

# **Criterion 1 – Curricular Aspects**

| Key Indicator | 1.1   | Curriculum Design and Development                              |
|---------------|-------|----------------------------------------------------------------|
| Metric        | 1.1.3 | Average percentage of courses having focus on employability/   |
|               |       | entrepreneurship/ skill development offered by the department. |

# **DEPARTMENT OF MATHEMATICS**

## SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

| S. No. | Programme Name                    |
|--------|-----------------------------------|
| i.     | Bachelor of Science (Mathematics) |
| ii.    | Master of Science (Mathematics)   |

2. Syllabus of the courses as per the list.

| Legend : | Words highlighted with Blue Color   |
|----------|-------------------------------------|
|          | Words highlighted with Red Color    |
|          | Words highlighted with Purple Color |

- Entrepreneurship
- Employability
- Skill Development

## 1. List of Courses

| Name of the Course                                  | Course<br>Code | Year of<br>Introduction | Activities/Content with direct<br>bearing on Employability/<br>Entrepreneurship/ Skill<br>development |
|-----------------------------------------------------|----------------|-------------------------|-------------------------------------------------------------------------------------------------------|
|                                                     | B.Sc. Ma       | athematics              |                                                                                                       |
| Communication Skills in English                     | XGL101         | 2018-19                 | Employability: Assignment &<br>Seminar. To acquire basic<br>Learning skills                           |
| Fundamental Physics                                 | XPG103         | 2018-19                 | Employability: Assignment,<br>Seminar and Group discussions                                           |
| Foundation Course in Mathematics                    | XMT104         | 2018-19                 | Employability: Assignment,<br>Seminar and Quiz                                                        |
| Differential Calculus & Integral<br>Calculus        | XMT105         | 2018-19                 | Employability: Assignment,<br>Seminar and Quiz                                                        |
| Human Ethics, Values, Rights and<br>Gender Equality | XUM106         | 2018-19                 | Employability: Assignment,<br>Seminar and Quiz                                                        |
| Fundamental Physics Lab                             | XPG107         | 2018-19                 | Employability: Assignment,<br>Seminar and Group discussions                                           |
| English for Effective<br>Communication              | XGL201         | 2018-19                 | Employability: Assignment &<br>Seminar. To acquire basic Lear<br>ning skills                          |
| Environmental Studies                               | XES202         | 2018-19                 | Employability: Assignment,<br>Seminar and Group discussions                                           |
| Modern Physics                                      | XPG 203        | 2018-19                 | Employability: Assignment,<br>Seminar and Group discussions                                           |
| Differential Equations & Laplace<br>Transforms      | XMT204         | 2018-19                 | Employability: Assignment,<br>Seminar and Quiz                                                        |
| Sequences and Series                                | XMT205         | 2018-19                 | Employability: Assignment &<br>Seminar. To acquire basic<br>knowledge about Numbers.                  |
| Modern Physics Lab                                  | XPG206         | 2018-19                 | Employability: Assignment,<br>Seminar and Group discussions                                           |
| Logic and Sets                                      | XMT301         | 2018-19                 | Skill Enhancement: Seminar: To<br>learn some application about<br>logic and sets                      |
| Programming in C                                    | XMT302         | 2018-19                 | Employability: Miniproject,<br>Seminar and Group discussions                                          |
| Real Analysis                                       | XMT303         | 2018-19                 | Employability: Assignment,<br>Seminar and Quiz                                                        |
| Analytical Geometry 3D                              | XMT304         | 2018-19                 | Employability: Assignment,<br>Seminar and Quiz                                                        |
| Programming in C – Practical                        | XMT305         | 2018-19                 | Employability: Miniproject,<br>Seminar and Group discussions                                          |

| Disaster Management                | XUM306  | 2018-19 | Employability: Miniproject,<br>Seminar and Group discussions                                       |
|------------------------------------|---------|---------|----------------------------------------------------------------------------------------------------|
| Theory of Equations                | XMT401  | 2018-19 | Skill Enhancement Seminar: To<br>learn how to find roots of<br>algebraic equations                 |
| Introduction to Matlab             | XMT402  | 2018-19 | Employability: Miniproject,<br>Seminar and Group discussions                                       |
| Vector Calculus and Fourier Series | XMT403  | 2018-19 | Employability: Assignment,<br>Seminar and Quiz                                                     |
| Algebra                            | XMT404  | 2018-19 | Employability: Assignment,<br>Seminar and Group discussions                                        |
| Introduction to Matlab – Practical | XMT405  | 2018-19 | Employability: Miniproject,<br>Seminar and Group discussions                                       |
| Probability and Statistics         | XMT501  | 2018-19 | Skill Enhancement: Seminar: To<br>learn how to apply hypothesis<br>tests                           |
| Matrices                           | XMT502A | 2018-19 | Employability: Assignment,<br>Seminar and Quiz                                                     |
| Discrete Mathematics               | XMT502B | 2018-19 | Employability: Assignment,<br>Seminar and Quiz                                                     |
| Numerical Methods                  | XMT503A | 2018-19 | Employability: Assignment,<br>Seminar and Quiz                                                     |
| Mechanics                          | XMT503B | 2018-19 | Employability: Assignment,<br>Seminar and Quiz                                                     |
| Linear Algebra                     | XMT504A | 2018-19 | Employability: Assignment,<br>Seminar and Quiz                                                     |
| Astronomy                          | XMT504B | 2018-19 | Employability: Assignment,<br>Seminar and Quiz                                                     |
| Graph Theory                       | XMT601  | 2018-19 | Skill Enhancement Seminar: To<br>learn how to apply different<br>types of graphs in various fields |
| Complex Analysis                   | XMT602A | 2018-19 | Employability: Assignment,<br>Seminar and Quiz                                                     |
| Number Theory                      | XMT602B | 2018-19 | Employability: Assignment,<br>Seminar and Quiz                                                     |
| Linear Programming                 | XMT603A | 2018-19 | Skill Enhancement: To learn<br>about formation of equation with<br>some real world problems        |
| Stochastic Processes               | XMT603B | 2018-19 | Employability: Assignment,<br>Seminar and Quiz                                                     |
| Project                            | XMT604  | 2018-19 | Employability: Miniproject,<br>Seminar and Group discussions                                       |

|                                                              | M.Sc. Ma | thematics |                                                                                                                                                                                          |
|--------------------------------------------------------------|----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Groups and Rings                                             | YMA 101  | 2014-15   | Employability: Assignment, test and case study.                                                                                                                                          |
| Analysis-I                                                   | YMA 102  | 2014-15   | Employability: Assignment, test and case study.                                                                                                                                          |
| Differential Equations                                       | YMA 103  | 2014-15   | Employability: Assignment, test and case study.                                                                                                                                          |
| Discrete Mathematics                                         | YMA 104  | 2014-15   | Employability: Assignment, test<br>and case study.                                                                                                                                       |
| Graph Theory                                                 | YMA1E1   | 2014-15   | Skill Enhancement : Seminar:<br>To learn types of Graphs and<br>their properties/ To learn about<br>application of coding theory/To<br>learn about application of set<br>theory in Logic |
| Coding Theory                                                | YMA1E2   | 2014-15   | Employability: Assignment, test and case study.                                                                                                                                          |
| Mathematical Logic                                           | YMA1E3   | 2014-15   | Employability: Assignment, test and case study.                                                                                                                                          |
| Linear Algebra                                               | YMA 201  | 2014-15   | Employability: Assignment, test and case study.                                                                                                                                          |
| Analysis-II                                                  | YMA 202  | 2014-15   | Employability: Assignment, test and case study.                                                                                                                                          |
| Integral Equations, Calculus of<br>Variations and Transforms | YMA 203  | 2019-20   | Employability: Assignment, test and case study.                                                                                                                                          |
| Operations Research                                          | YMA 204  | 2014-15   | Skill Enhancement :Seminar: To<br>learn how to apply optimization<br>techniques in real world<br>problems                                                                                |
| Algebraic Number Theory                                      | YMA2E1   | 2014-15   | Skill Enhancement : Seminar:<br>To learn algebraic number<br>theory/ To learn about<br>algorithms in data structures/To<br>learn about application of Fuzzy<br>sets and Fuzzy Logic      |
| Data structures and Algorithms                               | YMA2E2   | 2014-15   | Employability: Assignment, test and case study.                                                                                                                                          |
| Fuzzy sets and fuzzy logic                                   | YMA2E3   | 2014-15   | Employability: Assignment, test<br>and case study                                                                                                                                        |
| Field Theory                                                 | YMA 301  | 2014-15   | Employability: Assignment, test<br>and case study                                                                                                                                        |
| Topology                                                     | YMA 302  | 2014-15   | Employability: Assignment, test and case study.                                                                                                                                          |
| Automata Theory                                              | YMA303   | 2020-21   | Employability: Assignment, test<br>and case study                                                                                                                                        |
| Mathematical Statistics                                      | YMA 304  | 2014-15   | Skill Enhancement: Seminar: To<br>learn how to apply various<br>methods of mathematical<br>statistics                                                                                    |
| Data Analysis using SPSS                                     | YMA3E1   | 2020-21   | Employability: Assignment, test<br>and case study                                                                                                                                        |

| Numerical Methods     | YMA3E2  | 2014-15 | Employability: Assignment, test<br>and case study |
|-----------------------|---------|---------|---------------------------------------------------|
| Commutative Algebra   | YMA3E3  | 2014-15 | Employability: Assignment, test<br>and case study |
| Complex Analysis      | YMA 401 | 2014-15 | Employability: Assignment, test<br>and case study |
| Functional Analysis   | YMA 402 | 2014-15 | Employability: Assignment, test<br>and case study |
| Mathematical Modeling | YMA403  | 2020-21 | Employability: Assignment, test<br>and case study |
| Project work          | YMA404  | 2014-15 | Employability: Assignment, test<br>and case study |

# 2. Syllabus of the courses

|                                                                  | DURSE CODEXGL101LTPSS                                                |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                   |                                           |                    |            |       | H      | С    |
|------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|------------|-------|--------|------|
| COU                                                              | RSE                                                                  | NAME                                                                                                                                             | Basic English Communication Skills                                                                                                                                                                                                                                                                                                                | 2                                         | 0                  | 0          | 0     | 2      | 2    |
| C:P:A                                                            | A - 3:                                                               | 0:0                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                   |                                           |                    |            |       |        |      |
| COU                                                              | RSE                                                                  | OUTCOM                                                                                                                                           | ES:                                                                                                                                                                                                                                                                                                                                               | Do                                        | omai               | n          | L     | evel   |      |
| CO1                                                              | Rec                                                                  | all the basic                                                                                                                                    | grammar and using it in proper context                                                                                                                                                                                                                                                                                                            | Co                                        | gniti              | ve         | Reme  | ember  | ing  |
| CO2                                                              | Exp                                                                  | <i>lain</i> the pro                                                                                                                              | cess of listening and speaking                                                                                                                                                                                                                                                                                                                    | Co                                        | gniti              | ve         | Under | rstand | ling |
| CO3                                                              | Add                                                                  | <i>ipt</i> importat                                                                                                                              | t methods of reading                                                                                                                                                                                                                                                                                                                              | Co                                        | gniti              | ve         | Cr    | eating | 5    |
| CO4Demonstrate the basic writing skillsCognitiveUnder            |                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                   |                                           |                    |            |       |        | ling |
| UNIT                                                             | I                                                                    | Grammar                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                   |                                           |                    |            |       |        |      |
|                                                                  |                                                                      | sic grammat                                                                                                                                      | ical categories ii. Notion of correctness and attitud                                                                                                                                                                                                                                                                                             | de to                                     | erroi              | ſ          |       | 9      |      |
| correc                                                           |                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                   |                                           |                    |            |       |        |      |
| UNIT                                                             |                                                                      | Ű                                                                                                                                                | and Speaking                                                                                                                                                                                                                                                                                                                                      |                                           |                    |            |       |        |      |
|                                                                  | 1                                                                    |                                                                                                                                                  | ing skills iv. Problems of listening to unfamiliar d                                                                                                                                                                                                                                                                                              |                                           |                    |            |       | 9      |      |
|                                                                  |                                                                      | *                                                                                                                                                | n and fluency in speaking vi. Intelligibility in spe                                                                                                                                                                                                                                                                                              | eaking                                    | 5                  |            |       |        |      |
| UNIT                                                             |                                                                      | Basics of l                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |                                           |                    |            |       | 0      |      |
|                                                                  |                                                                      | , extrapolativ                                                                                                                                   | ing skills viii. Introducing different types of texts<br>/e                                                                                                                                                                                                                                                                                       | – na                                      | rrativ             | ve,        |       | 9      |      |
| UNIT                                                             | IV                                                                   | Basics of                                                                                                                                        | Writing                                                                                                                                                                                                                                                                                                                                           |                                           |                    |            |       |        |      |
|                                                                  |                                                                      |                                                                                                                                                  | ng skills x. Aspects of cohesion and coherence xi                                                                                                                                                                                                                                                                                                 |                                           |                    |            |       | 9      |      |
|                                                                  |                                                                      |                                                                                                                                                  | affecting the structure xii. Reorganizing jumbled                                                                                                                                                                                                                                                                                                 |                                           |                    |            | o a   |        |      |
|                                                                  |                                                                      | <b>U</b> 1                                                                                                                                       | Drafting different types of letters (personal notes                                                                                                                                                                                                                                                                                               | s, nou                                    | ices,              |            |       |        |      |
| complaints, appreciation, conveying sympathies etc.) Total Hours |                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                   |                                           |                    |            |       | 36     | ,    |
|                                                                  |                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                   |                                           |                    |            |       |        |      |
| Toyt                                                             | book                                                                 | 7                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                   |                                           |                    |            |       |        |      |
| Text                                                             |                                                                      |                                                                                                                                                  | Gower M (1999) Reading and Writing Skills. Lo                                                                                                                                                                                                                                                                                                     | ondon                                     | . Lo               | ngm        | an    |        |      |
| Text                                                             | 1. A                                                                 | cevedo and                                                                                                                                       | Gower M (1999) Reading and Writing Skills. Lo<br>al. (2015). Oxford Advanced Learner's Dictionar                                                                                                                                                                                                                                                  |                                           |                    | -          | an    |        |      |
| Text                                                             | 1. A<br>2. D                                                         | Acevedo and<br>Deuter, M et.                                                                                                                     | Gower M (1999) Reading and Writing Skills. Lo<br>al. (2015). Oxford Advanced Learner's Dictionar<br>New Delhi, OUP                                                                                                                                                                                                                                |                                           |                    | -          | an    |        |      |
| Text                                                             | 1. A<br>2. D<br>(Nin<br>3. E                                         | Acevedo and<br>Deuter, M et.<br>hth Edition).<br>Castwood, Jo                                                                                    | al. (2015). Oxford Advanced Learner's Dictionar<br>New Delhi, OUP<br>hn (2008). Oxford Practice Grammar. Oxford, OU                                                                                                                                                                                                                               | ry of I<br>JP                             | Engl               | ish        |       |        |      |
| Text                                                             | 1. A<br>2. D<br>(Nin<br>3. E<br>4. H                                 | Acevedo and<br>Deuter, M et.<br>nth Edition).<br>Eastwood, Jo<br>Iadefield, Cl                                                                   | al. (2015). Oxford Advanced Learner's Dictionar<br>New Delhi, OUP<br>hn (2008). Oxford Practice Grammar. Oxford, OU<br>rris and J Hadefield (2008). Reading Games. Lon                                                                                                                                                                            | ry of I<br>JP                             | Engl               | ish        |       |        |      |
| Text                                                             | 1. A<br>2. D<br>(Nin<br>3. E<br>4. H<br>5. H                         | Acevedo and<br>Deuter, M et.<br>10 Edition).<br>Castwood, Jo<br>Iadefield, Cl<br>Iedge, T (20                                                    | <ul> <li>al. (2015). Oxford Advanced Learner's Dictionar<br/>New Delhi, OUP</li> <li>hn (2008). Oxford Practice Grammar. Oxford, OU</li> <li>nris and J Hadefield (2008). Reading Games. Lon</li> <li>05). Writing. Oxford, OUP</li> </ul>                                                                                                        | Ty of JP                                  | Engl<br>Lon        | ish        |       |        |      |
| Text                                                             | 1. A<br>2. D<br>(Nin<br>3. E<br>4. H<br>5. H<br>6. J                 | Acevedo and<br>Deuter, M et.<br>nth Edition).<br>Castwood, Jo<br>Hadefield, Ch<br>Hedge, T (20<br>olly, David (                                  | <ul> <li>al. (2015). Oxford Advanced Learner's Dictionar<br/>New Delhi, OUP</li> <li>hn (2008). Oxford Practice Grammar. Oxford, OU</li> <li>hris and J Hadefield (2008). Reading Games. Lon</li> <li>05). Writing. Oxford, OUP</li> <li>1984). Writing Tasks: Students' Book. Cambridg</li> </ul>                                                | Ty of JP                                  | Engl<br>Lon        | ish        |       |        |      |
| Text                                                             | 1. A<br>2. C<br>(Nin<br>3. E<br>4. H<br>5. H<br>6. J<br>7. K         | Acevedo and<br>Deuter, M et.<br>nth Edition).<br>Dastwood, Jo<br>Iadefield, Ch<br>Iedge, T (20<br>olly, David (<br>Clippel and S                 | <ul> <li>al. (2015). Oxford Advanced Learner's Dictionar<br/>New Delhi, OUP</li> <li>hn (2008). Oxford Practice Grammar. Oxford, OU</li> <li>uris and J Hadefield (2008). Reading Games. Lon</li> <li>05). Writing. Oxford, OUP</li> <li>1984). Writing Tasks: Students' Book. Cambridg</li> <li>wan (1984). Keep Talking. Oxford, OUP</li> </ul> | Ty of JP<br>Idon,<br>ge, CU               | Engl<br>Lon;<br>JP | ish<br>gma |       |        |      |
| Text                                                             | 1. A<br>2. C<br>(Nin<br>3. E<br>4. H<br>5. H<br>6. J<br>7. K<br>8. S | Acevedo and<br>Deuter, M et.<br>nth Edition).<br>Castwood, Jo<br>Iadefield, Cl<br>Iedge, T (20<br>olly, David (<br>Clippel and S<br>Caraswati, V | <ul> <li>al. (2015). Oxford Advanced Learner's Dictionar<br/>New Delhi, OUP</li> <li>hn (2008). Oxford Practice Grammar. Oxford, OU</li> <li>hris and J Hadefield (2008). Reading Games. Lon</li> <li>05). Writing. Oxford, OUP</li> <li>1984). Writing Tasks: Students' Book. Cambridg</li> </ul>                                                | ry of ]<br>JP<br>idon,<br>ge, CU<br>Black | Engl<br>Lon;<br>JP | ish<br>gma |       |        |      |

