கல்வி, காலம்,
திருக்குறள் கேள்வி, ஆ ஊக்கமுடை	அறிவு, _மை, _இன்னா	அடக்ச இன்னா நாற்ப	கம், ஒழு 1 செய்யா	க்கம், செ எமை. உ	் பாறை, நட்ட	ļ, கேள்வி, உ நாலடியார், நா	அறிவு	- வா	ப்மை,	கல்வி, காலம்,
திருக்குறள் கேள்வி, ஊக்கமுடை திரிகடுகம், myF-4	அறிவு, _மை, இன்னா பயன்	அடக்ச இன்னா நாற்ப பாட்டுத்	கம், ஒழுக ட செய்யா பது பாடல் த தமிழ்;	க்கம், செ எமை. உ கள் தொ	பாறை, நட்ட அற்நூல்கள்: டாபான செய்	ļ, கேள்வி, உ நாலடியார், நா	அறிவு ன்மண்	– வாட ிக்கடின	ப்மை, றக, பழ	கல்வி, காலம், மொழி, 9
திருக்குறள் கேள்வி, ஊக்கமுடை திரிகடுகம், myF-4	அறிவு, _மை, _இன்னா பயன் ா கடிதப	அடக்க இன்னா ் நாற்ப பாட்டுத் ம், ஆச்	கம், ஒழுக ட செய்யா பத <u>பாடல்</u> 5 தமிழ்; சிரியா் கடி	க்கம், சே மை. உ கள் தொ தம், நூச	பாறை, நட்ட அற்நூல்கள்: டாபான செய்	l, கேள்வி,	அறிவு ன்மண்	– வாட ிக்கடின	ப்மை, றக, பழ	கல்வி, காலம், மொழி, 9
திருக்குறள் கேள்வி, ஊக்கமுடை திரிகடுகம், myF-4 அலுவல்கள் myF-5	அறிவு, _மை, இன்னா பயன் பயன் பல்லே பல்லே	அடக்க இன்னா <u>நாற்ப</u> பாட்டுத் ம், ஆச் வறு கவு வி, சமு	கம், ஒழுச ட செய்யா ந்த பாடல் ந் தமிழ்; விரியா கடி லைக வில் தாயக் ச	க்கம், சே எமை. உ கள் தொ தம், நூச கல்விச்	பாறை, நட்ட அறநூல்கள்: ந டா்பான செய் லாக்கப் பணி, சிந்தனை சய்மைக் கல்	ு, கேள்வி, உ நாலடியார், நா திகள் மெய்ப்புத் திரு வி, இக்காலக்	அறிவு ன்மண் நத்தல், கல்ல	- வாப ிக்கடின விளய் வி, கஎ	ப்மை, கை, பழ பரத் து லை அ <u>ர</u>	கல்வி, காலம், மொழி, 9 மிழ் 9 இவியல்
திருக்குறள் கேள்வி, ச ஊக்கமுடை திரிகடுகம், myF-4 அலுவல்கள் myF-5 மொழியியன	அறிவு, _மை, இன்னா பயன் பயன் பல்லே பல்லே	அடக்க இன்னா <u>நாற்ப</u> பாட்டுத் ம், ஆச் வறு கவு வி, சமு	கம், ஒழுச ட செய்யா ந்த பாடல் ந் தமிழ்; விரியா கடி லைக வில் தாயக் ச	க்கம், சே எமை. உ கள் தொ தம், நூச கல்விச்	பாறை, நட்ட அற்நூல்கள்: படாபான செய் லாக்கப் பணி, சிந்தனை	ு, கேள்வி, ச நாலடியார், நா திகள் மெய்ப்புத் திரு	அறிவு ன்மண் நத்தல், கல்ல	- வாய ிக்கடின விளம்	ப்மை, கை, பழ பரத் து லை அ <u>ர</u>	கல்வி, காலம், மொழி, 9 மிழ் 9

பாட நூல்கள்:

- கா.பட்டாபிராமன், மொழிப் பயண்பாடு, நியூ செஞ்சுரி புக் ஹவுஸ் (பி) லிட்., 41,பி., சிட்கோ இண்டஸ்ட்ரியல் எஸ்டேட், அம்பத்தூர், சென்னை.
- 2. முனைவர் கா.செல்வகுமார், (தொ.) 2022. துரைகோ பதிப்பகம், அரும்பாக்கம், சென்னை -106.
- 3. முனைவர் ந.லெனின், மார்ச் 2016, முகில் தமிழ் இலக்கிய இலக்கண வினா-விடைகள், பிருந்தா பதிப்பகம், தஞ்சாவூர் - 5.
- முனைவர் இராஜா வரதராஜா பயன்முறைத் தமிழ் ஜுன் 2015, சிவகுரு பதிப்பகம், 7/40, கிழக்குச் செட்டித்தெரு, பரங்கிமலை, சென்னை - 16

ghh;it E}y;fs;:

- 1. முனைவர் இராஜ.வரதராஜா பயன்முறைத் தமிழ்
- டாக்டர் வா.செ.குழந்தைசாமி அறிவியல் தமிழ் ஜுன் 2006 (ஏழாம் பதிப்பு)–பாரதி பதிப்பகம் - 126/108, உஸ்மான் சாலை, தி.நகர், சென்னை - 17.
- முனைவர் கோ.பெரியண்ணன் அடிப்படை எளிய தமிழ் இலக்கணம் 2003 –வனிதா பதிப்பகம், 11- நானா தெரு, பாண்டி பஜார், தி.நகர், சென்னை - 17.

COUR	URSE CODE XGE202 L T P					SS	Η	C		
COUR	SENAME	ENGLISH II	2	1	0	0	3	3		
C:P:A	- 3:0:0				1					
COUR	SEOUTCO	IES:	D	oma	in	Ι	Level			
CO1	Explain the	asic grammar and using it in proper context	Co	gniti	ive	Une	derst	and		
CO2	Categorize	e process of listening and speaking	Co	gniti	ve	A	nalyz	ze		
CO3	<i>Examine</i> th	important methods of reading	Co	gniti	ve	I	Evalu	iate		
CO4	Compose th	basic writing skills	Co	gniti	ve	C	Create			
SYLL	ABUS			_			HO	URS		
UNIT-I Advanced Reading										
i. Read	ing texts of o	ferent genres and of varying length					12	2		
		s of comprehension								
		preting non-linguistic texts								
	ding and und istorted texts	rstanding incomplete texts (Cloze of varying length	is and							
UNIT-		ed Writing								
							11			
		or an essay or a report arrived at and preparing the final draft					11	L		
		f text with a different perspective (Manipulation e	vercis	e)						
	-	ce of prose or poetry		-,						
	ng phrases, i	oms and punctuation appropriately								
UNIT-	III Princi	es of communication and communicative compe	tence							

	• . • . •	11
x. Introduct	tion to communication-principles and process	11
xi. Types of	f communication-verbal and non-verbal	
xii. Identify	ing and overcoming problems of communication	
xiii. Comm	unicative competence	
UNIT-IV	Cross Cultural Communication	
xiv. Cross-	cultural communication	11
	Total Hours	45

Textbooks

- 1 Bailey, Stephen(2003). Academic Writing. London and New York, Routledge.
- 2 Department of English, Delhi University(2006).Fluency in English Part II. New Delhi, OUP
- 3 Grellet, F (1981).Developing Reading Skills: A Practical Guide to Reading Skills. New York, CUP
- 4 Hedge, T.(2005). Writing. London, OUP
- 5 Kumar, S and Pushp Lata (2015). Communication Skills. New Delhi, OUP
- 6 Lazar, G.(2010). Literature and Language Teaching. Cambridge, CUP
- 7 Nuttall, C(1996). Teaching Reading Skills in a Foreign Language. London, Macmillan
- 8 Raman, Meenakshi and Sangeeta Sharma (2011). Technical Communication: Principles and Practice. NewDelhi, OUP

Table1: Mapping of Cos with POs

	PO1	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO
		2								0	1	2	1	2
CO1	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO2	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO3	1	0	0	0	0	0	1	0	1	0	0	0	0	0
CO4	2	0	0	0	0	0	1	0	1	0	0	0	0	0
Total	7	0	0	0	0	0	6	0	4	0	0	0	0	0
Scale	2	0	0	0	0	0	2	0	1	0	0	0	0	0
d														
Value														
	1	0	0	0	0	0	1	0	1	0	0	0	0	0
1-5=1	, 6	-10 =	2,	11-1	15=3									

0-No Relation, 1-Low Relation,

-Low Kelation,

2–Medium Relation, 3-High Relation

COU	RSE C	ODE	COURSE NAME	L	Т	Р	С	
2	XPH203			3	1	0	4	
С	Р	Α	ELECTRICITY AND MAGNETISM	L	Т	Р	Н	
3.7	0	0.3		3	1	0	4	
	COURSE OUTCOMES On the successful completion of this course students would able to					LEVEL		
CO1	<i>Identify</i> and <i>explain</i> Gauss theorem and its application					Remembering Understanding Apply		

CO2	<i>Explain</i> Growth and decay of current in a circuit LCR and <i>demonstrate</i> calibration of ammeter and voltmeter using a potentiometer.	Cognitive	Remembering understanding
CO3	<i>Recall</i> Biot–Savart's law, <i>explain</i> current passing through straight conductor, coil, solenoid and <i>distinguish</i> various properties of magnetic materials.	Cognitive	Remembering, understanding analyze
CO4	<i>Recall</i> Laws of thermo e.m.f, and <i>apply</i> knowledge of the concepts of Thermodynamics to thermocouple.	Cognitive	Remembering ,understanding Analyze
CO5	Define Faraday's law and Lenz's law and demonstrate mutual and self inductance of the coil and analyze the magnetic materials for utilization in varied field.	Cognitive	Remembering understanding
UNIT –	I: BASICS OF ELECTROSTATICS		9+3
point be parallel capacito plate cap UNIT – Carey F of amm containi and capa circuit – UNIT – Magneto solenoid intensity	- Electric intensity at a point near an infinite charged condition tween two parallel plane charged conductors – Electric in plane charged conductors. Capacitors: Principle of a capaci r – outer sphere & inner sphere earthed – cylindrical cap pacitor – effect of a dielectric – capacitors in series and para II: CURRENT ELECTRICITY & TRANSISTENT C oster bridge – theory – determination of temperature coeffic eter and voltmeter using a potentiometer. Growth and ng resistance and inductance. Growth and decay of charge acitor – measurement of high resistance by leakage – growth condition for the discharge to be oscillatory – frequency of III: MAGNETISM o statistics: Biot–Savart's law & its applications – straigh carrying current – Ampere's circuital law – Magnetic pro- r, magnetic induction, permeability, magnetic susceptibility	tensity at a part of a capacita acitor – capacita acitor – capacita llel –uses of c URRENT cient of resistant decay of cur in circuit con and decay of oscillation.	point outside two nce of a spherica acity of a paralle capacitors. 9+3 ance – calibration rrent in a circui taining resistance f charge in a LCF 9+3 circular coil and aterials: magnetic
-	ferro magnetic materials.		0 + 2
Seebec Peltier Thoms	IV: THERMO ELECTRICITY k effect – Laws of thermo e.m.f – Peltier effect; Peltier Co- co–efficient – thermo dynamical consideration of Peltier on Co–efficient – e.m.f generated in a thermocouple tak on effect in the metals – Thermo electric power – Applic ocouple – Thermoelectric diagrams and their uses.	effect – The ing both Pel	omson effect – tier effect and
Thermo	V: ELECTROMAGNETIC INDUCTION		9+3

inductance- Earth inductor - Eddy Currents.

HOURS	LECTURE	TUTORIAL	TOTAL
HOUKS	45	15	60

TEXT BOOKS

- 1. Murugeshan R., "Electricity And Magnetism", 10th Edition, S. Chand Publishing, A–27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi – 110044, 2019.
- 2. Robert Resnick Jearl Walker, David Halliday, "Principles of Physics", 10th Edition, Wiley India Pvt Ltd., 2015.
- 3. David J. Griffiths, "Introduction to electrodynamics", 4th Edition, Pearson Education India Learning Private limited, 2015

REFERENCE BOOKS

1. Vasudeva D.N., "Fundamentals Of Magnetism And Electricity", 3rd Edition, S. Chand Publishing, A-27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi - 110044, 2011.

E REFERENCES

1. Manoj Harbola, Department of Physics, IIT Kanpur, "Introduction to Electromagnetic Theory", National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/courses/115/104/115104088/

Mapping of COs with POs

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	0	3	3	3	0	1
CO2	3	3	1	3	2	3	0	1
CO3	3	3	1	3	2	3	3	2
CO4	3	3	1	3	2	3	0	2
CO5	3	3	1	3	2	3	0	2
Total	15	15	4	15	11	15	2	8
Scaled to	3	3	1	3	3	3	1	2
1, 2, 3								

0 - No relation

1 - Low relation 2 - Medium relation

COU	RSE C	CODE	COURSE NAME		L	Т	Р	С
X	PH20	4			3	1	0	4
С	Р	Α	ATOMIC PHYSICS		L	Т	Р	Н
3.7	0	0.3			3	1	0	4
COUR	SE O	UTCO	MES	DC)MAIN	л	LEVE	T
On the	e succe	essful co	ompletion of this course students would able to	DC	JIVIAII			

~~ (<i>Recall</i> Atomic structure, <i>Compare</i> various atom models,	Cognitive	Remem	ıber
CO1	<i>Distinguish</i> various potentials and <i>Compare</i> LS &JJ couplings		Underst	
CO2	<i>Explain</i> Cathode and Positive Ray Production and its	Cognitive	Remem	,
	Properties. <i>Distinguish</i> various potentials and <i>Explain</i> special		Underst Understa	
CO3	quantization and spectra of atom.	Cognitive	Evalua	ate
CO4	<i>Distinguish</i> X–rays and A <i>nalyze</i> various applications of X–ray.	Cognitive	Underst Analy	
CO5	<i>Explain</i> Photoelectric Effect <i>discuss</i> various experiments.	Cognitive	Underst Analy	
UNIT –	I: ATOMIC STRUCTURE			9+3
Vector a	tom model – Pauli's exclusion principle – explanation of p	eriodic table -	- various qu	antun
numbers spatial qu	– angular momentum and magnetic moment – coupling se uantisation – Bohr magnetron – Stern and Gerlach experiment terms and notations – selection rules – intensity rule and	chemes – LS ant.	and JJ cour	oling -
sodium I	D lines – alkali spectra – fine structure of alkali spectra – spe	ctrum of Heliu	m.	
UNIT –	II: CATHODE AND POSITIVE RAY – ANALYSIS			9+3
Productio	on and Properties of Cathode rays - Electronic charge -	Millikan's oil	l– drop me	thod -
1 June II	on and rioperties of Calibac rays Electionic charge			
	on and properties of positive rays – Thomson's parabola me		-	
Production	· · · ·	ethod – Aston'	-	
Production Bainbrid	on and properties of positive rays – Thomson's parabola me	ethod – Aston' raction.	s, Dempster	r's and
Productio Bainbrid UNIT –	on and properties of positive rays – Thomson's parabola me ges mass –spectrographs (e/m) – Mass defect and Packing Fr	thod – Aston' raction. ENERGY LE	s, Dempster	r's and
Production Bainbrid UNIT – Excitation	on and properties of positive rays – Thomson's parabola me ges mass –spectrographs (e/m) – Mass defect and Packing Fr III: IONISATION POTENTIAL AND SPLITTING OF	ethod – Aston' raction. ENERGY LE The Stern and (s, Dempster	r's and 9 + 3
Production Bainbrid UNIT – Excitation Experiment	on and properties of positive rays – Thomson's parabola me ges mass –spectrographs (e/m) – Mass defect and Packing Fi III: IONISATION POTENTIAL AND SPLITTING OF on and ionization potential – Davis and Goucher's method – T	ethod – Aston' raction. ENERGY LE The Stern and o ation of norma	s, Dempster XVELS Gerlach Il Zeeman e	r's and $9+3$
Production Bainbrid UNIT – Excitation Experimenta Anamalo	on and properties of positive rays – Thomson's parabola me ges mass –spectrographs (e/m) – Mass defect and Packing Fr III: IONISATION POTENTIAL AND SPLITTING OF on and ionization potential – Davis and Goucher's method – T ent – Zeeman effect – Larmor's theorem – Debye's explanation	ethod – Aston' raction. ENERGY LE The Stern and of ation of normation and explana	s, Dempster VELS Gerlach Il Zeeman e tion of split	r's and $9+3ffect -ting o$
Production Bainbrid UNIT – Excitation Experiment Anamalon D ₁ and D	on and properties of positive rays – Thomson's parabola me ges mass –spectrographs (e/m) – Mass defect and Packing Fr III: IONISATION POTENTIAL AND SPLITTING OF on and ionization potential – Davis and Goucher's method – T ent – Zeeman effect – Larmor's theorem – Debye's explana- bus Zeeman effect – theoretical explanation. Lande's 'g' factor	ethod – Aston' raction. ENERGY LE The Stern and of ation of normation and explana	s, Dempster VELS Gerlach Il Zeeman e tion of split	r's and 9+3 ffect - ting o ly).
Production Bainbrid UNIT – Excitation Experiment Anamalon D_1 and D_1 UNIT –	on and properties of positive rays – Thomson's parabola me ges mass –spectrographs (e/m) – Mass defect and Packing Fi III: IONISATION POTENTIAL AND SPLITTING OF on and ionization potential – Davis and Goucher's method – T ent – Zeeman effect – Larmor's theorem – Debye's explana- ous Zeeman effect – theoretical explanation. Lande's 'g' factor D_2 lines of sodium – Paschen back effect–theory – Stark effect	ethod – Aston' raction. ENERGY LE The Stern and (ation of norma or and explana et (qualitative t	s, Dempster VELS Gerlach Il Zeeman e tion of split reatment on	f's and 9 + 3 ffect - ting of 1y). 9 + 3
Production Bainbrid UNIT – Excitation Experiment Anamalo D ₁ and D UNIT – X–rays –	on and properties of positive rays – Thomson's parabola me ges mass –spectrographs (e/m) – Mass defect and Packing Fr III: IONISATION POTENTIAL AND SPLITTING OF on and ionization potential – Davis and Goucher's method – 7 ent – Zeeman effect – Larmor's theorem – Debye's explana- bus Zeeman effect – theoretical explanation. Lande's 'g' factor of sodium – Paschen back effect–theory – Stark effect IV: X–RAYS	ethod – Aston' raction. ENERGY LE The Stern and (ation of norma or and explana et (qualitative t g's X–ray spec	s, Dempster CVELS Gerlach Il Zeeman e tion of split reatment on ctrometer –	r's and 9 + 3 ffect - ting o ly). 9 + 3 Laue's
Production Bainbridd UNIT – Excitation Experiment Anamalon D ₁ and D UNIT – X-rays – experiment	on and properties of positive rays – Thomson's parabola me ges mass –spectrographs (e/m) – Mass defect and Packing Fr III: IONISATION POTENTIAL AND SPLITTING OF on and ionization potential – Davis and Goucher's method – 7 ent – Zeeman effect – Larmor's theorem – Debye's explana- bus Zeeman effect – theoretical explanation. Lande's 'g' factor of sodium – Paschen back effect–theory – Stark effect IV: X–RAYS - production – detection and properties – Bragg's law – Bragg	ethod – Aston' raction. ENERGY LE The Stern and G ation of norma or and explana of and explana t (qualitative t g's X–ray spectra	s, Dempster CVELS Gerlach Il Zeeman e tion of split reatment on ctrometer – a – Characte	f's and 9 + 3 ffect - ting o ly). 9 + 3 Laue's eristic
Production Bainbrid UNIT – Excitation Experiment Anamalon D ₁ and D UNIT – X-rays – experiment of X-rays	on and properties of positive rays – Thomson's parabola me ges mass –spectrographs (e/m) – Mass defect and Packing Fr III: IONISATION POTENTIAL AND SPLITTING OF on and ionization potential – Davis and Goucher's method – T ent – Zeeman effect – Larmor's theorem – Debye's explana- ous Zeeman effect – theoretical explanation. Lande's 'g' factor of sodium – Paschen back effect–theory – Stark effect IV: X–RAYS - production – detection and properties – Bragg's law – Bragg- ent – The Powder crystal method –Rotating crystal method –	ethod – Aston' raction. ENERGY LE The Stern and G ation of norma or and explana of and explana t (qualitative t g's X–ray spectra	s, Dempster CVELS Gerlach Il Zeeman e tion of split reatment on ctrometer – a – Characte	f's and 9 + 3 ffect - ting of 1y). 9 + 3 Laue's eristics
Production Bainbrid UNIT – Excitation Experiment Anamalon D ₁ and D UNIT – X–rays – experiment of X–ray operation	on and properties of positive rays – Thomson's parabola me ges mass –spectrographs (e/m) – Mass defect and Packing Fr III: IONISATION POTENTIAL AND SPLITTING OF on and ionization potential – Davis and Goucher's method – Te ent – Zeeman effect – Larmor's theorem – Debye's explana- ous Zeeman effect – theoretical explanation. Lande's 'g' factor of sodium – Paschen back effect–theory – Stark effect IV: X–RAYS - production – detection and properties – Bragg's law – Bragg ent – The Powder crystal method –Rotating crystal method – or spectrum – Moseley's law – Compton effect – Determina- na and elements of Symmetry.	ethod – Aston' raction. ENERGY LE The Stern and G ation of norma or and explana of and explana of (qualitative t g's X–ray spect - X–ray spectra tion of wavele	s, Dempster VELS Gerlach Il Zeeman e tion of split reatment on ctrometer – a – Characte ength – Syn	f's and 9 + 3 ffect - ting o ly). 9 + 3 Laue's eristic nmetry
Production Bainbrid UNIT – Excitation Experiment Anamalon D ₁ and D UNIT – X–rays – experiment of X–ray operation	on and properties of positive rays – Thomson's parabola merges mass –spectrographs (e/m) – Mass defect and Packing Finite in and ionization potential – Davis and Goucher's method – Teent – Zeeman effect – Larmor's theorem – Debye's explanations zeeman effect – theoretical explanation. Lande's 'g' factory is a solution – Paschen back effect—theory – Stark effect is production – detection and properties – Bragg's law – Braggent – The Powder crystal method –Rotating crystal method – v spectrum – Moseley's law – Compton effect – Determinants and elements of Symmetry. V: PHOTOELECTRIC EFFECT AND FREE ELECT METALS	ethod – Aston' raction. ENERGY LE The Stern and G ation of norma or and explana or and explana of (qualitative tr g's X–ray spect - X–ray spectra tion of wavele	s, Dempster VELS Gerlach Il Zeeman e tion of split reatment on ctrometer – a – Characte ength – Syn ORY OF	f's and 9 + 3 ffect - ting o ly). 9 + 3 Laue' hmetry 9 + 3
Production Bainbrid UNIT – Excitation Experiment Anamaloc D ₁ and D UNIT – X-rays – experiment of X-ray operation UNIT – Photoele	on and properties of positive rays – Thomson's parabola me ges mass –spectrographs (e/m) – Mass defect and Packing Fr III: IONISATION POTENTIAL AND SPLITTING OF on and ionization potential – Davis and Goucher's method – Tent – Zeeman effect – Larmor's theorem – Debye's explana- ous Zeeman effect – theoretical explanation. Lande's 'g' factor of sodium – Paschen back effect–theory – Stark effect IV: X–RAYS - production – detection and properties – Bragg's law – Brag ent – The Powder crystal method –Rotating crystal method – of spectrum – Moseley's law – Compton effect – Determina- na and elements of Symmetry. V: PHOTOELECTRIC EFFECT AND FREE ELEC METALS ctric effect – Lenard's experiment – Richardson and Comp	ethod – Aston' raction. ENERGY LE The Stern and G ation of norma or and explana or and explana or and explana or and explana or and explana ti (qualitative tr g's X–ray spectra tion of wavele CTRON THE	s, Dempster EVELS Gerlach Il Zeeman e tion of split reatment on Etrometer – a – Characte ength – Syn ORY OF nt – Experi	f's and 9 + 3 ffect - ting o ly). 9 + 3 Laue's eristic metry 9 + 3 menta
Production Bainbrid UNIT – Excitation Experiment Anamalon D ₁ and E UNIT – X-rays – experiment of X-ray operation UNIT – Photoele investiga	on and properties of positive rays – Thomson's parabola me ges mass –spectrographs (e/m) – Mass defect and Packing Fr III: IONISATION POTENTIAL AND SPLITTING OF on and ionization potential – Davis and Goucher's method – T ent – Zeeman effect – Larmor's theorem – Debye's explana- bus Zeeman effect – theoretical explanation. Lande's 'g' factor of sodium – Paschen back effect–theory – Stark effect IV: X–RAYS - production – detection and properties – Bragg's law – Brag ent – The Powder crystal method –Rotating crystal method – r spectrum – Moseley's law – Compton effect – Determina as and elements of Symmetry. V: PHOTOELECTRIC EFFECT AND FREE ELECO METALS ctric effect – Lenard's experiment – Richardson and Comp tions on the photoelectric effect – Laws of photoelectric em	ethod – Aston' raction. ENERGY LE The Stern and G ation of norma or and explana or and explana of (qualitative tr g's X–ray spectra tion of wavele ETRON THE pton experiment ission – Einste	s, Dempster VELS Gerlach Il Zeeman e tion of split reatment on etrometer – a – Characte ength – Syn ORY OF nt – Experi ein's photoe	f's and 9 + 3 ffect - ting o ly). 9 + 3 Laue' eristic nmetry 9 + 3 menta electric
Production Bainbrid UNIT – Excitation Experiment Anamalon D ₁ and E UNIT – X-rays – experiment of X-ray operation UNIT – Photoele investiga	on and properties of positive rays – Thomson's parabola merges mass –spectrographs (e/m) – Mass defect and Packing Frill: IONISATION POTENTIAL AND SPLITTING OF on and ionization potential – Davis and Goucher's method – Tent – Zeeman effect – Larmor's theorem – Debye's explanations Zeeman effect – theoretical explanation. Lande's 'g' factor Delines of sodium – Paschen back effect—theory – Stark effect IV: X–RAYS – production – detection and properties – Bragg's law – Braggent – The Powder crystal method –Rotating crystal method – v spectrum – Moseley's law – Compton effect – Determinants and elements of Symmetry. V: PHOTOELECTRIC EFFECT AND FREE ELECOMETALS ctric effect – Lenard's experiment – Richardson and Compton and Comp	ethod – Aston' raction. ENERGY LE The Stern and G ation of norma or and explana or and explana of (qualitative tr g's X–ray spectra tion of wavele ETRON THE pton experiment ission – Einste	s, Dempster VELS Gerlach Il Zeeman e tion of split reatment on etrometer – a – Characte ength – Syn ORY OF nt – Experi ein's photoe	f's and 9 + 3 ffect - ting o ly). 9 + 3 Laue' eristic nmetry 9 + 3 menta electric
Production Bainbrid UNIT – Excitation Experiment Anamaloc D ₁ and D UNIT – X-rays – experiment of X-ray operation UNIT – Photoele investiga equation	on and properties of positive rays – Thomson's parabola me ges mass –spectrographs (e/m) – Mass defect and Packing Fr III: IONISATION POTENTIAL AND SPLITTING OF on and ionization potential – Davis and Goucher's method – T ent – Zeeman effect – Larmor's theorem – Debye's explana- bus Zeeman effect – theoretical explanation. Lande's 'g' factor of sodium – Paschen back effect–theory – Stark effect IV: X–RAYS - production – detection and properties – Bragg's law – Brag ent – The Powder crystal method –Rotating crystal method – r spectrum – Moseley's law – Compton effect – Determina as and elements of Symmetry. V: PHOTOELECTRIC EFFECT AND FREE ELECO METALS ctric effect – Lenard's experiment – Richardson and Comp tions on the photoelectric effect – Laws of photoelectric em	ethod – Aston' raction. ENERGY LE The Stern and G ation of norma or and explana or and explana or and explana or and explana or and explana or and explana ti (qualitative tr g's X–ray spectra tion of wavele CTRON THE pton experiment ission – Einster toelectric cells	s, Dempster CVELS Gerlach Il Zeeman e tion of split reatment on ctrometer – a – Characte ength – Syn ORY OF nt – Experi ein's photoe – Photo en	f's and 9 + 3 ffect - ting o ly). 9 + 3 Laue' eristic nmetry 9 + 3 menta electric

		LECTURE	TUTORIAL	TOTAL
	HOURS	45	15	60
TEXT	BOOKS			
1.	Murugeshan R Kiruthiga Sivaprasath, "Modern Phy	ysics", 18 th Ed	lition, S. Chand	Publishing,
	A-27, 2nd Floor, Mohan Co-operative Industrial Es	state, New Delh	ni – 110044, 201	9
2.	Jb Rajam, "Atomic Physics", 7 th Edition, S. Chand	d Publishing , A	A–27, 2nd Floor,	, Mohan
	Co-operative Industrial Estate, New Delhi - 110044	4, 2009		
REFE	RENCE BOOKS			
1.	Sehgal Nk, Sehgal Dl, Chopra Kl, "Modern Physic	s", S. Chand P	ublishing , A–27	7, 2nd
	Floor, Mohan Co-operative Industrial Estate, New I	Delhi – 110044	, 2013.	
2.	Ghoshal S.N., "Atomic Physics (Modern Physics)"	, S. Chand Pul	blishing , A–27,	2nd Floor,
	Mohan Co-operative Industrial Estate, New Delhi -	110044, 2010		
3.	Rai Choudhury S., Shobhit Mahajan, Arthur Beiser,	"CONCEPT C	OF MODERN PI	HYSICS ",
	6 th Edition, Tata McGrawHill, 2013			
E REI	FERENCES			
1.	Amal Kumar Das, Department of Physics, IIT Kha	ragpur, "Atomi	c and Molecula	r Physics ",
	National Programme on Technology	Enhanced	Learning	(NPTEL),
	https://www.digimat.in/nptel/courses/video/115105	100/L20.html		

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	0	3	3	3	0	1
CO2	3	2	1	2	3	2	0	1
CO3	3	2	1	2	3	2	3	2
CO4	3	2	1	2	3	2	0	2
CO5	3	2	1	2	3	2	0	2
Total	15	10	4	11	15	11	2	8
Scaled to 1, 2, 3	3	2	1	3	3	3	1	2

Mapping of COs with POs

0 - No relation 1 - Low relation 2 - Medium relation

COU	RSE C	ODE	COURSE NAME	L	Т	P	С
X	PH205	5		0	0	2	2
С	P	Α	ELECTRICITY AND MAGNETISM - LABORATORY	L	Т	P	Η
0	1.5	0.5	LADORATORY	0	0	3	3
COUR On the			MES npletion of this course students would able to	Dom	ain	Le	vel

CO1	Apply knowledge of the concepts of electrostatics	Psychomotor:	Mee	chanism
CO2	Explain Growth and decay of current in a circuit LCR	Psychomotor:		lyze,
00-	and <i>demonstrate</i> calibration of ammeter and voltmeter	Affective:		chanism
	using a potentiometer.		-	pond
CO3	Recall Biot-Savart's law, explain current passing through	Psychomotor:	App	•
005	straight conductor, coil, solenoid and <i>distinguish</i> various	Affective:		chanism
	properties of magnetic materials		Rec	
CO4	Recall Laws of thermo e.m.f, and apply knowledge of	•		lyze
	the concepts of Thermodynamics to thermocouple	Affective:	Mec	chanism
~~ -	Define Faraday's law and Lenz's law and demonstrate	Psychomotor:	Ana	lyze
CO5	mutual and self inductance of the coil and analyze the	Affective:	Mec	chanism
	magnetic materials for utilization in varied field.	Allective.	Rec	eive
Ex. No	Experiments			COs
1.	Meter bridge – determination of specific resistance.			CO1
2.	Determination of Internal resistance of the given cell using	ng Potentiometer.		CO1
3.	Calibration of low range ammeter using Potentiometer .			CO2
4.	Calibration of low range voltmeter using Potentiometer.			CO2
5.	Carey Foster Bridge – Temperature Coefficient.			CO3
6.	Potentiometer – E.M.F of a Thermocouple.			CO3
7.	Deflection magnetometer – TAN A & TAN B.			CO4
8.	Deflection magnetometer – TAN C.			CO4
9.	Variation of magnetic field at axis of circular coil.			CO5
10.	Determination horizontal component of earth magnetic	field–Field along	the	
	axis of the coil.	C		CO5
1	LECTURE	PRACTICAL		OTAL
	HOURS 0	45		45

TEXT BOOKS

- 1. Arora C. L., "B.Sc .Practical Physics", S. Chand & Company Ltd. Ram Nagar, New Delhi– 110055. 2007.
- Shukla R. K. & Anchal Srivastava. "Practical Physics," New Age International (P) Ltd, Publishers, (Formerly Wiley Eastern Limited), 4835/24, Ansari Raod, Daryagani, New Delhi– 11002. 2006.

REFERENCE BOOKS

1. Geeta Sanon, "B. Sc., Practical Physics", 1st Edition, S. Chand and Company, 2007.

- 2. Chattopadhyay D., Rakshit P. C. and Saha, B., "*An* Advanced Course in Practical Physics," 8th Edition, Books & Allied Ltd., Calcutta, 2007.
- 3. Squires G. L., "Practical Physics", Fourth edition, Cambridge University Press, 2001.
- 4. Indu Prakash and Ramakrishna, "A Text Book of Practical Physics," 11th Edition, Kitab Mahal, New Delhi, 2011.
- 5. Ouseph C., Rangarajan K., "A Text Book of Practical Physics", Volume I,II, S.Viswanathan Publishers,1997.

E-Resources:

1. Amal Kumar Das, Department of Physics, IIT Kanpur, "Introduction to Electromagnetic Theory", National Programme on Technology Enhanced Learning (NPTEL), <u>https://onlinecourses.nptel.ac.in/noc20_ph16/preview</u>

Mapping with	Programme	Outcomes
--------------	-----------	----------

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	1		2	1	2	3	3
CO2	3	1		2	1	2	3	2
CO3	3	1		1	1	2	2	1
CO4	3	1		2	1	2	3	2
CO5	3	1		2	1	2	3	3
Total	15	5		9	5	10	14	11
Scaled to 1, 2, 3	3	1		2	1	2	3	3

0 - No relation 1 - Low relation 2 - Medium relation 3 - High relation

COU	COURSE CODE COURSE NAME					Р	С
X	KMG20	6	CALCULUS AND DIFFERENTIAL	4	1	0	5
С	Р	Α	EQUATIONS	L	Т	Р	Н
4.7	0	0.3		4	1	0	5
				·			
		FCOME ful comp	CS letion of this course students would able to	DOM	IN	LEVI	EL
CO1	curv	ature. Cł	us of curvature, centre of curvature and circle of hange the order of integration and to compute the ral. <i>Apply</i> double to find the area between curves.	Cogni	ive	Understa Apply	U

vectors -	HOURS —	LECTURE 60	TUTORI 15	AL	TOTAL 75
vectors -	1			AL	TOTAL
vectors -	· · · · · ·			·	
	nd vector fields –Differentiation of vectors – Grad - line integral – surface integral – Green's theorem	-			
UNIT –	V: VECTOR CALCULUS				2+3
Definitio	on of partial differential equations by elimination ns of general, particular and complete solutions – sol = 0, $f(z, p, q) = 0$, $f(x,p) = f(y,q)$, $z = px + qy + f(p,q)$	lving standard	forms f(p, q)	=0,f(x)	(x,p,q) = 0
	ere v is any function of x – Linear equations with var IV: PARTIAL DIFFERENTIAL EQUATIONS	iable coefficie	ents.	1	2+3
Solving s	second order linear differential equations with constant	ant coefficien	ts whose R.H		
-	integrals using Beta and Gamma functions. III: SECOND ORDER LINEAR DIFFERENTIA	L EOUATIC	DNS	1	2+3
	on of triple integrals – Beta and Gamma functions	– relations b	between them	– Eva	luation of
UNIT –	II : TRIPLE INTEGRALS, BETA AND GAMMA	FUNCTION	NS	1	2+3
area betw	 – change of order of integration in double integrals- veen curves. 				
Curvatur	e – Radius of curvature – centre of curvature – c	circle of curv	ature – Eval	uation	of doub
UNIT –	I: CURVATURE AND DOUBLE INTEGRALS	ui.			2+3
CO5	Define gradient, divergence and curl of vect theorem to evaluate line, surface and volume integr		Cognitive		embering plying
CO4	solve standard forms of partial differential equation	s.	Cognitive	-	plying
GO 4	<i>Explain</i> general, complete and particular solutions		O :::	Unde	rstandin
COS	<i>Solve</i> the linear homogeneous and non– homogeneous differential equation with constant and variable coe		Cognitive	Ар	plying
CO3	integrals and to <i>explain</i> the relation between them.		Cognitive	Ар	plying

www.nptel.ac.in

- 1. Advanced Engineering Mathematics Prof. Jitendra Kumar
- 2. Department of Mathematics Indian Institute of Technology, Kharagpur

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	1			1	1	1
CO2	3	2	1			1	1	1
CO3	3	2	1			1	1	1
CO4	3	2	1			1	1	1
CO5	3	2	1			1	1	1
Total	15	6	5	0	0	5	5	5
Scaled to 1, 2, 3	3	2	1	0	0	1	1	1

Mapping of COs with POs

0 - No relation

1 – Low relation

2 – Medium relation

	SEMESTER II						SS	С	
COU	RSE CODE		1	0	0	1	1		
COU	RSE NAME	ENVIRONMENTAL STUDIES		L	Т	Р	SS	Η	
C: P:	Α	0.7:0:0.3		1	0	0	1	2	
COU	RSE OUTCO	MES:	D	omai	in		Level	l	
CO1	Describe the anthropogen	e significance of natural resources and <i>explain</i> ic impacts.	burces and <i>explain</i> Cognitive Rememb						
CO2						Understand			
CO3		facts, consequences, preventive measures of ons and <i>recognize</i> the disaster phenomenon.						Remember Receiving	
CO4									
CO5	CO5 Becognize the impact of population and the concept of						Understand Apply		
UNIT	- I NATURA	AL RESOURCES AND ENERGY					3+3		
		t Day and its need- Forest resources: Use, De urface and ground water- Mineral resources: Env							

	ern agriculture, Fertilizer-P e and Non-renewable ener			
	TEMS AND BIODIVERS	SITY		3+3
Biogeochemical cycl and Aquatic ecosyste Conservation of Bioc	tion of an ecosystem - es- Food chains, Food webs em– Introduction to Biodive liversity: In-situ and Ex-situ	s, Structure and Function ersity- Endemic, Extinct a conservation.	of the Forest ed	cosystem
	ONMENTAL POLLUTIC			3+3
Marine pollution, M management: Causes	effects and control measure Noise pollution, Thermal , effects and control measure on – Pollution case studies.	pollution and Nuclear	hazards – Soli	id waste
UNIT -IV SOCIAI	L ISSUES AND THE ENV	IRONMENT	,	3+3
warming, Acid rain, Protection Act – Wat	ng– Resettlement and Rel Ozone layer depletion, N er Act – Wildlife Protection	Nuclear accidents and Ho Act – Forest Conservation	olocaust – Env on Act.	ironment
	POPULATION AND TH Variation among nations -			3+3
studies. LECTURE	Role of Information Tech TUTORIALS	PRACTICALS	TOT	
30	0		3()
2. Townser Science, 3. Trivedi Publicat 4. Disaster Distribu 5. Introduc REFERENCE 1. Trivedi Standard	.G. Jr., Environmental Scier nd C., Harper J and Michael UK, (2003). R.K and P.K.Goel, Introduct ions, India, (2003). mitigation, Preparedness, R tors Pvt. Ltd, New Delhi, (2 tion to International disaster	Begon, Essentials of Eco tion to Air pollution, Tech ecovery and Response, S 2006). r management, Butterwort mental Laws, Rules, Guid	ology, Blackwel nno Science BS Publishers & th Heinemann, (elines, Complia	1 2006). nces and
House, I 3. S.K.Dha New De	ham, W.P.Cooper, T.H.Gor Mumbai, (2001). meja, Environmental Engir lhi, (2012). Pisaster Risk Reduction in So	neering and Management,	S.K.Kataria and	d Sons,
House, I 3. S.K.Dha New De 4. Sahni, D	ham, W.P.Cooper, T.H.Gor Mumbai, (2001). meja, Environmental Engir Ihi, (2012).	neering and Management, outh Asia, PHI Learning,	S.K.Kataria and New Delhi, (20)	d Sons,

1.	http://www.e-booksdirectory.com/details.php?ebook=10526
2.	https://www.free-ebooks.net/ebook/Introduction-to-Environmental-Science
3.	https://www.free-ebooks.net/ebook/What-is-Biodiversity
4.	https://www.learner.org/courses/envsci/unit/unit_vis.php?unit=4
5.	http://bookboon.com/en/pollution-prevention-and-control-ebook
6.	http://www.e-booksdirectory.com/details.php?ebook=8557
7.	http://www.e-booksdirectory.com/details.php?ebook=6804
8.	http://bookboon.com/en/atmospheric-pollution-ebook
9.	http://www.e-booksdirectory.com/details.php?ebook=3749
10	. <u>http://www.e-booksdirectory.com/details.php?ebook=2604</u>

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	0	0	0	1	0	3	1
CO2	1	0	0	0	0	0	2	2
CO3	0	0	0	1	1	0	1	0
CO4	0	0	0	0	0	0	1	1
CO5	0	0	0	0	0	0	1	1
Total	2	0	0	1	2	0	8	5
Scaled to 1, 2, 3	1	0	0	1	1	0	2	1
	Low re	elation	2	– Med	ium rel	ation	3	– Hig

Mapping of COs with POs

0 - No relation	L
-----------------	---

COURSE CODE			COURSE NAME	L	Т	Р	С
	XPH30 1	L		0	0	2	2
С	Р	Α	PHYSICS WORKSHOP SKILLS	L	Т	Р	Η
0	1.5	0.5		0	0	4	4

COUR	RSE OUTCOMES	Domain	Level
On the	successful completion of this course students would able to	Domani	Level
CO1	<i>Relate</i> SI and CGS units and <i>Apply</i> their knowledge in various measuring instruments.	Cognitive	Understand, Apply
CO2	Recall and Develop their knowledge to find welding defect & handling of various tools and Distinguish like metal, composites and alloy materials.	Cognitive	Apply Analyze
CO3	<i>Apply</i> their knowledge to handle multimeter and soldering to construct circuit.	Cognitive	Apply
CO4	<i>Identify</i> the diode, transistor and FET – ICs on PCB and <i>Construct</i> the regulated power supply and timer circuits.	Cognitive	Understand, Apply

CO5	Infer small mechanism of lever, break and gear and Adapt	Cognitive	Understand,
003	working principle of power generation system.	Cognitive	Compare

UNIT – I: MEASURING INSTRUMENTS AND UNITS	7
Measuring units, conversion to SI and CGS., Familiarization with meter scale, Vernier	caliper,
Screw gauge and their utility. Measure the dimension of a solid block, volume of cyl	indrical
beaker/glass, diameter of a thin wire, thickness of metal sheet, etc. Use of Sextant to a	neasure
height of buildings, mountains, etc.	
UNIT – II: MECHANICAL SKILL	11
Concept of workshop practice, Overview of manufacturing methods: casting, foundry, ma	chining,
forming and welding – Types of welding joints and welding defects. Common materials	used for
manufacturing like steel, copper, iron, metal sheets, composites and alloy, wood. Cor	ncept of
machine processing - introduction to common machine tools like lathe, shaper, drilling,	milling
and surface machines. Cutting tools – lubricating oils – Cutting of a metal sheet using	blade –
Smoothening of cutting edge of sheet using file – Drilling of holes of different diameter	in metal
sheet and wooden block - Use of bench voice and tools for fitting - Make funnel usin	g metal
sheet.	
UNIT – III: ELECTRICAL SKILL	9
Use of Multimeter - Soldering of electrical circuits having discrete components (R, L and	C)
UNIT – IV: ELECTRONIC SKILL	9
Basic principle of diode, transistor and FET - ICs on PCB - Operation of oscilloscope -	Making
regulated power supply, timer circuit, electronic switch using transistor and relay	
UNIT – V: INTRODUCTION TO PRIME MOVERS	9
Mechanism, gear system, wheel, fixing of gears with motor axel - Lever mechanism - li	ifting of
heavy weight using lever, breaking systems, pulleys, working principle of power get	neration
systems – demonstration of pulley experiment.	
HANDS ON TRAINING IN THE FOLLOWING FOR LAB SKILLS	
1. To determine volume of one meter (length) thin wire using screw gauge.	CO1
2. To determine volume of cylindrical body by using vernier caliper.	CO1
3. Comparison of diameter of a thin wire using screw gauge and travelling microscope.	CO1
4. Drilling of Hole in metal, wood and plastic.	CO2
5. Cutting of metal sheet & glass sheet.	CO2
6. Fabrication of regulated power supply using Regulated ICs.	CO3
7. To construct using soldering and check the voltage and current of given circuit (L, C &	
R).	CO3
8. To design PCB for given circuit.	CO4
9. To design basic gates using discrete components.	CO4
10. Lifting of heavy weights using simple pulley/lever arrangement.	CO5

	—	40	40			
TEXT BOOKS						
1. Theraja B.L., "A text book in Electrical Technology", S. Chand and company.						
2. Say M.G., "Performance and design of AC machines," ELBS Edn.						
3. John K.C., "Mechanical workshop practice", PHI learning Pvt, Ltd., 2010						
REFERENCES						

- 1. Bruce J. Black, "Workshop processes, practices and materials", 3rd Edn., Editor Newnes [ISBN: 0750660732], 2005
- 2. Lawrence Smyth/Liam Hennessy, "New engineering technology", The Educational company of Ireland [ISBN: 0861674480]

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	1		2	1	2	3	3
CO2	3	1		2	1	2	3	2
CO3	3	1		1	1	2	2	1
CO4	3	1		2	1	2	3	2
CO5	3	1		2	1	2	3	3
Total	15	5		9	5	10	14	11
Scaled to 1, 2, 3	3	1		2	1	2	3	3

Mapping with Programme Outcomes

0 - No relation 1 - Low relation 2 - Medium relation

COU	RSE C	ODE	COURSE NAME	L	Т	Р	С
2	XCG30	2	INORGANIC ORGANICAND DUVCICAL	3	0	0	3
С	Р	Α	INORGANIC, ORGANIC AND PHYSICAL CHEMISTRY – I	L	Т	Р	Η
2.8	0	0.2	CHEIVIISI KY – I	3	0	0	3

	SE OUTCOMES successful completion of this course students would able to	Domain	Level
C01	<i>Describe</i> the key features, shapes and structures of coordination complexes and <i>understand</i> the solid state chemistry.	Cognitive	Remembering Understand,
CO2	Describe and Recall the fundamental principles of organic chemistry that include chemical bonding, nomenclature, structural isomerism, stereochemistry, chemical reactions and mechanism.	Cognitive	Remembering
CO3	<i>Understand</i> the structures and properties of carbohydrates and amino acids.	Cognitive	Understand
CO4	<i>Explain</i> the kinetic molecular theory of gases and its properties and <i>Use</i> of phase rule.	Cognitive	Understand

	<i>Relate</i> the rate of formation of a product to the rate of		
CO5	disappearance of a reactant for the given experimental data	Cognitive	Remembering
	and reaction stoichiometry.		

UNIT – I: CO–ORDINATION CHEMISTRY AND SOLID STATE CHEMISTRY 9+2

IUPAC nomenclature of mono nuclear coordination compounds, Isomerism, Geometrical isomerism in four co–ordinate and six co–ordinate complexes, Theories of Coordination compounds–Werner's theory, Valence bond theory.

