



think • innovate • transform

## **Criterion 1 – Curricular Aspects**

| <b>Key Indicator</b> | 1.1   | Curriculum Design and Development                                                                                              |
|----------------------|-------|--------------------------------------------------------------------------------------------------------------------------------|
| Metric               | 1.1.3 | Average percentage of courses having focus on employability/<br>entrepreneurship/ skill Development offered by the department. |

## **DEPARTMENT OF CHEMISTRY**

## SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

| S. No. | Programme Name                               |
|--------|----------------------------------------------|
| i.     | Master of Science (Chemistry) (Full Time)    |
| ii.    | Bachelor of Science (Chemistry) (Full Time)  |
| iii.   | Master of Philosophy (Chemistry) (Full Time) |
| iv.    | Master of Philosophy (Chemistry) (Part Time) |
| v.     | Doctor of Philosophy (Full Time)             |
| vi.    | Doctor of Philosophy (Part Time)             |

2. Syllabus of the courses as per the list.

Legend: Words highlighted with **Blue Color** - Entrepreneurship

Words highlighted with **Red Color** - Employability

Words highlighted with Purple Color - Skill Development

## 1. List of Courses

| Name of the Course                          | Course<br>Code     | ear of<br>croduc<br>n | Em | civities with direct bearing on aployability/ Entrepreneurship/ Skill relopment |
|---------------------------------------------|--------------------|-----------------------|----|---------------------------------------------------------------------------------|
|                                             |                    | M.Sc. –               | FT |                                                                                 |
| Organic Chemistry I                         | YCY101             | 2018-19               |    | Employability-Tutorials and Assignments                                         |
| Inorganic Chemistry I                       | YCY102             | 2018-19               |    | Employability-Tutorials and Assignments                                         |
| Physical Chemistry I                        | YCY103             | 2018-19               |    | Employability-Tutorials and Assignments                                         |
| Inorganic Chemistry II                      | YCY201             | 2018-19               |    | Employability-Tutorials and Assignments                                         |
| Physical Chemistry II                       | YCY202             | 2018-19               |    | Employability-Tutorials and Assignments                                         |
| Organic Chemistry II                        | YCY301             | 2018-19               |    | Employability-Tutorials and Assignments                                         |
| Pharmaceutical<br>Chemistry                 | YCY304A            | 2018-19               |    | Employability-Tutorials and Assignments                                         |
| Analytical Chemistry                        | YCY305             | 2018-19               |    | Employability-Tutorials and Assignments                                         |
| Industrial Chemistry                        | YCY403B            | 2018-19               |    | Employability-Tutorials and Assignments                                         |
| Chemistry of Nanoscience and Nanotechnology | YCY404B<br>ZQCY401 |                       |    | Employability-Tutorials and Assignments                                         |
| Organic Chemistry II                        | YCY301             | 2019-20               |    | Employability-Tutorials and Assignments                                         |
| Physical Methods in<br>Chemistry-I          | YCY302             | 2019-20               |    | Employability-Tutorials and Assignments                                         |
| Organic Chemistry<br>Practical -I           | YCY303             | 2019-20               |    | Employability-Tutorials and Assignments                                         |
| Pharmaceutical<br>Chemistry                 | YEC304A/           | 2019-20               |    | Entrepreneurship-Case study                                                     |
| Analytical Chemistry                        | YEC305             | 2019-20               |    | Employability-Tutorials and Assignments                                         |
| Physical Methods in Chemistry-II            | YCY401             | 2019-20               |    | Employability-Tutorials and Assignments                                         |
| Organic Chemistry Practical -II             | YCY402             | 2019-20               |    | Employability-Tutorials and Assignments                                         |
| IndustrialChemistry Chamistry of            | YEC403B            | 2019-20               |    | Employability-Tutorials and Assignments  Employability Tutorials and            |
| Chemistry of nanoscience andnanotech.       | YEC404B            |                       |    | Employability-Tutorials and Assignments                                         |
| Dissertation –Project work                  | YCY405             | 2019-20               | )  | Employability-Tutorials and Assignments                                         |

|                       | BSc FT  |         |                                      |  |  |  |  |
|-----------------------|---------|---------|--------------------------------------|--|--|--|--|
| Study Skills          | XCY101  | 2017-18 | Skill Developement- Group discussion |  |  |  |  |
| Fundamental           |         | 2017-18 | Employability-Tutorials and          |  |  |  |  |
| Concepts of           |         |         | Assignments                          |  |  |  |  |
| Chemistry             | XCY104  |         |                                      |  |  |  |  |
| -                     |         | 2017-18 | Employability-Tutorials and          |  |  |  |  |
| Inorganic Chemistry I | XCY105  |         | Assignments                          |  |  |  |  |
| Human Ethics,         |         | 2017-18 | Skill Development - Group discussion |  |  |  |  |
| Values, Rights and    |         |         |                                      |  |  |  |  |
| Gender Equality       | XUM106  |         |                                      |  |  |  |  |
| Volumetric Analysis   |         | 2017-18 | Employability-Tutorials and          |  |  |  |  |
| Practical -I          | XCY107  |         | Assignments                          |  |  |  |  |
| Speech and Business   |         | 2017-18 | Skill Development - Group discussion |  |  |  |  |
| Communication         | XCY202  |         |                                      |  |  |  |  |
|                       |         | 2017-18 | <b>Employability-Tutorials and</b>   |  |  |  |  |
| Organic Chemistry I   | XCY204  |         | Assignments                          |  |  |  |  |
|                       |         | 2017-18 | Employability-Tutorials and          |  |  |  |  |
| Physical Chemistry I  | XCY205  |         | Assignments                          |  |  |  |  |
| Volumetric Analysis   |         | 2017-18 | <b>Employability-Tutorials and</b>   |  |  |  |  |
| Practical- II         | XCY206  |         | Assignments                          |  |  |  |  |
| Communication         |         | 2018-19 | Skill Development - Group discussion |  |  |  |  |
| Skills in English     | XGL101  |         |                                      |  |  |  |  |
| English for Effective |         | 2018-19 | Skill Development - Group discussion |  |  |  |  |
| Communication         | XGL201  |         |                                      |  |  |  |  |
| Water Quality         |         | 2018-19 | Entrepreneurship-Case study          |  |  |  |  |
| Analysis              | XCY301  |         |                                      |  |  |  |  |
| Inorganic Chemistry   |         | 2018-19 | Employability-Tutorials and          |  |  |  |  |
| II                    | XCY303  |         | Assignments                          |  |  |  |  |
|                       |         | 2018-19 | Employability-Tutorials and          |  |  |  |  |
| Organic Chemistry II  | XCY304  |         | Assignments                          |  |  |  |  |
| Disaster Management   | XUM306  | 2018-19 | Skill Development - Group discussion |  |  |  |  |
| Semi Micro Inorganic  |         | 2018-19 | Employability-Tutorials and          |  |  |  |  |
| Qualitative Analysis  |         |         | Assignments                          |  |  |  |  |
| Practical III         | XCY307  |         |                                      |  |  |  |  |
| Pharmaceutical        |         | 2018-19 | Entrepreneurship-Case study          |  |  |  |  |
| Chemistry             | XCY401  |         |                                      |  |  |  |  |
|                       |         | 2018-19 | Employability-Tutorials and          |  |  |  |  |
| Modern Physics        | XCY402  |         | Assignments                          |  |  |  |  |
|                       |         | 2018-19 | Employability-Tutorials and          |  |  |  |  |
| Physical Chemistry II | XCY403  |         | Assignments                          |  |  |  |  |
| Inorganic Chemistry   |         | 2018-19 | Employability-Tutorials and          |  |  |  |  |
| III                   | XCY404  |         | Assignments                          |  |  |  |  |
| Modern Physics        |         | 2018-19 | Employability-Tutorials and          |  |  |  |  |
| Practical             | XPH405  |         | Assignments                          |  |  |  |  |
| Inorganic             |         | 2018-19 | Employability-Tutorials and          |  |  |  |  |
| Quantitative Analysis |         |         | Assignments                          |  |  |  |  |
| PracticalIV           | XCY406  |         |                                      |  |  |  |  |
| Clinical Chemistry    | XCY501  | 2019-20 | Entrepreneurship-Case study          |  |  |  |  |
|                       |         | 2019-20 | Employability-Tutorials and          |  |  |  |  |
| Phyto Chemistry       | XCY502A |         | Assignments                          |  |  |  |  |

| Analytical Methods          |          | 2019-20 | Employability-Tutorials and          |  |  |
|-----------------------------|----------|---------|--------------------------------------|--|--|
| in Chemistry                | XCY503A  |         | Assignments                          |  |  |
| ,                           |          | 2019-20 | Employability-Tutorials and          |  |  |
| Programming in C            | XCY504B  |         | Assignments                          |  |  |
| Organic Qualitative         |          | 2019-20 | Employability-Tutorials and          |  |  |
| Analysis PracticalVA        | XCY505   |         | Assignments                          |  |  |
| Physical Chemistry          |          | 2019-20 | Employability-Tutorials and          |  |  |
| Practical VB                | XCY506   |         | Assignments                          |  |  |
|                             |          | 2019-20 | Employability-Tutorials and          |  |  |
| Renewable Energy            | XCY601   |         | Assignments                          |  |  |
| Industrial Chemistry        | XCY602A  | 2019-20 | Entrepreneurship-Case study          |  |  |
|                             |          | 2019-20 | Employability-Tutorials and          |  |  |
| Polymer Chemistry           | XCY603B  |         | Assignments                          |  |  |
| Organic Qualitative         |          | 2019-20 | Employability-Tutorials and          |  |  |
| Analysis PracticalVI        | XCY604   |         | Assignments                          |  |  |
| Physical Chemistry          |          | 2019-20 | Employability-Tutorials and          |  |  |
| Practical VIA               | XCY605   |         | Assignments                          |  |  |
|                             |          | 2019-20 | Employability-Tutorials and          |  |  |
| Project                     | XCY606   |         | Assignments                          |  |  |
|                             |          | M.Phil  |                                      |  |  |
| Teaching Learning Skills    | ZSW202   | 2015-16 | Skill Development - Group discussion |  |  |
|                             |          | Ph.D FT |                                      |  |  |
| Organic Solar Cells -       | RCY010   | 2016-17 | Employability-Tutorials and          |  |  |
| Theory and Practice         |          |         | Assignments                          |  |  |
| Physical Methods in         | RCY002   | 2016-17 | Employability-Tutorials and          |  |  |
| Chemistry                   |          |         | Assignments                          |  |  |
| Crystallography and         | RCY011   | 2016-17 | Employability-Tutorials and          |  |  |
| Structural Chemistry        |          |         | Assignments                          |  |  |
| Ph.D PT                     |          |         |                                      |  |  |
| Course Motorial             | RCY010   | 2019-20 | Employability-Tutorials and          |  |  |
| Course-Material<br>Behavior |          |         | Assignments                          |  |  |
| Research and                | RM002    | 2019-20 | Skill Development - Group discussion |  |  |
| Publication Ethics          | IXIVIOUZ | 2017-20 | Skin Development - Group discussion  |  |  |
| 1 dollowion Editor          | 1        | I       |                                      |  |  |

**B.Sc Chemistry** 

| COURSE<br>CODE | XCY104                            | L | Т | P | SS | С |
|----------------|-----------------------------------|---|---|---|----|---|
| COURSE<br>NAME | FUNDAMENTAL CONCEPTS OF CHEMISTRY | 3 | 1 | 0 | 0  | 4 |
| C: P: A        | 3.2:0:0.8                         | L | T | P | SS | Н |
|                |                                   | 3 | 1 | 0 | 0  | 4 |

| COU | RSE OUTCOMES:                                                                              | Domain                 | Level                  |
|-----|--------------------------------------------------------------------------------------------|------------------------|------------------------|
| CO1 | Explain the principle of atomic structure and basics of quantum mechanism                  | Cognitive              | Understand             |
| CO2 | Describe the periodic properties of various elements                                       | Cognitive              | Remember               |
| CO3 | Interpret IUPAC nomenclature of compounds.                                                 | Cognitive<br>Affective | Apply<br>Receiving     |
| CO4 | Describe the physical properties of dipole moment, polarizability and magnetic properties. | Cognitive<br>Affective | Remember<br>Responding |
| CO5 | Apply and Identify the various analytical methods for quantitative analysis.               | Cognitive              | Remember<br>Apply      |

## UNIT - IATOMIC STRUCTURE AND BASIC QUANTUM MECHANICS

10+3

Atom, constituents of an atom - Bohr's postulates - Bohr's atom model - limitations of the Bohr's atom model - Sommerfeld atom model. Particle and wave character of electron - deBroglie's

equation and its derivation – The Davisson and Germer experiment – Heisenberg's uncertainity principle. Photoelectric effect - Einstein photoelectric equation – Compton effect. Quantum theory – postulates of quantum mechanics – The Schrodinger wave equation-Quantum numbers. Aufbau principle – Hund's rule of maximum spin multiplicity – Pauli's exclusion principle – n + l rule – electronic configurations of elements.

## UNIT - II PERIODIC TABLE

6+3

Modern periodic law – modern periodic table – classification of elements based on electronic configuration. Fundamental properties like atomic size, valency, ionization energy, ionic radius, electron affinity, electronegativity, metallic and nonmetallic character - variation of the above fundamental properties – explanation for the periodic variation of the fundamental properties – diagonal relationship.

## UNIT – III FUNDAMENTALS OF ORGANIC CHEMISTRY

9+3

IUPAC Nomenclature of organic compounds Molecular weight determination of simple organic acid and bases – Silver salt and platonic chloride methods. Calculation of empirical and molecular formula using percentage composition of elements and molecular weight. Fundamental concepts - Homolytic fission and Heterolytic fission of carbon-carbon bonds - Reaction intermediates: Formation and stability of Free radicals, carbonium ions and carbanions – nucleophilic and electrophilic reagents. Types of reactions-Substitution, addition, elimination, rearrangement and polymerization with suitable examples. Inductive effect and electromeric effect: explanation with suitable examples.

## UNIT -IV PHYSICAL PROPERTIES AND CHEMICAL CONSTITUTIONS.

10 + 3

Dipole moment: Definition – Experimental determination - Calculation of percentage of ionic character of HF and HCl –Dipole moment and molecular structure: CO2, H<sub>2</sub>O,NH3 and CH4.

Polarizability: Definition – polarization of a molecule – molar polarization – Clausius-Mosotti equation. Magnetic properties: Paramagnetic, diamagnetic and ferromagnetic substances and their characteristics – magnetic permeability – magnetic susceptibility – specific and molar magnetic susceptibilities – determination of magnetic susceptibility by Gouy's method.

## UNIT -V ANALYTICAL METHODS

10+3

Qualitative Inorganic Analysis – Dry Test, flame test, cobalt nitrate test-wet confirmatory test for acid radicals, interfering acid radicals – elimination of interfering acid radicals. Solubility product, common ion effect, complexation, oxidation reduction reactions involved in identification of anions and cations – separation of cations into groups – Volumetric analysis – preparation of standard solutions –normality, molarity and molality by titrimetric reactions – acid base, redox, precipitation and complex metric titrations –indicators – effect of change in pH – selection of suitable indicators.

| LECTURE | TUTORIALS | PRACTICALS | SELF<br>STUDY | TOTAL |
|---------|-----------|------------|---------------|-------|
| 45      | 15        | 0          | 0             | 60    |

#### **TEXT BOOKS**

- 1. Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry, (23<sup>rd</sup> edition), New Delhi, Shoban Lal Nagin Chand & Co., (1993).
- 2. Lee J.D., Concise Inorganic Chemistry, UK, Black well science (2006).
- 3. Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry, (23rdedition), New Delhi, Shoban Lal Nagin Chand & Co., (1993).
- 4. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co.Ltd.

## **REFERENCES**

- 1. Morrison R.T. and Boyd R.N., Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., (1976).
- 2. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (12th edition), New Delhi, Sultan Chand & Co., (1997).
- 3. Frank J. Welcher and Richard B. Hahn, Semi micro Qualitative Analysis, New Delhi, Affiliated East-west Press Pvt. Ltd. (1969).
- 4. G.D. Tuli, R.D. Madan, S.K. Basu, Satya Prakash, Advanced Inorganic Chemistry, Volume 1, (5th edition), New Delhi, S. Chand & Company Ltd, (2014

#### **E RESOURCES**

- 1. http://www.mooc-list.com/course/chemistry-minor-saylororg
- 2. https://www.canvas.net/courses/exploring-chemistry
- 3. http://freevideolectures.com/Course/3001/Chemistry-I
- 4. http://freevideolectures.com/Course/3167/Chemistry-II

| COU   |                                                                                                                                                    | XCY105                                                                                    | L                             | T                               | P | SS                     | C  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|---|------------------------|----|--|
| COU   | RSE                                                                                                                                                | INORGANIC CHEMISTRY I                                                                     | 3                             | 1                               | 0 | 0                      | 4  |  |
| C: P: | A                                                                                                                                                  | 2.8:0.4:0.8                                                                               | L                             | T                               | P | SS                     | Н  |  |
|       |                                                                                                                                                    |                                                                                           | 3                             | 1                               | 0 | 0                      | 4  |  |
| COU   | RSE OUTC                                                                                                                                           | JTCOMES: Domain                                                                           |                               |                                 |   | Leve                   | el |  |
| CO1   | Recall and Explain the basic concepts of ionic bonding; Display the shapes of simple inorganic molecules using VSEPR theory  Cognitive Psychomotor |                                                                                           | Remember<br>Understand<br>Set |                                 |   |                        |    |  |
| CO2   |                                                                                                                                                    | e and <i>Report</i> extraction, properties and uses IIA group s-block elements.           | Cognitiv<br>Affective         | Understand<br>Responding        |   |                        |    |  |
| CO3   | _                                                                                                                                                  | e extraction and purification process of tals and Interpret their physical and roperties. | Cognitiv<br>Affective         |                                 |   | derst<br>Appl<br>spond | .y |  |
| CO4   |                                                                                                                                                    | ne concept of acids and bases and the of various concepts.                                | Cognitiv<br>Psychom           | nitive Analy<br>chomotor Percep |   |                        |    |  |
| CO5   | consequence                                                                                                                                        |                                                                                           | Cognitiv                      | itive Rememb                    |   |                        |    |  |
| UNIT  | ' - ICHEMI                                                                                                                                         | CAL BONDING                                                                               |                               |                                 |   |                        |    |  |

lonic bond – Lattice Energy – Born – Haber Cycle – Pauling and Muliken's scales of electro negativity – Polarizing power and Polarisability – partial ionic character from electro negativity –

Transitions from ionic to covalent character and vice versa – Fajan's rule. VSEPR Theory – Shapes of simple inorganic molecules (  $BeCl_2$ ,  $SiCl_4$ ,  $PCl_5$ ,  $SF_6$ ,  $IF_7$ ,  $NH_3$ ,  $XeF_6$ ,  $BF_3$ ,  $H_2O$ ) - VB Theory – Principles of hybridization –  $BeCl_2$  – MO Theory – Bonding and antibonding orbitals – Application of MO Theory to  $H_2$ ,  $He_2$ ,  $N_2$ ,  $O_2$ , HF and CO – Comparison of VB and MO theories.

## **UNIT - II CHEMISTRY OF S-BLOCK ELEMENTS**

6+3

10+3

Position of Hydrogen in the Periodic Table, atomic hydrogen, nascent hydrogen, occluded hydrogen and uses of hydrogen. General characteristics of s-block elements – General characteristics of Group IA – diagonal relationship between Li and Mg – Physical and Chemical properties – Uses – Preparation of NaOH, Na<sub>2</sub>CO<sub>3</sub>, NaHCO<sub>3</sub> (Laboratory and Industrial methods) – Properties – Uses. General characteristics of Elements of Group II A – diagonal relationship between Be and Al —Physical and Chemical properties – Uses – Preparation and uses of Mg: MgCO<sub>3</sub>, MgSO<sub>4</sub>.

## UNIT - III BASIC PRINCIPLES OF METALLLURGY

9+3

Ores and minerals – concentrating the ore by gravity separation, froth flotation and magnetic  $% \left( 1\right) =\left( 1\right) +\left( 1$ 

separation – Types of furnaces -Roasting – Calcination – Smelting – Flux – Purification by electrolytic refining, zone refining and Van-Arkel vapour phase refining with suitable examples – Alumino thermic process. Group—IA: Extraction of lithium and its uses - Diagonal relationship of Lithium with Magnesium Group—IIA: Extraction of Beryllium and its uses –Diagonal relationship of Beryllium with Aluminium Group—

IB: Extraction of copper and its uses – Extraction of silver and its uses. Group-VA: Nitrogen: Ammonia – manufacture, properties, uses and structure.

Nitric Acid: Manufacture of Nitric acid – Action of nitric acid on metals

## UNIT -IV ACIDS AND BASES

10+3

Lewis concept – Classification of Lewis acids – Lux-Flood concept – Hard-Soft acid base concept and its applications. Non- aqueous solvents- Classification of solvents- Neutralization reaction and

solvolysis in liquid ammonia- Metal- ammonia solutions. Neutralisation, solvolysis and redox

reactions.

#### UNIT -V NUCLEAR CHEMISTRY

10+3

Constitution of nuclei – stability of nuclei and (n-p) ratio – magic number – mass defect and binding energy – mass – energy relationship. Radioactivity: Natural radioactivity — Soddy's group displacement law – Radioactivity equilibrium – Rate of radioactive disintegration – half -life period and average life period – radioactive disintegration series. Nuclear fission: Theory – applications – principle of atom bomb. Nuclear fusion: Theory – Solar and Stellar energy – principle of hydrogen bomb Applications of radioactivity: medicine – agriculture – industry – structural elucidations – carbon dating – cyclotron.

| LECTURE | TUTORIALS | PRACTICALS | SELFSTUDY | TOTAL |
|---------|-----------|------------|-----------|-------|
| 45      | 15        | 0          | 0         | 60    |

#### **TEXT BOOKS**

- 1. Lee J.D., Concise Inorganic Chemistry, UK, Black well science (2006).
- 2. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (12th edition), New Delhi, Sultan Chand & Co., (2007).