## **B. Sc (MATHEMATICS)**

|                 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| <b>CO1</b>      | 2   | 0   | 0   | 0   | 0   | 0   | 2   | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
| CO2             | 2   | 0   | 0   | 0   | 0   | 0   | 2   | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
| CO3             | 1   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
| CO4             | 2   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
| CO5             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
| Total           | 7   | 0   | 0   | 0   | 0   | 0   | 6   | 0   | 4   | 0    | 0    | 0    | 0    | 0    |
| Scaled<br>Value | 2   | 0   | 0   | 0   | 0   | 0   | 2   | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
|                 | 1   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 1   | 0    | 0    | 0    | 0    | 0    |

### **Table 1: Mapping of Cos with POs:**

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0-No Relation, 1- Low Relation, 2 – Medium Relation, 3- High Relation

|            | GA | GA1 | GA1 | GA1 |
|------------|----|----|----|----|----|----|----|----|----|-----|-----|-----|
|            | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0   | 1   | 2   |
| CO1        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 2   | 0   | 0   |
| CO2        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 2   | 0   | 0   |
| CO3        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1   | 0   | 0   |
| <b>CO4</b> | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 1   | 0   |
| CO5        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1   | 1   | 0   |
| Tota<br>l  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 2  | 6   | 2   | 0   |
| Scal<br>e  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 2   | 1   | 0   |

 Table 2: Mapping of COs with GAs:

1-5→1, 6-10→2, 11-15→3

| COU                                                   | RSE (            | CODE                                                   | XGL102A                                                                                                 |               |       | L     | Т                    | Р       | С          |  |  |  |  |
|-------------------------------------------------------|------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------|-------|-------|----------------------|---------|------------|--|--|--|--|
| COU                                                   | RSE N            | IAME                                                   | mwptpay; jkpo;                                                                                          |               |       | 3     | 0                    | 0       | 3          |  |  |  |  |
| COURSE NAME       mwptpay; jkpo;         PREREQUISITE |                  |                                                        |                                                                                                         |               |       | L     | Т                    | Р       | Н          |  |  |  |  |
|                                                       | C:P:             | A                                                      | 3:0:0                                                                                                   |               |       | 3     | 0                    | 0       | 3          |  |  |  |  |
| COU                                                   | RSE (            | DUTCON                                                 | IES                                                                                                     |               |       |       | ЛАIN                 | I       | LEVEL      |  |  |  |  |
| CO1                                                   | rhu;e            | e;j El;gq;                                             |                                                                                                         |               | vj;   | Cogni | tive                 | Rem     | embering   |  |  |  |  |
| CO2                                                   | Choo<br>Gtpa     | ose (njup                                              | <b>T nra;jy;)</b> tlnkhop Ntu;r;<br>pytpay; gw;wpg; goe;jkp                                             | • •           | %yk;  | Cogni | Cognitive Rememberin |         |            |  |  |  |  |
| CO3                                                   | Desc             |                                                        | <b>f;Fjy;)</b> njhy;fhg;gpak; %                                                                         | yk; mwptpay;  |       | Cogni | tive                 | Unde    | erstanding |  |  |  |  |
| CO4                                                   | rhu;e<br>Fwp     | e;jgpupTi<br>j;J njspT                                 | <b>Ĺj;Jjy;)</b> gy;NtW fy;tpj;Jiv<br>fs;>gy;NtW fy;tpj;Jiw rhu<br>ngwy;.                                | ;e;j gpupTfs; |       | Cogni |                      | Appl    | ying       |  |  |  |  |
| CO5                                                   |                  |                                                        | <b>y;)</b> mwptpay; rpWfijfspd<br>ehlfq;fspd; gq;F Fwpj;J n                                             |               | /;Wk; | Cogni | tive                 | Anal    | yzing      |  |  |  |  |
| myF                                                   |                  |                                                        | ay; jkpo; mwpKfk;                                                                                       |               |       |       |                      |         | 9          |  |  |  |  |
| Fwpg                                                  | oay;><br>;gpLk   | epytpay<br>; capup                                     | <b>wptpay; Jiwfs;</b><br>/; gw;wp goe;jkpo; ,yf<br>ay;> kz;zpay; gw;wpa<br>opay; cj;jpfs; - tsu; jkpo;. | mbg;gilr; nr  |       |       |                      |         |            |  |  |  |  |
|                                                       |                  | -                                                      | / fiyfspy; mwptpay;                                                                                     |               |       |       |                      |         | 9          |  |  |  |  |
|                                                       |                  |                                                        | ;llf; fiyf;fy;tp– rKjhaf;fy;tp<br>;fhyf; fy;tpg; nghJepiy– f                                            |               |       |       |                      |         |            |  |  |  |  |
| myF                                                   | <b>- 4</b>       | mwptp                                                  | ay; jkpopy; rpWfijfspd;                                                                                 | ; gq;F        |       |       |                      |         | 9          |  |  |  |  |
|                                                       |                  |                                                        | nf;Fk; cj;jpfs; - rpwe;j rp<br>ppngau;g;G kw;Wk; mwp                                                    |               |       | - ey; | y rpV                | √fij cl | Jthf;fk; - |  |  |  |  |
| myF                                                   | - 5              | mwptp                                                  | ay; jkpopy; ehlfq;fspd;                                                                                 | gq;F          |       |       |                      |         | 9          |  |  |  |  |
|                                                       |                  |                                                        | <;> ,Utif ehlfq;fs; - gb<br>hlfk; - eifr;Rit ehlfq;fs; - r                                              |               |       |       |                      |         |            |  |  |  |  |
|                                                       |                  |                                                        | LECTURE                                                                                                 | TUTORIA<br>L  | PRAC  |       |                      | -       | TOTAL      |  |  |  |  |
|                                                       |                  |                                                        | 45                                                                                                      |               |       |       |                      |         | 45         |  |  |  |  |
| 1. mv                                                 | /ptpay<br>;jkpo; | <u>t Ehy;fs;</u><br>/; jkpo; -<br>- ,jo;fs;<br>yhW– rp | : <b>:</b><br>lhf;lu; th.nr. Foe;ijr;rhkp                                                               |               |       |       |                      |         |            |  |  |  |  |

## Table 1: CO Versus PO mapping.

|              |   | PS | PSO |   |   |   |   |   |   |
|--------------|---|----|-----|---|---|---|---|---|---|
|              | 1 | 2  | 3   | 4 | 5 | 6 | 7 | 1 | 2 |
| C01          |   | 1  |     |   |   |   |   |   |   |
| CO2          |   | 1  |     |   |   |   |   |   |   |
| CO3          |   | 1  |     |   |   |   | 1 |   |   |
| CO4          | 1 | 2  | 2   | 1 |   | 1 | 2 |   |   |
| CO5          | 2 | 2  | 2   | 2 |   | 1 | 2 |   |   |
| Total        | 3 | 7  | 4   | 3 |   | 2 | 5 |   |   |
| Scaled Value | 1 | 2  | 1   | 1 |   |   | 1 |   |   |

1-5→1, 6-10→2, 11-15→3

| COUR                          | RSE CODE                         | XPG103                                                                                                                                                                                           | L                   | Т         | P                                       | C                  |
|-------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|-----------------------------------------|--------------------|
| COUR                          | RSE NAME                         | FUNDAMENTAL PHYSICS                                                                                                                                                                              | 3                   | 1         | 0                                       | 4                  |
| C:P:A                         |                                  | 4:0:0                                                                                                                                                                                            | L                   | Т         | Р                                       | Н                  |
| PRER                          | EQUISITE:                        |                                                                                                                                                                                                  | 3                   | 1         | 0                                       | 4                  |
| C01                           |                                  | <i>Explain</i> the basic principle simple harmonic ircular motion                                                                                                                                | Cogniti             |           | Rememberin<br>Understandir<br>Analyzing |                    |
| CO2                           | and methods                      | the properties of sound, reverberation time of production of ultrasonic waves.                                                                                                                   | Cogniti             |           | emembe<br>Analyz                        | ering ,<br>ing     |
| CO3                           | modulus, vi                      | <i>and determine</i> Young's modulus, rigidity scosity and explain surface tension and ure inside a drop.                                                                                        | Cogniti             |           | Analyzi<br>nderstar<br>Applyi           | nding,             |
| CO4                           | physics and a                    | basic concepts and basic laws of thermal <b><i>letermine</i></b> the thermal conductivity of a bad d solar constant.                                                                             | Cogniti             |           | emembe<br>Analyz<br>Applyi              | ing,               |
| CO5                           | to determine                     | wledge on interference, diffraction; be able<br>wavelength of mercury source; understand<br>on and production; propagation of fibre                                                              | Cogniti             |           | nderstar<br>Evaluat                     | -                  |
| UNIT                          | 1                                | nonic Motion and Circular Motion                                                                                                                                                                 |                     |           | 9+3                                     |                    |
| simple<br>force -<br>circle - | harmonic mot<br>Damped harr      | tude - Phase - Spring mass system - Simple p<br>tions along a straight line and at right angles<br>nonic oscillator - Uniform circular motion -<br>nd centrifugal forces - Banking on curved tra | - Lissaj<br>Acceler | ous figut | res - Da<br>a partic                    | amping<br>cle in a |
| UNIT                          | II Sound Unit                    | form circular motion                                                                                                                                                                             |                     |           | 9+3                                     |                    |
| Classif<br>Decibe             | ication of sou<br>l - Absorption | nd - Characteristics of musical sound - Lo<br>n co-efficient - Reverberation - Reverberat<br>on : Magnetostriction and Piezo-electric meth                                                       | ion time            | - Ultra   | Fechne                                  | r law -            |
| -                             | <b>III Properties</b>            |                                                                                                                                                                                                  |                     |           | 9+3                                     |                    |
| Elastic                       | ity - Elastic co                 | onstants - Bending of beams - Young's mod<br>Determination of rigidity modulus of tors                                                                                                           |                     |           |                                         |                    |

Coefficient of viscosity by Poiseuelle's method - Stoke's law - Terminal velocity - Surface Tension - Molecular theory of surface tension - Excess pressure inside a drop and bubble -Surface tension by drop weight method.

### **UNIT IV Thermal Physics**

9+3

Kinetic theory of gases - Basic postulates - Ideal gas equation - Vanderwaal's equation of states -Laws of thermodynamics - Entropy - Change of entropy in reversible and irreversible processes -Lee's disc method for conductivity of bad conductor - Stefan's law of radiation - Solar Constant temperature of the sun.

## **UNIT V Optics**

9+3

Interference in thin films - Air wedge - Diffraction - Theory of plane transmission grating (normal incidence only) - LASER - Population inversion - Pumping - Laser action - Nd-YAG laser -  $CO_2$  laser - Fibre optics - Principle and propagation of light in optic fibres - Numerical aperture and acceptance angle.

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 15       | 60    |

### TEXT BOOKS

- 1. A Sundaravelusamy, "Allied Physics I", Priya Publications, 2009.
- 2. R. Murugesan, I B.Sc. "Ancillary Physics", S. Chand & Co., 2010.

### REFERENCES

- 1. Saigal. S, "Sound", Chand & Co., Delhi,1990
- 2. Brijlal and Subramanian, "Elements of properties of matter", S. Chand Limited, 1974.
- 3. Brijlal and Subramanian, "Heat and Thermodynamics", S. Chand Limited, 2008
- 4. Brijlal and Subramanian, "Optics", S. Chand Limited, 2012.

## **Table 1: Mapping of Cos with Pos**

| COs             | PO <sub>1</sub> | PO <sub>2</sub> | PO <sub>3</sub> | PO <sub>4</sub> | PO <sub>5</sub> | PO <sub>6</sub> | PO <sub>7</sub> | PO <sub>8</sub> | PO <sub>9</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| CO <sub>1</sub> | 1               | 1               | 1               |                 | 2               | 1               | 1               | 1               |                 |
| CO <sub>2</sub> | 2               | 3               | 2               | 1               | 2               | 2               | 1               | 2               |                 |
| CO <sub>3</sub> | 1               | 3               | 2               |                 | 1               | 2               | 2               | 2               |                 |
| CO <sub>4</sub> | 1               | 1               | 2               |                 | 1               | 2               | 1               | 1               |                 |
| CO5             | 2               | 3               | 1               |                 | 2               | 2               | 2               | 1               |                 |
| Total           | 6               | 11              | 8               | 1               | 8               | 9               | 7               | 7               |                 |
| Scaled          | 2               | 3               | 2               | 1               | 2               | 2               | 2               | 2               |                 |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