Amorphous, Crystalline Solid–Lattice– unit cell, crystal systems, types of crystals, packing in solids, ionic crystals, defects in solids, Principles of X–ray diffraction.

UNIT – II: BASICS OF ORGANIC CHEMISTRY

Nomenclature of straight chain and closed ring compounds-mono and poly-functional organic compounds. Hybridisation – sp, sp2 and sp3. –Bond length, bond angle, dipole moment-inductive effect, mesomeric effect and hyperconjucation. Isomerism – geometrical; and optical isomerism, optical activity, asymmetry, dissymmetry, elements of symmetry, R, S notations.

UNIT – III: CARBOHYDRATES, AMINO ACIDS & PROTEINS

9+2

9+4

9+4

9+3

Carbohydrates: Classification – glucose and fructose – preparation and properties – Elucidation of structure of glucose – configuration of glucose – Fischer and Haworth cyclic structures.

Amino acids & proteins : Amino acids – Classification– Preparation and properties –isoelectric point – peptides (elementary treatment) – Proteins – Classification based on physical properties and biological functions. Structures of proteins – primary and secondary (elementary treatment).

UNIT – IV: GASEOUS STATE AND PHASE RULE

Gaseous state – Postulates of kinetic theory of gases – derivation of expression for pressure of an ideal gas on the basis of kinetic theory–gaseous laws. Deviation of real gases from ideal behaviour–reasons – derivation for vander Waals gas equation – behaviour of real gases

Average, root mean square, and most probable velocities – (equations only–no derivation) relationship between these different velocities.

Phase rule – Definition – phase, component, degree of freedom, phase rule – application to one component system – water system.

UNIT – V: CHEMICAL KINETICS AND CHEMICAL EQUILIBRIUM

Chemical kinetics – Rate of reaction, rate law, order, molecularity, first order reaction, half life period of first order reaction, pseudo first order reaction, zero and second order reactions– experimental determination of order of reactions – Theories of reaction rate – Arrhenius and collision theories – postulates.

Chemical equilibrium – Criteria of homogeneous and heterogeneous equilibria, decomposition of HI, N₂O₄, CaCO₃,PCl₅.

	LECTURE	TUTORIAL	TOTAL
HOURS	45	0	60

TEXT BOOKS

- 1. Vishnoi N.K., "Textbook of Physical Chemistry",- Vol 1-Paperback , Jan 2010 .
- 2. Neeraj Kumar, "Avanced Problems in Physical Chemistry", 2015.
- 3. Paula B. Y., "Organic Chemistry", 3rd Edition, Pearson Education, Inc.(Singapore), New Delhi, 2002.
- 4. Shriver D. F. and Atkins P. W., "Inorganic Chemistry", 3rd Ed., W. H. Freeman and Co, London, 1999.
- 5. Puri. B.R., Sharma. L.R., & Kalia .C., "Principles of Inorganic Chemistry", Vallabh publications, New Delhi, 2003.
- 6. Dogra S.K. and Dogra S. "Physical Chemistry through Problems", New age international, 4th edition 1996.

REFERENCE BOOKS

- 1. Bahl B.S., Tuli G.D. and Arun Bahl, "Essentials of Physical Chemistry", Chand & Co., Delhi, 2012.
- 2. Lee.J.D., "A New Concise Inorganic Chemistry", ELBS, London, 2010.
- 3. Morrison R. T, Boyd R.N.," Organic Chemistry", 7th edition, Prentice Hall, New Delhi, 2008.
- 4. Soni. P.L, Chawala H.M., "Text book of Organic Chemistry", 26th edition, Sultan Chand, Delhi , 2011.
- 5. Raj.K. Bansal, "Organic Reaction Mechanisms", 3rd edition, Tata MCGraw–Hill Publishing Company Limited, New Delhi, 2012.
- 6. Madan. R.D. ., "Modern Inorganic Chemistry", S. Chand & sons, New Delhi, 2013.
- 7. Soni P.L., "Textbook of Inorganic Chemistry", Sultan Chand & Sons, New Delhi, 2013.
- 8. Finar I.L., Organic Chemistry Vol. II, Pearson Education, New Delhi, 2000.
- 9. Srivastava V.K., Srivastava K.K., "Introduction to Chromatography", 2nd edition, 2000.

E RESOURCES

- 1. <u>http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques</u>
- 2. http://freevideolectures.com/Course/2642/Chemistry-51A-Organic-Chemistry

	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
	CO1	3	1		2	2	2	1	2
	CO2	3	2		2	1	1		
	CO3	2		1	2		1		1
	CO4	2	1		1				
	CO5	2	1	1	2	2	2	2	1
	Total	12	5	2	9	5	6	3	4
	Scaled to 1, 2, 3	3	1	1	2	2	2	1	1
) – No re	lation	1 – Lov	v relatio	n	2 - Med	ium rela	tion	3 – F	ligh rela

Mapping of CO's with PO's:

COUR	CODE			C	OURSE	E NAME			L	Т	P		С	
XI	PH30	3		T	HEDN	лат ри	IYSICS			3	0	0		3
С	Р	Α					MECHA			L	Т	P		Η
3	0	0		51	A 1 15 1		MECHA			3	0	0		3
COURSE OUTCOMES									D	OMAI	N	LEVEL		
On the successful completion of this course students would able to									-					
	-		Coefficient of thermal conductivity, <i>Determine</i>			- C	ognitiv	e		membering,				
CO1		ermal conductivity of bad conductor and <i>Discuss</i> the					0	-	compare and					
	various laws for heat flow.											Evaluate		
CO2	Explain the nature of heat radiation and <i>List</i> the						t the laws	C	ognitiv	e	Remembering			
		ited to ra						1 1 7 1 .		0		and a		
GOA	-					nperatur	re methoo	ds and <i>List</i>						ering
CO3	the	related a	applic	cations					C	Cognitive		and		
	T • •		C	41	1	• 1	F 1 ·	1, .1 .						nding
CO4				thermo	dynam	nics and	Explain	latent heat	C	ognitiv	e			ering,
		entropy	•			6		<u> </u>		-				nding
GOF				Understand basic concepts of statistical mechanication										ering
CO5	1 1					1		• . •		and				
000	-		nous	distribu	ution la	aws and	Compar	re the three	C	ognitiv				
	stat	istics					Compar	re the three	C	ognitiv				nding
UNIT – Conduct and dete	stat I: ' ion i	istics TRANS n solids ation –	SMIS 5 : Th - Forb	SION ermal e's me	OF H conduction	EAT ction – t – therma	thermal c al condu	conductivity ctivity of a edmann – 1	y of	a good	cond luctor	under uctor	eoi	nding 9 theor ry an
UNIT – Conduct and dete	stat I: ' ion i ermin natior appl	istics TRANS n solids ation – n – Lee's ications	SMIS s : Th - Forb 's dis s of co	SION ermal e's me c meth onducti	OF HI conduct ethod - lod - I	EAT ction – t – therma Derivatio	thermal c al condu	conductivity ctivity of a	y of	a good	cond luctor	under uctor	eoi	nding 9 theor ry an
UNIT – Conduct and dete determir practical UNIT –	stat I: ' ion i ermin natior appl II:	istics TRANS n solids ation – n – Lee's ications RADIA	SMIS s : Th - Forb 's dis s of co ATIO	SION ermal c e's me c meth onducti	OF HI conduct ethod - lod – I on of I	EAT ction – t – therma Derivationeat	thermal c al condu on of Wi	conductivity ctivity of a edmann –]	of poo Fran	a good or conc z law a	cond luctor and it	undera uctor · – th s lim	eon	nding 9 theor ry an ions 9
UNIT – Conduct and dete determir practical UNIT – Radiatio	stat I: ' ion i ermin natior appl II: n – S	istics TRANS n solids ation – n – Lee's ications RADIA Stefan's	SMIS s : Th - Forb 's dis s of co ATIO s law	SION ermal c ermal c meth onducti N – Dedu	OF HI conduction	EAT ction – t – therma Derivatione neat of New	thermal c al condu on of Wi ton's lav	conductivity ctivity of a edmann – 1 v from Stef	of poo Fran `an's	a good or conc z law a	cond luctor and it Boltz	uctor uctor - th s lim	eon itat	nding 9 theor ry an- ions 9 law
UNIT – Conduct and dete determir practical UNIT – Radiatio Black b	stat I: ' ion i ermin natior appl II: n – S pody	istics TRANS n solids ation – n – Lee's ications RADIA Stefan's radiatio	SMIS s : Th - Forb 's dis s of co ATIO s law on –	SION ermal e's me c meth onducti N – Dedu Wein	OF HI conduc ethod - iod – I on of I uction 's law	EAT ction – t – therma Derivatione neat of New 7 – Ra	thermal c al condu on of Wi ton's lav yleigh–Je	conductivity ctivity of a edmann – 1 v from Stef ean's law	r of poe Fran Can's – P	a good or conc z law a law – lanck's	cond luctor and it Boltz s law	uctor - th s lim zmani	- eon itat	nding 9 theor ry an ions 9 law gstror
UNIT – Conduct and dete determir practical UNIT – Radiatio Black b	stat I: ' ion in erminination appl II: n - S pody mete	istics TRANS n solids ation – n – Lee's ications RADIA Stefan's radiatio r – Sola	SMIS s : Th - Forb 's dis s of co ATIO s law on – ar con	SION ermal c ermal c meth onducti N – Dedu Wein nstant -	OF HI conduc ethod - iod – I on of I uction 's law	EAT ction – t – therma Derivatione neat of New 7 – Ra	thermal c al condu on of Wi ton's lav yleigh–Je	conductivity ctivity of a edmann – 1 v from Stef	r of poe Fran Can's – P	a good or conc z law a law – lanck's	cond luctor and it Boltz s law	uctor - th s lim zmani	- eon itat	nding 9 theor ry and ions 9 law gstror
UNIT – Conduct and dete determir practical UNIT – Radiatio Black b Pyrhelio voltaic c	stat I: ' ion if ermin natior appl II: n - S pody mete rell -	istics TRANS n solids ation – n – Lee's ications RADIA Stefan's radiatio r – Sola	SMIS s : Th · Forb 's dis s of co ATIO ; law on – ar con ar con	SION ermal ermal c meth onducti N – Dedu Wein ostant - effect.	OF HI conduction - I on of I uction 's law - Surfa	EAT ction – t - therma Derivation neat of New 7 – Ray ace temp	thermal c al condu on of Wi ton's lav yleigh–Je	conductivity ctivity of a edmann – 1 v from Stef ean's law	r of poe Fran Can's – P	a good or conc z law a law – lanck's	cond luctor and it Boltz s law	uctor - th s lim zmani	- eon itat	nding 9 theor ry and ions 9 law gstror
UNIT – Conduct and dete determir practical UNIT – Radiatio Black b Pyrhelio voltaic c UNIT -	stat I: ' ion in ermin hatior appl II: n - S body mete cell - II:	istics TRANS n solids ation – n – Lee's ications RADIA Stefan's radiatio r – Sola Greenho I: LOW	SMIS s : Th - Forb 's dis s of co ATIO ; law on – ar con ouse of WTE	SION ermal c ermal c meth onducti N – Dedu Wein nstant - effect. MPER	OF HI conduction od – I on of I uction 's law – Surfa	EAT ction – t - therma Derivatione neat of New 7 – Ray ace temp	thermal c al condu on of Wi ton's lav yleigh–Je perature	conductivity ctivity of a edmann – 1 v from Stef ean's law	r of 1 poo Fran Can's – P	a good or cond z law a law – lanck's es of so	cond luctor and it Boltz a law olar e	undera uctor - th s lim zmani - 4 nergy	star eon itat	nding 9 theor ry and ions 9 law gstror Phot 9
UNIT – Conduct and dete determir practical UNIT – Radiatio Black b Pyrhelio voltaic c UNIT – Joule –	stat I: ' ion i ermin natior appl II: n – S oody meter cell – III Thon	istics TRANS n solids ation – n – Lee's ications RADIA Stefan's radiatio r – Sola Greenho I: LOW nson's e	SMIS s : Th - Forb 's dis s of co ATIO - ar con ouse of V TE effect	SION ermal c ermal c meth onducti N – Dedu Wein nstant - effect. MPER – Pore	OF HI conduction od – I on of I uction 's law – Surfa ATUI	EAT ction – t – therma Derivation neat of New γ – Ray ace temp RE Ig expendence	thermal c al condu on of Wi ton's law yleigh–Je perature	conductivity ctivity of a edmann – 1 v from Stef ean's law of sun – So	r of poo Fran Tan's - P pource pn of	a good or conc z law a a law – Planck's es of so f gases	cond luctor and it Boltz blar e	uctor uctor - th s lim zmann - z nergy de's 1	star eon itat	nding 9 theor ry an ions 9 law gstror Phot 9 thod
UNIT – Conduct and dete determir practical UNIT – Radiatio Black b Pyrhelio voltaic c UNIT – Joule – Liquefac	stat I: ' ion i ermin hatior appl II: n - S body mete cell - III Thom ction	istics TRANS n solids ation – n – Lee's ications RADIA Stefan's radiatio r – Sola Greenho I: LOW nson's e of hyc	SMIS s : Th - Forb 's dis s of co ATIO ; law on – ar con ouse of V TE effect vdroge	SION ermal c ermal c meth onducti N – Dedu Wein nstant - effect. MPER – Poro	OF HI conduction on of I uction 's law - Surfa ATUI Dus plu	EAT ction – t – therma Derivatione neat of New γ – Ray ace temp RE ag expen- atic der	thermal c al condu on of Wi ton's lav yleigh–Je perature riment – nagnetiza	conductivity ctivity of a edmann – 1 v from Stef ean's law of sun – So Liquefactio	r of poo Fran Can's – P Durce	a good or cond z law a law – lanck's es of so f gases faction	cond luctor and it Boltz a law olar e -Lin of	uctor uctor - th s lim zmann - 2 nergy de's r He–	star eon itat n's Ang y – met Pr	nding 9 theor ry and ions 9 law gstror Phot 9 thod actica
UNIT – Conduct and dete determir practical UNIT – Radiatio Black b Pyrhelio voltaic c UNIT – Joule – Liquefac	stat I: ' ion i ermin natior appl II: n – S ody meter eell – III Thom ction	istics TRANS n solids ation – n – Lee's ications RADIA Stefan's radiatio r – Sola Greenho I: LOW nson's e of hyco	SMIS s : Th - Forb 's dis s of co ATIO ar con ouse of V TE effect vdroge empe	SION ermal c ermal c meth onducti N – Dedu Wein nstant - effect. MPER – Poro	OF HI conduction on of I uction 's law - Surfa ATUI Dus plu	EAT ction – t – therma Derivatione neat of New γ – Ray ace temp RE ag expen- atic der	thermal c al condu on of Wi ton's lav yleigh–Je perature riment – nagnetiza	conductivity ctivity of a edmann – 1 v from Stef ean's law of sun – So Liquefactio ation – Li	r of poo Fran Can's – P Durce	a good or cond z law a law – lanck's es of so f gases faction	cond luctor and it Boltz a law olar e -Lin of	uctor uctor - th s lim zmann - 2 nergy de's r He–	star eon itat n's Ang y – met Pr	nding 9 theor ry and ions 9 law gstror Phot 9 thod actica
UNIT – Conduct and dete determir practical UNIT – Radiatio Black b Pyrhelio voltaic c UNIT – Joule – Liquefac applicati carbon d	stat ion i ermin hatior appl II: n – S body mete cell – III Thom ction lioxic	istics TRANS n solids ation – n – Lee's ications RADIA Stefan's radiatio r – Sola Greenho I: LOW nson's e of hyco	SMIS s : Th - Forb 's dis s of co ATIO - law on – ar con ouse of V TE effect vdroge emper- ice).	SION ermal c ermal c meth onducti N – Dedu Wein nstant - effect. MPER – Poro en – – rature -	OF HI conduction on of I uction 's law - Surfa ATUI ous plu Adiaba - Refri	EAT ction – t – therma Derivatione neat of New γ – Ray ace temp RE 1g expendential atic der agerating	thermal c al condu on of Wi ton's lav yleigh–Je perature riment – nagnetiza	conductivity ctivity of a edmann – 1 v from Stef ean's law of sun – So Liquefactio ation – Li	r of poo Fran Can's – P Durce	a good or cond z law a law – lanck's es of so f gases faction	cond luctor and it Boltz a law olar e -Lin of	uctor uctor - th s lim zmann - 2 nergy de's r He–	star eon itat n's Ang y – met Pr	nding 9 theor ry and ions - 9 law - gstron Phote 9 thod - actica
UNIT – Conduct and dete determir practical UNIT – Radiatio Black b Pyrhelio voltaic c UNIT - Joule – Liquefac applicati carbon d UNIT - Zeroth la	stat ion i ermin atior appl II: n – S ody mete cell – III Thon ction lioxic aw of	istics TRANS n solids ation – n – Lee's ications RADIA Stefan's radiatio r – Sola Greenho I: LOW nson's e of hydor for thermo	SMIS s : Th Forb 's dis s of co ATIO ar con ouse of V TE effect 'droge emperative ice). CRMC odyna	SION ermal c ermal c meth onducti N – Dedu Wein nstant - effect. MPER – Porce en – – rature -	OF HI conduction od – I on of I uction 's law - Surfa ATUI Adiaba - Refri AMIC - First	EAT ction – t - therma Derivation neat of New γ – Ray ace temp RE ag expendic der igerating S law of t	thermal c al condu on of Wi ton's law yleigh–Je perature riment – nagnetiza g mechan	conductivity ctivity of a edmann – 1 v from Stef ean's law of sun – So Liquefaction ation – Li ism – Air c	r of Fran Fran Can's – P Durce on o: ique:	a good or conc z law a law – lanck's es of se f gases faction itioning engines	cond luctor and it Bolt: a law olar e -Lin of g mec	uctor uctor - th s lim zmann zmann de's n He- hanis versit	star eon itat n's Ang y = Pr m -	nding 9 theory and ions - 9 law - gstron Phote 9 thod - actica - solid 9 and
UNIT – Conduct and dete determir practical UNIT – Radiatio Black b Pyrhelio voltaic c UNIT - Liquefac applicati carbon d UNIT - Zeroth la irreversi	stat ion i ermin hatior appl in – S body mete cell – III Thom tion cons of lioxic IV aw of ble p	istics TRANS n solids ation – n – Lee's ications RADIA Stefan's radiatio r – Sola Greenho I: LOW nson's e of hydo of low te le (dry ic 7: THE] f thermo process –	SMIS s : Th - Forb 's dis s of co ATIO a law on – ar con ouse o V TE effect vdroge emper ice). CRMO odyna – Car	SION ermal of ermal c meth onducti N – Dedu Wein nstant - effect. MPER – Porcen en – frature -	OF HI conduction od – I on of I uction 's law – Surfa Aurun Adiaba – Refri AMIC - First theorem	EAT ction – t – therma Derivation neat of New 7 - Ray ace temp RE 1g expendic der igerating S law of t m – Sec	thermal c al condu on of Wi ton's lav yleigh–Je perature riment – nagnetiza g mechan	conductivity ctivity of a edmann – I v from Stef ean's law of sun – So Liquefactio ation – Li ism – Air c	on o: ique: cond: leat	a good or conc z law a law – lanck's es of so f gases faction itioning engines	cond luctor and it Boltz blar e -Lin of g mec	undera uctor - th s lim zmani zmani de's r He– hanis	star eon itat n's Ang Pro- met Pro- met ple	nding 9 theor ry and ions 9 law gstror Phot 9 thod actica - soli 9 and mic
UNIT – Conduct and dete determir practical UNIT – Radiatio Black b Pyrhelio voltaic c UNIT – Joule – Liquefac applicati carbon d UNIT – Zeroth la irreversi Scale of	stat ion i ermin atior appl II: n – S ody meter eell – – III Thom ction cons of lioxid – IV aw of ble p temp	istics TRANS n solids ation – n – Lee's ications RADIA Stefan's radiatio r – Sola Greenho I: LOW nson's e of hyc of low te le (dry ic 7: THE f thermo porcess – perature	SMIS s : Th Forb 's dis s of co ATIO ar con ouse of V TE effect vdroge emperative ice). CRMC odyna – Can e – Er	SION ermal c ermal c meth onducti N – Dedu Wein nstant - effect. MPER – Porcen en – – rature -	OF HI conduction od – I on of I uction 's law – Surfa ATUI Adiaba – Refri AMIC - First theorer – Char	EAT ction – t - therma Derivation neat of New γ – Ray ace temp \mathbf{RE} ag expendic der atic der atic der igerating S law of t m – Sec nge of e	thermal c al condu on of Wi ton's law yleigh–Je perature riment – nagnetiza g mechan hermody cond law ntropy ir	conductivity ctivity of a edmann – 1 v from Stef ean's law of sun – So Liquefaction ation – Li ism – Air c mamics – H of thermoon reversible	r of Fran Fran Durce on of ique cond Ieat Jyna and	a good or conc z law a law – lanck's es of se f gases faction itioning engines unics – itirever	cond luctor and it Boltz law olar e -Lin of g mec s -Re Ther rsible	uctor uctor - th s lim zmanu / - 2 nergy de's r He- hanis versit rmody proce	star eon itat n's Ang / - Pr met Pr met ple /na	nding 9 theor ry and ions 9 law gstror Phot 9 thod actica - soli 9 and mic es -
UNIT – Conduct and dete determir practical UNIT – Radiatio Black b Pyrhelio voltaic c UNIT - Liquefac applicati carbon d UNIT - Zeroth la irreversi Scale of Tempera	stat ion i ermin hatior appl II: n – S body mete cell – III Thon ction lioxic IV aw of ble p temp ature	istics TRANS n solids ation – n – Lee's ications RADIA Stefan's radiatio r – Sola Greenho I: LOW nson's e of hydo of low te le (dry ic 7: THEI f thermo porcess – perature – entro	SMIS s : Th - Forb 's dis s of co ATIO a law on – ar con ouse o V TE effect vdroge empet ice). CRMC odyna – Can e – Er opy c	SION ermal of ermal c meth onducti N – Dedu Wein nstant - effect. MPER – Porcen en – – rature -	OF HI conduction od – I on of I uction 's law – Surfa Aurun Adiaba – Refri AMIIC - First theoren – Chan n (T.S	EAT ction – t – therma Derivation neat of New 7 - Ray ace temp RE ag expendition age attice der igerating S law of t m - Seconge of e) - Law	thermal c al condu on of Wi ton's lav yleigh–Je perature riment – nagnetiza g mechan hermody cond law ntropy in w of inc	conductivity ctivity of a edmann – I v from Stef ean's law of sun – So Liquefactio ation – Li ism – Air c	on of ique: cond: ique: cond: leat iyna and ntrop	a good or conc z law a law – lanck's es of se f gases faction itioning engines unics – itirever	cond luctor and it Boltz law olar e -Lin of g mec s -Re Ther rsible	uctor uctor - th s lim zmanu / - 2 nergy de's n He- hanis versit rmody proce	star eon itat n's Ang / - Pr met Pr met ple /na	nding 9 theor ry and ions 9 law gstror Phot 9 thod actica - soli 9 and mic es -

	- V: STATISTICAL MECHANICS			9
Phase	space, Micro and Macro - canonical - Ensen	nbles – Differ	ent types of en	nsembles –
Defini	tion of Probability – Relation between entropy	& probability	– Degrees of	Freedom –
Statem	ent of theorem of equipartition of energy - Classi	ical Statistics -	- Group Velocity	and Phase
velocit	y - Maxwell - Boltzmann law-distribution of	velocity-Quan	tum statistics-F	'ermi–Dirac
distrib	ution law-Bose-Einstein distribution law-compari	ison of three st	atistics.	
		LECTURE	TUTORIAL	TOTAL
	HOURS	45	0	45
TEXT	BOOKS			
1.	Murugeshan R. and Kiruthiga Sivaprasath, "T	hermal Physic	s", 2 nd Edition,	, S. Chand
	Publishing , A-27, 2nd Floor, Mohan Co-operati	ve Industrial E	state, New Delh	i – 110044,
	2004.			
2.	Subrahmaniyam N., "Heat Thermodynamics And	d Statistical Ph	nysics", Revised	Edition S
			•	Lantion, D.
	Chand Publishing , A-27, 2nd Floor, Mohan Co	-operative Ind	ustrial Estate, N	
	Chand Publishing , A–27, 2nd Floor, Mohan Co 110044, 2008.	-operative Ind	ustrial Estate, N	
REFE	\mathbf{C}	–operative Ind	ustrial Estate, N	
	110044, 2008. RENCE BOOK Brij Lal, N Subrahmanyam and P.S.Hemne,	" Heat Thern	nodynamics and	ew Delhi –
	110044, 2008. RENCE BOOK	" Heat Thern	nodynamics and	ew Delhi –
1.	110044, 2008. RENCE BOOK Brij Lal, N Subrahmanyam and P.S.Hemne, Physics", 3 rd Edition, S. Chand Publishing , Industrial Estate, New Delhi – 110044, 2012	" Heat Thern A–27, 2nd F	nodynamics and loor, Mohan Co	ew Delhi –
1.	110044, 2008. RENCE BOOK Brij Lal, N Subrahmanyam and P.S.Hemne, Physics", 3 rd Edition, S. Chand Publishing ,	" Heat Thern A–27, 2nd F	nodynamics and loor, Mohan Co	ew Delhi –
1.	110044, 2008. RENCE BOOK Brij Lal, N Subrahmanyam and P.S.Hemne, Physics", 3 rd Edition, S. Chand Publishing , Industrial Estate, New Delhi – 110044, 2012	" Heat Thern A–27, 2nd F nd Thermodyn	nodynamics and loor, Mohan Co namics – SIE"	ew Delhi – Statistical o–operative 8 th Edition.
1.	110044, 2008. RENCE BOOK Brij Lal, N Subrahmanyam and P.S.Hemne, Physics", 3 rd Edition, S. Chand Publishing , Industrial Estate, New Delhi – 110044, 2012 Mark Zemansky and Richard Dittman, "Heat an	" Heat Thern A–27, 2nd F nd Thermodyn	nodynamics and loor, Mohan Co namics – SIE"	ew Delhi – Statistical o–operative 8 th Edition,
1. 2.	110044, 2008. RENCE BOOK Brij Lal, N Subrahmanyam and P.S.Hemne, Physics", 3 rd Edition, S. Chand Publishing , Industrial Estate, New Delhi – 110044, 2012 Mark Zemansky and Richard Dittman, "Heat an McGraw Hill (India) Private Limited, B–4, S	" Heat Thern A–27, 2nd F nd Thermodyn	nodynamics and loor, Mohan Co namics – SIE"	ew Delhi – I Statistical o–operative 8 th Edition
1. 2. E REI	110044, 2008. RENCE BOOK Brij Lal, N Subrahmanyam and P.S.Hemne, Physics", 3 rd Edition, S. Chand Publishing , Industrial Estate, New Delhi – 110044, 2012 Mark Zemansky and Richard Dittman, "Heat an McGraw Hill (India) Private Limited, B–4, S Nagar, Uttar Pradesh – 201301, 2017	" Heat Thern A–27, 2nd F nd Thermodyn ECTOR – 63	nodynamics and loor, Mohan Co amics – SIE" , NOIDA,Gauta	ew Delhi – Statistical o–operative 8 th Edition m Buddha
1. 2. E REI	110044, 2008. RENCE BOOK Brij Lal, N Subrahmanyam and P.S.Hemne, Physics", 3 rd Edition, S. Chand Publishing , Industrial Estate, New Delhi – 110044, 2012 Mark Zemansky and Richard Dittman, "Heat an McGraw Hill (India) Private Limited, B–4, S Nagar, Uttar Pradesh – 201301, 2017 FERENCES	" Heat Thern A–27, 2nd F nd Thermodyn ECTOR – 63 IISER Moha	nodynamics and loor, Mohan Co amics – SIE" , NOIDA,Gauta li, "Statistical N	ew Delhi – Statistical o–operative 8 th Edition m Buddha

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
C01	3	2	0	3	3	3	0	1
CO2	3	2	0	2	3	2	0	1
CO3	3	2	0	2	3	2	3	2
CO4	3	2	0	2	3	2	0	2
CO5	3	2	0	2	3	2	0	2
Total	15	10	0	11	15	11	2	8
Scaled to 1, 2, 3	3	2	0	3	3	3	1	2

Mapping of COs with POs

0 - No relation 1 - Low relation 2 - Medium relation

COU	RSE C	ODE	COURSE NAME		L	Т	Р	C			
]	XPH30	4		3 0 0							
С	Р	Α	BASIC ELECTRONICS		L	Т	Р	Н			
3	0	0		3	0	0	3				
								1			
COUI	RSE OU	UTCON	IES	ро				т			
On the	succes	sful con	pletion of this course students would able to	DO	MAIN		LEVE				
CO1	Reca	<i>ll</i> the fur	nction of PN junction diode, zener diode LED and	Co	gnitive	u	nderst	and			
	Cons	<i>truct</i> the	e full wave rectifier filters, regulated power supply-		ginuve	an	d Ana	lyze			
	zener	regulat	ator, photo diode.								
CO2	D2 Demonstrate the transistor construction and working Cognitive understa										
	chara	cteristic	s, <i>Determine</i> the h- parameters.		giittive	an	d Eval	uate			
CO3	Comp	<i>pare</i> tl	ne FET and Transistor and <i>Explain</i> the			111	nderst	and			
	chara	cteristic	s & applications of special semiconductor	Co	ognitive and Evalu						
	devices.										
CO4	Class	<i>ify</i> An	nplifiers, Discuss the feedback principle for		understand			and			
	-		scillators and <i>Explain</i> the Hartley and Collpitt's	Co	gnitive	and Evaluat					
	oscill		rs.								
CO5 Distinguish the modulations and Appraise the function of Cognitive								Analyze and			
detectors.								Evaluate			
			ONDUCTORS, DIODES AND RECTIFIERS				9				
			onductors - Types of semiconductors- PN junc								
			ifiers – Half wave – full wave and Bridge rectifiers	-	-						
			ters Break down mechanisms - Zener diode- char	acter	istics o	f Zen	er dic	de -			
			e regulator– Photo Diode and Uses.								
			AR TRANSISTORS				9				
			istor – Basic configurations –Relation between α as								
			E mode – DC load line –DC bias and stabilization –				-	vide			
			entation of a Transistor – Parameters– Determinatio	n of l	h–parai	neters					
			IAL DEVICES				9				
-			or devices - FET, JFET, MOSFET (Constructi								
•		-	parison between FET and Transistor – Phot		sistor	– S	CR,	UJ7			
			cations of SCR as relay and UJT as relaxation oscill	ator.							
			IFIERS AND OSCILLATORS				9				
U	0	-	ifier – Analysis of hybrid equivalent circuit – Powe		•						
class A			amplifier - Push Pull connection - push pull class I								
			all Droparties of reactive feedbook Criterian	for	111 .	· •	тт	.1			
amplif			ack – Properties of negative feedback – Criterior oscillator– Phase shift oscillator.	1 101	OSC1112	tions	– Ha	rtle			

UNIT	- V: MODULATORS AND DETECTORS			9					
Modul	ation - Amplitude modulation-Modulation factor	- Power in A	M waves – Lin	nitations of					
amplit	ude modulation-Frequency modulation - Phase 1	nodulation – D	emodulation-Es	ssentials in					
demod	ulation– Linear Diode Detector								
		LECTURE	TUTORIAL	TOTAL					
	HOURS	45	0	45					
TEXT	BOOKS			•					
1.	Mehta V K and Rohit Mehta, "Principles Of Electro	onics,", 12 th Ec	lition, S. Chand	Publishing,					
	A-27, 2nd Floor, Mohan Co-operative Industrial Es	state, New Dell	ni – 110044, 202	0.					
2.	Bhargava N. N., D. C. Kulshreshtha and S. C. Gupta's, "Basic Electronics and Linear								
	Circuits", 2 nd edition, Tata McGraw–Hill Education, 2017.								
3.	Sedha R.S, "A Textbook Of Applied Electronics", revised Edition, S. Chand Publishing , A-								
	27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi - 110044, 2008.								
	RENCE BOOK								
1.	Ben Streetman and Sanjay Banerjee, "Solid State	Electronic Dev	vices", 7 th Editi	on Pearsor					
	Prentice Hall, 2014.								
2.	Sanjeev Gupta, "Electronic Devices & Circuits",	Dhanpat Rai	Publications (p) Ltdnew					
	Delhi, 2010.								
	FERENCES								
1.	PROF. M.B. PATIL, Department of Electrical and								
	ELECTRONICS", National Programme on Tec	hnology Enha	nced Learning	(NPTEL)					
	https://nptel.ac.in/courses/108/101/108101091/								
2.	Prof. Chitralekha Mahanta Department of Electron		-	-					
	Guwahati "BASIC ELECTRONICS", National	e	01	Enhanced					
	Learning (NPTEL), https://nptel.ac.in/courses/117/	<u>103/117103063</u>	<u> 3/</u>						

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	0	2	3	3	0	1
CO2	3	2	0	2	3	2	0	1
CO3	3	2	1	2	3	2	3	2
CO4	3	2	1	2	3	2	0	2
CO5	3	2	1	2	3	2	0	2
Total	15	10	3	10	15	11	2	8
Scaled to 1, 2, 3	3	2	1	2	3	3	1	2

0 - No relation 1 - Low relation 2 - Medium relation

3 – High relation

COU	URSE CODE	COURSE N	AME		L	Т	Р	C			
	XCG305	VOLUMETRIC AN			0	0	2	2			
С	P A	- VOLUMETRIC AN			L	Т	Р	Η			
1	0.75 0.25	- QUALITATIVE ANALYS	IS PRACE	ICAL - I	0	0	4	4			
								1			
COU	RSE OUTCO	MES									
On th	e successful co	mpletion of this course students	would	DOMAI	N	L	EVE	L			
able t	0	-									
001	Recall the pr	nciple of volumetric titration an	nd <i>identify</i>	Cognitiv	'e	Re	mem	ber			
CO1	the quantity of the substance present in the sample Psychomotor Perception										
	Infer the nature of compound and describe the Cognitive Understand										
	functional group and chemical components of the Cognitive										
CO2	given organic			Psychomo			rcepti				
	81,011,018,011	e o nip o union		Affective							
	<i>Compute</i> and	l outline the results of the estin	nation and								
CO3 organic analysis. Cognitive Cognitive Apply											
Volur	0	anic Qualitative Analysis						, 			
4. Organ A stud 1 2 3 4 The st only),	Estimation of nic Qualitative dy of the reactive . Carbohydrate 2. Amide 3. Aldehyde 4. Alcohol tudents may be	ons of the following organic Con	npounds. reactions li d and functi	ke tests for onal group	prese	ent ar	nd red	cord			
			LECTURI	E PRACT	ГІСА	L	тот	AL			
		HOURS	0	4	0		40)			
	-	oragasam and G. Ramamurthy	r, Organic	Chemistry	– La	b m	anual	, S.			
2.	J.N. Gurthu a Co., 1987.	Co. Pvt., 1998. nd R. Kapoor, Advanced Experi	imental Che	mistry (Org	anic)	, S. C	hand	and			
2.	J.N. Gurthu a	nd R. Kapoor, Advanced Experi	imental Che	mistry (Org	anic)	, S. C	hand	and			

Practical Organic Chemistry. 5th Edn., Pearson Education, 2005.

2. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S. Viswanathan Co. Pvt., 1996.

E RESOURCES

- 1. Chemistry Practical for B. Sc. (Part II) by Dr Deepak Pant
- 2. Hand Book of Practical Chemistry by Dr.S.P.Ghosh
- 3. College Practical Chemistry by <u>V K Ahluwalia, Sunita Dhingra</u>, <u>Sunita Dhingra</u>
- 4. www.freebookcentre.net > Chemistry Books http://www.bookrix.com

			U					
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
C01	3	2	1	3	2	1	3	1
CO2	3	2	1	3	2	1	3	1
CO3	3	2	1	3	2	1	3	1
Total	9	6	3	9	6	3	9	3
Scaled to 1, 2, 3	3	2	1	3	2	1	3	1

Mapping of COs with POs

1 - Low relation 2 - Medium relation

3 – High relation

COU	RSE CO	ODE	COURSE NAME	L	Т	P	С			
X	UM306	ó			3	0	0	3		
С	Р	Α	DISASTER MANAGEMENT		L	Т	SS	Η		
3	0	0			3	0	0	3		
	SE OU'		ES pletion of this course students would able to	Dor	nain		Leve	1		
CO1	Relate	and <i>In</i>	terpret the Disaster and its' classification.	Cog	nitive	Remembering, Understanding				
CO2	-	<i>in</i> and <i>a</i> ramewo	Apply Disaster cycle, Institutional Processes rk	Cog	nitive	Understand, Apply				
CO3	<i>Under</i> violati		<i>d</i> the Factors affecting Vulnerabilities Cognitive					Analysing		
CO4	Analy	ze Disa	nitive	U	Understand					
CO5	Evalu	ate the	Case Studies	Remembering, Response						

UNIT – I: INTRODUCTION TO DISASTERS	6+0+0
Definition: Disaster, Hazard, Vulnerability, Resilience, Risks - Disasters: Types of	disasters –
Earthquake, Landslide, Flood, Drought, Fire etc – Classification, Causes, Impacts	s including
social, economic, political, environmental, health, psychosocial, etc Differential in	mpacts- in
terms of caste, class, gender, age, location, disability – Global trends in disasters: urba	n disasters,
pandemics, complex emergencies, Climate change- Dos and Don'ts during variou	is types of
Disasters	
UNIT – II: APPROACHES TO DISASTER RISK REDUCTION	6+0+0
Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness	community
based DRR, Structural- non structural measures, Roles and responsibilities of- c	community,
Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and or	ther stake-
holders- Institutional Processes and Framework at State and Central Level- Sta	te Disaster
Management Authority(SDMA) - Early Warning System - Advisories from A	Appropriate
Agencies	
UNIT – III: INTER-RELATIONSHIP BETWEEN DISASTERS AND	6+0+0
DEVELOPMENT	0+0+0
Factors affecting Vulnerabilities, differential impacts, impact of Development project	cts such as
dams, embankments, changes in Land-use etc Climate Change Adaptation-IPCC So	cenario and
Scenarios in the context of India – Relevance of indigenous knowledge, appropriate	technology
and local resources.	
UNIT – IV: DISASTER RISK MANAGEMENT IN INDIA	T
	6+0+0
Hazard and Vulnerability profile of India, Components of Disaster Relief: Wa	ater, Food,
Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation	ater, Food, , Response
Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation and Preparedness, Disaster Management Act and Policy – Other related polic	ater, Food, , Response ies, plans,
Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation and Preparedness, Disaster Management Act and Policy – Other related polic programmes and legislation – Role of GIS and Information Technology Com	ater, Food, , Response ies, plans, ponents in
Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation and Preparedness, Disaster Management Act and Policy – Other related polic	ater, Food, , Response ies, plans, ponents in
Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation and Preparedness, Disaster Management Act and Policy – Other related polic programmes and legislation – Role of GIS and Information Technology Com- Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disast Assessment.	ater, Food, , Response ies, plans, ponents in
 Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation and Preparedness, Disaster Management Act and Policy – Other related polic programmes and legislation – Role of GIS and Information Technology Compreparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disast Assessment. UNIT – V: DISASTER MANAGEMENT: APPLICATIONS AND CASE 	ater, Food, , Response ies, plans, ponents in er Damage
Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation and Preparedness, Disaster Management Act and Policy – Other related polic programmes and legislation – Role of GIS and Information Technology Com- Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disast Assessment.	ater, Food, , Response ies, plans, ponents in
 Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation and Preparedness, Disaster Management Act and Policy – Other related polic programmes and legislation – Role of GIS and Information Technology Comperendeness, Risk Assessment, Response and Recovery Phases of Disaster – Disast Assessment. UNIT – V: DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Bu 	ater, Food, , Response ies, plans, ponents in er Damage 6+0+0 ildings and
 Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation and Preparedness, Disaster Management Act and Policy – Other related polic programmes and legislation – Role of GIS and Information Technology Compreparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disast Assessment. UNIT – V: DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS 	ater, Food, , Response ies, plans, ponents in er Damage 6+0+0 ildings and
 Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation and Preparedness, Disaster Management Act and Policy – Other related polic programmes and legislation – Role of GIS and Information Technology Comported Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disast Assessment. UNIT – V: DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Bu 	ater, Food, , Response ies, plans, ponents in er Damage 6+0+0 ildings and torm Surge
 Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation and Preparedness, Disaster Management Act and Policy – Other related polic programmes and legislation – Role of GIS and Information Technology Comperendents, Risk Assessment, Response and Recovery Phases of Disaster – Disast Assessment. UNIT – V: DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Bu Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Studies, Studies, Coastal Flooding: St	ater, Food,ater, Food,, Responseies, plans,ponents iner Damage6+0+0ildings andtorm Surgeudies, Man
 Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation and Preparedness, Disaster Management Act and Policy – Other related polic programmes and legislation – Role of GIS and Information Technology Comported Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disast Assessment. UNIT – V: DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Bu Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: State Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies 	ter, Food, , Response ies, plans, ponents in er Damage 6+0+0 ildings and torm Surge udies, Man

HOURS 30 0 30	LECTURE	TUTORIAL	TOTAL
	30	0	30

TEXT BOOKS

1. Singhal J.P., (2010) Disaster Management, Laxmi Publications.

2. Tushar Bhattacharya, (2012) Disaster Science and Management, McGraw Hill India

Education Pvt. Ltd.,

REFERENCE BOOKS

- 1. Gupta, A.K., & Nair, S.J., (2011) Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi.
- 2. Kapur Anu, (2010) Vulnerable India, A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi.

Mapping of COs with POs

			ourse comes	PO1	PO2	PO3	PO4	PO5	PO6	PO)7	PO	8			
		C	CO1	1					3	2	2					
			CO2	2					1	2						
		0	CO3	1					2	2		1				
		-	CO4	1					2	2		1				
		-	CO5						3	2		3				
			otal	5					11	1	0	5				
			led to 2, 3	2					2	2	2	2				
0 - No relation $1 - Low relation$ $2 - Medium relation$ $3 - High relation$										elation						
COU									Т	P	С					
X	CPH30'	7									0		0	2	2	
С	Р	Α	TH	IERM	AL AN	D ELF	ECTRO	ONICS	LAB		L		Т	Р	Н	
0	1.5	0.5								_	0		0	4	4	
COURSE OUTCOMES											T	.1				
On the	On the successful completion of this course students would able to						e to	Domain				Level				
	Def	ine Co	efficien	t of Th	ermal	Condu	ctivity,	Deterr	nine							
CO1	ther	mal co	nductiv	ity of	bad co	nducto	r and i	Discuss	the	Psychomotor:				Mechanism		
	vari	ous law	s for he	at flow	·.											
	Ern	<i>lain</i> th	e natur	e of h	eat rad	liation	and <i>Li</i>	st the	laws	Psy	cho	mot	or.	Analyze,		
CO2	_		adiation			nation		si the	14 10 5	•	Affec			Mechanism		
	Tera		auration							1	liice	uve	·•	Resp	ond	
	Rec	all the	functio	on of H	PN jun	ction d	liode, z	zener d	iode	Dox	cho	mot	or	Apply		
CO3	LEI) and	Constr	<i>ruct</i> th	ne full	l wave	e recti	fier fil	ters,	•	Affec			Mecha	nism	
	regu	lated p	ower su	pply-	zener re	egulato	r, photo	o diode		P	mee	uve	•	Rece	eive	
	Dar	a o mater -	to the	tronai	tor co	notoria	ion a	d me	line	Dar	whee	mat	0.00	Anal	yze	
CO4			te the					ia wor	KINg	-	ychoi Affec			Mecha	nism	
	chai	acteris	tics, <i>De</i>	ermine	e the n-	- paran	leters.			P	mec	uve		Rece	eive	
	Con	ipare	the FE	T and	l Tran	sistor	and E	xplain	the	P	1			Anal	yze	
CO5		-	tics &					-		•	choi			Mecha	-	
		ces.				•				P	Affec	tıve	:	Rece	eive	

Ex. No	Experi	iments		COs				
1.	1. Lee's disc –Specific heat capacity of the bad conductor.							
2.	Specific heat by Joules calorimeter.			CO2				
3.	Newton's law of cooling – Specific	heat capacity of	the liquid.	CO2				
4.	Junction diode and Zener diode – C	haracteristics		CO3				
5.	5. Zener diode – Regulated Power Supply.							
6.	6. Bridge Rectifier - Construction							
7.	7. Transistor characteristics – Common base.							
8. Transistor characteristics – Common Emitter								
9. FET Characteristics and constants determination.								
10.	10. UJT Relaxation oscillator – Construction							
	1	LECTURE	PRACTICAL	TOTAL				
	HOURS	0	40	40				

TEXT BOOKS

- 1. Arora C. L., "B.Sc .Practical Physics", S. Chand & Company Ltd. Ram Nagar, New Delhi–110055. 2007.
- Shukla R. K. & Anchal Srivastava. "Practical Physics," New Age International (P) Ltd, Publishers, (Formerly Wiley Eastern Limited), 4835/24, Ansari Raod, Daryagani, New Delhi–11002. 2006.
- 3. Chattopadhyay D. and Rakshit P. C., "An Advanced course Practical Physics", New Central Book Agency

REFERENCE BOOK

- 1. Geeta Sanon, "B. Sc., Practical Physics", 1st Edition, S. Chand and Company, 2007.
- 2. Chattopadhyay, D., Rakshit, P. C. and Saha, B., "An Advanced Course in Practical Physics," 8th Edition, Books & Allied Ltd., Calcutta, 2007.
- 3. Squires G. L., "Practical Physics", Fourth edition, Cambridge University Press, 2001.
- 4. Indu Prakash and Ramakrishna, "A Text Book of Practical Physics," 11th Edition, Kitab Mahal, New Delhi, 2011.
- 5. Ouseph C., Rangarajan K. "A Text Book of Practical Physics", Volume I, II, S. Viswanathan Publishers,1997.

E-Resources:

1. Department of Physics, AMRITA VISHWA VIDYAPEETHAM, "Heat and thermodynamics lab", National Programme on Technology Enhanced Learning (NPTEL), <u>https://www.vlab.co.in/ba-nptel-labs-physical-sciences</u>

Course Outcom	P	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8
C01		3	1		2	1	2	3	3
CO2		3	1		2	1	2	3	2
CO3		3	1		1	1	2	2	1
CO4		3	1		2	1	2	3	2
CO5		3	1		2	1	2	3	3
Total		15	5		9	5	10	14	11
Scaled 1 1, 2, 3	0	3	1		2	1	2	3	3
) – No relation	1 –	Low	relatio	on	2 – M	ledium	relation	n	3 – H

Mapping of COs with POs

SEMESTER IV

	SE CC	DDE	COURSE NAME		L]	Γ	Р	С
C XF	PH401 P	A	ELECTRICAL CIRCUIT NETWORK		0 L) Г	2 P	2 H
0	1.5	0.5	SKILLS		0	_)	4	4
COURS On the s			MES mpletion of this course students would able to	D	omai	n	Level		
CO1			ic Electricity Principles, <i>Analyze</i> electrical <i>Distinguish</i> single phase and three phase	Co	ognitiv	/e	Un		bering, nding, sing
CO2	CO2 <i>Recall</i> symbols, <i>Explain</i> circuits and diagram, <i>Distinguish</i> capacitance, inductance and impedance Co					/e	Remembering Understanding Evaluate, Analysing		nding, ate,
CO3			C&AC power sources, <i>Distinguish</i> DC/AC nd motor.	Сс	ognitiv	ve	Remembering, Analysing		
CO4	Classify all Solid-State Devices, Explain response of						Understanding, Evaluate		-
CO5	CO5Discuss about electrical wiring and Distinguish the types of wiring.Cognitive							Analysing	
			TRICAL PRINCIPLES AND CIRCUITS						10
		-	combinations – AC Electricity and DC electricity						

multimeter, voltmeter and ammeter.