#### REFERENCES

1. Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry, (23rd edition), New Delhi, Shoban Lal

Nagin Chand & Co., (2003).

2. Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry, (23rd edition), New Delhi, Shoban Lal

Nagin Chand & Co., (2005).

- 3. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd.
- 4. Morrison R.T. and Boyd R.N., Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., (2003).

| COURSE | XCY204 | L | T | P | SS | C |
|--------|--------|---|---|---|----|---|
|--------|--------|---|---|---|----|---|

| CODE   | C               |                                                                                                                                    |           |                     |   |                        |     |   |
|--------|-----------------|------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|---|------------------------|-----|---|
| COURSE |                 | ORGANIC CHEMISTRY I                                                                                                                |           |                     | 1 | 0                      | 0   | 4 |
| NAMI   | ${\mathfrak T}$ |                                                                                                                                    |           |                     |   |                        |     |   |
| C:P:A  |                 | 2.8:0.4:0.8                                                                                                                        |           | L                   | T | P                      | SS  | Н |
|        |                 |                                                                                                                                    |           | 3                   | 1 | 0                      | 0   | 4 |
| COUR   | RSE OU          | TCOMES                                                                                                                             | D         | OMAI                | N | LEVEI                  | _   |   |
| CO1    |                 |                                                                                                                                    |           | ognitiv             | e | Understand             |     |   |
| CO2    | proper and the  | the the preparation with mechanism, ties and applications of alkocols, ethers eir derivatives. <i>Estimate</i> hydroxy and groups. | Cognitive |                     |   | Remember               |     |   |
| CO3    | proper          | in the preparation with mechanism, ties and naming reactions of aldehydes, as & carboxylic acid and their tives.                   |           | ognitiv<br>ffective |   | Apply Receiving        |     |   |
| CO4    |                 | Describe the concepts of covalent bonding and explain the structure of hybridization.                                              |           |                     | e | Remember<br>Responding |     |   |
| CO5    |                 | and <i>Identify</i> the various stereo cal concepts.                                                                               | С         | ognitiv             | e | Apply<br>Remem         | ber |   |

## UNIT I - COVALENT BONDING ANDSTRUCTURE

9+3

 $\begin{tabular}{lll} Covalent bonding-Concept of hybridization-Structure of organic molecules based on sp$^3,sp$^2 and sp & hybridization-\\ \end{tabular}$ 

Covalentbondproperties of organic molecules: bondlength, bond angle, bondenergy, bondpolarity, dipole moment, inductive, mesomeric, electromeric, resonance and hyperconjugative effects.

## UNIT II - ALIPHATIC HYDROCARBONS AND ALKYL HALIDES 9+3

Alkenes: Ozonolysis, Hydroboration and polymerization with suitable examples. Dienes: Classification – preparation, properties and uses of Butadiene Alkynes: Acidity of alkynesAlkyl halides:  $S_N1$  and  $S_N2$  Mechanism –  $E_1$  and  $E_2$  Mechanism – Hofmann and Saytzeff's rule. Poly halogen derivatives: Halogen derivatives of unsaturated hydrocarbons: Preparation and uses of vinyl chloride, allyl chloride and allyl iodide. Synthetic applications of Grignard reagents.

## UNIT III - CHEMISTRYOFCYCLOALKANES AND STREO 10+3 ISOMERISM

Alicyclic compounds – general methods of preparation of cycloalkanes – Baeyer's strain theory and its modifications. Conformational analysis: differences between configuration and conformation Fischer and Sawhorse and Newman projection formulae – conformational analysis of ethane, n-butane and 1,2-dichloro ethane Geometrical isomerism – maleic acid and fumaric acid – aldoximes and ketoximes E-Z notations. Optical isomerism: definition: optical activity and optical isomerism – optical isomerism of compounds containing asymmetric carbon atom – tartaric acid – enantiomers and diastereoisomers – racemic and meso forms – racemisation – resolution of racemic mixture – Walden inversion – asymmetric synthesis – chirality – specifications of absolute configurations by R and S notations.

## UNIT IV - ALIPHATIC ALCOHOLS

7+3

Definition: Rectified spirit – Absolute alcohol – **Methylated spirit – Power alcohol.Preparation, properties and uses of allyl alcohol.** Polyhydric alcohol: Estimation of number of hydroxyl groups in a polyhydric alcohol.Ethers:Estimation of alkoxy groups – Zeisel's method – preparation of chlorex and vinyl ether. **Thioalcohols and** 

thioethers: Preparation and uses of ethyl mercaptan, diethyl ether, sulphonal and mustard gas. Phosphorous ylides – preparation and properties—Wittig reaction.

## UNIT V - ALDEHYDES, KETONES AND CARBOXYLIC ACID

10+3

Preparation of aldehydes and ketones from fatty acids – Rosenmund reduction – Stephen's method – Mechanism of nucleophilic addition to Carbonyl compounds – Hemiacetal and Acetal formations – Cyanohydrin formation – Meerwein-Pondorf-Varleyreduction – Oppaenaur idation – preparation of Acrolein, Crotonaldehyde, Chloral , Hydroxy acetone and Acetylacetone Carboxylic acids and their derivatives: Structure of carboxylic acids – acidity of carboxylic acids – effect of subsituents on acidity – preparation of acrylic acid and crotonic acid. Halogensubstituted acids: Preparation and properties of mono, di and tri chloro carboxylic acids – Hydroxy acids. Dicarboxylic acids: Preparation of Malonic acid and Malonic ester – Synthetic applications of diethyl malonate – Action of heat on dicarboxylic acids

| <u> </u> | , ,     |               |               |            |       |  |  |  |  |  |
|----------|---------|---------------|---------------|------------|-------|--|--|--|--|--|
|          | LECTUR  | TUTORI        | PRACTIC       | SELF STUDY | TOTAL |  |  |  |  |  |
|          | ${f E}$ | $\mathbf{AL}$ | $\mathbf{AL}$ |            |       |  |  |  |  |  |
| HOURS    | 45      | 15            | 0             | 0          | 60    |  |  |  |  |  |

## **TEXT BOOKS**

a. MorrisonR.T. and BoydR.N.,

OrganicChemistry(6<sup>th</sup>edition),NewYork,Allyn&BaconLtd.,(1976).

b. BahlB.S. and Arun Bahl,

AdvancedOrganicChemistry,(12<sup>th</sup>edition),NewDelhi,SultanChand&Co., (1997).

- c. Organic Chemistry Volume I", I.L.Finar
- d. Organic Chemistry Volume II", I.L.Finar
- e. Organic Chemistry J.Clayden
- f. Organic Chemistry Jerry March
- g. Organic Chemistry Mc muray
- h. Organic Chemistry", P.L.Soni
- i. Advanced Organic Chemistry", B.S.Bahl and Arun Bahl
- j. Organic Chemistry", R.T.Morrison and R.W.Boyd

## **REFERENCES**

- 1. Organic Chemistry, Paula, Yurkanis and Bruice
- 2. Mukul C. RayReaction Mechanisms in Organic Chemistry
- 3. P.L. Kalsi, Organic Reactions and Their Mechanisms

## E RESOURCES

https://www.mooc-list.com/course/organic-chemistry-i-saylororg

https://www.canvas.net/courses/exploring-chemistry

https://www.youtube.com/watch?v=nB9yqj-ZcAk

http://freevideolectures.com/Course/3001/Chemistry-I/3

https://ocw.mit.edu/courses/chemistry/5-12-organic-chemistry-i-spring-2005/

http://freevideolectures.com/Course/3001/Chemistry-I

http://freevideolectures.com/Course/2384/Freshman-Organic-Chemistry

| COLID           | CE CODE                                                        | VOVAAF                                 | т    | ALC:      | D     | CC       |        |  |
|-----------------|----------------------------------------------------------------|----------------------------------------|------|-----------|-------|----------|--------|--|
| COUR            | SE CODE                                                        | XCY205                                 | L    | T         | P     | SS       | C      |  |
| COUR            | RSE NAME                                                       | PHYSICAL CHEMISTRY I                   | 3    | 1         | 0     | 0        | 4      |  |
| PRERQUISITE     |                                                                | NIL                                    | L    | T         | P     | SS       | Н      |  |
| C:P:A           |                                                                | 2.8:0.4:0.8                            | 3    | 1         | 0     | 0        | 4      |  |
| COUR            | SE OUTCON                                                      | MES                                    | S    |           |       | LEVI     | EL     |  |
| CO <sub>1</sub> | Classify the                                                   | types of Molecular velocity of gases   | and  | Cogn      | itive | Under    | rstand |  |
|                 | kinetic theory of gases; <i>Derive</i> vanderwalls equation of |                                        |      |           |       |          |        |  |
|                 | real gases.                                                    |                                        |      |           |       |          |        |  |
| CO <sub>2</sub> | Apply and Identify the structure and properties of solid       |                                        |      | Cognitive |       | Remember |        |  |
|                 | state.                                                         |                                        |      |           |       | Apply    | y      |  |
| CO3             | Apply and Id                                                   | lentify the structure and properties o | f    | Cogn      | itive | Remember |        |  |
|                 | liquid crystal                                                 | ls and colloids                        |      | Affec     | etive | Apply    | ý      |  |
| CO4             | Describe the                                                   | e concepts of colloidal state and exp  | lain | Cogn      | itive | Reme     | mber   |  |
|                 | the types of I                                                 | Emulsions.                             |      |           |       | Respo    | onding |  |
| CO5             | Identify the                                                   | principles of chemical equlibrium and  |      | Cogn      | itive | Reme     | mber   |  |
|                 |                                                                |                                        |      |           | Recei | ve       |        |  |
| IINIT           | I - GASEOUS                                                    | SSTATE                                 |      |           |       |          | 9+3    |  |

Kinetic theory of gases – equation of kinetic theory of gases – derivation of gas laws from the equation of kinetic theory of gases. Ideal gases and real gases – deviations of real gases from ideal behaviour – Van der waal's equation (Derivation) – Significances of van der Waal's constants. P-V isotherms - Andrew's experiment-critical states of gases - Definition and determination of the critical constants - relation between van der Waal's constants and critical constants, Kinetic theory of gases: Mean free path – collision frequency – Definition and problems involving RMS velocity, Most probable velocity and Average velocity Boltzman distribution of molecular velocities (No derivation)

## **UNIT II - SOLID STATE**

9+3

9+3

Crystallography — Definition: unit cell, crystal lattice and interfacial angle Crystallographic systems: Bravis lattices – simple, cubic, face-centered cubic and body-centered systems. Types of crystals: Ionic crystal – Structure of NaCl – Molecular crystals: Structure of Ice – Covalent crystals: structure of diamond and graphite – metallic crystals. Bonding in crystals - electrical properties - Conductors, semiconductors and insulators - super conductors – simple explanation with examples – Defects in crystals.

## UNIT III - LIQUID STATE, LIQUID CRYSTALS -AND ADSORPTION

Theory of liquids – free volume of liquids – Vapour pressure – Surface ension, effect of temperature on surface tension, parachor – Viscosity, effect of temperature on viscosity – hole theory – Reynolds number – structure of liquids. Trouton's rule and its significance

Classification of Liquid crystals—Transformation into the mesomorphic states—

Definitions – Adsorbate, adsorbent and interface – Distinction between physisorption and chemisorption - Surfactants. Adsorption of gases on solids - Freundlich, Langmuir and BET adsorption isotherms Applications of adsorptions.

## **UNIT IV - COLLOIDAL STATE**

types of colloids – sols – Lyophilic sols and lyophobic sols – properties of colloids – optical property (Tyndall effect) – kinetic property (Brownian movement) – Electrical properties like electrical double layer, zeta potential, electrophoresis and electro-osmosis - stability of colloids - Coagulation - protective colloids - Gold number - flocculation values -Hofmeister series.

GELS: Elastic and non-elastic gels – imbibition – syneresis – thixotropyEmulsions: Definition - types of emulsions - emulsifiers - Bancroft's rule HLB Applications of colloids: Cottrel precipitator – Sewage disposals – detergent action of soaps – artificial rain – formation of delta – smoke screens.

## **UNIT V - CHEMICAL EQUILIBRIUM**

Reversible and irreversible reactions – statement of law of mass action – Derivation of law of mass action from kinetic theory – Relationship between Kp and Kc (derivation). Applications of Law of mass action to the equilibria involving the formation of  $NH_3$ , dissociation of  $CaCO_3$  and the dehydration of  $CuSO_4.5H_2O$ . Lechatelier's principle: statement – application to the formation of  $NH_3$ 

**CATALYSIS:** Homogeneous and heterogeneous catalysis – promoters and catalytic poisons – auto catalysis – Acid-base catalysis – Enzyme catalysis –Kinetics of enzymed catalysed reaction.

|       | LECTURE | TUTORIAL | PRACTICAL | SELF<br>STUDY | TOTAL |
|-------|---------|----------|-----------|---------------|-------|
| HOURS | 45      | 15       | 0         | 0             | 60    |

#### **TEXT BOOKS**

- 1. GlasstoneS., LewisD., ElementsofPhysicalChemistry, London, MacMillan&Co.Ltd.
- 2. Principles of Physical Chemistry", B.R.Puri and L.R.Sharma
- 3. Principles of Physical Chemistry", B.R.Puri, L.R.Sharma and M.S.Pathania
- 4. Physical Chemistry", N.Kundu and SN.Jain
- 5. Physical Chemistry", Peter Atkins Julio de paula

## **REFERENCES**

- 1. Physical Chemistry: A Molecular Approach Donald A. McQuarrie
- 2.Physical Chemistry.G.W.Ball
- 3. Solid state and its applications, Anthony. R. West.
- 4. Physical Chemistry Volume-1, A. K. Nag.

## **E RESOURCES**

- 1. https://www.youtube.com/watch?v=A1p4j\_aHdbw
- 2.https://www.youtube.com/watch?v=gvq2QZ38n9U
- 3.https://www.mooc-list.com/course/Physical-chemistry-i-saylororg

| COURSE CODE |                               | XCY303                                  | L         | T                    | P        | S         | SS     | C       |
|-------------|-------------------------------|-----------------------------------------|-----------|----------------------|----------|-----------|--------|---------|
| COURS       | SE NAME                       | INORGANIC CHEMISTRY II                  | 3         | 1                    | 0        | 0         | )      | 4       |
| PRERE       | QUISITE                       | NIL                                     | L         | T                    | P        | S         | S      | H       |
| C:P:A       | C:P:A 3.2:0:0.8 3 1           |                                         | 0         | 0                    | )        | 4         |        |         |
| COURS       | COURSE OUTCOMES               |                                         |           |                      |          | LEV       | EL     | ,       |
| CO1         | Explain the carbon.           | Cog                                     | nitive    |                      | Unde     | ersta     | anding |         |
| CO2         | Describe tl                   | Cognitive                               |           |                      | Remember |           |        |         |
| CO3         | Recognize                     | the general characteristics and         | Cognitive |                      |          | Apply     |        |         |
|             | properties of                 | transition elements.                    | Affective |                      |          | Receiving |        |         |
| CO4         | <i>Identify</i> the           | general characteristics and properties  | Cog       | nitive               |          | Remember  |        |         |
|             | of Lanthanides and Actinides. |                                         |           | Affective Responding |          |           |        |         |
| CO5         | Apply and                     | Identify the various properties and     | Cog       | nitive               |          | Appl      | y      |         |
|             | bonding of o                  | rgano metallic compounds.               | Remember  |                      |          | oer       |        |         |
| UNIT I      | - HALOGEN                     | S, CARBON AND NOBLE GAS COM             | MPO       | UNDS                 |          |           |        | 10+3    |
| Halogen     | s -General tre                | ends in the properties of halogens – de | viati     | on of t              | fluo     | rine f    | ron    | n other |

**Halogens** -General trends in the properties of halogens – deviation of fluorine from other elements of the group. Preparation of fluorine – properties of fluorine – hydrogen fluoride – oxides of halogens – preparation properties and uses of hydrogen halides, oxy acids of halogens – freons. Interhalogen Compounds: XY, XY<sub>3</sub>, XY<sub>5</sub> and XY<sub>7</sub> types and their

structure. Pseudohalogens and pseudohalides definition with exmples.

**Inorganic Carbon Compounds:** Types of **c**arbides - Covalent, ionic and interstitial carbides with suitable examples – oxides of carbon – oxy acids of carbon – carbonates – fullerenes.

**Noble gas compounds**: preparation and properties of xenon fluorides and oxyfluoride and kryptonfluoride.

## **UNIT II - PERACIDS AND PERSALTS**

6+3

Preparation, properties and structure of permonosulphuric acid, perdisulphuric acid and potassium perdisulphate. Preparation and properties of permonocarbonic acid, perdicarbonic acid and perdicarbonates.

## **UNIT III - TRANSITION ELEMENTS - GROUP STUDY**

9+3

Transition elements-position in the periodic table General group trends with special reference to electronic configuration, variable valency, colour, magnetic and catalytic properties, ability to form complexes and stability of various oxidation states (Latimer diagrams) for Mn, Fe and Cu. Chemistry of titanium dioxide, titanium tetrachloride, vanadium penta oxide-ammonium vanadate, ammonium molybdate, molybdenum blue, tungsten oxide, tungsten bronze, zirconium halide.

## **UNIT IV - LANTHANIDES AND ACTINIDES**

10+3

Position of lanthanides actinides in the periodic table – Electronic configurations, oxidation states, colour, magnetic properties, lanthanide contraction – actinide contraction.

Occurrence and general methods of extraction of lanthanides by reducing the trihalides, ion exchange and valence exchange methods. Isolation of thorium from monazite – Preparation properties and uses of oxides, oxy acids, hydrides and halides of cerium and lanthanum.

Organometallic compounds of lanthanoides – optical properties – magnetic properties of lanthanides - Applications of lanthanides and actinides.

## **UNIT V - ORGANO METALLIC COMPOUNDS**

10+3

Definition and Classification with appropriate examples based on nature of metal-carbon bond (ionic, s, p and multicentre bonds). Structures of methyl lithium, Zeiss salt and ferrocene. EAN rule as applied to carbonyls. Preparation, structure, bonding and properties of mononuclear and polynuclear carbonyls of 3d metals. p-acceptor behaviour of carbon monoxide. Synergic effects (VB approach)- (MO diagram of CO can be referred to for synergic effect to IR frequencies).

|       | LECTURE | TUTORIAL | PRACTICAL | SELF STUDY | TOTAL |
|-------|---------|----------|-----------|------------|-------|
| HOURS | 45      | 15       | 0         | 0          | 60    |

#### **TEXT BOOKS**

- 1. "Inorganic Chemistry", P.L.Soni
- 2. "Inorganic Chemistry", Puri and Sharma
- 3. "Advanced Inorganic Chemistry", R.D.Madan

## **REFERENCES**

- 1. "Basic Inorganic Chemistry", F.A. Cotton and Wilkinosn
- 2. "In-organic Chemistry", Shriver and Atkins
- 3. "Inorganic Chemistry", James E.Huheey
- 4. "Concise Inorganic Chemistry", J.D.Lee
- 5. "Fundamentals of Inorganic Chemistry", Gilreath

| COURSE CODE |                                                                                     | XCY304                                        |              | L                       | T     | P                           | SS     | C    |  |  |  |
|-------------|-------------------------------------------------------------------------------------|-----------------------------------------------|--------------|-------------------------|-------|-----------------------------|--------|------|--|--|--|
| COU         | RSE NAME                                                                            | ORGANIC CHEMIS                                | TRY II       | 3                       | 1     | 0                           | 0      | 4    |  |  |  |
| C:P:A       | 1                                                                                   | 3.2:0:0.8                                     |              | L                       | T     | P SS H                      |        | Н    |  |  |  |
|             |                                                                                     |                                               |              | 3                       | 1     | 0                           | 0      | 4    |  |  |  |
| COU         | RSE OUTCOM                                                                          | ES                                            |              | DOM                     | IAIN  | LEVEL                       |        |      |  |  |  |
| CO1         | <b>Explain</b> the principle of atomic structure and and its substitution reaction. |                                               |              | Cognitive Understanding |       |                             | ding   |      |  |  |  |
| CO2         |                                                                                     | the phenol, ethers and some naming reactions. | •            | Cognitive Remember      |       |                             | r      |      |  |  |  |
| CO3         | <b>Identify</b> the con                                                             | mpounds of amines and                         | diazonium    | Cogn                    | itive | Appl                        | ly     |      |  |  |  |
|             | salts.                                                                              |                                               |              | Affective Receiving     |       |                             |        |      |  |  |  |
| CO4         | Recognise the                                                                       | various structures of                         | amino acids, | Cogn                    | itive | Unde                        | erstan | ding |  |  |  |
|             | peptides and pr                                                                     | roteins                                       |              | Affective Responding    |       | ıg                          |        |      |  |  |  |
| CO5         | Describe the ge                                                                     | eneral properties of carb                     | ohydrates.   | Cognitive Remember      |       | r                           |        |      |  |  |  |
| TINITE      | I ADOMATI                                                                           | C COMPOLINIDO                                 |              |                         |       | LINITE I ADOMATIC COMPOUNDS |        |      |  |  |  |

## **UNIT I - AROMATIC COMPOUNDS**

9+3

Aromatic compounds: Aromatic hydrocarbons – aromaticity and Huckel's rule – Simple applications. Aromatic substitution: Electrophilic substitution with suitable examples – Mechanism of Halogenation, Nitration, Sulphonation and Friedel-Craft's reactions – nucleophilic and free radical substitution with suitable examples.