|            | JRSE               |           |                                                                                          | L               | Т                 | Р          | С      |               |  |  |
|------------|--------------------|-----------|------------------------------------------------------------------------------------------|-----------------|-------------------|------------|--------|---------------|--|--|
| COD        |                    |           | FOUNDATION COUDSE IN MATHE                                                               | MATICS          | 1                 | 1          | 0      | 5             |  |  |
| XM7<br>C   | P                  | Α         | FOUNDATION COURSE IN MATHE                                                               | MATICS          | 4<br>L            | 1<br>T     | 0<br>P | 5<br>H        |  |  |
| 5          | <b>r</b>           | A<br>0    |                                                                                          |                 | <b>L</b><br>4     | 1<br>1     | г<br>0 | <u>п</u><br>5 |  |  |
| -          |                    | -         | Basic concept of Algebra and Trigonome                                                   | tra             | 4                 | L          | U      | 3             |  |  |
|            | rse outo           |           |                                                                                          | Domain          | Lev               | ല          |        |               |  |  |
|            |                    |           | <b>pply</b> fundamental theorem of algebra to                                            | Cognitive       | Remembering       |            |        |               |  |  |
|            | find t             |           | Арр                                                                                      | lying           | 5                 |            |        |               |  |  |
| CO2        | : Explation the re | Cognitive |                                                                                          | ersta<br>lying  | nding<br>'        |            |        |               |  |  |
| CO3        |                    | Cognitive |                                                                                          |                 | ,<br>nding        |            |        |               |  |  |
| 005        |                    |           | trigonometric functions and to find the gonometric functions by <b>apply</b> the related | Cogintive       |                   | lying      | -      |               |  |  |
|            |                    | -         | Solve the problems.                                                                      |                 | 1 <b>•</b> PP     | 191112     | >      |               |  |  |
| <b>CO4</b> |                    |           | perbolic and inverse hyperbolic functions                                                | Cognitive       | Ren               | nemb       | ering  |               |  |  |
|            | _                  | •         | he logarithm of the complex numbers.                                                     |                 |                   | lying      |        |               |  |  |
| CO5        |                    |           | mmations of trigonometric series and                                                     | Cognitive       |                   |            | ering  |               |  |  |
|            |                    |           | rties to find their related problems.                                                    |                 | App               | lying      | 5      |               |  |  |
| UNI        | ТΙ                 |           |                                                                                          |                 |                   |            | -      | 15            |  |  |
| Theo       | ory of E           | quation   | ns: Fundamental Theorem of Algebra - Rela                                                | ations betwee   | en roo            | ts an      | d      |               |  |  |
| coeff      | ficients           | - Sym     | netric functions of roots.                                                               |                 |                   |            |        |               |  |  |
| UNI        |                    |           |                                                                                          |                 |                   |            |        | 15            |  |  |
|            |                    |           | Equations - Reciprocal Equations - Newtor                                                | n's Method of   | f Divi            | sors       | -      |               |  |  |
|            |                    | ule of s  | signs – Horner's Method.                                                                 |                 |                   |            |        |               |  |  |
|            | T III              |           |                                                                                          |                 | • n               |            | n      | 15            |  |  |
|            |                    |           | ansion of functions, sinnx, cosnx, tannx- E                                              |                 | sin"x a           | and c      | OS"X   |               |  |  |
|            |                    | nx and    | l cosx - Properties and their -related problem                                           | ms.             |                   |            |        | 1.5           |  |  |
| UNI        |                    |           | na Invense humanhalia functiona. I a souithe                                             | - of Commission | N                 | - <b>1</b> |        | 15            |  |  |
|            |                    | unctio    | ns -Inverse hyperbolic functions- Logarith                                               | n of Complex    | x INUR            | nbers      | 5.     | 15            |  |  |
| UNI        |                    | oftri     | conomatria sorias. Proparties and their relat                                            | ad problems     |                   |            |        | 15            |  |  |
| Suim       | mations            | oruig     | gonometric series- Properties and their relat<br>LECTURE                                 | TUTOR           |                   |            | TO     | ГАТ           |  |  |
|            |                    |           | 60                                                                                       |                 | 1 <u>AL</u><br>15 |            | 10     | 75            |  |  |
| TEX        | T BOC              | )KS       | 00                                                                                       |                 | 15                |            |        | 15            |  |  |
|            |                    |           | T. K. ManickavasagamPillai, "Algebra", V                                                 | Vol 2 S Visy    | vanat             | han I      | Pvt    |               |  |  |
|            | d., Ch             |           |                                                                                          | 01. 2, 0. 110   | , and             | inun i     | v c.   |               |  |  |
|            | ,                  |           | 6, Secs 6.1-6.14                                                                         |                 |                   |            |        |               |  |  |
|            |                    | 1         | 6, Secs 6.15-6.30.                                                                       |                 |                   |            |        |               |  |  |
|            |                    | -         | T. K. ManickavasagamPillai, "Trigonomet                                                  | ry", S. Viswa   | anatha            | ın Pv      | t. Ltd | ••            |  |  |
| Ch         | nennai, 1          | 2001.     |                                                                                          |                 |                   |            |        |               |  |  |
|            | nit 3: Cl          | -         |                                                                                          |                 |                   |            |        |               |  |  |
|            | nit 4: Cl          | -         |                                                                                          |                 |                   |            |        |               |  |  |
|            | nit 5: Cl          | napter    | 6.                                                                                       |                 |                   |            |        |               |  |  |
|            | rence              |           |                                                                                          |                 |                   |            |        |               |  |  |
|            |                    |           | sac, "Theory of Equations, Theory of Num                                                 | bers and Trig   | onom              | netry'     | ', Nev | V             |  |  |
| g?         | amma P             | ublish    | ing house, Tirunelveli, 2011.                                                            |                 |                   |            |        |               |  |  |

# **Table 1: Mapping of COs with POs**

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|        |     |     |     |     |     |     |     |     |     |
| CO 1   | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 2   | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 3   | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 4   | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 5   | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| Total  | 15  | 10  | 5   | 5   | 5   | 5   | 5   |     | 5   |
| Scaled | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| Value  |     |     |     |     |     |     |     |     |     |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| 5       0       0       4       1       0       5         PREREQUISITE: Differentiation and Integration         Course outcomes:       Domain       Level         CO1: Apply the basics of differentiation.       Cognitive       Remembering         Applying         CO2: Find Evolutes in Cartesian Coordinates.       Cognitive       Understanding         Applying         CO3: State Rolle's theorem, Mean Value theorems, Taylor's       Cognitive       Understanding         heorem with Lagrange's and Cauchy's forms of remainder, Taylor's series and to find Maxima and Minima.       Remembering       Applying         CO4: Find the definite integrals using integration by parts and reduction formula.       Cognitive       Remembering Applying         UNIT I         Is         Limit and Continuity (ε and δ definition), Types of discontinuities, Differentiability of functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's theorem on homogeneous functions.         UNIT II       15         Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.         Parametric representation of curves and tracing of parametric curves, Polar coordinates.         UNIT II       15 </th <th colspan="8">COURSE CODECOURSE NAMELTPXMT105DIFFERENTIAL CALCULUS &amp; INTEGRAL410</th> <th>С</th>                                                                                                                                                                 | COURSE CODECOURSE NAMELTPXMT105DIFFERENTIAL CALCULUS & INTEGRAL410 |                                                              |                 |                                                |               |   |             |    | С  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|-----------------|------------------------------------------------|---------------|---|-------------|----|----|--|
| C       P       A       L       T       P       H         5       0       0       4       1       0       5         PREREQUISITE: Differentiation and Integration         Course outcomes:       Domain       Level         CO1: Apply the basics of differentiation.       Cognitive       Remembering<br>Applying         CO2: Find Evolutes in Cartesian Coordinates.       Cognitive       Understanding<br>Applying         CO3: State Rolle's theorem, Mean Value theorems, Taylor's<br>remainder, Taylor's series and to find Maxima and<br>Minima.       Cognitive       Understanding<br>Applying         CO4: Find the definite integrals using integration by parts<br>and reduction formula.       Cognitive<br>Applying       Remembering<br>Applying         CO5: Find integration by changing order of integration using<br>double integrals.       Cognitive<br>Applying       Remembering<br>Applying         UNIT I       15         Limit and Continuity ( $\epsilon$ and $\delta$ definition), Types of discontinuities, Differentiability of<br>functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's<br>theorem on homogeneous functions.       15         Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.<br>Parametric representation of curves and tracing of parametric curves, Polar coordinates.       15         Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and<br>Cauchy's forms of remainder, Taylor's series(Statem | XMT                                                                | Г105                                                         |                 | DIFFERENTIAL CALCULUS & INTEG                  | RAL           | 4 | 1           | 0  | 5  |  |
| 5       0       0       4       1       0       5         PREREQUISITE: Differentiation and Integration         Course outcomes:       Domain       Level         CO1: Apply the basics of differentiation.         Cognitive       Remembering         Applying         CO2: Find Evolutes in Cartesian Coordinates.       Cognitive       Understanding         CO3: State Rolle's theorem, Mean Value theorems, Taylor's       Cognitive       Understanding         theorem with Lagrange's and Cauchy's forms of remainder, Taylor's series and to find Maxima and Minima.       Applying         CO4: Find the definite integrals using integration by parts and reduction formula.       Cognitive Applying       Remembering Applying         CO5: Find integration by changing order of integration using double integrals.       Cognitive Applying       Remembering Applying         UNIT I         Is         Limit and Continuity (ε and δ definition), Types of discontinuities, Differentiability of functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's theorem on homogeneous functions.         UNIT II         Is         Cose if remainder, Taylor's series (Statement only) Maclaurin's series of sin x, cos x, e', log(1+x),                                                                                                                                                                                                                                                            |                                                                    | -                                                            |                 | CALCULUS                                       |               |   |             |    |    |  |
| PREREQUISITE: Differentiation and Integration       Domain       Level         Course outcomes:       Domain       Level         CO1: Apply the basics of differentiation.       Cognitive       Remembering Applying         CO2: Find Evolutes in Cartesian Coordinates.       Cognitive       Understanding Applying         CO3: State Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and Cauchy's forms of remainder, Taylor's series and to find Maxima and Minima.       Cognitive       Understanding Applying         CO4: Find the definite integrals using integration by parts and reduction formula.       Cognitive       Remembering Applying         CO5: Find integration by changing order of integration using double integrals.       Cognitive       Remembering Applying         UNIT I       15       Limit and Continuity (ε and δ definition), Types of discontinuities, Differentiability of functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's theorem on homogeneous functions.       15         Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.       15         Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and Cauchy's forms of remainder, Taylor's series(Statement only) Maclaurin's series of sin x, cos x, e <sup>x</sup> , log(l+x), (l+x) <sup>m</sup> , Maxima and Minima, Indeterminate forms.       15                                                                           |                                                                    |                                                              |                 |                                                |               |   |             |    | Η  |  |
| Course outcomes:DomainLevelCO1: Apply the basics of differentiation.CognitiveRemembering<br>ApplyingCO2: Find Evolutes in Cartesian Coordinates.CognitiveUnderstanding<br>ApplyingCO3: State Rolle's theorem, Mean Value theorems, Taylor's<br>theorem with Lagrange's and Cauchy's forms of<br>remainder, Taylor's series and to find Maxima and<br>Minima.CognitiveUnderstanding<br>ApplyingCO4: Find the definite integrals using integration by parts<br>and reduction formula.CognitiveRemembering<br>ApplyingCO5: Find integration by changing order of integration using<br>double integrals.CognitiveRemembering<br>ApplyingUNIT I15Limit and Continuity (ε and δ definition), Types of discontinuities, Differentiability of<br>functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's<br>theorem on homogeneous functions.15UNIT II15Ragents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.<br>Parametric representation of curves and tracing of parametric curves, Polar coordinates.15Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and<br>Cauchy's forms of remainder, Taylor's series (Statement only) Maclaurin's series of sin x,<br>cos x, e <sup>x</sup> , log(l+x), (l+x) <sup>m</sup> , Maxima and Minima, Indeterminate forms.15                                                                                                                                                                                                          | -                                                                  | v                                                            | -               |                                                |               | 4 | 1           | 0  | 5  |  |
| CO1: Apply the basics of differentiation.       Cognitive applying       Remembering Applying         CO2: Find Evolutes in Cartesian Coordinates.       Cognitive applying       Understanding Applying         CO3: State Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and Cauchy's forms of remainder, Taylor's series and to find Maxima and Minima.       Cognitive applying       Understanding Applying         CO4: Find the definite integrals using integration by parts and reduction formula.       Cognitive applying       Remembering Applying         CO5: Find integration by changing order of integration using double integrals.       Cognitive applying       Remembering Applying         UNIT I       15       Limit and Continuity (ε and δ definition), Types of discontinuities, Differentiability of functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's theorem on homogeneous functions.       15         UNIT II       15       State Role's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and Cauchy's forms of remainder, Taylor's series(Statement only) Maclaurin's series of sin x, cos x, e <sup>x</sup> , log(l+x), (l+x) <sup>m</sup> , Maxima and Minima, Indeterminate forms.       15                                                                                                                                                                                                                                     |                                                                    | -                                                            |                 | Differentiation and Integration                |               |   |             |    |    |  |
| CO2: Find Evolutes in Cartesian Coordinates.       Cognitive       Understanding Applying         CO3: State Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and Cauchy's forms of remainder, Taylor's series and to find Maxima and Minima.       Cognitive       Understanding Applying         CO4: Find the definite integrals using integration by parts and reduction formula.       Cognitive       Remembering Applying         CO5: Find integration by changing order of integration using double integrals.       Cognitive       Remembering Applying         UNIT I       15       Limit and Continuity (ε and δ definition), Types of discontinuities, Differentiability of functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's theorem on homogeneous functions.       15         VINIT II       15         Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves. Parametric representation of curves and tracing of parametric curves, Polar coordinates.       15         Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and Cauchy's forms of remainder, Taylor's series (Statement only) Maclaurin's series of sin x, cos x, e <sup>x</sup> , log(l+x), (l+x) <sup>m</sup> , Maxima and Minima, Indeterminate forms.       15                                                                                                                                                                                     |                                                                    |                                                              |                 |                                                |               |   |             |    |    |  |
| CO3: State Rolle's theorem, Mean Value theorems, Taylor's<br>theorem with Lagrange's and Cauchy's forms of<br>remainder, Taylor's series and to find Maxima and<br>Minima.Cognitive<br>ApplyingUnderstanding<br>ApplyingCO4: Find the definite integrals using integration by parts<br>and reduction formula.Cognitive<br>ApplyingRemembering<br>ApplyingCO5: Find integration by changing order of integration using<br>double integrals.Cognitive<br>ApplyingRemembering<br>ApplyingUNIT I15Limit and Continuity (ε and δ definition), Types of discontinuities, Differentiability of<br>functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's<br>theorem on homogeneous functions.15UNIT II15Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.<br>Parametric representation of curves and tracing of parametric curves, Polar coordinates.15Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and<br>Cauchy's forms of remainder, Taylor's series(Statement only) Maclaurin's series of sin x,<br>cos x, e <sup>x</sup> , log(l+x), (l+x) <sup>m</sup> , Maxima and Minima, Indeterminate forms.15                                                                                                                                                                                                                                                                                                                                                        | CO                                                                 | CO1: Apply the basics of differentiation. Cognitive Remember |                 |                                                |               |   |             |    |    |  |
| theorem with Lagrange's and Cauchy's forms of<br>remainder, Taylor's series and to find Maxima and<br>Minima.ApplyingCode: Find the definite integrals using integration by parts<br>and reduction formula.CognitiveRemembering<br>ApplyingCof: Find integration by changing order of integration using<br>double integrals.CognitiveRemembering<br>ApplyingUNIT I15Limit and Continuity (ε and δ definition), Types of discontinuities, Differentiability of<br>functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's<br>theorem on homogeneous functions.15UNIT II15Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.<br>Parametric representation of curves and tracing of parametric curves, Polar coordinates.UNIT II15Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and<br>Cauchy's forms of remainder, Taylor's series (Statement only) Maclaurin's series of sin x,<br>cos x, e <sup>x</sup> , log(l+x), (l+x) <sup>m</sup> , Maxima and Minima, Indeterminate forms.15UNIT IV15                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO2                                                                | 2: Find                                                      | Evolut          | es in Cartesian Coordinates.                   | Cognitive     |   |             | -  | 5  |  |
| and reduction formula.ApplyingCO5: Find integration by changing order of integration using<br>double integrals.CognitiveRemembering<br>ApplyingUNIT I15Limit and Continuity ( $\varepsilon$ and $\delta$ definition), Types of discontinuities, Differentiability of<br>functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's<br>theorem on homogeneous functions.15UNIT II15Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.<br>Parametric representation of curves and tracing of parametric curves, Polar coordinates.15UNIT III15Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and<br>Cauchy's forms of remainder, Taylor's series (Statement only) Maclaurin's series of sin x,<br>cos x, e <sup>x</sup> , log(l+x), (l+x) <sup>m</sup> , Maxima and Minima, Indeterminate forms.15UNIT IV15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO                                                                 | theor<br>rema                                                | rem w<br>under, | ith Lagrange's and Cauchy's forms of           | Cognitive     |   |             | •  |    |  |
| double integrals.ApplyingUNIT I15Limit and Continuity (ε and δ definition), Types of discontinuities, Differentiability of<br>functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's<br>theorem on homogeneous functions.15UNIT II15Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.<br>Parametric representation of curves and tracing of parametric curves, Polar coordinates.15WNIT III15Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and<br>Cauchy's forms of remainder, Taylor's series (Statement only) Maclaurin's series of sin x,<br>cos x, e <sup>x</sup> , log(l+x), (l+x) <sup>m</sup> , Maxima and Minima, Indeterminate forms.15UNIT IV15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO <sub>2</sub>                                                    |                                                              |                 |                                                | Cognitive     |   | •           |    |    |  |
| Limit and Continuity (ε and δ definition), Types of discontinuities, Differentiability of<br>functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's<br>theorem on homogeneous functions.15UNIT II15Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.<br>Parametric representation of curves and tracing of parametric curves, Polar coordinates.15UNIT III15Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and<br>Cauchy's forms of remainder, Taylor's series (Statement only) Maclaurin's series of sin x,<br>cos x, e <sup>x</sup> , log(l+x), (l+x) <sup>m</sup> , Maxima and Minima, Indeterminate forms.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO                                                                 |                                                              | 0               |                                                | Cognitive     |   | Remembering |    |    |  |
| functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's<br>theorem on homogeneous functions.15UNIT II15Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.<br>Parametric representation of curves and tracing of parametric curves, Polar coordinates.15UNIT III15Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and<br>Cauchy's forms of remainder, Taylor's series (Statement only) Maclaurin's series of sin x,<br>cos x, e <sup>x</sup> , log(l+x), (l+x) <sup>m</sup> , Maxima and Minima, Indeterminate forms.15UNIT IV15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UNI                                                                | ГΙ                                                           |                 |                                                |               |   |             |    | 15 |  |
| Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.<br>Parametric representation of curves and tracing of parametric curves, Polar coordinates.15UNIT III15Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and<br>Cauchy's forms of remainder, Taylor's series (Statement only) Maclaurin's series of sin x,<br>cos x, e <sup>x</sup> , log(l+x), (l+x) <sup>m</sup> , Maxima and Minima, Indeterminate forms.15UNIT IV15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | funct                                                              | ions, <mark>Su</mark>                                        | ccessiv         | e differentiation, Leibnitz's theorem, Partial |               |   |             |    |    |  |
| Parametric representation of curves and tracing of parametric curves, Polar coordinates.15UNIT III15Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and<br>Cauchy's forms of remainder, Taylor's series (Statement only) Maclaurin's series of sin x,<br>cos x, e <sup>x</sup> , log(l+x), (l+x) <sup>m</sup> , Maxima and Minima, Indeterminate forms.UNIT IV15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNI                                                                | ΓII                                                          |                 |                                                |               |   |             |    | 15 |  |
| Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and<br>Cauchy's forms of remainder, Taylor's series (Statement only) Maclaurin's series of sin x,<br>cos x, e <sup>x</sup> , log(l+x), (l+x) <sup>m</sup> , Maxima and Minima, Indeterminate forms.15UNIT IV15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                                                              |                 |                                                |               |   | ites.       |    |    |  |
| Cauchy's forms of remainder, Taylor's series (Statement only) Maclaurin's series of sin x,<br>cos x, e <sup>x</sup> , log(l+x), (l+x) <sup>m</sup> , Maxima and Minima, Indeterminate forms.15UNIT IV15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                              |                 |                                                |               |   |             |    | 15 |  |
| UNIT IV 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cauc                                                               | hy's for                                                     | ms of r         | emainder, Taylor's series( Statement only) M   | aclaurin's se |   | fsin        | х, |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |                                                              |                 |                                                |               |   |             |    | 15 |  |
| Definite integrals - Integration by parts & reduction formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Defin                                                              | nite integ                                                   | grals - ]       | ntegration by parts & reduction formula        |               |   |             |    |    |  |