Understanding Electrical Circuits: Main electric circuit elements and their combination – Rules to analyze DC sourced electrical circuits – Current and voltage drop across the DC circuit elements – Single–phase and three–phase alternating current sources – Rules to analyze AC sourced electrical circuits – Relay, imaginary and complex power components of AC source – Power factor – Saving energy and money.

UNIT – II: ELECTRICAL DRAWING AND COMPONENTS

Drawing symbols – Blueprints – reading schematics – ladder diagrams – electrical schematics – Power circuits – control circuits – Reading of circuit schematics – Tracking the connections of elements and identify current flow and voltage drop. Inductance – capacitance – impedance – Operation of transformers.

9

UNIT – III: ELECTRIC GENERATORS AND MOTORS	9					
DC power sources - AC/DC generators - Single-phase and three-phase DC motors -						
design – Interfacing DC or AC sources to control heater &motors – Speed & power of AC	motor.					
UNIT – IV: ELECTRICAL DEVICES AND PROTECTION	10					
Solid-State Devices: Resistors - inductors - capacitors - diode and rectifiers - compo						
series or in shunt – response of inductors and capacitors with DC or AC sources.						
Electrical Protection: Relays - Fuses and disconnect switches - circuit breakers - o						
devices – Ground-fault protection – Grounding and isolating – phase reversal – surge pro-	otection					
- interfacing DC or AC sources to control elements (relay protection device).						
UNIT – V: ELECTRICAL WIRING	8					
Different types of conductors and cables – Basics of wiring – Star and delta connection –	-					
drop and losses across cables and conductors - Instruments to measure current - voltage -	*					
in DC and AC circuits – Insulation – solid and standard cable – Conduit Cable trays – Splic						
wire nuts - crimps -terminal blocks - split bolts and solder - Preparation of extension boar	d.					
HANDS ON TRAINING IN THE FOLLOWING FOR LAB SKILLS						
1. To determine total capacitance when three capacitors connected in series.	CO1					
2. To determine total capacitance when three capacitors connected in parallel.	CO1					
3. To obtain the value of three resistances using colour codes and verify with multimeter.	CO1					
4. To design and verify Ohm"s law.	CO2					
5. Series and Parallel combinations: Verification of Kirchoff's law.	CO2					
6. Demonstration of AC and DC generator.	CO3					
7. To prepare wiring for a fluorescent tube light with switch control.						
8. To wire for a stair case arrangement using a two-way switch.						
9. To measure electrical quantities for the given single phase circuit						
10. To prepare residential wiring using Fuse, Switch, Indicator, Lamp and Energy meter.						
HOURS LECTURE PRACTICAL T	OTAL					

	0	45	45		
TEXT BOOKS					
1. Theraja B.L. A text book in Electrical Technology, S Chand & Co. New Delhi.					
2. Theraja A. K., A text book of Electrical Technolo	gy.				
REFERENCES					
1. Say MG. Performance and design of AC machine	s, ELBS Edn.				

Mapping of COs with POs

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	0	3	3	3	0	1
CO2	3	2	0	2	3	2	0	1
CO3	3	2	0	2	3	2	3	2
CO4	3	2	0	2	3	2	0	2
CO5	3	2	0	2	3	2	0	2
Total	15	10	0	11	15	11	2	8
Scaled to 1, 2, 3	3	2	0	2	3	3	1	2

	0 - 1	No relat	tion	1 – Low relation	1 - Low relation $2 - Medium relation$ 3				ion
Γ	COU	URSE C	ODE	COURSE NAME				P	C
ſ	2	XCG40	2		INORGANIC, ORGANIC AND PHYSICAL				4
Γ	С	Р	Α	· · · · · · · · · · · · · · · · · · ·	ISTRY – II	L	Т	Р	Η
	2.8	0	0.2		$\mathbf{H}\mathbf{S}\mathbf{I}\mathbf{K}\mathbf{I} = \mathbf{H}$	3	1	0	4

	SE OUTCOMES successful completion of this course students would able to	Domain	Level
C01	<i>Explain</i> the ability to describe oxidation–reduction reactions using appropriate chemical equations, to identify oxidation and reduction, and to <i>apply</i> those concepts to electrochemical cells	Cognitive	Understanding, Apply
CO2	<i>Illustrate</i> the nuclear reactions and <i>describe</i> the extraction of ores.	Cognitive	Remembering, Understanding
CO3	<i>Illustrate</i> the bonding and molecular orbital theory.	Cognitive	Understanding
CO4	<i>Describe</i> the basic laws of thermodynamics and to <i>apply</i> those laws to chemical reactions.	Cognitive : Affective	Understanding, Apply, Receive
CO4	<i>Explain</i> the structure of organic molecules using various spectral data and <i>recognize</i> the use of chemicals in industries and their impacts on environment.	Cognitive	Understand, Response

UNIT – I: REDOX REACTIONS AND ELEC	TROCHEMIS	гру	9+3			
Concepts of oxidation and reduction, redox reactions, oxidation number, rules for assigning						
oxidation number. Electrolytic and metallic conduction, conductance in electrolytic solutions,						
molar Conductivities and their variation with concentration, Kohlrausch's law and its applications. Electrochemical cells, Electrolytic and Galvanic cells, different types of						
			• •			
electrodes, Electrode potentials including standa	-					
reactions. EMF of a Galvanic cell and its measure		quation and its a	ipplications.			
Relationship between cell potential and Gibbs energy change.						
UNIT – II: NUCLEAR CHEMISTRY			9+3			
Radio activity –Half life period – Group displaceme						
and Fusion – Application of nuclear chemistry in M		ture, industries –	$-C_{14}$ dating.			
Extraction of Radioactive Minerals – Uranium and	Thorium.					
UNIT – III: CHEMICALBONDING			10+2			
Overlapping of atomic orbitals – s–s, s–p and p–p						
and sp3 hybridization- Valence Bond theory -post		• •				
the formation of simple molecules like H_2 and O_2 -						
bonding, anti bonding and non bonding orbitals. M.	O. diagram for I	H_2 , He, N_2 and F_2	•			
UNIT – IV: THERMODYNAMICS AND CHE	EMICAL KINE	TICS	9+4			
Importance of thermodynamics-terms used in therm	modynamics-op	en and closed sy	vstems, state			
functions and path functions, extensive and inter	nsive properties,	reversible and	irreversible			
processes, statement and mathematical form of fin	est law of therm	odynamics-heat	capacity at			
constant volume and pressure, relation between	Cp and Cv. S	tatement of sec	ond law of			
thermodynamics.						
Chemical kinetics: Reaction rate-rate law-order	and moleculari	ty of reactions.	First order			
reaction-derivation of rate equation.						
UNIT - V: SPECTROSCOPY AND INDUSTR	RIAL CHEMIS	TRY	8+3			
Electromagnetic spectrum, Absorption of radiation	, Principles and	applications of	UV-visible,			
IR and NMR in the determination of structures of o	rganic molecules	5.				
Fuel gases – Water gas, producer gas, LPG gas, G	bobar gas and na	tural gas – NPK	and mixed			
Fertilizer, micronutrients and their role in Plant life and Bio Fertilizers soaps and detergents –						
an elementary idea about preparation and manufacture cleaning action of soap and detergents.						
LECTURE TUTORIAL TOTAL						
HOURS	45	15	60			
TEXT BOOKS	1	1	1			
1. Bahl B.S., Tuli G.D. and Arun Bahl, Essentials	of Physical Cher	mistry, Chand &	Co., Delhi.			
2012.	-	•	, ,			
2. Puri.B.R., Sharma.L.R., &Kalia.C., Principles of	Inorganic Chem	nistry , Vallabh n	oublications.			
, , , , , , , , , , , , , , , , , , ,	0	J /				

New Delhi, 2013.

3. Soni. P.L, Chawala H.M., Text book of Organic Chemistry, 26th edition, Sultan Chand,

Delhi ,2013.

- 4. Madan.R.D., Modern Inorganic Chemistry, S. Chand & sons, New Delhi, 2013.
- 5. Finar I.L., Organic Chemistry Vol. I, Longman Publishing group, New York, 2007.

REFERENCE BOOKS

- 1. Lee J.D., A New Concise Inorganic Chemistry, ELBS, London, 2010.
- 2. Morrison R. T, Boyd R.N., Organic Chemistry , 7th edition , Prentice Hall, New Delhi, 2008.
- 3. Raj.K.Bansal, Organic Reaction Mechanisms, 3rd edition, Tata MCGraw–Hill Publishing Company Limited, New Delhi, 2012.
- 4. Soni P.L., Textbook of Inorganic Chemistry, Sultan Chand & Sons, New Delhi, 2011.
- 5. Finar I.L., Organic Chemistry Vol. II, Pearson Education, New Delhi, 2010.
- 6. Srivastava V.K., Srivastava K.K., Introduction to Chromatography, 2nd edition, 2000.

E RESOURCES

- 1. http://freevideolectures.com/Course/3001/Chemistry-I
- 2. http://freevideolectures.com/Course/3001/Chemistry-I/5
- 3. http://freevideolectures.com/Course/3518/Chemical-Engineering-Thermodynamics

Mapping of CO's with PO's:

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2			3	2	2	2	2
CO2	1			3	2	1		2
CO3	2	1				1	1	
CO4	1	3			1		3	1
CO5	1			3	2	2	3	3
Total	7	4		9	7	6	9	8
Scaled to 1, 2, 3	2	1		2	2	2	2	

0 - No relation 1 - Low relation 2 - Medium relation 3 - High relation

COURSE CODE			COURSE NAME	L	Т	Р	C
2	XPH40	3		3	1	0	4
С	P	Α	WAVES AND OPTICS	L	Т	Р	Н
3	0	0		3	1	0	4

	SE OUTCOMES successful completion of this course students would able to	DOMAIN	LEVEL
CO1	<i>Define</i> super position principle and <i>Relate</i> the collinear and perpendicular harmonic oscillators.	Cognitive	Remember and Understand
CO2	<i>Recall</i> transverse wave, <i>List</i> the types of waves and <i>Explain</i> Group velocity, phase velocity	Cognitive	Remember and Evaluate
CO3	What is interference and Identity various method to	Cognitive	Remember, and

	produce interference.		Apply
CO4	<i>Define</i> diffraction and <i>Analyze</i> diffraction effect.	Cognitive	Remember and Analyze
CO5	<i>Explain</i> polarization and <i>Distinguish</i> the polarizer and analyser, holography and identify its applications	Cognitive	Understand and Analyze

	9+3
Oscillations: Simple harmonic motion. Differential equation of SHM and its solutions.	Kinetic and
Potential Energy, Total Energy and their time averages. Damped oscillations.	
Superposition of Two Collinear Harmonic Oscillations: Linearity and Super position P	rinciple (1)
Oscillations having equal frequencies and (2) Oscillations having different frequencies (H	Beats)
Superposition of Two Perpendicular Harmonic Oscillations: Graphical and analytical	$methods\ -$
Lissajous figures – Generation – Application.	
UNIT – II: WAVE THEORY	9+3
One dimensional Waves - Harmonic waves - Phase velocity and group velocity - Wa	ve packet –
Dispersion - Normal dispersion - Anomalous dispersion - Complex representation	of waves -
Phasors - Addition of waves of same frequency - Addition of waves of different frequency	ncy – Plane
waves – Huygen's principles and its applications	
UNIT – III: INTERFERENCE	9+3
Interference by division of wavefront: Superposition of two sinusoidal waves, In	nterference,
coherence ,conditions for interference, the inference patterns, intensity distribution .Fr	esnel's two
mirror arrangement, Fresnal Biprism, Determination of λ and $d\lambda$ of Sodium Light	
Interference by division of amplitude: Interference by a plane film illuminated by a p	lane wave,
cosine law, non-reflecting films (the subsections excluded), interference by a film	with two
nonparallel reflecting surfaces, colours of thin films, Newton's rings, The Michelson inte	
white light fringes	rferometer,
	erferometer,
UNIT – IV: DIFFRACTION	9+3
UNIT – IV: DIFFRACTION Fraunhofer Diffraction: Preliminaries, single slit diffraction pattern, diffraction by circul	9+3
	9+3 ar aperture,
Fraunhofer Diffraction: Preliminaries, single slit diffraction pattern, diffraction by circul	9+3 ar aperture,
Fraunhofer Diffraction: Preliminaries, single slit diffraction pattern, diffraction by circul limit of resolution, two slit Fraunhofer diffraction pattern, N slit diffraction pat	9+3 ar aperture, tern, plane
Fraunhofer Diffraction: Preliminaries, single slit diffraction pattern, diffraction by circul limit of resolution, two slit Fraunhofer diffraction pattern, N slit diffraction pattern diffraction grating, resolving power.	9+3 ar aperture, tern, plane
Fraunhofer Diffraction: Preliminaries, single slit diffraction pattern, diffraction by circul limit of resolution, two slit Fraunhofer diffraction pattern, N slit diffraction pattern diffraction grating, resolving power. Fresnel Diffraction: Preliminaries, Fresnel half period zones, explanation of rectilinear presenter of the second sec	9+3 ar aperture, tern, plane
Fraunhofer Diffraction: Preliminaries, single slit diffraction pattern, diffraction by circul limit of resolution, two slit Fraunhofer diffraction pattern, N slit diffraction pattern diffraction grating, resolving power. Fresnel Diffraction: Preliminaries, Fresnel half period zones, explanation of rectilinear pof light, zone plate, diffraction at straight edge.	9+3 ar aperture, tern, plane propagation 9+3
 Fraunhofer Diffraction: Preliminaries, single slit diffraction pattern, diffraction by circul limit of resolution, two slit Fraunhofer diffraction pattern, N slit diffraction pattern, N slit diffraction pattern, Fresnel Diffraction: Preliminaries, Fresnel half period zones, explanation of rectilinear por light, zone plate, diffraction at straight edge. UNIT – V: POLARIZATION AND HOLOGRAPHY 	9+3 ar aperture, tern, plane propagation 9+3 of double
 Fraunhofer Diffraction: Preliminaries, single slit diffraction pattern, diffraction by circul limit of resolution, two slit Fraunhofer diffraction pattern, N slit diffraction pattern pattern, N slit diffraction pattern, Preliminaries, Fresnel half period zones, explanation of rectilinear policy of light, zone plate, diffraction at straight edge. UNIT – V: POLARIZATION AND HOLOGRAPHY Double refraction – Nicol prism – polarizer and analyzer, Hygiene's explanation 	9+3 ar aperture, tern, plane propagation 9+3 of double of polarized
 Fraunhofer Diffraction: Preliminaries, single slit diffraction pattern, diffraction by circul limit of resolution, two slit Fraunhofer diffraction pattern, N slit diffraction pattern of the diffraction grating, resolving power. Fresnel Diffraction: Preliminaries, Fresnel half period zones, explanation of rectilinear polight, zone plate, diffraction at straight edge. UNIT – V: POLARIZATION AND HOLOGRAPHY Double refraction – Nicol prism – polarizer and analyzer, Hygiene's explanation refraction, positive and negative uniaxial crystals, quarter and half wave plates, types of the diffraction of the difference of the diff	9+3 ar aperture, tern, plane propagation 9+3 of double of polarized cal activity.
 Fraunhofer Diffraction: Preliminaries, single slit diffraction pattern, diffraction by circul limit of resolution, two slit Fraunhofer diffraction pattern, N slit diffraction pattern pattern, N slit diffraction pattern, Preliminaries, Fresnel half period zones, explanation of rectilinear policy of light, zone plate, diffraction at straight edge. UNIT – V: POLARIZATION AND HOLOGRAPHY Double refraction – Nicol prism – polarizer and analyzer, Hygiene's explanation refraction, positive and negative uniaxial crystals, quarter and half wave plates, types of light, production and analysis of plane, circularly and elliptically polarized light, option 	9+3 ar aperture, tern, plane propagation 9+3 of double of polarized cal activity.
 Fraunhofer Diffraction: Preliminaries, single slit diffraction pattern, diffraction by circul imit of resolution, two slit Fraunhofer diffraction pattern, N slit diffraction pattern pattern, resolving power. Fresnel Diffraction: Preliminaries, Fresnel half period zones, explanation of rectilinear porting to the plate, diffraction at straight edge. JNIT – V: POLARIZATION AND HOLOGRAPHY Double refraction – Nicol prism – polarizer and analyzer, Hygiene's explanation effraction, positive and negative uniaxial crystals, quarter and half wave plates, types of ight, production and analysis of plane, circularly and elliptically polarized light, optio Principles of holography, Theory of construction and reconstruction, Hologram, App 	9+3 ar aperture, tern, plane propagation 9+3 of double of polarized cal activity.

	45	15	60
TEXT BOOKS			

 Brij Lal, M N Avadhanulu & N Subrahmanyam, "A Text Book of Optics,", 25th Edition, S. Chand Publishing, A–27, 2nd Floor, Mohan Co–operative Industrial Estate, New Delhi – 110044, 2012.

- Subrahmaniyam N., "A Text Book Of Optics", Revised Edition, S. Chand Publishing, A– 27, 2nd Floor, Mohan Co–operative Industrial Estate, New Delhi – 110044, 2006.
- 3. <u>Murugeshan</u> R., <u>Kiruthiga Sivaprasath</u>, "Optics and Spectroscopy", *10*th Edition, S. Chand Publishing , A–27, 2nd Floor, Mohan Co–operative Industrial Estate, New Delhi – 110044,1997

REFERENCE BOOK

- 1. Francis A. Jenkins , Harvey E. White, "Fundamentals of Optics", 4th Edition, McGraw-Hill Science Engineering , P.O. Box 182605, Columbus, OH 43218,2001.
- 2. Ajoy Ghatak, "Optics", 4th Edition, Tata Mcgraw Hill Education Private Limited, 2008.

E REFERENCES

- 1. Santhanam MS, Department of Physics, IISER PUNE, "Waves and oscillations", National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/courses/115/106/115106119/</u>, <u>https://onlinecourses.nptel.ac.in/noc19_ph18/preview</u>
- 2. Srivastava M.K., Department of Physics, IIT Roorkee, "Polarization", National Programme on Technology Enhanced Learning (NPTEL),

https://nptel.ac.in/courses/122/107/122107035/

Mapping with Programme Outcomes

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	0	3	3	1	0	1
CO2	3	3	0	1	2	1	0	1
CO3	3	3	0	1	2	1	3	2
CO4	3	3	0	1	2	1	0	2
CO5	3	3	0	1	2	1	0	2
Total	15	14	0	7	11	5	2	8
Scaled to	3	3	0	2	3	1	1	2
1, 2, 3								

0 - No relation 1 - Low relation 2 - Medium relation 3 - High relation

COU	RSE (CODE	COURSE NAME	L	Т	Р	C
Σ	XPH40	4		3	1	0	4
С	Р	Α	DIGITAL ELECTRONICS	L	Т	Р	Н
3	0	0		3	1	0	4

COURSE OUTCOMES

DOMAIN

N LEVEL

On the	On the successful completion of this course students would able to								
	Analyze various number systems and codes, Develop their	Cognitive	Analyze,						
CO1	knowledge to do arithmetic calculations and Discuss	Cognitive	Apply						
	operation of all the gates.		and calculate						
CO2	Show the simplification of Boolean expression using	Cognitive	understand						
02	the methods of Boolean algebra and Karnaugh map.	Cognitive	understand						
	Solve the arithmetic calculations by a fixed function								
CO3	of combinational logical circuits and their	Cognitive	Apply						
	implementation								
CO4	Develop the fundamentals flip flops, registers and	Cognitive	Apply and						
04	counters, and Design the sequential logic circuits.	Cogintive	calculate						
CO5	Demonstrate and classify the D/A and A/D Converters	Cognitive	understand						

UNIT – I: DIGITAL FUNDAMENTALS AND LOGIC GATES9+3Number systems – decimal, binary, octal and hexadecimal system – Conversion from one numbernumbersystem to another. Codes – BCD code – Excess 3 code, Gray code – ASCII code – Binaryarithmetic –Binary addition – subtraction – unsigned binary numbers – sign magnitude numbers –1's and 2's complement – Binary multiplications and division – AND, OR circuits using diodes andtransistors – NAND, NOR and EXOR – functions and truth tables. NAND& NOR as universal gates.Here and the subtraction is a subtraction in the subtraction in the subtraction is a subtraction in the subtraction in the subtraction is a subtraction in the subtraction in the subtraction is a subtraction in the subtraction in the subtraction is a subtraction in the subtraction in the subtraction is a subtraction in the subtraction in the subtraction is a subtraction in the subtraction in the subtraction in the subtraction is a subtraction in the subtractin the subtra

UNIT – II: BOOLEAN ALGEBRA AND SIMPLIFICATION OF LOGIC CIRCUITS

9+3

9+3

9+3

9+3

Laws and theorems of Boolean algebra – De Morgan's theorems and their circuit implications – Simplification of Boolean equations – Karnaugh map – pairs, quads, octets – 2,3 and 4 variables – Arithmetic building blocks – Half adder – Full adder – parallel binary adder – Half subtractor – Full subtractor – The adder–subtractor – digital comparator – parity checker / generator.

UNIT - III: DATA PROCESSING CIRCUITS AND SEQUENTIAL LOGICS

Multiplexers – Demultiplexers – Decoders – 1 of 16 decoder BCD to decimal decoder – seven segment decoder – Encoders – Flip Flops – RS Flip Flop – Clocked RS Flip–flop – D flip–flop – JK flip–flop – JK master slave flip–flop – T type flip–flop.

UNIT - IV: SHIFT REGISTERS AND COUNTERS

Types of registers – serial in serial out – serial in parallel out – parallel in serial out – parallel in parallel out – ring counter – asynchronous counter – decoding gates – omitted states – modulus counters –BCD counter – up down counter – synchronous counter – combination counters – decade counter – cascaded counters.

UNIT – V: D/A AND A/D CONVERTERS

 $Introduction - variable \ resistor \ network - binary \ ladder - D/A \ converter - D/A \ accuracy \ and \ resolution - A/D \ converter - simultaneous \ conversion - A/D \ accuracy \ and \ resolution.$

HOURS LECTURE | TUTORIAL | TOTAL

	45	15	60
TEXT BOOKS			

- 1. Albert Paul Malvino; Donald P Leach; Goutam Saha, "Digital principles and applications", 8th Edition, McGraw Hill Education, New Delhi, 2015.
- 2. Jacob Millman, Christos Halkias, "Analog and Digital Circuit and Systems", 2nd edition, Tata McGraw–Hill Education, 2017

REFERENCE BOOK

- 1. Thomas L Floyd, "Digital Fundamentals", 10th Edition ,Pearson, 2013.
- **2.** Herbert Taub and Donald Schilling, "Digital Integrated Electronics", Indian edition, Tata McGraw–Hill Education, 2017.

E REFERENCES

- PROF. Goutam Saha Department of Electronics & Communication Engineering IIT Kharagpur, "DIGITAL ELECTRONIC CIRCUITS", National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/courses/108/101/108101091/</u>
- Prof. S. Srinivasan Department of Electrical Engineering, IIT Madras, "Digital Circuits and Systems", National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/courses/117/106/117106086/</u>

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	0	3	3	3	0	1
CO2	3	1	0	1	3	2	0	1
CO3	3	1	0	1	3	2	3	2
CO4	3	1	0	1	3	2	0	2
CO5	3	1	0	1	3	2	0	2
Total	15	6	0	7	15	11	2	8
Scaled to 1, 2, 3	3	2	0	2	3	3	1	2

Mapping of COs with POs

0 – No relation

1 – Low relation

2 – Medium relation

3 – High relation

COU	RSE C	ODE	L	Т	Р	С					
Х	CG40	5	0	0	2	2					
С	Р	Α	QUALITATIVE ANALYSIS	L	Т	Р	Н				
1	0.75	0.25	PRACTICAL – II	0	0	4	4				
				•							
	COURSE OUTCOMESDOMAINLEVELOn the successful completion of this course students would able toDOMAINLEVEL										
C01		<i>ine</i> the tity of t	Cogn: Psycho		Reme Perce						

CO2	<i>Interprets</i> the nature of compound and <i>identify</i> the functional group and chemical components of the given organic compound.	Cognitive Psychomotor Affective	Understand Analyse Perception Receive
CO3	<i>Contrast</i> and outline the results of the estimation and organic analysis.	Cognitive	Remember Apply

Volumetric and organic Qualitative Analysis

Volumetric Analysis

- 1. Estimation of oxalic acid by Permanganometric method.
- 2. Estimation of copper by Iodometric method.
- 3. Estimation acid by Potentiometric method.

Organic Qualitative Analysis

A study of the reactions of the following organic Compounds.

- 1. Ketone
- 2. Acid
- 3. Amine
- 4. Phenol

1996.

5. Ester

The students may be trained to perform the specific reactions like tests for elements (nitrogen only), aliphatic or aromatic, saturated or unsaturated and functional group present and record their observations.

		LECTURE	PRACTICAL	TOTAL
	HOURS	0	30	30
REFE	RENCE BOOKS			
1.	Gnanapragasam N.S. and Ramamurthy G	., Organic Cl	nemistry – Lab	manual, S.
	Viswanathan Co. Pvt., 1998.			
2.	Gurthu J.N. and Kapoor R., Advanced Experi	mental Chemi	stry (Organic), S.	. Chand and
	Co., 1987.			
3.	Furniss B.S., Hannaford A.J., Smith P.W. G.	and Tatchell	A.R., Vogel's To	ext Book of
	Practical Organic Chemistry. 5th Edn., Pearson	Education, 20	05.	
4.	Sundaram, Krishnan, Raghavan, Practical Che	emistry (Part l	I), S. Viswanatha	an Co. Pvt.,

E RESOURCES

- 1. Chemistry Practical for B. Sc. (Part II) by Dr Deepak Pant
- 2. Hand Book of Practical Chemistry by Dr.S.P.Ghosh
- 3. College Practical Chemistry by V K Ahluwalia, Sunita Dhingra, Sunita Dhingra
- 4. www.freebookcentre.net > Chemistry Books http://www.bookrix.com

Mapping of COs with POs

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	1	3	2	1	3	1
CO2	3	2	1	3	2	1	3	1
CO3	3	2	1	3	2	1	3	1
Total	9	6	3	9	6	3	9	3
Scaled to 1, 2, 3	3	2	1	3	2	1	3	1

0 - No relation

1 – Low relation

2 – Medium relation

3 – High relation

COU	IRSE C	ODE	COURSE NAME	L	Т	Р	C
2	XPH40	6		0	0	2	2
С	Р	Α	OPTICS AND DIGITAL ELECTRONICS - LAB	L	Т	Р	Н
0	1.5	0.5		0	0	4	4

	E OUTCOMES accessful completion of this course students would able to	Domain	Level
CO1	<i>What</i> is interference and <i>Identity</i> various method to produce interference.	Psychomotor:	Mechanism
CO2	<i>Define</i> diffraction and <i>Analyze</i> diffraction effect.	Psychomotor: Affective:	Analyze, Mechanism Respond
CO3	Discuss and demonstrate all operation of logic gates.	Psychomotor: Affective:	Apply Mechanism Receive
CO4	Show the simplification of Boolean expression using the methods of Boolean algebra and Karnaugh map	Psychomotor: Affective:	Analyze Mechanism Receive
CO5	Develop the fundamentals flip flops, registers and counters, and Design the sequential logic circuits.	Psychomotor: Affective:	Analyze Mechanism Receive

Ex. No	Experime	nts		COs
1.	Air Wedge – Determination of Thickness	s of a thin wire.		CO1
2.	Newton's rings – Determination of radiu	s of curvature of	the lens R.	CO1
3.	Spectrometer – Dispersive Power of a pr	ism.		CO2
4.	Spectrometer – Grating – Normal Incider	nce		CO2
5.	Spectrometer-i-d curve.			CO2
6.	Logic gates IC's verification.			CO3
7.	Logic gates – Discrete components (ANI	D, OR & NOT).		CO3
8.	Half adder and Full adder using basic log	gic gates IC's.		CO4
9.	Half subtractor and Full subtractor using	basic logic gate	s.	CO5
10.	RS, Clocked RS, and D Flip Flops using	NAND gate onl	у.	CO5
		LECTURE	PRACTICAL	TOTAL
	HOURS	0	40	40

TEXT BOOKS

- 1. C. L. Arora, "B.Sc .Practical Physics", S. Chand & Company Ltd. Ram Nagar, New Delhi– 110055. 2007.
- 2. R. K. Shukla & Anchal Srivastava. "Practical Physics," New Age International (P) Ltd, Publishers, (Formerly Wiley Eastern Limited), 4835/24, Ansari Raod, Daryagani, New Delhi–11002. 2006.
- 3. D. Chattopadhyay and P. C. Rakshit, "An Advanced course Practical Physics", New Central Book Agency

REFERENCE BOOK

- 1. Geeta Sanon, "B. Sc., Practical Physics", 1st Edition, S. Chand and Company, 2007.
- Chattopadhyay, D., Rakshit, P. C. and Saha, B., "An Advanced Course in Practical Physics," 8th Edition, Books & Allied Ltd., Calcutta, 2007.
- 3. G. L. Squires, "Practical Physics", Fourth edition, Cambridge University Press, 2001.
- 4. Indu Prakash and Ramakrishna, "A Text Book of Practical Physics," 11th Edition, Kitab Mahal, New Delhi, 2011.
- 5. C. Ouseph,K. Rangarajan, "A Text Book of Practical Physics", Volume I,II, S.Viswanathan Publishers,1997.

E-Resources:

- 1. Amal Kumar Das, Department of Physics, IIT Kharagpur ,"Experimental Physics II", National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/courses/115/105/115105120/</u>
- 2. S. Srinivasan, Department of Electrical Engineering, IIT Madras, "Digital Circuits and Systems", National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/courses/117/106/117106086/</u>

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	1		2	1	2	3	3
CO2	3	1		2	1	2	3	2
CO3	3	1		1	1	2	2	1
CO4	3	1		2	1	2	3	2
CO5	3	1		2	1	2	3	3
Total	15	5		9	5	10	14	11
Scaled to 1, 2, 3	3	1		2	1	2	3	3
o relation	1 – L	ow relat	ion	2 – M	edium r	elation	3	– High

Mapping with Programme Outcomes

XPH501 BASIC INSTRUMENTATION SKILLS

COURSE OUTCOMES:

CO1:Cog: R, U;*Classify* accuracy, precision, sensitivity, resolution range and Errors and *Relate* DC &AC voltage and current.

CO2:Cog: An;*Distinguish* conventional voltmeter & multimeter and electronically voltmeter & multimeter

CO3:Cog :U, C;Compare CRO & CRT and Explain operations and specification of CRO.

CO4:Cog: An; Analyzevarious type of generators and rectifiers.

CO5:Cog: U; *Explain* the principle and working of digital meter and *Compare* analog & digital meters.

COURSE CODE	COURSE NAME	L	Τ	Р	C
XPH501	BASIC INSTRUMENTATION SKILLS	0	0	3	2
		L	Т	Р	Н
		0	0	3	3
UNIT - I Basic	of Measurement	I	1	-	10
Instruments accuracy,	precision, sensitivity, resolution range etc. Errors	in me	asure	ment	and
loading effects – Multin	meter: Principles of measurement of dc voltage and	dc cui	rent,	ac c	urrent
and resistance – Specifi	cations of a multimeter and their significance.				
UNIT - II Electron	nic Voltmeter				11

Advantage over conventional multimeter for voltage measurement with respect to input

impedance and sensitivity – Principles of voltage, measurement (block diagram only) – Specifications of an electronic Voltmeter / Multimeter and their significance – AC millivoltmeter : Type of AC millivoltmeters Amplifier – rectifier and rectifier – amplifier – Block diagram ac millivoltmeter – specifications of a CRO and their significance.

UNIT - III Cathode Ray Oscilloscope

13

Block diagram of basic CRO – construction of CRT – Electron gun – electrostatic focusing and acceleration (Explanation only no mathematical treatment) brief discussion on screen phosphor – visual persistence & chemical composition – Time base operation – synchronization – Front panel controls – Specifications of a CRO and their significance.

Use of CRO for the measurement of voltage (dc and ac) frequency, time period – Special features of dual trace – introduction to digital oscilloscope – probes – digital storage oscilloscope: Block diagram and principle of working.

UNIT - IV Generators and Bridges

13

Signal Generators and Analysis Instruments: Block diagram, explanation and specification of low frequency signal generators – pulse generator and function generator – Brief idea for testing – specifications – Distortion factor meter – wave analysis.

Impedance Bridge & Q-Meters: Block diagram of bridge – working principles of basic (balancing type) RLC bridge – Specifications of RLC bridge – Block diagram & working principles of a Q-meter – Digital LCR bridges.

UNIT - V Digital Instruments and Multimeter

13

Principle and working of digital meters – Comparison of analog & digital meters – Working principle of time interval – frequency and period measurement using universal counter/frequency counter – time –base stability – accuracy and resolution.

Test of lab skills will be of the following test items:

Use of an oscilloscope.

CRO as a versatile measuring device.

Use of digital multimeter.

Winding a coil/transformer.

Circuit tracing of Laboratory electronic equipement.

Trouble shooting a circuit

Balancing of bridges.

	LECTURE	TUTORIAL	TOTAL
	45		45
TEXT BOOKS			
1. BL Theraja A text book in electrical technology, S	Chand and Co.		
2. Venugopal, Digital circuits and systems, 2011, Tat	a McGraw Hill.		
3. Subrata Ghoshal, Digital Electronics, 2012, Cenga	ige Learning.		
REFERENCES			
1. MG Say, Performance and design of AC machines	s –ELBS Edn.		

2. Shimon O. Vingron, Logic circuit design, 2012, Springer.

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	2	0	3	2	1	0	1
CO ₂	3	2	0	3	2	1	0	1
CO ₃	3	2	0	3	2	1	3	2
CO ₄	3	2	0	3	2	1	0	2
CO ₅	3	2	0	3	2	1	0	2
	15	10	0	15	10	5	2	8
Scaled to	3	2	0	3	2	1	1	2
1, 2, 3								

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

XPH502A - SOLID STATE PHYSICS

COURSE OUTCOMES:

CO1: Cog: U,Ap; *Demonstrate* and *apply* knowledge of the crystal studies.

- CO2: Cog: U,Ap ,E;*Explain* and *apply* the definition of the Lattice vibrations and Phonons in lattice dynamics.
- CO3: Cog : Ap; *Apply* knowledge of Dia, Para, Ferri and ferromagnetic materials.

CO4: Cog: Ap;Solve problems concerning the definition of the dielectric properties of materials

CO5: Cog: U, AP;*Explain* and *apply* the knowledge of energy bands of solids and their application to modern electrical devices.

COURSE CODE	COURSE NAME	L	Τ	Р	С
XPH502A		3	1	0	4
	SOLID STATE PHYSICS	L	Т	Р	Η
		3	1	0	4
UNIT - I Crystal	Structure	I	<u> </u>	<u> </u>	7+3
Solids: Amorphous and	d Crystalline Materials. Lattice Translation Ve	ctors. Latti	ce w	ith a	Basis
- Central and Non-Ce	entral Elements, Unit cell, Miller Indices, Rec	ciprocal La	ttice,	Тур	oes o
Lattices, Brillouin Zone	es				
UNIT - II Element	tary Lattice Dynamics				8+3
Lattice vibrations and	Phonons, Linear Monoatomic and Diatomic	c Chains.	Acou	istica	l and
optical phonons. Qual	itative Description of the Phonon Spectrum in	Solids. Du	ulog	and I	Petit's
Law, Einstein and Deby	ye theories of specific heat of solids, T ³ law.				
UNIT - III Magnet	ic Properties of Matter				10+3
Dia, Para, Ferri and fer	romagnetic materials, Classical Langevin theory	y of dia- an	d Pa	amag	gnetic
Domains. Quantum M	lechanical Treatment of Paramagnetism. Curie	s's law, We	eiss's	Theo	ory o
Domains. Quantum M Ferromagnetism and Fe Loss.	lechanical Treatment of Paramagnetism. Curie erromagnetic Domains. Discussion of B-H Cur	s's law, We	eiss's	Theo nd E	ory o nergy
Domains. Quantum M Ferromagnetism and Fe Loss. UNIT - IV Dielectr	lechanical Treatment of Paramagnetism. Curie erromagnetic Domains. Discussion of B-H Cur	's law, We ve, Hyster	esis a	Theo nd E	ory o nergy 10+3
Domains.Quantum MFerromagnetism and FeLoss.UNIT - IVDielectrPolarization:LocalEl	lechanical Treatment of Paramagnetism. Curie erromagnetic Domains. Discussion of B-H Cur ric Properties of Materials lectric field at an Atom, Depolarization Field	d, Electric	esis a	Theo nd E	ory o nergy 10+3 bility
Domains.Quantum MFerromagnetism and FeLoss.UNIT - IVDielectrPolarization:LocalElPolarizability.Clausius	Iechanical Treatment of Paramagnetism. Curie erromagnetic Domains. Discussion of B-H Cur cic Properties of Materials lectric field at an Atom, Depolarization Field s Mosotti Equation, Classical theory of electric	d, Electric	esis a	Theo nd E	ory o nergy 10+3 bility
Domains.Quantum MFerromagnetism and FeLoss.UNIT - IVDielectrPolarization:Local ElPolarizability.ClausiusAnomalous Dispersion	Iechanical Treatment of Paramagnetism. Curie erromagnetic Domains. Discussion of B-H Cur ric Properties of Materials lectric field at an Atom, Depolarization Field s Mosotti Equation, Classical theory of electric - Langevin-Debye equation.	d, Electric	esis a	Theo nd E ceptil	ory o nergy 10+3 bility al and
Domains.Quantum MFerromagnetism and FeLoss.UNIT - IVDielectrPolarization:Local ElPolarizability.ClausiusAnomalous DispersionUNIT - VElement	Iechanical Treatment of Paramagnetism. Curie erromagnetic Domains. Discussion of B-H Cur ric Properties of Materials lectric field at an Atom, Depolarization Field s Mosotti Equation, Classical theory of electric - Langevin-Debye equation. tary band theory	d, Electric	esiss's esis a Sus ity, N	Theo nd E ceptil	nergy 10+3 bility al and 10+3
Domains.Quantum MFerromagnetism and FeLoss.UNIT - IVDielectrPolarization:Local ElPolarizability.ClausiusAnomalous DispersionUNIT - VElementKrong Penny model,	Iechanical Treatment of Paramagnetism. Curie erromagnetic Domains. Discussion of B-H Cur ric Properties of Materials lectric field at an Atom, Depolarization Field s Mosotti Equation, Classical theory of electric p - Langevin-Debye equation. tary band theory Band gaps, conductors, Semiconductors and	insulators,	esiss's esis a Sus ity, N P an	Theo nd E ceptil forma	nergy 10+3 bility al and 10+3
Domains.Quantum MFerromagnetism and FeLoss.UNIT - IVDielectrPolarization:Local ElPolarizability.ClausiusAnomalous DispersionUNIT - VElementKrong Penny model,	Iechanical Treatment of Paramagnetism. Curie erromagnetic Domains. Discussion of B-H Cur ric Properties of Materials lectric field at an Atom, Depolarization Field s Mosotti Equation, Classical theory of electric - Langevin-Debye equation. tary band theory	insulators,	esiss's esis a Sus ity, N P an	Theo nd E ceptil forma	nergy 10+3 bility al and 10+3
Domains.Quantum MFerromagnetism and FeLoss.UNIT - IVDielectrPolarization:Local ElPolarizability.ClausiusAnomalous DispersionUNIT - VElementKrong Penny model,Semiconductors, conduSuperconductivity:	Iechanical Treatment of Paramagnetism. Curie erromagnetic Domains. Discussion of B-H Cur ric Properties of Materials lectric field at an Atom, Depolarization Field s Mosotti Equation, Classical theory of electric - Langevin-Debye equation. tary band theory Band gaps, conductors, Semiconductors and activity of semiconductors, mobililty, Hall effect	insulators, t, Hall coef	esiss's esis a Sus ity, N P an ficier	Theo nd E ceptil forma	nergy 10+3 bility al and 10+3 type
Domains.Quantum MFerromagnetism and FeLoss.UNIT - IVDielectrPolarization:Local ElPolarizability.ClausiusAnomalous DispersionUNIT - VElementKrong Penny model,Semiconductors, conduSuperconductivity:Superconductivity	Iechanical Treatment of Paramagnetism. Curie erromagnetic Domains. Discussion of B-H Cur ric Properties of Materials lectric field at an Atom, Depolarization Field s Mosotti Equation, Classical theory of electric - Langevin-Debye equation. tary band theory Band gaps, conductors, Semiconductors and activity of semiconductors, mobililty, Hall effect omena, Critical temperature, critical magnetic fi	d, Electric polarizabil	esiss's esis a Sus ity, N P an ficier	Theo nd E ceptil forma nd N nt.	nergy 10+3 bility al and 10+3 type
Domains.Quantum MFerromagnetism and Ferromagnetism and Ferromagnetism and Ferromagnetism and Ferromagnetism and Ferromagnetism and Ferromagnetism and Ferromagnetism.UNIT - IVDielectration:Polarization:Local ElPolarizability.ClausiusAnomalous DispersionUNIT - VUNIT - VElementKrong Penny model, TSemiconductors, conduSuperconductivity:Superconductivity:	Iechanical Treatment of Paramagnetism. Curie erromagnetic Domains. Discussion of B-H Cur ric Properties of Materials lectric field at an Atom, Depolarization Field s Mosotti Equation, Classical theory of electric - Langevin-Debye equation. tary band theory Band gaps, conductors, Semiconductors and activity of semiconductors, mobililty, Hall effect omena, Critical temperature, critical magnetic finductors. London's equation and Penertration De	insulators, t, Hall coeffection	esiss's esis a Sus ity, N P an ficier ner eff	Theo nd E ceptil forma nd N at.	10+3 bility al and 10+3 type
Domains.Quantum MFerromagnetism and Ferromagnetism and Ferromagnetism and Ferromagnetism and Ferromagnetism and Ferromagnetism and Ferromagnetism and Ferromagnetism.UNIT - IVDielectration:Polarization:Local ElPolarizability.ClausiusAnomalous DispersionUNIT - VUNIT - VElementKrong Penny model, TSemiconductors, conduSuperconductivity:Superconductivity:	Iechanical Treatment of Paramagnetism. Curie erromagnetic Domains. Discussion of B-H Cur ric Properties of Materials lectric field at an Atom, Depolarization Field s Mosotti Equation, Classical theory of electric - Langevin-Debye equation. tary band theory Band gaps, conductors, Semiconductors and activity of semiconductors, mobililty, Hall effect omena, Critical temperature, critical magnetic fi	d, Electric polarizabil	esiss's esis a Sus ity, N P an ficier ner eff	Theo nd E ceptil forma nd N at.	nergy 10+3 bility al and 10+3 type
Domains.Quantum MFerromagnetism and FeLoss.UNIT - IVDielectrPolarization:Local ElPolarizability.ClausiusAnomalous DispersionUNIT - VElementKrong Penny model,Semiconductors, conduSuperconductivity:Superconductivity	Iechanical Treatment of Paramagnetism. Curie erromagnetic Domains. Discussion of B-H Cur ric Properties of Materials lectric field at an Atom, Depolarization Field s Mosotti Equation, Classical theory of electric - Langevin-Debye equation. tary band theory Band gaps, conductors, Semiconductors and activity of semiconductors, mobililty, Hall effect omena, Critical temperature, critical magnetic finductors. London's equation and Penertration De	insulators, t, Hall coeffection	esiss's esis a Sus ity, N P an ficier ner eff	Theo nd E ceptil forma nd N nt. ffect, ect. TO	10+3 bility al and 10+3 type

- 1. Charless Kittel, Introduction to Solid State Physics, 8th Ed., 2004, Wiley India Pvt.Ltd.
- 2. J.P. Srivastava, Elements of solid state physics, 2nd Ed., 2006, Prentice-Hall of India.

3. Leonid V. Azaroff, Introduction to solids, 2004, Tata Mc-Graw Hill

REFERENCES

1. Neil W. Ashcroft and N. David Mermin, Solid State Physics, 1976, Cengage Learning.

2. 1/e M. Ali Omar, Elementary Solid State Physics, 1999,

3. M.A. Wahab, Pearson India. Solid State Physics, 2011, Narosa Publications.

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	2	0	3	3	3	0	1
CO ₂	3	2	0	2	3	2	0	1
CO ₃	3	2	0	2	3	2	3	2
CO ₄	3	2	0	2	3	2	0	2
CO ₅	3	2	0	2	3	2	0	2
	15	10	0	11	15	11	2	8
Scaled to 1,	3	2	0	3	3	3	1	2
2, 3								

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

XPH502B- Atomic & Molecular Spectroscopy

COURSE OUTCOMES:

CO1:Cog: U; *Explain* various atomic models and give the corresponding principles.

CO2:Cog: U; Extend their knowledge of interaction of electrons with external fields.

CO3:Cog :Ap; *Develop* their knowledge about rotational spectra of molecules.

CO4:Cog: An; Analyze the rotational Spectra of diatomic and polyatomic Molecules.