Directive influence of substituents: Orientation – Effect of substituents – activating and deactivating groups – Rules of disubstitution and trisubstitution in benzene – steric hinderance.

#### UNIT II - PHENOLS, ETHERS AND ARYL HALIDES

10+3

(Phenol case) Preparation: Cumene hydroperoxide method, from diazonium salts. Reactions: Electrophilic substitution: Nitration, halogenation and sulphonation. ReimerTiemann Reaction, Gattermann-Koch Reaction, Houben–Hoesch Condensation, Schotten – Baumann Reaction. Ethers (aromatic): Cleavage of ethers with HI.

Aryl Halides Preparation: (Chloro, bromo and iodo-benzene case): from phenol, Sandmeyer & Gattermann reactions. Reactions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by –OH group) and effect of nitro substituent. Benzyne Mechanism: KNH<sub>2</sub>/NH<sub>3</sub> (or NaNH<sub>2</sub>/NH<sub>3</sub>). Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides. preparation and uses of DDT.

## **UNIT III - AMINES AND DIAZONIUM SALTS**

9+3

Amines (Aliphatic and Aromatic): (Upto 5 carbons) Preparation: from alkyl halides, Gabriel's Phthalimide synthesis, Hofmann Bromamide reaction. Reactions: Hofmann vs. Saytzeff elimination, Carbylamine test, Hinsberg test, with HNO<sub>2</sub>. Electrophilic substitution (case aniline): nitration, bromination, sulphonation. Diazonium salts: Preparation: from aromatic amines. Reactions: conversion to benzene, phenol, dyes. Derivatives of phthalic acid: preparation and properties of phthalic anhydride and phthalimide. Preparation of the following compounds and their uses – phenylacetic acid, mandelic acid, cinnamic acid, aspirin and methyl salicylate.

## **UNIT IV - AMINO ACIDS, PEPTIDES AND PROTEINS**

9+3

Amino Acids, Peptides and Proteins: Preparation of Amino Acids: Strecker synthesis using Gabriel's phthalimide synthesis. Zwitterion, Isoelectric point and Electrophoresis. Reactions of Amino acids: ester of -COOH group, acetylation of -NH2 group, complexation with Cu<sup>2+</sup> ions, ninhydrin test. Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins. Synthesis of simple peptides (upto dipeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & C activating groups and Merrifield solid-phase synthesis.

## **UNIT V - CARBOHYDRATES**

8+3

Classification, and General Properties, Glucose and Fructose (open chain and cyclic

structure), Determination of configuration of monosaccharides, absolute configuration of Glucose and Fructose, Mutarotation, ascending and descending in monosaccharides. Structure of disacharrides (sucrose, cellobiose, maltose, lactose) and polysacharrides (starch and cellulose) excluding their structure elucidation. Oils and fats: definition – determination and application – saponification value – iodine value – Reichert-Meissel value – acid value.

|       | LECTURE | TUTORIAL | PRACTICAL | SELF STUDY | TOTAL |
|-------|---------|----------|-----------|------------|-------|
| HOURS | 45      | 15       | 0         | 0          | 60    |

#### **TEXT BOOKS**

- 1. "Organic Chemistry", P.L.Soni
- 2. "Advanced Organic Chemistry", B.S.Bahl and Arun Bahl
- 3. "Organic Chemistry", R.T.Morrison and R.W.Boyd

#### REFERENCES

- 1. "Organic Chemistry Volume I", I.L.Finar
- 2. "Organic Chemistry Volume II", I.L.Finar
- 3. "Reaction Mechanism of Organic Compounds" Jerry March
- 4. "Organic Chemistry" J. Clayden
- 5. Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry, Cengage Learning India Pvt. Ltd.: New Delhi (2009).
- 6. Mahan, B.H. University Chemistry, 3rd Ed. Narosa (1998).
- 7. Petrucci, R.H. General Chemistry, 5th Ed., Macmillan Publishing Co.: New York (1985).
- 8. Nelson, D. L. & Cox, M. M. Lehninger's Principles of Biochemistry 7th Ed.,
- 9.W. H. Freeman. Berg, J.M., Tymoczko, J.L.& Stryer, L. Biochemistry, W.H. Freeman, 2002.

| COU    | RSE CODE                                                               | XCY                                               | 403              | L T P                               |                                | P      | SS      | C    |  |
|--------|------------------------------------------------------------------------|---------------------------------------------------|------------------|-------------------------------------|--------------------------------|--------|---------|------|--|
| COUI   | RSE NAME                                                               | PHYSICAL CH                                       | HEMISTRY II      | 3                                   | 1                              | 0      | 0 0     |      |  |
| C:P:A  | 1                                                                      | 3.6:0:0.4                                         |                  | L                                   | Т                              | P SS H |         | Н    |  |
|        |                                                                        |                                                   |                  | 3                                   | 1                              | 0      | 0       | 4    |  |
| COU    | RSE OUTCOM                                                             | ES                                                |                  | DOM                                 | IAIN                           | LEVEL  |         |      |  |
| CO1    | <i>Explain</i> the principle thermodynamics and its laws applications. |                                                   |                  | Cogn                                | Cognitive Understanding        |        |         |      |  |
| CO2    | Apply the rate reactions                                               | e and its half life                               | for the chemical | Cognitive Apply Affective Receiving |                                |        |         |      |  |
| CO3    | <b>Describe</b> the solutions.                                         | various concepts and                              | l laws of        |                                     |                                |        | lerstan | ding |  |
| CO4    | <i>Identify</i> the various component system and its equilibrium.      |                                                   |                  | _                                   | ognitive understanding fective |        |         | ling |  |
| CO5    |                                                                        | asic concepts in electronic conductance and for a | •                | Cognitive Apply Remember            |                                |        | r       |      |  |
| TINITE | T THEDMOD                                                              | TALL BALLOO                                       |                  |                                     |                                |        | 0.2     |      |  |

#### **UNIT I - THERMODYNAMICS**

9+3

Chemical Energetics -Review of thermodynamics and the Laws of Thermodynamics. Important principles and definitions of thermochemistry. Concept of standard state and standard enthalpies of formations, integral and differential enthalpies of solution and dilution. Calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data. Variation of enthalpy of a reaction with temperature – Kirchhoff's equation. Statement of Third Law of thermodynamics and calculation of absolute entropies of substances.

## **UNIT II - CHEMICAL KINETICS**

Rate of reactions – rate constant – order and molecularity of reactions – first order and pseudo unimolecular reactions (definition and examples) – derivation of rate constant for the inversion of cane sugar. Second order reactions – definition – examples – derivation of rate constant (same concentration and different concentration) and half life period – application to saponification of ester.

Third order reactions: definition and examples. Methods of determination of order of reactions. Zero order reactions – definition and examples – derivation of rate constant. Theory of reaction rates – collision theory of bimolecular reactions – unimolecular reactions – Lindemann's hypothesis – theory of absolute reaction rates.

## **UNIT III - SOLUTIONS**

8 + 3

Thermodynamics of ideal solutions: Ideal solutions and Raoult's law, deviations from Raoult's law – non-ideal solutions. Vapour pressure-composition and temperature, composition curves of ideal and non-ideal solutions. Distillation of solutions. Lever rule. Azeotropes. Partial miscibility of liquids: Critical solution temperature; effect of impurity on partial miscibility of liquids. Immiscibility of liquids- Principle of steam distillation. Nernst distribution law and its applications, solvent extraction.

## UNIT IV - IONIC EQUILIBRIUM AND PHASE EQUILIBRIUM

9+3

Ionic Equilibria: Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, Solubility and Solubility product-common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions.

Phase Equilibrium Phases, components and degrees of freedom of a system, criteria of phase equilibrium. Gibbs Phase Rule and its thermodynamic derivation. Derivation of Clausius – Clapeyron equation and its importance in phase equilibria. Phase diagrams of one-component systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting points (lead-silver only).

## UNIT V - ELECTROCHEMISTRY AND CONDUCTANCE

9+3

Reversible and irreversible cells. Concept of EMF of a cell. Measurement of EMF of a cell. Nernst equation and its importance. Types of electrodes. Standard electrode potential. Electrochemical series. Thermodynamics of a reversible cell, calculation of thermodynamic properties:  $\Delta G$ ,  $\Delta H$  and  $\Delta S$  from EMF data. Calculation of equilibrium constant from EMF data. Concentration cells with transference and without transference. Liquid junction potential and salt bridge. Potentiometric titrations

Conductance Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Kohlrausch law of independent migration of ions. Ionic mobility. Applications of conductance measurements: determination of degree of ionization of weak electrolyte. Conductometric titrations (only acid base).

|       | LECTURE | TUTORIAL | PRACTICAL | SELF STUDY | TOTAL |
|-------|---------|----------|-----------|------------|-------|
| HOURS | 45      | 15       | 0         | 0          | 60    |

## **TEXT BOOKS**

- 1. "Principles of Physical Chemistry", B.R.Puri and L.R.Sharma
- 2. "Principles of Physical Chemistry", B.R.Puri, L.R.Sharma and M.S.Pathania
- 3. "Physical Chemistry", N.Kundu and SN.Jain

## REFERENCES

- 1. "Textbook of Physical Chemistry", S.Glasstone
- 2. "Physical Chemistry", G.M.Barrow
- 3. "Advanced Physical Chemistry", P.W. Atkins
- 4. "Chemical Kinetics", K.J.Laidler
- 5. Glasstone S., Lewis D., Elements of Physical Chemistry, London, MacMillan & Co. Ltd
- 6. Barrow, G.M. Physical Chemistry Tata McGraw-Hill (2007).

- 7. Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004).
- 8. Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry Cengage Learning India Pvt. Ltd., New Delhi (2009).
- 9. Mahan, B.H. University Chemistry 3rd Ed. Narosa (1998).
- 10. Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co.: New York (1985).
- 11. Cotton, F.A. & Wilkinson, G. Basic Inorganic Chemistry, Wiley.
- 12. Shriver, D.F. & Atkins, P.W. Inorganic Chemistry, Oxford University Press.
- 13. Wulfsberg, G. Inorganic Chemistry, Viva Books Pvt. Ltd.

| COU                                                                     | RSE CODE                        | XCY404                                | L         | Т                   | P         | SS     | C  |
|-------------------------------------------------------------------------|---------------------------------|---------------------------------------|-----------|---------------------|-----------|--------|----|
| COUI                                                                    | RSE NAME                        | INORGANIC CHEMISTRY III               | 3         | 1                   | 0         | 0      | 4  |
| C:P:A                                                                   | 1                               | 3.6:0:0.4                             | L         | T                   | P         | SS     | Н  |
|                                                                         |                                 |                                       | 3         | 1                   | 0 0 4     |        |    |
| COU                                                                     | RSE OUTCO                       | MES                                   | DOMA      | AIN                 | LEVI      | EL     |    |
| CO1                                                                     | <i>Identify</i> t               | Cognit                                | ive       | Under               | standi    | ng     |    |
|                                                                         | isomerism.                      |                                       |           |                     |           |        |    |
| CO2 Describe the various bonding and theroies of metal Cognitive Unders |                                 |                                       |           | Understanding       |           |        |    |
|                                                                         | and ligands.                    |                                       |           | Affective Receiving |           |        |    |
| CO3                                                                     | Apply the co                    | ncept of stability in metal carbonyls | Cognit    | ive                 | Apply     | 7      |    |
|                                                                         | and understa                    | nd the principle of complexometric    | Affective |                     | Receiving |        |    |
|                                                                         | titrations.                     |                                       |           |                     |           |        |    |
| CO4                                                                     | Identify the                    | role of alkali, alkaline earth and    | Cognit    | ive                 | Under     | standi | ng |
|                                                                         | transition me                   | etals in bio inorganic chemistry.     | Affecti   | ve                  |           |        |    |
| CO5                                                                     | Describe th                     | ne properties and applications of     | Cognit    | ive                 | Apply     | 7      |    |
|                                                                         | silicones and                   | zeolites.                             |           |                     | Reme      |        |    |
| TINITT                                                                  | LINET I CO ODDINATION CHEMICTRY |                                       |           |                     |           |        |    |

#### UNIT I CO-ORDINATION CHEMISTRY

9+3

10+3

Ligands, classification of ligands, IUPAC nomenclature of coordination compounds, Coordination number, Sidgwick's electronic interpretation of coordination compounds and the concept of effective atomic number (EAN).

Isomerism – geometric isomerism in coordination number 4 and 6 compounds, optical isomerism and conditions for optical isomerism, optical isomerism in coordination number 4 and 6 compounds.

Stability of complexes – definition of labile and inert complexes – factors affecting stability of complexes. Postulates-  $sp^3$ ,  $dsp^2 \& sp^3 d^2$  hybridisation with example and limitation.

## UNIT II THEORIES OF METAL – LIGAND BONDING IN COMPLEXES

Werner's coordination theory, limitations of Werner's theory.

Valence bond theory (VBT) – formation of inner and outer orbital complexes of Cr, Fe, Co, Ni and Cu (coordination numbers 4 and 6). – application of VBT to octahedral complexes, square planar and tetrahedral complexes, limitations of VBT.

crystal field theory (CFT) – crystal field splitting in tetrahedral, square planar and octahedral complexes, strong and weak ligands, spectrochemical series – high – spin and low – spin complexes, magnetic properties of octahedral and tetrahedral complexes, crystal field stabilization energy (CFSE) and its uses Comparison of CFSE for Oh and Td complexes, limitations of CFT - comparison of VBT and CFT. Ligand field theory – application of LFT to octahedral and tetrahedral complexes – metal ligand  $\pi$  – bonding. Tetragonal distortion of octahedral geometry. Jahn-Teller distortion, Square planar coordination.

| UNIT III | METAL CARBONYLS, COMPLEXOMETRIC  | 8+3 |
|----------|----------------------------------|-----|
|          | TITRATIONS AND CLUSTER COMPOUNDS |     |

Metal carbonyls – classification with suitable examples – metal carbonyls and EAN rule – stability of metal carbonyls – applications.

Chelates – application of chelates.

Applications of co- ordination compounds in qualitative and quantitative analysis:

Separation of silver and mercury ions, copper and cadmium ions, identification of aluminium, chromium, nickel, zinc, manganese and potassium, Complexometric titrations – principle and applications – quantitative estimation of nickel using DMG, aluminium using oxine – structure of EDTA complexes.

Cluster compounds: Boranes – carbaboranes – carbonyl clusters.

## UNIT IV BIO – INORGANIC CHEMISTRY

9+3

tiality (significance) of metal and metal ions in biological systems. Role of alkaline and alkaline earth metal ions in biological systems. Na/K pump.

Role of iron in biological systems – structure of haemoglobin (structural elucidation not required) – oxygen transportation by haemoglobin (elementary study) Structure of chlorophyll – photosynthesis. Role of zinc in biological systems. Role of  $Ca^{2+}$  in blood clotting, stabilization of protein structures and structural role (bones). Hydrogenase-Metal poisoning – cadmium and mercury poisoning.

## UNIT V | SILICONES (POLYSILOXANES) AND SILICATES

9+3

Types of silicones – structure of silicones – versatile properties of silicones. Preparation and properties of dimethyl, methylphenyl and diphenyl siliconesanes.

Applications of silicones – desired properties – sealants and adhesives – rubber – paints and coatings – health care – Automotive – aerospace – household – defoaming drycleaning electronics lubricants personalcare – construction.

Zeolites – types of zeolites - uses like ion- exchangers water softeners, molecular sieves dehydrating agents, adsorbents and catalysts.

|       | LECTURE | TUTORIAL | PRACTICAL | SELF STUDY | TOTAL |
|-------|---------|----------|-----------|------------|-------|
| HOURS | 45      | 15       | 0         | 0          | 60    |

#### **TEXT BOOKS**

- 1. "Inorganic Chemistry", P.L.Soni
- 2. "Advanced Inorganic Chemistry", R.D.Madan
- 3. "Inorganic Chemistry", Puri and Sharma

## REFERENCES

- 1. "Basic Inorganic Chemistry", F.A. Cotton and Wilkinosn
- 2. "A Textbook of quantitative Inorganic Analysis", Arthur.I.Vogel
- 3. "Inorganic Chemistry", James E.Huheey
- 4. "Concise Inorganic Chemistry", J.D.Lee
- 5. "Fundamentals of Inorganic Chemistry", Gilreath
- 6. "Engineering Chemistry", B.C.Jain and Monica Jain
- 7. "In-organic Chemistry", Shriver and Atkins

| COLIDG                                                                            | E CODE                | WCWF01                             | Τ.   | T.D.       | n     | CC       |         |  |
|-----------------------------------------------------------------------------------|-----------------------|------------------------------------|------|------------|-------|----------|---------|--|
|                                                                                   | E CODE                | XCY501                             | L    | T          | P     | SS       | C       |  |
| COURS                                                                             | E NAME                | CLINICAL CHEMISTRY                 | 1    | 0          | 2     | 1        | 2       |  |
|                                                                                   |                       |                                    | L    | T          | P     | SS       | H       |  |
|                                                                                   |                       |                                    | 1    | 0          | 2     | 1        | 4       |  |
| COURS                                                                             | E OUTCOMI             | ES: On the successful              |      | DOM/       | IN    | LEVEL    |         |  |
| completi                                                                          | on of the cour        | se, students will be able to       |      |            |       |          |         |  |
| CO1                                                                               | <i>Identify</i> the   |                                    |      | Cognitive  | :     | Remen    | nber    |  |
|                                                                                   |                       | pes of                             |      |            |       |          |         |  |
|                                                                                   | metabolism.           |                                    |      |            |       |          |         |  |
| CO2                                                                               |                       | mportant concepts of various       |      | Cognitive  | :     | Unders   | stand   |  |
|                                                                                   | techniques us         | sed in clinical chemistry.         |      |            |       |          |         |  |
| CO3                                                                               | Analyse the y         | various molecular entities known a | S    | Cognitive  | ;     | Analyz   | ze      |  |
|                                                                                   | •                     | nutrition values.                  |      |            |       |          |         |  |
|                                                                                   |                       |                                    |      |            |       |          |         |  |
| CO4                                                                               | <i>Interpret</i> the  | methods of testing of various orga | ıns  | Cognitive  | ;     | Unders   | stand   |  |
|                                                                                   | of body and t         | he diagnostic roles of related     |      |            |       |          |         |  |
|                                                                                   | enzymes.              | _                                  |      |            |       |          |         |  |
| CO5                                                                               | <i>Illustrate</i> the | various methods for cardiac profi  | le,  | Cognitive  | :     | Analyz   | ze      |  |
|                                                                                   | glucose and c         | cholesterol estimation.            |      |            |       |          |         |  |
| SYLLA                                                                             | BUS:                  |                                    |      |            |       |          |         |  |
| UNIT - 1                                                                          | METABOLI              | SM                                 |      |            |       | 3+3      |         |  |
| Distribut                                                                         | ion of fluids i       | n the body, ECF & ICF, water r     | neta | bolism, de | hydı  | ation, n | nineral |  |
|                                                                                   |                       | rients (principal mineral elements |      |            |       |          |         |  |
| metaboli                                                                          | sm, Protein me        | etabolism, Lipid metabolism, Bile  | pigı | ment metab | olism | ۱.       |         |  |
| UNIT - II TECHNIQUES USED IN CLINICAL CHEMISTRY 3+3                               |                       |                                    |      |            |       |          |         |  |
| Photometry- Definition, laws of photometry, absorbance, transmittance, absorption |                       |                                    |      |            |       |          |         |  |
| maxima, instruments, parts of photometer, types of photometry-colorimetry,        |                       |                                    |      |            |       |          |         |  |
| spectrophotometry, flame photometry, fluorometry, choice of appropriate filter,   |                       |                                    |      |            |       |          |         |  |

## measurements of solution, calculation of formula, applications. UNIT – III VITAMINS AND NUTRITION

2+3

2+3

Classification of vitamins, Chemistry, properties, biological importance and deficiency manifestations of fat soluble vitamins. Chemistry, properties, biological importance, deficiency manifestations and coenzyme functions of water soluble vitamins.

## UNIT –IV ORGAN FUNCTION TESTS AND DIAGNOSTIC ENZYMES 5+3

Organ function tests: Evaluation of organ function tests: Assessment and clinical manifestations of renal, pancreatic, gastric and intestinal functions. Clinical importance of bilirubin.

Enzyme tests in determination of myocardial infarction. Enzymes of pancreatic origin and biliary tract.

## UNIT -V APPLICATIONS OF CLINICAL CHEMISTRY

Cardiac Profile - In brief Hypertension, Angina, Myocardial Infarction, Pattern of Cardiac Enzymes in heart diseases, Different methods of Glucose Estimation and Cholesterol Estimation, Principle advantage and disadvantage of different methods.

PRACTICALS 30hrs

Estimation of glucose using Fehling's solution

Estimation of cholesterol using

ferric chloride Estimation of ferric

ion by colorimetric method

Iodometric determination of

vitamin C

Estimation of carbohydrate in mixture by qualitative method.

## **TEXT BOOKS**

 Lehninger Principles of Biochemistry 4th Ed By David L. Nelson and Michael M.Cox,WH

Freeman and Company.