| UNIT V                                                        |              |    | 15  |
|---------------------------------------------------------------|--------------|----|-----|
| Double integrals – changing the order of Integration – Triple | e Integrals. |    |     |
| LECTURE                                                       | TUTORIAL     | ТО | TAL |
| 60                                                            | 15           |    | 75  |

### **TEXT BOOKS**

- 1. S.Narayanan and T.K.Manicavachagom Pillai, "Calculus Volume I", S.Viswanathan (Printers & Publishers) Pvt Limited, Chennai -2011.
- 2. S.Narayanan and T.K.Manicavachagom Pillai, "Calculus Volume II", S.Viswanathan (Printers & Publishers) Pvt Limited, Chennai 2011.
  - UNIT IV: Chapter 1 section 11, 12 & 13

UNIT V: Chapter 5 section 2.1, 2.2 & 4

### REFERENCES

1. S. Arumugam and Isaac, "Calculus, Volume1", New Gamma Publishing House, 1991.

## **TABLE 1: COs VS POs Mapping**

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO 1 | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 2 | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 3 | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 4 | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 5 | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
|      | 15  | 10  | 5   | 5   | 5   | 5   | 5   | 5   | 5   |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| COUR                                                                                                                                                                                                                    | SE CODE                                                                                                                                                                                                                                                                                                                                                                                                                       | XUM 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  | L                                                                                                                                                        | Т                                                                                                                                                   | P                                                                                                                                           |                                                                                                                                                                       | С                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| COUR                                                                                                                                                                                                                    | SE NAME                                                                                                                                                                                                                                                                                                                                                                                                                       | Human Ethics, Values, Rights<br>Equality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and Gender                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                        | 0                                                                                                                                                   | 0                                                                                                                                           |                                                                                                                                                                       | 0                                                                                                                                     |
| PRER                                                                                                                                                                                                                    | EQUISITES                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  | L                                                                                                                                                        | Т                                                                                                                                                   | Р                                                                                                                                           | SS                                                                                                                                                                    | Η                                                                                                                                     |
| C:P:A                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                               | 3:0:0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                        | 0                                                                                                                                                   | 0                                                                                                                                           | 0                                                                                                                                                                     | 3                                                                                                                                     |
| COUR                                                                                                                                                                                                                    | SE OUTCOM                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>AES</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Domain                                                                                                                                                                                                                                                                                                                                           | Level                                                                                                                                                    |                                                                                                                                                     |                                                                                                                                             |                                                                                                                                                                       |                                                                                                                                       |
| CO1                                                                                                                                                                                                                     | <i>Relate</i> and human relation                                                                                                                                                                                                                                                                                                                                                                                              | Cognitive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remember, Understand                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                          |                                                                                                                                                     |                                                                                                                                             |                                                                                                                                                                       |                                                                                                                                       |
| CO2                                                                                                                                                                                                                     | <i>Explain</i> and and violence                                                                                                                                                                                                                                                                                                                                                                                               | Cognitive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Un<br>Ap                                                                                                                                                                                                                                                                                                                                         | derst<br>ply                                                                                                                                             | and,                                                                                                                                                |                                                                                                                                             |                                                                                                                                                                       |                                                                                                                                       |
| CO3                                                                                                                                                                                                                     | issues and ch                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Affective                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                          | alyze<br>ceive                                                                                                                                      |                                                                                                                                             |                                                                                                                                                                       |                                                                                                                                       |
| CO4                                                                                                                                                                                                                     | <i>Classify</i> and on violations                                                                                                                                                                                                                                                                                                                                                                                             | <i>Dissect</i> human rights and report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cognitive                                                                                                                                                                                                                                                                                                                                        | Un                                                                                                                                                       | derst                                                                                                                                               | and,                                                                                                                                        | Analyz                                                                                                                                                                | ze                                                                                                                                    |
| CO5                                                                                                                                                                                                                     | brotherhood,                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>pond</b> to family values, universal fight against corruption by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | &                                                                                                                                                                                                                                                                                                                                                | Reı                                                                                                                                                      | mem                                                                                                                                                 | ber, l                                                                                                                                      | Respo                                                                                                                                                                 | nd                                                                                                                                    |
| UNIT                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                               | n and good governance.<br>AN ETHICS AND VALUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Affective                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                                                                                                                                 |                                                                                                                                                     |                                                                                                                                             | 7                                                                                                                                                                     |                                                                                                                                       |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               | ce, Dignity and worth, Harmon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                            |                                                                                                                                                          |                                                                                                                                                     | •                                                                                                                                           | -                                                                                                                                                                     |                                                                                                                                       |
| holistic<br>Self res<br>UNIT I<br>Gender<br>empow<br>Employ<br>Phule t                                                                                                                                                  | e development<br>spect, Self-Cor<br><b>IIGENDER F</b><br>Equality - 0<br>rerment. Statu<br>yment, HDI, 0<br>o Women Emj                                                                                                                                                                                                                                                                                                       | Gender Vs Sex, Concepts, def<br>us of Women in India Soc<br>GDI, GEM. Contributions of Dr.<br>powerment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commitment, S<br>Personality.<br>inition, Gende<br>al, Economic                                                                                                                                                                                                                                                                                  | ymp<br>r eq<br>al,                                                                                                                                       | athy<br>uity,<br>Educ                                                                                                                               | equ<br>equ                                                                                                                                  | Empa<br>9<br>ality,<br>h, He<br>eriyar                                                                                                                                | athy,<br>and<br>alth,                                                                                                                 |
| holistic<br>Self res<br>UNIT I<br>Gender<br>empow<br>Employ<br>Phule t<br>UNIT I                                                                                                                                        | e development<br>spect, Self-Cor<br>IIGENDER F<br>Equality - O<br>rerment. Statu<br>yment, HDI, O<br>o Women Emp<br>IIIWOMEN I<br>n Issues and                                                                                                                                                                                                                                                                                | - Valuing Time, Co-operation, C<br>fidence, character building and F<br>QUALITY<br>Gender Vs Sex, Concepts, def<br>as of Women in India Soc<br>GDI, GEM. Contributions of Dr.<br>powerment.<br>SSUES AND CHALLENGES<br>Challenges- Female Infanticid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Commitment, S<br>Personality.<br>inition, Gende<br>al, Economic<br>B.R. Ambethka<br>e, Female fet                                                                                                                                                                                                                                                | ymp<br>r eq<br>al, 1<br>ar, T                                                                                                                            | athy<br>uity,<br>Educ<br>hanth                                                                                                                      | and<br>equ<br>atior<br>nai P<br>oleno                                                                                                       | Empa<br>9<br>aality,<br>h, He<br>eriyar<br>9<br>ce ag                                                                                                                 | athy,<br>and<br>alth,<br>and<br>ainst                                                                                                 |
| holistic<br>Self res<br>UNIT I<br>Gender<br>empow<br>Employ<br>Phule t<br>UNIT I<br>Womer<br>women<br>Remed<br>Educati                                                                                                  | e development<br>spect, Self-Cor<br>HGENDER F<br>Equality - 0<br>rerment. Statu<br>yment, HDI, C<br>o Women Emp<br>HIWOMEN I<br>IN Issues and<br>b, Domestic vio<br>ial Measures -<br>ion, Medical T                                                                                                                                                                                                                          | <ul> <li>Valuing Time, Co-operation, Operation, Operation, Operation, Operation, Operation, Contributions and FOUALITY</li> <li>Gender Vs Sex, Concepts, defais of Women in India Soce GDI, GEM. Contributions of Dr. powerment.</li> <li>SSUES AND CHALLENGES</li> <li>Challenges- Female Infanticid polence, Sexual Harassment, Traffic- Acts related to women: Politica Pregnancy Act, an</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Commitment, S<br>Personality.<br>inition, Gende<br>al, Economic<br>B.R. Ambethka<br>e, Female fet<br>ficking, Access<br>l Right, Proper                                                                                                                                                                                                          | ymp<br>r eq<br>al, 1<br>ar, T<br>icide<br>to e<br>ty R                                                                                                   | uity,<br>Educ<br>hanth<br>, Vi<br>duca<br>ights                                                                                                     | equ<br>atior<br>nai P<br>oleno<br>tion,<br>, and                                                                                            | Empa<br>9<br>aality, 9<br>eeriyar<br>9<br>ce ag<br>Marri<br>I Righ                                                                                                    | and<br>alth,<br>and<br>ainst<br>age.                                                                                                  |
| holistic<br>Self res<br>UNIT I<br>Gender<br>empow<br>Employ<br>Phule ta<br>UNIT I<br>Women<br>Remed<br>Educati                                                                                                          | e development<br>spect, Self-Con<br>IIGENDER F<br>Equality - O<br>erment. Statu<br>yment, HDI, O<br>o Women Emp<br>IIIWOMEN I<br>n Issues and<br>a, Domestic via<br>ial Measures -<br>ion, Medical T<br>IV HUMAN I                                                                                                                                                                                                            | - Valuing Time, Co-operation, Confidence, character building and F<br>CQUALITY<br>Gender Vs Sex, Concepts, defuse of Women in India Soce<br>GDI, GEM. Contributions of Dr.<br>bowerment.<br>SSUES AND CHALLENGES<br>Challenges- Female Infanticid<br>colence, Sexual Harassment, Traffic-<br>Acts related to women: Politica<br>Cermination of Pregnancy Act, an<br>RIGHTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commitment, S<br>Personality.<br>inition, Gende<br>al, Economic<br>B.R. Ambethka<br>e, Female fet<br>ficking, Access<br>I Right, Proper<br>d Dowry Prohil                                                                                                                                                                                        | ymp<br>r eq<br>al, 1<br>ar, T<br>icide<br>to e<br>ty R<br>oition                                                                                         | uity,<br>Educ<br>hanth<br>duca<br>ights<br>n Act                                                                                                    | equation<br>nai P<br>olena<br>tion,<br>, and                                                                                                | Empa<br>9<br>aality,<br>1, He<br>eeriyar<br>9<br>ce ag<br>Marri<br>1 Righ<br>9                                                                                        | and<br>alth,<br>and<br>ainst<br>age.<br>ts to                                                                                         |
| holistic<br>Self res<br>UNIT I<br>Gender<br>empow<br>Employ<br>Phule tr<br>UNIT I<br>Womer<br>women<br>Remed<br>Educati<br>UNIT I<br>Human<br>Rights<br>Econor<br>Labour<br>and otl<br>Intellec<br>health a<br>UNIT I   | e development<br>spect, Self-Con<br>IIGENDER F<br>Equality - G<br>erment. Statu<br>yment, HDI, C<br>o Women Emp<br>IIIWOMEN I<br>n Issues and<br>a, Domestic via<br>ial Measures -<br>ion, Medical T<br>IV HUMAN I<br>n Rights Move<br>and Duties,<br>nical, Social a<br>c, Rights and p<br>her statutory G<br>etual Property<br>and working en<br>V GOOI                                                                     | <ul> <li>Valuing Time, Co-operation, Operation, Operation, Operation, Operation, Operation, Operation, Operation, Councepts, definition of Women in India Soce GDI, GEM. Contributions of Dr. Dowerment.</li> <li>SSUES AND CHALLENGES         Challenges- Female Infanticid Dence, Sexual Harassment, Traffic-Acts related to women: Politica Dence, Sexual Harassment, Traffic-Acts related to women: Politica Dence, Sexual Harassment, Traffic-Acts related to women Politica Dence, Sexual Harassment, Traffic-Acts related to women: Politica Dence, Sexual Harassment, Traffic-Acts related to women Politica Dence, Sexual Harassment, Traffic-Acts related to Politica Dence, Sexual Harassment, Traffic-Acts</li></ul>            | Commitment, S<br>Personality.<br>inition, Gende<br>ial, Economic<br>B.R. Ambethka<br>e, Female fett<br>ficking, Access<br>l Right, Proper<br>d Dowry Prohil<br>to the Consti<br>nan Rights (U<br>nst torture, Di<br>7. National Hur<br>an Rights Lite<br>on occupation                                                                           | ymp<br>r eq<br>al, 1<br>ar, T<br>icide<br>to e<br>ty R<br>oition<br>tutio<br>DHI<br>scrin<br>nan<br>eracy<br>nal s                                       | athy<br>uity,<br>Educ<br>hanth<br>duca<br>ights<br>n Act<br>n of<br>R), C<br>ninat<br>Righ<br>and<br>afety                                          | and<br>equation<br>nai P<br>olenation,<br>, and<br>ion a<br>ts Co<br>l Aw<br>y, oc                                                          | Empa<br>9<br>ality,<br>h, He<br>eriyar<br>9<br>ce ag<br>Marri<br>1 Righ<br>9<br>a, Hu<br>Polit<br>and fo<br>pommis<br>varene<br>cupati                                | and<br>alth,<br>and<br>alth,<br>and<br>ainst<br>age.<br>ts to<br>man<br>ical,<br>rced<br>sson<br>ss<br>onal                           |
| holistic<br>Self res<br>UNIT I<br>Gender<br>empow<br>Employ<br>Phule to<br>UNIT I<br>Women<br>Remed<br>Educati<br>UNIT I<br>Human<br>Rights<br>Econor<br>Labour<br>and otl<br>Intellec<br>health a<br>UNIT I            | e development<br>spect, Self-Con<br>IIGENDER E<br>E Equality - O<br>erment. Statu<br>yment, HDI, C<br>o Women Emp<br>IIIWOMEN I<br>In Issues and<br>I, Domestic via<br>ial Measures -<br>ion, Medical T<br>IV HUMAN I<br>I Rights Move<br>and Duties,<br>nical, Social a<br>r, Rights and p<br>her statutory o<br>ctual Property<br>and working en<br>V GOOI<br>Governance -<br>Corruption, In<br>gainst corrup               | <ul> <li>Valuing Time, Co-operation, Galdence, character building and FQUALITY</li> <li>Gender Vs Sex, Concepts, defais of Women in India Soc.</li> <li>GDI, GEM. Contributions of Dr. bowerment.</li> <li>SSUES AND CHALLENGES</li> <li>Challenges- Female Infanticid blence, Sexual Harassment, Trafference, Sexual Declaration of Hurassi Declaration of Hurassi Declaration of Hurassi Declaration of Hurassi Declaration of Hurassions, Creation of Hurassions, Creation of Hurassions, Creation of Hurassions, Creation of Hurassions, People's Participation, Poince, Poople's Participation, Trafference, Poople's Participation, Trafference, Ferrence, Poople's Participation, Trafference, Ferrence, Poople's Participation, Trafference, Ferrence, F</li></ul> | Commitment, S<br>Personality.<br>inition, Gende<br>dal, Economic<br>B.R. Ambethka<br>e, Female fett<br>ficking, Access<br>l Right, Proper<br>d Dowry Prohil<br>to the Consti<br>nan Rights (U<br>nst torture, Di<br>7. National Hun<br>an Rights Lite<br>on occupation<br><b>RESSING SOC</b><br>ion, Transpare<br>whom to make<br>ss in criminal | ymp<br>r eq<br>al, 1<br>ar, T<br>icide<br>to e<br>ty R<br>oition<br>tutio<br>DHI<br>scrin<br>nan<br>eracy<br>nal s<br><b>CIAL</b><br>ency<br>cor<br>just | athy<br>uity,<br>Educ<br>hanth<br>duca<br>ights<br>n Act<br>n of<br>R), C<br>ninat<br>Righ<br>and<br>afety<br><i>L</i> ISS<br>in g<br>rupti<br>tice | and<br>equation<br>nai P<br>olenation,<br>and<br>tion,<br>and<br>Civil,<br>ion a<br>ts Co<br>VES<br>over<br>on c<br>admi                    | Empa<br>9<br>ality,<br>h, He<br>eriyar<br>9<br>ce ag<br>Marri<br>1 Righ<br>9<br>a, Hu<br>Politand fo<br>pommis<br>varene<br>cupati<br>11<br>nance<br>ompla<br>inistra | and<br>alth,<br>and<br>alth,<br>and<br>ainst<br>age.<br>ts to<br>man<br>ical,<br>rced<br>ssion<br>ss<br>onal<br>and<br>ints,<br>tion, |
| holistic<br>Self res<br>UNIT I<br>Gender<br>empow<br>Employ<br>Phule to<br>UNIT I<br>Women<br>Remed<br>Educati<br>UNIT I<br>Human<br>Rights<br>Econor<br>Labour<br>and otl<br>Intellec<br>health a<br>UNIT I            | e development<br>spect, Self-Cor<br>IIGENDER E<br>E Equality - 0<br>erment. Statu<br>yment, HDI, C<br>o Women Emp<br>IIWOMEN I<br>n Issues and<br>a, Domestic vio<br>ial Measures -<br>ion, Medical T<br>IV HUMAN I<br>n Rights Move<br>and Duties,<br>nical, Social a<br>c, Rights and p<br>her statutory of<br>tual Property<br>and working en<br>V GOOI<br>Governance -<br>Corruption, In<br>gainst corrup<br>ument system | <ul> <li>Valuing Time, Co-operation, Operation, Operation, Operation, Operation, Operation, Operation, Contributions and FOUALITY</li> <li>Gender Vs Sex, Concepts, defais of Women in India Soce 3DI, GEM. Contributions of Dr. powerment.</li> <li>SSUES AND CHALLENGES</li> <li>Challenges- Female Infanticid polence, Sexual Harassment, Traffic Acts related to women: Politica Pregnancy Act, an RIGHTS</li> <li>ement in India – The preamble Universal Declaration of Human Cultural Rights, Rights again rotection of children and elderly Commissions, Creation of Human Rights (IPR). National Policy povinonment.</li> <li>D GOVERNANCE AND ADDE Democracy, People's Participation of corruption on society, Second Science, Science, Second Science, Scien</li></ul> | Commitment, S<br>Personality.<br>inition, Gende<br>dal, Economic<br>B.R. Ambethka<br>e, Female fett<br>ficking, Access<br>l Right, Proper<br>d Dowry Prohil<br>to the Consti<br>nan Rights (U<br>nst torture, Di<br>7. National Hun<br>an Rights Lite<br>on occupation<br><b>RESSING SOC</b><br>ion, Transpare<br>whom to make<br>ss in criminal | ymp<br>r eq<br>al, 1<br>ar, T<br>icide<br>to e<br>ty R<br>oition<br>tutio<br>DHI<br>scrin<br>nan<br>eracy<br>nal s<br><b>CIAL</b><br>ency<br>cor<br>just | athy<br>uity,<br>Educ<br>hanth<br>duca<br>ights<br>n Act<br>n of<br>R), C<br>ninat<br>Righ<br>and<br>afety<br><i>L</i> ISS<br>in g<br>rupti<br>tice | and<br>equation<br>nai P<br>olenation,<br>and<br>tion,<br>and<br>Civil,<br>ion a<br>ts Co<br>l Aw<br>y, oc<br>UES<br>over<br>on c<br>admi   | Empa<br>9<br>ality,<br>h, He<br>eriyar<br>9<br>ce ag<br>Marri<br>1 Righ<br>9<br>a, Hu<br>Politand fo<br>pommis<br>varene<br>cupati<br>11<br>nance<br>ompla<br>inistra | and<br>alth,<br>and<br>alth,<br>and<br>ainst<br>age.<br>ts to<br>man<br>ical,<br>rced<br>ssion<br>ss<br>onal<br>and<br>ints,<br>tion, |
| holistic<br>Self res<br>UNIT I<br>Gender<br>empow<br>Employ<br>Phule t<br>UNIT I<br>Women<br>Remed<br>Educati<br>UNIT I<br>Human<br>Rights<br>Econor<br>Labour<br>and otl<br>Intellec<br>health a<br>Good G<br>audit, G | e development<br>spect, Self-Cor<br>IIGENDER E<br>E Equality - 0<br>erment. Statu<br>yment, HDI, C<br>o Women Emp<br>IIWOMEN I<br>n Issues and<br>a, Domestic vio<br>ial Measures -<br>ion, Medical T<br>IV HUMAN I<br>n Rights Move<br>and Duties,<br>nical, Social a<br>c, Rights and p<br>her statutory of<br>tual Property<br>and working en<br>V GOOI<br>Governance -<br>Corruption, In<br>gainst corrup<br>ument system | <ul> <li>Valuing Time, Co-operation, Galdence, character building and FQUALITY</li> <li>Gender Vs Sex, Concepts, defas of Women in India Soc 3DI, GEM. Contributions of Dr. powerment.</li> <li>SSUES AND CHALLENGES</li> <li>Challenges- Female Infanticid polence, Sexual Harassment, Traff-Acts related to women: Politica Permination of Pregnancy Act, an RIGHTS</li> <li>ement in India – The preamble Universal Declaration of Hurand Cultural Rights, Rights again rotection of children and elderly Commissions, Creation of Hurand Section of Corruption on society, tion and related issues, Fairne of Redressal. Creation of Peop</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commitment, S<br>Personality.<br>inition, Gende<br>dal, Economic<br>B.R. Ambethka<br>e, Female fett<br>ficking, Access<br>l Right, Proper<br>d Dowry Prohil<br>to the Consti<br>nan Rights (U<br>nst torture, Di<br>7. National Hun<br>an Rights Lite<br>on occupation<br><b>RESSING SOC</b><br>ion, Transpare<br>whom to make<br>ss in criminal | ymp<br>r eq<br>al, 1<br>ar, T<br>icide<br>to e<br>ty R<br>oition<br>tutio<br>DHI<br>scrin<br>nan<br>eracy<br>nal s<br><b>CIAL</b><br>ency<br>cor<br>just | athy<br>uity,<br>Educ<br>hanth<br>duca<br>ights<br>n Act<br>n of<br>R), C<br>ninat<br>Righ<br>and<br>afety<br><i>L</i> ISS<br>in g<br>rupti<br>tice | and<br>equation<br>nai P<br>olenation,<br>, and<br>tion,<br>, and<br>tion a<br>ts Co<br>l Aw<br>y, oc<br>UES<br>over<br>on c<br>admi<br>and | Empa<br>9<br>ality,<br>h, He<br>eriyar<br>9<br>ce ag<br>Marri<br>1 Righ<br>9<br>a, Hu<br>Politand fo<br>pommis<br>varene<br>cupati<br>11<br>nance<br>ompla<br>inistra | and<br>alth,<br>and<br>alth,<br>and<br>ainst<br>age.<br>ts to<br>man<br>ical,<br>rced<br>ssion<br>ss<br>onal<br>and<br>ints,<br>tion, |