CO5:Cog: U, C;*Explain* Basic principles of Raman spectroscopy and *Discuss* structural determination of molecules

COURSE CODE	COURSE NAME	L	Т	Р	С
XPH502B		3	1	0	4
	ATOMIC & MOLECULAR SPECTROSCOPY	L	Т	Р	Н
		3	1	0	4
Unit 1 : Basic atomic	models	1	I	•	7+3
Optical spectrum of H	Hydrogen atom - Bohr's Postulates - Quantitative co	onclus	ions	–Pri	ncipal
quantum number - Sp	ectra of hydrogen-like atoms – Sommerfeld's extension	on of	the B	ohr	model
– Orbital quantum nu	umber –Lifting of orbital degeneracy - Limits of t	he Bo	hr-So	omm	erfeld
theory – The Corresp	ondence principle - Rydberg atoms -Lifting of orbi	tal de	gener	acy	in the
spectra of Alkali aton	ns - Magnetic moment of orbital motion - Spin and	magn	etic r	nom	ent of
electron –Spin-orbit sp	plitting in the Bohr model – Fine structure in Hydroge	n aton	1		
Unit 2: Interactions	with external fields and many-electron atoms				8+3
Zeeman effect - No	rmal and anomalous – Stark effect - Paschen-Ba	ack et	ffect	– D	ouble
resonance and Optica	al pumping – The spectrum of Helium – Electron	repul	sion	and	Pauli
principle – Angular m	nomentum coupling - X-ray from outer shell & Bren	nsstra	hlung	g spe	ectra –
Emission line spectra	- Fine structure of X-rays - Absorption spectra - Aug	er effe	ect		
Unit 3: Rotational Sp					
	oectroscopy				10+3
-	ecules – Rotational spectra – Diatomic molecules	– Rig	gid n		
The rotation of mole	••			nolec	cule –
The rotation of mole Intensities of spectral	ecules – Rotational spectra – Diatomic molecules			nolec	cule –
The rotation of mole Intensities of spectral	ecules – Rotational spectra – Diatomic molecules line – isotopic substitution – Non-rigid rotator – Pol mentation – Chemical analysis			nolec	cule –
The rotation of mole Intensities of spectral Techniques and Instru Unit 4: Vibrational S	ecules – Rotational spectra – Diatomic molecules line – isotopic substitution – Non-rigid rotator – Pol mentation – Chemical analysis	lyatom	nic m	olec	cule – ules – 10+3
The rotation of mole Intensities of spectral Techniques and Instru Unit 4: Vibrational S Vibrating diatomic m	ecules – Rotational spectra – Diatomic molecules line – isotopic substitution – Non-rigid rotator – Pol mentation – Chemical analysis	lyatom Rotatie	nic m	olec	ules – 10+3 um of
The rotation of mole Intensities of spectral Techniques and Instru Unit 4: Vibrational S Vibrating diatomic m Carbon Monoxide –	ecules – Rotational spectra – Diatomic molecules line – isotopic substitution – Non-rigid rotator – Pol mentation – Chemical analysis Spectroscopy olecule – Diatomic vibrating rotator –Vibration – I	lyatom Rotatio	nic m on sp – Vi	olec	cule – ules – 10+3 um of on of
The rotation of mole Intensities of spectral Techniques and Instru Unit 4: Vibrational S Vibrating diatomic m Carbon Monoxide –	ecules – Rotational spectra – Diatomic molecules line – isotopic substitution – Non-rigid rotator – Pol mentation – Chemical analysis pectroscopy olecule – Diatomic vibrating rotator –Vibration – I Breakdown of the Born-Oppenheimer approxima – Analysis by infra-red techniques - Techniques and	lyatom Rotatio	nic m on sp – Vi	olec	cule – ules – 10+3 um of on of
The rotation of mole Intensities of spectral Techniques and Instru Unit 4: Vibrational S Vibrating diatomic m Carbon Monoxide – Polyatomic molecules Unit 5: Raman Spect	ecules – Rotational spectra – Diatomic molecules line – isotopic substitution – Non-rigid rotator – Pol mentation – Chemical analysis pectroscopy olecule – Diatomic vibrating rotator –Vibration – I Breakdown of the Born-Oppenheimer approxima – Analysis by infra-red techniques - Techniques and	lyaton Rotatio tion I Instru	on sp - Vi umen	olec olec bectro brati tatio	cule – ules – 10+3 um of on of n 10+3
The rotation of mole Intensities of spectral Techniques and Instru Unit 4: Vibrational S Vibrating diatomic m Carbon Monoxide – Polyatomic molecules Unit 5: Raman Spect Classical theory & C	ecules – Rotational spectra – Diatomic molecules line – isotopic substitution – Non-rigid rotator – Pol mentation – Chemical analysis pectroscopy olecule – Diatomic vibrating rotator –Vibration – I Breakdown of the Born-Oppenheimer approxima – Analysis by infra-red techniques - Techniques and roscopy	lyaton Rotatio tion I Instru nal Ra	on sp - Vi umen	olec olec brati tatio	cule – ules – 10+3 um of on of n 10+3 ctra –
The rotation of mole Intensities of spectral Techniques and Instru Unit 4: Vibrational S Vibrating diatomic m Carbon Monoxide – Polyatomic molecules Unit 5: Raman Spect Classical theory & C Vibrational Raman	ecules – Rotational spectra – Diatomic molecules line – isotopic substitution – Non-rigid rotator – Pol mentation – Chemical analysis pectroscopy olecule – Diatomic vibrating rotator –Vibration – I Breakdown of the Born-Oppenheimer approxima – Analysis by infra-red techniques - Techniques and roscopy Quantum theory of Raman scattering – Pure rotatio	Rotation tion - I Instru nal Ra effe	on sp – Vi umen aman ct –	olec olec olectru brati tatio spe Str	cule – ules – 10+3 um of on of n 10+3 ctra – ucture
The rotation of mole Intensities of spectral Techniques and Instru Unit 4: Vibrational S Vibrating diatomic m Carbon Monoxide – Polyatomic molecules Unit 5: Raman Spect Classical theory & C Vibrational Raman	ecules – Rotational spectra – Diatomic molecules line – isotopic substitution – Non-rigid rotator – Pol mentation – Chemical analysis pectroscopy olecule – Diatomic vibrating rotator –Vibration – I Breakdown of the Born-Oppenheimer approxima – Analysis by infra-red techniques - Techniques and roscopy Quantum theory of Raman scattering – Pure rotatio spectra – Polarization of Light and the Raman Raman and IR spectroscopy - Techniques and Instrum	Rotation tion - I Instru nal Ra effe	on sp – Vi umen aman ct –	olec olec olectru brati tatio spe Str	cule – ules – 10+3 um of on of n 10+3 ctra – ucture

	45	15	60
TEXT BOOKS			
 Haken, Wolf, Springer-Verlag, Atomic and Qua Colin Banwell& Elaine McCash, Fundame 	entals of Molec	,	,
McGraw-Hill Publishing Company, Fourth edi REFERENCES	tion (2005).		

- 1. 1 Arthur Beiser, *Concepts of Modern Physics*, Tata McGraw Hill Publishing company, Sixth edition (2005).
- 2. Aruldhas, *Molecular structure and Spectroscopy*, Prentice-Hall of India, First edition (2004).

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	2	0	3	2	1	0	1
CO ₂	3	2	0	3	2	1	0	1
CO ₃	3	2	0	3	2	1	3	2
CO ₄	3	2	0	3	2	1	0	2
CO ₅	3	2	0	3	2	1	0	2
	15	10	0	15	10	5	2	8
Scaled to 1, 2,	3	2	0	3	2	1	1	2
3								

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

XPH503A NUCLEAR AND PARTICLE PHYSICS

COURSE OUTCOMES:

- CO1: Cog: R,U;*Recall* the general properties of nucleus and *Discuss* the angular momentum and magnetic moment.
- CO2: Cog: R, U,E;List and Explain the various models of nuclear

CO3: Cog :U, An; Distinguish and Demonstrate the various radioactivity decay of nucleus

CO4: Cog: Ap U, C; Classify the type of reaction and discuss the concepts

CO5: Cog: U;*Classify* the elementary particles.

COURSE CODE	COURSE NA	ME	L	T	Р	С
XPH503A			3	1	04PH04 $7+3$ ass, chargwith maseass, chargwith maseass, chargwith maseass, chargwith maseass, chargwith maseass, chargwith maseass, chargass, charg<	4
	NUCLEAR AND PARTI	CLE PHYSICS	L	T	Р	H
			3	1	0	4
UNIT - I Genera	al Properties of Nuclei		•	<u> </u>	<u> </u>	7+3
Constituents of nucleu	as and their Intrinsic properties, o	quantitative facts	s about siz	ze, ma	ass, c	harge
density (matter energ	y), binding energy, average bin	ding energy and	d its varia	ation	with	mass
number curve, N/A pl	ot, angular momentum, parity, ma	agnetic moment,	electric n	nomer	nts n	uclea
excites states.						
UNIT - II Nuclea	r Models					8+3
Liquid drop model ap	proach – Semiempirical mass for	rmula and signif	icance of	vario	us te	rms -
condition of nuclear s	tability – Two nucleon separation	n energies – Fer	mi gas mo	odel (dege	nerate
fermion gas, nuclear	symmetry potential in Fermi ga	s) evidence for	nuclear s	hell s	truct	ture -
nuclear magic numbe	rs – basic assumption of shell n	nodel – concept	of mean	field	– re	sidua
interaction – concept of	of nuclear force.					
UNIT - III Radioa	ctivity decay					10+3
Alpha decay: basics c	f α -decay processes, theory of α	x-emission, Gan	now facto	r, Gei	ger]	Nutta
law, α -decay spectros	copy - β-decay: energy kinematic	cs for β-decay, p	ositron en	nissio	n, ele	ectror
, a see of speedob						
• -	othesis – Gamma decay: Gamr	na rays emissic	n &kinen	natics	, in	terna
• -		na rays emissic	n &kinen	natics	, in	terna
capture, neutrino hyp conversion.		na rays emissic	n &kinen	natics		
capture, neutrino hyp conversion. UNIT - IV Nuclea	othesis – Gamma decay: Gamr					10+3
capture, neutrino hyp conversion. UNIT - IV Nuclea Types of reactions –	othesis – Gamma decay: Gamr r Reactions	s of reaction –	Q-value	– rea	ction	10+3
capture, neutrino hyp conversion. UNIT - IV Nuclea Types of reactions –	othesis – Gamma decay: Gamma r Reactions conservation laws – kinematic – Concept of compound and dire	s of reaction –	Q-value	– rea	ction	10+3
capture, neutrino hyp conversion. UNIT - IV Nuclea Types of reactions – reaction cross section scattering (Rutherford	othesis – Gamma decay: Gamma r Reactions conservation laws – kinematic – Concept of compound and dire	s of reaction –	Q-value	– rea	ction - Cou	10+3 rate
capture, neutrino hyp conversion. UNIT - IV Nuclea Types of reactions – reaction cross section scattering (Rutherford UNIT - V Particl	othesis – Gamma decay: Gamma received a second seco	s of reaction – ct reaction, reso	Q-value nance reac	– rea	ction - Cou	10+3 rate 10ml
capture, neutrino hyp conversion. UNIT - IV Nuclea Types of reactions – reaction cross section scattering (Rutherford UNIT - V Particl Particle interactions:	othesis – Gamma decay: Gamma r Reactions conservation laws – kinematic – Concept of compound and dire scattering). e physics	s of reaction – ct reaction, reson	Q-value nance reac nilies - S	– rea ction -	ction - Cou etrie	10+3 a rate alomb 10+3 s and
capture, neutrino hyp conversion. UNIT - IV Nuclea Types of reactions – reaction cross section scattering (Rutherford UNIT - V Particl Particle interactions: Conservation Laws: e	othesis – Gamma decay: Gamma r Reactions conservation laws – kinematic – Concept of compound and dire scattering). e physics basic features, types of partic	s of reaction – ct reaction, reson les and its far nomentum, parit	Q-value nance reac nilies - S y, baryon	– rea ction – Symm numb	ction - Cou etrie er, L	10+3 a rate alomb 10+3 s and eptor
capture, neutrino hyp conversion. UNIT - IV Nuclea Types of reactions – reaction cross section scattering (Rutherford UNIT - V Particl Particle interactions: Conservation Laws: e	othesis – Gamma decay: Gamma r Reactions conservation laws – kinematic – Concept of compound and dire scattering). e physics basic features, types of partic nergy and momentum, angular m	s of reaction – ct reaction, reson les and its far nomentum, parit	Q-value nance reac nilies - S y, baryon	– rea ction – Symm numb	ction - Cou etrie er, L	10+3 a rate alomb 10+3 s and eptor

	45	15	60
TEXT BOOKS	I	1	
1. Kenneth S. Krane, Introductory nuclear physics, wil	ey India Pt. Ltd.	, 2008.	
2. Bernard L. Cohen, Concepts of nuclear physics, Tar	ta Mcgraw Hill,	1998.	
3. R.A. Dulap, Introduction to the physics of nuclei &	particles, Thom	son Asia, 2004.	
REFERENCES			
1. D. Griffith, Introduction to Elementary Particle	s, Hohn Wiley &	z Sons.	

- 2. F.Halzen and A.D. Martin, Quarks and Leptons, Wiley India, New Delhi.
- 3. J.M. Blatt & V.F. Weisskopf, Theoretical Nuclear Physics, (Dover Pub. Inc., 1991)

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	2	0	3	3	1	0	1
CO ₂	3	2	0	2	0	2	0	1
CO ₃	3	2	0	2	0	0	3	2
CO ₄	3	2	0	0	3	0	0	2
CO ₅	3	2	0	0	2	1	0	2
	15	10	0	7	8	4	2	8
Scaled to 1, 2, 3	3	2	0	2	2	1	1	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

XPH503B- PRINCIPLE OF MODERN PHYSICS

COURSE OUTCOMES:

- CO1: Cog: R,Ap, C;*Recall*Planck's constant and knowledge about photons and *Solve* the problems of stability and instability of atoms.
- CO2: Cog: U,E;*Infer*theuncertainty principle and*Estimate* minimum energy of a confined particle using uncertainty principle
- CO3: Cog :U, E; *Explain* particle in box, energy eigenvalues and eigenfunctions, normalization and tunneling across a rectangular potential barrier.
- CO4: Cog: R,U;*Recall*Size and structure of atomic nucleus and *Demonstrate*nuclear force and binding energy

CO5: Cog:R,U, E;*Define* radioactive decay, Mean life and half-life and *Explain* γ decay, β decay and α emission.

COURSE CODE	COURSE NAME		L	Т	Р	С
XPH503B			3	1	0	4
	PRINCIPLE OF MODERN P	PHYSICS	L	Т	Р	Η
			3	1	0	4
UNIT – I			i	1		7+3
Planck's quantum, Pl	anck's constant and light as a collect	tion of ph	otons; Pho	toeled	etric	effect
and Compton scatte	ring. De Broglie wavelength and	matter	waves; D	avisso	on-Ge	ermer
experiment.Problems	with Rutherford model- instability of	f atoms a	nd observa	tion (of dis	screte
atomic spectra; Bohr's	quantization rule and atomic stability.					
UNIT – II						8+3
Position measuremen	t- gamma ray microscope thought	experime	nt; Wave-p	oartic	le du	iality,
Heisenberg uncertaint	y principle- impossibility of a particl	e followir	ng a traject	ory;]	Estim	nating
minimum energy of a	a confined particle using uncertainty	principle	; Energy-t	ime ı	incer	tainty
principle.						
UNIT – III						10+3
One dimensional infi	nitely rigid box- energy eigenvalues	and eige	nfunctions,	norr	naliz	ation;
Quantum dot as an ex	ample; Quantum mechanical scattering	ng and tur	neling in c	one di	imens	sion -
across a step potential	and across a rectangular potential barr	ier.				
UNIT – IV						10+3
Size and structure of	atomic nucleus and its relation with	atomic w	veight; Imp	ossib	ility	of an
electron being in nucle	eus as a consequence of the uncertaint	ty principl	e. Nature o	of nuc	lear	force,
NZ graph, semi-empir	ical mass formula and binding energy					
UNIT –V						10+3
Radioactivity: stability	of nucleus; Law of radioactive decay	; Mean lif	e and half-	life; -	rayγ	decay
- energy released, spec	etrum and Pauli's prediction of neutrino	o; β decay	; α emissio	n.		
	LE	CTURE	TUTOR	IAL	ТО	TAL
1					1	
		45	15			60

 J.R.Taylor, C.D.Zafiratos, M.A.Dubson, Concepts of Modern Physics, Arthur Beiser, 2009, McGraw-Hill Modern Physics, 2009, PHI Learning

REFERENCES

1. Thomas A. Moore, Six Ideas that Shaped Physics: Particle Behave like Waves, 2003,

2. E.H. Wichman, McGraw Hill Quantum Physics, Berkeley Physics, Vol.4. 2008, Tata McGraw-Hill Co.

3. R.A. Serway, C.J. Moses, and C.A.Moyer, Modern Physics, 2005, Cengage Learning

Cos	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	2	0	3	3	1	0	1
CO ₂	3	2	0	3	2	2	0	1
CO ₃	3	1	0	2	2	0	3	2
CO ₄	3	1	0	0	2	0	0	2
CO ₅	3	2	0	0	2	0	0	2
	15	8	0	8	11	3	2	8
Scaled to 1, 2,	3	2	0	2	3	1	1	2
3								

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

XPH504A MICROPROCESSOR AND C PROGRAMMING

COURSE OUTCOMES:

- CO1: Cog: U; *Explain* the basic concepts of digital computer, evolution of microprocessors.
- CO2: Cog Ap;*Develop* their knowledge about the architecture and instruction set of an eight bit 8085 microprocessor.
- CO3: Cog: Ap; Organize assembly language to write programs for an 8085 microprocessor.
- CO4: Cog:U;Summarize Structure of C language, operators and library function
- CO5: Cog: Ap;*Utilize*various input, out statement, loop statements, while do else statements and basic functions for programme.

COURSE CODE	COURSE NAME		L	Т	Р	C
XPH504A	MICROPROCESSOR AND C		3	1	0	4
	PROGRAMMING		L	Т	Р	H
			3	1	0	4
Unit 1 BASICS OF DIG	ITAL COMPUTER	•				9+3
Basic components of a c	ligital computer - Evolution of micropre	ocessors -	Im	porta	nt I	NTE
microprocessors - Buses	- Hardware, Software and Firmware -	Memory	/ -	Semi	icon	ducto
memories - RAM,ROM -	Flash memory.					
Unit 2 INTEL 8085 AND	ITS ARCHITECTURE					9+3
INTEL 8085 - Pin Diagra	m - Architecture - Various registers - Stat	us Flags - l	Inte	rrupt	s an	d the
order of priority - Address	sing modes - Direct, Register, Register ind	irect, Imm	edia	ate ai	nd ir	nplic
addressing - Instruction s	et - Data transfer group - Arithmetic Gro	up - Logic	cal g	group	9 - I	Branc
control group and stack ar	nd I/O- Machine control group.					
Unit 3 ASSEMBLY LAN	IGUAGE PROGRAMMING					9+3
	NGUAGE PROGRAMMING Multiplication -Division of two 8- bit m	umbers - H	Find	ling 1		
Addition - Subtraction -				-	the	large
Addition - Subtraction -	Multiplication -Division of two 8- bit m Finding the smallest number in a data array			-	the	large
Addition - Subtraction - number in a data array - F	Multiplication -Division of two 8- bit m Finding the smallest number in a data array g order.			-	the ∶ of nu	large
Addition - Subtraction - number in a data array - F in ascending or descendin Unit 4 Introduction to C	Multiplication -Division of two 8- bit m Finding the smallest number in a data array g order.	/-Arrangin	g a	list c	the i	large imbe 9+3
Addition - Subtraction - number in a data array - F in ascending or descendin Unit 4 Introduction to C Structure of 'C' – Fundam	Multiplication -Division of two 8- bit m Finding the smallest number in a data array g order.	-Arrangin	g a ds –	list c	the for the formula the formul	large imbe 9+3 es
Addition - Subtraction - number in a data array - F in ascending or descendin Unit 4 Introduction to C Structure of 'C' – Fundam constants – variables – dec	Multiplication -Division of two 8- bit m Finding the smallest number in a data array g order.	-Arrangin Id key wor Ints – arithi	g a ds – meti	list c - data ic op	the for the formula the formul	large imbe 9+3 es
Addition - Subtraction - number in a data array - F in ascending or descendin Unit 4 Introduction to C Structure of 'C' – Fundam constants – variables – dec Relational, Logical and as	Multiplication -Division of two 8- bit m Finding the smallest number in a data array g order. Dentals of C – Character set – identifiers ar clarations – expressions – symbolic consta	-Arrangin Id key wor Ints – arithi	g a ds – meti	list c - data ic op	the for the formula the formul	large imbe 9+3 es
Addition - Subtraction - number in a data array - F in ascending or descendin Unit 4 Introduction to C Structure of 'C' – Fundam constants – variables – dec Relational, Logical and as	Multiplication -Division of two 8- bit m Finding the smallest number in a data array g order. Hentals of C – Character set – identifiers ar clarations – expressions – symbolic consta signment operators, Unary, Bitwise and T D function – library function.	-Arrangin Id key wor Ints – arithi	g a ds – meti	list c - data ic op	the 1 of nu	large imbe 9+3 es
Addition - Subtraction - number in a data array - F in ascending or descendin Unit 4 Introduction to C Structure of 'C' – Fundar constants – variables – dec Relational, Logical and as conditional operators – I/C Unit 5 Preliminaries and	Multiplication -Division of two 8- bit m Finding the smallest number in a data array g order. Hentals of C – Character set – identifiers ar clarations – expressions – symbolic consta signment operators, Unary, Bitwise and T D function – library function.	od key word nd key word nts – arithi ernary ope	g a ds – meti rato	list c - data ic op ors –	the 1 of nu	large mbe 9+3 es ors- 9+3
Addition - Subtraction - number in a data array - F in ascending or descendin Unit 4 Introduction to C Structure of 'C' – Fundar constants – variables – dec Relational, Logical and as conditional operators – I/C Unit 5 Preliminaries and Data input and output – g	Multiplication -Division of two 8- bit m Finding the smallest number in a data array g order. hentals of C – Character set – identifiers ar clarations – expressions – symbolic consta signment operators, Unary, Bitwise and T D function – library function.	Arrangin d key wor nts – arithi ernary ope: nctions – C	g a ds – meti rato	list c - data ic op ors – trol s	the finution of the second sec	9+3 9+3 9+3 9+3 nent
Addition - Subtraction - number in a data array - F in ascending or descendin Unit 4 Introduction to C Structure of 'C' – Fundar constants – variables – dec Relational, Logical and as conditional operators – I/C Unit 5 Preliminaries and Data input and output – g while, do While, for ne	Multiplication -Division of two 8- bit m Finding the smallest number in a data array g order. hentals of C – Character set – identifiers ar clarations – expressions – symbolic consta signment operators, Unary, Bitwise and T D function – library function.	Arrangin d key wor nts – arithi ernary ope: nctions – C nue and go	g a ds – meti rato	list c - data ic op ors – trol s tatem	the finute of the second secon	$\frac{ \text{arge} }{9+3}$ es ors- $9+3$ ment s.
Addition - Subtraction - number in a data array - F in ascending or descendin Unit 4 Introduction to C Structure of 'C' – Fundarr constants – variables – dec Relational, Logical and as conditional operators – I/C Unit 5 Preliminaries and Data input and output – g while, do While, for ne Basic functions – Return	Multiplication -Division of two 8- bit m Finding the smallest number in a data array g order. Thentals of C – Character set – identifiers ar clarations – expressions – symbolic consta signment operators, Unary, Bitwise and T D function – library function. I Functions etchar, putchar, scanf, printf, gets, puts fu	Arrangin d key wor nts – arithi ernary ope: nctions – C nue and go	g a ds – meti rato	list c - data ic op ors – trol s tatem	the finute of the second secon	$\frac{ \text{arge} }{9+3}$ es ors- $9+3$ ment s.
Addition - Subtraction - number in a data array - F in ascending or descendin Unit 4 Introduction to C Structure of 'C' – Fundarr constants – variables – dec Relational, Logical and as conditional operators – I/C Unit 5 Preliminaries and Data input and output – g while, do While, for ne Basic functions – Return	Multiplication -Division of two 8- bit m Finding the smallest number in a data array g order. Thentals of C – Character set – identifiers ar clarations – expressions – symbolic consta signment operators, Unary, Bitwise and T D function – library function. I Functions etchar, putchar, scanf, printf, gets, puts fu ested loops, if else, switch, break, contin values and their types- Calling functior	Arrangin d key wor nts – arithi ernary ope: nctions – C nue and go is – storag	g a ds – meti rato Cont to si ge cl	list c - data ic op ors – trol s tatem lass-	the finute of the final state of	9+3 9+3 es ors- 9+3 ment s.
Addition - Subtraction - number in a data array - F in ascending or descendin Unit 4 Introduction to C Structure of 'C' – Fundarr constants – variables – dec Relational, Logical and as conditional operators – I/C Unit 5 Preliminaries and Data input and output – g while, do While, for ne Basic functions – Return	Multiplication -Division of two 8- bit m Finding the smallest number in a data array g order. Thentals of C – Character set – identifiers ar clarations – expressions – symbolic consta signment operators, Unary, Bitwise and T D function – library function. I Functions etchar, putchar, scanf, printf, gets, puts fu ested loops, if else, switch, break, contin values and their types- Calling function bles- Static Variables- Recursion.	Arrangin d key wor nts – arithu ernary ope: nctions – C nue and go is – storag E TUTC	g a ds – meti rato Cont to si ge cl	list c - data ic op ors – trol s tatem lass-	the finute of the final state of	$\frac{ \text{arge} }{9+3}$ es ors- $9+3$ ments s.

- B.Ram, Fundamentals of Microprocessors and Microcomputers, Dhanpat Rai publication pr. Ltd., New Delhi
- 2. Ramesh S.Goankar, Microprocessor Architecture, Programming and Applications with the 8085, Penram International Publishing (India) Pvt. Ltd.
- 3. Kenneth J.Ayala, The 8051 microcontroller Architecture, Programming and applications', second edition , Penram international.

REFERENCES

- 1. Yn-cheng Liu, Glenn A. Gibson, "Microcomputer systems: The 8086 / 8088 Family architecture, Programming and Design", second edition, Prentice Hall of India, 2006.
- 2. Douglas V. "Microprocessors and Interfacing : Programming and Hardware", Hall, second edition, Tata McGraw Hill,2006.
- A.K.Ray& K.M Bhurchandi, "Advanced Microprocessor and Peripherals Architecture, Programming and Interfacing", Tata McGraw Hill, 2006.
- Mohamed Ali Mazidi, Janice GillispieMazidi, "The 8051 microcontroller and embedded systems using Assembly and C", second edition, Pearson education /Prentice hall of India, 2007.
- 5. Venugopal, K.R. And Sudep, R.P.Programming with C, Tata McGraw Hill Pub. Co. Ltd.
- 6. E. Balagurusamy, Programming in C, Tata McGraw Hill Pub. Co.(2008).

PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
3	2	0	3	3	3	0	1
3	2	0	3	2	2	0	1
3	2	0	3	2	0	3	2
3	2	0	3	2	0	0	2
3	2	0	3	2	1	0	2
15	10	0	15	11	6	2	8
3	2	0	3	3	2	1	2
	3 3 3 3 3 3 15	3 2 3 2 3 2 3 2 3 2 3 2 3 2 15 10	3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 15 10 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 2 0 3 3 3 2 0 3 2 3 2 0 3 2 3 2 0 3 2 3 2 0 3 2 3 2 0 3 2 3 2 0 3 2 3 2 0 3 2 13 2 0 3 2 15 10 0 15 11	3 2 0 3 3 3 3 2 0 3 2 2 3 2 0 3 2 2 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 1 15 10 0 15 11 6	3 2 0 3 3 3 0 3 2 0 3 2 2 0 3 2 0 3 2 2 0 3 2 0 3 2 0 3 3 2 0 3 2 0 3 3 2 0 3 2 0 0 3 2 0 3 2 0 0 3 2 0 3 2 0 0 3 2 0 3 2 1 0 15 10 0 15 11 6 2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

COURSE CODE SUBJECT NAM	SUDIECT NAME	Category						
	SUBJECT NAME	L	Т	Р	CREDITS			
XPH504B	MICROPROCESSOR AND MICROCONTROLLER	3	1	0	4			

COURSE OUTCOMES:

On the successful completion of the course, students will be able to

		Domain	Level
CO ₁	To study the basic concepts of digit al computer, evolutes ion microprocessors, semiconductor memories RAM and ROM	Cog	Understadni ng
CO ₂	To study the architecture and instruction set of an eight bit 8085 microprocessor	Cog	Remebering
CO ₃	To write assembly language programs for an 8085 microprocessor.	Cog	Evaluating
CO ₄	To study Structure of C language, operators, library function	Cog	Understandi ng
CO ₅	To study various input and out statement loop statements while do else statements	Cog	Analyzing

SYLLABUS:

UNIT I BASICS OF DIGITAL COMPUTER9Basic components of a digital computer - Evolution of microprocessors - Important INTEL
microprocessors - Buses - Hardware, Software and Firmware - Memory - Semiconductor memories
- RAM,ROM - Flash memory.INTEL 8085 AND ITS ARCHITECTUREUNIT II INTEL 8085 AND ITS ARCHITECTURE9INTEL 8085 - Pin Diagram - Architecture - Various registers - Status Flags - Interrupts and their

INTEL 8085 - Pin Diagram - Architecture - Various registers - Status Flags - Interrupts and their order of priority - Addressing modes - Direct ,Register, Register indirect, Immediate and implicit

9

9

9

UNIT III INSTRUCTION SET

Instruction set - Data transfer group - Arithmetic Group - Logical group - Branch control group and stack and I/O- Machine control group.

UNIT IV ASSEMBLY LANGUAGE PROGRAMMING

Addition - Subtraction - Multiplication -Division of two 8- bit numbers - Finding the largest number in a data array - Finding the smallest number in a data array-Arranging a list of numbers in ascending or descending order

UNIT V MICROCONTROLLERS

Architecture of 8051 Microcontroller – signals – I/O ports – memory – counters and timers – serial data I/O – interrupts Interfacing -keyboard, LCD, ADC & DAC

Books for Study:

- 1. Fundamentals of Microprocessors and Microcomputers- B.Ram.
- 2. Microprocessor Architecture, Programming and Applications with the 8085, Ramesh. S.Goankar, Penram International Publishing (India) Pvt. Ltd.
- 3. 'The 8051 microcontroller Architecture, Programming and applications'Kenneth J.Ayala, second edition ,Penram international.

Books for Reference:

- 1. "Microcomputer systems: The 8086 / 8088 Family architecture, Yn-cheng Liu,Glenn A.Gibson, Programming and Design", second edition, Prentice Hall of India , 2006 .
- 2. "Microprocessors and Interfacing : Programming and Hardware", Douglas V.Hall, second edition , Tata Mc Graw Hill ,2006.
- 3. "Advanced Microprocessor and Peripherals Architecture, A.K.Ray & K.M Bhurchandi, Programming and Interfacing", Tata Mc Graw Hill, 2006.
- **4.** "The 8051 microcontroller and embedded systems using Assembly and C", Mohamed Ali Mazidi, Janice Gillispie Mazidi, second edition, Pearson education /Prentice hall of India, 2007.

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	2	3	0	2	3	2	0	1
CO ₂	2	2	0	2	2	1	0	1
CO ₃	2	2	0	2	2	0	3	2
CO ₄	2	2	0	0	2	0	0	2
CO ₅	2	0	0	0	2	0	0	2
	10	9	0	6	11	3	2	8
Scaled to 1, 2, 3	2	2	0	2	3	1	1	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

COURSE	SUBJECT NAME	L	т	р	С
CODE	SCHOLET TAXAL		•	•	C
XPH505		0	0	3	2
	PHYSICS PRACTICAL –V A	L	Т	Р	Н
		0	0	3	3

COURSE OUTCOMES:

CO1: Cog: Ana; Aff: Rec.; Psy: Mech; Use laboratory techniques such as accuracy of

measurements and data analysis.

- CO2: Cog: U; Aff: Rec.; Psy: Set, GR; *Explain theconcepts* that are learnt in the lecture sessions and *follow* hands-on learning experience in the laboratory sessions.
- CO3: Cog: R; Aff: Rec.; Psy: Mech; Gain *knowledge* in the scientific methods and *identify* the process of **measuring** different Physical variables
- CO4: Cog: R; Ap, Psy: Mech; Compare theatrical output value with experimental output value.
- CO5: Cog: Ap; Aff: Rec, Org;Psy: Mech; *Manipulate* and *complete* all the experiments with excellent *application* knowledge.

LIST OF EXPERIMENTS

- 1. Spectrometer Grating –normal incidence
- 2. Field along the axis of a coil- H determination.
- 3. Demorgan's theorem verification using IC gates.
- 4. Voltage Doublers and Tripler.
- 5. Deflection magnetometer M & H.
- 6. Air wedge Determine the thickness of a thin wire.
- 7. Carey Foster Bridge Specific Resistance.
- 8. Potentiometer E.M.F of a Thermocouple.
- 9. Spectrometer Refractive index of the prism.
- 10. Half adder and full adder using basic logic gates IC's.

TEXT BOOKS

- 1. BSc Practical Physics, C. L. Arora, (S. Chand)
- An Advanced Course in Practical Physics, D. Chattopadhyay and P. C. Rakshit, (New Central Book Agency)
- A Text Book of Advanced Practical Physics, S. Ghosh, (New Central Book Agency) 7 Semester 1 - Physics (Honours) Theory Paper.
- Shukla R. K. and Anchal Srivastava, Practical Physics, New Age International (P) Ltd, Publishers, 2006.
- 5. Arora C. L., B.Sc Practical Physics, S. Chand and Company Ltd, 2007.

REFERENCES

- 1. Squires G. L., Practical Physics, 4 th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., Fundamentals of Physics, 6th Edition, John Wiley and Sons, 2001.

- 3. Jenkins F.A. and White H.E., Fundamentals of Optics, 4th Edition, Mc Graw Hill Book Company, 2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	1		2	1	2	3	3
CO ₂	3	1		2	1	2	3	2
CO ₃	3	1		1	1	2	2	1
CO ₄	3	1		2	1	2	3	2
CO ₅	3	2		2	1	2	3	2
	15	6		9	5	10	14	10
Scaled to 1, 2, 3	3	1		2	1	2	3	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

COURSE CODE	SUBJECT NAME	L	Т	Р	С
XPH506		0	0	3	2
	PHYSICS PRACTICAL –VB	L	Т	Р	Н
		0	0	3	3

COURSE OUTCOMES:

- CO1: Cog: Ana; Aff: Rec.; Psy: Mech; *Use* laboratory techniques such as accuracy of **measurements** and data **analysis**.
- CO2: Cog: U; Aff: Rec.; Psy: Set, GR; *Explain theconcepts* that are learnt in the lecture sessions and *follow* hands-on learning experience in the laboratory sessions.
- CO3: Cog: R; Aff: Rec.; Psy: Mech; Gain *knowledge* in the scientific methods and *identify* the process of **measuring** different Physical variables
- CO4: Cog: R; Ap, Psy: Mech; Compare theatrical output value with experimental output value.
- CO5: Cog: Ap; Aff: Rec, Org;Psy: Mech; *Manipulate* and *complete* all the experiments with excellent *application* knowledge.

LIST OF EXPERIMENTS

- 2. Operational Amplifier Differentiator, Integrator.
- 3. Tan C determination of M & BH.
- 4. Focal length Concave lens Combination method (Two types)
- 5. Half subtractor and full subtractor using basic logic gates.
- 6. FET Characteristics and constants determination.
- 7. B.G Figure of Merit Voltage and Current Sensitiveness.
- 8. Newton's rings Determination of radius of curvature of the lens R.
- 9. Half Adder, Full Adder using NAND/NOR gate
- 10. Spectrometer i-d curve.
- 11. Construction Dual power supply 5-0-5 or 9-0-9v.

TEXT BOOKS

- 1. BSc Practical Physics, C. L. Arora, (S. Chand)
- 2. An Advanced Course in Practical Physics, D. Chattopadhyay and P. C. Rakshit, (New Central Book Agency)
- A Text Book of Advanced Practical Physics, S. Ghosh, (New Central Book Agency) 7 Semester 1 - Physics (Honours) Theory Paper.
- 4. Shukla R. K. and Anchal Srivastava, Practical Physics, New Age International (P) Ltd, Publishers, 2006.
- 5. Arora C. L., B.Sc Practical Physics, S. Chand and Company Ltd, 2007.

REFERENCES

- 1. Squires G. L., Practical Physics, 4 th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., Fundamentals of Physics, 6th Edition, John Wiley and Sons, 2001.
- Jenkins F.A. and White H.E., Fundamentals of Optics, 4th Edition, Mc Graw Hill Book Company, 2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	1		2	1	2	3	3

CO ₂	3	1	2	1	2	3	2
CO ₃	3	1	1	1	2	2	1
CO ₄	3	1	2	1	2	3	2
CO ₅	3	2	2	1	2	3	2
	15	6	9	5	8	14	10
Scaled to 1, 2, 3	3	1	2	1	2	3	2

3 – Strong: 2 – Medium: 1 – Low

XPH601 RENEWABLE ENERGY

COURSE OUTCOMES:

CO1:Cog: Ap;*Identify* the various alternate Sources of energy.

CO2:Cog:U;*Explain*Solar energy and applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell absorption air conditioning.

CO3:Cog :U;*Demonstrate* the fundamentals of wind energy.

CO4:Cog: C;*Discuss*Ocean Energy and Tide energy technologies

CO5:Cog: U, R;*Explain*Geothermal Energy, Geothermal resources, geothermal technologies and Hydro energy, hydropower technologies and *Relate* the environmental impact.

COURSE CODE	COURSE NAME	L	Т	Р	C					
XPH601		0 0 4		4	2					
	RENEWABLE ENERGY	L	Т	Р	Н					
		0	0	4	4					
UNIT - IAlternate Sources of energy7+3										
Fossil fuels and Nucl	ear energy, their limitation, need of renewable energy	gy, no	on-co	nven	tional					
energy sources. An o	overview of developments in Offshore Wind Energy	, Tida	l En	ergy,	Wav					
energy systems, Oce	an Thermal Energy conversion, solar energy, bi	iomas	s, bi	ioche	mical					
conversion, biogas ger	neration, geothermal energy tidal energy, Hydroelectri	city.								
UNIT - II Solar e	nergy				8+3					
Solar energy, its imp	ortance, storage of solar energy, solar pond, non co	nvect	ive s	olar	pond,					
applications of solar	pond and solar energy, solar water heater, flat p	olate	colle	ctor,	solar					

distillation, solar cooker, solar green houses, solar cell absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems.

UNIT - III Wind Energy

10+3

Fundamentals of wind energy, wind Turbines and different electrical machines in wind turbines, Power electronic interfaces and grid interconnection topologies.

UNIT - IV Ocean Energy

10+3

Ocean Energy Potential against wind and solar, wave characteristics and statistics, wave energy devices. Tide characteristics and Statistics, Tide energy technologies, Ocean Thermal energy, Osmotic power, ocean Bio-mass

UNIT - VGeothermal and Hydro Energy10+3GeothermalEnergy:Geothermalresources, geothermaltechnologies. Hydroenergy:Hydropower resources, hydropower technologies, environmental impact of hydro power sources.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS

1. G.D.Rai, Non conventional energy sources, Khanna publisher, New Delhi.

2. M.P. Agarwal, Solar energy, S Chand and Co. Ltd.

3. Suhas P Sukhative, Solar energy, Tata McGraw – Hill Publishing Company Ltd.

REFERENCES

1. Godfrey Boyle, Renewable energy, Power for a sustainable future, Oxford University Press, in association with The open University (2004).

2. Dr. P, Jayakumar, Solar energy Resource Assessment Handbook, (2009)

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	2	0	3	2	2	0	1
CO ₂	2	1	0	3	2	1	0	1
CO ₃	2	1	0	3	2	1	3	2
CO ₄	2	1	0	3	2	0	0	2
CO ₅	2	1	0	3	2	0	0	2

	11	6	0	15	10	4	2	8
Scaled to 1, 2, 3	3	2	0	3	2	1	1	2

XPH602A- RELATIVITY & QUANTUM MECHANICS

COURSE OUTCOMES:

CO1:Cog: U,E; *Recall*the properties of wave function and *Interpret* the wave function probability and probability current densities in three dimensions.

CO2:Cog: U,E; *Explain* the time dependent Schrodinger equation and its *influence*.

- CO3:Cog : Ap; *Identify* the continuity of wave function, boundary condition and emergence of energy levelsand *Applied* in square well potential.
- CO4:Cog: C; *Discuss* thetime independent Schrodinger equation in spherical polar coordinates and Orbital angular momentum quantum numbers l and m; s, p, d,.. shell.
- CO5:Cog: U;**Explain**electron spin and spin angular momentum and Electron MagneticMoment and Magnetic Energy.

COURSE CODE	COURSE NAME	L	Т	P	С
XPH602A		3	1	0	4
	RELATIVITY & QUANTUM MECHANICS	L	Т	Р	Н
		3	1	0	4
UNIT - I Time depe	endent Schrodinger Equation	1	I		7+3
Time dependent Schr	odinger equation and dynamical evolution of a quantu	m stat	e; Pr	opert	ties of
wave function – Inter	pretation of wave function probability and probabilit	y curr	ent d	lensit	ties in
three dimensions – C	onditions for Physical Acceptability of wave function	ns – N	Jorm	aliza	tion –
Linearity and Super	position Principles – Eigenvalues and Eigenfund	ctions	– I	Positi	ion –
momentum & Energy	operators; Expectation values of position and momen	tum –	Way	ve fu	nction
of a free particle.					
UNIT - II Time i	ndependent Schrodinger Equation				8+3
Hamiltonian, stationa	ry states and energy eigenvalues; expansion of an art	oitrary	' wav	e fui	nction
as a linear combinat	ion of energy eigenfunctions - General solution of	the	time	depe	endent

Schrodinger equation in terms of linear combinations of stationary states – Application to the spread of Gaussian wave packet for a free particle in one dimension – wave packets – Fourier transforms and momentum space wave function – position –momentum uncertainty principle.

UNIT - III General discussion of bound states in	an arbitrary po	otential	10+3
Continuity of wave function, boundary condition an	nd emergence of	f discrete energ	y levels -
application to one - dimensional problem - square	well potential,	- Quantum med	chanics of
simple harmonic oscillator –energy levels and energy e	eigenfunctions us	sing – Frobenius	method.
UNIT - IV Quantum theory of hydrogen-like ato	oms		10+3
Time independent Schrodinger equation in spherical	polar coordinate	s – separation of	f variable
for the second order partial differential equation - a	ngular momentu	um operator and	l quantum
numbers – Radial wavefunctions from Frobenius meth	nod – Orbital ang	gular momentun	n quantun
numbers l and m; s, p, d, shell (idea only).			
V			10+3
UNIT - V Relativity Galelian transformation – Michelson Morely experiemtr	n - Lorentz trans	formation Special	
v		•	l theory o
Galelian transformation – Michelson Morely experiemtr		•	l theory o
Galelian transformation – Michelson Morely experiemtr	n – energy – mom	entum relationshi	l theory o
Galelian transformation – Michelson Morely experiemtr relativity – length contration – time dilation – mass variatio	n – energy – mom LECTURE	entum relationshi	theory o p TOTAL
Galelian transformation – Michelson Morely experiemtr	n – energy – mom LECTURE 45	entum relationshi TUTORIAL 15	theory o p TOTAL 60
Galelian transformation – Michelson Morely experiemtr relativity – length contration – time dilation – mass variatio TEXT BOOKS	n – energy – mom LECTURE 45	entum relationshi TUTORIAL 15	theory o p TOTAL 60
Galelian transformation – Michelson Morely experiemtr relativity – length contration – time dilation – mass variatio TEXT BOOKS 1. A Text Book of Quantum Mechanics, P.M. Ma	n – energy – mom LECTURE 45 thews & K. Ve	entum relationshi TUTORIAL 15 enkatesan, 2 nd I	theory o p TOTAL 60
Galelian transformation – Michelson Morely experiemtr relativity – length contration – time dilation – mass variatio TEXT BOOKS 1. A Text Book of Quantum Mechanics, P.M. Ma McGraw Hill.	n – energy – mom LECTURE 45 thews & K. Ve Resnick, 2 nd Edn.,	entum relationshi TUTORIAL 15 enkatesan, 2 nd I , 2002, Wiley.	theory o p TOTAL 60
 Galelian transformation – Michelson Morely experiemtr relativity – length contration – time dilation – mass variatio TEXT BOOKS 1. A Text Book of Quantum Mechanics, P.M. Ma McGraw Hill. 2. Quantum Mechanics, Robert Eisberg and Robert F 	n – energy – mom LECTURE 45 thews & K. Ve Resnick, 2 nd Edn.,	entum relationshi TUTORIAL 15 enkatesan, 2 nd I , 2002, Wiley.	theory o p TOTAL 60
 Galelian transformation – Michelson Morely experiemtr relativity – length contration – time dilation – mass variatio TEXT BOOKS 1. A Text Book of Quantum Mechanics, P.M. Ma McGraw Hill. 2. Quantum Mechanics, Robert Eisberg and Robert F 3. Quantum Mechanics, G. Aruldhas, 2ndEdn 2002, F 	n – energy – mom LECTURE 45 thews & K. Ve Resnick, 2 nd Edn., PHI Learning of 1	entum relationshi TUTORIAL 15 enkatesan, 2 nd H , 2002, Wiley. India.	theory o p TOTAL 60
 Galelian transformation – Michelson Morely experiemtr relativity – length contration – time dilation – mass variatio TEXT BOOKS 1. A Text Book of Quantum Mechanics, P.M. Ma McGraw Hill. 2. Quantum Mechanics, Robert Eisberg and Robert F 3. Quantum Mechanics, G. Aruldhas, 2ndEdn 2002, F REFERENCES 	n – energy – mom LECTURE 45 thews & K. Ve Resnick, 2 nd Edn., PHI Learning of 2 0, Tata McGraw	entum relationshi TUTORIAL 15 enkatesan, 2 nd I , 2002, Wiley. India.	theory op TOTAI 60
 Galelian transformation – Michelson Morely experiemtr relativity – length contration – time dilation – mass variatio TEXT BOOKS 1. A Text Book of Quantum Mechanics, P.M. Ma McGraw Hill. 2. Quantum Mechanics, Robert Eisberg and Robert F 3. Quantum Mechanics, G. Aruldhas, 2ndEdn 2002, F REFERENCES 1. Quantum Mechanics, Leoard I. Schiff, 3rdEdn, 201 	n – energy – mom LECTURE 45 thews & K. Ve Resnick, 2 nd Edn., PHI Learning of 2 0, Tata McGraw Jone and Bartlet	entum relationshi TUTORIAL 15 enkatesan, 2 nd H , 2002, Wiley. India. Hill. t Learning.	theory of p TOTAI 60 Ed., 2010

Press.

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	2	0	2	3	1	0	1
CO ₂	3	2	0	2	3	2	0	1
CO ₃	3	2	0	2	3	0	3	2
CO ₄	3	2	0	2	3	0	0	2

CO ₅	3	2	0	0	0	0	0	2
	15	10	0	8	12	3	2	8
Scaled to 1, 2, 3	3	2	0	2	3	1	1	2

XPH602B- MATERIAL SCIENCE

Cours	se Outcome	2:	Dom	ain &	Lev	el	
On th	e successfu	l completion of the course, students will be able to	Dom		. Levi	-1	
CO1	Recall and	l distinguish various crystal structures.	Cogr				
:			(Rem, Analyze)				
CO2		ut the impacts of defects at the atomic and microstructure	Cogr			1	
:	scales.			n, Und	lerstai	nd)	
CO3	Describe t	he various Ceramic, Electrical & Electronic Materials.	Cogr		1		
CO4	Describe t	he basics of mechanical properties of material and	Cogr	n, Ana	iyze)		
		by they can be tested.	U		lvze)		
CO5	-	identify how they can be tested.(Rem, Analyze)Recognize and Describe various Magnetic Materials and NanoCognitive					
	Materials.	and Describe various magnetic materials and Nario	(Remember)				
· SUBC	CODE			T	P	C	
			3			4	
XPH6	002B	MATERIALS SCIENCE		1	0	-	
			L	Т	Р	H	
			3	1	0	4	
UNIT	' - I	Crystal Structure		9 + 3			
Atomi	ic structure	and inter-atomic bonding; Structure of crystalline solids	s; Latt	ices,	unit c	ells;	
Crysta	al systems,	Bravais lattices; Indexing of directions and planes, n	otatio	ns, In	ter-pl	anar	
spacin	ngs and ang	les, co- ordination number, packing factors.					
UNIT	' – II	Defects in Crystals		9+3			
Point	defects; Di	slocations, Types of dislocations, Burgers vector and its	repres	entatio	on; Pl	anar	
defect	s, stacking	faults, twins, grain boundaries.					
UNIT	UNIT - IIICeramic, Electrical & Electronic Materials9 + 3						
Ceran	nic Materia	ls:Introduction, ceramic structures, silicate structures, pro	ocessir	ng of	ceran	nics;	
Prope	rties, glasse	s; Composite Materials- Introduction, classification, concu	rete, m	etal-n	natrix	and	
ceram	ic –matrix	composites.Electrical& Electronic Properties of	Materi	als:	Elect	rical	

Conductivity, Electronic and Ionic Conductivity, Intrinsic and Extrinsic Semi conductivity, Semiconductor Devices, Dielectric Properties, Piezo-electricity.