- 2. Principles of Biochemistry (Hardcover) By Geoffrey Zubay. Publisher: McGraw HillCollege.
- 3. Harper's Biochemistry (Lange Medical Books) (Paperback) By Robert K. Murray, Daryl
- 4. K. Granner, Peter A. Mayes and Victor W. Rodwell. Publisher: Appelton and Lange.
- 5. Bioenergetics By David G. Nicholls and Stuart J. Ferguson. AcademicPress.
- 6. Bioenergetics at a Glance: An Illustrated Introduction (At a Glance) By D.A. Harris.Publisher: WileyBlackwell

#### REFERENCE BOOKS

- 1. Biochemistry By Lubert Stryer. WH Freeman and Co.
- 2. Principles of Biochemistry By Robert Horton, Laurence A Moran, Gray Scrimgeour, Marc Perry and David Rawn. PearsonEducation.
- 3. Harper's Biochemistry By RK Murray, DK Granner, PA Mayes and VW Rodwell. Appelton and Lange, Stanford.

| LECTURE | TUTORIAL | SELF-STUDY |
|---------|----------|------------|
| 15      |          | 15         |

| COUL         |                                                                                                                                          | L            | Т   | P      | С  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|--------|----|
| COUF<br>NAMI |                                                                                                                                          | 3            | 1   | 0      | 4  |
|              |                                                                                                                                          | L            | T   | P      | Н  |
|              |                                                                                                                                          | 3            | 1   | 0      | 4  |
|              | RSE OUTCOMES: On the successful DO etion of the course, students will be able to                                                         | DOMAIN LEVEI |     |        | EL |
| CO1          | Identify the concepts of qualitative and quantitative analysis and also to find out the errors, accuracy and precision in data analysis. | Cognitive    |     |        | er |
| CO2          | Explain the principles and methods of analyzing chemical compounds with the help of various spectroscopies.                              | ive          | Uno | dersta | nd |
| CO3          | 1                                                                                                                                        | Cognitive    |     |        |    |

| CO4 | <i>Interpret</i> the importance of electroanalytical | Cognitive | Understand |
|-----|------------------------------------------------------|-----------|------------|
|     | techniques in analysis of different                  |           |            |
|     | parameters of chemical compounds and                 |           |            |
|     | solutions                                            |           |            |
| CO5 | <i>Illustrate</i> the significance of separation     | Cognitive | Analyze    |
|     | techniques in visualizing trace elements and         |           |            |
|     | comparing it with control samples.                   |           |            |
|     |                                                      |           |            |

## **SYLLYBUS:**

## UNIT - I QUALITATIVE AND QUANTITATIVE ASPECTS OF ANALYSIS

5+3

Sampling, evaluation of analytical data, errors, accuracy and precision, methods of their expression, normal law of distribution if indeterminate errors, statistical test of data; F, Q and t test, rejection of data, and confidence intervals.

#### UNIT-II OPTICAL METHODS OF ANALYSIS

15+3

Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and selection rules, validity of Beer-Lambert's law.

UV-Visible Spectrometry: Basic principles of instrumentation (choice of source, monochromator and detector) for single and double beam instrument;

Infrared Spectrometry: Basic principles of instrumentation (choice of source, monochromator & detector) for single and double beam instrument; sampling techniques. Structural illustration through interpretation of data, Effect and importance of isotope substitution.

Flame Atomic Absorption and Emission Spectrometry: Basic principles of instrumentation (choice of source, monochromator, detector, choice of flame and Burner designs. Techniques of atomization and sample introduction; Method of background correction, sources of chemical interferences and their method of removal. Techniques for the quantitative estimation of trace level of metal ions from water samples.

## UNIT - III THERMAL METHODS OF ANALYSIS

5+3

Theory of thermogravimetry (TG), basic principle of instrumentation. Principles, instrumentation and applications of TGA, DTA, DSC. Techniques for quantitative estimation of Ca and Mg from their mixture.

## UNIT -IV ELECTROANALYTICAL METHODS

5+3

Classification of electroanalytical methods, basic principle of pH metric, potentiometric and conductometric

titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values.

## **UNIT -V SEPARATION TECHNIQUES**

15+3

Solvent extraction: Classification, principle and efficiency of the technique. Mechanism of extraction:

extraction by solvation and chelation. Technique of extraction: batch, continuous and counter current extractions. Qualitative and quantitative aspects of solvent extraction: extraction of metal ions from aqueous solution, extraction of organic species from the aqueous and nonaqueous media.

Chromatography: Classification, principle and efficiency of the technique. Mechanism of separation: adsorption, partition & ion exchange. Paper,

column, Thin layer chromatography and HPLC

## TEXT BOOKS

- 1. Jeffery, G.H., Bassett, J., Mendham, J. & Denney, R.C. *Vogel's Textbook of QuantitativeChemical Analysis*, John Wiley & Sons, 1989.
- 2. Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. *Instrumental Methods of Analysis*, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA,1988.
- 3. Christian, G.D; Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.
- 4. Harris, D. C. Exploring Chemical Analysis, Ed. New York, W.H. Freeman, 2001.

#### REFERENCE BOOKS

- 1. Khopkar, S.M. *Basic Concepts of Analytical Chemistry*. New Age, International Publisher, 2009.
- 2. Skoog, D.A. Holler F.J. & Nieman, T.A. *Principles of Instrumental Analysis*, Cengage Learning India Ed.
- 3. Mikes, O. *Laboratory Hand Book of Chromatographic & Allied Methods*, Elles Harwood Serieson
  Analytical Chemistry, John Wiley & Sons, 1979.

#### **E Resources - MOOCs:**

- 1. <a href="https://www.mooc-list.com/course/basic-analytical-chemistry-edx">https://www.mooc-list.com/course/basic-analytical-chemistry-edx</a>
- 2. https://www.mooc-list.com/course/analytical-chemistry-instrumental-analysis-coursera
- 3. https://www.mooc-list.com/course/analytical-chemistry-saylororg

| COU                                                   | RSE C                                                        | ODE                      | XCY602A                                                                                    | L      | L T I                  |            | )        | SS                  | С     |  |  |
|-------------------------------------------------------|--------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------|--------|------------------------|------------|----------|---------------------|-------|--|--|
| COU                                                   | RSE N                                                        | AME                      | INDUSTRIAL CHEMISTRY                                                                       | 3      | 3 1 0                  |            |          | 0                   | 4     |  |  |
| PREI                                                  | REQU                                                         | ISITE                    | NIL                                                                                        | L      | T                      | P          | ,        | SS                  | Н     |  |  |
| C:P:A                                                 | C:P:A 3.2:0:0.8 3 1                                          |                          |                                                                                            |        | 1                      | 0          |          | 0                   | 4     |  |  |
| the                                                   |                                                              |                          | OMES: : On the successful completion of                                                    | DOMAIN |                        |            |          |                     | LEVEL |  |  |
| CO1                                                   |                                                              | ribe the                 | the able to the taw materials in chemical the utilization of the raw materials in chemical | Cogr   | nitive                 |            | Remember |                     |       |  |  |
| CO2                                                   | ceran                                                        | ain the nics, glertilize |                                                                                            | Cogr   | nitive                 | Understand |          |                     |       |  |  |
| CO3                                                   |                                                              | _                        | ne technologies used in small scale<br>lustries.                                           | Cogr   | Cognitive              |            |          | derst               | and   |  |  |
| CO4                                                   | indus                                                        | tries                    | e various toxic chemicals used in agro<br>s of sugar                                       |        | Cognitive<br>Affective |            |          | Remember<br>Receive |       |  |  |
| CO5                                                   | Examine the various pollutants and gain awareness  Cognitive |                          |                                                                                            |        | Analyze<br>Respond     |            |          |                     |       |  |  |
| UNIT I RAW MATERIALS AND ENERGY FOR CHEMICAL INDUSTRY |                                                              |                          |                                                                                            |        |                        |            |          | 9+3                 |       |  |  |

Raw materials - Characteristics of raw materials and their resources - methods of raw material

concentrations – integral utilization of raw materials. Energy for chemical industry – Fuels – classification of fuels – coal – fuel gases and liquid fuels – petroleum – cracking – Octane number – cetane number – composition and uses of coal gas, water gas, producer gas, oil gas and gobar gas.

#### **UNIT II**

## CEMENT, CERAMICS, GLASS AND FERTILIZERS

9+3

Cement: Manufacture – Wet Process and Dry process. Types, Analysis of major constituents, setting of cement, reinforced concrete. Cement industries in India. Ceramics: Important clays and feldspar, glazing and verification. Glass: Types, Composition, manufacture of Optical glass, colored glasses, lead glass and neutron absorbing glass. Fertilizers: Fertilizer industries in India, Manufacture of ammonia, ammonium salts, urea, superphosphate, triple superphosphate and nitrate salts.

#### UNIT III | SMALL SCALE CHEMICAL INDUSTRIES

9+3

Electrothermal and electrochemical industries: electroplating – surface coating industries – oils, fats and waxes – Textiles industry-soaps and detergents – cosmetics. Match industries and fire works: manufacture of some industrially important chemicals like potassium chlorate, and red phosphorus – metal powders.

## UNIT IV | SUGAR AND AGRO CHEMICAL

9+3

Sugar: Cane sugar manufacture, recovery of sugar from molasses, sugar estimation, sugar industries

in India. Agrochemical industries: Important categories of insecticides, fungicides, herbicides. Mode of action and synthesis of common pesticides like Gammexane, DDT, alathrin, Parathion, Malathion, Baygon, DDVP, Warfarin.

## UNIT V INDUSTRIAL POLLUTION & CHEMICAL TOXICOLOGY

9+3

Introduction – causes of industrial pollution – thermal power plants – nuclear power reactors– fertilizers and

chemical industry – pulp and paper industries – agro based industries – cement industry. Toxic Chemicals in the environment – biochemical effects of arsenic, cadmium, lead, mercury and cyanide.

| COURSE      | E CODE                                             | XCY603B                                      | L T P     |        | SS         | С          |       |  |
|-------------|----------------------------------------------------|----------------------------------------------|-----------|--------|------------|------------|-------|--|
| COURSE NAME |                                                    | POLYMER CHEMISTRY                            | 3         | 1      | 0          | 0          | 4     |  |
| PREREQ      | UISITES                                            | NIL                                          | L         | T      | P          | SS         | Н     |  |
| C:P:A       |                                                    | 3.4:0:0.6                                    | 3         | 1      | 0          | 0          | 4     |  |
| COURSE      | E OUTCO!                                           | MES: On the successful completion of         | D         | OMA    | IN         | LEVEL      |       |  |
| the course  | e, students                                        | will be able to                              |           |        |            |            |       |  |
| CO1         | Explain                                            | the chemistry of polymerization.             | Cogr      | nitive | Understand |            |       |  |
| CO2         | Describe                                           | the preparation of individual polymers       | Cognitive |        | Understand |            |       |  |
|             |                                                    |                                              |           | ctive  | Respond    |            |       |  |
| CO3         | Internre                                           | t their physical properties of polymers and  | Cognitive |        |            | Understand |       |  |
|             |                                                    |                                              |           |        |            |            | Apply |  |
|             | explain the molecular weight and size of polymers. |                                              |           | ctive  | Respond    |            |       |  |
| CO4         | Recogniz                                           | e the polymerization techniques and Classify | Cogr      | nitive |            | Ana        | lyze  |  |
|             | the uses                                           | of polymers.                                 |           |        |            |            |       |  |
| CO5         | Summar                                             | ize the processing of polymers               | Cognitive |        | Ren        | nember     |       |  |
|             |                                                    |                                              |           |        | Unc        | lerstand   |       |  |
| UNIT I      | CLASSI                                             | FICATION OF POLYMERS AND CHE                 | MIST      | RYO    | F          | •          | 10+3  |  |
|             | POLYM                                              | IERISATION                                   |           |        |            |            |       |  |

Classification of Polymers, linear polymers, non-linear or branched polymers, cross – linked polymers, homo chain hetero chain, homopolymers co-polymers block polymers and graft polymers.

Chemistry of polymerization: Types of polymerization – mechanism – chain, growth, coordination, ring opening, metathetical, group transfer, polyaddition and polycondensation polymerizations.

## UNIT II INDIVIDUAL POLYMERS

10+3

Individual Polymers: Monomers required general methods of preparation, repeat units and uses of

the following polymers and resins, polystyrene, polyacrylonitrile, polymethyl, methacrylate, Polytetra – fluoroethylene, polybutadienes and polychloroprene, polyesters, polycarbonates, polyimides, polyamides (Kevlar), polyurethanes, polyethylene, glycols, phenol – formaldehyde, urea – formaldehyde, melamine – formaldehyde and epoxy resins.

## UNIT III PROPERTIES OF POLYMERS

10+3

Intrinsic properties – processing properties – basic idea of isomerism of polymers – configuration

of polymer chain – geometrical structure – syndiotatic, isotatic and atatic polymers.

Glass transition temperature: Definition – factors affecting glass transition temperature – relationships between glass transition temperature and (a) molecular weight, (b) melting pointand

(c) plasticizer – importance of glass transition temperature – heat distortion temperature. Molecular weight and size of polymers: Number average, weight average, sedimentation and viscosity average molecular weights – molecular weights and degree of polymerization – poly dispersity – molecular weight distribution in polymers – size of polymer molecules – kinetics of polymerization.

## UNIT IV POLYMERISATION TECHNIQUES DEGRADATION AND USES OF POLYMERS

Polymerisation Techniques: Bulk, solution, suspension, emulsion, melt condensation and interfacial polycondensation polymerizations, Degradation: Types of degradation – thermal, mechanical, ultrasonic and photodegradation – photo stabilizers – oxidative degradation – antioxidants – hydrolytic degradation. Uses of polymers in electronics and

#### biomedicine.

#### UNIT V POLYMER PROCESSING

7+3

Polymer processing: Plastics (thermo and thermosetting), elastomers, fibres, compounding, plasticizers, colorants, flame retardants. Compression and injection moudlings – film extrusion and calendaring – die casting and rotational casting – thermofoaming – reinforcing.

| LECTURE | TUTORIAL | SELF<br>STUDY | PRACTICAL | TOTAL |
|---------|----------|---------------|-----------|-------|
| 45      | 15       | 0             | 0         | 60    |

#### **TEXT BOOKS**

- 1. Seymour, R.B. & Carraher, C.E. Polymer Chemistry: An Introduction, Inc. New York, (1981).
- 2. Odian, G. Principles of Polymerization, 4th Ed. Wiley, (2004).
- 3. Billmeyer, F.W. Textbook of Polymer Science, 2nd Ed. Wiley Interscience, (1971)...
- 4. Ghosh, P. Polymer Science & Technology, Tata McGraw-Hill Education, (1991).
- 5. Lenz, R.W. Organic Chemistry of Synthetic High Polymers, Interscience Publishers, New York,

(1967).

## REFERENCES

- 1. M.P.Stevens, *Polymer Chemistry: An Introduction*, 3rd Edition, Oxford University Press, (1991).
- 2. H.R. Allcock, F.W. Lampe & J.E. Mark, *Contemporary Polymer Chemistry*, 3rd edition, (2003).
- 3. F.W. Billmeyer, *Textbook of Polymer Science*, 3rd ed. Wiley-Interscience, (1984).
- 4. J.R. Fried, *Polymer Science and Technology*, 2nd ed. Prentice-Hall(2003)
- 5. P. Munk & T.M. Aminabhavi, *Introduction to Macromolecular Science*, 2nd ed. John Wiley & Sons(2002).
- 6. L. H. Sperling, *Introduction to Physical Polymer Science*, 4th ed. John Wiley & Sons (2005).
- 7. M.P. Stevens, *Polymer Chemistry: An Introduction* 3rd ed. Oxford University Press, (2005).
- 8. Seymour/ Carraher's Polymer Chemistry, 9th ed. by Charles E. Carraher, Jr. (2013).

## M.Sc. Chemistry

| COURSE     | CODE               | YCY101                                                                           | L T SS                  |      |    | P                              | C                      |  |
|------------|--------------------|----------------------------------------------------------------------------------|-------------------------|------|----|--------------------------------|------------------------|--|
| COURSE     | NAME               | ORGANIC CHEMISTRY- I                                                             | 4                       | 1    | 1  | 0                              | 5                      |  |
| PREREQ     | UISITE             | NIL                                                                              | L                       | T    | SS | P                              | Н                      |  |
| C:P:A      |                    | 4.5: 0: 0.5                                                                      | 4                       | 1    | 1  | 0                              | 6                      |  |
| COURSE     | OUTCO              | MES- On the successful completion of                                             | DON                     | IAIN | I  | LEVEL                          |                        |  |
| the course | e, student         | s will be able to                                                                |                         |      |    |                                |                        |  |
| CO1        | Recogn<br>aromatic | <i>ize</i> the various basic concepts of city.                                   | Cognitive               |      |    | Remember                       |                        |  |
| CO2        |                    | the oxidation and reducing reagents for synthesis.                               | Cognitive               |      |    | Understand                     |                        |  |
| CO3        |                    | e and give examples of stereochemistry nic compounds.                            | Cognitive               |      |    | _                              | member<br>derstand     |  |
| CO4        | Recogn<br>and und  | ize the effect of light in organic reactions lerstand the mechanism of memistry. | Cognitive and Affective |      |    | Understand<br>and<br>Receiving |                        |  |
| CO5        |                    | and <i>explain</i> the mechanism of pericyclic                                   | Cognitive               |      |    | Re                             | Remember<br>Understand |  |
| UNIT I     | AROMA              | ATICITY                                                                          | 1                       |      |    |                                | 16                     |  |

Aromatic character: Five-, six-, seven-, and eight-membered rings – other systems with aromatic sextets – Huckel's theory of aromaticity, concept of homoaromaticity and anti-aromaticity.

Electron occupancy in MO's and aromaticity – NMR concept of aromaticity and antiaromaticity, systems with 2,4,8 and 10 electron s, systems of more than 10 electrons (annulenes), Mobius aromaticity. Bonding properties of systems with  $(4n+2)\pi$ -electron s and  $4n\pi$ -electrons, alternant and non-alternant hydrocarbons (azulene type) – aromaticity in heteroaromatic molecules, sydnones and fullerenes.

| UNIT | REAGENTS IN ORGANIC SYNTHESIS | 19 |
|------|-------------------------------|----|
| II   |                               |    |

Oxidation: Baeyer-Villiger, Jacobsen epoxidation, Shi epoxidation, Jones reagent, NOCl, Mn(OAc)<sub>3</sub>, Cu(OAC)<sub>2</sub>, Bi<sub>2</sub>O<sub>3</sub>, Swern oxidation, Sommelet reaction, Elbs reaction, Oxidative coupling of phenols, Prevost reaction and Woodward modification. Reduction: palladium / platinum / rhodium / nickel based heterogeneous catalysts for hydrogenation, Wilkinson's catalyst, Noyori asymmetric hydrogenation – reductions using Li/Na/Ca in liquid ammonia. Hydride transfer reagents from group III and group IV in reductions. (i) triacetoxyborohydride, L-selectride, K-selectride, Luche reduction, Red-Al, NaBH<sub>4</sub> and NaCNBH<sub>3</sub>, trialkylsilanes and trialkylstannane, (ii) stereo/enantioselectivity reductions (Chiral Boranes, Corey-Bakshi-Shibata).

| UNIT | STEREOCHEMISTRY AND CONFORMATIONAL ANALYSIS | 19 |
|------|---------------------------------------------|----|
| III  |                                             |    |

Stereoisomerism – symmetry – enantiomers and diastereomers – R and S nomenclature – optical activity and chirality – types of molecules exhibiting optical activity – absolute configuration – chirality in molecules with non- carbon stereocenters (N, S and P) – molecules with more than one chiral centre – atropisomerism. Molecular chirality – allenes, spiranes, biphenyls, helicenes and cyclophanes – methods of determining configuration – E and E nomenclature – determination of configuration of geometrical isomers – stereochemistry of addition and elimination reactions – stereospecific and stereoselective

synthesis [elementary examples]. Basic concepts of conformational analysis – conformations of cyclopentane, cyclohexane, cyclohexene and fused (decalin) and bridged (norbornane type) ring systems – anomeric effect in cyclic compounds.

# UNIT ORGANIC PHOTOCHEMISTRY 18

Organic photochemistry – fundamental concepts – energy transfer – characteristics of photoreactions – photoreduction and photooxidation, photosensitization. Photoreactions of ketones and enones – Norrish Type I and II reactions – Paterno-Büchi reaction – photo-Fries rearrangement – photochemistry of alkenes, dienes and aromatic compounds – di- $\pi$ -methane rearrangement. Reactions of unactivated centres – photochemistry of  $\alpha,\beta$ -unsaturated carbonyl compounds – photolytic cycloadditions and photolytic rearrangements – photo additions – Barton reaction

## UNIT V | PERICYCLIC REACTIONS

18

Concerted reactions – orbital symmetry and concerted symmetry – Woodward and Hoffmann rules – selection rules for electrocyclic reactions – frontier molecular orbital approach – correlation diagram – examples. Selection rules for cycloaddition reactions – frontier molecular orbital approach – correlation diagram – examples – chelotropic and ene reactions. Sigmatropic rearrangements – 1,3, 1,5 and 1,7-hydrogen shifts – examples – Cope and Claisen rearrangements – 1,3-dipolar cycloaddition reactions: types of dipoles, selectivity, scope and applications.

|       | LECTURE | TUTORIAL | PRACTICAL | SELF<br>STUDY | TOTAL |
|-------|---------|----------|-----------|---------------|-------|
| HOURS | 60      | 15       | -         | 15            | 90    |

#### TEXT BOOKS

- 1. J. March and M. B. Smith, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure; 7th Ed., Wiley, New York, 2013.
- 2. L. Finar, Organic Chemistry; Vol.II, 7th Ed., Pearson education Ltd, New Delhi, 2009.
- 3. R. T. Morrison and R. N. Boyd, Organic Chemistry, 7th Ed., Pearson, New Delhi, 2011.
- 4. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry; Parts A and B, 5th Ed., Springer, Germany, 2007.
- 5. T. H. E. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry; Addison-Wesley, USA, 1998.
- 6. P. S. Kalsi, Stereochemistry; Wiley eastern limited; New Delhi, 1993.
- 7. D. Nasipuri, Stereochemistry of Organic Compounds Principles and Applications; 2nd Ed., New Age International, New Delhi, 1994.
- 8. E. L. Eliel, and S. H. Wilen, Stereochemistry of Organic Compounds; John Wiley, New York, 1994.
- 9. J. D. Coyle, Organic Photochemistry; Wiley, New York, 1998.
- 10. J. M. Coxon, and B. Halton, Organic Photochemistry; 2nd Ed., Cambridge, University Press, UK, 1987

## REFERENCE BOOKS

- 1. R. K. Bansal, Organic Reaction Mechanisms; 11th Ed., Tata McGraw Hill, Noida, 2006.
- 2. R. K. Bansal, Organic Reaction Mechanisms; 11th Ed., Tata McGraw Hill, Noida, 2006.
- 3. J. Clayden, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry; 1st Ed., Oxford University Press, UK, 2000.
- 4. G. R. Chatwal, Organic Phtochemistry; 1st Ed., Himalaya Publications house, Bangalore, 1998.