| efere | ences                                                                                                                                        |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Aftab A, (Ed.), "Human Rights in India: Issues and Challenges", (New Delhi: Raj Publications, 2012).                                         |
| 2.    | Bajwa, G.S. and Bajwa, D.K. "Human Rights in India: Implementation and Violations" (New Delhi D.K. Publications, 1996).                      |
| 3.    | Chatrath, K. J. S., (ed.), "Education for Human Rights and Democracy" (Shimala: Indian Institute o Advanced Studies, 1998).                  |
| 4.    | Jagadeesan. P., "Marriage and Social legislations in Tamil Nadu", Chennai: Elachiapen Publications 1990).                                    |
| 5.    | Kaushal, Rachna, "Women and Human Rights in India" (New Delhi: Kaveri Books, 2000)                                                           |
| 6.    | Mani. V. S., "Human Rights in India: An Overview" (New Delhi: Institute for the World Congress of Human Rights, 1998).                       |
| 7.    | Singh, B. P. Sehgal, (ed) "Human Rights in India: Problems and Perspectives" (New Delhi: Deep and Deep, 1999).                               |
| 8.    | Veeramani, K. (ed) Periyar on Women Right, (Chennai: Emerald Publishers, 1996)                                                               |
| 9.    | Veeramani, K. (ed) Periyar Feminism, (Periyar Maniammai University, Vallam, Thanjavur: 2010).                                                |
| 10.   | Planning Commission report on Occupational Health and Safet<br>http://planningcommission.nic.in/aboutus/committee/wrkgrp12/wg_occup_safety.p |
| 11.   | Central Vigilance Commission (Gov. of India) website: <u>http://cvc.nic.in/welcome.html</u> .                                                |
| 12.   | Weblink of Transparency International: <u>https://www.transparency.org/</u>                                                                  |
| 13    | Weblink Status report: https://www.hrw.org/world-report/2015/country-chapters/india                                                          |

|            | PO | <b>PO1</b> | <b>PO1</b> | PO1 |
|------------|----|----|----|----|----|----|----|----|----|------------|------------|-----|
|            | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0          | 1          | 2   |
| CO1        |    |    |    |    |    |    |    | 2  |    |            |            |     |
| CO2        |    |    |    |    |    |    |    | 3  | 1  |            |            |     |
| CO3        |    |    |    |    |    |    |    | 2  |    |            |            |     |
| <b>CO4</b> |    |    |    |    |    |    |    | 3  |    | 2          |            |     |
| CO5        |    |    |    |    |    |    |    | 3  | 2  | 2          |            | 2   |
| Total      |    | 2  |    |    |    |    |    | 13 | 3  | 4          |            | 2   |
| Scale      |    | 1  |    |    |    |    |    | 3  | 1  | 1          |            | 1   |
| d          |    |    |    |    |    |    |    |    |    |            |            |     |
| Value      |    |    |    |    |    |    |    |    |    |            |            |     |

## Mapping of COs with Pos

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 

0 - No relation, 1 - Low relation, 2 - Medium relation, 3 - High relation

| COUR<br>CODE | . –                           | XPG107                                               |                   | L        | T          | Р                 | C   |
|--------------|-------------------------------|------------------------------------------------------|-------------------|----------|------------|-------------------|-----|
| COUR         |                               |                                                      |                   | 0        | 0          | 4                 | 2   |
| NAME         | E                             | FUNDAMENTAL PHYSICS LAB                              |                   |          |            |                   |     |
| C:P:A        |                               | 0.4:1:0.6                                            |                   | L        | Т          | Р                 | Η   |
|              | EQUISITE                      |                                                      |                   | 0        | 0          | 4                 | 4   |
|              | SE OUTC                       |                                                      | Don               |          | Level      |                   |     |
| CO1:         |                               | usage of laboratory instruments and                  | Cogniti           |          | Understand |                   |     |
|              |                               | he Young's modulus of Non – uniform                  | Psycho            | motor    | Mec        | hanisı            | n   |
| 000          | pending                       |                                                      | D 1               |          | <b>C</b> ( |                   |     |
| CO2:         | <i>Explain</i> and modulus of | nd <i>demonstrate</i> the behavior of rigidity       | Psycho<br>Affecti |          | Set        |                   |     |
| CO3:         |                               | <i>te</i> and <i>measure</i> the thickness of a thin | Cogniti           |          | Valu       | <u> </u>          |     |
| 005.         |                               | Air wedge                                            | Psycho            |          | App<br>Mec | ry<br>hanisr      | m   |
| CO4:         |                               | and <i>explain</i> the Calibration of voltmeter      | Affecti           |          |            | nizati            |     |
| 2011         | 20mpure                       | and suprame the Cultoration of Volumeter             | Psycho            |          | Set        |                   |     |
| CO5          | Describe                      | the Band gap of the semiconductor                    | Psycho            |          |            | eption            | 1   |
|              |                               |                                                      | Affecti           |          |            | nizati            |     |
| List of      | Experimen                     | nts                                                  |                   |          | I          | Hours             | }   |
| 1            | Non-unifo                     | rm Bending - Pin and Microscope Method               |                   |          | 4          |                   |     |
| 2            |                               | pendulum - Determination of rigidity mode            |                   | wire     | 4          |                   |     |
| 3            | Co-efficie                    | nt of viscosity of Liquid using graduated b          | urette            |          |            | 4                 |     |
| 4            | _                             | eter - Refractive index of solid prism (A, D         |                   |          |            | 4                 |     |
| 5            |                               | e Box - Determination of Band gap of a se            | emi-cond          | uctor    |            | 4                 |     |
| 6            | -                             | - determination of thickness of thin wire            |                   |          |            | 4                 |     |
| 7            |                               | eter - Calibration of voltmeter                      |                   |          |            | 4                 |     |
| 8            | LASER gr                      | rating - Determination of wavelength of LA           | ASER and          | 1 size   |            | 4                 |     |
| Text B       |                               | 10-particle                                          |                   |          |            |                   |     |
|              |                               | Sc Practical Physics", S. Chand and Compa            | anv Ltd. 2        | 2007.    |            |                   |     |
|              |                               | ay and P. C. Rakshit, "An Advanced Course            |                   |          | vsics"     | , (Nev            | V   |
|              |                               | gency), 2011.                                        |                   | ·        |            |                   |     |
|              |                               | ext Book of Advanced Practical Physics",             | (New Ce           | ntral Bo | ok Ag      | gency)            | 7   |
|              |                               | ysics (Honours) Theory Paper, 2008.                  |                   | _        |            |                   |     |
|              |                               | d Anchal Srivastava, "Practical Physics", N          | New Age           | Internat | ional      | $(\mathbf{P})$ Lt | d,  |
|              | lishers, 2006                 |                                                      |                   |          |            |                   |     |
|              | nce books                     | ractical Physics, 4 th Edition, Cambridge U          | Iniversity        | Drage /  | 2001       |                   |     |
| -            |                               | snick R. and Walker J., Fundamentals of F            | -                 |          |            | ın Wi             | ley |
|              | ns, 2001.                     |                                                      |                   |          |            |                   |     |
|              |                               | d White H.E., Fundamentals of Optics, 4th            | Edition,          | Mc Grav  | w Hill     | Book              |     |
| -            | uny, 2007.                    |                                                      | 1                 |          | 000-       |                   |     |
|              |                               | Sc., Practical Physics, 1st Edition, S. Char         |                   |          |            | •                 |     |
| 5. Ben       | enson, Walt                   | er, and Horst Stocker, Handbook of Physic            | s, Spring         | er, 2002 | 2.         |                   |     |