UN	IT – IV	Mech	anical Properties of Ma	terials		9 + 3
Co	ncepts of stres	ss and	strain, Stress-Strain diag	rams; Properties obtained	from t	he Tensile test;
Ela	stic deformat	tion, P	lastic deformation. Imp	act Properties, Strain ra	te effec	ets and Impact
beh	avior. Hardne	ess of m	naterials.			
UN	IT - V	Magr	netic Materialsand Nano) Materials		9 + 3
Ma	gnetic Materia	als: Inti	roduction, Magnetic field	s or quantities, types of m	agnetisr	n, classification
of	magnetic ma	terials,	soft magnetic material	s, H magnetic materials	, Ferrite	es, Ferro, Para
Ma	gnetic mater	ials.Na	noMaterials:Introduction	– Nano material pro	eparation	n, purification,
sin	tering nano pa	articles	of Alumina and Zirconia	a, Silicon carbide, nanoop	, nano-r	nagnetic, nano-
ele	ctronic, and ot	her im	portant nano materials.			
			LECTURE	TUTORIAL		TOTAL
			45	15		60
Te	xt Books:			I		
1	Askeland D.	R.,& P	. P. Fullay (2007), The So	cience and Engineering of	Materia	$ls - 7^{th}Cengage$
	Learning Pul		•			
2	William D. C	Calliste	r, Jr (2008), Callister"s N	Iaterials Science and Engi	neering,	(Adopted by
	R. Balasubra	mania	n) Wiley-Eastern			
Re	ference books	5:				
1	A.S. Edelste	in and 1	R.C. CammarataEd.(1998	3), Nano Materials: Synthe	esis, Pro	perties and
			Of Physics Publishing, U	•		-
2				Engineering - A First Cour	se, Pren	tice Hall, India
	Ŭ	. ,				
3		ackelto	rd (1996), Introduction to	Materials Science for En	gineers,	Prentice Hall,
	India					

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	2	0	2	3	1	0	1
CO ₂	3	2	0	2	3	2	0	1
CO ₃	3	2	0	2	3	0	3	2

CO ₄	3	2	0	2	3	0	0	2
CO ₅	3	2	0	0	0	0	0	2
	15	10	0	8	12	3	2	8
Scaled to 1, 2, 3	3	2	0	2	3	1	1	2

XPH603A MICRO ELECTRO MECHANICAL SYSTEM

COURSE OUTCOMES

CO1:Cog: U;Understand process of MEMS and their applications.

- CO2:Cog: U,Ap ,E;*understand processes for fundamental devices* and *apply*their knowledge for basic mechanics and electrostatics.
- CO3:Cog : U;*Summarize*MUMPs processing sequence and design rules. MUMPs and SUMMIT: design rules.
- CO4:Cog: Ap;*Develop* CMOS foundry processes and *Utilize*their knowledge in various applications.
- CO5:Cog: U, An; Infere knowledge of the scalling laws and MEMSs Assembly of future applications.

COURSE CODE	COURSE NAME	L	Τ	Р	C
XPH603A	MICRO ELECTRO MECHANICAL SYSTEM	1 3		0	4
		L	Т	Р	Н
		3	1	0	4
UNIT - I INT	NIT - I INTRODUCTION story of MEMS, market for MEMS, overview of MEMS processes, properties of silic nple MEMS process. Basics of Microtechnology: definitions and terminology, a second sec		7+3		
•		•			
sample MEMS proc process, lithography Introduction to MEM	ess. Basics of Microtechnology: definitions and terr and etching. MEMS Biosensors: Bio Flow Senso S Pro design software.	minol	logy,	a s	ample nages.
sample MEMS proc process, lithography Introduction to MEM UNIT - II MICE	eess. Basics of Microtechnology: definitions and terr and etching. MEMS Biosensors: Bio Flow Senso (S Pro design software. ROMACHINING	minol ors, N	logy, ⁄IEM	asa SIn	ample nages. 8+3
sample MEMS proc process, lithography Introduction to MEM UNIT - II MICE Subtractive processes epitaxial growth). Fu	ess. Basics of Microtechnology: definitions and terr and etching. MEMS Biosensors: Bio Flow Senso S Pro design software.	minol ors, N	logy, /IEM	a sa S In	ample nages. 8+3 ering,

More electrostatic actuators; MEMS foundries, Cronos MUMPs (multi user MEMS process). MUMPs Multi User MEMS Process: JDS Uniphase MUMPs processing sequence and design rules. MUMPs and SUMMIT: design rules; applications; micro hinges and deployment actuators.

UNIT - IV CMOS MEMS

CMOS foundry processes, integrated IC/MEMS, MEMS postprocessing, applications. Cleanroom lab techniques: clean rooms, gowning procedures; safety, fire, toxicity; acids and bases; photolithography.

UNIT – V SCALING LAWS AND MEMS ASSEMBLY

10+3

10+3

Scaling Laws. Wireless MEMS: mechanical and electrical resonators, Q-factor, switches, filters. Power for MEMS: thin film batteries, micro fuel cells, energy fields. MEMS Packaging and Assembly: microassembly: serial and parallel, deterministic and stochastic; microgrippers: HexSil process; packaging techniques. The Future of MEMS: bioMEMS – neural implants, gene chips, diagnostic chips; MEMS in space; mechanical computers; invisible and ubiquitous computing.

LECTURE	TUTORIAL	TOTAL	
45	15	60	
			L

TEXT BOOKS

- 1. HSU, TAI RAN, Mems And Microsystems Design And Manufacture, Tata McGraw-Hill,2002.
- Rai-Choudhury, Prosenjit; MEMS and MOEMS Technology and Applications SPIE 2000.

REFERENCES

- 1. Mohamed Goad-el-Hak, "MEMS: Introduction and Fundamentals", CRC Press edition 2005
- Vijay K. Varadan, K. J. Vinoy, S. Gopalakrishnan, "Smart Material Systems and MEMS: Design and Development Methodologies".

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	2	3	0	3	3	2	0	1
CO ₂	2	2	0	2	2	1	0	1
CO ₃	2	2	0	2	2	0	3	2
CO ₄	2	2	0	1	2	0	0	2
CO ₅	2	0	0	0	2	0	0	2
	10	9	0	8	11	3	2	8
Scaled to 1, 2, 3	2	2	0	2	3	1	1	2
	3-St	rong	2 - Me	dium:	1 – Lov	w		•

Mapping with Programme Outcomes

Mealum: 1

XPH603B - NUMERICAL METHODS IN PHYSICS

COURSE OUTCOMES:

- CO1: Cog: E,Ap;*Identify* errors and *Measure* errors using General formula.
- CO2: Cog: R,E;Define various iteration method and Determine the false position using these method.
- CO3: Cog : R, Ap; *Find* the unequal intervals *Applying* various interpolation formula.
- CO4: Cog: U, Ap, E; Explain numerical differentiation and integration and Solve problems byNewton's forward, trapezoidal, Simpson'srule.
- CO5: Cog: U, AP; Explain nth order ordinary differential equations and apply the knowledge to Solve the differential equation.

COURSE CODE	COURSE NAME	L	Т	Р	C
XPH603B		3 1		0	4
	NUMERICAL METHODS IN PHYSICS	L	Т	Р	Н
		3	1	0	4
Unit I : Measurements	s and errors	•			7+3
Errors and the measure	urements General formula for errors – Errors	of o	bserv	atior	n and
measurement – Empiri	cal formula - Graphical method - Method of ave	rages	– Le	ast s	square
fitting – curve fitting –	parabola, exponential.				

Unit II : Iteration methods			8+3				
Numerical solution of algebraic and transcendental equ	ations The iterat	ion method – T	he method				
of false position - Newton - Raphson method - Co	onvergence and	rate of converg	gence – C				
program for finding roots using Newton - Raphso	n method. Simu	ltaneous linear	algebraic				
equations Gauss elimination method - Jordon's me	odification – Ga	uss – Seidel 1	nethod of				
iteration.							
Unit III : Interpolation formula			10+3				
Interpolation Linear interpolation - Lagrange interp	olation Gregory	– Newton for	rward and				
backward interpolation formula – Central difference i	nterpolation forn	nula – Gauss fo	rward and				
backward interpolation formula - Divided difference	es – Properties	- Newton's int	erpolation				
formula for unequal intervals.							
Unit IV : Numerical differentiation and Integration10							
Numerical differentiation and integration, Newton's forward and backward difference formula to							
compute derivatives - Numerical integration: the tra	pezoidal rule, Si	mpson's rule –	Extended				
Simpson's rule.							
Unit V : Differential equations for Numerical soluti	ons		10+3				
Numerical Solutions of ordinary differential equations	s Nth order ordin	ary differential	equations				
– Power series approximation – Point wise method – S	olutions of Taylo	or series – Euler	s method				
- Improved Euler's method - Runge-Kutta method	- second and th	nird order – Ru	inge-Kutta				
method for solving first order differential equations.							
	LECTURE	TUTORIAL	TOTAL				
	45	15	60				
TEXT BOOKS		I					
1. S.S. Sastry, Introductory Methods of Numerical ana	lysis, Prentice, H	all of					
India, New Delhi (2003) 3rd Edition.							
2. M. K. Venkatraman, Numerical methods for Physici	sts.						
REFERENCES							
1. Numerical Methods in Science and Engineering	– The National	Publishing Co	o., Madras				
(2001).							

2. W.H. Press, B.P.Flannery, S.A.Teukolsky, W.T.Vetterling, Numerical Recipes in C,

Cambridge University (1996).

	Mappir	ng with	Prog	ramme	Outco	mes		
COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	2	0	2	3	1	0	1
CO ₂	2	2	0	2	2	0	0	1
CO ₃	2	2	0	2	2	0	3	2
CO ₄	2	2	0	3	1	0	0	2
CO ₅	2	2	0	3	0	2	0	2
	11	10	0	12	6	3	2	8
Scaled to 1, 2, 3	3	2	0	3	2	1	1	2

3. K.P.N. Murthy, Monte Carlo : Basics ISRP, Kalpakkam, 2000.

3 – Strong: 2 – Medium: 1 – Low

COURSE CODE	SUBJECT NAME	L	Т	Р	С
XPH604		0	0	3	2
	PHYSICS PRACTICAL –VI A	L	Т	Р	Н
		0	0	3	3

COURSE OUTCOMES:

- CO1: Cog: Ana; Aff: Rec.; Psy: Mech; *Use* laboratory techniques such as accuracy of **measurements** and data **analysis**.
- CO2: Cog: U; Aff: Rec.; Psy: Set, GR; *Explain theconcepts* that are learnt in the lecture sessions and *follow* hands-on learning experience in the laboratory sessions.
- CO3: Cog: R; Aff: Rec.; Psy: Mech; Gain *knowledge* in the scientific methods and *identify* the process of **measuring** different Physical variables

CO4: Cog: R; Ap, Psy: Mech; Compare theatrical output value with experimental output value.

CO5: Cog: Ap; Aff: Rec, Org;Psy: Mech; *Manipulate* and *complete* all the experiments with excellent *application* knowledge.

LIST OF EXPERIMENTS

- 1. NAND, NOR Universal gates Verification.
- 2. RC Coupled Transistor Amplifier Band width.

- 3. UJT relaxation oscillator.
- 4. **RS-** Filp Flop.
- 5. Operational amplifier Adder and subtractor.
- 6. Emitter Follower.
- 7. AstableMultivibrator.
- 8. Monostable multivibrator using transistor.
- 9. Microprocessor 8 bit addition and subtraction.
- 10. Microprocessor 8 bit multiplication and division.

TEXT BOOKS

- 1. B.Sc Practical Physics, C. L. Arora, (S. Chand)
- 2. An Advanced Course in Practical Physics, D. Chattopadhyay and P. C. Rakshit, (New Central Book Agency)
- A Text Book of Advanced Practical Physics, S. Ghosh, (New Central Book Agency) 7 Semester 1 - Physics (Honours) Theory Paper.
- Shukla R. K. and Anchal Srivastava, Practical Physics, New Age International (P) Ltd, Publishers, 2006.
- 5. Arora C. L., B.Sc Practical Physics, S. Chand and Company Ltd, 2007.

REFERENCES

- 1. Squires G. L., Practical Physics, 4 th Edition, Cambridge University Press, 2001.
- Halliday D., Resnick R. and Walker J., Fundamentals of Physics, 6th Edition, John Wiley and Sons, 2001.
- 3. Jenkins F.A. and White H.E., Fundamentals of Optics, 4th Edition, Mc Graw Hill Book Company, 2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	1		2	1	2	3	3
CO ₂	3	1		2	1	2	3	2
CO ₃	3	1		1	1	2	2	1

Scaled to 1, 2, 3	3	1	1	2	1	2	3	2
	15	6	1	9	6	11	13	10
CO ₅	3	2	1	2	2	3	2	2
CO ₄	3	1		2	1	2	3	2

3 – Strong: 2 – Medium: 1 – Low

COURSE CODE	SUBJECT NAME	L	Т	Р	С
CODE XPH605		0	0	3	2
	PHYSICS PRACTICAL –VI B	L	Т	Р	Н
		0	0	3	3

COURSE OUTCOMES:

CO1: Cog: Ana; Aff: Rec.; Psy: Mech; *Use* laboratory techniques such as accuracy of **measurements** and data **analysis**.

- CO2: Cog: U; Aff: Rec.; Psy: Set, GR; *Explain theconcepts* that are learnt in the lecture sessions and *follow* hands-on learning experience in the laboratory sessions.
- CO3: Cog: R; Aff: Rec.; Psy: Mech; Gain *knowledge* in the scientific methods and *identify* the process of **measuring** different Physical variables

CO4: Cog: R; Ap, Psy: Mech; Compare theatrical output value with experimental output value.

CO5: Cog: Ap; Aff: Rec, Org;Psy: Mech; *Manipulate* and *complete* all the experiments with excellent *application* knowledge.

LIST OF EXPERIMENTS

- 1. JK-Flip Flop.
- 2. Decade counter 7490.
- 3. Wien's bridge oscillator.
- 4. FET Amplifier Band width.
- 5. Feedback Amplifier Transistor.
- 6. B.G. Comparison of mutual inductance.
- 7. Half Subtractor and Full Subtractor using NAND/NOR gates.
- 8. Microprocessor Decimal to Octal and Octal to Decimal Conversion.

- 9. Microprocessor Study of DAC Interfacing.
- 10. Microprocessor Decimal to Hexadecimal and Hexadecimal to Decimal Conversion.

TEXT BOOKS

- 1. BSc Practical Physics, C. L. Arora, (S. Chand)
- An Advanced Course in Practical Physics, D. Chattopadhyay and P. C. Rakshit, (New Central Book Agency)
- A Text Book of Advanced Practical Physics, S. Ghosh, (New Central Book Agency) 7 Semester 1 - Physics (Honours) Theory Paper.
- 4. Shukla R. K. and Anchal Srivastava, Practical Physics, New Age International (P) Ltd, Publishers, 2006.
- Arora C. L., B.Sc Practical Physics, S. Chand and Company Ltd, 2007. REFERENCES
- 1. Squires G. L., Practical Physics, 4 th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., Fundamentals of Physics, 6th Edition, John Wiley and Sons, 2001.
- Jenkins F.A. and White H.E., Fundamentals of Optics, 4th Edition, Mc Graw Hill Book Company, 2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	1		2	1	2	3	3
CO ₂	3	1		2	1	2	3	2
CO ₃	3	1		1	1	2	2	1
CO ₄	3	1		2	1	2	3	2
CO ₅	3	2	1	2	2	3	2	2
	15	6	1	9	6	11	13	10
Scaled to 1, 2, 3	3	1	1	2	1	2	3	2

3 – Strong: 2 – Medium: 1 – Low

M.Sc. Physics Syllabus

					L	Т	Р	С
	YPH1)1			4	1	0	5
			MATHEMATICAL METHODS OF PH	IYSICS -I		l		
С	Р	Α			L	Τ	Р	Η
3	0.75	0.25			4	1	0	5
PRE	EREQU	JISITE	Basic knowledge on vectors and their propert	ties.				
On t	he succ	essful c	ompletion of the course, students will be able t	0				
			Course Outcome	Domain			Leve	1
COI		v e probl Eigen v	ems in orthogonality of vectors, Eigen values vectors.	Cognitive			Appl	у
CO2		<i>lain</i> the theo	e basic properties of complex functions and rems.	Cognitive		Com	prehe	ension
CO3	Solv Trai	v e botl nsform.	h differential equations using Laplace	Cognitive			owle Appl	0
CO4		ve diffe sform.	rential equations using Fourier's series and	Cognitive			owle Appl	U /
CO5		<i>lerstand</i> ribution	and <i>compute</i> different probability in probability theory.	Cognitive			owle Appl	0
UNI	T - I		Vector Analysis and Matrices				1	2+3
Vect	or Ana	alysis:	The Scalar and vector fields - Gradient,	divergence and	l cu	rl –	Orth	ogonal
curv	ilinear	coordin	ates - Cylindrical and spherical coordinates	as a special of	curv	ilinea	ır sy	stem –
			- Line, surface and volume integrals - Gauss d	-				
	-		en's theorem in the plane. Matrices: Matrice		-			
		_	ndent elements of matrix – Eigen values and	-	- (Cayle	у На	milton
		Diagona	lization – complete orthonormal set of function	IS.				
	T - II	<u> </u>	Functions of a Complex Variable					2+3
Com	plex p	lane – (lex variable - Analytic functions-Cauchy - Rie Cauchy's theorem - Cauchy's integral formul	a - Taylor and	Lau	rent	expa	nsions-
Sing integ		oints- C	auchy's residue theorem - poles - evaluation	of residues - e	valu	ation	of	lefinite
	T - III		Laplace Transforms				1	2+3
		nsforms	: Linearity property, first and second translati	ion property of	LT	– De	erivat	ives of
Lapl	ace tra	nsforms	- Laplace transform of integrals - Initial and	l Final value th	eore	ms; l	Meth	ods for
findi	ng LT	direct	and series expansion method, Method of dir	fferential equat	ion;	Inve	rse I	Laplace
trans	forms:	Linear	ity property, first and second translation	property, Con	volu	tion	prop	erty –
App]	lication	of LT t	o differential equations and boundary value pro	oblems.				
11			Fourier Series, Integrals and Transforms					

Fourier series definition and expansion of a function x – Dirichlet's conditions- Complex representation of Fourier series – problems related to periodic functions – Fourier integrals – convergence of FS – solving simple partial differential equations using Fourier's series- Fourier transforms: sin, cosine & complex transforms- solving simple partial differential equations using Fourier transform.

UNIT - V Probability Theory

12+3

Fundamental laws of probability- Random variables - Probability distributions-Moments of the distributions - Binomial - Poisson and Normal distributions- Conditional probability distribution joint probability distribution- Characteristic functions- Central limit theorem- Random walks (1D, 2D and 3D) and their applications to physical processes (diffusion, paramagnetism).

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
	60	15	0	75
TEX	T BOOKS			
1.	Mathematical Physi	cs - H.K.Dass and R.Verr	na. S. Chand & Co Pvt Lto	d., 1997.
2.	Mathematical Physi	cs - B.D. Gupta, Vikas, P	ublishing House Pvt Ltd.,	New Delhi, 2003.
3.	Mathematical Physi	cs – Satya Prakash, Sultar	n Chand & Sons, 2014.	
REF	ERENCE BOOKS			
1.	Topics in Mathemat	ical Physics, Parthasarath	y H, Ane Books Pvt. Ltd,	2007.
2.	Advanced Engineer	ing Mathematics, Kreyszi	g, Wiley Eastern Ltd, 199	3.

Mapping of Course Outcomes (CO) with Programme Outcomes (PO):

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	3	3	1	2	1	1	2	3	2	1
CO2	3	2	1	2	1	1	2	3	2	1
CO3	3	2	1	2	1	1	2	3	2	1
CO4	3	2	1	2	2	1	2	3	2	1
CO5	2	2	1	2	2	1	2	3	2	1

				L	Τ	P	С
	YPH10	2		4	1	0	5
			CLASSICAL MECHANICS				
С	Р	Α		L	Τ	Р	Η
		0.25		1	1	Δ	5
3	0.75	0.25		4	L	U	v

	60	15	0		75
	LECTURE	TUTORIAL	PRACTICAL		TOTAL
- Kepl scatter Relativ	er problem: Inver ing to laboratory vistic kinematics -	se - Square law of force-So coordinates - Special th mass–energy equivalence.	cattering in a centra heory of relativity	l force field - Lorentz	d transformation o transformations
UNIT Reduc		tral Force Problem and T ent one body problem - Cer	<u> </u>		12+3
		of motion-torque free motion			
		momentum and kinetic en			
•		s of rigid body - Euler ang			
UNIT		ematics of Rigid Body			12+3
		ons of linear triatomic mole		_	
	-	c function - Action-angle va	-		-
		on for Hamilton's principle f		Harmonic o	
		nilton –Jacobi Theory and	-		12+3
		amilton's equations from va ions - Hamilton's canonical		maininion s	equation of motio
-		m Hamilton's principle -			
		principle of least action	-	-	
UNIT		nilton's Equation and Can			12+3
		notion: free particle in space	- Atwood's machine	е.	
princip	ole of virtual wor	k - Lagrange's equation of	motion - nonholo	nomic syste	ems applications o
Systen	-	onstraints and degrees of free	eedom - homogenei	ty and isoti	ropy - D'Alembert
UNIT	3	rangian Formulation			12+3
CO5	and theory of rel		Co	ognitive	Apply
	1	solve the central force fie	eld problems		Knowledge,
CO4	equation.	kinematics of rigid body thr	Cougn Euler's Co	ognitive	Knowledge
-	equations.	kinomotion of visid had a d		<u> </u>	
CO3		nilton-Jacobi equations and	eigen value	ognitive	Knowledge
CO2	Hamilton equation	ons.	- 00	ognitive	Apply
<u></u>		<i>apply</i> the equations of n	notion using	••	Knowledge,
CO1	Lagrangian equa	l <i>solve</i> the equations of m tions.		ognitive	Knowledge, Apply
	1			omain	Level
	l l	Course Outcome			

1.	Classical Mechanics -H. Goldstein, C. Poole and J. Safko, Pearson Education Asia, New
	Delhi, 2002.
2.	Classical Mechanics - G. Aruldhas, PHI Learning Private Limited, New Delhi, 2015.
REFI	ERENCE BOOKS
1.	Classical Mechanics -S. L. Gutpa, V. Kumar and H.V. Sharma, Pragati Prakashan, Meerat,
	2016.
2.	Classical Mechanics of Particles and Rigid Bodies -K.C. Gupta, New Age International
	Publishers, New Delhi, 2018.
3.	Classical Mechanics -N.C. Rana and P.J. Joag, Tata McGraw Hill, New Delhi, 2015.
4.	Classical Mechanics -J. C. Upadhaya, Himalaya Publishing House Pvt. Ltd, Bangalore,
	2017.

Mapping of Course Outcomes (CO) with Programme Outcomes (PO):

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	3	3	1	1	1	1	3	2	1	1
CO2	3	3	1	1	1	1	3	2	1	1
CO3	3	3	1	1	1	1	3	2	1	1
CO4	3	2	1	1	1	1	3	2	1	1
CO5	3	2	1	1	1	1	3	2	1	1

					L	Т	Р	С
	YPH1	03			4	1	0	5
			ELECTRONICS					
С	Р	Α			L	Т	Р	Η
3	0.75	0.25			4	1	0	5
PRE	REQU	ISITE:	Basic knowledge in active and passiv	ve components	s in	a	circu	it and
semi	conduc	tors.						
On t	he succ	essful co	mpletion of the course, students will be able to	0				
			Course Outcome	Domain			Leve	2 1
CO1		les and t	the characteristics of various types of transistors along with their <i>applications</i> in	Cognitive			owle Appl	0

CO2	<i>Construct</i> arithmetic o output.	circuits using op-amp for perations, <i>design</i> circuits for a c	executing lesired input/	Cognitive	Knowledge, Synthesis
CO3	-	e principle of operation and <i>per</i> llators and converters.	<i>formance</i> of	Cognitive	Knowledge, Comprehension
CO4	<i>Develop</i> an systems.	ability to analyse and <i>design</i> dif	ferent digital	Cognitive	Synthesis
CO5		masking concept as well as IC <i>design</i> CMOS layout and Char		Cognitive	Knowledge, Synthesis
UNIT	- I	Semiconductor Devices			12+3
PN ju	nction diodes	- Varactor diode - Schottky d	iode - tunnel d	liode - Gunn di	ode -optoelectronic
diode	- LASER die	de - LED - photo diode - JFET teristics of UJT and SCR – relax	characteristics	- Depletion and	d enhancement type
UNIT		Operational Amplifier			12+3
		fier characteristics - inverting	and non-invert	ing amplifier -	
		erential circuits - log and antilog			-
	•	to voltage conversions - active			
		lving simultaneous and different	-	U I	÷
UNIT		Oscillators and Converters			12+3
		phase-shift oscillators – Trian	gular saw-toot	h and square-y	
	-	Voltage control oscillator –		-	-
		- Weighted resistor DAC and bi		-	
		nation converter - dual slope AD			
UNIT	- IV	Digital Systems			12+3
	- IV l comparator	Digital Systems – Parity generator/checker – D	Data selector	BCD to Seven	12+3 segment decoder –
Digita Encod paralle	l comparator ers – RS, JK el-in serial-ou	Digital Systems – Parity generator/checker – D , D and JK master-slave flip-flo t shift registers – Synchronous, exers – Demultiplexers.	ops - Serial-in s	serial-out, serial	segment decoder – -in parallel-out and
Digita Encod paralle	l comparator ers – RS, JK el-in serial-ou ers Multiple	– Parity generator/checker – D , D and JK master-slave flip-flo t shift registers – Synchronous,	ops - Serial-in s asynchronous,	serial-out, serial	segment decoder – -in parallel-out and
Digita Encod paralle counte UNIT Basic monol connec	l comparator ers – RS, JK el-in serial-ou ers Multiple - V monolithic 1 ithic resistors ctions – Cha	– Parity generator/checker – D , D and JK master-slave flip-flo t shift registers – Synchronous, exers – Demultiplexers.	ops - Serial-in s asynchronous, king – Etching nd capacitors – tions of CCDs	serial-out, serial ring and up/do g impurity diffu Circuit layout - 555 timer:	segment decoder – -in parallel-out and own (using mod 10) 12+3 Ision – Fabricating - Contacts and inter Description of the
Digita Encod paralle counte UNIT Basic monol connec functio	l comparator ers – RS, JK el-in serial-ou ers Multiple - V monolithic 1 ithic resistors ctions – Cha	 Parity generator/checker – D D and JK master-slave flip-flo t shift registers – Synchronous, exers – Demultiplexers. IC Fabrication and IC Timer Cs – Epitaxial growth – Master, diodes, transistors, inductors a rge coupled device – Application 	ops - Serial-in s asynchronous, king – Etching nd capacitors – tions of CCDs	serial-out, serial ring and up/do g impurity diffu Circuit layout - 555 timer: ons and pulse ge	segment decoder – -in parallel-out and own (using mod 10) 12+3 Ision – Fabricating - Contacts and inter Description of the
Digita Encod paralle counte UNIT Basic monol connec functio	l comparator ers – RS, JK el-in serial-ou ers Multiple - V monolithic I ithic resistors ctions – Cha onal diagram,	 Parity generator/checker – D D and JK master-slave flip-flo t shift registers – Synchronous, exers – Demultiplexers. IC Fabrication and IC Timer Cs – Epitaxial growth – Master, diodes, transistors, inductors a rge coupled device – Application applications of monostable and 	bps - Serial-in s asynchronous, king – Etching nd capacitors – tions of CCDs astable operatio	serial-out, serial ring and up/do g impurity diffu Circuit layout - 555 timer: ons and pulse ge	segment decoder – -in parallel-out and wn (using mod 10) 12+3 Ision – Fabricating - Contacts and inter Description of the neration.
Digita Encod paralle counte UNIT Basic monol connec functio	l comparator ers – RS, JK el-in serial-ou ers Multiple - V monolithic I ithic resistors ctions – Cha onal diagram, LECTURE	– Parity generator/checker – D , D and JK master-slave flip-flo t shift registers – Synchronous, exers – Demultiplexers. IC Fabrication and IC Timer Cs – Epitaxial growth – Master, diodes, transistors, inductors a rge coupled device – Applicater applications of monostable and TUTORIAL	king – Etching nd capacitors – tions of CCDs astable operation	serial-out, serial ring and up/do g impurity diffu Circuit layout - 555 timer: ons and pulse ge	segment decoder – -in parallel-out and wn (using mod 10) 12+3 asion – Fabricating - Contacts and inter Description of the neration. TOTAL

2.				5 - 5. CI	anopaul	iyay, Nev	, contra	TOOK	Ageney	, I .L.U	ı, ∠U	14.	
REFI	ERENCH	E BOOK	KS										
1.	Electron 2009.	nic Devi	ices and	Circuit	s - Anil	K. Main	ni and V	/arsha	Agarwa	al, Wi	ley	Public	ation
2.	Electron	nic princ	iples - N	Ialvino,	TMH, 20	015.							
3.	Op-Am	ps & Lir	near Inte	grated C	ircuits -	R.A. Gay	vakwad,	Printic	e Hall,	New I	Delh	i, 1999	Э.
4.	•			0		Choudhu			-				
4.		-	ew Delhi		J . KUy	Chouun	iry and	з. р	Jaill, IN	icw A	ge	mem	ation
		,		,	comes (CO) with	n Progra	amme (Outcom	es (PC)):		
	Course utcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PS00)9	PSO	10
	<u>CO1</u>	3	2	1	1	2	2	3	3	0		1	
	<u>CO2</u>	3	3	2	1	1	2	3	3	0		1	
	<u>CO3</u> CO4	3 3	22	<u>3</u> 3	1	2	2 2	3	3 3	0		<u>1</u> 1	
	<u>CO4</u> CO5	3	$\frac{2}{3}$		1	$\frac{2}{3}$	2	3	3	0		1	
		_	-	n, 2–Me	dium Re	lation, 1-		-	-		n	-	
Y C	PH104A	A		CO	MPUTAT	IONAL PR	OGRAM			4 L	0 T	0 P	4 H
		.25								4	0	0	4
				·		athematic	,	,					
On th	e success	ful com	pletion of	of the co	urse, stuc	dents will	be able	to					
			Course	Outcon	ne			D	omain			Leve	1
C O 1	solutio under	n of alg differen	gebraic e	equation ions, an	using d	nods to f ifferent r rical solu	nethods	Co	gnitive		Kı	nowled	lge,
C O2		variou nce conc	s inter cept	polation	metho	ods and	finite	Co	gnitive	1	R	emem	ber
C O 3						and inte applicable		Co	gnitive			Appl	y
C O 4		and lir		-		and desc nal meth			gnitive		1	Analy	se

	phenomer	na and interp	pret their meaning.		
UNI	T - I	Numerica	al Differentiation		12
Intro	duction - C	program, C	programming : Findi	ng Roots of a Polynoi	mial - Bisection Method -
Newt Solut	ton Raphson tion of Ordin	Method - S hary Differen	olution of Simultaneou	s Linear Equation by C	Gauss elimination method - Order Method for solving
	Т- ІІ	_	al integration		12
- Bo		Gaussian qu	adrature method (2 pc	-	/3 rule - Simpson's 3/8 rule la) - Giraffe's root square
UNI	T - III	Matlab F	undamentals		12
Array comr	y editor and nands, Basi ices and Ma	Current Di c Arithmetic	rectory – Matlab Help c in Matlab – Basic (and Demos – Matlab Operations with Scalar	space, Command History, Functions, Operators and rs - Vectors and Arrays - In Functions - Illustrative
	T - IV	Matlah P	rogramming		12
	1 - 1 V	Iviatia0 I	IUEIammine		
Cont	rol Flow Sta	tements. if	<u> </u>	tatements _ For While	e Loon Structures – Break
			else, else if, Switch S		e Loop Structures – Break
State	ement – Inpu	t / Output Co	else, else if, Switch Sommands – Script 'm' H		es – Controlling output
State	ement – Input T - V	t / Output Co Matlab G	else, else if, Switch Sommands – Script 'm' H Graphics	Files – Function 'm' Fil	es – Controlling output 12
State UNI 2D P	ement – Inpu T - V Plots - Planar	t / Output Co Matlab G Plots, Log F	else, else if, Switch So commands – Script 'm' H Graphics Plots, Scatter Plots, Con	Files – Function 'm' Fil tour Plots - Multiple Fi	es – Controlling output 12 igures, Graph of a Function
State UNI 2D P – Tit	ement – Inpu T - V Plots - Planar	t / Output Co Matlab G Plots, Log F Fext in Grap	else, else if, Switch Sommands – Script 'm' H Graphics Plots, Scatter Plots, Con h - Line Types, Marker	Files – Function 'm' Fil tour Plots - Multiple Fi	es – Controlling output 12
State UNI 2D P – Tit	ement – Input T - V lots - Planar les, Labels, 7	t / Output Co Matlab G Plots, Log F Fext in Grap - Illustrative	else, else if, Switch Sommands – Script 'm' H Graphics Plots, Scatter Plots, Con h - Line Types, Marker	Files – Function 'm' Fil tour Plots - Multiple Fi	es – Controlling output 12 igures, Graph of a Function
State UNI 2D P – Tit	ement – Input T - V Plots - Planar les, Labels, 7 Surface Plots	t / Output Co Matlab G Plots, Log F Fext in Grap - Illustrative	else, else if, Switch Sommands – Script 'm' H Braphics Plots, Scatter Plots, Con h - Line Types, Marker e Examples	Files – Function 'm' Fil tour Plots - Multiple Fi types, Colors - 3D Gra	es – Controlling output 12 igures, Graph of a Function phics - Curve Plots - Mesh
State UNI 2D P – Titl and S	ement – Input T - V Plots - Planar les, Labels, 7 Surface Plots LECTUR	t / Output Co Matlab G Plots, Log F Fext in Grap - Illustrative	else, else if, Switch Stommands – Script 'm' H Braphics Plots, Scatter Plots, Con h - Line Types, Marker e Examples TUTORIAL	Files – Function 'm' Fil tour Plots - Multiple Fi types, Colors - 3D Gra PRACTICAL	es – Controlling output 12 igures, Graph of a Function aphics - Curve Plots - Mesh TOTAL
State UNI 2D P – Titl and S	ement – Input T - V Plots - Planar les, Labels, 7 Surface Plots LECTUR 45 T BOOKS	t / Output Co Matlab G Plots, Log F Fext in Grap - Illustrative E methods in	else, else if, Switch Stommands – Script 'm' H Graphics Plots, Scatter Plots, Con h - Line Types, Marker e Examples TUTORIAL 15	Files – Function 'm' Fil tour Plots - Multiple Fi types, Colors - 3D Gra PRACTICAL 0	es – Controlling output 12 igures, Graph of a Function aphics - Curve Plots - Mesh TOTAL
State UNI 2D P – Titl and S TEX	ement – Input T - V Plots - Planar les, Labels, 7 Surface Plots LECTUR 45 T BOOKS Numerical Madras, 19	t / Output Co Matlab G Plots, Log F Fext in Grap - Illustrative E methods in 996	else, else if, Switch Stommands – Script 'm' H Graphics Plots, Scatter Plots, Con h - Line Types, Marker e Examples TUTORIAL 15	Files – Function 'm' Fil tour Plots - Multiple Fi types, Colors - 3D Gra PRACTICAL 0 ng - M.K. Venkatarama	es – Controlling output 12 igures, Graph of a Function aphics - Curve Plots - Mesh TOTAL 60 an, National Publishing Co.
State UNI 2D P – Titl and S TEX 1. 2.	ement – Input T - V Plots - Planar les, Labels, 7 Surface Plots LECTUR 45 T BOOKS Numerical Madras, 19	t / Output Co Matlab G Plots, Log F Fext in Grap - Illustrative E methods in 296 arted With M	else, else if, Switch Stommands – Script 'm' H Graphics Plots, Scatter Plots, Con h - Line Types, Marker e Examples TUTORIAL 15 Science and Engineerin	Files – Function 'm' Fil tour Plots - Multiple Fi types, Colors - 3D Gra PRACTICAL 0 ng - M.K. Venkatarama	es – Controlling output 12 igures, Graph of a Function aphics - Curve Plots - Mesh TOTAL 60 an, National Publishing Co.
State UNI 2D P – Titl and S TEX 1. 2.	rement – Input T - V Plots - Planar les, Labels, T Surface Plots LECTUR 45 T BOOKS Numerical Madras, 19 Getting Sta	t / Output Co Matlab G Plots, Log F Text in Grap arted With M BOOKS	else, else if, Switch Sr ommands – Script 'm' H Graphics Plots, Scatter Plots, Con h - Line Types, Marker e Examples TUTORIAL 15 Science and Engineerin Matlab – Rudra Pratap, G	Files – Function 'm' Fil tour Plots - Multiple Fi types, Colors - 3D Gra PRACTICAL 0 ng - M.K. Venkatarama Dxford University Press	es – Controlling output 12 igures, Graph of a Function aphics - Curve Plots - Mesh TOTAL 60 an, National Publishing Co.
State UNI 2D P – Titl and S TEX 1. 2. REF	ment – Input T - V lots - Planar les, Labels, 7 Surface Plots LECTUR 45 T BOOKS Numerical Madras, 19 Getting Sta ERENCE B Numerical 2006	t / Output Co Matlab G Plots, Log F Fext in Grap - Illustrative E methods in 296 arted With N COKS methods usi	else, else if, Switch Sr ommands – Script 'm' H Graphics Plots, Scatter Plots, Con h - Line Types, Marker e Examples TUTORIAL 15 Science and Engineerin Aatlab – Rudra Pratap, G	Files – Function 'm' Fil tour Plots - Multiple Fi types, Colors - 3D Gra PRACTICAL 0 ng - M.K. Venkatarama Oxford University Press	es – Controlling output 12 igures, Graph of a Function aphics - Curve Plots - Mesh TOTAL 60 un, National Publishing Co. s-New Delhi.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

.

4 https://onlinecourses.nptel.ac.in/noc20_ma33/preview 2 https://nptel.ac.in/course/103106074/

	11 0	5		(,	0			()	
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	3	3	3	1	3	1	3	3	2	1
CO2	2	3	3	1	3	1	3	3	2	1
CO3	3	3	3	1	1	1	3	3	2	1
CO4	2	2	3	1	1	1	3	3	2	1
CO5	3	2	3	1	1	1	3	3	2	1

Mapping of Course Outcomes (CO) with Programme Outcomes (PO):

					L	T	P	С
]	YPH10	4B	THERMODYNAMICS AND STATIS	TICAL	4	0	0	4
~	_		MECHANICS		-	-		
С	P	A			L	Т	Р	Η
3	0.75	0.25			4	0	0	4
PRE	EREQU	JISITE:	Basic knowledge on thermodynamic laws and	relations.				
On t	he succ	essful co	ompletion of the course, students will be able to					
			Course Outcome	Domain			Leve	l
COI	l to	<i>nderstan</i> materia evelopme	Cognitive		Knowledge			
CO2	2	<i>nderstan</i> acroscop	<i>ed</i> relation between microscopic and bic particles and their properties.	Cognitive	Knowledge			dge
CO3	s an	-	<i>nowledge</i> on role of distribution of particles y within the available states on properties of	Cognitive	Knowledge			dge
CO4		<i>Identify</i> the possible states of the mater and energy exchange during the change in state of the matter. Cognitive Knowledge						
COS		Apply thermo-dynamical relations and statistical laws to study the properties of the matter.Cognitive						dge, y
UNI	T - I		Thermodynamics, Microstates and Macros	tates				12

Basic postulates of thermodynamics – Fundamental relations and definition of intensive variables – Intensive variables in the entropic formulation – Equations of state – Euler relation, densities - Gibbs-Duhem relation for entropy - Thermodynamic potentials– Maxwell relations – Thermodynamic relations – Microstates and macrostates – Ideal gas – Microstate and macrostate in classical systems – Microstate and macrostate in quantum systems – Density of states and volume occupied by a quantum state.

 UNIT - II
 Microcanonical, Canonical and Grand Canonical Ensembles
 12

Microcanonical distribution function – Two level system in microcanonical ensemble – Gibbs paradox and correct formula for entropy – The canonical distribution function –

Contact with thermodynamics - Partition function and free energy of an ideal gas –The grand partition function – Relation between grand canonical and canonical partition functions – One-orbital partition function.

UNIT - III Bose-Einstein, Fermi-Dirac and Maxwell Boltzmann Distributions

Bose-Einstein and Fermi-Dirac distributions – Thermodynamic quantities – Non-interacting Bose gas and thermodynamic relations – Chemical potential of bosons – Number density of photons and Bose condensation - Thermodynamic relations for non-interacting Fermi gas – Fermi gas at zero and low temperature – Fermi energy and Fermi momentum - Maxwell-Boltzmann distribution law for microstates in a classical gas - Physical interpretation of the classical limit – Fluctuations in different ensembles.

UNIT - IV	Transport, Equilibrium and Non-Equilibrium processes	12							
Derivation of Boltzmann transport equation for change of states without and with collisions -									
Boltzmann equation	Boltzmann equation for quantum statistics – Equilibrium distribution in Boltzmann equation – Transport								
processes; One spee	d and one dimension - All speeds and all directions - Distribution o	f molecular							
velocities – Equipar	velocities - Equipartition and Virial theorems - Brownian motion - Non-equilibrium process; Joule-								
Thompson process - Free expansion and mixing - Thermal conduction.									

12

12

Heat capacities of hetero-nuclear diatomic gas – Heat capacities of homo-nuclear diatomic gas – Heat capacity of Bose gas –One-dimensional Ising model and its solution by variational method – Exact solution for one-dimensional Ising model - Phase transitions and criterion for phase transitions – Classification of phase transitions by order and by symmetry – Phase diagrams for pure systems – Clausius-Clapeyron equation – Gibbs phase rule.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL						
	60	0	0	60						
TEX	TEXT BOOKS									
1.	. An Introductory Course of Statistical Mechanics - P.B. Pal, Narosa Publishing House, 2008.									
2.	An introduction to University Press, 201	Thermodynamic and Sta 3.	atistical Mechanics - Ke	eith Stowe, Cambridge						
3.	Elements of Statistica	l Mechanics - Kamal Sing	h & S.P. Singh, S. Chand	& Company, 1999.						

REF	ERENCE BOOKS
1.	Statistical Mechanics An Elementary Outline - Avijit Lahiri, University Press, Hyderabad, 2002.
2.	Thermodynamic and Statistical Mechanics (Lecturers on the theoretical physics) - Arnold
	Sommerfeld, Levant Books, Kolkatta, 2005.