**5.** S. Sankararaman, Pericyclic Reactions - A Textbook: Reactions, Applications and Theory; Wiley-VCH, New York, 2005.

#### **E RESOURCES**

- 1. http://nptel.ac.in/courses/104103071/21
- 2. https://www.youtube.com/watch?v=Ih7tQ7rY2Wc
- 3. <a href="http://nptel.ac.in/courses/104101005/">http://nptel.ac.in/courses/104101005/</a>
- 4. <a href="https://www.youtube.com/watch?v=12hmgzeiGo4">https://www.youtube.com/watch?v=12hmgzeiGo4</a>
- 5. https://www.youtube.com/watch?v=WEeFhsjn-lo

| COURSE     | CODE            | COURSE NAME                                  | L             | T         | SS         | P          | С          |  |
|------------|-----------------|----------------------------------------------|---------------|-----------|------------|------------|------------|--|
| YCY102     |                 | INORGANIC CHEMISTRY- I                       | 4             | 1         | 1          | 0          | 5          |  |
| PREREQ     | UISITE          | NIL                                          | L             | T         | SS         | P          | H          |  |
| C:P:A      |                 | 4.5: 0: 0.5                                  | 4             | 1         | 1          | 0          | 6          |  |
| COURSE     | OUTCO           | MES- On the successful completion of         |               | DOMAIN    |            |            | LEVEL      |  |
| the course | , student       | s will be able to                            |               |           |            |            |            |  |
| CO1        | Describ         | e the basic concepts of main group           | Cognitive     |           |            | Remember   |            |  |
|            | element         | S.                                           |               |           |            |            |            |  |
| CO2        | Explain         | the reactions of coordination compounds      | Cog           | Cognitive |            |            | Understand |  |
|            | and <i>esti</i> | <i>mate</i> the physical constants of the    |               |           |            |            |            |  |
|            | reaction        | S.                                           |               |           |            |            |            |  |
| CO3        | Summa           | rize the theories and bonding nature of      | Cog           | nitive    | ;          | Understand |            |  |
|            | coordina        | ation compounds.                             |               |           |            |            |            |  |
| CO4        | Identify        | and <i>understand</i> the reaction mechanism | Cog           | nitive    | !          | Und        | lerstand   |  |
|            | of four a       | and six coordinated compounds.               | and Affective |           |            |            |            |  |
| CO5        | Rewrite         | the basic concepts of photochemistry and     | Cognitive     |           | Understand |            |            |  |
|            | its appli       | cations to coordinated compounds.            |               |           |            |            |            |  |
| UNIT I     | MAIN            | GROUP CHEMISTRY                              | <u> </u>      |           |            | l          | 17         |  |

Chemistry of boron – borane, higher boranes, carboranes, borazines and boron nitrides – chemistry of silicon – silanes, higher silanes, multiple bonded systems, disilanes, silicon nitrides. P-N compounds, cyclophosphazanes and cyclophosphazenes – S-N compounds –  $S_2N_2$ ,  $S_4N_4$ , (SN)x, polythiazyl  $S_xN_4$  compounds – S-N cations and anions, S-P compounds – molecular sulphides such as  $P_4S_3$ ,  $P_4S_7$ ,  $P_4S_9$  and  $P_4S_{10}$  – homocyclic inorganic systems – oxocarbon anion. Ionic model – lattice energy – Born-Lande equation – Kapustinskii equation – high Tc superconductors – solid state reactions – tarnish reaction decomposition, solid-soild reaction and photographic process – factors affecting reaction rate.

## UNIT II PRINCIPLES OF COORDINATION CHEMISTRY

**17** 

Studies of coordination compounds in solution – detection of complex formation in solution – stability constants – stepwise and overall formation constants. Simple methods (potentiometric, pH metric and photometric methods) of determining the formation constants. Factors affecting stability – statistical and chelate effects – forced configurations.

## UNIT THEORIES OF METAL-LIGAND BOND III

Crystal field theory – splitting of d-orbitals under various geometries – factors affecting splitting – CFSE and evidences for CFSE (structural and thermodynamic effects). Spectrochemical series – Jahn-Teller distortion – spectral and magnetic properties of complexes – site preferences.Limitations of CFT – ligand field theory – MO theory – sigma-and pi-bonding in complexes – Nephelauxetic effect – the angular overlap model.

## UNIT IV | REACTION MECHANISM IN COORDINATION COMPLEXES

Kinetics and mechanism of reactions in solution – labile and inert complexes – ligand displacement reactions in octahedral and square planar complexes – acid hydrolysis, base hydrolysis and anation reactions. Trans effect – theory and applications – electron transfer reactions – electron exchange reactions – complementary and non-complementary types – inner sphere and outer sphere processes – application of electron transfer reactions in inorganic complexes – isomerisation and racemisation reactions of complexes. Molecular rearrangements of four- and six-coordinate complexes – interconversion of stereoisomers – reactions of coordinated ligands – template effect and its applications for the synthesis of macrocyclic ligands – unique properties.

## UNIT V INORGANIC PHOTOCHEMISTRY

20

Electronic transitions in metal complexes, metal-centered and charge-transfer transitions – various photophysical and photochemical processes of coordination compounds. Unimolecular charge-transfer photochemistry of cobalt(III) complexes – mechanism of CTTM, photoreduction – ligand-field photochemistry of chromium(III) complexes – Adamson's rules, photoactive excited states, V-C model – photophysics and photochemistry of ruthenium – polypyridine complexes, emission and redox properties. Photochemistry of organometallic compounds – metal carbonyl compounds – compounds with metal-metal bonding – Reinecke's salt chemical actinometer.

|       | LECTURE | TUTORIAL | PRACTICAL | SELF STUDY | TOTAL |
|-------|---------|----------|-----------|------------|-------|
| HOURS | 60      | 15       | -         | 15         | 90    |

#### **TEXT BOOKS**

- 1. M. C. Day, J. Selbin and H. H. Sisler, Theoretical Inorganic Chemistry; Literary Licensing (LLC), Montana, 2012.
- 2. F. A. Cotton and G. Wilkinson, C. A. Murillo and M. Bochmann, Advanced Inorganic Chemistry; 6th Ed., A Wiley Interscience Publications, John Wiley and Sons, USA, 1999.
- 3. J. E. Huheey, Inorganic Chemistry; 4th Ed., Harper and Row publisher, Singapore, 2006.
- 4. W. Adamson, Concept of Inorganic Photochemistry; John Wiley and Sons, New York, 1975.
- 5. S. F. A. Kettle, Physical Inorganic Chemistry A Coordination Chemistry Approach, Spectrum; Academic Publishers, Oxford University Press, New York, 1996.

## REFERENCE BOOKS

1. A. W. Adamson and P. D. Fleischauer, Concepts of Inorganic Photochemistry; R. E. Krieger Pubs,

Florida, 1984.

- 2. J. Ferraudi, Elements of Inorganic Photochemistry; Wiley, New York, 1988.
- 3. F. Basolo and R. G. Pearson, Mechanism of Inorganic Reactions; 2nd Ed., John Wiley, New York, 1967.
- 4. R. K. Sharma, Inorganic Reactions Mechanism; Discovery Publishing House, New Delhi, 2007.

## **E RESOURCES**

- 1. https://www.youtube.com/watch?v=YChUH\_XSZJ0
- 2. https://www.youtube.com/watch?v=7gNByyjaYrY
- 3. https://www.youtube.com/watch?v=Ox3pnVN47gw
- 4. https://www.youtube.com/watch?v=wq4XHcNBBgg

| COURSE    | E CODE            | YCY103                                                                                                               | L T SS                        |      | SS | P                 | C        |
|-----------|-------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------|------|----|-------------------|----------|
| COURSE    | E NAME            | PHYSICAL CHEMISTRY- I                                                                                                | 4                             | 1    | 1  | 0                 | 5        |
| PREREQ    | UISITE            | NIL                                                                                                                  | L                             | T    | SS | P                 | H        |
| C:P:A     |                   | 4.5: 0: 1.5                                                                                                          | 4                             | 1    | 1  | 0                 | 6        |
|           |                   | MES- On the successful completion of                                                                                 | DO                            | MAIN |    | LE                | VEL      |
| the cours | <u>e, student</u> | s will be able to                                                                                                    |                               |      |    |                   |          |
| CO1       |                   | the basic concept of symmetry elements orresponding point groups of given s.                                         | Cognitive Remember            |      |    |                   | member   |
| CO2       | quantum           | the theories of classical mechanics and mechanics of a microscopic particles <i>ict</i> the energy of the particles. | Cognitive Understand          |      |    |                   | derstand |
| CO3       | _                 | e the various theories of chemical of reactions.                                                                     | Cognitive Rememb              |      |    | member            |          |
| CO4       | _                 | the fundamentals of thermodynamic and e various thermodynamic parameters.                                            | Cognitive and Affective Recei |      |    | derstand<br>ceive |          |
| CO5       |                   | zed the photo physical properties of reactions.                                                                      | Cognitive                     |      |    | Un                | derstand |
| UNIT I    | CONCE             | PTS OF GROUP THEORY                                                                                                  |                               |      |    |                   | 18       |

Symmetry elements and operations – point groups – assignment of point groups to molecules – group postulates and types of groups – group multiplication tables, sub groups, similarity transformations – conjugate elements and classes.Matrix representation of symmetry operations and point groups – reducible and irreducible representations – properties of irreducible representation. The great orthogonality theorem – construction of character table – direct product – projection operators – symmetry of hybrid orbitals.

UNIT | QUANTUM CHEMISTRY – I | 19

Inadequacy of classical mechanics – black body radiation – Planck's quantum concept – photoelectric effect – Bohr's theory of hydrogen atom – hydrogen spectra – wave-particle dualism – uncertainty principle – decline of old quantum theory. Schrödinger equation – postulates of quantum mechanics – operator algebra: linear operator, Hermitian operators, eigen functions and eigenvalues, angular momentum operator – commutation relations and related theorems – orthogonality and normalization. Applications of wave mechanics to simple systems – particle in a box, one and three dimensional, particle with finite potential barrier – the quantum mechanical tunneling.

## UNIT CHEMICAL KINETICS - I III 17

Theories of reaction rate – absolute reaction rate theory (ARRT) – transmission coefficient, reaction coordinate – potential energy surfaces – kinetic isotope effect – Hinshelwood theory – Kassel, Rice and Ramsperger theory (KRRT) – Slater's treatment. Principle of microscopic reversibility – steady-state approximation – chain reactions: thermal and photochemical reactions between hydrogen and halogens – explosions and hydrogen-oxygen reactions.

| UNIT | STATISTICAL THERMODYNAMICS | 18 |
|------|----------------------------|----|
| IV   |                            |    |

Thermodynamic probability – probability theorems – relation between entropy and probability (Boltzmann-Planck equation), ensembles, phase space, Ergodic hypothesis, microstates and macrostates, Maxwell-Boltzmann distribution law– partition functions – translational, rotational, vibrational and electronic partition functions. Relationship between

partition functions and thermodynamic properties – calculation of equilibrium constants from partition functions – heat capacities of monatomic crystals – Einstein theory and Debye theory. Quantum statistics – Bose-Einstein (B.E.) and Fermi-Dirac (F.D.) distribution equations – comparison of B.E. and F.D. statistics with Boltzmann statistics – applications of quantum statistics to liquid helium, electrons in metals and Planck's radiation law – concept of negative Kelvin temperature.

## UNIT V FAST REACTION TECHNIQUES, PHOTOCHEMISTRY AND RADIATION CHEMISTRY

Introduction – flow methods (continuous and stopped flow methods) – relaxation methods (T and P jump methods) – pulse techniques (pulse radiolysis, flash photolysis) – shock tube method – molecular beam method – lifetime method. Photophysical processes of electronically excited molecules – Jablonski diagram. – Stern-Volmer equation and its applications – experimental techniques in photochemistry – chemical actinometers – lasers and their applications. Differences between radiation chemistry and photochemistry – sources of high energy radiation and interaction with matter – radiolysis of water, solvated electrons – definition of G value, Curie, linear energy transfer (LET) and Rad – scavenging techniques – use of dosimetry and dosimeters in radiation chemistry – applications of radiation chemistry.

|       | LECTURE | TUTORIAL | SELF STUDY | TOTAL |
|-------|---------|----------|------------|-------|
| HOURS | 60      | 15       | 15         | 90    |

#### **TEXT BOOKS**

- 1. F. A. Cotton, Chemical Applications of Group Theory; 3rd Ed., John Wiley and Sons, Singapore, 2003.
- 2. K. Chandra, Introductory Quantum Chemistry; 4th Ed., Tata McGraw Hill, Noida, 1994.
- 3. D. A. Mcquarrie, Quantum Chemistry; University Science Books, Sausalito, 2008.
- 4. K. J. Laidler, Chemical Kinetics; 3rd Ed., Tata McGraw Hill, Noida, 1987.
- 5. J. W. Moore and R. G. Pearson, Kinetics and Mechanism; 3rd Ed., John Wiley and Sons, New York, 1981.
- 6. M. Mortimer and P. G. Taylor, Chemical Kinetics and Mechanism; 1st Ed., Royal Society of Chemistry, UK, 2002.
- 7. J. N. Gurtu and A. Gurtu, Advanced Physical Chemistry; 5th Ed., Pragathi Prakashan, Meerut, 2006.
- 8. J. I. Steinfeld, J. S. Francisco and W. L. Hase, Chemical Kinetics and Dynamics; 2nd Ed., Prentice Hall, New Jersey, 1999.
- 9. P. W. Atkins, Physical Chemistry; 7th Ed., Oxford University Press, Oxford, 2001.
- 10. J. Rajaram and J. C. Kuriacose, Thermodynamics for Students of Chemistry Classical, Statistical and Irreversible; Pearson Education, New Delhi, 2013.
- 11. Horia Metiu, Physical Chemistry, Thermodynamics; Taylor and Francis, Singapore, 2006.
- 12. K. K. Rohatgi-Mukherjee, Fundamentals of Photochemistry; 3rd Ed., New Age International Pvt. Ltd., New Delhi, 2014.

## **REFERENCE BOOKS**

- 1. R. L. Flurry, Jr, Symmetry Groups: Theory and Chemical Applications; Prentice Hall, New Jersy, 1980.
- 2. S. F. A. Kettle, Symmetry and Structure; 2nd Ed., John Wiley and Sons, Chichester, 1995.
  - I. N. Levine, Quantum Chemistry; 5th Ed., Prentice Hall, New Jersey, 2000.
- 3. R. K. Prasad, Quantum Chemistry; 4th Ed., New Age International Publishers, New

- Delhi, 2014
- 4. K. S. Gupta, Chemical Kinetics and Reaction Mechanism; RBSA Publishers, Jaipur, India, 1992.
- **5.** J. W. T. Spinks and R. J. Woods, Introduction to Radiation Chemistry; 3rd Ed., John Wiley and Sons, New York, 1990.

## E RESOURCE

- 1. https://www.youtube.com/watch?v=pGerRhxNQJE
- 2. <a href="https://www.youtube.com/watch?v=R-x9KdNjQmo">https://www.youtube.com/watch?v=R-x9KdNjQmo</a>
- 3. https://www.youtube.com/watch?v=F\_NmS-Wy2lE
- 4. <a href="https://www.youtube.com/watch?v=6QXtnmB1vqk">https://www.youtube.com/watch?v=6QXtnmB1vqk</a>
- 5. <a href="https://www.youtube.com/watch?v=1zZ6rvh1cgw">https://www.youtube.com/watch?v=1zZ6rvh1cgw</a>

| COURS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SE CODE                               | COURSE NAME                                              | L                                                                                                           | Т                              | SS               | P                         | С                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|---------------------------|-------------------------------|
| YCY20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | INORGANIC<br>CHEMISTRY-II                                | 4                                                                                                           | 1                              | 1                | 0                         | 5                             |
| PRERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EQUISITE                              | NIL                                                      | L                                                                                                           | Т                              | SS               | P                         | Н                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                          | 4                                                                                                           | 1                              | 1                | 0                         | 6                             |
| COURS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | IES: On the successful come, students will be able to    | pletion of                                                                                                  | DO                             | OMAIN            | 1                         | LEVEL                         |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and bonding <b>Display</b> the g      |                                                          | plain the basic concepts of structure of organometallic compounds; ometries of organometallic Psychometrics |                                | Under            |                           | Remember<br>Understand<br>Set |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Summarize                             | and Report reaction mechanid organometallic compound     |                                                                                                             | Cogr                           | nitive<br>ctive  |                           | Understand<br>Respond         |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Explain the carbenes and chemical rea | Cogr                                                     | nitive<br>ctive                                                                                             | Understand<br>Apply<br>Respond |                  |                           |                               |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | principles of bioinorganic occation of various concepts. | chemistry                                                                                                   |                                | nitive<br>homoto | or                        | Analyze<br>Perception         |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                   | various metalloenzymes/<br>nyrins and their chemical pro | operties.                                                                                                   | Cogr                           | nitive           |                           | Remember                      |
| UNIT I  STRUCTUREANDBONDINGINORGANOMETALLICS  The 18 electron rule – applications and limitations – isolobal concept and its usefulness – uses of typical organometallics such as metal alloys and organometallic hydrides in organic synthesis.  Nitrosyl complexes – bridging and terminal nitrosyls, bent and linear nitrosyls – dinitrogen complexes – metallocene and arene complexes – metal carbenes, carbenes, carboxylate anions.  Classification based on captivity and polarity of M-C bond, organometallic compounds of lanthanides and actinides – fluxional organometallic compounds – organometallics in medicine, agriculture, horticulture and industry. |                                       |                                                          |                                                                                                             |                                |                  | near tes — 15+6 ond, onal |                               |

| UNIT II     | Ligand substitution-oxidative addition and reductive elimination-1,1 and 1,2-insertion-addition and elimination reactions-alkene isomerization - hydroboration hydrocyanation - hydrogenation of olefins -Wilkinson's catalyst - hydroformylation of olefins- Wacker-Schmidt synthesis- Monsanto acetic acid process- Eastman Halcon process- Fischer-Tropsch process- hydrosilylation.                                                                                                                                                                                                                                                                           |    |   |    |    |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|----|----|--|--|--|--|
| UNIT<br>III | CARBENES Fischer and Schrock carbenes –bonding & reactivity- Grubbs catalyst-carbines structure, synthesis and reactions- alkene meta thesis—mechanism- C-H and C- Cactivation –agnostic bonds-Ziegler-Natta polymerization of olefins -Heck reaction- The Pauson Khand reaction- Ene reaction.                                                                                                                                                                                                                                                                                                                                                                   |    |   |    |    |  |  |  |  |
| UNIT<br>IV  | GENERAL PRINCIPLES OF BIOINORGANIC CHEMISTRY Occurrence and availability of inorganic elements in biological systems— bio mineralization—control and assembly of advanced materials in biology— nucleation and crystal growth—various bio minerals—calcium phosphate— calcium carbonate—amorphous silica,iron bio minerals—strontium and barium sulphate. Function and transport of alkali and alkaline earth metal ions: characterization of K+,Na+,Ca <sup>2</sup> +and Mg <sup>2</sup> +—complexes of alkali and alkaline earth metal ions with macro cycles—ion channels—ion pumps, catalysis and regulation of bio energetic processes by the alkaline earth |    |   |    |    |  |  |  |  |
| UNIT V      | metal ions – Mg <sup>2+</sup> and Ca <sup>2+</sup> .  METALLOPORPHYRINS/METALLOENZYMES  Dioxygen transport and storage-hemoglobin and myo globin:electronic and spatial structures-hemeythrin and hemocyanine- syntheticoxygen carriers, model systems-blue copper proteins (Cu)-iron-sulfur proteins (Fe)-cyto chromeselectron transport chain-carbon monoxide poisoning-iron enzymes-peroxidase, catalase and cytochrome P-450, copper enzymes-super oxide dismutase, vitamin B12 and B12 co enzymes, photo synthesis-photo system- I &II, nitrogen fixation, cisplatin.  LECTURE TUTORIAL PRACTICAL SELF STUDY TOTAL HOURS                                     |    |   |    |    |  |  |  |  |
|             | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |   |    |    |  |  |  |  |
| HOURS       | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 | - | 15 | 90 |  |  |  |  |