### Mapping of COs with Pos

|            | PO<br>1 | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO1<br>0 | PO1<br>1 | PO1<br>2 | PSO<br>1 | PSO<br>2 |
|------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|----------|
| CO1        |         |         |         |         |         |         |         | 2       |         |          |          |          |          |          |
| CO2        |         |         |         |         |         |         |         | 3       | 1       |          |          |          |          |          |
| CO3        |         |         |         |         |         |         |         | 2       |         |          |          |          |          |          |
| <b>CO4</b> |         |         |         |         |         |         |         | 3       |         | 2        |          |          |          |          |
| CO5        |         |         |         |         |         |         |         | 3       | 2       | 2        |          | 2        |          |          |
| Total      |         | 2       |         |         |         |         |         | 13      | 3       | 4        |          | 2        |          |          |
| Scale      |         | 1       |         |         |         |         |         | 3       | 1       | 1        |          | 1        |          |          |
| d          |         |         |         |         |         |         |         |         |         |          |          |          |          |          |
| Value      |         |         |         |         |         |         |         |         |         |          |          |          |          |          |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 – No relation, 1 – Low relation, 2 – Medium relation, 3 – High relation

| COUI               | RSE C                            | ODE                                      | XGL201                                                                                                                                                                         | L             | Т             | Р   | SS   | Η            | С |  |  |  |
|--------------------|----------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-----|------|--------------|---|--|--|--|
| COUI               | RSE N.                           | AME                                      | ADVANCED ENGLISH<br>COMMUNICATION SKILLS                                                                                                                                       | 2             | 0             | 0   | 0    | 2            | 2 |  |  |  |
| C:P:A              | A - 3:0:                         | 0                                        |                                                                                                                                                                                |               |               |     |      |              |   |  |  |  |
| COUI               | RSE O                            | UTCOMI                                   | ES:                                                                                                                                                                            | Do            | omai          | n   | L    | Level        |   |  |  |  |
| CO1                | Recal                            | <i>ll</i> the basic                      | grammar and using it in proper context                                                                                                                                         | Co            | gniti         | ve  | Reme | emembering   |   |  |  |  |
| CO2                | Expla                            | <i>in</i> the pro                        | cess of listening and speaking                                                                                                                                                 | Co            | gniti         | ve  | Unde | nderstanding |   |  |  |  |
| CO3                | Adap                             | t importai                               | nt methods of reading                                                                                                                                                          | Co            | gniti         | ve  | Cr   | Creating     |   |  |  |  |
| CO4                | Demo                             | o <i>nstrate</i> th                      | e basic writing skills                                                                                                                                                         | Co            | gniti         | ve  | Unde | Understandin |   |  |  |  |
| SYLL               | ABUS                             | 1                                        |                                                                                                                                                                                |               |               |     |      | HOURS        |   |  |  |  |
| UNIT               | 'I                               | Advanced                                 | Reading                                                                                                                                                                        |               |               |     |      |              |   |  |  |  |
| compr              | rehensio<br>standin              | on iii. Rea                              | erent genres and of varying length ii. Different stra<br>ding and interpreting non-linguistic texts iv. Read<br>ete texts (Cloze of varying lengths and gaps; disto<br>Writing | ing a         | nd            |     |      | 9            |   |  |  |  |
| the fin<br>exercis | al draft<br>se) viii<br>uation a | t vii. Re-di<br>. Summari<br>appropriate |                                                                                                                                                                                | anipu<br>ioms | llatic<br>and |     | ng   | 9            |   |  |  |  |
| UNIT               | 'III                             | Principles                               | of communication and communicative compet                                                                                                                                      | ence          |               |     |      |              |   |  |  |  |
| verbal             | and no                           |                                          | nunication – principles and process xi. Types of c<br>xii. Identifying and overcoming problems of comr<br>mpetence                                                             |               |               |     | I —  | 9            |   |  |  |  |
| UNIT               | 'IV (                            | Cross Cul                                | tural Communication                                                                                                                                                            |               |               |     |      |              |   |  |  |  |
| xiv. C             | ross-cu                          | Itural com                               | munication                                                                                                                                                                     |               |               |     |      | 9            |   |  |  |  |
|                    |                                  |                                          |                                                                                                                                                                                | Γ             | <b>`otal</b>  | Hou | urs  | 36           | 5 |  |  |  |
| Text b             | books                            | 1 (20)                                   |                                                                                                                                                                                |               |               |     | ·    |              |   |  |  |  |

### **II SEMESTER**

1) Bailey, Stephen (2003). Academic Writing. London and New York, Routledge.

2) Department of English, Delhi University (2006). Fluency in English Part II. New Delhi, OUP3) Grellet, F (1981). Developing Reading Skills: A Practical Guide to Reading Skills. New York,

#### CUP

4) Hedge, T. (2005). Writing. London, OUP

5) Kumar, S and Pushp Lata (2015). Communication Skills. New Delhi, OUP

6) Lazar, G. (2010). Literature and Language Teaching. Cambridge, CUP

7) Nuttall, C (1996). Teaching Reading Skills in a Foreign Language. London, Macmillan

8) Raman, Meenakshi and Sangeeta Sharma (2011). Technical Communication: Principles and Practice. New Delhi, OUP

### Table 1: Mapping of Cos with POs

|                 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|
| <b>CO1</b>      | 2   | 0   | 0   | 0   | 0   | 0   | 2          | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
| CO2             | 2   | 0   | 0   | 0   | 0   | 0   | 2          | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
| CO3             | 1   | 0   | 0   | 0   | 0   | 0   | 1          | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
| CO4             | 2   | 0   | 0   | 0   | 0   | 0   | 1          | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
| CO5             | 0   | 0   | 0   | 0   | 0   | 0   | 0          | 0   | 0   | 0    | 0    | 0    | 0    | 0    |
| Total           | 7   | 0   | 0   | 0   | 0   | 0   | 6          | 0   | 4   | 0    | 0    | 0    | 0    | 0    |
| Scaled<br>Value | 2   | 0   | 0   | 0   | 0   | 0   | 2          | 0   | 1   | 0    | 0    | 0    | 0    | 0    |
|                 | 1   | 0   | 0   | 0   | 0   | 0   | 1          | 0   | 1   | 0    | 0    | 0    | 0    | 0    |

1-5=1, 6-10 = 2, 11-15=3

0-No Relation, 1- Low Relation, 2 - Medium Relation, 3- High Relation

|           | GA<br>1 | GA<br>2 | GA<br>3 | GA<br>4 | GA<br>5 | GA<br>6 | GA<br>7 | GA<br>8 | GA<br>9 | GA1<br>0 | GA1<br>1 | GA1<br>2 |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|
| CO1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 2        | 0        | 0        |
| CO2       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2        | 0        | 0        |
| CO3       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1        | 0        | 0        |
| CO4       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0        | 1        | 0        |
| CO5       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 1        | 1        | 0        |
| Tota<br>l | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 2       | 2       | 6        | 2        | 0        |
| Scal<br>e | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 2        | 1        | 0        |

### Table 2: Mapping of COs with GAs

1-5=1, 6-10=2, 11-15=3

| COUR                                                                                                                             | RSE CODE                                                                                                                                                                                                     | XES202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L                                                                                                     | Т                                                                                                         | SS                                                                                              | Р                                                                                   | С                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| COUF                                                                                                                             | RSE NAME                                                                                                                                                                                                     | ENVIRONMENTAL STUDIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                     | 0                                                                                                         | 1                                                                                               | 0                                                                                   | 2                                                                                |
| C:P:A                                                                                                                            |                                                                                                                                                                                                              | 1.4: 0.3 : 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                                                                                                     | Т                                                                                                         | SS                                                                                              | Р                                                                                   | Η                                                                                |
|                                                                                                                                  |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                     | 0                                                                                                         | 1                                                                                               | 0                                                                                   | 3                                                                                |
| COUR                                                                                                                             | RSE OUTCO                                                                                                                                                                                                    | MES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DO                                                                                                    | MAIN                                                                                                      | LEV                                                                                             | /EL                                                                                 |                                                                                  |
| CO1                                                                                                                              |                                                                                                                                                                                                              | significance of natural resources and ropogenic impacts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cog                                                                                                   | nitive                                                                                                    |                                                                                                 | embe<br>erstan                                                                      | 0                                                                                |
| CO2                                                                                                                              | <i>Illustrate</i> the                                                                                                                                                                                        | e significance of ecosystem, biodiversity and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cog                                                                                                   | nitive                                                                                                    |                                                                                                 | erstan                                                                              | <u> </u>                                                                         |
|                                                                                                                                  | ecological ba                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                       |                                                                                                           |                                                                                                 |                                                                                     |                                                                                  |
| CO3                                                                                                                              |                                                                                                                                                                                                              | facts, consequences, preventive measures of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U U                                                                                                   | nitive                                                                                                    |                                                                                                 | embe                                                                                | 0                                                                                |
|                                                                                                                                  | • •                                                                                                                                                                                                          | ions and <i>recognize</i> the disaster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Affe                                                                                                  | ective                                                                                                    | Rece                                                                                            | eiving                                                                              |                                                                                  |
| 004                                                                                                                              | phenomenon                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                       | •,•                                                                                                       | TT 1                                                                                            |                                                                                     | 1.                                                                               |
| CO4                                                                                                                              | -                                                                                                                                                                                                            | socio-economic, policy dynamics and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cog                                                                                                   | nitive                                                                                                    | Understand                                                                                      |                                                                                     | ding                                                                             |
|                                                                                                                                  | sustainable d                                                                                                                                                                                                | control measures of global issues for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |                                                                                                           | App                                                                                             | lying                                                                               |                                                                                  |
| CO5                                                                                                                              |                                                                                                                                                                                                              | ie impact of population and the concept of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cog                                                                                                   | Cognitive                                                                                                 |                                                                                                 | erstan                                                                              | dino                                                                             |
| 005                                                                                                                              |                                                                                                                                                                                                              | are programs, and <i>apply</i> the modern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       | U                                                                                                         |                                                                                                 | lysing                                                                              | 0                                                                                |
|                                                                                                                                  |                                                                                                                                                                                                              | owards environmental protection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |                                                                                                           | - mu                                                                                            | ., 51116                                                                            |                                                                                  |
| UNIT                                                                                                                             |                                                                                                                                                                                                              | UCTION TO ENVIRONMENTAL STUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IES A                                                                                                 | ND EN                                                                                                     | ERG                                                                                             | Y 12                                                                                | 2                                                                                |
| of mo<br>Energy<br>resource<br>conser<br><b>UNIT</b><br>Concej<br>decom<br>and ec<br>the (a)<br>Introdu<br>Conser<br><b>UNIT</b> | dern agricultury<br>resources: re-<br>ce, land deg<br>vation of nature<br>– II ECOSY<br>pt of an ecosy<br>posers – Ener<br>ological pyran<br>Forest ecosystication to Bi<br>revation of bioor<br>– III ENVII | es – Food resources: changes caused by agrid<br>are, fertilizer-pesticide problems, water log<br>enewable and non-renewable energy source<br>radation, soil erosion and desertification<br>ral resources – Equitable use of resources for<br><b>XSTEMS AND BIODIVERSITY</b><br>rstem – Structure and function of an ecosyste<br>gy flow in the ecosystem – Ecological succe<br>mids – Introduction, types, characteristic fea<br>stem (b) Grassland ecosystem (c) Desert ecos<br>odiversity – Definition: genetic, species<br>diversity: In-situ and Ex-situ conservation of<br><b>RONMENTAL POLLUTION</b> | gging,<br>s – La<br>– Rol<br>r sustai<br>em – Pr<br>ssion –<br>tures, s<br>system<br>s and<br>biodive | salinity<br>nd resc<br>le of<br>nable li<br>roducer<br>Food c<br>structur<br>(d) Aqu<br>ecosys<br>ersity. | y, case<br>purces:<br>an inc<br>festyle<br>(s, cons<br>chains,<br>e and (<br>uatic e<br>stem of | e stud<br>Land<br>lividu<br>es.<br>7<br>sumer<br>food<br>functi<br>cosyst<br>divers | ies –<br>l as a<br>al in<br>s and<br>webs<br>on of<br>tem –<br>ity –<br><b>D</b> |
| Soil p<br>hazard<br>Polluti<br>UNIT<br>Urban<br>manag                                                                            | ollution (d)<br>s – Solid wa<br>on case studie                                                                                                                                                               | , effects and control measures of: (a) Air po<br>Marine pollution (e) Noise pollution (f) T<br>aste management – Role of an individual<br>es – Disaster management: flood, earthquake,<br><b>LISSUES AND THE ENVIRONMENT</b>                                                                                                                                                                                                                                                                                                                                                                               | Therma<br>in pro<br>cyclor                                                                            | l pollu<br>eventione and l                                                                                | tion (<br>n of j<br>andsli                                                                      | g) Nu<br>polluti<br>de.<br>1                                                        | iclear<br>ion –                                                                  |

| UNIT   | -V H   | UMAN POPULA         | ATION AND TH        | E ENVIRONMEN         | NT              | 6             |
|--------|--------|---------------------|---------------------|----------------------|-----------------|---------------|
|        |        |                     |                     | Population explosi   |                 | ent and humar |
| health | – Hľ   | V / AIDS– Role      | of Information T    | echnology in Env     | rironment and   | human health  |
| Popula | tion   | growth, variation   | n among nations     | - Population e       | xplosion – Fa   | amily welfare |
| progra | mme -  | – Environment ar    | d human health –    | Human rights - V     | alue education  | - HIV / AIDS  |
| – Won  | nen ar | nd Child welfare p  | programme– Role     | of Information Tec   | chnology in En  | vironment and |
| human  | healt  | h – Case studies.   |                     |                      |                 |               |
|        |        | LECTURE             | TUTORIAL            | PRACTICAL            | SELF<br>STUDY   | TOTAL         |
|        |        | 30                  | 0                   | 0                    | 15              | 45            |
| TEXT   | BOC    | OKS                 |                     |                      |                 |               |
| 1.     | Mill   | er T.G. Jr., "Envi  | ronmental Science   | ", Wadsworth Pub     | lishing Co, US  | A, 2000.      |
| 1.     | Town   | nsend C., Harper    | J and Michael Beg   | on, "Essentials of   | Ecology", Blac  | ckwell        |
|        | Scier  | nce, UK, 2003       |                     |                      |                 |               |
| 2.     | Trive  | edi R.K and P.K.C   | Goel, "Introduction | to Air pollution",   | Techno Scienc   | e             |
|        |        | ications, India, 20 |                     |                      |                 |               |
| 3.     |        |                     |                     | very and Response,   | SBS Publisher   | rs &          |
|        |        | ibutors Pvt. Ltd, I |                     |                      |                 |               |
|        |        |                     |                     | o International disa |                 |               |
| 5.     |        |                     |                     | rironmental Engine   | ering and Scien | nce", Pearson |
|        |        |                     | Second Edition, No  | ew Delhi, 2004.      |                 |               |
|        |        | CES BOOKS           |                     |                      |                 |               |
| 1.     |        |                     |                     | tal Laws, Rules",    | Guidelines, Co  | mpliances and |
|        |        |                     | I, Enviro Media, I  |                      |                 |               |
| 2.     |        | -                   | -                   | , "Environmental H   | Encyclopedia",  | Jaico Publ.,  |
|        |        | se, Mumbai, 2001    |                     |                      |                 |               |
| 3.     |        | -                   | onmental Engineer   | ing and Managem      | ent", S.K.Katar | ia and Sons,  |
|        |        | Delhi, 2012.        |                     |                      |                 | • • • • •     |
|        |        |                     |                     | n Asia", PHI Learn   |                 | , 2003.       |
|        |        |                     |                     | & Sons, New Delh     |                 |               |
| 6.     | G.K.   | Ghosh, "Disaster    | Management", A.     | P.H.Publishers, Ne   | w Delhi, 2006.  |               |
| E RES  | OUR    | CES                 |                     |                      |                 |               |
| 1.     |        |                     | ectory.com/details  | .php?ebook=1052      | 6               |               |
| 2.     |        |                     |                     | duction-to-Enviror   |                 | e             |
| 3.     | 1      |                     | ks.net/ebook/Wha    |                      |                 | -             |
| 4.     | 1      |                     |                     | nit/unit_vis.php?u   | nit=4           |               |
| 5.     | -      |                     | •                   | ntion-and-control-e  |                 |               |
| 6.     | -      |                     |                     | .php?ebook=8557      |                 |               |
| 7.     | -      |                     | •                   | .php?ebook=6804      |                 |               |
| 8.     | -      |                     | n/atmospheric-pol   | 1 1                  |                 |               |
| 9.     |        |                     |                     | .php?ebook=3749      |                 |               |
| 10.    | -      |                     | -                   | .php?ebook=2604      |                 |               |
|        | -      |                     | •                   | .php?ebook=2116      |                 |               |
|        |        |                     |                     | .php?ebook=1026      |                 |               |
|        |        | //www.faadooeng     |                     |                      |                 |               |

|            | PO1 | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | PO8 | <b>PO9</b> |
|------------|-----|-----|-----|-----|-----|------------|------------|-----|------------|
| CO1        |     |     |     |     |     |            | 2          | 3   | 3          |
| CO2        |     |     |     |     |     |            | 1          | 2   | 2          |
| CO3        |     |     |     |     |     |            | 2          | 3   | 3          |
| <b>CO4</b> |     |     |     |     |     |            | 3          | 3   | 3          |
| CO5        |     |     |     |     |     |            | 2          | 2   | 3          |
| Total      |     |     |     |     |     |            | 10         | 13  | 14         |
| Scaled     |     |     |     |     |     |            | 2          | 3   | 2          |
| Value      |     |     |     |     |     |            | Z          | 5   | 5          |