Mapping of Course Outcomes (CO) with Programme Outcomes (PO):

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	3	2	2	2	3	2	3	2	2	1
CO2	3	2	2	2	3	2	3	2	0	1
CO3	3	2	2	2	3	2	3	2	0	1
CO4	3	2	2	2	3	2	3	2	0	1
CO5	3	2	2	2	3	2	3	2	0	1

Y	YPH10	4C			L 4	T 0	P 0	C 4	
C	P	A	INSTRUMENTAL METHODS OF ANA	ALYSES	L	T	P	H	
3 DDL	0.75	0.25	Fundamental knowledge on measuring instrume		4	0	0	4	
			: Fundamental knowledge on measuring instrume	ents.					
On the successful completion of the course, students will be able to Course Outcome Domain							Leve	<u>ا</u>	
CO1	Explain the types of errors in experimental methods of analysis. Cognitive						prehe	ension	
CO2	m an	<i>ndersta</i> ethods d diffe	Cognitive		Knowledge, Apply				
CO3			<i>nd</i> and <i>apply</i> X-ray diffraction method for crystalline materials.	Cognitive		Knowledge, Apply			
CO4			minescence methods and electron microscopy for material analysis and their application.	Cognitive	Knowledge			dge	
CO5	5 Le	e <i>arn</i> the	e various applications of nanoparticles.	Cognitive			Appl	У	
UNI	T - I			12					
samp	oling te	chnique	Mean, variance and standard deviation, standar es – Chi square test. Experimental Stress Analyst rain gauge techniques – photoelasticity and holog	s: Stress analy					

UN	II - TI	Т	hermal	Analysis	8						12	2
Int	roduction – t	hermo g	ravimetr	ric analys	sis – instr	rumentati	on of we	eight los	ss and d	lecompos	sition prod	luct
– d	lifferential sc	anning c	alorime	tric – ins	trumenta	tion – spe	ecific he	at				
cap	pacity measu	rements	– detern	nination	of therm	o chemica	al param	eters –	differe	ntial ther	mal analy	sis -
bas	sic principles	– meltir	ng point	determin	ation and	d analysis						
UN	NIT - III	Χ	-ray An	alysis							12	2
Sir	ngle Crystal	and po	wder di	ffraction	– Diffi	ractomete	er – inte	erpretat	ion of	diffracti	on pattern	ns -
ind	lexing – unk	nown a	nd phase	e identifi	ication –	double	and four	r crysta	l Diffra	actomete	r for epita	axia
cha	aracterization	n – lattice	e mismat	tch – tetr	agonal d	istortion -	- thin fil	m chara	octeriza	tion		
- 3	K-ray fluores	cence sp	ectrosco	py – uses	s.							
UNIT - IV Optical Methods and Electron Microscopy										12		
Ph	otoluminesce	ence – li	ght-matt	er intera	ction – f	undamen	tal trans	itions –	- excito	ns – inst	trumentati	on -
	ctroluminesc		-									
	nsitions as											
	strumentation					-						
	es – Nanolith	-	1 1		2			5			1	
	NIT - V		lectrica	l Methoo	ds						12	
-												
Ha	ll Effect – ca	arrier der	nsitv – re	esistivity	– two pi	robe and	four pro	be meth	ods – s	scattering	mechanis	
	ll Effect – ca		-	-	-		-			scattering	g mechanis	
vai	n der pauw m	nethod –	CV char	acteristic	cs – Scho	ottky barr	ier capao	citance -		scattering	g mechanis	
vai		nethod –	CV char	acteristic	cs – Scho	ottky barr	ier capao	citance -		scattering	g mechanis	
vai	n der pauw m	nethod – ntration -	CV char	cacteristic	cs – Scho	ottky barr	ier capao mitation	citance -	-		g mechanis OTAL	
vai	n der pauw m purity concer	nethod – ntration -	CV char	cacteristic chemical TUT(cs – Scho l CV prot	ottky barr	ier capac mitation PRAC	citance - s.	-			
vai im	n der pauw m purity concer LECTU 60	nethod – ntration - J RE	CV char	cacteristic chemical TUT(cs – Scho l CV prot ORIAL	ottky barr	ier capac mitation PRAC	s. TICAL	-		OTAL	
vai m	n der pauw m purity concer LECTU 60 EXT BOOKS	nethod – ntration - JRE	CV char - electro	racteristic chemical TUT(cs – Scho l CV prot ORIAL 0	ottky barr filing – li	ier capac mitation PRAC	citance - s. TICAL 0	- ,	T	OTAL 60	sm -
vai im	n der pauw m purity concer LECTU 60 EXT BOOKS 1. Electron	nethod – ntration - JRE 5 microsc	CV char - electro	racteristic chemical TUT(cs – Scho l CV prot ORIAL 0	ottky barr filing – li	ier capac mitation PRAC	citance - s. TICAL 0	- ,	T	OTAL	sm -
vai im	n der pauw m purity concer LECTU 60 EXT BOOKS 1. Electron Publishe	nethod – ntration - JRE S microsc rs, Londo	CV char - electro copy and on, 1979	racteristic chemical TUT(d Microa	cs – Scho l CV prot ORIAL 0 analysis	ottky barr filing – li	ier capace mitation PRAC	s. TICAL 0 aterials	- - Belk	T x.J.A, A _I	OTAL 60 oplied Sci	enco
vai im	n der pauw m purity concer LECTU 60 EXT BOOKS 1. Electron Publishe 2. Modern	nethod – ntration - JRE S microsc rs, Londo	CV char - electro copy and on, 1979	racteristic chemical TUT(d Microa	cs – Scho l CV prot ORIAL 0 analysis	ottky barr filing – li	ier capace mitation PRAC	s. TICAL 0 aterials	- - Belk	T x.J.A, A _I	OTAL 60	enco
vai im TF	n der pauw m purity concer LECTU 60 EXT BOOKS 1. Electron Publishe 2. Modern 1971.	nethod – ntration - JRE S microsc rs, Londo Metallog	CV char - electro copy and on, 1979 graphic T	racteristic chemical TUT(d Microa	cs – Scho l CV prot ORIAL 0 analysis	ottky barr filing – li	ier capace mitation PRAC	s. TICAL 0 aterials	- - Belk	T x.J.A, A _I	OTAL 60 oplied Sci	sm -
vai im TF	n der pauw m purity concer LECTU 60 EXT BOOKS 1. Electron Publishe 2. Modern	nethod – ntration - JRE S microsc rs, Londo Metallog	CV char - electro copy and on, 1979 graphic T	racteristic chemical TUT(d Microa	cs – Scho l CV prot ORIAL 0 analysis	ottky barr filing – li	ier capace mitation PRAC	s. TICAL 0 aterials	- - Belk	T x.J.A, A _I	OTAL 60 oplied Sci	enco
vai im TE	n der pauw m purity concer LECTU 60 EXT BOOKS 1. Electron Publishe 2. Modern 1971. EFERENCE	hethod – htration - JRE S microsc rs, Londo Metallog BOOKS	CV char - electro copy and on, 1979 graphic T	tacteristic chemical TUT(d Microa). Fechniqu	cs – Scho l CV prot ORIAL 0 analysis es and th	ottky barr filing – li	ier capace mitation PRAC	TICAL 0 aterials	- Belk	T x.J.A, A _I Wiley Int	OTAL 60 oplied Sci erscience,	enc
vai im TF RF	n der pauw m purity concer LECTU 60 EXT BOOKS 1. Electron Publishe 2. Modern 1971. EFERENCE	nethod – ntration - JRE S microsc rs, Londo Metallog BOOKS ental Met	CV char - electro copy and on, 1979 graphic T S hods of	racteristic chemical TUT(d Microa). Fechniqu Analysis	cs – Scho l CV prof ORIAL 0 analysis es and th s - Willar	ottky barr filing – li of Crysta eir Appli d.M, Stev	ier capace mitation PRAC Illine M cations -	s. TICAL 0 aterials Philips	- Belk	T x.J.A, Ap Wiley Int	OTAL 60 oplied Sci erscience,	enco
TE RE	n der pauw m purity concer LECTU 60 EXT BOOKS 1. Electron Publishe 2. Modern 1971. EFERENCE	hethod – htration - JRE JRE Microsc rs, Londo Metallog BOOKS ental Met	CV char - electro copy and on, 1979 graphic T S hods of copy an	racteristic chemical TUT(d Microa). Fechniqu Analysis	cs – Scho l CV prot ORIAL 0 analysis es and th s - Willar panalysis	ottky barr filing – li of Crysta eir Appli d.M, Stev	ier capace mitation PRAC Illine M cations -	s. TICAL 0 aterials Philips	- Belk	T x.J.A, Ap Wiley Int	OTAL 60 oplied Sci erscience, hi, 1986.	enco
vai im TF RF	n der pauw m purity concer LECTU 60 EXT BOOKS 1. Electron Publishe 2. Modern 1971. EFERENCE 1. Instrume 2. Electron Science	hethod – htration - JRE JRE S microsc rs, Londo Metallog BOOKS ental Met Microso Publishe	CV char - electro copy and on, 1979 graphic 7 S hods of copy and rs, Lond	racteristic chemical TUT(d Microa). Fechniqu Analysis id Micro on, 1979	cs – Scho l CV prof DRIAL 0 analysis es and th s - Willar panalysis 0.	ottky barr filing – li of Crysta eir Appli d.M, Stev of Crys	ier capace mitation PRAC Illine M cations - Ze.D, CB talline 1	s. TICAL 0 aterials Philips S Publi material	- Belk - Belk - V.A, V shers, I s - St	T x.J.A, Ap Wiley Int New Dell radling,	OTAL 60 oplied Sci erscience, hi, 1986.	enco
vai im TF RF	n der pauw m purity concer LECTU 60 EXT BOOKS 1. Electron Publishe 2. Modern 1971. EFERENCE 1. Instrume 2. Electron Science	hethod – htration - JRE JRE S microsc rs, Londo Metallog BOOKS mtal Met Microso Publishe	CV char - electro - electro copy and on, 1979 graphic T S hods of copy an rs, Lond g of Cou	Analysis on, 1979	cs – Scho l CV prof DRIAL 0 analysis es and th s - Willar panalysis 0. comes (C	ottky barr filing – li of Crysta eir Appli d.M, Stev of Crys	ier capace mitation PRAC PRAC Illine M cations - ve.D, CB talline T Program	s. TICAL 0 aterials Philips S Publi material mme O	- Belk - Belk V.A, V shers, I s - St utcome	T x.J.A, Ap Wiley Int New Dell radling, es (PO):	OTAL 60 oplied Sci erscience, hi, 1986. R.A, App	enc
vai im TF RF	n der pauw m purity concer LECTU 60 EXT BOOKS 1. Electron Publishe 2. Modern 1971. EFERENCE 1. Instrume 2. Electron Science	hethod – htration - JRE JRE S microsc rs, Londo Metallog BOOKS ental Met Microso Publishe	CV char - electro copy and on, 1979 graphic 7 S hods of copy and rs, Lond	racteristic chemical TUT(d Microa). Fechniqu Analysis id Micro on, 1979	cs – Scho l CV prof DRIAL 0 analysis es and th s - Willar panalysis 0.	ottky barr filing – li of Crysta eir Appli d.M, Stev of Crys	ier capace mitation PRAC Illine M cations - Ze.D, CB talline 1	s. TICAL 0 aterials Philips S Publi material	- Belk - Belk s V.A, V shers, I s - St	T x.J.A, Ap Wiley Int New Dell radling,	OTAL 60 oplied Sci erscience, hi, 1986.	enco
TE RE	n der pauw m purity concer LECTU 60 EXT BOOKS 1. Electron Publishe 2. Modern 1971. EFERENCE 1. Instrume 2. Electron Science I Course Outcome CO1	hethod – htration - JRE JRE Microsc rs, Londo Metallog BOOKS ental Met Microsc Publishe Mapping PO1 3	CV char - electro - electro copy and on, 1979 graphic T S hods of copy an rs, Lond g of Cou PO2 3	Analysis on, 1979	cs – Scho l CV prof DRIAL 0 analysis es and th s - Willar panalysis 0. comes (C	ottky barr filing – li of Crysta eir Appli d.M, Stev of Crys CO) with PO5 3	ier capace mitation PRAC PRAC Illine M cations - ve.D, CB talline T Program	s. TICAL 0 aterials Philips S Publi material mme O	- Belk - Belk s V.A, V shers, I s - St utcome PO8 3	T x.J.A, Ap Wiley Int New Dell radling, es (PO):	OTAL 60 oplied Sci erscience, hi, 1986. R.A, App	enco
TE RE	n der pauw m purity concer LECTU 60 EXT BOOKS 1. Electron Publishe 2. Modern 1971. EFERENCE 1. Instrume 2. Electron Science	hethod – htration - JRE JRE S microsc rs, Londo Metallog BOOKS ental Met Microso Publishe Mapping PO1	CV char - electro copy and on, 1979 graphic T S hods of copy an rs, Lond g of Cou PO2	Analysis d Microa d Microa d Microa d Microa d Microa d Micro on, 1979 urse Out a	cs – Scho l CV prof ORIAL 0 analysis es and th s - Willar panalysis comes (C PO4	ottky barr filing – li of Crysta eir Appli d.M, Stev of Crys CO) with PO5	ier capace mitation PRAC PRAC Illine M cations - 7e.D, CB talline T Program PO6	s. TICAL 0 aterials Philips S Publi material mme O PO7	- Belk - Belk - V.A, V shers, I s - St utcome PO8	T x.J.A, Ap Wiley Int New Dell radling, radling, es (PO): PSO9	OTAL 60 oplied Sci erscience, hi, 1986. R.A, App PSO10	enco

CO4

CO5	2	3	1	1	2	1	2	3	0
_	2 11: -1-	Dalatia	N -	Jimme Dal	ation 1 1		lation 0	N _a D.	1.4

3-High Relation, 2-Medium Relation, 1-Low Relation, 0-No Relation

1

					т	Tr	р	2
		_			L	T	P	C
Y	PH10	5			4	0	0	4
~	_		NUMERICAL METHODS				_	
С	Р	A			L	Τ	P	H
	0.75	0.25			4	0	0	4
			Knowledge in UG level Mathematics (Calcul					
On the	e succe	essful c	ompletion of the course, students will be able t	0				
			Course Outcome	Domain			Leve]
CO1		-	comprehensive <i>understanding</i> on numerical is in physical measurements.	Cognitive			owle nthe	-
CO2	Dem	onstra	te the accurate numerical methods to solve uation.	Cognitive			Appl	у
CO3	Und	erstand	the Newton's interpolation formula in ervals for numerical problem.	Cognitive		Kn	owle	dge
CO4			<i>stand</i> and <i>implement</i> numerical methods to <i>solve</i> ntial and integral forms of equations. Cognitive Ap					
Obtain numerical solution of ordinary differential cO5 equation using power series approximation and Euler's Cognitive Cognitive Runge-Kutta method. Cognitive Cognitive						Comprehension, Apply		
UNIT		<u> </u>	Errors and Curve Fitting					12
Empir parabo	rical fo ola, y =	ormula - = axn ,	surements - General formula for errors – Error - Graphical method – Method of averages - M y = aebx , y = a+bx – sum of squares of residua ares approximation – Method of least squares for	ethod of least so als for straight l	quare ine a	es – s ind p	traig	ht line
UNIT		1	Roots of Equation and Simultaneous Equat					12
	rical s		of algebraic and transcendental equations -	iteration meth				of fals
positio elimin	ation	method	Raphson method - Simultaneous Equations: –Jordan's modification - Gauss Jacobi iterati of a matrix using Gauss elimination method.					
positic elimin metho	nation od – In	method version	-Jordan's modification - Gauss Jacobi iterati					
positic elimin metho UNIT Interpo interpo	ation od – In ' - III olation olation olation	method version n Linea n formu	–Jordan's modification - Gauss Jacobi iteration of a matrix using Gauss elimination method.	ion method – C ory – Newton fo la – Gauss for	bauss orwa ware	s Seio rd an d ano	dal it d ba d ba	eratio 12 ckwar ckwar
positic elimin metho UNIT Interpo	hation od – In olatior olatior olatior olatior als.	method version n Linea n formu	 Jordan's modification - Gauss Jacobi iteration of a matrix using Gauss elimination method. Interpolation r interpolation - Lagrange interpolation Gregorial a - Central difference interpolation formula 	ion method – C ory – Newton fo la – Gauss for	bauss orwa ware	s Seio rd an d ano	dal it d ba d ba	eratio 12 ckwar ckwar

– Nur	nerical integration: the	ne trapezoidal rule, Simps	sons rule – Extended Simps	sons rule (1/3 rule).					
UNI	T-V Ordin	nary Differential Equati	ons	12					
Impro metho	oved Euler method –	Modified Euler method	successive approximation – Runge Kutta fourth orde equation - Runge Kutta M	r method – Runge Kutta					
LECTURE TUTORIAL PRACTICAL TOTAL									
	60	0	0 0						
TEX	T BOOKS	I	L	<u></u>					
3.	Introductory Metho	ds of Numerical analysis	- S.S. Sastry, Prentice - H	all of India, New Delhi.					
	2003.								
4.	Numerical Method	s for Mathematics, Scien	ce and Engineering - John	n H. Matthews, Prentice					
	Hall of India, 2000.								
REF	ERENCE BOOKS								
4.	Numerical Mathem	atical Analysis - J. B. Sca	rborough, Oxford Publishi	ng, 1990.					
5.	Numerical Method	s for Physicists - M. K.	Venkatraman, S. Chand &	c Company, New Delhi,					
	2005.								

Y	PH1	06			L 0	T 0	P 3	C 3
			BASIC GENERAL AND ELECTRONICS LA	BORATORY				
С	Р	Α			L	Т	Р	Η
0.5	2	0.5			0	0	6	6
PRE	CREC)UISI	TE: Know the basic laws and have practical expen	rience to use me	easu	ring t	ools.	
On t	he su	ccessf	ful completion of the course, students will be able to	0				
			Course Outcome	Domain			Leve	1
CO1		<i>nderst</i> aperim	<i>tand</i> the concepts behind various physics ents.	Cognitive, Psychomotor		Knowled		dge
CO2		<i>easur</i> curac	<i>e</i> different physical parameters with maximum y.	Cognitive, Psychomotor		Evaluate		
CO3	b D pł	Cognitive, Psychomotor	Evaluate		nte			
CO4	Constant Con	Cognitive, Psychomotor		Sy	nthe	sis		

CO5		<i>now</i> the concep	tual difference between	analog and	Cognitive, Psychomotor	Comprehension				
S. No		gital elleans.	E	xperiments	1 Sychomotor					
				-						
		-	(Any eight experiments	-						
1.			f Young's modulus, rigid	ity modulus a	nd Poisson ratio b	by forming elliptical				
		fringes								
2.			of Young's modulus, r	igidity modu	lus and Poisson	ratio by forming				
3.		hyperbolic fringe	f Stefan's constant							
4.	-			nomson's met	hod					
	 Determination of e/m of an electron by Thomson's method Determination of Thermal Conductivity of Metal by Forbe's Method 									
6.										
7.			ermination using He-Ne I		une using spectro.	meter.				
8.			f Diode Laser wave lengt		size using Optica	l fibre				
9.			f Numerical Aperture of a	*	U 1					
10			f wavelength of Laser usi							
11			f Bandgap of a semicond	<u> </u>						
12	-		f carrier concentration an		ients in semicond	uctors.				
	1		nts (Any eight experime							
1.		Transistor power		/						
2.			y of Wein bridge Oscillat	or (Op-amp)						
3.			y of phase shift Oscillator							
4.		Construction of	dual Regulated Power Su	pply using IC	S					
5.		Characteristics of								
6.		Characteristics of	of UJT							
7.		Characteristics of	of LDR							
8.		Common source	amplifier using FET							
9.		Common drain a	mplifier using FET							
10).	Integrator and D	ifferentiator using Op-an	р						
11	1.	Filter using Op-a	amp							
12	2.	Half and Full wa	ive rectifier							
	LE	ECTURE	TUTORIAL	PRACT	ΓICAL	TOTAL				
		0	0	9	0	90				
TEX	Т В	OOKS			I					
1.	An	Advanced Cour	rse in Practical Physics	- D. Chattopa	adhyay, P. C. Ra	kshit, New Central				
		ook Agency (P) L	•		J J / · · · · · · · ·	,				
2.			anced Practical Physics -	S. K. Ghosh,	New Central Publ	lishers, 2000.				
				1 0 1 1 -	1 11 .1 /~ ····					
3.		ectronic Circuits 1 12.	Lab Manual - C. R. Rame	esh, Scitech Pu	iblications (India)) Pvt. Ltd., Chennai,				
REFI		ENCE BOOKS								

1	1.	Advanced Practical Physics Volume I – Dr. S.P. Sing, Pragati Prakasan Educational publishers,
		2011.
2	2.	Practical Physics and Electronics - C.C. Ouseph, U.J. Rao, V. Vijayendran, Viswanathan
		Printers & Publishers Pvt. Ltd., 2007.
3	3.	Practical Physics - C. L. Arora, S. Chand Publishing, New Delhi, 2015.

Mapping of Course Outcomes (CO) with Programme Outcomes (PO):

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	3	3	1	1	3	3	2	3	0	1
CO2	2	3	1	1	3	3	2	3	0	1
CO3	3	3	1	1	1	3	2	3	0	1
CO4	3	2	1	1	1	3	2	3	0	1
CO5	2	3	1	1	2	3	2	3	0	1

	YPH2	0.1			L 4	T 1	P 0	C 5
	IPH2	01	MATHEMATICAL METHODS OF PH	YSICS - II	4	1	U	5
С	Р	L	Τ	Р	Н			
3	0.75		4	1	0	5		
PRE	REQU	JISITE	Basic knowledge in differential equations.					
On t	he succ	essful c	ompletion of the course, students will be able t	0				
			Course Outcome	Domain			Leve	1
CO1		racteriz	<i>e</i> the physical system <i>using</i> group and tensors.	Cognitive	(orehe Appl	ension, y
CO2		s <i>sify</i> dif olve pro	ferential equations and <i>choose</i> right method blems.	Cognitive		Know Compre		•
CO3		<i>ly</i> parti sics.	al differential equation to solve problems in	Cognitive			Appl	у
CO4			the recurrence relation of Legendre's equation and Bessel's differential equation.	Cognitive		Sy	ynthesis	
CO5		<i>luate</i> ogonal	Cognitive			valua prehe	tte, ension	
UNI	T - I]	12+3	
Group Theory: Definitions of a group-elementary properties-sub groups homomorphi								
	_	_	roups-representation of groups-reducible and		-			
	· ·	÷	their representations. Tensor: Notations an					•
Einst	Einstein's summation convention covariant and contravariant and mixed tensors-algebraic operations							

UNIT -							
	II Or	linary Differential Equatio	ons				12+3
Homoger	neous linear e	quations of second order v	with constant	coeffici	ents a	nd their	r solutions
ordinary	second order of	differential with variable co	efficients and	their so	lution	by pow	ver series a
Frobeniu	s methods – ex	tended power series method	for indicial eq	uations.			
UNIT -	III Par	tial Differential Equations	(PDEs)				12+3
Second of	order PDEs and	d their types – Solutions of	f PDEs – Me	thods fo	r solvi	ing PDE	Es – Laplad
diffusion	and wave ec	uations in Cartesian and	polar coordin	ates – S	Solutio	on of tw	vo and thr
		iffusion and wave equation	-				
	actical problem						
UNIT -	-	cial Functions					12+3
Legendre	_	equation: Legendre poly	nomials – C	eneratin	g fund	ctions -	- Recurren
-		formula–orthogonality of			-		
		nomial –generating function	-				
-		Hermite differential equation				-	
		guerre's differential equation					
		rthogonal properties of Lagu	-		IIIIui	generat	ing runetio
UNIT -				initians			10.0
	, Gu	ття, вега апо влгог винс					2+5
Definitio	n of Gamma a	mma, Beta and Error Func		es of Gar	nma fi	inctions	12+3
		nd Beta functions- Fundame	ental propertie				– Evaluati
of (1/2) a	and graph of th	nd Beta functions- Fundame e Gamma function- Transfo	ental propertie ormation of G	amma fu	inction	ı - Diffe	– Evaluati Frent forms
of (1/2) a Beta fun	and graph of the ctions – Relation	nd Beta functions- Fundame ne Gamma function- Transfo ion between Beta and Gam	ental propertie ormation of G ima functions	amma fu	inction	ı - Diffe	– Evaluati Frent forms
of (1/2) a Beta fun Gamma f	and graph of the ctions – Relation	nd Beta functions- Fundame e Gamma function- Transfo	ental propertie ormation of G ima functions	amma fu - Reduct	inction	1 - Diffe 7 definit	– Evaluati Frent forms
of (1/2) a Beta fun Gamma f	and graph of the ctions – Relations – Relations-Error Sunctions-Error	nd Beta functions- Fundame ne Gamma function- Transfo ion between Beta and Gam r function / probability integr TUTORIAL	ental propertie ormation of G ma functions ral. PRACT	amma fu - Reduct	inction	1 - Diffe 7 definit	– Evaluati erent forms e integrals
of (1/2) a Beta fun Gamma f	and graph of th ctions – Relati functions- Error	nd Beta functions- Fundame le Gamma function- Transfo ion between Beta and Gam r function / probability integr	ental propertie ormation of G nma functions ral.	amma fu - Reduct	inction	1 - Diffe 7 definit	– Evaluati erent forms e integrals
of (1/2) a Beta fun Gamma f Ll	and graph of the ctions – Relation functions-Error ECTURE	nd Beta functions- Fundame ne Gamma function- Transfo ion between Beta and Gam r function / probability integr TUTORIAL	ental propertie ormation of G ma functions ral. PRACT	amma fu - Reduct	inction	1 - Diffe 7 definit	– Evaluati erent forms e integrals
of (1/2) a Beta fun Gamma f Ll TEXT B	and graph of the ctions – Relation functions-Error ECTURE 60 OOKS	nd Beta functions- Fundame ne Gamma function- Transfo ion between Beta and Gam r function / probability integr TUTORIAL	ental propertie ormation of G ma functions ral. PRACI	amma fu - Reduct	inction ion of	1 - Diffe definit	– Evaluati erent forms e integrals
of (1/2) a Beta fun Gamma f Ll TEXT B 1. M	and graph of the ctions – Relation functions – Relation functions – Error ECTURE 60 00KS athematical Physical P	nd Beta functions- Fundame ne Gamma function- Transfo ion between Beta and Gam r function / probability integr TUTORIAL 15 ysics - H.K.Dass and R.Vern	ental propertie ormation of G ama functions ral. PRACT 0 na. S. Chand o	amma fu - Reduct	Ltd.,	1 - Diffe definit T(1997.	 Evaluation Evaluation Evaluation Forms Total Total 75
of (1/2) a Beta fun Gamma f Ll TEXT B 1. M 2. M	and graph of the ctions – Relations – Relations – Relations-Error ECTURE 60 00KS athematical Physical	nd Beta functions- Fundame ne Gamma function- Transfo ion between Beta and Gam r function / probability integr TUTORIAL 15 ysics - H.K.Dass and R.Vern ysics - B.D. Gupta, Vikas, Pu	ental propertie ormation of G ma functions ral. PRACI 0 na. S. Chand o ublishing Hou	amma fu - Reduct CICAL & Co Pvt se Pvt Lt	Ltd., Ne	1 - Diffe definit T(1997.	 Evaluation Evaluation Evaluation Forms Total Total 75
of (1/2) a Beta fun Gamma f Ll TEXT B 1. M 2. M	and graph of the ctions – Relations – Relations – Relations-Error ECTURE 60 00KS athematical Physical	nd Beta functions- Fundame ne Gamma function- Transfo ion between Beta and Gam r function / probability integr TUTORIAL 15 ysics - H.K.Dass and R.Vern	ental propertie ormation of G ma functions ral. PRACI 0 na. S. Chand o ublishing Hou	amma fu - Reduct CICAL & Co Pvt se Pvt Lt	Ltd., Ne	1 - Diffe definit T(1997.	 Evaluation Evaluation Evaluation Forms Total Total 75
of (1/2) a Beta fun Gamma f Ll TEXT B 1. M 2. M 3. M	and graph of the ctions – Relations – Relations – Relations-Error ECTURE 60 00KS athematical Physical	nd Beta functions- Fundame ne Gamma function- Transfo ion between Beta and Gam r function / probability integr TUTORIAL 15 ysics - H.K.Dass and R.Vern ysics - B.D. Gupta, Vikas, Pu ysics – Satya Prakash, Sultar	ental propertie ormation of G ma functions ral. PRACI 0 na. S. Chand o ublishing Hou	amma fu - Reduct CICAL & Co Pvt se Pvt Lt	Ltd., Ne	1 - Diffe definit T(1997.	 Evaluation Evaluation Evaluation Forms Total Total 75
of (1/2) a Beta fun Gamma f Ll TEXT B 1. M 2. M 3. M REFERI	and graph of the ctions – Relations – Relations – Relations – Error ECTURE 60 00KS athematical Phathematical Phath	nd Beta functions- Fundame ne Gamma function- Transfo ion between Beta and Gam r function / probability integr TUTORIAL 15 ysics - H.K.Dass and R.Vern ysics - B.D. Gupta, Vikas, Pu ysics – Satya Prakash, Sultar	ental propertie ormation of G ma functions ral. PRACI 0 ma. S. Chand o ublishing Hou	amma fu - Reduct CICAL & Co Pvt se Pvt Lt ns; 2014.	Ltd., Ne	Territoria - Diffe definit Territoria 1997. W Delhi	 Evaluation Evaluation Evaluation Forms Total Total 75
of (1/2) a Beta fun Gamma f Ll TEXT B 1. M 2. M 3. M REFERI 1. To	and graph of the ctions – Relations – Relations – Relations – Error ECTURE 60 00KS athematical Physical athematical Physical Phys	nd Beta functions- Fundame ne Gamma function- Transfo ion between Beta and Gam r function / probability integr TUTORIAL 15 ysics - H.K.Dass and R.Vern ysics - B.D. Gupta, Vikas, Pu ysics – Satya Prakash, Sultar	ental propertie ormation of G ma functions ral. PRACT 0 ma. S. Chand o ublishing Hou n Chand & So	amma fu - Reduct CICAL & Co Pvt se Pvt Lt ns; 2014. ks Pvt. L	Ltd, 200	Territoria - Diffe definit Territoria 1997. W Delhi	 Evaluation Evaluation Evaluation Formation Evaluation <l< td=""></l<>
of (1/2) a Beta fun Gamma f Ll TEXT B 1. M 2. M 3. M REFERI 1. To	and graph of the ctions – Relations – Relations – Relations – Error ECTURE 60 00KS athematical Phathematical Phath	nd Beta functions- Fundame ne Gamma function- Transfe ion between Beta and Gam r function / probability integr TUTORIAL 15 ysics - H.K.Dass and R.Vern ysics - B.D. Gupta, Vikas, Pu ysics – Satya Prakash, Sultar S natical Physics, Parthasarath	ental propertie ormation of G ima functions ral. PRACT 0 na. S. Chand a ublishing Hou n Chand & So y H, Ane Boo g, Wiley East	amma fu - Reduct CICAL & Co Pvt & Co Pvt Ise Pvt Lt ns; 2014. ks Pvt. L ern Ltd, 1	ttd., Ne	r - Diffe definit T(1997. w Delhi 07.	 Evaluation Evaluation Evaluation Formation Evaluation <l< td=""></l<>

					r	T	T	1	1				
	CO1	3	3	1	2	1	1	2	3	2		1	
	CO2	3	2	1	2	1	1	2	3	2		1	
	CO3	3	2	1	2	1	1	2	3	2		1	
	CO4	3	2	1	2	2	1	2	3	2		1	
(C O 5	2	2	1	2	2		2	3	2		1	
		3–High	Relation	n, 2–Me	dium Rel	lation, 1–	Low Re	lation, 0	–No Re		1		
L T P C YPH202 4 1 0 5													
Ŷ	PH202		NICS - 1	I		4	1	U	3				
С	P	A					L	Т	P	Η			
		.25				4	1	0	5				
											-	v	U
PREREQUISITE: Basic knowledge in calculus. On the successful completion of the course, students will be able to													
			Course	Outcom	e			Do	main			Leve	l
	T 7 1					C	4			_			
001						es of qu	lantum	G	• • •		Kn	owle	dge,
CO1		nics and t	•	ulation	01			Cog	gnitive		S	ynthe	sis
	Schrod	inger equ	lation.									, 	
cor	<i>Solve</i> ti	ime-inde	pendent	stationa	ry state p	problems	for the	C	• • •			A	
CO2	square	well, fin	ite and n	nultiple	potential	wells.		Cognitive			Apply		
						hydroge	n atom						
CO3	problem				und the	njuroge	ii utoiii	Cog	gnitive			Appl	у
	-		o motri	y form	ilation	of Schro	dingor						
							0						
CO4	Heisen	U		eraction	1	sentations		Cog	gnitive		Kn	nowle	dge
	unders		ymmetr		Anti-sy	mmetry	wave						•
		ns of ide											
CO5						mmutatio	n rules	Con	nitive			Appl	v
005	and add	dition of	angular	moment	a.			CUE	,			1 1 PP1	5
UNIT	- I	Wa	ave Mec	hanics]	12+3
Matter	waves-	Equation	n of mot	ion- Sch	rodinger	equation	for the	free par	ticle –	physic	cal ii	nterp	retatio
of way	ve funct	tion - n	ormalise	ed and	orthogor	nal wave	functio	ons-exp	ansion	theor	em-a	admis	sibilit
conditions- stationary state solution of Schrodinger wave equation - Expectation values-probability current density- Ehrenferts theorem. Postulates of wave mechanics -													
adjoint and self-adjoint operators degeneracy- eigen value, eigen functions-observables – Physical													
interpretation-expansion coefficients-momentum eigen functions-													
-		-							blog	0000	tont	of -	notion
Uncertainty principle-states with minimum value-commuting observables - constant of motion- Interacting and Non-interacting systems.													
UNIT						ı spectru	m]	12+3
								vell pot	ential -	- Bou	nd s		
Time independent Schrodinger equation - Particle in a square well potential - Bound states -eigen													

values, eigen functions –Potential barrier – quantum mechanical tunnelling-infinite potential – finite potential – multiple potential well –alpha emission.

UNIT - III Exactly solvable Eigen value problems

12+3

One dimensional linear harmonic oscillator – properties of stationary states- abstract operator method - Angular momentum operators- commutation relation-Parity- spherical symmetry systems -Particle in a central potential – radial wave function – Hydrogen atom: solution of the radial equation – stationary state wave functions – bound states-the rigid rotator: with free axis-in a fixed plane-3-Dimentional harmonic oscillator.

UNIT - IV Matrix Formulation of Quantum theory and Equation of Motion 12+3

Quantum state vectors and functions- Hilbert space-Dirac's Bra - Ket notation-matrix theory of Harmonic oscillator – Schrodinger, Heisenberg and Interaction representation – coordinates and momentum representations – Projection operator Identical Particles and Spin Identical Particles – symmetry and antisymmetric wave functions – exchange degeneracy – Spin and statistics: Pauli's exclusion principle-Slater determinant- collision of identical particles - spin and Pauli's matrices - density operator and density matrix.

UNIT - VAngular Momentum12+3Angular momentum - commutation rules - eigen value spectrum - matrix representation of J in the |jm>basis - spin angular momentum - spin ½, spin-1- addition of angular momenta-

Clebsch-Gordan coefficients-spin wave functions for a system of two spin- 1/2 particles.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL					
	60	15	0	75					
TEX	T BOOKS								
1.	A Text book of Qua	ntum Mechanics - P. M.	Mathews and K. Venkates	san , Tata McGraw –Hill					
	Publications, 2010.								
2.	Quantum Mechanic	s - SatyaPrakash, KedarN	ath Ram Nath and Co. Pub	olications, 2018.					
3.	QantumMechanics-	Theory and applications	-A. K. Ghatak and Loka	nathan, Macmillan India					
	Ltd Publication, 201	15.							
REFI	ERENCE BOOKS								
1.	Quantum Mechanic	s - V. K. Thankappan, Ne	w Age International (P) La	td. Publication,					
	2003.								
2.	2. Principle of Quantum Mechanics - R. Shankar, Plenum US Publication, 1994.								

Mapping of Course Outcomes (CO) with Programme Outcomes (PO):

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	1	2	0	3	3	1	2	1	3	1
CO2	1	3	0	3	3	1	2	1	3	1
CO3	1	3	0	3	3	1	2	1	3	1

CO4	1	1	0	3	3	1	2	1	3	1
CO5	1	3	0	1	3	1	2	1	3	1

					L	Т	Р	С		
	YPH2)3			4	1	0	5		
			MICROPROCESSOR AND MICROCOM	NTROLLER		1				
C	P	A			L	Τ	Р	H		
3	0.75	0.25			4	1	0	5		
	-		Fundamental knowledge on electronics.							
Ont	ne succ	essiul c	ompletion of the course, students will be able t	to						
			Course Outcome	Domain			Leve	21		
	-		basic concepts of digital fundamentals using			Kn	owle	dae		
CO1		-	ssor 8085. Also, <i>familiarize</i> its internal	Cognitive				ension		
			and operation.							
000		-	wledge and <i>demonstrate</i> programming of	a •••		Kn	owle	dge,		
CO2		-	ssor 8085 and identify various addressing transfer instructions.	Cognitive			Appl	y		
			pecified programme and <i>provide</i> assembly		_					
CO3			programmes that <i>solve</i> real-world control	Cognitive		Comp	orehe	ension,		
		ications		Cognitive	Apply					
			the properties of microprocessor and							
CO4		-	oller and <i>explain</i> the basic concepts and	Cognitive	(Comprehension,				
			icrocontroller 8051.	0	Synthesis			SIS		
	Acq	uire ba	asic ideas related to instruction set and		-					
COS	addı	ressing	modes of microcontroller 8051 and apply it	Cognitive		Knowledge,				
	to w	rite ass	embly language programme for various real-	Cognitive		Apply				
		ld probl								
	T - I		Microprocessor Architecture and Interfaci					12+3		
			ocessor architecture – Pin configuration – Ir			-		-		
			a formats – Addressing modes Memory map							
			I/O interfacing - Data transfer schemes S	synchronous an	d as	ynch	rono	us data		
		iterrupt	driven data transfer - Interrupts of Intel 8085.					12.2		
								12+3		
BCD arithmetic Addition and subtraction two 8-bit and 16-bit numbers - Largest and smalle numbers in a data set – Ascending order and descending order – Sum of a series of a 8-bit numbers										
			multibyte decimal numbers – Square root of a							
			e-wave generator.					i uata -		
	T - III		Peripheral Devices and Microprocessor Ap	oplications				12+3		
				- F			<u> </u>			

Generation of control signals for memory and I/O devices -- I/O ports -- Programmable peripheral interface -- Architecture of 8255A -- Control word -- Programmable interrupt controller (8259) -- Programmable counter -- Intel 8253 -- Architecture, control word and operation – Block diagram and interfacing of analog to digital converter (ADC 0800) – Digital to analog converter (DAC 0800) – Stepper motor – Traffic control.

UNIT - IVMicrocontroller 805112+3Features of 8051 - Architecture - Pin configuration - Memory organization -- Externaldata andprogram memory -- Counters and timers - Serial data input/output - Interrupt structure - Externalinterrupts - Addressing modes -- Comparison between microprocessor and microcontroller.

UNIT - V8051 Instruction Set and Programming12+3Instruction set – Data transfer, arithmetic and logical instructions – Boolean variable manipulation
instructions – Program and machine control instructions – Simple programs – Addition and
subtraction of two 8-bit and 16-bit numbers – Division – Multiplication –- Largest number in a set –
Sum of a set of numbers.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
60	15	0	75

TEXT BOOKS

- 1. Fundamentals of Microprocessor and Microcomputers B. Ram, Dhanpat Rai Publications, New Delhi, 2006.
- 2. Microprocessor Architecture, Programming and Applications with 8085 R. Gaonkar, Penram International Publishing, Mumbai, 2006.
- 3. Microprocessors and Microcontrollers A.P. Godse and D.A. Godse, Technical Publishers, Pune, 2008.

REFERENCE BOOKS :

- The 8051 Microcontroller and Embbeded Systems using Assembly and C M.A. Mazidi, J.G. Mazidi and R.D. Mckinlay, Dorling Kindersley, New Delhi, 2013.
- 2. The Microcontroller K. A, Cengage Learning India, New Delhi, 2013.

Mapping of Course Outcomes (CO) with Programme Outcomes (PO):

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	3	2	1	1	2	1	3	2	0	0
CO2	3	3	2	1	1	1	3	2	0	0
CO3	3	2	3	1	2	1	3	3	0	0
CO4	3	2	3	1	2	1	3	2	0	0
CO5	3	3	2	1	3	1	3	2	0	0

YPH204A PHYSICS AND TECHNOLOGY O	F THIN FILMS	Т	Р	С
----------------------------------	--------------	---	---	---

					4	0	0	4	
C	D	•			T	T	D		
C 3	P	A			L 4	Т 0	Р 0	<u>Н</u> 4	
-	0.75 PEOU	0.25	Basic knowledge on material science.		4	U	U	4	
	-		ompletion of the course, students will be able to	0					
			Course Outcome	Domain			Leve		
CO1	Know the basic thin film processing methods by using vacuum technology Cognitive			Cognitive	Knowledge				
CO2	Understand the basic thin film structure and the kinetics			Cognitive		Knowledge			
CO3	Analyse the properties of materials using various Cognitive characterization tools.			Cognitive		Knowledge, Analyse			
CO4	coat	ing para	and thin film structure and properties to critical cognitive cognitive			Knowledge			
CO5	for v		most potential method to produce thin films applications.			Knowledge			
UNI	Т-І		Preparation of Thin Films					12	
meth	od. Dif	ferent C	osition - Electro chemical deposition – Sol–ge Growth Techniques: Liquid Phase Epitaxy, Vap anic Vapour Phase Epitaxy.		_		-		
	т, ис Т - П	ai Oig	Kinetics of Thin Films					12	
		Vinatio	s: types of nucleation – kinetic theory of nuclea	tion on any f		tion	ofor		
– cri the s InAs	tical nu ubstrate _{1-x} P _x , et	cleatior es. Grov	n parameters; spherical and non spherical nuclei with Kinetics: Kinetics of binary (GaAs, InP, etc.) quaternary ($Ga_{1-x}In_xAs_{1-y}P_y$, etc.) semiconductor	us (cap, disc an c.), ternary (Al ₁	d cul . _x Ga	oic sł _x As,	napeo Ga ₁₋	l)on "In _x P,	
	T - III	-	Characterization					12	
X-ra Auge	y diffra er emis	action - sion sp ay Pho Spect	- Photoluminescence – UV-Vis-IR spectroph ectroscopy – Atomic Force Microscope –Sc toemission Spectroscopy (XPS) – Vibrational trometry. Thickness Measurement: Micro	anning Electron Sample Magne	n Ma	icros eter -	cope - Sec	copy – Ha	
Ion			DI, FECU).						
Ion Inter	ferome T - IV		Properties of Thin Films					12	

by Bi	rewster angle	method,	Normal incidence meth	od and graphical method.	Mechanical properties –		
	•			it, Thermal misfit, Hardnes			
UNI	Γ- V	Applica	ations		12		
Opto	electronic dev	ices: LEI	D, LASER and Solar ce	ll – Micro Electromechani	cal Systems (MEMS) -		
Fabri	cation of thin	n film ca	pacitor – application	of ferromagnetic thin film	ns; Data storage, Giant		
Magr	netoresistance	(GMR).					
LECTURE			TUTORIAL	PRACTICAL	TOTAL		
60			0	0	60		
TEX	T BOOKS	•					
1.	Thin Film Fu	undamen	tals - A. Goswami, New	Age International (P) Ltd.	Publishers, New Delhi,		
	1996.						
2.	Thin Film Pl	henomen	a - K. L. Chopra, Tata N	AcGraw Hill Book Compar	y, New York, 1969.		
REF	ERENCE BO	OKS					
1.	Hand Book of	of Thin F	ilms - Hari Singh Nalw	a, Academic Press, 2002.			
2.	Physics of T	hin Film	s - L. Eckertova. Plenum	n Press, New York, 1977.			
3.	Material Scie	ence of T	hin Films - Milton Ohr	ng, Academic Press, 2002.			
				with Programma Outcor			

		2				0				
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	1	2	3	3	2	3	2	3	0	1
CO2	1	2	3	3	2	3	2	3	0	1
CO3	1	2	3	3	1	1	2	3	0	1
CO4	1	2	3	3	2	3	2	3	0	1
CO5	1	2	3	3	2	3	2	3	0	1
	0 11 1	D 1	2 1 6	1' D I					1	

YPH204B			CRYSTAL GROWTH AND CHARACTERIZATION				P C 0 4		
<u> </u>	р	•	TECHNIQUES				р	т	
C	P	Α					P	Η	
3	0.75	0.25		4	0	0	4		
PRE	EREQU	ISITE:	Basic knowledge on crystal physics.						
On t	he succ	essful co	mpletion of the course, students will be able t	0					
	Course Outcome Doma						Level		
CO			e a procedure that allows the study of crystal e, and shape and <i>learn</i> about the crystal	Cognitive			owlee Appl	0	

	growth mechanism						
CO2	<i>Study</i> the method of	of crystal growth from sol	ution. Cognit	ive Knowledge			
CO3	<i>Study</i> the method of	of crystal growth from me	elt. Cognit	ive Knowledge			
CO4	<i>Study</i> the method of	of crystal growth from gel	. Cognit	ive Knowledge			
CO5	<i>Analyse</i> the pro characterization too	perties of crystals us pls.	ing various Cognit	ive Apply, Analyse			
UNIT - I Fundamentals of Crystal Growth							
concer U NIT Low 1	Image: solution of critical numberImage: solution of critical numberIm	of a spherical nucleus iclei, Free energy of form on Growth Technique in growth : Solution – C diagram – Constant ter	ation. Solubility and superso	lubility – Expression of			
and m	ounting – Slow cool	ing and solvent evaporation					
		rowth Technique		12			
reactio	on method – Single	- Structure of gel – Impor and double diffusion m ex and decomplexion me	ethod – Chemical reduc	ction method – solubilit			
		Growth Technique	thou muvantage of ger	12			
Bridgr	man technique – Ba	sic process – Various cru chralski technique – Expe		l consideration – Vertica			
		acterization Technique	ennientai arrangement –	12			
		– Powder and single crys	tal Eaunian tuan afarma Ir				
Eleme (EDA)	ental analysis – Atom	tron Microscopy (SEM)	oy (AAS) – Elemental dis	spersive – X –ray analys			
	LECTURE	TUTORIAL	PRACTICAL	TOTAL			
	60	0	0	60			
TEXT	F BOOKS		·				
	Crystal Growth Pro	cesses - J.C. Brice, John V	Wiley and Sons, New Yo	rk, 1986.			
1.							

REFERENCE BOOKS

1.	The growth of single crystals - R.A.Laudise, Prentice Hall, Englewood, 1970.
2.	Crystal growth from high temperature solution - D.Elwell and H.J.Scheel, Academic Press,
	New York,1995
3.	The Basics of Crystallography and Diffraction - C.Hammond, Oxford University Press, 2009.