- 1. J. E. Huheey, Inorganic Chemistry; 4th Ed., Harper and Row Publishers, Singapore, 2006.
- 2. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; Thomson Learning, Boston, 1980.
- 3. S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry; Panima Publishing Company, New Delhi, 1997.
- 4. W. Kaim and B. Schewederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; 2nd Ed., John Wiley and Sons, New York, USA, 2013.
- 5. G. L. Eichhorn, Inorganic Biochemistry; Volumes 1 and 2, 2nd Ed., Elsevier Scientific Publishing Company, New York, 1975.
- 6. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry; 6th Ed., John Wiley and Sons, New York, 1999.
- 7. R. C. Mehrotra and A. Singh, Organometallic Chemistry; 2nd Ed., New Age International Ltd. New Delhi, 2014.
- 8. R. H. Crabtree, The Organometallic Chemistry of the Transition Metals; 3rd Ed., John Wiley and Sons, New York, 2001.
- 9. S. E. Kegley and A. R. Pinhas, Problems and Solutions in Organometallic Chemistry; 2nd Ed., University Science Books, Oxford University Press, 1986.
- 10. A. J. Pearson, Advances in Metal-Organic Chemistry, Vol. 1; Jai Press, Inc., Greenwich, 1989.
- 11. A. W. Parkins and R. C. Poller, An Introduction to Organometallic Chemistry; 1987, Oxford University Press, Chennai.
- 12. I. Haiduc and J. J. Zuckerman, Basic Organometallic Chemistry; Walter De Gruyter Inc, USA, 1985.
- 13. P. Powell, Principles of Organometallic Chemistry; 2nd Ed., Chapman and Hall, London, 1988.
- 14. B. Douglas, D. H. McDaniel and J. J. Alexander, Concepts and Models of Inorganic Chemistry; 3rd Ed., John Wiley and sons, New York, 1994.
- 15. M. Bochmann, Organometallics 1: Complexes with transition metal-carbon bonds; Oxford Chemistry Primers Series, No. 12, and M. Bochmann, Organometallics 2: Complexes with transition metal-carbon bonds; No. 13, 1994.
- **16.** J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, California, 1987

| COU                                       | OURSE YCY202                                       |                                      | L         | T         | SS     | P        | С           |  |
|-------------------------------------------|----------------------------------------------------|--------------------------------------|-----------|-----------|--------|----------|-------------|--|
| COD                                       | CODE                                               |                                      |           |           |        |          |             |  |
| COU                                       | RSE                                                | PHYSICAL CHEMISTRY-II                | 4         | 1         | 1      | 0        | 5           |  |
| NAM                                       | $\mathbf{E}$                                       |                                      |           |           |        |          |             |  |
| PRER                                      | EQUISIT                                            | NIL                                  | L         | T         | SS     | P        | Н           |  |
| E                                         |                                                    |                                      |           |           |        |          |             |  |
|                                           |                                                    |                                      |           |           | 1      | 0        | 6           |  |
| COU                                       | RSE OUT                                            | TCOMES: On the successful            |           | DOMAIN    |        |          | LEVEL       |  |
| compl                                     | completion of the course, students will be able to |                                      |           |           |        |          |             |  |
| CO1                                       | Explain t                                          | he principle of electrochemistry and | Cognitive |           |        | Und      | Understandi |  |
|                                           | basics of                                          | conductivity of electrolytes and     |           |           |        |          | ng          |  |
|                                           | related con                                        | ncepts.                              |           |           |        |          |             |  |
| CO2                                       | Describe                                           | the physical aspects of molecular    | Cognitive |           |        | Remember |             |  |
| spectroscopy and interaction of           |                                                    |                                      |           |           |        |          |             |  |
| electromagnetic radiation with monoatomic |                                                    |                                      |           |           |        |          |             |  |
|                                           | and diator                                         | nic molecules.                       |           |           |        |          |             |  |
| CO3                                       | Interpret                                          | third law of thermodynamics and      | Cogn      | itive Aff | ective | App      | oly         |  |

|       | thermodynamicpropertiesofrealgases                                                  | Receiving  |
|-------|-------------------------------------------------------------------------------------|------------|
| CO4   | <b>Describe</b> the principle of kinetics of chain, Cognitive Affective             | Remember   |
|       | photochemical, acid-base catalysis, reversible                                      | Responding |
|       | and irreversible reactions.                                                         |            |
| CO5   | Apply and Identify the various concepts of Cognitive                                | Apply      |
|       | adsorption and free energy reaction at                                              | Remember   |
|       | interphase.                                                                         |            |
| UNI   | ELECTROCHEMISTRY-I                                                                  |            |
|       | Ion transport in solution - migration, convention and diffusion -Fick's             |            |
| ΤI    | laws of diffusion conduction - influence of ionic atmosphere on the                 |            |
|       | conductivity of electrolytes-The Debye Huckel-Onsager equation for                  |            |
|       | the equivalent conductivity of electrolytes - experimental verification             |            |
|       | of the equation - conductivity at high field and at high frequency -                |            |
|       | conductivity of non aqueous solutions-effect of ion association on                  |            |
|       | conductivity. The electrode-electrolyte interface-electrical double                 |            |
|       | layer-electro capillary phenomena-Lippmann equation - the Helmholtz-                | 12+6       |
|       | Perrin - Guoy-Chapmann and Stern models, electrokinetic phenomena                   |            |
|       | Tiseiius method of separation of protons of proteins - membrane                     |            |
|       | potential.                                                                          |            |
| UNI   | MOLECULAR SPECTROSCOPY                                                              |            |
|       | Einstein coefficient of absorption and transition probabilities -basis of           |            |
| TII   | selection rules -Representation of spectra -the width and intensity of              |            |
|       | spectra transitions oscillator strength. Electronic spectra -electronic             |            |
|       | spectra of molecules -Born Oppenheimer approximation -vibrational                   |            |
|       | coarse structure -Franck-condon principle -dissociation energy -fortrat             |            |
|       | diagram -Pre-dissociation -various types of transitions -solvent effect             |            |
|       | on spectra. Infra red spectra -vibrational spectra -selection rules -               |            |
|       | harmonic and anharmonic oscillators -vibration and rotation spectra of              |            |
|       | diatomic molecules -vibration spectra of polyatomic molecules -normal               |            |
|       | vibration and normal coordinates -Influence of rotation on the spectra              | 12 (       |
|       | of polyatomic molecules -parallel and perpendicular bands -FTIR.                    | 12+6       |
|       | Laser Raman spectra -rotational Raman spectra of linear molecules -                 |            |
|       | vibrational Raman spectra -rotational fine structure -Fermi resonance.              |            |
| UNI   | CLASSICAL THERMODYNAMICS                                                            |            |
| TF.   | Thirdlaw,thermodynamics,needforit,Nernstheattheoremandother                         |            |
| T     | formsofstatingthethirdlaw. Thermodynamic quantities at absolute zero, app           |            |
| III   | arent exceptionstothethirdlaw-                                                      |            |
|       | thermodynamicsofsystemsofvariablecomposition,partial                                |            |
|       | molarproperties, chemical potential, relationship between partial molar qua         |            |
|       | ntities,Gibbs                                                                       |            |
|       | Duhemequation and its applications (the experimental determination of parti         | 12+6       |
|       | almolar propertiesnotincluded)-                                                     | 12+0       |
|       | thermodynamic properties of real gases, fugacity concept,                           |            |
|       | calculation of fugacity of real gas, activity and activity coefficient, concept, de |            |
|       | finition,                                                                           |            |
|       | standard states and experimental determinations of activity and activity coeff      |            |
|       | icientof electrolytes.                                                              |            |
| UNI   | CHEMICAL KINETICS                                                                   |            |
| T IV  | Theories of reaction rate -Absolute reaction rate theory (ARRT) -                   |            |
| 1 1 1 | significance of reaction coordinate -Potential energy surfaces -Kinetic             |            |
|       | isotopic effect -molecular dynamics -Marcus theory of electron transfer             | •          |

|     | 60 30 -                                                                                                                           |                                                |              |                     |          |         |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------|---------------------|----------|---------|--|--|--|
| HOU | RS                                                                                                                                | LECTURE                                        | TUTORIAL     | PRACTICAL           | TOTA     | L HOURS |  |  |  |
|     | _                                                                                                                                 | muir-Rideal mechani                            |              |                     |          |         |  |  |  |
|     | Langmuir-Hinshelwood mechanism of bimolecular reaction -                                                                          |                                                |              |                     |          |         |  |  |  |
|     | of surface in catalysis: semiconductor catalysis -n-and p-type surfaces -kinetics of surface reaction involving adsorbed species. |                                                |              |                     |          |         |  |  |  |
|     |                                                                                                                                   |                                                |              |                     |          |         |  |  |  |
|     |                                                                                                                                   | lles -solubilisation -r                        |              |                     |          | 12+6    |  |  |  |
|     |                                                                                                                                   | ding electro kinet                             |              |                     |          |         |  |  |  |
|     |                                                                                                                                   | suring surface tens                            |              |                     |          |         |  |  |  |
|     |                                                                                                                                   | faces -soluble and in                          | _            | _                   | _        |         |  |  |  |
|     |                                                                                                                                   | rption -determination<br>em -solid-liquid inte | <del>-</del> |                     | -        |         |  |  |  |
|     | _                                                                                                                                 | ram -Lennard-Jones                             | •            |                     |          |         |  |  |  |
| TV  |                                                                                                                                   | energy                                         |              |                     |          |         |  |  |  |
| UNI |                                                                                                                                   |                                                |              |                     |          |         |  |  |  |
|     |                                                                                                                                   | on LFER -Hammett a                             |              | •                   |          |         |  |  |  |
|     |                                                                                                                                   | ation. Acid-base cata                          | •            | •                   | Bronsted |         |  |  |  |
|     | influ                                                                                                                             | lume of                                        |              |                     |          |         |  |  |  |
|     |                                                                                                                                   | strength                                       |              |                     |          |         |  |  |  |
|     |                                                                                                                                   | ions. Factors influence                        |              |                     |          | 12+6    |  |  |  |
|     |                                                                                                                                   | een hydrogen and h                             |              | -                   |          |         |  |  |  |
|     | 1 -                                                                                                                               | oximation. Chain rea                           | -            |                     | •        |         |  |  |  |
|     | proce                                                                                                                             | esses -Principle of                            | microscopic  | reversibility -Stee | dv-state |         |  |  |  |

## REFERENCES

- 1. K. Chandra, Introductory Quantum Chemistry, 4th ed., Tata McGraw Hill, 1994.
- 2. R. K. Prasad, Quantum Chemistry, 2nd ed., New Age International Publishes (2000),
- 3. I. N. Levine, Quantum Chemistry, 4th ed., Prentice Hall of India Pvt Ltd., (1994),
- 4. D. A. McQuarrie, Quantum Chemistry, University Science Books (1998),
- 5. S. Glasstone, Introduction to Theoretical Chemistry, Affiliated East-West Press
- 6. G. N. Barrow, Introduction to Molecular Spectroscopy, International Mc.Graw Hill Edition (1993),
- 7. G. N. Barrow, Introduction to Molecular Spectroscopy, International McGraw Hill Student Edition (1984),
- 8. B. P. Straughan and S. Walker, Spectroscopy, Vol.I to III, Chapman Hall, London (1976),
- 9. S. Glasstone, Thermodynamics for Chemists, East-west Affiliated Pvt Ltd, New Delhi (1969),
- 10. R. P. Rastogi and R. R. Misra, An Introduction to Chemical Thermodynamics Vikas Publishing House Pvt Ltd., (1992),
- 11. Kloz and P. M. Rosenberg, Chemiscal Thermodynamics: Basics Theory and Methods, 3rd ed., W. A. Benjamin, NY (1974),
- 12. K. J. Laidler, Chemical Kinetics, 2nd ed, Tata McGraw Hill (1975),
- 13. A. A. Frost and R. G. Pearson, Kinetics and Mechanisms, John Wiley & Sons (1953),
- 14. J. C. Kuriacose and J. Rajaram, Kinetics and Mechanisms Transformations, Macmillan & Co., (1993).
- **15.** P. W. Atkins, Advanced Physical Chemistry, 7th ed., Clarendon (2002)

| COURSE CODE      | YCY301               | L   | T   | P   | C   |
|------------------|----------------------|-----|-----|-----|-----|
| COURSE NAME      | ORGANIC CHEMISTRY II | 4   | 1   | 0   | 5   |
|                  |                      | L   | T   | P   | Н   |
| C: P: A          | 4.5:0:0.5            | 4   | 1   | 0   | 5   |
| COURSE OUTCOMES: |                      | Dom | ain | Lev | zel |

| COU   | RSE OUTCOMES:                                                                                                                                 | Domain                 | Level                  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|
| CO1   | <b>Recall</b> and <b>summarize</b> the nucleophilic substitution reactions of aliphatic and aromatic compounds.                               | Cognitive              | Remember<br>Understand |
| CO2   | Outline the reaction mechanism of electrophilic substitution reactions and explain the structure and orientation of the substituted products. | Cognitive              | Remember<br>Understand |
| CO3   | <i>Identify</i> the reagents of various rearrangement reaction and <i>illustrate</i> the mechanism of the addition and elimination reactions  | Cognitive              | Apply<br>Understand    |
| CO4   | <b>Recognize</b> and <b>Interpret</b> the preparation and properties <b>of</b> various heterocyclic compounds                                 | Cognitive<br>Affective | Understand<br>Receive  |
| CO5   | <i>Understand</i> and <i>Examine</i> the structural components of various of natural products.                                                | Cognitive<br>Affective | Analyze<br>Receive     |
| IINIT | I - NUCLEOPHILIC SUBSTITUTION REACTION                                                                                                        | NS                     | 15                     |

LEOPHILIC SUBSTITUTION REACTIONS

Aliphatic nucleophilic substitution – mechanisms – SN1, SN2, SNi – ion-pair inSN1 mechanisms – neighbouring group participation, non-classical carbocations – substitutions at allylic and vinylic carbons. Reactivity – effect of structure, nucleophile, leaving group and stereochemical factors - correlation of structure with reactivity - solvent effects rearrangements involving carbocations - Wagner-Meerwein and dienone-phenol rearrangements.

Aromatic nucleophilic substitutions – SN1, SNAr, Benzyne mechanism – reactivity orientation – Ullmann, Sandmeyer and Chichibabin reaction – rearrangements involving nucleophilic substitution – Stevens – Sommelet- Hauser and von-Richter rearrangements.

# **UNIT II - ELECTROPHILIC SUBSTITUTION REACTIONS**

Aromatic electrophilic substitution reaction – orientation, reactivity and mechanisms based on transition state theory with suitable reactions - substitutions in thiophene and pyridine – N-oxide quantitative treatment of the structural effects on reactivity. Substituent effects - origins of Hammett equation - principles of Hammett correlation - effect of structure on reaction mechanisms Hammett parameters  $-\sigma$  and  $\rho$ , modified forms of Hammett equation, Taft Equation.

Aliphatic electrophilic substitution – SE2, SEi and SE1 mechanisms – diazonium coupling reactions – metals as electrophile in substitution reactions and decomposition of diazonium salts.

# **UNIT III - ADDITION AND ELIMINATION REACTIONS**

15

Addition to carbon-carbon multiple bonds – electrophilic, nucleophilic and free radical additions – orientation of the addition – stereochemical factors influencing the addition of bromine and hydrogen bromide, hydroxylation, 1,2- dihydroxylation – hydroboration leading to formation of alcohols - oxidation and ozonolysis. Addition to carbonyl and conjugated carbonyl systems – mechanism – Grignard reagents – 1,2- and 1,4-additions (lithium dimethylcuprate) – addition to

carbon-oxygen double bond - Benzoin, Knoevenagel, Stobbe, Darzens glycidic ester condensation and Reformatsky reactions.

Elimination reactions - mechanisms; E1, E2, E1cB - stereochemistry of elimination, Hofmann's and Zaitsev's rules - competition between elimination and substitution pyrolytic cis-elimination, Chugaev reaction – examples such as Hofmann degradation, Cope elimination – Bredt's rule with examples.

## **UNIT IV - HETEROCYCLES**

15

Nomenclature: Trivial, systematic and replacement nomenclature – nonaromatic heterocycles – synthesis of tetrahydrofurans – pyrrolidines – tetrahydropyrans – piperidines. Synthesis and reactivity of heterocycles: aziridines – oxiranes – thiiranes – azetidines – oxetanes – oxazoles – imidazoles – thiazoles – isooxazoles. Synthesis and reactivity of aromatic heterocycles: pyrazoles – isothiazoles – triazoles – pyrimidines – purines – triazines – pyridazines – pyrazines.

## **UNIT V - NATURAL PRODUCTS**

15

Terpenoids: introduction – biosynthesis of menthol, camphor – total synthesis: Takasago synthesis of menthol, Corey's synthesis of longifolene, Curran's synthesis of hirsutene.

Steroids: introduction – partial synthesis of androsterone and testosterone (from Cholesterol) – total synthesis: Johnson's synthesis of progesterone and Vollhardt's synthesis of estrone. Alkaloids: introduction – biosynthesis of nicotine, camptothecin – total synthesis: Corey's synthesis of epibatidine, Comin's asymmetric synthesis of Camptothecin and Woodward's synthesis of reserpine.

| LECTURE | TUTORIALS | SELF STUDY | PRACTICAL | TOTAL |
|---------|-----------|------------|-----------|-------|
| 60      | 15        | -          | -         | 75    |

#### **TEXT BOOKS**

1. S. H. Pine and J. B. Hendrickson, D. J. Cram and G. S. Hammond, Organic Chemistry; 5th

Ed., McGraw Hill, Noida, (1987).

2. T. H. E. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry; 3rd Ed.,

Benjamin-Cummings Publishing, USA, (1997).

- 3. J. March and M. B. Smith, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 6th Ed., Wiley, New York, (2007).
- 4. J. Clayden, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry, 2nd Ed., Oxford

University Press, UK, (2012).

5. I. L. Finar, Organic Chemistry; Vol.II, 7th Ed., Pearson Education Ltd., New Jersey, (2009).

#### **REFERENCES**

- 1. R. K. Bansal, Reaction Mechanism in Organic Chemistry; Tata McGraw Hill, Noida, (1990)
- 2. F. A. Carey, and R. J. Sundberg, Advanced Organic Chemistry, Parts A and B, 5<sup>th</sup> Ed., Springer, Germany, (2007).
- 3. E. J. Corey, and X-M. Cheng, The Logic of Chemical Synthesis; 1st Ed., Wiley-Interscience,

New York, (1995).

- 4. T. L. Gilchrist, Heterocyclic Chemistry; 3rd Ed., Prentice Hall, New Jersey, 1997.
- 5. R. K. Bansal, Heterocyclic Chemistry; 3rd Ed., Wiley Eastern Ltd, New Delhi, 1999.
- 6. K. C. Nicolaou and E. J. Sorensen, Classics in Total Synthesis, Targets, Strategies, Methods; Wiley VCH, Germany, 1996.
- 7. Longifolene: F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry; Vol.2. 5th Ed., Springer, Berlin, 2008.
- 8. Androsterone and Testosterone: J. Chem. Soc. Perkin Trans. I; 1986, 117.
- 9. Epibatidine: J. Org. Chem; 1993, 58, 5600.
- 10. Estrone, Estradiol and 2-Methoxyestradiol: J. Org. Chem; 2009, 74, 6362.

| YCY305                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                              | T                                               | P                                     | C                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------|---------------------------------------|------------------|
| 1 C 1 303                                                                                                                                                                  | ANALYTICAL CHEMISTRY                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                              | 1                                               | 0                                     | 5                |
| PREREQUISITES                                                                                                                                                              | NIL                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                              | Т                                               | P                                     | Н                |
| C:P:A                                                                                                                                                                      | 4.4:0:0.6                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                              | 1                                               | 0                                     | 5                |
| COURSE OUTCOME                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                    | Domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Leve                           | el                                              |                                       |                  |
| CO1 Describe the base                                                                                                                                                      | sic principle of instrumental                                                                                                                                                                                                                                                                                                      | Cognitive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                              | embe                                            | ,                                     |                  |
| CO2 Classify the var show their signi                                                                                                                                      | ious types of analytical error and ficance.                                                                                                                                                                                                                                                                                        | Cognitive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :                              | embe                                            |                                       |                  |
| CO3 Inspect the appl chromatography                                                                                                                                        | ication ofvarious techniques in .                                                                                                                                                                                                                                                                                                  | Cognitive<br>Affective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ana<br>Rece                    | •                                               |                                       |                  |
|                                                                                                                                                                            | nciples and instrumentation of l and fluorescence techniques.                                                                                                                                                                                                                                                                      | Cognitive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Understand,<br>Analyze         |                                                 |                                       |                  |
| Examine the co techniques.                                                                                                                                                 | ncept of electroanalytical                                                                                                                                                                                                                                                                                                         | Cognitive<br>Affective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ana                            | lyze,                                           | Resp                                  | ond              |
| UNIT I: INSTRUMEN                                                                                                                                                          | TAL METHODS OF ANALYS                                                                                                                                                                                                                                                                                                              | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                                 |                                       | 15               |
|                                                                                                                                                                            | ions of extended X-ray absorption                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                                                 |                                       |                  |
|                                                                                                                                                                            | otion (SEXAFS) – atomic abso                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | py (A                          | AS)                                             | – fl                                  | ame              |
| UNIT II: DATA AND                                                                                                                                                          | FES) – turbidimetry – theory and a                                                                                                                                                                                                                                                                                                 | applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                                 |                                       | 15               |
| pinomial distribution, population and sample, estimators, repeatability Hypothesis testing, leveneans t-Test, paired t-TCurve fitting, fitting of residuals – general poly | - accuracy, precision, significant the Poisson distribution and nor mean, variance, standard deviation and reproducibility of measurements of confidence and significance test – analysis of variance (ANOV). Innear equations, simple linear canomial equation fitting, linearizing altiple linear regression analysis, example 1 | rmal distribution on, way of quoting ents.  e, test for an outlie A) – correlation an asses, weighted line of transformations, of the correlations, of the correlations are correctly as the correlations of the correlations. | - dender, tested regreear case | scribi<br>rtainty<br>ing va<br>ession<br>se, an | ng o<br>y, ro<br>ariar<br>ı.<br>alysi | data<br>businces |
|                                                                                                                                                                            | principles of ion exchange                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                              |                                                 |                                       |                  |
| chromatography tech<br>constants and their u<br>methods, estimations,                                                                                                      | niques – columns, adsorbents,<br>ses – HPTLC, HPLC technique<br>preparative column – GC-MS to                                                                                                                                                                                                                                      | methods, Rf va<br>es – adsorbents,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lues,<br>colum                 | McRons, d                                       | eyno<br>letec                         | old's<br>tion    |
| uses.<br>UNIT_IV: THERMO                                                                                                                                                   | ANALYTICAL METHODS ANI                                                                                                                                                                                                                                                                                                             | D FLUORESCEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ICE                            |                                                 |                                       | 15               |

**SPECTROSCOPY** 

Principles – instrumentations and applications of thermogravimetry analysis (TGA), Differential Thermal Analysis (DTA) and Differential Scanning - Calorimetry (DSC) –thermometric titrations – types – advantages.