# Table 1 : Mapping of CO's with PO's

1-5=1, 6-10 = 2, 11-15=3

| COURS               | E CODE                                     | XPG203                                                                                                                                                                           | L                | Т        | Р                          | С                          |  |
|---------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------------------------|----------------------------|--|
| COURS               | E NAME                                     | MODERN PHYSICS                                                                                                                                                                   | 3                | 1        | 0                          | 4                          |  |
| C:P:A               |                                            | 2.8:0.4:0.8                                                                                                                                                                      | L                | Т        | Р                          | Н                          |  |
| PREREC              | QUISITE:                                   | <b>Basic Physics at School level</b>                                                                                                                                             | 3                | 1        | 0                          | 4                          |  |
| COURS               | E OUTCO                                    | MES                                                                                                                                                                              | DOM              | IAIN     | LEV                        | <b>EL</b>                  |  |
| CO1                 | • • •                                      | <i>plain and demonstrate</i> and <i>Relate</i><br>of the basics of digital computer.                                                                                             | Cognit<br>Psycho |          | Remem<br>Underst<br>Mechar | and                        |  |
| CO2                 | -                                          | ne knowledge of INTEL 8085; <i>Analyze</i> and implicit addressing and Instruction                                                                                               | Cognit           |          | Analyzing,<br>Applying     |                            |  |
| CO3                 | Understan<br>programm                      | <i>d</i> Fundamentals of assembly language ing                                                                                                                                   | Cognit<br>Affect |          | Understanding<br>Receiving |                            |  |
| CO4                 | Identify St                                | ructure of 'C', explain I/O function.                                                                                                                                            | Cognit           | ive      | Remem                      | bering                     |  |
| CO5                 | Basic fund                                 | <i>d</i> the Data input and output and <i>describe</i> ctions and <i>Compare</i> automatic variables, Variables, Static Variables.                                               | Cognit<br>Affect | ive      |                            | Understanding<br>Receiving |  |
| UNIT - I            |                                            |                                                                                                                                                                                  |                  |          | 7+3                        |                            |  |
| and Cor<br>experime | npton scatt<br>nt. Problem<br>bectra; Bohr | Planck's constant and light as a collection<br>tering. De Broglie wavelength and ma<br>as with Rutherford model- instability of ato<br>s quantization rule and atomic stability. | atter wa         | aves; D  | avisson-<br>ation of o     | Germer                     |  |
|                     |                                            | nt commo nov microscope thought over                                                                                                                                             |                  | Waya     | 8 + 3                      | duality                    |  |
| Heisenbe            | rg uncertain                               | nt- gamma ray microscope thought expent<br>ty principle- impossibility of a particle for<br>a confined particle using uncertainty prin                                           | llowing          | a trajec | tory; Esti                 | mating                     |  |
| UNIT – I            |                                            |                                                                                                                                                                                  |                  |          | 10 + 3                     | 6                          |  |
| Quantum             | dot as an e                                | finitely rigid box- energy eigenvalues and<br>example; Quantum mechanical scattering and<br>and across a rectangular potential barrier.                                          |                  |          |                            |                            |  |
| UNIT –I             | 1 1                                        |                                                                                                                                                                                  |                  |          | 10 + 3                     | 6                          |  |
| electron l          | being in nuc                               | of atomic nucleus and its relation with atom<br>eleus as a consequence of the uncertainty pr<br>irical mass formula and binding energy                                           |                  |          |                            | •                          |  |

UNIT –V

10 + 3

Radioactivity: stability of nucleus; Law of radioactive decay; Mean life and half-life; -ray $\gamma$  decay - energy released, spectrum and Pauli's prediction of neutrino;  $\beta$  decay;  $\alpha$  emission.

### **TEXT BOOKS**

1. J.R. Taylor, C.D.Zafiratos, M.A.Dubson, "Concepts of Modern Physics", Arthur Beiser, 2009, McGraw-Hill Modern Physics, 2009, PHI Learning

## REFERENCESBOOKS

1. Thomas A. Moore, Six," Ideas that Shaped Physics: Particle Behave like Waves", 2003,

2. E.H. Wichman, "Quantum Physics, Berkeley Physics", Vol.4. 2008, Tata McGraw-Hill Co.

3. R.A. Serway, C.J. Moses, and C.A.Moyer,"Modern Physics", 2005, Cengage Learning

### **E RESOURCES**

| NPTEL, Prof. N | I. K. Srivastava, Dep | partment of Physics | , IIT, Roorkee. |             |
|----------------|-----------------------|---------------------|-----------------|-------------|
|                | LECTURE               | TUTORIAL            | PRACTICAL       | TOTAL HOURS |
|                | 45                    | 15                  | -               | 60          |

## Table 1: Mapping of Cos with POs

| COs             | PO <sub>1</sub> | PO <sub>2</sub> | PO <sub>3</sub> | PO <sub>4</sub> | PO <sub>5</sub> | PO <sub>6</sub> | PO <sub>7</sub> | PO <sub>8</sub> | PO <sub>9</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| CO <sub>1</sub> | 1               | 1               | 1               |                 | 2               | 1               | 1               | 1               |                 |
| CO <sub>2</sub> | 2               | 3               | 2               | 1               | 2               | 2               | 1               | 2               |                 |
| CO <sub>3</sub> | 1               | 3               | 2               |                 | 1               | 2               | 2               | 2               |                 |
| CO <sub>4</sub> | 1               | 1               | 2               |                 | 1               | 2               | 1               | 1               |                 |
| CO5             | 2               | 3               | 1               |                 | 2               | 2               | 2               | 1               |                 |
| Total           | 6               | 11              | 8               | 1               | 8               | 9               | 7               | 7               |                 |
| Scaled          | 2               | 3               | 2               | 1               | 2               | 2               | 2               | 2               |                 |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| CC | DUR                | SE CODE                    | COURSE NAME                                                                                                                                                  |      | L     | Т  | P      | С  |
|----|--------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|----|--------|----|
| XN | <b>1T2</b>         | 04                         | Differential Equations & Laplace Transfor                                                                                                                    | ms   | 4     | 1  | 0      | 5  |
| С  | P                  | Α                          |                                                                                                                                                              |      | L     | Т  | Р      | H  |
| 5  | 0                  | 0                          |                                                                                                                                                              |      | 4     | 1  | 0      | 5  |
| PR | ERI                | <b>EQUISITE:</b>           | <b>Differential Calculus and Integral Calculus</b>                                                                                                           |      |       |    |        |    |
| Co | urse               | outcomes:                  |                                                                                                                                                              | Dom  | ain   | Le | evel   |    |
| CC | L<br>Se            | Differential olvable for   | problems related to first order, higher degree<br>equations solvable for x, solvable for y,<br>dy/dx, Clairaut's form – Conditions of<br>of M dx + N dy = 0. | Cogn | itive | Aı | oplyin | ıg |
| CC | )2: \$             | Solve second constant coe  | l order linear differential equations with<br>fficients, variable coefficients, and solving the<br>g method of Variation of Parameters.                      | Cogn | itive | Al | oplyin | g  |
| CC | <b>)3:</b> ]<br>tl | Formation of he standard f | Partial Differential Equation, <b>Solve</b> PDE of orms using Lagrange's method, Charpit's few standard forms.                                               | Cogn | itive | A  | oplyin | g  |
| CC | с                  | onstant coe                | f second order homogeneous equation with fficients, particular integrals of the forms +by), $\cos(ax+by)$ , $x^r y^s$ and $e^{ax+by}$ . $f(x,y)$ .           | Cogn | itive | Al | oplyin | g  |

| CO5. Find Lonloss Transforms and inverse Lonloss transform                                                                                                                                        | n Comitivo       | Domomhoring             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|
| <b>CO5:</b> Find Laplace Transforms and inverse Laplace transform<br>of function using standard formulae, Basic theorem                                                                           | -                | Remembering<br>Applying |
| & simple applications Use Laplace Transforms in                                                                                                                                                   | .8               | Apprying                |
| solving ODE with constant coefficients.                                                                                                                                                           |                  |                         |
| UNIT I                                                                                                                                                                                            |                  | 15                      |
| First order, higher degree differential equations solvable for x, so                                                                                                                              | lvable for v. so |                         |
| dy/dx, Clairaut's form – Conditions of integrability of M dx + N                                                                                                                                  |                  |                         |
| UNIT II                                                                                                                                                                                           |                  | 15                      |
| Particular integrals of second order differential equations with co                                                                                                                               | nstant coeffici  | ents - Linear           |
| equations with variable coefficients - Method of Variation of Par                                                                                                                                 | ameters ( Seco   | ond Order only)         |
| UNIT III                                                                                                                                                                                          |                  | 15                      |
| Formation of Partial Differential Equation – General, Particular                                                                                                                                  | & Complete int   | egrals –                |
| Solution of PDE of the standard forms - Lagrange's method - So                                                                                                                                    | ving of Charp    | it's method and         |
| a few standard forms.                                                                                                                                                                             |                  |                         |
| UNIT IV                                                                                                                                                                                           |                  | 15                      |
| PDE of second order homogeneous equation with Constant coeff                                                                                                                                      | icients – Partic | ular integrals of       |
| the forms $e^{ax+by}$ , Sin(ax+by), Cos(ax+by), $x^r y^s$ and $e^{ax+by}$ . f(x,y).                                                                                                               |                  | I                       |
| UNIT V                                                                                                                                                                                            |                  | 15                      |
| Laplace Transforms – Standard formulae – Basic theorems & sin                                                                                                                                     |                  |                         |
| Laplace Transforms – Use of Laplace Transforms in solving OD                                                                                                                                      |                  |                         |
| LECTURE                                                                                                                                                                                           | TUTORIA          |                         |
| 60                                                                                                                                                                                                | 1:               | 5 75                    |
| TEXT BOOKS                                                                                                                                                                                        |                  |                         |
| 1. T.K.Manicavachagom Pillay & S.Narayanan, "Differential Eq                                                                                                                                      | uations", S.Vis  | swanathan               |
| Publishers Pvt. Ltd., 1996.                                                                                                                                                                       |                  |                         |
| 2. Arumugam & Isaac, "Differential Equations", New Gamma F                                                                                                                                        | ublishing Hou    | se,                     |
| Palayamkottai, 2003.                                                                                                                                                                              |                  |                         |
|                                                                                                                                                                                                   | on 6 [1]         |                         |
| Unit : 1 Chapter IV – Sections 1,2 & 3, Chapter II – Secti                                                                                                                                        |                  |                         |
| Unit : 2 Chapter V – Sections 1,2,3,4 & 5, Chapter VIII –                                                                                                                                         |                  |                         |
| Unit : 2 Chapter V – Sections 1,2,3,4 & 5, Chapter VIII –<br>Unit : 3 Chapter XII – Sections 1 – 6 [1]                                                                                            |                  |                         |
| Unit : 2 Chapter V – Sections 1,2,3,4 & 5, Chapter VIII –<br>Unit : 3 Chapter XII – Sections 1 – 6 [1]<br>Unit : 4 Chapter V [2]                                                                  |                  |                         |
| Unit : 2 Chapter V – Sections 1,2,3,4 & 5, Chapter VIII –<br>Unit : 3 Chapter XII – Sections 1 – 6 [1]<br>Unit : 4 Chapter V [2]<br>Unit : 5 Chapter IX – Sections 1 – 8 [1]                      |                  |                         |
| Unit : 2 Chapter V – Sections 1,2,3,4 & 5, Chapter VIII –<br>Unit : 3 Chapter XII – Sections 1 – 6 [1]<br>Unit : 4 Chapter V [2]<br>Unit : 5 Chapter IX – Sections 1 – 8 [1]<br><b>REFERENCES</b> | Section 4 [1]    |                         |
| Unit : 2 Chapter V – Sections 1,2,3,4 & 5, Chapter VIII –<br>Unit : 3 Chapter XII – Sections 1 – 6 [1]<br>Unit : 4 Chapter V [2]<br>Unit : 5 Chapter IX – Sections 1 – 8 [1]                      | Section 4 [1]    |                         |

## Table 1: COs POs Mapping

|       | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 |
|-------|-----|-----|-----|-----|-----|-----|------------|-----|-----|
| CO 1  | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| CO 2  | 3   | 2   |     | 1   |     |     | 1          | 1   | 1   |
| CO 3  | 3   | 2   |     | 1   |     |     | 1          | 1   | 1   |
| CO 4  | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| CO 5  | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| Total | 15  | 10  | 0   | 5   | 3   | 0   | 5          | 5   | 5   |
| Scale | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| Value |     |     |     |     |     |     |            |     |     |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 - No relation, 1 - Low relation, 2 - Medium relation, 3 - High relation