Mapping of Course Outcomes (CO) with Programme Outcomes (PO):

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	1	1	3	2	2	2	3	2	0	1
CO2	1	1	3	2	2	2	3	2	0	1
CO3	1	1	3	2	2	1	3	2	0	1
CO4	1	1	3	2	2	2	3	2	0	1
CO5	1	1	3	2	2	1	1	3	0	1

	ZPH204				L 4	Т 0	P 0	C 4		
1	ΓΠ20 ²	iC	NANOSCIENCE AND TECHNOL	NANOSCIENCE AND TECHNOLOGY						
С	Р	Α			L	L T P F				
3	0.75	0.25			4	0	0	4		
PREREQUISITE: Basic knowledge on materials science.										
On the	he succ	essful c	ompletion of the course, students will be able to)						
			Domain			Leve	2			
CO1	Exp nanc	<i>lain</i> the science	he quantum approach to the field of e.	Cognitive			owle prehe	dge, ension		
		••	d <i>apply</i> state of art fabrication method for			Knowledge,				
CO2	1 1	aring n mics.	anomaterials of metals, semiconductors and	Cognitive			Appl	0		
CO3		c ribe netism.	the particle size induced changes in	Cognitive		Knowledge, Comprehension				
004	Dese		e effect of particle size reduction on specific	a		Knowledge,				
CO4	heat	, meltin	g point etc and chemical properties.	Cognitive		Com	prehe	ension		
C05	App	ly inter	disciplinary approaches for biomedical field	Cognitive		Kn	owle	dge,		
CUS	and	other fi	elds.	Cognitive		Apply				
UNI	T - I		Introduction to Nanoworld					12		
Intro	duction	-His	torical perspective on Nanomaterial - Classifi	cation of Nano	omat	erials	s −Q	uantum		
			dimensional systems - Bound states and densit	•						
Quar	ntum co	onfinem	ent - Quantum wells, wires and dots - size dep	endent properti	es- l	Moss	baue	r effect		

UNI	Т- ІІ	Metal	s, Semiconductors and C	Ceramic Nanocrystals		12	
Redu	iction of size		thesis of metal nanoparti		outes to arrangem	nents -	
Back	ground on Q	uantum I	Dot semiconductors - back	ground on reverse Micell	ar solution –		
Synth	hesis of Sem	iconduct	ors – Cadmium Telluride	Nanocrystals – Cadmiur	n sulfide Nanocry	stals -	
Alloy	y Semicondu	ictors –	2D and 3D Superlattice	es of Silver Sulfide Nan	ocrystals- Synthe	esis o	
Cera	mics – Bondi	ings and	defects - Chemical, Physic	cal and Mechanical proper	rties of Ceramics.		
UNI	T - III	Nanoj	particles and Magnetism	L		12	
Mag	netism in par	rticles of	reduced size and dimension	ions – variations of magn	etic moment with	size -	
<u> </u>			onmagnetic solids – magn	· · · · · · · · · · · · · · · · · · ·		U	
			Fe – DMS and IV-VI				
			ernaries and their magnetic		of nanoscale magne	etism.	
	T - IV		ical and Catalytic aspect			12	
			s – Nanostructured Adsor	-	•	-	
	• •		- Specific Heat and Melt	•	Illine Materials: S	pecifi	
		-	aterials – melting points o	=			
UNI'	UNIT - V Applications of Nanomaterials						
quan	ecular Electro tum devices	onics and – nanom	l nano electronics, nanobo echanics – carbon nanotul	oats, Biological applicatio pe emitters, photo electroc	chemical cells – ph	notoni	
quan	ecular Electro tum devices	onics and – nanome on wave	nano electronics, nanobo	oats, Biological applicatio pe emitters, photo electroc	chemical cells – ph	ineereo hotonio its.	
quan	ecular Electro tum devices al and Plasm	onics and – nanome on wave	l nano electronics, nanobo echanics – carbon nanotul guides - Structural and Mo	oats, Biological applicatio pe emitters, photo electroc echanical materials – Colo	chemical cells – phorants and Pigmen	ineereo hotonio its.	
quan crysta	ecular Electro tum devices al and Plasm LECTURI	onics and – nanome on wave	l nano electronics, nanobo echanics – carbon nanotul guides - Structural and Mo TUTORIAL	oats, Biological applicatio pe emitters, photo electroc echanical materials – Colo PRACTICAL	chemical cells – proprants and Pigmen	ineereo hotonio its.	
quan cryst	ecular Electro tum devices al and Plasm LECTURI 60 T BOOKS	nanomo on wave	l nano electronics, nanobo echanics – carbon nanotul guides - Structural and Mo TUTORIAL	oats, Biological applicatio pe emitters, photo electroc echanical materials – Colo PRACTICAL 0	chemical cells – protection of the provided set of the protection	ineered notonid its.	
quant cryst TEX	ecular Electro tum devices al and Plasm LECTURI 60 T BOOKS	onics and – nanome on wave E Materia	l nano electronics, nanobo echanics – carbon nanotul guides - Structural and Mo TUTORIAL 0	oats, Biological applicatio pe emitters, photo electroc echanical materials – Colo PRACTICAL 0	chemical cells – protection of the provided set of the protection	ineered hotonio its.	
quant cryst TEX	ecular Electro tum devices - al and Plasm LECTURI 60 T BOOKS Nanoscale Publicatior	nanomo on wave E Materia	l nano electronics, nanobo echanics – carbon nanotul guides - Structural and Mo TUTORIAL 0	oats, Biological applicatio pe emitters, photo electroc echanical materials – Colo PRACTICAL 0 neth J.Klabunde, A John	chemical cells – protection of the provided set of the protection	ineered hotonid its.	
quant crysta TEX 1. 2.	cular Electro tum devices al and Plasm LECTURI 60 T BOOKS Nanoscale Publication Nanosciend Shubra Sin	Materia n, 2009. ce and Nile	l nano electronics, nanobo echanics – carbon nanotul guides - Structural and Mo TUTORIAL 0 ls in Chemistry - Kenr Vanotechnology: Fundamo	oats, Biological applicatio pe emitters, photo electroc echanical materials – Colo PRACTICAL 0 neth J.Klabunde, A John	chemical cells – protection of the provided set of the protection	ineered hotonid its.	
quant crysta TEX 1. 2.	cular Electro tum devices al and Plasm LECTURI 60 T BOOKS Nanoscale Publication Nanosciend	Materia n, 2009. ce and Nile	l nano electronics, nanobo echanics – carbon nanotul guides - Structural and Mo TUTORIAL 0 ls in Chemistry - Kenr Vanotechnology: Fundamo	oats, Biological applicatio pe emitters, photo electroc echanical materials – Colo PRACTICAL 0 neth J.Klabunde, A John	chemical cells – protection of the provided set of the protection	ineeree hotoni its.	
quant crysta TEX 1. 2.	ecular Electro tum devices al and Plasm LECTURI 60 T BOOKS Nanoscale Publication Nanoscient Shubra Sin ERENCE B	Materia n, 2009. ce and N agh, Wile OOKS	l nano electronics, nanobo echanics – carbon nanotul guides - Structural and Mo TUTORIAL 0 ls in Chemistry - Kenr Vanotechnology: Fundamo	oats, Biological applicatio pe emitters, photo electroc echanical materials – Colo PRACTICAL 0 neth J.Klabunde, A John entals to Frontiers - M.S	chemical cells – protection of the provided set of the protection	ineered hotonid its.	
quant crysta TEX 1. 2. REF	cular Electro tum devices al and Plasm LECTURI 60 T BOOKS Nanoscale Publication Nanoscient Shubra Sin ERENCE B	Materia n, 2009. ce and N agh, Wile OOKS on to Nan	l nano electronics, nanobo echanics – carbon nanotul guides - Structural and Mo TUTORIAL 0 ls in Chemistry - Kenr Nanotechnology: Fundamo y, 2013.	oats, Biological applicatio pe emitters, photo electroc echanical materials – Colo PRACTICAL 0 neth J.Klabunde, A John entals to Frontiers - M.S Poole, Frank J. Owens, Wi	chemical cells – protection of the properties and Pigmen TOTAL 60 60 60 60 60 60 60 60 60 60 60 60 60	ineered hotonid its. s, Inc. Rao &	
rysta TEX 1. 2. REF 1.	ecular Electro tum devices al and Plasm LECTURI 60 T BOOKS Nanoscale Publication Nanosciend Shubra Sin ERENCE B Introductio Nanostruct	Materia n, 2009. ce and N agh, Wile OOKS on to Nan aures and	l nano electronics, nanobo echanics – carbon nanotul guides - Structural and Mo TUTORIAL 0 ls in Chemistry - Kenr Nanotechnology: Fundamo y, 2013.	oats, Biological applicatio pe emitters, photo electroc echanical materials – Colo PRACTICAL 0 neth J.Klabunde, A John entals to Frontiers - M.S Poole, Frank J. Owens, Wi	chemical cells – protection of the properties and Pigmen TOTAL 60 60 60 60 60 60 60 60 60 60 60 60 60	ineered hotonid its. s, Inc. Rao &	
rysta TEX 1. 2. REF 1.	cular Electro tum devices al and Plasm LECTURI 60 T BOOKS Nanoscale Publication Nanoscient Shubra Sin ERENCE B Introductio Nanostruct Imperial C	Materia n, 2009. ce and N agh, Wile OOKS on to Nan ures and ollege Pr	l nano electronics, nanobo echanics – carbon nanotul guides - Structural and Mo TUTORIAL 0 ls in Chemistry - Kenr Nanotechnology: Fundamo y, 2013. otechnology - Charles P.P	oats, Biological applicatio pe emitters, photo electroc echanical materials – Colo PRACTICAL 0 neth J.Klabunde, A John entals to Frontiers - M.S Poole, Frank J. Owens, Wi s, Properties and Applic	chemical cells – protection of the properties and Pigmen TOTAL 60 60 60 60 60 60 60 60 60 60 60 60 60	ineered hotonid its. s, Inc. Rao &	
rysta rest TEX 1. 2. REF 1. 2.	cular Electro tum devices al and Plasm LECTURI 60 T BOOKS Nanoscale Publication Nanosciend Shubra Sin ERENCE B Introductio Nanostruct Imperial C Metal Oxid	nanome on wave E Materia h, 2009. ce and N agh, Wile OOKS on to Nan ures and ollege Pr des - V. H	l nano electronics, nanobo echanics – carbon nanotul guides - Structural and Mo TUTORIAL 0 ls in Chemistry - Kenr Nanotechnology: Fundamo y, 2013. otechnology - Charles P.P l Nanomaterials Synthesi ess, London, 2004.	oats, Biological applicatio pe emitters, photo electroc echanical materials – Colo PRACTICAL 0 heth J.Klabunde, A John entals to Frontiers - M.S Poole, Frank J. Owens, Wi s, Properties and Applic dge University Press, New	chemical cells – protection of the provided set of the provided set of the protection of the provided set	ineered hotonid its. 3, Inc. Rao &	
quant cryst TEX 1. 2. 1. 2. 3.	cular Electro tum devices al and Plasm LECTURI 60 T BOOKS Nanoscale Publication Nanoscient Shubra Sin ERENCE B Introductio Nanostruct Imperial C Metal Oxic	Materia n, 2009. ce and N agh, Wile OOKS on to Nan cures and ollege Pr des - V. F on to Mag	l nano electronics, nanobo echanics – carbon nanotul guides - Structural and Ma TUTORIAL 0 ls in Chemistry - Kenr Vanotechnology: Fundama y, 2013. otechnology - Charles P.P l Nanomaterials Synthesi ess, London, 2004. Henrich, P.A.Cox, Cambrid	ats, Biological applicatio pe emitters, photo electroc echanical materials – Colo PRACTICAL 0 heth J.Klabunde, A John entals to Frontiers - M.S Poole, Frank J. Owens, Wi s, Properties and Applic dge University Press, New erials - D.Jiles, Chapman	chemical cells – phorants and Pigmen TOTAL 60 n Wiley & Sons S. Ramachandra 1 ley, India, 2009. cations - Guozhor v York, 1994. and Hall, London	ngGad	

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	3	3	1	1	3	2	2	3	0	1
CO2	2	3	1	1	3	2	2	3	0	1
CO3	3	3	1	1	1	2	2	3	0	1
CO4	3	2	1	1	1	2	2	3	0	1
CO5	2	3	1	1	2	2	2	3	0	1

	_			L	T	P	С		
YPH10)5			4	0	0	4		
		NUMERICAL METHODS		-	-	1			
							H		
		Knowladae in UC level Mathematics (Colord		4	U	U	4		
ie succi	0551010								
		Course Outcome	Domain			Leve	1		
Deve	e <i>lop</i> a	comprehensive <i>understanding</i> on numerical	Cognitivo		Kn	owle	dge,		
error	analys	is in physical measurements.	Cognitive		Sy	nthe	sis		
			Cognitive			Appl	v		
algel		-			-PP-				
		-	Cognitive		Knowledge		dge		
		i i	8				<u> </u>		
		-	Cognitive		Apply				
		5	C : : : :	(Comp	orehension,			
-		• • • • • • • • • • • • • • • • • • • •	Cognitive	Apply			у		
	ge-Kuu						12		
	ha maa))	a of observation		1				
				-					
•		• • •			-	arabo	ла III –		
	asi syu			men	ons.		12		
	olution			od -	meth	lod (
Г-Ш		Interpolation					12		
	P 0.75 REQU ne succo erron <i>Deve</i> erron algel <i>Und</i> diffe equa Rung C - I s and the rical for pola, y = hted le F - II errical s fon - N nation od - In	0.75 0.25 REQUISITE:ne successful cDevelop a cerror analysDemonstratalgebraic ecUnderstanddifferentialObtain nuequation usRunge-KuttF - Is and the mearical formula -oola, y = axn ,hted least squationcols, y = axn ,hted least squationoola, p = axn ,hted least squationoola, p = axn ,htel colspan="2">htel colspan="2">htel col	P A 0.75 0.25 REQUISITE: Knowledge in UG level Mathematics (Calculate successful completion of the course, students will be able to course students will be able to the successful completion of the course, students will be able to the successful completion of the course, students will be able to course Outcome Develop a comprehensive understanding on numerical error analysis in physical measurements. Demonstrate the accurate numerical methods to solve algebraic equation. Understand the Newton's interpolation formula in unequal intervals for numerical problem. Understand and implement numerical methods to solve differential and integral forms of equations. Obtain numerical solution of ordinary differential equation using power series approximation and Euler's Runge-Kutta method. F - I Errors and Curve Fitting s and the measurements - General formula for errors – Error rical formula – Graphical method – Method of averages - Mola, y = axn , y = aebx , y = a+bx – sum of squares of residua thed least squares approximation – Method of least squares for - II Roots of Equation and Simultaneous Equations - ion – Newton Raphson method - Simultaneous Equations - ion – Newton Raphson method - Simultaneous Equations - ion – Inversion of a matrix using Gauss elimination method.	PA0.750.25REQUISITE: Knowledge in UG level Mathematics (Calculus).te successful completion of the course, students will be able toCourse OutcomeDomainDevelop a comprehensive understanding on numerical error analysis in physical measurements.Demonstrate the accurate numerical methods to solve algebraic equation.CognitiveUnderstandthe Newton's interpolation formula in unequal intervals for numerical problem.CognitiveUnderstandand implement numerical methods to solve differential and integral forms of equations.CognitiveObtainnumerical solution of ordinary differential equation using power series approximation and Euler's Runge-Kutta method.CognitiveCognitiveS and the measurements - General formula for errors – Errors of observation rical formula – Graphical method – Method of averages - Method of least so oola, y = axn, y = aebx, y = a+bx – sum of squares of residuals for straight I hted least squares approximation – Method of least squares for continuous fit $\Gamma \cdot II$ Roots of Equation and Simultaneous EquationsF - IIRoots of Equation and Simultaneous EquationsEristion methoderical solution of algebraic and transcendental equations : Existence of so nation method – Jordan's modification - Gauss Jacobi iteration method	P A 0.75 0.25 REQUISITE: Knowledge in UG level Mathematics (Calculus). te successful completion of the course, students will be able to Course Outcome Develop a comprehensive understanding on numerical error analysis in physical measurements. Cognitive Demonstrate the accurate numerical methods to solve algebraic equation. Cognitive Understand the Newton's interpolation formula in unequal intervals for numerical problem. Cognitive Understand and implement numerical methods to solve differential and integral forms of equations. Cognitive Obtain numerical solution of ordinary differential equation using power series approximation and Euler's Runge-Kutta method. Cognitive r - 1 Errors and Curve Fitting s and the measurements - General formula for errors – Errors of observation and rical formula – Graphical method – Method of averages - Method of least squares on al, y = aebx , y = a+bx – sum of squares of residuals for straight line a hted least squares approximation – Method of least squares for continuous function - Newton Raphson method - Simultaneous Equations: Existence of solution and rical solution of algebraic and transcendental equations: Existence of solution and rical solution of algebraic and transcendental equations: Existence of solution and rical solution of algebraic and transcendental equations interation method – Gauss of – Inversion of a matrix using Gauss elimination method.	PA0.750.25REQUISITE: Knowledge in UG level Mathematics (Calculus). te successful completion of the course, students will be able toCourse OutcomeDevelopa comprehensive understanding on numerical error analysis in physical measurements.CognitiveDemonstratethe accurate numerical methods to solve algebraic equation.CognitiveUnderstandthe Newton's interpolation formula in unequal intervals for numerical problem.CognitiveUnderstandand implement numerical methods to solve differential and integral forms of equations.CognitiveObtainnumerical solution of ordinary differential equation using power series approximation and Euler's Runge-Kutta method.CognitiveC - IErrors and Curve Fittings and the measurements - General formula for errors – Errors of observation and measure rical formula – Graphical method – Method of averages - Method of least squares – s sola, y = axn , y = aebx , y = a+bx – sum of squares of residuals for straight line and p heted least squares approximation – Method of least squares for continuous functions.C - IIRoots of Equation and Simultaneous Equations erical solution of algebraic and transcendental equations - iteration method –method on – Newton Raphson method - Simultaneous Equations: Existence of solutions - I nation method –Jordan's modification - Gauss Jacobi iteration method – Gauss Seco od – Inversion of a matrix using Gauss elimination method.	PA0.750.25LTP0.750.25REQUISITE: Knowledge in UG level Mathematics (Calculus).te successful completion of the course, students will be able toCourse OutcomeDomainLeveDevelop a comprehensive understanding on numerical error analysis in physical measurements.CognitiveKnowled SyntheDemonstratethe accurate numerical methods to solve algebraic equation.CognitiveKnowled SyntheUnderstandthe Newton's interpolation formula in unequal intervals for numerical problem.CognitiveKnowled SyntheUnderstandand implementnumerical methods to solve differential and integral forms of equations.CognitiveAppleObtain numerical solution of ordinary differential equation using power series approximation and Euler's Runge-Kutta method.CognitiveComprehe AppleC - IErrors and Curve FittingsCognitionSurage Synthesolution of algebraic and transcendental formula for errors – Errors of observation and measure rical formula – Graphical method – Method of averages - Method of least squares – stratig tool, y = axh, y = aebx, y = a+bx – sum of squares of residuals for straight line and parabouc thete least squares approximation – Method of least squares for continuous functions.IC - IIRoots of Equation and Simultaneous Equationseiteration method – method co toon – Newton Raphson method – Simultaneous Equations: Existence of solutions- Basic nation method –Jordan's modification - Gauss Jacobi iteration		

Interpolation Linear interpolation – Lagrange interpolation Gregory – Newton forward and backward interpolation formula – Central difference interpolation formula – Gauss forward and backward interpolation formula – Divided differences – Properties – Newton"s interpolation formula for unequal intervals.

UNIT - IV Numerical Differentiation and Integration

12

Numerical differentiation - Newton's forward and backward difference formula to compute derivatives – Numerical integration: the trapezoidal rule, Simpsons rule – Extended Simpsons rule (1/3 rule).

UNIT - V Ordinary Differential Equations

12

Solution by Taylor's series – Picard's method for successive approximation - Basic Euler method – Improved Euler method – Modified Euler method – Runge Kutta fourth order method – Runge Kutta method for simultaneous first order differential equation - Runge Kutta Method for second order differential equation.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
60	0	0	60
TEXT BOOKS			

5.	Introductory Methods of Numerical analysis – S.S. Sastry, Prentice – Hall of India, New Delhi.
	2003.

6. Numerical Methods for Mathematics, Science and Engineering - John H. Matthews, Prentice Hall of India, 2000.

REFERENCE BOOKS

- 6. Numerical Mathematical Analysis J. B. Scarborough, Oxford Publishing, 1990.
- 7. Numerical Methods for Physicists M. K. Venkatraman, S. Chand & Company, New Delhi, 2005.

Y	PH2	05	DIGITAL AND MICROPROCESSOR LAB	ORATORY	L 0	Т 0	P 3	C 3			
С	Р	Α									
0.5	2	0.5		-	0	0	6	6			
PRE	PREREQUISITE: Know the basic laws and have practical experience in basic electronics										
On the	he su	ccessf	ul completion of the course, students will be able t	0							
			Course Outcome	Domain	Level						
C01		<i>nderst</i> perim	<i>and</i> the concepts behind various physics ents.	Cognitive, Psychomotor	Knowledge						
CO2			<i>ct</i> simple electronic circuits and make out the ristics of transistors, amplifiers, oscillators and	Cognitive, Psychomotor		Sy	nthe	sis			

	filters.					
203	<i>Know</i> the concept digital circuits.	tual difference between	analog and	Cognitive, Psychomotor	Comprehensior	
C O4	Write ALP for arit	hmetic and logical operat	ions in 8051	Cognitive, Psychomotor	Apply	
C O 5	<i>Execute</i> programs	in microprocessor (8051)		Cognitive, Psychomotor	Apply	
S. No.		E	xperiments			
A. Dig	ital Electronics (A	ny eight experiments)				
1.	Study the functi	on of multiplexer and den	nultiplexer			
2.	Study the functi	on of decoder and encode				
3.		T – FF and D - FF				
4.	Flip flops - JK,					
5.		n logic operations using I		4.0.0		
<u>6.</u> 7.		Full adder, using only NA and Full Subtractor (using				
<u>/.</u> 8.	BCD to seven se		, only INAIND &	c mor gates)		
<u> </u>	Study of counter					
10.		Logic Circuit Design				
11.		ounter: Mod-N Counters				
12.	Shift Register: S	tudy of shift right, SIPO,	SISO, PIPO, P	ISO (using FF &	z 7495)	
		Aicrocontroller Experin		ht experiments)		
1.		- addition, subtraction (8				
2.		- addition, subtraction (A		1 01:		
3.		 Multiplication 8 bit by Division 8 bit by 8 bit a 				
<u>4.</u> 5.	<u> </u>	- To find the largest and				
<u> </u>	-	 Ascending and descend 				
7.		- addition and subtraction		numbers.		
8.	*	- addition and subtraction				
9.		- Counter and Time Dela				
10.	Microcontroller	 Assembly language pro 	gram to genera			
11.		 To study implementation segment display devices view 			ces like LCD,	
12.	Microcontroller	 To study implementation DC motor & servo motors 	on & interfacing	g of different mo	tors like	
	LECTURE	TUTORIAL	PRACT	ICAL	TOTAL	
	0	0	90		90	
ГЕХТ	BOOKS	l	1	I		

	Book Agency (P) Ltd., 2007.
2.	A Textbook of Advanced Practical Physics - S. K. Ghosh, New Central Publishers, 2000.
3.	Practical Electronics (Microprocessor) - T. Veeramanikandasamy and A. Balamurugan,
	Technical Publications, Pune, 2011.
REF	ERENCE BOOKS
1.	Advanced Practical Physics Volume I – Dr. S.P. Sing, Pragati Prakasan Educational publishers,
	2011.
2.	Practical Physics and Electronics - C.C. Ouseph, U.J. Rao, V. Vijayendran, Viswanathan
	Printers & Publishers Pvt. Ltd., 2007.

		/	0			()				
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	3	3	1	1	3	2	2	3	0	0
CO2	2	3	1	1	3	2	2	3	0	0
CO3	3	3	1	1	1	2	2	3	0	0
CO4	3	2	1	1	1	2	2	3	0	0
CO5	2	3	1	1	2	2	2	3	0	0

YPH301					L 4	T 1	P 0	C 5	
			SOLID STATE PHYSICS						
C	P	Α			L	Т	P	Η	
3	0.75	0.25			4	1	0	5	
PRE	EREQU	ISITE	Basic knowledge in Materials Science.						
On t	he succ	essful c	ompletion of the course, students will be able to	0					
			Course Outcome	Domain		Level			
CO1	Und bond		the basics of crystal structure and chemical	Cognitive		Knowledge			
CO2	2		e knowledge of dynamic nature of the naterials.	Cognitive		Kn	owle	dge	
CO3	5		the propagation characteristics of electron e materials.	Cognitive		Knowledge			
CO4	Acq	<i>uire</i> kn	owledge about various kind of magnetism in	<u> </u>		Knowledge,			
04	elect	tron mo	dels.	Cognitive		Com	prehe	ension	
CO5	Com	prehen	<i>d</i> basic theories of superconductivity and its	Cognitive		Knowledge,			
CUS	appl (ications	3.	Cognitive		Apply			

UNIT - I	Cryst	al Structure		12+3
Elementary con	cepts of c	rystals - Bonding of soli	ds - Reciprocal lattice -	Laue equations -Mille
indices - Brillou	iin zones	- Point groups and Spac	e groups - Bravais lattic	ce - Crystal symmetry
Structure factor	- Atomi	c scattering factor- Cry	stal diffraction- Bragg's	a law - Ewald's sphere
construction- La	ue, Powde	r, Rotation methods.		
UNIT - II	Lattic	e Dynamics and Therma	ll Properties	12+3
Vibrations of r	nonoatom	ic and diatomic basis -	harmonic approximation	on - acoustical, optical
transverse and lo	ongitudina	l modes - Phonon quantiz	ation - Thermal conduction	vity - Umklapp process
Specific heat ca	pacity of	solids - Einstein, Debye	e model-Drude model of	f thermal conductivity
Density of states	in one an	d three dimensional - spec	ific heat response and relation	axation phenomena.
UNIT - III	Metal	s and Semiconductors		12+3
Metals-Heat cap	acity of el	lectron gas - Fermi- Dirac	c distribution - Electron g	gas in three dimensions
	-	el - review of electron i		
Limitations. Sen	niconducto	ors - Band theory of pure a	and doped semiconductor	s- Carrier concentrations
- intrinsic carrier	- Hall eff	ect.		
UNIT - IV	Electr	ric and Magnetic Propert	ties	12+3
<u>01 10 01 0</u>	nolorizati		ield local electric field (at an atom - Lorentz field
Classification of	polalizati	on- macroscopic electric f	ieiu - iocai ciccuic ficiu a	
	•	on- macroscopic electric f polarizability - Clausius-l		
- Dielectric cons	stant and	polarizability - Clausius-l	Mossotti relation - Ferro	electric crystals - Ferro
- Dielectric cons electric domains	stant and s - Polariz	polarizability - Clausius-l ation catastrophe- Landa	Mossotti relation - Ferro u theory of phase transit	electric crystals - Ferro tion. Langevin theory of
- Dielectric cons electric domains Diamagnetism-p	stant and - Polariz aramagne	polarizability - Clausius-l ation catastrophe- Landat tism - Quantum theory of	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie	electric crystals - Ferro tion. Langevin theory of law - Ferromagnetism
- Dielectric cons electric domains Diamagnetism-p Weiss molecular	stant and - Polariz aramagne	polarizability - Clausius-l ation catastrophe- Landa	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie	electric crystals - Ferro tion. Langevin theory of law - Ferromagnetism
- Dielectric cons electric domains Diamagnetism-p Weiss molecular waves.	stant and - Polariz aramagne r field the	polarizability - Clausius-l ation catastrophe- Landar tism - Quantum theory of ory- Domain theory - Neo	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie	electric crystals - Ferro tion. Langevin theory of law - Ferromagnetism
- Dielectric cons electric domains Diamagnetism-p Weiss molecular waves. UNIT - V	stant and - Polariz aramagnet field the Super	polarizability - Clausius-I ation catastrophe- Landar tism - Quantum theory of ory- Domain theory - New rconductivity	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie el temperature - Ferrimag	electric crystals - Ferro tion. Langevin theory of law - Ferromagnetism gnetism - Ferrites - Spin 12+3
- Dielectric cons electric domains Diamagnetism-p Weiss molecular waves. UNIT - V Occurrence of s	stant and s - Polariz aramagne r field the Super supercondu	polarizability - Clausius-I ation catastrophe- Landar tism - Quantum theory of ory- Domain theory - New conductivity uctivity- destruction of s	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie el temperature - Ferrimag uperconductivity by mag	electric crystals - Ferror tion. Langevin theory of law - Ferromagnetism gnetism - Ferrites - Spin 12+3 gnetic fields - Meissnet
- Dielectric cons electric domains Diamagnetism-p Weiss molecular waves. UNIT - V Occurrence of s effects - Type I	stant and s - Polariz aramagne r field the Super supercondu- and Type	polarizability - Clausius-I ation catastrophe- Landar tism - Quantum theory of ory- Domain theory - New conductivity uctivity- destruction of s e II superconductors - He	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie el temperature - Ferrimag uperconductivity by mag at capacity electron-pho	electric crystals - Ferro tion. Langevin theory of law - Ferromagnetism gnetism - Ferrites - Spin 12+3 gnetic fields - Meissner non interaction - Cooper
- Dielectric cons electric domains Diamagnetism-p Weiss molecular waves. UNIT - V Occurrence of s effects - Type I pairs and BCS th	stant and s - Polariz aramagne r field the supercondu- and Type neory - Lo	polarizability - Clausius-I ation catastrophe- Landar tism - Quantum theory of ory- Domain theory - New conductivity uctivity- destruction of s e II superconductors - He ondon equation - Coherence	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie el temperature - Ferrimag uperconductivity by mag at capacity electron-photo ce length -penetration dep	electric crystals - Ferror tion. Langevin theory of law - Ferromagnetism gnetism - Ferrites - Spin 12+3 gnetic fields - Meissner non interaction - Cooper oth - Flux quantization in
- Dielectric cons electric domains Diamagnetism-p Weiss molecular waves. UNIT - V Occurrence of s effects - Type I pairs and BCS th superconducting	stant and s - Polariz aramagne r field the Super supercondu- and Type neory - Lo ring - du	polarizability - Clausius-I ation catastrophe- Landar tism - Quantum theory of ory- Domain theory - New conductivity uctivity- destruction of s e II superconductors - He ondon equation - Coherence ration of persistent curren	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie el temperature - Ferrimag uperconductivity by mag at capacity electron-pho ce length -penetration dep tts - Quantum interferenc	electric crystals - Ferror tion. Langevin theory of law - Ferromagnetism gnetism - Ferrites - Spin 12+3 gnetic fields - Meissner non interaction - Cooper oth - Flux quantization in
- Dielectric cons electric domains Diamagnetism-p Weiss molecular waves. UNIT - V Occurrence of s effects - Type I pairs and BCS th superconducting	stant and s - Polariz aramagner field the Super supercondu- and Type neory - Lo ring - du UIDS - Hi	polarizability - Clausius-I ation catastrophe- Landar tism - Quantum theory of ory- Domain theory - New conductivity uctivity- destruction of s e II superconductors - He ondon equation - Coherence	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie el temperature - Ferrimag uperconductivity by mag at capacity electron-pho ce length -penetration dep tts - Quantum interferenc	electric crystals - Ferror tion. Langevin theory of law - Ferromagnetism gnetism - Ferrites - Spin 12+3 gnetic fields - Meissner non interaction - Cooper oth - Flux quantization in
- Dielectric cons electric domains Diamagnetism-p Weiss molecular waves. UNIT - V Occurrence of s effects - Type I pairs and BCS th superconducting applications SQU	stant and s - Polariz aramagner field the Super supercondu- and Type neory - Lo ring - du UIDS - Hi	polarizability - Clausius-I ation catastrophe- Landar tism - Quantum theory of ory- Domain theory - New conductivity uctivity- destruction of s e II superconductors - He indon equation - Coherence ration of persistent current gh temperature superconductors	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie el temperature - Ferrimag uperconductivity by mag at capacity electron-phot ce length -penetration dep its - Quantum interferenc uctivity.	electric crystals - Ferro tion. Langevin theory of law - Ferromagnetism gnetism - Ferrites - Spin 12+3 gnetic fields - Meissner non interaction - Cooper oth - Flux quantization in re - Josephson effect and
- Dielectric cons electric domains Diamagnetism-p Weiss molecular waves. UNIT - V Occurrence of s effects - Type I pairs and BCS th superconducting applications SQU LECTUR 60	stant and s - Polariz aramagne r field the Super supercondu- and Type neory - Lo ring - du UIDS - Hij	polarizability - Clausius-I ation catastrophe- Landar tism - Quantum theory of ory- Domain theory - New conductivity uctivity- destruction of s e II superconductors - He ondon equation - Coherence ration of persistent curren gh temperature superconductors TUTORIAL	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie el temperature - Ferrimag uperconductivity by mag at capacity electron-phor ce length -penetration dep tts - Quantum interference uctivity. PRACTICAL	electric crystals - Ferror tion. Langevin theory of law - Ferromagnetism gnetism - Ferrites - Spin 12+3 gnetic fields - Meissner non interaction - Cooper oth - Flux quantization in the - Josephson effect and TOTAL
- Dielectric cons electric domains Diamagnetism-p Weiss molecular waves. UNIT - V Occurrence of s effects - Type I pairs and BCS th superconducting applications SQU LECTUR 60 TEXT BOOKS	stant and s - Polariz aramagnet r field the Super supercondu- and Type neory - Lo ring - du UIDS - Hig	polarizability - Clausius-I ation catastrophe- Landar tism - Quantum theory of ory- Domain theory - New conductivity uctivity- destruction of s e II superconductors - He ondon equation - Coherence ration of persistent curren gh temperature superconductors TUTORIAL	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie el temperature - Ferrimag uperconductivity by mag at capacity electron-phor ce length -penetration dep its - Quantum interference uctivity. PRACTICAL 0	electric crystals - Ferror tion. Langevin theory of law - Ferromagnetism gnetism - Ferrites - Spin 12+3 gnetic fields - Meissne non interaction - Cooper oth - Flux quantization in the - Josephson effect and TOTAL 75
- Dielectric cons electric domains Diamagnetism-p Weiss molecular waves. UNIT - V Occurrence of s effects - Type I pairs and BCS th superconducting applications SQU LECTUR 60 TEXT BOOKS 1. Introducti	stant and s- Polariz aramagne r field the Super supercondu- and Type neory - Lo ring - du UIDS - Hij	polarizability - Clausius-I cation catastrophe- Landar tism - Quantum theory of ory- Domain theory - New conductivity uctivity- destruction of s e II superconductors - He ondon equation - Coherence ration of persistent curren gh temperature superconductor TUTORIAL 15 d State Physics - C. Kittel,	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie el temperature - Ferrimag uperconductivity by mag at capacity electron-phon ce length -penetration dep its - Quantum interference uctivity. PRACTICAL 0 Wiley Eastern, New Del	electric crystals - Ferror tion. Langevin theory of law - Ferromagnetism gnetism - Ferrites - Spin 12+3 gnetic fields - Meissner non interaction - Cooper oth - Flux quantization in re - Josephson effect and TOTAL 75 hi, 2014.
- Dielectric cons electric domains Diamagnetism-p Weiss molecular waves. UNIT - V Occurrence of s effects - Type I pairs and BCS th superconducting applications SQU LECTUR 60 TEXT BOOKS 1. Introducti	stant and s- Polariz aramagne r field the Super supercondu- and Type neory - Lo ring - du UIDS - Hij	polarizability - Clausius-I cation catastrophe- Landar tism - Quantum theory of ory- Domain theory - New conductivity uctivity- destruction of s e II superconductors - He endon equation - Coherence ration of persistent curren gh temperature superconductor TUTORIAL 15	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie el temperature - Ferrimag uperconductivity by mag at capacity electron-phon ce length -penetration dep its - Quantum interference uctivity. PRACTICAL 0 Wiley Eastern, New Del	electric crystals - Ferror tion. Langevin theory of law - Ferromagnetism gnetism - Ferrites - Spin 12+3 gnetic fields - Meissner non interaction - Cooper oth - Flux quantization in re - Josephson effect and TOTAL 75 hi, 2014.
- Dielectric cons electric domains Diamagnetism-p Weiss molecular waves. UNIT - V Occurrence of s effects - Type I pairs and BCS th superconducting applications SQU LECTUR 60 TEXT BOOKS 1. Introducti 2. Solid Stat	stant and s- Polariz aramagne r field the Super supercondu- and Type neory - Lo ring - du UIDS - Hi UIDS - Hi E	polarizability - Clausius-I cation catastrophe- Landar tism - Quantum theory of ory- Domain theory - New conductivity uctivity- destruction of s e II superconductors - He ondon equation - Coherence ration of persistent curren gh temperature superconductor TUTORIAL 15 d State Physics - C. Kittel,	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie el temperature - Ferrimag uperconductivity by mag at capacity electron-phon ce length -penetration dep its - Quantum interference uctivity. PRACTICAL 0 Wiley Eastern, New Del	electric crystals - Ferror tion. Langevin theory of law - Ferromagnetism gnetism - Ferrites - Spin 12+3 gnetic fields - Meissner non interaction - Cooper oth - Flux quantization in re - Josephson effect and TOTAL 75 hi, 2014.
- Dielectric cons electric domains Diamagnetism-p Weiss molecular waves. UNIT - V Occurrence of s effects - Type I pairs and BCS th superconducting applications SQU LECTUR 60 TEXT BOOKS 1. Introducti 2. Solid Stat 2015. REFERENCE I	stant and s - Polariz aramagne r field the Super supercondu- and Type neory - Lo ring - du UIDS - Hig RE on to Solic te Physics BOOKS :	polarizability - Clausius-I cation catastrophe- Landar tism - Quantum theory of ory- Domain theory - New conductivity uctivity- destruction of s e II superconductors - He ondon equation - Coherence ration of persistent curren gh temperature superconductor TUTORIAL 15 d State Physics - C. Kittel,	Mossotti relation - Ferro u theory of phase transit f paramagnetism - Curie el temperature - Ferrimag uperconductivity by mag at capacity electron-phor ce length -penetration dep its - Quantum interference uctivity. PRACTICAL 0 Wiley Eastern, New Del r, New Age International	electric crystals - Ferror tion. Langevin theory of law - Ferromagnetism gnetism - Ferrites - Spin 12+3 gnetic fields - Meissner non interaction - Cooper oth - Flux quantization in re - Josephson effect and TOTAL 75 hi, 2014.

2.	Solid State Physics - Rita John, McGraw Hill, New Delhi, 2014.
----	--

- 3. Solid State Physics B.S.Saxena, R.C. Gupta and P.N. Saxena, Pragati Prakashan, Uttar Pradesh, 2015.
- 4. Crystallography for Solid State Physics A.R.Verma and O.N.Srivastava, Wiley, Marshall, 1991.

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	3	3	1	1	3	1	3	2	0	3
CO2	3	3	2	1	3	1	3	2	0	3
CO3	3	3	3	1	3	1	3	2	0	3
CO4	3	3	1	1	3	1	3	2	0	3
CO5	3	3	2	1	3	1	3	2	0	3

					L	Т	Р	С		
	YPH3(2		4	1	0	5			
			QUANTUM MECHANICS - I	I						
С	Р	Α			L	Т	Р	Η		
3	0.75		4	1	0	5				
PRE	REQU	ISITE:	Basic knowledge in principles of quantum me	echanics and ca	lculı	ıs.				
On t	he succe	essful co	mpletion of the course, students will be able t	0						
			Course Outcome	Domain			Leve	el		
CO1	dege		arbation theory in Non-degenerate and problems in systems under magnetic and s.	Cognitive		Apply				
CO2		-	ems in time dependent perturbation and al theory of radiation.	Cognitive		Apply				
CO3	with	screene	Born approximation and <i>explore</i> scattering ed potential and different scattering cross arious potentials.	Cognitive			owle ynthe	-		
CO4	Dira	Solve the relativistic problems using Klein-Gordan and Dirac equations. Also understand the theory of field quantization. Cognitive								
CO5	_	<i>Explore</i> the theory of Central field approximation and molecular orbital theory. Cognitive						Knowledge, Comprehension		
UNI	T - I		Approximation Methods for Time Indepen	ndent Problem	S]	12+3		

Time independent perturbation theory – stationary theory- Non-degenerate case: first and second order-Normal Helium atom– Zeeman effect without electron spin –Degenerate case: Energy correction- stark effect in hydrogen atom. Variation method: Variation Principle – upper bound states-ground state of Helium atom –Hydrogen molecule-WKB approximation - Schrodinger equation-Asymptotic solution-validity of WKB approximation-solution near a turning point – connection formula for penetration barrier – Bohr-Summer field quantization condition tunneling through a potential barrier.

UNIT - II	Approximation Methods for Time Dependant Perturbation	12+3							
Time dependent Pe	erturbation theory - first order transitions - constant perturbation	- transition							
probability: Fermi G	olden Rule - Periodic perturbation - harmonic perturbation - adiabatic	and sudden							
approximation. Sem	i-classical theory of radiation: Application of the time dependent I	perturbation							
theory to semi-classi	cal theory of radiation - Einstein's coefficients - absorption - induced	l emission -							
spontaneous emissie	on – Einsteim's transition probabilities- dipole transition - selecti	on rules –							
forbidden transitions	•								
UNIT - III	Scattering Theory	12+3							
Kinematics of scatte	Kinematics of scattering process - wave mechanical picture- Green's functions - Born approximation								
and its validity -Bo	orn series - screened coulombic potential scattering from Born app	roximation.							
Partial wave analysis	s: asymptotic behavior – phase shift – scattering amplitude in terms of	phase shifts							
– differential and tot	al cross sections – optical theorem – low energy scattering – resonant	scattering –							
non-resonant scatter	ing-scattering length and effective range- Ramsauer-Townsend effect	 scattering 							
by square well poten	tial.								
UNIT - IV	Relativistic Quantum Mechanics and Quantisation of Field	12+3							
Schrodinger relativi	stic equation- Klein-Gordan equation-charge and current densities -	interaction							
with electromagneti	c field- Hydrogen like atom – nonrelativistic limit- Dirac relativisti	c equation:							
Dirac relativistic H	amiltonian – probability density- Dirac matrices-plane wave soluti	on – eigen							
spectrum – spin of I	Dirac particle – significance of negative eigen states – electron in a ma	gnetic field							
- spin magnetic mo	ment. Quantisation of the Field Electromagnetic wave as harmonic of	oscillators –							
quantisation: classic	cal e.m.wave quantisation of fields oscillators- Photons- number	operator -							
creation and annihila	tion operators of photons.								
UNIT - V	Quantum Theory of Atomic and Molecular Structure	12+3							
Central field approx	mation: residual electrostatic interaction - spin orbit interaction- Deter	mination of							
central field: Thon	has Fermi statistical method-Hartree and Hartree-Fock approximation	ations (self							

central field: Thomas Fermi statistical method-Hartree and Hartree-Fock approximations (self consistent fields) – Atomic structure and Huns's rule. Molecules: Born-Oppenheimer approximation – An application: the hydrogen molecule Ion (H_2+) – Molecular orbital theory: LCAO- Hydrogen molecule.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
60	15	0	75
TEXT BOOKS			

	1. A T	ext book of	Quantur	n Mecha	nics - P.	M. Mathe	ews and	K. Ven	katesar	n , Tata N	AcGraw –	Hill
	Pub	Publications, 2010.										
	2. Qua	Quantum Mechanics - SatyaPrakash, KedarNath Ram Nath and Co. Publications, 2018.										
	3. Qan	Qantum Mechanics: Theory and applications -A. K. Ghatak and Lokanathan, Macmillan India										
	Ltd	Ltd Publication, 2015.										
R	EFERE	ICE BOOH	KS									
	1. Qua	ntum Mech	anics - V	. K. Tha	nkappan,	, New Ag	e Interna	ational l	Publica	tion,2003	3.	
	2. Prin	ciple of Qu	antum M	echanics	- R. Sha	nkar, Ple	num US	Publica	ation, 1	994.		
		Mappin	g of Cou	rse Out	comes (C	CO) with	Program	mme O	utcom	es (PO):		
	Cours Outcor	POL	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10	
	CO1	3	3	0	1	3	1	2	1	3	1	
	CO2	3	3	0	1	3	1	2	1	3	1	

CO2 CO3 CO4 CO5

3-High Relation, 2-Medium Relation, 1-Low Relation, 0-No Relation

					L	Т	Р	С
	YPH3	03			4	1	0	5
			ELECTROMAGNETIC THEO	RY				
С	Р	Α			L	Т	Р	Η
3	0.75	0.25			4	1	0	5
PRE	CREQU	ISITE:	Fundamental Physics knowledge related to el	ectrical energy,	pow	er ar	nd fo	rces on
elect	ric and	magneti	c fields.					
On t	he succ	essful co	mpletion of the course, students will be able to	C				
			Course Outcome	Domain]	Leve	l
CO1		•	calculus operations and <i>develop</i> knowledge ds and scalar fields in electrostatics.	Cognitive	A	pply	, Sy	nthesis
CO2		iding st	e fundamental nature of static fields, eady current, static electric and magnetic	Cognitive		Kn	owle	dge
CO3	mag linea prob	netostati ar isotro lems in	potential problems within electrostatics, cs and stationary current distributions in pic media. Also, <i>solve</i> and <i>analyze</i> such simple geometries using separation of I the method of images.	Cognitive	S	•	esis, naly	Apply, se
CO4		-	vell's equations and their application to ic fields, boundary conditions, wave	Cognitive		1	Appl	у

	equations,	and I	Poynting's power-balance	theorem			
	evaluation.						
CO5			erties of plane waves in u tand such concepts as w		Cognitive		owledge,
	phase veloc	city and	attenuation.				Apply
UNIT	'- I	Electr	ostatics				12+3
Coulo	mb's law –	surface,	line and volume charge d	listributions	- Gauss' Law	and its a	pplications
Electro	ostatic poten	tial - La	place and Poisson equation	s – Potential	of a localized	charged o	listributions
– Lap	place equation	on in o	ne, two and three dimens	sions – Bou	indary conditi	ons and	Uniqueness
theore	ems- Work ar	nd Energ	y in electrostatics – Conduc	ctors.			
UNIT	'- II	Magn	etostatics				12+3
Lorent	tz force law	v- Biot-	Savart law – condition f	for steady e	electric current	t - Amp	ere's law -
Applic	cation of An	npere's	law – comparison of Magr	netostatics ar	nd Electrostation	cs – Mag	netic vector
and So	calar potentia	al – Mag	neto static boundary condit	tions – Magr	netic fields in n	natter- M	agnetizatior
– The	field of a ma	ignetized	l object.				
UNIT	'- III	Electr	odynamics				12+3
Electro Maxw	vell's equation	e – ohm on in fre	is law – Faradays law – Ind ee space – Magnetic charg laws – Conservation of e	ge - Maxwel	l's equation in	n matter	- Boundary
Electro Maxw condit mome UNIT Electro	vell's equatic tions - Conse entum. '- IV omagnetic w	e – ohm on in fre ervation Electr aves in v	s law – Faradays law – Ind ee space – Magnetic charg laws – Conservation of e omagnetic Waves and Intervacium – Energy and mom-	ge - Maxwel energy – Poy eraction wit entum of EM	l's equation in ynting's theore h Matter IW – EMW in	matter - cons	- Boundary servation o 12+3 Propagation
Electro Maxw condit mome UNIT Electro in line Obliqu	vell's equations - Consections - Consections entum. - IV omagnetic wear media - lue incidence	e – ohm on in fre ervation Electr aves in v Reflection – Impl	s law – Faradays law – Ind ee space – Magnetic charg laws – Conservation of e omagnetic Waves and Intervacium – Energy and mom on and transmission at Norrications: Laws of incidenc	ge - Maxwel energy – Poy eraction wit entum of EM mal incidence e and reflec	l's equation in ynting's theore th Matter IW – EMW in the – Reflection	matter – matter – and Trar	- Boundary servation o 12+3 Propagation asmission a
Electro Maxw condit mome UNIT Electro in line Obliqu	vell's equations ions - Consecutions contum. '- IV omagnetic w ear media – l ue incidence el's equations	e – ohm on in fre ervation Electr aves in Reflection – Impl s – wave	s law – Faradays law – Ind ee space – Magnetic charg laws – Conservation of e comagnetic Waves and Int vacuum – Energy and mom on and transmission at Nor	ge - Maxwel energy – Poy eraction wit entum of EM mal incidence e and reflec	l's equation in ynting's theore th Matter IW – EMW in the – Reflection	matter – matter – and Trar	- Boundary servation o 12+3 Propagation asmission a
Electro Maxw condit mome UNIT Electro in line Obliqu Fresne UNIT	vell's equations ions - Consecutions ontum. - IV omagnetic w omagnetic w ear media – l ue incidence el's equations - V	e – ohm on in fre ervation Electr aves in v Reflectio – Impl s – wave Plasm	s law – Faradays law – Ind ee space – Magnetic charg laws – Conservation of e comagnetic Waves and Int vacuum – Energy and mom on and transmission at Norr ications: Laws of incidenc guides- rectangular waveg	ge - Maxwel energy – Pog eraction wit entum of EM mal incidence and reflec uide.	l's equation in ynting's theore h Matter IW – EMW in ee – Reflection tance, Snell's	matter – matter – and Trar law, Brev	- Boundary servation o 12+3 Propagation asmission a wster law - 12+3
Electro Maxw condit mome UNIT Electro in line Obliqu Fresne UNIT Plasm charge field -	vell's equations ions - Consecutions entum. - IV omagnetic w ear media – l ue incidence el's equations - V a – Plasma c e particles in	e – ohm on in fre ervation Electr aves in v Reflection – Impl s – wave Plasm riteria – uniform ng B fie	s law – Faradays law – Ind ee space – Magnetic charg laws – Conservation of e omagnetic Waves and Int vacuum – Energy and mom on and transmission at Nor- ications: Laws of incidenc e guides- rectangular waveg a Physics & Applications	ge - Maxwel energy – Poy eraction wit entum of EM mal incidence e and reflec uide. nt) – Plasma m B field – n	l's equation in ynting's theore h Matter MW – EMW in te – Reflection tance, Snell's	matter – matter – and Trar law, Brev C shieldin field – tim	 Boundary servation of 12+3 Propagation as mission a wster law - 12+3 g) – Motion he varying Herical Service Ser
Electro Maxw condit mome UNIT Electro in line Obliqu Fresne UNIT Plasm charge field -	vell's equations ions - Consecutions - IV omagnetic we ear media – I ue incidence el's equations - V a – Plasma c e particles in - time varying	e – ohm on in fre ervation Electr aves in v Reflection – Impl s – wave Plasm riteria – uniform ng B fie cations.	s law – Faradays law – Ind ee space – Magnetic charg laws – Conservation of e omagnetic Waves and Int vacuum – Energy and mom on and transmission at Norr ications: Laws of incidenc e guides- rectangular waveg a Physics & Applications Debye shielding (DC curre E and B field - non uniforr	ge - Maxwel energy – Poy eraction wit entum of EM mal incidence e and reflec uide. nt) – Plasma m B field – n	l's equation in ynting's theore h Matter IW – EMW in te – Reflection tance, Snell's frequency (AC on uniform E f nfinement – In	matter – matter – and Trar law, Brev C shieldin field – tim	 Boundary servation of 12+3 Propagation association associatio association association association association association as
Electro Maxw condit mome UNIT Electro in line Obliqu Fresne UNIT Plasm charge field -	vell's equations ions - Consecutions entum. - IV omagnetic we car media – la ue incidence el's equations - V a – Plasma c e particles in - time varyin ostics - Applio	e – ohm on in fre ervation Electr aves in v Reflection – Impl s – wave Plasm riteria – uniform ng B fie cations.	s law – Faradays law – Ind ee space – Magnetic charg laws – Conservation of e omagnetic Waves and Int vacuum – Energy and mom on and transmission at Nor ications: Laws of incidenc e guides- rectangular waveg a Physics & Applications Debye shielding (DC curre E and B field - non uniforr Id – guiding centre drifts -	ge - Maxwel energy – Poy eraction wit entum of EM mal incidence e and reflec uide. nt) – Plasma n B field – n – plasma con	l's equation in ynting's theore h Matter IW – EMW in te – Reflection tance, Snell's frequency (AC on uniform E f nfinement – In	matter – matter – and Trar law, Brev C shieldin field – tim troductio	 Boundary servation of 12+3 Propagation asmission a wster law 12+3 g) – Motion as varying I n to plasma
Electro Maxw condit mome UNIT Electro in line Obliqu Fresne UNIT Plasm charge field - diagno	vell's equations ions - Consecutions entum. - IV omagnetic we ear media – I ue incidence el's equations - V a – Plasma c e particles in - time varying stics - Applica LECTURE	e – ohm on in fre ervation Electr aves in v Reflection – Impl s – wave Plasm riteria – uniform ng B fie cations.	s law – Faradays law – Ind ee space – Magnetic charg laws – Conservation of e omagnetic Waves and Inter- vacuum – Energy and mom- on and transmission at Norm ications: Laws of incidence guides- rectangular waveg a Physics & Applications Debye shielding (DC curre E and B field - non uniform Id – guiding centre drifts - TUTORIAL	ge - Maxwel energy – Poy eraction wit entum of EM mal incidence e and reflec uide. nt) – Plasma m B field – n – plasma con PRACT	l's equation in ynting's theore h Matter IW – EMW in te – Reflection tance, Snell's frequency (AC on uniform E f nfinement – In	matter – matter – and Trar law, Brev C shieldin field – tim troductio	 Boundary servation of 12+3 Propagation smission a wster law 12+3 g) – Motion ie varying landow in to plasm
Electro Maxw condit mome UNIT Electro in line Obliqu Fresne UNIT Plasm charge field - diagno	vell's equations ions - Consecutions ions - Consecutions ' - IV omagnetic we ear media – I ue incidence el's equations ' - V a – Plasma c e particles in - time varyin ostics - Applica LECTURE 60 T BOOKS	e – ohm on in fre ervation Electr aves in v Reflection – Impl s – wave Plasm riteria – uniform ng B fie cations.	s law – Faradays law – Ind ee space – Magnetic charg laws – Conservation of e omagnetic Waves and Inter- vacuum – Energy and mom- on and transmission at Norm ications: Laws of incidence guides- rectangular waveg a Physics & Applications Debye shielding (DC curre E and B field - non uniform Id – guiding centre drifts - TUTORIAL	ge - Maxwel energy – Poy eraction wit entum of EM mal incidence e and reflec uide. nt) – Plasma n B field – n – plasma con PRACT 0	l's equation in ynting's theore h Matter IW – EMW in tance, Snell's frequency (AC on uniform E f nfinement – In ICAL	matter – matter – and Trar law, Brev C shieldin field – tim troduction TO'	 Boundary servation of 12+3 Propagation assistsion a wster law - 12+3 g) – Motion to plasma FAL
Electro Maxw condit mome UNIT Electro in line Obliqu Fresne UNIT Plasm charge field - diagno	vell's equation ions - Consecutions ions - Consecutions '- IV omagnetic we ear media – I ue incidence el's equations '- V a – Plasma c e particles in - time varyin ostics - Applic LECTURE 60 TBOOKS Introduction	e – ohm on in fre ervation Electr aves in v Reflectio – Impl s – wave Plasm riteria – uniform ng B fie cations.	s law – Faradays law – Ind ee space – Magnetic charg laws – Conservation of e omagnetic Waves and Int vacuum – Energy and mom on and transmission at Norri ications: Laws of incidence e guides- rectangular waveg a Physics & Applications Debye shielding (DC curre E and B field - non uniforr Id – guiding centre drifts - TUTORIAL 15	e - Maxwel energy – Poy eraction wit entum of EM mal incidence e and reflec uide. nt) – Plasma m B field – n – plasma con PRACT 0	I's equation in ynting's theore h Matter IW – EMW in ce – Reflection tance, Snell's frequency (AC ion uniform E f nfinement – In ICAL	matter – matter – and Trar law, Brev C shieldin field – tim troduction TO'	 Boundary servation of 12+3 Propagation is mission a wster law - 12+3 g) – Motion is varying H n to plasma TAL

REF	ERENCE BOOKS
1.	Electromagnetic theory, P. K. Basu and H. Dhasmana, Ane Books Pvt. Ltd., New Delhi, 2010.
2.	Classical Electrodynamics, Hans Ohanian, Firewall media, 2nd Edition, 2009.
3.	Foundations of Electromagnetic theory, J.R. Reity, F.J. Milford and R.W. Christy, Pearson, 2010.