Basic aspects of synchronous fluorescence spectroscopy – spectral hole burning – flow cytometry – fluorometers (quantization) – instrumentation – applications.

## **UNIT V: ELECTROANALYTICAL TECHNIQUES**

**15** 

Electrochemical sensors, ion-sensitive electrodes, glass - membrane electrodes, solid-liquid membrane electrodes - ion-selective field effect transistors (ISFETs) - sensors for the analysis of gases in solution.

Po larography – principles and instrumentation – dropping mercury electrode – advantages – Ilkovic equation – applications of polarography – polarographic maxima – oscillographic polarography, AC polarography – cyclic voltammetry – advantages over polarographic techniques – chronopotentiometry – advantages – controlled potential coulometry – amperometric titrations: principles – techniques – applications – estimation of lead.

| LECTURE | TUTORIAL | SELF STUDY | PRACTICAL | TOTAL |
|---------|----------|------------|-----------|-------|
| 60      | 15       | -          | -         | 75    |

#### **TEXT BOOKS**

- 1. D. B. Hibbert and J. J. Gooding, Data Analysis for Chemistry; Oxford UniversityPress, UK, 2006.
- 2. J. Topping, Errors of Observation and Their Treatment; 4th Ed., Chapman Hall, London, (1984).
- 3. A. Braithwaite and J. F. Smith, Chromatographic Methods; 5th Ed., Springer, Germany; (1995).
- 4. V. K. Srivastava and K. K. Srivastava, Introduction to Chromatography; 2nd Ed., Holden Day,

New York, (1985).

- 5. H. H. Willard, L. L. Merritt, J. A. Dean and F. A. Settle, Instrumental Methods of Analysis; 6th
  - Ed., CBS Publishers and Distributors, Chennai, (1986).
- 6. D. A. Skoog, D. M. West and D. J. Holler, Fundamentals of Analytical Chemistry, 7th Ed., Harcourt College Publishers, Singapore, (2004).
- 7. A. Sharma, S. G. Schulman, Introduction to Fluorescence Spectroscopy; Wiley- Interscience, New York, (1999).

#### REFERENCES

- 1. C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy; 4<sup>th</sup> Ed., Tata McGraw-Hill, New Delhi, (1994).
- 2. A. I. Vogel, Text Book of Quantitative Inorganic Analysis; 6th Ed., Longman, New Delhi, (2000).
- 3. D. C. Harris, Quantitative Chemical Analysis; 4th Ed., W. H. Freeman Publications, New York, (1995).
- 4. S. C. Gupta, Fundamentals of Statistics; 6th Ed., Himalaya Publications, Delhi, (2006).

| RSE CODE COURSE NAME                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                  | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| YEC304A PHARMACEUTICAL CHEMISTRY                             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| QUISITES                                                     | Nil                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                  | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                              | 4:0:1                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| E OUTCOMES                                                   |                                                                                                                                                                                                                                                        | DOMA                                                                                                                                                                                                                                                                                                                                                                                             | AIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Recall</b> the varie                                      | ous terminology of pharmaceutical                                                                                                                                                                                                                      | Cognit                                                                                                                                                                                                                                                                                                                                                                                           | ive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ren                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nemb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| chemistry.                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CO2 Outline the structural aspects of antibiotics and        |                                                                                                                                                                                                                                                        | Cognitive                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <i>relate</i> their functions                                |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>Illustrate</i> the b                                      | iologicalactivities of analgesic and                                                                                                                                                                                                                   | Cognit                                                                                                                                                                                                                                                                                                                                                                                           | ive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ren                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nemb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| antipyretics.                                                |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                              |                                                                                                                                                                                                                                                        | Affecti                                                                                                                                                                                                                                                                                                                                                                                          | ive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Summarize the                                                | activities of anaesthetics and local                                                                                                                                                                                                                   | Cognit                                                                                                                                                                                                                                                                                                                                                                                           | ive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unc                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lersta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ınd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| anaesthetics.                                                |                                                                                                                                                                                                                                                        | Affecti                                                                                                                                                                                                                                                                                                                                                                                          | ive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Information that                                             | various concents of clinical chamistry                                                                                                                                                                                                                 | Cognit                                                                                                                                                                                                                                                                                                                                                                                           | ive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lyze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>Inference</i> the various concepts of clinical chemistry. |                                                                                                                                                                                                                                                        | Affective                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BASICS O                                                     | F PHARMACEUTICALCHEMISTR                                                                                                                                                                                                                               | RY                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                              | A QUISITES  E OUTCOMES  Recall the various chemistry.  Outline the serelate their function functions.  Illustrate the beantipyretics.  Summarize the anaesthetics.  Inference the various functions for the series functions for the series functions. | A PHARMACEUTICAL CHEMISTR QUISITES Nil 4:0:1  E OUTCOMES  Recall the various terminology of pharmaceutical chemistry.  Outline the structural aspects of antibiotics and relate their functions  Illustrate the biological activities of an algesic and antipyretics.  Summarize the activities of an aesthetics and local an aesthetics.  Inference the various concepts of clinical chemistry. | A PHARMACEUTICAL CHEMISTRY  QUISITES  Nil  4:0:1  E OUTCOMES  Recall the various terminology of pharmaceutical chemistry.  Outline the structural aspects of antibiotics and relate their functions  Illustrate the biological activities of an algesic and antipyretics.  Affection of the various concepts of clinical chemistry.  Inference the various concepts of clinical chemistry.  Cognitical chemistry.  Cognitical chemistry.  Cognitical chemistry.  Cognitical chemistry. | A PHARMACEUTICAL CHEMISTRY QUISITES Nil 4:0:1 4:0:1 4:0:1  E OUTCOMES DOMAIN  Recall the various terminology of pharmaceutical chemistry.  Outline the structural aspects of antibiotics and relate their functions  Illustrate the biological activities of an algesic and antipyretics.  Affective  Summarize the activities of an aesthetics and local anaesthetics.  Inference the various concepts of clinical chemistry.  Cognitive Affective  Cognitive Affective | A PHARMACEUTICAL CHEMISTRY  QUISITES  Nil  4:0:1  4:0:1  E OUTCOMES  Recall the various terminology of pharmaceutical chemistry.  Outline the structural aspects of antibiotics and relate their functions  Illustrate the biological activities of an algesic and antipyretics.  Affective  Summarize the activities of anaesthetics and local anaesthetics.  Inference the various concepts of clinical chemistry.  PHARMACEUTICAL CHEMISTRY  4  1  T  Affective  Ren  Cognitive  Ren  Cognitive  Ren  Affective  Res  Cognitive  Ana  Affective  Res | A PHARMACEUTICAL CHEMISTRY  QUISITES  Nil  4:0:1  E OUTCOMES  Recall the various terminology of pharmaceutical chemistry.  Outline the structural aspects of antibiotics and relate their functions  Illustrate the biological activities of an algesic and antipyretics.  Summarize the activities of anaesthetics and local anaesthetics.  Affective  Summarize the various concepts of clinical chemistry.  Inference the various concepts of clinical chemistry.  Cypital To P  A 1 0  DOMAIN  LEVEL  Cognitive  Cognitive  Hemembrate  Understate  Affective  Remembrate  Cognitive  Affective  Respond  Cognitive  Analyze  Affective  Respond |

Definitions – the terms – drugs, pharmacology, pharmacy, chemotherapy, therapeutics – pharmacologically active principles in plants – first aid – important rules of first aids, cuts, fractures, bleeding for blood, maintaining breathing burns and first aid box – tuberculosis (t.b.), jaundice, piles, typhoid, malaria, cholera – causes – symptoms, diagnosis – prevention and treatment – medicinally important compounds of iron – ferrous gluconate, ferrous sulphate and ferric ammonium citrate.

# UNIT II ANTIBIOTICS

15

Definition – introduction – classification and biological actions – penicillin, chloramphenicol, streptomycin and tetracycline – structure, properties and therapeutic uses – chemical structure and pharmacological activity – effect of unsaturation, chain length, isomerism, halogens, amino groups, hydroxyl groups and acid groups.

## UNIT III ANALGESIC AND ANTIPYRETICS

15

Narcotic analgesic – analgesic action of morphine – derivatives of morphine – heroin and apomorphine – synthetic analgesics – pethidine, methadone – nonnarcotic analgesic – aspirin, paracetamol and phenacetin – analgin – preparation, properties and uses – ibuprofen and ketoprofen – structure and uses.

## UNIT IV ANAESTHETICS AND LOCAL ANAESTHETICS

15

Characteristics of anaesthetics – classification of anaesthetics – general anaesthetics – volatile anaesthetics – ether, chloroform and halothane – advantages and disadvantages – non-volatile anaesthetics (intravenous anaesthetics) – methohexitone and propanidid – structure and uses – cocaine and amethocaine – structure and uses – benzocaine and procaine – structure, synthesis and uses.

# UNIT V CLINICAL CHEMISTRY

15

Determination of sugar (glucose) in serum – *o*-toluidine method – diagnostic test for sugar in urine – Benedict's test – detection of diabetes – detection of cholesterol in urine – detection of anaemia – estimation of haemoglobin (Hb concentration) – red cell count.

| LECTURE | TUTORIAL | SELF STUDY | PRACTICAL | TOTAL |
|---------|----------|------------|-----------|-------|
| 60      | 15       | -          | -         | 75    |

## **TEXT BOOKS**

1. Jayashree Ghosh, A Text Book of Pharmaceutical Chemistry; 5th Ed., S.Chand and Company Ltd., New Delhi, (2014).

#### **REFERENCES**

1. S. Lakshmi; Pharmaceutical Chemistry; 1st Ed., S. Chand and Company Ltd., New Delhi,

(1995).

2. Bhagavathi Sundari; Applied Chemistry; 1st Ed., MJP Publishers, Chennai, (2006).

| <b>YEC403</b>                                                                                                                                                                                                                                                                                                                              | E CODE                                                                                                                                                                   | COURSE NAME                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | L                                                   | Т                                                                                 | C                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                            | BB                                                                                                                                                                       | INDUSTRIAL CHEMISTRY                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                | 5                                                   |                                                                                   |                                          |
|                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                | L                                                   | T                                                                                 | H                                        |
| C:P:A                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          | 3.75:0.75:0.5                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | 4                                                   | 1                                                                                 | 5                                        |
| COURS                                                                                                                                                                                                                                                                                                                                      | E OUTCOME                                                                                                                                                                | S: On the successful completion                                                                                                                                                                                                                                                                                                                                                                                      | DON                                                                            | MAIN                                                | L                                                                                 | EVEL                                     |
|                                                                                                                                                                                                                                                                                                                                            | urse, students 1                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |                                                     |                                                                                   |                                          |
| CO1                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                          | basic ideas of an industry and                                                                                                                                                                                                                                                                                                                                                                                       | Cognit                                                                         | ive                                                 |                                                                                   | ember                                    |
|                                                                                                                                                                                                                                                                                                                                            | industrial was                                                                                                                                                           | tes.                                                                                                                                                                                                                                                                                                                                                                                                                 | D 1                                                                            |                                                     |                                                                                   | erstand                                  |
| <u></u>                                                                                                                                                                                                                                                                                                                                    | D1                                                                                                                                                                       | 1 D                                                                                                                                                                                                                                                                                                                                                                                                                  | Psycho                                                                         |                                                     | Set                                                                               | 4 1                                      |
| CO2                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                        | nd <i>Report</i> the preparation and petroleum and petrochemicals.                                                                                                                                                                                                                                                                                                                                                   | Cognit<br>Affect                                                               |                                                     | Resp                                                                              | erstand                                  |
|                                                                                                                                                                                                                                                                                                                                            | properties or p                                                                                                                                                          | betroleum and petrochemicals.                                                                                                                                                                                                                                                                                                                                                                                        | Affect                                                                         | IVC                                                 | Kesp                                                                              | Ollu                                     |
| CO3                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                      | Cognit                                                                         | 11/0                                                | Linds                                                                             | erstand                                  |
| COS                                                                                                                                                                                                                                                                                                                                        | <i>Identify</i> the ro                                                                                                                                                   | ole and functions of portland                                                                                                                                                                                                                                                                                                                                                                                        | Cogini                                                                         | 100                                                 | Appl                                                                              |                                          |
|                                                                                                                                                                                                                                                                                                                                            | cement.                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                      | Affect                                                                         | ive                                                 | Resp                                                                              | •                                        |
| CO4                                                                                                                                                                                                                                                                                                                                        | <i>List</i> the vario                                                                                                                                                    | ous process involved in the paper                                                                                                                                                                                                                                                                                                                                                                                    | Cognit                                                                         |                                                     | Anal                                                                              |                                          |
|                                                                                                                                                                                                                                                                                                                                            | industry                                                                                                                                                                 | r i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                              | Psycho                                                                         |                                                     |                                                                                   | eption                                   |
| CO5                                                                                                                                                                                                                                                                                                                                        | Outline the p                                                                                                                                                            | preparation and mode of action of                                                                                                                                                                                                                                                                                                                                                                                    | Cognit                                                                         |                                                     | Anal                                                                              | -                                        |
|                                                                                                                                                                                                                                                                                                                                            | soaps, deterge                                                                                                                                                           | ents and perfumes.                                                                                                                                                                                                                                                                                                                                                                                                   | Psycho                                                                         | motor                                               | Perc                                                                              | eption                                   |
| SYLLAI                                                                                                                                                                                                                                                                                                                                     | BUS:                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |                                                     |                                                                                   |                                          |
| UNIT I                                                                                                                                                                                                                                                                                                                                     | Basic Idea                                                                                                                                                               | s and Industrial Wastes                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                     |                                                                                   |                                          |
| Basics idea about unit operation – flow chart – chemical conversion – batch versus continuous processing – chemical process selection – design – chemical process control. Types of industrial wastes – treatment of wastes or effluent with organic impurities – treatment of wastes or effluent with inorganic impurities – treatment of |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |                                                     |                                                                                   | ic 15                                    |
| some imp                                                                                                                                                                                                                                                                                                                                   | portant chemica                                                                                                                                                          | <del>_</del>                                                                                                                                                                                                                                                                                                                                                                                                         | г                                                                              |                                                     |                                                                                   | of                                       |
| some imp                                                                                                                                                                                                                                                                                                                                   | portant chemica  Petroleum                                                                                                                                               | <del>_</del>                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |                                                     |                                                                                   | of                                       |
| UNIT II Introduct hydrocar – aromat beat – n                                                                                                                                                                                                                                                                                               | Petroleum tion – saturate bons – unsaturatic hydrocarbon                                                                                                                 | ll wastes.                                                                                                                                                                                                                                                                                                                                                                                                           | s – us<br>ene, pro                                                             | es of<br>pylene,<br>ified sp                        | saturate<br>butyler                                                               | od le n 15                               |
| UNIT II Introduct hydrocar – aromat beat – n                                                                                                                                                                                                                                                                                               | Petroleum<br>tion – saturate<br>bons – unsatura<br>tic hydrocarbon<br>nethylated spiri<br>micals in India.                                                               | and Petrochemicals  ed hydrocarbons from natural gasted hydrocarbons – acetylene, ethylas – toluene and xylene. Preparation                                                                                                                                                                                                                                                                                          | s – us<br>ene, pro                                                             | es of<br>pylene,<br>ified sp                        | saturate<br>butyler                                                               | od le n 15                               |
| Introduct<br>hydrocar<br>– aromat<br>beat – n<br>petrocher<br>UNIT II<br>Introduct<br>cement,<br>cement.                                                                                                                                                                                                                                   | Petroleum tion — saturate bons — unsaturate hydrocarbon nethylated spiri micals in India.  I Manufact ction — types of acid resisting Setting of cen                     | and Petrochemicals  ed hydrocarbons from natural gasted hydrocarbons – acetylene, ethylas – toluene and xylene. Preparation t – preparation of absolute alcohology                                                                                                                                                                                                                                                   | s – us<br>ene, pro<br>n of rect<br>l from                                      | es of pylene, ified sprectified                     | saturate<br>butyler<br>birit froi<br>l spirit<br>eent, sla<br>ozzolan             | d 15 ne 15 ne 15                         |
| Introduct<br>hydrocar<br>– aromat<br>beat – n<br>petrocher<br>UNIT II<br>Introduct<br>cement,<br>cement.                                                                                                                                                                                                                                   | Petroleum tion — saturate bons — unsaturate tic hydrocarbon nethylated spiri micals in India.  I Manufact ction — types of acid resisting Setting of cem —concrete — cen | and Petrochemicals  ed hydrocarbons from natural gasted hydrocarbons – acetylene, ethylas – toluene and xylene. Preparation t – preparation of absolute alcoholure of Cement  freement – high alumina cement, was cement, white cement, colouratent – properties of cement – testi                                                                                                                                   | s – us<br>ene, pro<br>n of rect<br>l from                                      | es of pylene, ified sprectified                     | saturate<br>butyler<br>birit froi<br>l spirit<br>eent, sla<br>ozzolan             | d 15 15 15 15 15 15 15 15 15 15 15 15 15 |
| Introduct hydrocar – aromat beat – n petrocher UNIT II  Introduct cement, cement UNIT IV  Introduct pulp, Rag                                                                                                                                                                                                                              | Petroleum  tion – saturate bons – unsaturate hydrocarbon nethylated spiri micals in India.  I Manufact ction – types of acid resisting Setting of cerr concrete – cer    | and Petrochemicals  ed hydrocarbons from natural gasted hydrocarbons – acetylene, ethylos – toluene and xylene. Preparation t – preparation of absolute alcoholure of Cement  Cement – high alumina cement, was cement, white cement, colournent – properties of cement – testiment industries in India.  Paper and Manufacture of Paper ture of pulp – types of pulp – sulpg, refining, filling, sizing and colouri | s – us<br>ene, pro<br>n of rect<br>l from n<br>ater pro<br>ed cem<br>ing of co | es of pylene, ified sprectified poof cement, Pement | saturate<br>butyler<br>pirit from<br>d spirit<br>nent, sla<br>ozzolan<br>– uses ( | de d |

Introduction – types of soaps – hard and soft soaps – manufacture of soap (hot and continuous process only) – cleansing action of soap – detergents – surface active agents - biodegradability of surfactants, amphoteric detergents. Introduction – production of natural perfumes – flower perfumes – jasmine, rose and lily – production of synthetic perfumes – muscone and nitro-musks.

15

# **REFERENCE BOOKS:**

- 1. B. K. Sharma, Industrial Chemistry; 8th Ed., Goel Publishing House, New Delhi, 1997.
- 2. R. N. Shreve, and J. A. Brink Jr. Chemical Process Industries; 4th Ed., McGraw Hill, Toronto, 1977.
- 3. A. C. S. Brain, Production and Properties of Industrial Chemicals; Reinhold, New York, 1989.

|       | LECTURE | TUTORIAL | SELF- | TOTAL |
|-------|---------|----------|-------|-------|
|       |         |          | STUDY | HOURS |
| Hours | 60      | 15       | -     | 75    |

| COURS  | E CODE                                              | COU                                                     | RSE NAM       | E                        |       |                        | L T C                 |              |      |
|--------|-----------------------------------------------------|---------------------------------------------------------|---------------|--------------------------|-------|------------------------|-----------------------|--------------|------|
| YEC404 | YEC404B CHEMISTRY OF NANOSCIENCE AND NANOTECHNOLOGY |                                                         | CE AND        | 4                        | 1     | 5                      |                       |              |      |
|        |                                                     |                                                         |               |                          |       |                        | L                     | T            | H    |
| C:P:A  |                                                     | 4.4:0                                                   | :0.6          |                          |       |                        | 4                     | 1            | 5    |
|        | E OUTCOI<br>urse, studen                            |                                                         |               | essful comple            | etion | DOMAIN                 |                       | LI           | EVEL |
| ČO1    | Outline<br>nanomateri                               | the                                                     | synthetic     | methods                  | of    | Cognitive Psychomotor  |                       | mem<br>derst |      |
| CO2    | Compare t                                           |                                                         | erties and cl | haracterizatio           | on of | Cognitive<br>Affective | Understand<br>Respond |              |      |
| CO3    | <b>Predict</b> the reactions of nanoparticles       |                                                         |               | Cognitive  Affective     | Ap    | derst<br>ply<br>spon   |                       |              |      |
| CO4    | Classify the                                        | sify theapplications of carbon clusters and structures. |               | Cognitive<br>Psychomotor | An    | alyze                  | e                     |              |      |
| CO5    | <i>List</i> the ro in nanodev                       | role and significance of nanoparticles evice.           |               | Cognitive<br>Psychomotor |       | alyze<br>rcep          |                       |              |      |

#### **SYLLABUS:**

| UNIT I                                                                                                                                                                                                                                         | Synthetic Methods                                                     |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|
| Definition of                                                                                                                                                                                                                                  | nanodimensional materials – historical milestones – unique properties |  |  |  |  |
| due to nanosize, quantum dots, classification of nanomaterials.General methods of synthesis of nanomaterials – hydrothermal synthesis, solvothermal synthesis –                                                                                |                                                                       |  |  |  |  |
| microwave irradiation—sol-gel and precipitation technologies—combustion flame—chemical vapour condensation process—gas-phase condensation synthesis—reverse                                                                                    |                                                                       |  |  |  |  |
| micelle synthesis – polymer-mediated synthesis–protein microtubule-mediated synthesis – synthesis of nanomaterials using microorganisms and other biological agents – sonochemical synthesis –hydrodynamic cavitation. Inorganic nanomaterials |                                                                       |  |  |  |  |
| - typical examples – nano TiO <sub>2</sub> /ZnO/CdO/CdS, organic nanomaterials – examples –                                                                                                                                                    |                                                                       |  |  |  |  |
| rotaxanes and                                                                                                                                                                                                                                  | d catenanes                                                           |  |  |  |  |
| UNIT II                                                                                                                                                                                                                                        | Characterisation of Nanoscale Materials                               |  |  |  |  |

| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f Atomic Force Microscopy (AFM) – Transmission Electron<br>(TEM) Resolution and Scanning Transmission Electron                                                                                                                                                                                                                                                                                                          |    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| Microscopy (STEM) – Scanning Tunneling Microscopy (STM) – Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ptical Microscopy (SNOM).Scanning ion conductance microscope,                                                                                                                                                                                                                                                                                                                                                           |    |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ermal microscope, scanning probe microscopes and surface                                                                                                                                                                                                                                                                                                                                                                |    |  |
| plasmon spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                         |    |  |
| UNIT III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reactions in Nanoparticles                                                                                                                                                                                                                                                                                                                                                                                              |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nanospace – nanoconfinement – nanocapsulesCavitands, cucurbiturils, D.Fs, porous silicon, nanocatalysis.                                                                                                                                                                                                                                                                                                                | 15 |  |
| UNIT IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Carbon Clusters and Nanostructures                                                                                                                                                                                                                                                                                                                                                                                      |    |  |
| C60-alkali of Carbon nand characterizated oping – for the characterizated char | rbon bond – new carbon structures – carbon clusters – discovery of doped C60–superconductivity in C60–larger and smaller fullerenes. otubes – synthesis – single walled carbon nanotubes – structure and tion – mechanism of formation – chemically modified carbon nanotubes unctionalizing nanotubes – applications of carbon nanotubes. Nanowires trategies – gas phase and solution phase growth – growth control – | 15 |  |
| UNIT N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | anotechnology and Nanodevices                                                                                                                                                                                                                                                                                                                                                                                           |    |  |
| device desig<br>polymerase<br>Protein nand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nanomaterial – DNA – knots and junctions, DNA – nanomechanical and by Seeman. Force measurements in simple protein molecules and – DNA complexes–molecular recognition and DNA based sensor. Darray, nanopipettes, molecular diodes, self-assembled nanotransistors, mediated transfection.                                                                                                                             | 15 |  |

#### **REFERENCE BOOKS:**

- 1. C. N. R. Rao, A. Muller and A. K. Cheetham (Eds), The Chemistry of Nanomaterials: Vol. 1 and 2; Wiley-VCH; Germany, Weinheim, 2004.
- 2. C. P. Poole, Jr. and F. J. Owens, Introduction to Nanotechnology; Wiley Interscience, New Jersey, 2003.
- 3. K. J. Klabunde (Ed), Nanoscale Materials in Chemistry; 2nd Ed., Wiley-Interscience, New York, 2009.
- 4. T. Pradeep, Nano: The Essentials in Understanding Nanoscience and Nanotechnology; 1st Ed., Tata McGraw Hill, New York, 2007.
- 5. H. Fujita (Ed.), Micromachines as Tools in Nanotechnology; Springer-Verlag, Berlin, 2003.
- 6. Bengt Nolting, Methods in Modern Biophysics; 3rd Ed., Springer-Verlarg, Berlin, 2009.
- 7. H. Gleiter, Nanostructured Materials: Basic Concepts, Microstructure and Properties, Elsevier, Chennai, 2000.
- 8. W. Kain and B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; 2nd Ed., John-Wiley R Sons, New York, 2013.

| Hours | LECTURE | TUTORIAL | SELF-STUDY | TOTAL HOURS |
|-------|---------|----------|------------|-------------|
|       | 60      | 15       | -          | 75          |

# **M.Phil Chemistry**

| COURSE CODE | ZQCY201                              | L | T | P | SS | C |
|-------------|--------------------------------------|---|---|---|----|---|
| COURSE NAME | NANOCHEMISTRY AND<br>GREEN CHEMISTRY | 4 | 4 | 0 | 0  | 8 |
| C:P:A       | 3.6:0:0.4                            | L | T | P | SS | Н |
|             |                                      | 4 | 4 | 0 | 0  | 8 |

## UNIT I INTRODUCTION TO NANOCHEMISTRY

12

Definition of Nanodimensional materials- Historical milestones in the saga of nano forms – properties -Size effects – Importance of Nanomaterials – Classification of Nanomaterials – unique properties of Nanosized materials – Elementary aspects of bio nanotechnology-Recent discoveries in nanoscience and technology.

UNIT II 12

# **TECHNIQUES IN NANOCHEMISTRY**

Nano scale material-characterization techniques- Atomic Force Microscopy (AFM)-Transmission Electron Microscopy (TEM) - Resolution and Scanning Transmission Electron Microscopy (STEM)- Scanning Tunneling Microscopy (STM)- Scanning Nearfield Optical Microscopy (SNOM) and Surface Plasmon Spectroscopy.

#### PHOTOCHEMISTRY AND ELECTROCHEMISTRY OF NANO ASSEMBLIES

Semiconductor Nanoparticles – Photo-induced charge transfer processes – Electrochemistry of Semiconductors –Nanostructures – Nanostructural Oxide films modified with dyes and redox chromophores –Electrochemistry of metal Nanostructures – Particles – Nanoelectrodes Biosensors – Chemical sensors.

# UNIT III BIOMINERALISATION 12

Biomineralisation – Control and assembly of advanced materials in Biology – Nucleation and crystal growth – Biominerals – calcium phosphate –calcium carbonate - amorphous silica, Iron biominerals, Strontium and barium sulphates.

## INORGANIC NANOPARTICLES AD NANOPOROUS MATERIALS

Oxide Nanoparticles –Oxomolybdates – Nanocatalysis – Porous silicon - Transition and Nontransition metal phosphates.

## UNIT IV | CARBON CLUSTERS AND NANOSTRUCTURES

**12** 

Nature of carbon bond – New Carbon structures –Carbon clusters: Discovery of  $C_{60}$  – Alkali doped  $C_{60}$  – Superconductivity in  $C_{60}$ - Larger and smaller fullerenes. Carbon Nanotubes: Synthesis – Single walled carbon nanotubes – Structure and characterization – Mechanism of formation – Chemically modified carbon nanotubes – Doping – Functionalized nanotubes – Application of carbon nanotubes. Nanowires – Synthetic strategies – Gas phase and solution phase growth – Growth control – Properties.

# UNIT V GREEN CHEMISTRY FOR CLEAN TECHNOLOGY

Introduction – Goals and significance of Green Chemistry –Basic components of Green Chemistry Research -12 Principles - Green Strategies -Green chemistry in practice - Alternative feed stocks on starting materials, Alternative reagents on transformations, Alternative reaction conditions, Alternative products on target molecules, atom economy, Functional group approaches to green chemistry, Elimination of toxic functional group-Optimization of frameworks for the design of greener Systematic Pathways- Industrial applications of green chemistry-Products from Natural materials- Green solvents- Green Energy – E-Green Propellants Zeolites.

|       | LECTURE | TUTORIAL | PRACTICAL | SELF STUDY | TOTAL |
|-------|---------|----------|-----------|------------|-------|
| HOURS | 60      | 0        | 0         | 0          | 60    |

## **TEXT BOOKS**

- 1. C.N.R. Rao, A.Muller, A.K.Cheetam (Eds), The chemistry of Nanomaterials, Vol.1, Wiley-VCH, Weinheim, 2004.
- 2. C.P.Poole, F.J.Owens, Introduction to Nanotechnology Wiley Interscience, New Jersey, 2003.
- 3. Kenneth J. Klabunde (Ed), Nanoscale materials in chemistry, Wiley Interscience, New York, 2001.
- 4. T.Pradeep, Nano: The Essentials in understanding nanoscience and nanotechnology, Tata McGraw Hill, New Delhi, 2007.
- 5. H.Fujita (Ed), Micromachines as tools in nanotechnology, Springer-Verlag, Berlin, 2003
- 6. Sengt Nolting, Methods in modern biophysics, Springer-Verlag, Berlin, First Indian Reprint, 2004.
- 7. H.Gletier, Nanostructured Materials: Basic Concepts, Microstructure and properties. Acta materialia, Elsevier, 2000.
- 8. W.Kain and B.Schwederski, Bioinorganic chemistry: Inorganic Elements in the Chemistry of Life, John-Wiley R Sons, New York.
- 9. T.Tang and P.Sheng(Eds), Nanoscience and Technology- Novel Structure and Phenomena, Taylor & Francis, New York, 2004.
- 10. A.Nabok, Organic and Inorganic Nanostructures, Artech House, Boston, 2005.
- 11. J.M.Lehn, Supramolecular Chemistry-Concepts and Perspectives, V.C.H, 1995.

| COURS       | SE CODE                                                                                  | ZQCY202                                       | L     | T        | P    | SS | C |  |
|-------------|------------------------------------------------------------------------------------------|-----------------------------------------------|-------|----------|------|----|---|--|
| COURSE NAME |                                                                                          | ELECTRO CHEMISTRY AND                         | 4     | 0        | 0    | 0  | 4 |  |
|             |                                                                                          | CORROSION                                     |       |          |      |    |   |  |
| C:P:A       |                                                                                          | 3.6:0:0.4                                     | L     | T        | P    | SS | Н |  |
|             | 1                                                                                        |                                               |       |          |      | 0  | 4 |  |
| CO1         | Explain pr                                                                               | inciples of electrochemistry and different te | rms o | of corre | sion | •  |   |  |
| CO2         | Classify and explain Characteristic features, causes and remedial measures of            |                                               |       |          |      |    |   |  |
|             | different forms of corrosion.                                                            |                                               |       |          |      |    |   |  |
| CO3         | Describe the principal and different methods of corrosion protection.                    |                                               |       |          |      |    |   |  |
| CO4         | Explain corrosion rate expressions and testing methods.                                  |                                               |       |          |      |    |   |  |
| CO5         |                                                                                          |                                               |       |          |      |    |   |  |
| UNIT I      |                                                                                          |                                               |       |          |      |    |   |  |
| Basic co    | Basic concents of conductance – Kohlraush's law and conductometric titrations –electrode |                                               |       |          |      |    |   |  |

Basic concepts of conductance – Kohlraush's law and conductometric titrations –electrode potentials– Nernst equation: derivation and problems - reversible and irreversible cells – electrolytic and electrochemical cells– emf and its measurements - types of electrodes-reference electrodes - primary and secondary - glass electrode - determination of pH using quinhydrone and glass electrodes - electrochemical series and its applications - Galvanic cells and concentration cells - potentiometric titrations - redox titrations.

# UNIT II INTRODUCTION TO CORROSION 12

Cost of Corrosion – Definition of Corrosion – Environments – Corrosion Damage – Classification of Corrosion.- Chemical Corrosion: Electrochemical Corrosion Corrosion Principles: Introduction – Corrosion Rate Expressions. Electrochemical Aspects: Electrochemical Reactions – Polarisation – passivity, Environmental Effects: Thermodynamic and Kinetics of Electrode Processes- Polarization Curves, Over-Potential, Passivity and Transpassivity, Pourbaix diagram for Metal Water System Effect of oxygen and oxidizers – Effect of Velocity – Effect of temperature – Effects of Corrosive concentration – Effect of Galvanic Coupling – Metallurgical Aspects.

# UNIT III BIOMINERALISATION

**12** 

Characteristic features, causes and remedial measures of different forms of corrosion: Dry & Wet corrosion, Uniform, Galvanic, Crevice, Pitting, Crevice, Erosion, Intergranular, Selective leaching, Stress corrosion cracking, Hydrogen Damage, Liquid metal attack, Liquid metal embrittlement, Chemical degradation of non-metallic materials like rubbers, plastics, ceramics etc. Surface Films – Velocity – Turbulence – Impingement - Galvanic Effect - Dezincification Characteristics, Mechanism, prevention – Graphitization – Other Alloy systems- Hydrogen Blistering – Hydrogen Embrittlement – Prevention.

#### UNIT IV FORMS OF CORROSION

**12** 

Principles of corrosion prevention, Material selection and design aspects - electrochemical protection – sacrificial anode method and impressed current cathodic method. Control of environment including Inhibitors and Passivators, Coatings – metallic, inorganic, organic, Electroplating of copper, Nickel and Chromium, electroless plating, Anodising, Galvanizing, Thermal spraying, Alloy plating: Chemical and electrochemical polishing: Phosphating, Chromating, Chemical colouring. Corrosion testing methods.

# UNIT V ELECTROANALYTICAL METHODS

12

Electroanalytical measurement: Potentiometric Technique, Potentiostatic Technique, voltammogram. Thermodynamics and Potentials. Ion-selective electrodes (ISE), glass electrodes, liquid membrane electrodes, solid-state electrodes, applications of ISEs. Potentiometry: Potential step experiments, potential sweep experiments. Reactions controlled by rate of electron transfer, electrical double layer. Cyclic voltammetry-Applications, spectroelectrochemistry, electrochemiluminescence (ecl), Scanning Electron Microscopy, Scanning Probe Microscopy. Electrode scanning tunneling microscopy (stm), atomic force microscopy (afm), scanning electrochemical microscopy (secm), electrochemical quartz crystal, microbalance (eqcm), impedance spectroscopy. Controlled potential techniques: Controlled potential, , polarography, the ilkovic equation, pulse voltammetry, ac voltammetry, stripping analysis, flow analysis.

|       | LECTURE | TUTORIAL | PRACTICAL | SELF<br>STUDY | TOTAL |
|-------|---------|----------|-----------|---------------|-------|
| HOURS | 60      | 0        | 0         | 0             | 60    |

#### **TEXT BOOKS**

#### **Textbooks:**

- 1. Emerging Trend in Corrosion Control Evaluation, Monitoring and Solution, Editors: A.
- S. Khanna, K. S. Sharma and A. K. Sinha, Academia Books International.
- 2. Surface Modification Technologies An Engineer's Guide by T. S. Sudarshan, Marcel Dekker
- 3. Electroplating and Other Surface Treatments A Practical Guide' by C. D. Varghese, TMH

Surface Treatments for Protection, The Institute of Metallurgists Wear of Metals by A. D. Sarkar

- 4. Corrosion and Corrosion Control, 3rd ed., H.H.Uhlig Wiley, 1986
- 5. An introduction to electrometallurgy- Satya Narayan & Rajendra Sharan, Standard Publishers & Distributors, New Delhi
- 6. An introduction to metallic corrosion & its prevention by Rajnarain.
- 7. Wang, Joseph, Analytical Electrochemistry, 3th edition, John Wiley & Sons, New Jersy, 2006.

#### REFERENCES

- 1. Donald R. Askeland Pradeep P. Phulé, The Science and Engineering of Materials, 4th ed. (req. for corrosion part, Chapter 22)
- 2. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications,

2nd Ed., John Wiley & Sons, New York, 2001. ISBN: 0-471-04372-9.

- 3. Denny A Jones, Principles and Prevention of Corrosion (second edition), Prentice-Hall, N. J. (1996).
- 4. M. G. Fontana, Corrosion Engineering (Third Edition) McGraw-Hill Book Company(NY) (1987).

# **PhD Chemistry Syllabus**

| COUR<br>CODE                                                                                                                               | COURSE CODE RCY010 L T P                |                                                                                                                                                                                              | P     | SS   | Н     | C     |       |            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------|-------|-------|------------|--|
| COURSE<br>NAME                                                                                                                             |                                         | Organic Solar Cells Theory and<br>Practice                                                                                                                                                   |       | 0    | 0     | 0     | 3     | 3          |  |
| C:P:A                                                                                                                                      |                                         | 3:0:0                                                                                                                                                                                        |       |      |       |       |       |            |  |
| COUR                                                                                                                                       | SE OUTC                                 | OMES:                                                                                                                                                                                        | D     | oma  | in    |       | Lev   | el         |  |
| CO1 Describe the difference between the three generations of solar cells and able to distinguish between different solar cell technologies |                                         |                                                                                                                                                                                              |       |      |       |       | derst | erstanding |  |
| CO2                                                                                                                                        | <i>Identify</i> the solar cells         | ne different steps in the theory behind the                                                                                                                                                  | Co    | gnit | tive  | Rei   | mem   | bering     |  |
| CO3                                                                                                                                        | -                                       | ne most common polymerization methods cterization techniques used with the                                                                                                                   | Co    | gnit | tive  | A     | Appl  | pplying    |  |
| CO4                                                                                                                                        |                                         | ferent kinds of degradation behaviours -<br>ut decay curves,                                                                                                                                 | Co    | gnit | tive  |       | Crea  | Creating   |  |
| SYLL                                                                                                                                       | ABUS                                    |                                                                                                                                                                                              |       |      |       |       | H     | OURS       |  |
| UNIT                                                                                                                                       | I Solar                                 | Cells and Life Cycle Analysis                                                                                                                                                                |       |      |       |       |       | 4          |  |
| techno<br>Four                                                                                                                             | logies -Dif<br>steps of li<br>and energ | heir place as a renewable energy - Different<br>ference between the three generations of states of the cycle analysis Embedded energy, energy payback time.<br>It is and Polymer Solar Cells | solar | · ce | lls - |       |       | 5          |  |
| The th                                                                                                                                     | eory behin                              | d the solar cells - Efficiency of a solar cell nd their function - Applications of the solar                                                                                                 |       |      | ent l | layer | S     |            |  |
|                                                                                                                                            |                                         | ials in Solar Cells                                                                                                                                                                          |       |      |       |       |       | 5          |  |
| method                                                                                                                                     | ds -Charac                              | ers and side chains - Low band gap polymer<br>terization techniques used with the mate<br>he active layer of organic solar cells.                                                            |       |      |       |       |       |            |  |
| UNIT IV Stability and Degradation                                                                                                          |                                         |                                                                                                                                                                                              |       |      |       |       |       | 5          |  |
|                                                                                                                                            |                                         | f degradation behaviours - Decay curves, ben different ISOS standards.                                                                                                                       | ourn- | in a | and   | T80   | -     |            |  |
|                                                                                                                                            |                                         |                                                                                                                                                                                              |       | Tot  | al H  | lours |       | 19         |  |

| COUR<br>CODE                          | REVOID I I I P SS I H I                            |                                                                                                                                                                                                                                                   |                              |                             |                              |                                  |                      | C         |
|---------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|------------------------------|----------------------------------|----------------------|-----------|
| COURSE<br>NAME                        |                                                    | Material Behaviour                                                                                                                                                                                                                                | 3                            | 0                           | 0                            | 0                                | 3                    | 3         |
| C:P:A                                 |                                                    | 3:0:0                                                                                                                                                                                                                                             | l                            | l                           |                              |                                  |                      |           |
| COUR                                  | SE OUTC                                            | OMES:                                                                                                                                                                                                                                             | D                            | oma                         | in                           |                                  | Lev                  | el        |
| CO<br>1                               | Describe to                                        | the core principles of materials science and the concept of the microstructure-g-properties relationship                                                                                                                                          |                              | gnit                        |                              | Uno                              | derst                | anding    |
| CO<br>2                               |                                                    | ne structure of the atom, how atoms interact other, and how those interactions affect roperties.                                                                                                                                                  | Co                           | gnit                        | ive                          | Rei                              | mem                  | bering    |
| CO<br>3                               |                                                    | lattice structure of a crystalline material in mines the properties of that material.                                                                                                                                                             | Co                           | gnit                        | ive                          | A                                | Appl                 | ying      |
| CO<br>4                               |                                                    | ow defects - deviations from the expected cture - also have a large effect on properties.                                                                                                                                                         | Co                           | gnit                        | ive                          |                                  | Crea                 | ting      |
| SYLL                                  | ABUS                                               |                                                                                                                                                                                                                                                   |                              |                             |                              |                                  |                      | HOU<br>RS |
| UNIT                                  | I Introd                                           | luction                                                                                                                                                                                                                                           |                              |                             |                              |                                  |                      | 3         |
| cerami<br>suitabl                     | c, polyme<br>e materia<br>ties relatio             | terials science - Different general materiar, etc.) - properties - material's propert for a simple application- microstructunship.  c Structure and Bonding                                                                                       | ies-c                        | choo                        | sing                         | ga                               |                      | 4         |
| materi<br>occurs<br>implica<br>Arrang | ure of the al propert three typations of gement of | atom, atoms interacts with each otheries. Types of atoms present in a material es of primary bonds - metallic, ionic, and the type of bonding on the material atoms among themselves as a natural resunship between a material's microstructure a | - kin<br>cov<br>l m<br>lt of | nd o<br>aler<br>icro<br>the | of boot, a<br>ostro<br>ir si | ondir<br>nd tl<br>uctur<br>ze ar | ng<br>he<br>e.<br>nd |           |
|                                       |                                                    | alline Structure                                                                                                                                                                                                                                  |                              | •                           | •                            |                                  |                      | 5         |
| crystall                              | lographic p                                        | -                                                                                                                                                                                                                                                 | s o                          | f a                         | ı m                          | ateri                            | al -                 |           |
| UNIT IV Point Defects and Diffusion   |                                                    |                                                                                                                                                                                                                                                   |                              |                             |                              |                                  |                      | 4         |
| dimens<br>atoms                       | ional, or po<br>(interstitial<br>tutional sol      | ns from the expected microstructure - Effect of bint, defects which can be missing atoms (value solution) or the wrong type of atom aution). Diffusion - the movement of atoms to                                                                 | canc                         | ies)<br>lat                 | or o                         | exces<br>poin                    | s<br>it              |           |
|                                       |                                                    |                                                                                                                                                                                                                                                   |                              | ı                           | Tota                         | al Ho                            | urs                  | 1<br>6    |