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	2	2	1	1	3	1	3	2	0	0
CO2	2	2	1	1	3	1	3	2	0	0
CO3	2	2	1	1	3	1	3	2	0	0
CO4	2	2	1	1	3	1	3	2	0	0
CO5	2	2	1	1	3	1	3	2	0	0

					L	Τ	Р	С
	YPH304	4A	MICRO-ELECTRO-MECHANICAL S	YSTEMS	4	0	0	4
C	Р	Α	(MEMS)		L	Т	Р	Н
3	0.75	0.25			4	0	0	4
PRE	REQU	ISITE	Basic knowledge on electronics					
On t	he succ	essful c	ompletion of the course, students will be able to	C	T			
			Course Outcome	Domain			Leve	1
CO1	-	<i>uire</i> kn rosystei	owledge and <i>get</i> introduced to the field of ms.	Cognitive		Kn	owle	dge
CO2			w materials, science and technology for ms and its applications	Cognitive		Kn	owle	dge
CO3	Dese	c ribe M	EMS fabrication technologies	Cognitive		Com	prehe	ension
CO4	Ana feasi	•	Microsystems technology for technical s well as practicality.	Cognitive			Appl	у
CO5	-		nowledge and <i>understand</i> the state-of-art ining and packaging technologies.	Cognitive			Appl	у
UNI	T - I		Overview of MEMS and Microsystems		•			12
			es and application, MEMS and Microsystems	• •				-
			of micro fabrication - Microsystem and m					
			EMS with micro actuator - Microgrippers - Nelerometers.	Aicromotors -	Micı	oval	ves -	Micro

UNIT	- II	Scalin	g laws and materials for	MEMS		12
Scalin	g: Introduction	on to sc	aling - Scaling in geome	etry - rigid body dynamic	s - Electrost	atic Forces,
Electro	omagnetic, El	lectricit	y, Fluid mechanics - Sca	ling in Heat transfer – M	Iaterials: Sul	ostrates and
Wafer	s - Active su	bstrate	materials - Silicon as a	substrate material - Silico	on Compound	ds - Silicon
piezo 1	resistor - Gall	ium Ar	senide - Quartz - piezoele	ctric crystals - polymers -	Packing mat	erials.
UNIT	- III	Micro	system Fabrication Proc	cess		12
X-ray	Introduction	- Photo	lithography - Ion implan	tation - Oxidation - Diffu	sion - Chem	ical Vapour
Depos	ition - Physic	al Vapo	our Deposition (sputtering	g) - Deposition by epitaxy	– Etching - I	Microstereo
lithogr	caphy.					
UNIT	- IV	Micro	Manufacturing			12
Bulk n	nicro manufa	cturing	 isotropic and Anisotrop 	ic etching - wet etching -	Etch stop - d	ry etching -
compa	rison, Surfac	e micro	machining -general descr	ription - process - mechan	ical problem	s associated
with s	surface micro	machin	ing, The LIGA process	- general description-sub	strate and p	hotoresists-
electro	plating-SLIG	βA.				
UNIT	- V	Micro	system Design and Pack	aging		12
Micros	system Desig	n: Intro	duction - Design consider	ration - Mechanical Desig	n Using Fini	te Elements
	U		-	evices using CAD tools. I	•	00
Micros	system Packa	ging - I	nterfaces in Microsystem	packaging - Essential Pac	kaging Tech	nologies.
	LECTURE		TUTORIAL	PRACTICAL	TO	ΓAL
	60		0	0	6	60
TEXT	BOOKS					
1.	MEMS and M	Microsy	stems Design and Manuf	acture - Hsu & Tai Ran, T	ata McGraw	Hill, 2000.
2.	MEMS and M	MOEM	S Technology and Applic	ations - Ri-Choudhury & l	Prosenjit, SP	IE, 2000.
REFE	CRENCE BO	OKS				
1.	MEMS: Intro	oduction	n and Fundamentals - Mo	hamed Goad-el-Hak, CRC	Press, 2005	5.
2.	Smart Mater	rial Svs	tems and MEMS: Desig	gn and Development Me	thodologies	- Vijav K

Vardan, K. J. Vinoy, S. Gopalakrishnan, John Wiley & Sons, 2011.

Mapping of Course Outcomes (CO) with Programme Outcomes (PO):

1	'in bhuis	5 01 000			<i>(</i>) () ()	110814		areonn		
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	1	2	2	2	3	2	3	2	0	1
CO2	1	2	2	2	3	2	3	2	0	1
CO3	1	2	3	2	3	2	3	2	0	1
CO4	1	2	3	2	3	2	3	2	0	1
CO5	1	2	3	2	3	2	3	2	0	1

	YPH30	4B		·	L 4	Т 0	Р 0	<u>C</u> 4
-	111100	12	SOLAR THERMAL AND PHOTOVO	DLTAIC	•	v	v	•
С	P	Α	TECHNOLOGY		L	Т	Р	Н
3	0.75	0.25			4	0	0	4
PRF	EREQU	JISITE	Basic knowledge on energy sources.					
			completion of the course, students will be able t	0				
			Course Outcome	Domain			Leve	l
COI			principles that underlie the ability to various nomena to deliver solar energy.	Cognitive		Kn	owle	dge
CO2			e technologies that are used to harness the lar energy for various applications.	Cognitive			owle Appl	0
CO3	5	<i>luate</i> t lication.	he choice of solar collector for a given	Cognitive		Kn	owle Appl	dge,
CO4	system		<i>I</i> the potential impact of solar thermal ad <i>apply</i> knowledge for design of solar tems.	Cognitive			owle Appl	0
COS			<i>I</i> the working principle of solar photovoltaic <i>alyse</i> the performance of the device.	Cognitive			owle maly	0
UNI	T - I		Energy Resources and Solar Spectrum					12
			ources - Indian energy scenario - Environm resources and their importance - Global	solar resources				
Elec	-	netic sp	ectrum, basic laws of radiation. Physics of the	e Sun - Energy	bala	nce o	of th	
Elec ener	-	netic sp	_	e Sun - Energy	bala	nce o	of the	
Elec energ UNI Sola Sola	gy flux, T - II r water r Ponds	netic sp , solar c heaters	ectrum, basic laws of radiation. Physics of the onstant for earth.	ooking – Distilla	ation	- De	esalii	e earth 12 nation
Elec energ UNI Sola Sola light	gy flux, T - II r water r Ponds	netic sp , solar c heaters s – Sola	ectrum, basic laws of radiation. Physics of the onstant for earth. Solar Applications - solar space conditioning systems - Solar Co	ooking – Distilla	ation	- De	esalii	e earth 12 nation
Elec energ UNI Sola Sola light UNI Conc paral conc seaw	gy flux, T - II r water r Ponds ing. T - III centrati bolic tr centratir vater de	heaters s – Sola ng and ough cong salination	ectrum, basic laws of radiation. Physics of the onstant for earth. Solar Applications - solar space conditioning systems - Solar Co ar Passive Architecture – Solar Drying – Sola Solar Collectors non-concentrating solar collectors - design, st ollectors - flat plate collectors - evacuated tw ctors (low temperature solar thermal plants fo on) and concentrating collectors (process heat p	ooking – Distilla r Chimney - So ructure, operation be collectors - r space heating	ation lar e on ar App and	a - De electr nd pe plicat	esalii icity rforr ion o ing,	12 nation - sola 12 nance of non drying ion).
Elec energ UNI Sola Sola light UNI Conc paral conc seaw UNI	gy flux, T - II r water r Ponds ing. T - III centrati bolic tr centratir vater de T - IV	heaters s – Sola ng and ough cong salinatio	ectrum, basic laws of radiation. Physics of the onstant for earth. Solar Applications - solar space conditioning systems - Solar Co r Passive Architecture – Solar Drying – Sola Solar Collectors non-concentrating solar collectors - design, st collectors - flat plate collectors - evacuated tw ctors (low temperature solar thermal plants fo on) and concentrating collectors (process heat p Solar Thermal Energy Conversion	ooking – Distilla r Chimney - So ructure, operatio ibe collectors - r space heating production and p	ation lar e on ar App and	a - De electr nd pe plicat cool er ger	esalin icity rforr ion o ing, nerat	12nation- sola12nanceof nondryingion).12
Elec energ UNI Sola Sola light UNI Conc paral conc seaw UNI Gree Ther	gy flux, T - II r water r Ponds ing. T - III centrati bolic tr centratir vater de T - IV en hous rmal de	heaters s – Sola ng and ough cong salination e effect sign of	ectrum, basic laws of radiation. Physics of the onstant for earth. Solar Applications - solar space conditioning systems - Solar Co ar Passive Architecture – Solar Drying – Sola Solar Collectors non-concentrating solar collectors - design, st ollectors - flat plate collectors - evacuated tw ctors (low temperature solar thermal plants fo on) and concentrating collectors (process heat p	boking – Distilla r Chimney - So ructure, operation ibe collectors - r space heating production and p es to convert so	ation lar e on ar App and bowe	a - De electr nd pe plicat cool er ger energ	esalin icity rforr ion o ing, nerat	12nation- sola12nanceof nondryingion).12heat
Elec energ UNI Sola Sola light UNI Conc paral conc seaw UNI Gree Ther with	gy flux, T - II r water r Ponds ing. T - III centrati bolic tr centratir vater de T - IV en hous rmal de	heaters s – Sola ng and ough cong salination e effect sign of	ectrum, basic laws of radiation. Physics of the onstant for earth. Solar Applications - solar space conditioning systems - Solar Co r Passive Architecture – Solar Drying – Sola Solar Collectors non-concentrating solar collectors - design, st collectors - flat plate collectors - design, st collectors (low temperature solar thermal plants fo on) and concentrating collectors (process heat p Solar Thermal Energy Conversion t - Fundamentals of solar collectors as device receivers - Thermal Energy Storage System	boking – Distilla r Chimney - So ructure, operation ibe collectors - r space heating production and p es to convert so	ation lar e on ar App and bowe	a - De electr nd pe plicat cool er ger energ	esalin icity rforr ion o ing, nerat	12nation- sola12nanceof nondryingion).12heat

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
	60	0	0	60
TEX	T BOOKS			
1.	Solar Energy: Princi	ples of Thermal Collec	tion and Storage - Sukhatr	ne, Tata McGraw Hill,
	New York, 2008.			
2.	Thin Film Phenomer	a - K. L. Chopra, Tata M	AcGraw Hill Book Compan	y, New York, 1969.
REF	ERENCE BOOKS			
1.	Hand Book of Thin I	Films - Hari Singh Nalw	a, Academic Press, 2002.	-
2.	Physics of Thin Film	s - L. Eckertova. Plenur	n Press, New York, 1977.	
3.	Material Science of	Thin Films - Milton Ohr	ing, Academic Press, 2002.	

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	1	2	3	1	3	3	3	3	0	0
CO2	1	2	3	1	3	3	3	3	0	0
CO3	1	2	3	1	3	3	3	3	0	0
CO4	1	2	3	1	3	3	3	3	0	0
CO5	1	2	3	1	3	3	3	3	0	0

	YPH30	40			L 4	T 0	P 0	C 4
	111130	+C	INDUSTRIAL ELECTRONICS	1	-	U	U	-
С	Р	Α			L	Т	Р	Н
3	0.75	0.25			4	0	0	4
PRE	REQU	ISITE:	Basic knowledge on electronics.					
On t	he succ	essful co	ompletion of the course, students will be able to					
			Course Outcome	Domain			Leve	2 1
CO1		<i>erstand</i> their swi	different types of power electronic devices itching.	Cognitive		Kn	owle	dge
CO2	Stud devi	•	peration of circuits used in power electronic	Cognitive		Kn	owle	dge

CO3		dustrial applications of power ele	ectronic Cognitiv	e Kno	owledge,
005	devices.		Cogintry	e A	Apply
CO4	<i>Know</i> the basis sensors used for	ics of transducers and sensors and ty or Robotics.	vpes of Cognitiv	e Kno	owledge
CO5		e working principle of ECG, EEG & omedical imaging techniques.	z EMG Cognitiv	e Kno	owledge
UNIT		Power Electronic Devices			12
		vices: Silicon controlled rectifiers (S	(\mathbf{CR}) – Unijunction to	ransistors (U	
		BJT) – Diode for alternating curren			
		gate bipolar junction transistor (IGE			-
		driver and snuber circuit.	i) unggernig und	commutation	i eneur ie
UNIT		Power Electronic Circuits and Con	ntrols		12
		- Cyclo converters - Matrix con		Single phase	
		se full-wave rectifiers; Inverters: Sing			
		Line-commutated inverters.	gie-phase inverters –	Thee-phase	mventers
	- III	Applications of Power Electronic D	Newion		12
		••		anotion of S	
		ver electronic converter – Position set			-
Varial	ble reflictance st		e reluctance step mot	ors – Perman	ant maana
		ep motor – Drive circuits for variable			_
step n	notor – Control o	of step motor; Uninterruptible power			_
step n topolc	notor – Control o ogies – Rotary U	of step motor; Uninterruptible power PS.			Static UP
step n topolc UNIT	notor – Control o ogies – Rotary U C - IV	of step motor; Uninterruptible power PS. Sensors in Robotics	supplies (UPS): UPS	functions –	Static UP
step n topolc UNIT	notor – Control o ogies – Rotary U C - IV	of step motor; Uninterruptible power PS.	supplies (UPS): UPS	functions –	Static UP
step n topolo UNIT Introd	notor – Control o ogies – Rotary U C - IV luction of transd	of step motor; Uninterruptible power PS. Sensors in Robotics	supplies (UPS): UPS	5 functions – e sensors–Pro	Static UP 12 oximity an
step n topolo UNIT Introd range	notor – Control o ogies – Rotary U C - IV luction of transd sensors – Misce	of step motor; Uninterruptible power PS. Sensors in Robotics ucers and sensors – Types of sensor	supplies (UPS): UPS s in robotics: Tactile tems – Uses of senso	5 functions – e sensors–Pro	Static UP 12 oximity an
step n topolo UNIT Introd range vision	notor – Control o ogies – Rotary U C - IV luction of transd sensors – Misce a: Introduction to	of step motor; Uninterruptible power PS. Sensors in Robotics ucers and sensors – Types of sensor llaneous sensors and sensor based sys	supplies (UPS): UPS s in robotics: Tactile tems – Uses of senso	5 functions – e sensors–Pro	Static UP 12 oximity an
step n topolo UNIT Introd range vision UNIT	notor – Control o ogies – Rotary U C - IV luction of transd sensors – Misce a: Introduction to C - V	of step motor; Uninterruptible power PS. Sensors in Robotics ucers and sensors – Types of sensor llaneous sensors and sensor based sys machine vision – Sensing and digitiz	supplies (UPS): UPS rs in robotics: Tactile tems – Uses of senso ing function.	5 functions – e sensors–Pro rs in robotics	Static UP 12 oximity and 5 – Machin 12
step n topolo UNIT Introd range vision UNIT Bioele	notor – Control o ogies – Rotary U C - IV luction of transd sensors – Misce a: Introduction to C - V ectric signals a	of step motor; Uninterruptible power PS. Sensors in Robotics ucers and sensors – Types of sensor llaneous sensors and sensor based sys machine vision – Sensing and digitiz Concepts of Medical Electronics	supplies (UPS): UPS s in robotics: Tactile tems – Uses of senso ing function. (ECG) – Electroen	5 functions – e sensors–Pro rs in robotics cephalogram	Static UP 12 Descrimity and 5 – Machina 12 (EEG)
step n topolc UNIT Introd range vision UNIT Bioele Electr	notor – Control o ogies – Rotary U C - IV luction of transd sensors – Misce a: Introduction to C - V ectric signals a romyogram (EM	of step motor; Uninterruptible power PS. Sensors in Robotics ucers and sensors – Types of sensor llaneous sensors and sensor based sys machine vision – Sensing and digitiz Concepts of Medical Electronics and electrodes: Electrocardiogram	supplies (UPS): UPS s in robotics: Tactile tems – Uses of senso ing function. (ECG) – Electroen ctrodes for ECG –	5 functions – e sensors–Pro rs in robotics cephalogram Electrodes	Static UP 12 Description of the second sec
step n topolc UNIT Introd range vision UNIT Bioele Electr Electr	notor – Control o ogies – Rotary U C - IV luction of transd sensors – Misce a: Introduction to C - V ectric signals a romyogram (EM rodes for EMG	of step motor; Uninterruptible power PS. Sensors in Robotics ucers and sensors – Types of sensor llaneous sensors and sensor based sys machine vision – Sensing and digitiz Concepts of Medical Electronics and electrodes: Electrocardiogram IG); Electrode-tissue interface; Elec	supplies (UPS): UPS s in robotics: Tactile tems – Uses of senso ing function. (ECG) – Electroen ctrodes for ECG – de jellies and cream	5 functions – e sensors–Pro rs in robotics cephalogram Electrodes fa ns; Biomedic	Static UP 12 Descrimity and 5 – Machina 12 (EEG) for EEG cal imagin
step n topolc UNIT Introd range vision UNIT Bioele Electr Electr systen	notor – Control o ogies – Rotary U C - IV luction of transd sensors – Misce a: Introduction to C - V ectric signals a romyogram (EM rodes for EMG	of step motor; Uninterruptible power PS. Sensors in Robotics ucers and sensors – Types of sensor llaneous sensors and sensor based sys machine vision – Sensing and digitiz Concepts of Medical Electronics and electrodes: Electrocardiogram IG); Electrode-tissue interface; Electro – Electrical conductivity of electro d Working of – X-ray machine, C	supplies (UPS): UPS s in robotics: Tactile tems – Uses of senso ing function. (ECG) – Electroen ctrodes for ECG – de jellies and cream	5 functions – e sensors–Pro rs in robotics cephalogram Electrodes fa ns; Biomedic	Static UP 12 Descrimity and 5 – Machina 12 (EEG) for EEG real imagin
step n topolc UNIT Introd range vision UNIT Bioele Electr Electr systen	notor – Control o ogies – Rotary U C - IV luction of transd sensors – Misce a: Introduction to C - V ectric signals a comyogram (EM codes for EMG n: Principle and	of step motor; Uninterruptible power PS. Sensors in Robotics ucers and sensors – Types of sensor llaneous sensors and sensor based sys machine vision – Sensing and digitiz Concepts of Medical Electronics and electrodes: Electrocardiogram IG); Electrode-tissue interface; Elec – Electrical conductivity of electrood d Working of – X-ray machine, C RI).	supplies (UPS): UPS s in robotics: Tactile tems – Uses of senso ing function. (ECG) – Electroen ctrodes for ECG – de jellies and cream	5 functions – e sensors–Pro rs in robotics cephalogram Electrodes fa ns; Biomedic	Static UP 12 Descrimity and 5 – Machina 12 (EEG) for EEG cal imagina 1 Magneti
step n topolc UNIT Introd range vision UNIT Bioele Electr Electr systen	notor – Control o ogies – Rotary U C - IV luction of transd sensors – Misce a: Introduction to C - V ectric signals a romyogram (EM rodes for EMG n: Principle and ance imaging (M	of step motor; Uninterruptible power PS. Sensors in Robotics ucers and sensors – Types of sensor llaneous sensors and sensor based sys machine vision – Sensing and digitiz Concepts of Medical Electronics and electrodes: Electrocardiogram IG); Electrode-tissue interface; Elec – Electrical conductivity of electrood d Working of – X-ray machine, C RI).	supplies (UPS): UPS s in robotics: Tactile tems – Uses of senso ing function. (ECG) – Electroen ctrodes for ECG – de jellies and cream Computed tomograph	5 functions – 6 sensors–Pro rs in robotics cephalogram Electrodes f as; Biomedic ny (CT) and	Static UP 12 Descrimity and 5 – Machina 12 (EEG) for EEG cal imaginal Magneti FAL
step n topolo UNIT Introd range vision UNIT Bioele Electr Electr systen resona	notor – Control o ogies – Rotary U C - IV luction of transd sensors – Misce a: Introduction to C - V ectric signals a romyogram (EM rodes for EMG n: Principle and ance imaging (M LECTURE	of step motor; Uninterruptible power PS. Sensors in Robotics ucers and sensors – Types of sensor llaneous sensors and sensor based sys machine vision – Sensing and digitiz Concepts of Medical Electronics ind electrodes: Electrocardiogram IG); Electrode-tissue interface; Elect – Electrical conductivity of electrode d Working of – X-ray machine, C RI).	supplies (UPS): UPS s in robotics: Tactile tems – Uses of senso ing function. (ECG) – Electroen ctrodes for ECG – de jellies and cream Computed tomograpl PRACTICAL	5 functions – 5 sensors–Pro- rs in robotics cephalogram Electrodes f ns; Biomedic ny (CT) and TOT	Static UP 12 Descrimity and 5 – Machina 12 (EEG) for EEG cal imaginal Magneti FAL
step n topolo UNIT Introd range vision UNIT Bioele Electr Electr systen resona	notor – Control o ogies – Rotary U C - IV luction of transd sensors – Misce a: Introduction to C - V ectric signals a romyogram (EM rodes for EMG n: Principle and ance imaging (M LECTURE 60 T BOOKS	of step motor; Uninterruptible power PS. Sensors in Robotics ucers and sensors – Types of sensor llaneous sensors and sensor based sys machine vision – Sensing and digitiz; Concepts of Medical Electronics ind electrodes: Electrocardiogram IG); Electrode-tissue interface; Electrocardiogram IG); Electrical conductivity of electroded Working of – X-ray machine, C RI). 0	supplies (UPS): UPS s in robotics: Tactile tems – Uses of senso ing function. (ECG) – Electroen ctrodes for ECG – de jellies and cream Computed tomograph PRACTICAL 0	5 functions – 5 sensors–Pro- rs in robotics cephalogram Electrodes f ns; Biomedic ny (CT) and TOT 6	Static UP 12 Descrimity and 5 – Machina 12 (EEG) for EEG cal imaginal Magnetia FAL 0
step n topolo UNIT Introd range vision UNIT Bioele Electr Electr system resona	notor – Control o ogies – Rotary U C - IV luction of transd sensors – Misce a: Introduction to C - V ectric signals a romyogram (EM rodes for EMG n: Principle and ance imaging (M LECTURE 60 F BOOKS Industrial Elect	of step motor; Uninterruptible power PS. Sensors in Robotics ucers and sensors – Types of sensor llaneous sensors and sensor based sys machine vision – Sensing and digitiz Concepts of Medical Electronics ind electrodes: Electrocardiogram IG); Electrode-tissue interface; Elect – Electrical conductivity of electroded Morking of – X-ray machine, C RI). ronics – Circuits, Instruments, and C	supplies (UPS): UPS s in robotics: Tactile tems – Uses of senso ing function. (ECG) – Electroen ctrodes for ECG – de jellies and cream Computed tomograph PRACTICAL 0	5 functions – 5 sensors–Pro- rs in robotics cephalogram Electrodes f ns; Biomedic ny (CT) and TOT 6	Static UP 12 Descrimity and 5 – Machina 12 (EEG) for EEG cal imaginal Magnetia FAL 0
step n topolo UNIT Introd range vision UNIT Bioele Electr Electr system resona TEXT 1.	notor – Control o ogies – Rotary U C - IV luction of transd sensors – Misce a: Introduction to C - V ectric signals a comyogram (EM codes for EMG n: Principle and ance imaging (M LECTURE 60 F BOOKS Industrial Elect Learning India	of step motor; Uninterruptible power PS. Sensors in Robotics ucers and sensors – Types of sensor llaneous sensors and sensor based sys machine vision – Sensing and digitiz; Concepts of Medical Electronics and electrodes: Electrocardiogram IG); Electrode-tissue interface; Electrocardiogram IG); Electrode-tissue interface; Electrocarding of – X-ray machine, C RI). TUTORIAL 0 ronics – Circuits, Instruments, and C Pvt. Ltd, New Delhi, 2009.	supplies (UPS): UPS s in robotics: Tactile tems – Uses of senso ing function. (ECG) – Electroen ctrodes for ECG – de jellies and cream Computed tomograph PRACTICAL 0 Control Techniques -	5 functions – 5 sensors–Pro- rs in robotics cephalogram Electrodes f ns; Biomedic ny (CT) and TOT 6 Terry Barte	Static UP 12 Descrimity and 5 – Machina 12 (EEG) for EEG real imaginal Magnetia FAL 0 It, Cengag
step n topolo UNIT Introd range vision UNIT Bioele Electr Electr system resona	notor – Control of ogies – Rotary U C - IV luction of transd sensors – Misce a: Introduction to C - V ectric signals a romyogram (EM rodes for EMG n: Principle and ance imaging (M LECTURE 60 T BOOKS Industrial Elect Learning India Handbook of	Sensors in Robotics ucers and sensors – Types of sensor llaneous sensors and sensor based sys machine vision – Sensing and digitiz Concepts of Medical Electronics ind electrodes: Electrocardiogram IG); Electrode-tissue interface; Elect – Electrical conductivity of electrod d Working of – X-ray machine, C RI). TUTORIAL 0 ronics – Circuits, Instruments, and C Pvt. Ltd, New Delhi, 2009. Biomedical Instrumentation, R.S.	supplies (UPS): UPS s in robotics: Tactile tems – Uses of senso ing function. (ECG) – Electroen ctrodes for ECG – de jellies and cream Computed tomograph PRACTICAL 0 Control Techniques -	5 functions – 5 sensors–Pro- rs in robotics cephalogram Electrodes f ns; Biomedic ny (CT) and TOT 6 Terry Barte	Static UP 12 Descrimity and 5 – Machina 12 (EEG) for EEG real imaginal Magnetia FAL 0 It, Cengag
step n topolo UNIT Introd range vision UNIT Bioele Electr Electr system resona TEXT 1. 2.	notor – Control of ogies – Rotary U C - IV luction of transd sensors – Misce a: Introduction to C - V ectric signals a romyogram (EM rodes for EMG n: Principle and ance imaging (M LECTURE 60 T BOOKS Industrial Elect Learning India Handbook of	of step motor; Uninterruptible power PS. Sensors in Robotics ucers and sensors – Types of sensor llaneous sensors and sensor based sys machine vision – Sensing and digitiz; Concepts of Medical Electronics and electrodes: Electrocardiogram IG); Electrode-tissue interface; Elect – Electrical conductivity of electroded d Working of – X-ray machine, C RI). TUTORIAL 0 ronics – Circuits, Instruments, and C Pvt. Ltd, New Delhi, 2009. Biomedical Instrumentation, R.S. New Delhi, Second edition: 2003.	supplies (UPS): UPS s in robotics: Tactile tems – Uses of senso ing function. (ECG) – Electroen ctrodes for ECG – de jellies and cream Computed tomograph PRACTICAL 0 Control Techniques -	5 functions – 5 sensors–Pro- rs in robotics cephalogram Electrodes f ns; Biomedic ny (CT) and TOT 6 Terry Barte	Static UP 12 Descrimity and 5 – Machina 12 (EEG) for EEG ral imagina 1 Magnetia FAL 0 It, Cengag

- 1. Modern Industrial Electronics Timothy J. Maloney, Prentice Hall, New Jersy, 1996.
- 2. Electronic Devices and Circuits Anil K. Maini, Varsha Agrawal, Wiley India Pvt. Ltd., New Delhi, 2009.

		-				0				
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	1	2	3	2	3	3	3	3	0	1
CO2	1	2	3	2	3	3	3	3	0	1
CO3	1	2	3	2	3	3	3	3	0	1
CO4	1	2	3	2	3	3	3	3	0	1
CO5	1	2	3	2	3	3	3	3	0	1

Y	PH3	305			L 0	Т 0	P 3	C 3	
С	Р	Α	ADVANCED GENERAL AND ELECTRO LABORATORY	DNICS	L	Т	Р	Н	
0.5	2	0.5			0	0	6	6	
PRE	CRE	QUIS	TE: Know the basic laws and have practical experie	ence to use me	easui	ring t	ools.		
On t	he si	uccess	ful completion of the course, students will be able to						
			Course Outcome	Domain			Leve	l	
CO1		J <i>nders</i> xperir	1 1 2	Cognitive, Psychomotor		Kn	owle	dge	
CO2		<i>leasu</i> ccurac	<i>e</i> different physical parameters with maximum y.	Cognitive, Psychomotor		Apply			
CO3			<i>ine</i> various physical constants through different experiments.	Cognitive, Psychomotor			Appl	у	
CO4	c		<i>uct</i> simple electronic circuits and make out the eristics of transistors, amplifiers, oscillators and	Cognitive, Psychomotor		Apply Apply Synthesis Knowledg		sis	
CO5			the conceptual difference between analog and circuits.	Cognitive, Psychomotor		Kn	owle	dge	
S. N	lo.		Experiments						
A. (Gene	eral E	xperiments (Any eight experiments)						
1	•	Dete	rmination of thermal conductivity using thermocoupl	es by Forbe's	met	hod			
2	2.	Mea	surement of Electrical Conductivity- Four Probe Met	hod					
3		Dete	rmination of carrier concentration and Hall coefficien	nts in semicon	duct	ors.			

4	Determination	C	<u>f 1' ' 1 1 C</u>	
4.			of liquid by Guoy method.	4.1
5.			of liquids by Quincke's me	
6.	interferometer.	t wavelength and thicknes	s of a film by using Miche	elson's
7		f a al animala ilitar of li avrida l	er finding the nefue stire in	diago at different
7.	wavelengths.	i polarizability of liquids i	by finding the refractive in	dices at different
8.	-	f wavelength of monochro	matic source using biprisi	n
9.			of a liquid using polarimet	
10		f charge of an Electron by		
11		f Dielectric loss using CR		
		nts (Any eight experime		
1.	-)	
2.		, Ramp Generator and Wi	en Bridge Oscillator	
3.		on Full Wave Rectifier		
4.	IC 555 timer – S	chmitt Trigger		
5.	Characteristics of	f Photo Diode, Photo Tra	nsistor, LDR, LED	
6.	Push-pull amplif	ier using complementary	– symmetry transistors po	wer gain and
	frequency respon	nse.		
7.	Active filters – l	ow pass and high pass-firs	st and second order frequent	ncy response and
	roll off rate.			
8.			vibrator using IC 555 / IC	741
9.		converter - R-2R method	and Weighted method	
10	00			
11	1			
12	2. Relaxation oscil	lator using UJT		
	LECTURE	TUTORIAL	PRACTICAL	TOTAL
	0	0	90	90
TEX	Г BOOKS			
1.	An Advanced Cour	se in Practical Physics -	D. Chattopadhyay, P. C	. Rakshit, New Central
	Book Agency (P) L	td., 2007.		
2.	A Textbook of Adv	anced Practical Physics - S	S. K. Ghosh, New Central	Publishers, 2000.
REFI	ERENCE BOOKS			
1.	Advanced Practical	Physics Volume I – Dr. S	.P. Sing, Pragati Prakasan	Educational publishers,
	2011.	-		_
2.	Practical Physics a	nd Electronics – C.C. C	Duseph, U.J. Rao, V. Vij	ayendran, Viswanathan
	Printers & Publisher	rs Pvt. Ltd., 2007.		
	Mapping of	Course Outcomes (CO)	with Programme Outcon	mes (PO):

	ourse	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSC)9	PSO	10
	tcome CO1	2	2	1	1	2	2	2	2	0		1	
	CO1	3 2	3	<u>1</u> 1	1 1	3	3	$\frac{2}{2}$	3 3	0		<u>1</u> 1	
-	CO2	3	$\frac{3}{3}$	1	1		3	2	3	0		1	
	CO4	3	2	1	1	1	3	2	3	0	-		
	CO5	2	3	1	1	2	3	2	3	0		1	
			_	_		ation, 1–	-	_	-	-	n	1	
				,				, .	110 11	L	Т	Р	C
v	PH401									4	1	0	5
-	111401		лтом		MOLE	CULAR	SDECT	POSC	ODV	-	T	U	5
C	P	•	AIOM		WIOLE	CULAN	SILCI	NUSC	011	т	Т	п	Т
C		A								L		P	H
		.25								4	1	0	5
PREREQUISITE : Basic knowledge on physics of atoms and molecules and light. On the successful completion of the course, students will be able to													
On the	e success	ful com	pletion o	f the cou	irse, stud	ents will	be able	to					
			Course	Outcom	e			Do	main			Leve	el
	Unders	tand the	e princii	les and	concents	s of atom	vic and						
CO1			troscopy		concepta	s of aton	ne and	Cog	Knowledge				
		-	1.		miating	of atom	a and						
001								C	• . •		V	1	1
CO2		,				ction ru	les of	Cog	gnitive	Knowledge			
					c spectros	-							
	••	· •	-			<i>igate</i> rota				Knowledge,			
CO3		,	ectronic	and stru	ctural cl	naracteris	tics of	Cognitive			Comprehension		
	materia	ıls.											
	Observ	e the	spectra	, extrac	ct spect	ral sigr	atures,				Knowledge,		
CO4	interpr	et them	and a	ssociate	to the	structur	al and	Cog	gnitive		131	Appl	•
	chemic	al prope	rties of 1	naterials								дррі	y
COF	Develo	<i>p</i> model	s to extr	act detai	led infor	mation fr	om the	Car			C	• • • • • • • • • • •	
CO5	spectra	•							gnitive		2	ynthe	:818
UNIT	- I	El	ectronic	Spectro	scopy of	Atoms				1			12+3
Electro	onic wav	e functi	on – ato	- mic quar	ntum nun	nbers – h	ydrogen	atom s	pectrur	n – E	lectr	onic	angu
						– Many			1				U
						Term sy							
•						-equivale				- · ·	-	-	
				-	on spect	-		L					
UNIT					-	nd Rotat	ional Sr	octrose	onv				12+3
											orb		
						y (LCA)	1 A.	•					1
						- Region			-				
		_				ecules –	_						
	. 1	offoot o	1 inches	pic subs	A								

molecules (linear and symmetric top molecules) – Technique and instrumentation of microwave spectroscopy.

UNIT - IIIVibrational Spectroscopy12+3Energy of diatomic molecules – Simple Harmonic Oscillator – Anharmonic oscillator – Diatomic
vibrating rotator – Vibration-Rotation spectrum of carbon monoxide – Breakdown of Born-
Oppenheimer approximation –Vibrations and symmetry of polyatomic molecules – Influence of
rotation on the spectra of polyatomic molecules (linear and symmetric top molecules) – Quantum and
classical theory of Raman effect – pure rotational Raman spectra (linear and symmetric top molecules)
– Raman active vibrations – Vibrational Raman spectra – Rotational fine structure – Vibrations of
spherical tip molecules – Techniques and instrumentation of Infrared and Raman spectro.

UNIT - IVKinematics of Rigid Body12+3Vibrational coarsestructure progressions – Franck-Condon principle – Dissociation energy and theirproducts – Rotational fine structure of vibronic transitions – Fortat Diagram – Pre-dissociation –Spectrum of molecular hydrogen – Change of shape on excitation – Chemical analysis by electronicspectroscopy – Re-emission of energy by an excited molecule.

UNIT - V	Central Force Problem and Theory of Relativity	12+3
Nature of spinning	particles - Spin and magnetic field interaction - Larmor precession -	Relaxation
time – Spin-spin re	elaxation – Spin-lattice relaxation - NMR chemical shift – Coupling	constants –
Coupling between	nuclei - Chemical analysis by NMR - Exchange Phenomena - NMR	for nuclei
other than hydroge	n - ESR spectroscopy – g-factor – Electron-Nucleus Coupling – Electro	on-Electron
Coupling.		

<u>9</u> .											
LECTURE	TUTORIAL	PRACTICAL	TOTAL								
60	15	0	75								
Г BOOKS											
. Fundamentals of Molecular Spectroscopy - C. N. Banwell and Elaine M. McCash, McGraw-											
Hill Education (India) Pvt. Ltd, 2013.											
Spectroscopy (Atomic and molecular) - G. R. Chatwal and S. K. Anand, Himalaya Publishing											
House, 2016.											
ERENCE BOOKS :											
Fundamentals of Me	olecular Spectroscopy - W	alter S. Struve, John Wile	ey & Sons, 1989.								
Atomic and Molecu	lar Spectroscopy - SuneSy	vanberg, Springer-Verlag,	2004.								
Molecular Spectroso	copy - Jeanne L. McHale,	CRC Press, 2017.									
Molecular Structure	and Spectroscopy - G. A	ruldhas, Prentice-Hall of I	ndia, 2004.								
	LECTURE 60 TBOOKS Fundamentals of M Hill Education (Indi Spectroscopy (Aton House, 2016. ERENCE BOOKS : Fundamentals of Mo Atomic and Molecu Molecular Spectrosc	LECTURETUTORIAL6015T BOOKSFundamentals of Molecular Spectroscopy - O Hill Education (India) Pvt. Ltd, 2013.Spectroscopy (Atomic and molecular) - G. R House, 2016.CRENCE BOOKS : Fundamentals of Molecular Spectroscopy - W Atomic and Molecular Spectroscopy - SuneSy Molecular Spectroscopy - Jeanne L. McHale,	LECTURETUTORIALPRACTICAL60150F BOOKSFundamentals of Molecular Spectroscopy - C. N. Banwell and ElaineHill Education (India) Pvt. Ltd, 2013.Spectroscopy (Atomic and molecular) - G. R. Chatwal and S. K. AnarHouse, 2016.House, 2016.								

Mapping of Course Outcomes (CO) with Programme Outcomes (PO):

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	2	1	2	1	2	1	3	2	1	1
CO2	2	1	2	1	2	1	3	2	1	1
CO3	2	1	2	1	2	1	3	2	1	1

CO4	2	1	2	1	2	1	3	2	1	1
CO5	2	1	2	1	2	1	3	2	1	1

					L	Т	Р	С	
v	2 PH4(12			4	1	0	5	
-		/ _	NUCLEAR AND PARTICLE PHY	SICS	-	-	U	U	
C	Р	Α			L	Т	Р	Н	
	0.75	0.25			4	1	0	5	
			Basic knowledge in quantum mechanics and	mathematical m	netho	ods.	-	-	
	-		ompletion of the course, students will be able t						
			Course Outcome	Domain			Level		
CO1	factors affecting the stability of the nucleus.								
CO2	<i>Explain</i> the different forms of radioactivity and account								
СОЗ	Account for fission and fusion processes and explain the Knowle							0	
CO4		eulate ti esses.	he kinematics of various reactions and decay	Cognitive			Appl	ply	
CO5	and	classify	the four fundamental interactions in nature the elementary particles and es in terms of their quantum numbers.	Cognitive			owledge, prehension		
UNIT			Nuclear Structure and Nuclear Forces					12+3	
empir model nature	ical m l, sing e of nu netry -	ass for le parti uclear f	e, charge distribution, spin, parity and magnet mula – Mass parabolas – Nuclear models – 1 cle shell model, its validity and limitations, forces - charge independence – deuteron – fo ntral (tensor) forces – ground state of deuteron	iquid drop mod collective mod orms of nuclear	lel, e el– 1 r pot	evide Nucle tentia	nce (ear f ils -	of shell orces – Charge	
UNIT			Radioactive Decays					12+3	
Alpha	deca	y – Gar	now's theory - Geiger Nuttall law - Neutrino	hypothesis – F	erm	i's th	eory	of beta	
decay	– Sele	ection r	ules – Non conservation of parity in beta decay	y – Gamma dec	ay -	Sele	ction	rules –	
power	r, rang		n – Nuclear isomerism - Interaction of nucle straggling - Nuclear radiation detectors – So						
counte			Nuclear Fission and Fusion				-	12.2	
UNII	· - III		Nuclear Fission and Fusion				-	12+3	

Nuclear fission – types - Mass and energy distribution of nuclear fragments – Bohr Wheeler's theory of nuclear fission - Fission reactors – Power and breeder type reactors - Nuclear chain reactions – Four factor formula – Nuclear Fusion – Solar fusion – Controlled thermonuclear reactors – Pinched discharge, stellarator, magnetic mirror system, beam injection.

UNIT - IV Nuclear Reactions

12+3

Nuclear reactions – types – conservation laws – Q-equation – Nuclear reaction cross sections – Partial wave analysis – Compound nucleus model – Resonance scattering – Breit Wigner one level formula – Direct reactions – Stripping and pick up reactions. Scattering Process The scattering cross section – scattering amplitude – Expression in terms of Green's function – Born approximation and its validity – Screened Coulomb potential – Alpha particle scattering – Rutherford's formula.

UNIT - V Elementary Particles

12+3

Four types of interactions and classifications of elementary particles – Isospin – Isospin quantum numbers – Strangeness and hyper charge – Hadrons – Baryons – Leptons – Invariance principles and symmetries – Invariance under charge-parity (CP), time (T) and CPT – CP violation in neutral K meson decay – Quark model – SU(3) symmetry – Gell-Mann Nishijma formula – Gauge theory of weak and strong interactions – Charm, bottom and top quarks.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
60	15	0	75

TEXT BOOKS

1 12/1	I DOORS
1.	Nuclear Physics - D.C.Tayal, Himalaya Publishing House, 2017.
2.	Concepts of Nuclear Physics - B.L.Cohen, Tata McGraw Hill, New Delhi, 1983.
REF	ERENCE BOOKS :
1.	Nuclear Physics - R.R.Roy and B.P.Nigam, Wiley Eastern Ltd., New Delhi, 1986.
2.	Introductory Nuclear Physics - Samuel S. M. Wong, Wiley India Pvt. Ltd., New Delhi, 2014.
2	Nuclear and Darticle Dhaving C. L. Kakari and Chukhra Kakari Vina Dacka New Dalki

3. Nuclear and Particle Physics - S. L. Kakani and Shubhra Kakani, Viva Books, New Delhi, 2011.

4. Nuclear and Particle Physics: An Introduction - B. R. Martin, 2012.

Mapping of Course Outcomes (CO) with Programme Outcomes (PO):

Course Outcome	PO1	PO2	PO3	PO4	PO5				PSO9	PSO10
CO1	3	3	1	1	3	2	3	2	1	1
CO2	2	3	1	1	3	2	3	2	1	1
CO3	3	3	1	1	1	2	3	2	1	1
CO4	3	2	1	1	1	2	3	2	1	1
CO5	2	3	1	1	2	2	3	2	1	1

YPH403					L 0	T	P 10	C 10		
C	Р	Α	PROJECT WORK AND VIVA VOCE	2		T	10 P	10 H		
2	6	2			0	0	15+5*	15 +5*		
						Note	* - Direc	ted Study		
On the	succe	ssful co	mpletion of this course students would able to							
		(COURSE OUTCOMES	Domain			Level			
CO1		-	eientific reasoning abilities, practical skills, ninking and multiple solutions	solutions Psychomotor Affective				Knowledge, Mechanism, Respond		
CO2	and		knowledge from various areas of learning it critically and creatively to real-life	Psy	ognitive chomot ffective	tor	Synthesis, Mechanism, Respond			
CO3		-	portunities for teamwork, group skills and collaboration.	Psy	ognitiv chomo ffective	tor	Comprehension, Mechanism, Receive			
CO4		t the co eriment	mprehension and analysis of the innovative		ognitive ffective		Ana	ply, lyze, eive		

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	2	3	3	3	3	2	3	2	1	1
CO2	2	3	3	3	3	2	3	2	1	1
CO3	2	1	2	2	3	2	3	2	1	1
CO4	3	3	3	3	3	2	3	2	1	1