| COUR                                                                                                            | SE COD                                                                                                                    | E                                                                                                                     | COURSE NAME                                                                                                                                                       |                                                      | L      | Т          | Р       | С             |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------|------------|---------|---------------|
| XMT2                                                                                                            | 05                                                                                                                        |                                                                                                                       | SEQUENCES AND SERIES                                                                                                                                              | 5                                                    | 4      | 1          | 0       | 5             |
| C                                                                                                               | D                                                                                                                         |                                                                                                                       |                                                                                                                                                                   |                                                      | T      | T          | D       | тт            |
| C<br>4                                                                                                          | P<br>0.5                                                                                                                  | A<br>0.5                                                                                                              |                                                                                                                                                                   |                                                      | L<br>4 | T<br>1     | P<br>0  | <u>Н</u><br>5 |
| -                                                                                                               | EQUISIT                                                                                                                   |                                                                                                                       |                                                                                                                                                                   |                                                      | 4      | 1          | U       | 3             |
|                                                                                                                 | outcom                                                                                                                    |                                                                                                                       |                                                                                                                                                                   | Domain                                               | Lev    | rel        |         |               |
|                                                                                                                 |                                                                                                                           |                                                                                                                       | Sequences, Monotonic                                                                                                                                              | Cognitive                                            | _      |            | nding   |               |
|                                                                                                                 |                                                                                                                           |                                                                                                                       | ergent Sequence, Divergent                                                                                                                                        | C                                                    |        |            | U       |               |
|                                                                                                                 |                                                                                                                           |                                                                                                                       | ating sequences.                                                                                                                                                  |                                                      |        |            |         |               |
| <b>CO2:</b>                                                                                                     | Explain                                                                                                                   | Behaviou                                                                                                              | r of Monotonic functions.                                                                                                                                         | Cognitive                                            |        |            | nding   |               |
| ~~~                                                                                                             |                                                                                                                           |                                                                                                                       |                                                                                                                                                                   | Psychomotor                                          |        |            | espon   | se            |
|                                                                                                                 | -                                                                                                                         | -                                                                                                                     | nces, limit points and Cauchy                                                                                                                                     | Cognitive                                            | Unc    | lersta     | nding   |               |
|                                                                                                                 | equences                                                                                                                  |                                                                                                                       | test <b>to</b> infinite series to test                                                                                                                            | Cognitive                                            | Line   | lanata     | - din - |               |
|                                                                                                                 |                                                                                                                           |                                                                                                                       | d to <b>Explain</b> Cauchy's general                                                                                                                              | Cognitive                                            |        | olying     | nding   |               |
|                                                                                                                 |                                                                                                                           | of conver                                                                                                             |                                                                                                                                                                   |                                                      | TPF    | nymg       |         |               |
|                                                                                                                 |                                                                                                                           |                                                                                                                       | t's ratio test, Cauchy's root test                                                                                                                                | Cognitive                                            | Apr    | olying     |         |               |
|                                                                                                                 |                                                                                                                           |                                                                                                                       | and to test the Alternating                                                                                                                                       | C                                                    |        |            |         |               |
| S                                                                                                               | Series an                                                                                                                 | d Absolu                                                                                                              | te Convergence of the series                                                                                                                                      | Affective                                            | Rec    | eiving     | 3       |               |
| UNIT                                                                                                            | SEO                                                                                                                       | UENCES                                                                                                                |                                                                                                                                                                   |                                                      |        | 1          | 15      |               |
|                                                                                                                 |                                                                                                                           |                                                                                                                       | notonic Sequences – Converger                                                                                                                                     | nt Sequence – D                                      | iverg  |            | -       | es            |
|                                                                                                                 | lating sec                                                                                                                |                                                                                                                       |                                                                                                                                                                   | 1                                                    | 0      |            | 1       |               |
|                                                                                                                 |                                                                                                                           |                                                                                                                       | LIMITS                                                                                                                                                            |                                                      |        | ]          | 15      |               |
| Behavi                                                                                                          | our of Mo                                                                                                                 | onotonic f                                                                                                            | functions.                                                                                                                                                        |                                                      |        |            |         |               |
|                                                                                                                 |                                                                                                                           |                                                                                                                       | REMS ON LIMITS                                                                                                                                                    |                                                      |        | 1          | 15      |               |
| Subseq                                                                                                          | uences –                                                                                                                  | limit poir                                                                                                            | tts : Cauchy sequences                                                                                                                                            |                                                      |        |            |         |               |
| UNIT                                                                                                            | V SERI                                                                                                                    | ES                                                                                                                    |                                                                                                                                                                   |                                                      |        | 1          | 15      |               |
|                                                                                                                 |                                                                                                                           |                                                                                                                       | general principal of convergenc                                                                                                                                   |                                                      |        |            |         |               |
| test of c                                                                                                       | convergei                                                                                                                 | nce using                                                                                                             | comparison test (comparison te                                                                                                                                    | est statement on                                     | ly, nc | o proo     | f).     |               |
| UNIT Y                                                                                                          | V TEST                                                                                                                    | OF CON                                                                                                                | VERGENCE USING D ALEN                                                                                                                                             | MBERT'S RAT                                          | ΓΙΟ    | 1          | 15      |               |
| TEST                                                                                                            |                                                                                                                           |                                                                                                                       |                                                                                                                                                                   |                                                      | -      |            |         |               |
| Cauchy                                                                                                          | 's root te                                                                                                                | st – Alter                                                                                                            | nating Series – Absolute Conver                                                                                                                                   | rgence (Stateme                                      | ent on | ly for     | all tes | ts).          |
|                                                                                                                 |                                                                                                                           |                                                                                                                       |                                                                                                                                                                   | TURE TUT                                             | ORI    | <b>\L</b>  | тот     | AL            |
| 1 1                                                                                                             |                                                                                                                           |                                                                                                                       |                                                                                                                                                                   |                                                      |        |            |         |               |
|                                                                                                                 |                                                                                                                           |                                                                                                                       |                                                                                                                                                                   | <u>60</u>                                            |        | 15         |         | 75            |
| TEXT                                                                                                            | BOOKS                                                                                                                     | :                                                                                                                     |                                                                                                                                                                   |                                                      |        | 15         |         | 75            |
| 1.Dr. S                                                                                                         | .Arumuga                                                                                                                  | am & Mr.                                                                                                              | A.Thangapandi Isaac, "Sequenc                                                                                                                                     | 60                                                   |        |            | na      | 75            |
| 1.Dr. S<br>Publi                                                                                                | Arumuga<br>shing Ho                                                                                                       | am & Mr.<br>use – 200                                                                                                 | A.Thangapandi Isaac, "Sequenc<br>2 Edition.                                                                                                                       | 60                                                   |        |            | na      | 75            |
| 1.Dr. S<br>Public<br>Unit I :                                                                                   | Arumuga.<br>shing Ho<br>Chapter                                                                                           | am & Mr.<br>use – 200<br>3 : Sec. 3                                                                                   | A.Thangapandi Isaac, "Sequenc<br>2 Edition.<br>.0 – 3.5 Page No : 39-55                                                                                           | 60                                                   |        |            | na      | 75            |
| 1.Dr. S<br>Publi<br>Unit I :<br>Unit II                                                                         | Arumuga<br>shing Ho<br>Chapter<br>: Chapter                                                                               | am & Mr.<br>use – 200<br>3 : Sec. 3<br>3 : Sec. 3                                                                     | A.Thangapandi Isaac, "Sequenc<br>2 Edition.<br>.0 – 3.5 Page No : 39-55<br>3.6, 3.7 Page No:56 – 82                                                               | 60                                                   |        |            | na      | 75            |
| 1.Dr. S<br>Publi<br>Unit I :<br>Unit II<br>Unit III                                                             | Arumuga<br>shing Ho<br>Chapter<br>: Chapter<br>: Chapter                                                                  | am & Mr.<br>use – 200<br>3 : Sec. 3<br>7 3 : Sec. 3<br>r 3 : Sec. 3                                                   | A.Thangapandi Isaac, "Sequenc<br>2 Edition.<br>.0 – 3.5 Page No : 39-55<br>3.6, 3.7 Page No:56 – 82<br>3.8-3.11, Page No:82-102                                   | 60                                                   |        |            | na      | 75            |
| 1.Dr. S<br>Publis<br>Unit I :<br>Unit II<br>Unit III<br>Unit IV                                                 | Arumuga<br>shing Ho<br>Chapter<br>: Chapter<br>: Chapte<br>' : Chapte                                                     | am & Mr.<br>use – 200<br>3 : Sec. 3<br>3 : Sec. 3<br>r 3 : Sec. 3<br>r 3 : Sec. 3                                     | A.Thangapandi Isaac, "Sequenc<br>2 Edition.<br>.0 – 3.5 Page No : 39-55<br>3.6, 3.7 Page No:56 – 82<br>3.8-3.11, Page No:82-102<br>(4.1 & 4.2) Page No : 112-128. | 60<br>ces and Series",                               |        |            | na      | 75            |
| 1.Dr. S<br>Public<br>Unit I :<br>Unit II<br>Unit III<br>Unit IV<br>Unit V                                       | Arumuga<br>shing Ho<br>Chapter<br>: Chapter<br>: Chapte<br>' : Chapte                                                     | am & Mr.<br>use – 200<br>3 : Sec. 3<br>3 : Sec. 3<br>r 3 : Sec. 3<br>r 4 : Sec.<br>at part of                         | A.Thangapandi Isaac, "Sequenc<br>2 Edition.<br>.0 – 3.5 Page No : 39-55<br>3.6, 3.7 Page No:56 – 82<br>3.8-3.11, Page No:82-102                                   | 60<br>ces and Series",                               |        |            | na      | 75            |
| 1.Dr. S<br>Publia<br>Unit I :<br>Unit II<br>Unit III<br>Unit IV<br>Unit V<br>Page N                             | Arumuga<br>shing Ho<br>Chapter<br>: Chapter<br>: Chapter<br>: Chapte<br>: Relevar                                         | am & Mr.<br>use – 200<br>3 : Sec. 3<br>3 : Sec. 3<br>r 3 : Sec. 3<br>r 3 : Sec. 3<br>r 4 : Sec.<br>nt part of 9<br>7. | A.Thangapandi Isaac, "Sequenc<br>2 Edition.<br>.0 – 3.5 Page No : 39-55<br>3.6, 3.7 Page No:56 – 82<br>3.8-3.11, Page No:82-102<br>(4.1 & 4.2) Page No : 112-128. | 60<br>ces and Series",                               |        |            | na      | 75            |
| 1.Dr. S<br>Publis<br>Unit I :<br>Unit II<br>Unit III<br>Unit IV<br>Unit V<br>Page N<br><b>REFEI</b><br>1. Prof. | Arumuga<br>shing Ho<br>Chapter<br>: Chapter<br>: Chapter<br>: Chapte<br>: Relevar<br>o:157-16<br><b>RENCES</b><br>S.Surya | am & Mr.<br>use – 200<br>3 : Sec. 3<br>7 3 : Sec. 3<br>r 3 : Sec. 3<br>r 4 : Sec.<br>r 4 : Sec.<br>nt part of<br>7.   | A.Thangapandi Isaac, "Sequenc<br>2 Edition.<br>.0 – 3.5 Page No : 39-55<br>3.6, 3.7 Page No:56 – 82<br>3.8-3.11, Page No:82-102<br>(4.1 & 4.2) Page No : 112-128. | 60<br>ces and Series",<br>1 & 5.2<br>cations, Chenna | New 1  | Gamr<br>2. | na      | 75            |

## Table 1: Mapping of COs with Pos

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 |
|--------|-----|-----|-----|-----|-----|-----|------------|-----|-----|
|        |     |     |     |     |     |     |            |     |     |
| CO 1   | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| CO 2   | 3   | 2   |     | 1   |     |     | 1          | 1   | 1   |
| CO 3   | 3   | 2   |     | 1   |     |     | 1          | 1   | 1   |
| CO 4   | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| CO 5   | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| Total  | 15  | 10  | 0   | 5   | 3   | 0   | 5          | 5   | 5   |
| Scaled | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| value  |     |     |     |     |     |     |            |     |     |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| COU     | RSE CODE        | XPG206                                         |            | L         | Т      | Р               | С    |
|---------|-----------------|------------------------------------------------|------------|-----------|--------|-----------------|------|
| COU     | RSE NAME        | MODERN PHYSICS LAB                             |            | 0         | 1      | 2               | 2    |
| C:P:A   |                 | 0.4:1:0.6                                      |            | L         | Т      | Р               | Η    |
|         | EQUISITE: 1     |                                                |            | 0         | 1      | 2               | 2    |
|         | RSE OUTCO       |                                                |            | nain      |        | Leve            |      |
| CO1     |                 | age of laboratory instruments and measure      | Cognit     |           |        | erstar          | -    |
|         |                 | modulus of uniform pending                     |            | omotor    |        | hanis           | m    |
| CO2     |                 | demonstrate the behaviour of thermal           | -          | omotor    | Set    |                 |      |
| GOA     |                 | of bad conductor                               | Affect     |           | Valu   | <u> </u>        |      |
| CO3     |                 | and <i>measure</i> the normal incidence of     | Cognit     |           |        | lying           |      |
| CO4     | grating         | d <i>explain</i> the Calibration of ammeter    | Affect     | omotor    |        | hanis<br>anizat |      |
| 04      | Compare an      | d explain the Canoration of animeter           |            | omotor    | Set    | amzai           | 1011 |
| CO5     | Describe the    | resistance and specific resistance of a wire   |            | omotor    |        | eption          | n    |
| 000     |                 | resistance and specific resistance of a write  | Affect     |           |        | anizat          |      |
| List of | f Experiments   |                                                |            |           | -      | Hour            |      |
| 1       | Uniform Ben     | ding - Pin and Microscope Method.              |            |           |        | 3               |      |
| 2       | Lee's Disc - 7  | Thermal Conductivity of Bad Conductor.         |            |           |        | 3               |      |
| 3       | Spectrometer    | - Grating- Normal incidence method.            |            |           |        | 3               |      |
| 4       | Spectrometer    | - id curve.                                    |            |           |        | 3               |      |
| 5       | AND, OR an      | d NOT logic gates - verification of truth tabl | e.         |           |        | 3               |      |
| 6       | Potentiomete    | r - Calibration of ammeter.                    |            |           |        | 3               |      |
| 7       | Semiconduct     | or Diode - Forward and Reverse bias charact    | teristics. |           |        | 3               |      |
| 8       | -               | - Determination of resistance and specific re  | esistance  | e of a    |        | 3               |      |
| TEVT    | Wire.<br>BOOKS: |                                                |            |           |        |                 |      |
|         |                 | Practical Physics", B.Sc Practical Physics, S  | Chand      | and Co    | mnan   | v I td          |      |
| 1.0.1   |                 | Tracucal Ellysics, D.SC Fractical Ellysics, S  |            |           | mpan   | iy Liu          | ,    |
|         |                 | and P. C. Rakshit, "An Advanced Course in      | Practic    | al Physic | cs". N | lew             |      |
|         | tral Book Age   |                                                |            |           | ,1     |                 |      |
|         | U               | Deals of Advanced Dreatical Devices" New       | Cantual    | Doole /   | anna   | 7               |      |

- 3. S. Ghosh, "A Text Book of Advanced Practical Physics", New Central Book Agency, 7 Semester 1 - Physics (Honours) Theory Paper.
- 4. Shukla R. K. and Anchal Srivastava, "Practical Physics", New Age International (P) Ltd,

Publishers, 2006.

### **REFERENCESBOOKS**:

- 1. Squires G. L., "Practical Physics", 4th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., "Fundamentals of Physics", 6<sup>th</sup> Edition, John Wiley and Sons, 2001.
- 3. Jenkins F.A. and White H.E., "Fundamentals of Optics", 4<sup>th</sup> Edition, Mc Graw Hill Book Company,2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.

5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

|              | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 |
|--------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|
| CO 1         | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| CO 2         | 3   | 2   |     | 1   |     |     | 1          | 1   | 1   |
| CO 3         | 3   | 2   |     | 1   |     |     | 1          | 1   | 1   |
| CO 4         | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| CO 5         | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| Total        | 15  | 10  | 0   | 5   | 3   | 0   | 5          | 5   | 5   |
| Scaled value | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |

### Table 1: Mapping of COs with Pos

### $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

| COU    | RSE C       | ODE        | COURSE NAME                                 | L     | Т    | ]     | P      | С   |
|--------|-------------|------------|---------------------------------------------|-------|------|-------|--------|-----|
| XMT    | <b>F301</b> |            | LOGIC AND SETS                              | 2     | 0    |       | 0      | 2   |
| С      | Р           | Α          |                                             | L     | Т    | Р     | SS     | Η   |
| 2      | 0           | 0          |                                             | 2     | 0    | 0     | 2      | 4   |
| PRE    | REQUIS      | SITE: Fo   | oundation course in Mathematics             |       |      |       |        |     |
| Cour   | se outco    | mes:       |                                             | Doma  | in   | Level | l      |     |
| CO1    | : Define    | and Exp    | blain Statements and Notations,             | Cogni | tive | Reme  | emberi | ng  |
| Conn   | ectives,    | Statemer   | ts formula and truth tables-Conditional and |       |      | Unde  | rstand | ing |
| bicon  | ditional,   | Well for   | rmed formulae- Equivalence of formulae and  |       |      |       |        |     |
| Norm   | nal forms   |            |                                             |       |      |       |        |     |
| CO2    | : Define    | and Ex     | plain Theory of inference for a statement   | Cogni | tive | Reme  | emberi | ng  |
| calcu  | lus, rules  | s of infer | ence, related problems and Indirect method  |       |      | Unde  | rstand | ing |
| of pro | oof.        |            |                                             |       |      |       |        |     |
| CO3    | : Define    | e and E    | xplain Predicate Calculus, The statement    | Cogni | tive | Reme  | emberi | ng  |
| funct  | ions, vai   | riables a  | nd quantifiers predicate formulae, free and | _     |      | Unde  | rstand | ing |
| boun   | ded varia   | bles and   | the universe of discourse.                  |       |      |       |        |     |
| CO4    | : Define    | e and H    | Explain The rule of sum and product –       | Cogni | tive | Reme  | emberi | ng  |
| perm   | utation -   | - combi    | nation of binomial theorem – Multinomial    |       |      | Unde  | rstand | ing |
| theor  | em.         |            |                                             |       |      |       |        |     |
| CO5    | : Define    | and Ex     | plain Mathematical Induction, The pigeon    | Cogni | tive | Reme  | emberi | ng  |
| hole   | principle   | and The    | principle of inclusive and exclusive        |       |      | Unde  | rstand | ing |
| Dera   | ngements    | s.         |                                             |       |      |       |        |     |

| UNIT I                                                                             | 6               |
|------------------------------------------------------------------------------------|-----------------|
| Statements and Notations- Connectives- Statements formula and truth tables-Co      | nditional and   |
| biconditional - Well formed formulae- Equivalence of formulae- Normal forms.       |                 |
| UNIT II                                                                            | 6               |
| Theory of inference for a statement calculus - rules of inference - related proble | ems —           |
| Indirect method of proof.                                                          |                 |
| UNIT III                                                                           | 6               |
| Predicate Calculus - The statement functions - variables and quantifiers - predic  | cate formulae – |
| free and bounded variables – the universe of discourse.                            |                 |
| UNIT IV                                                                            | 6               |
| The rule of sum and product - permutation - combination of binomial theorem -      | - Multinomial   |
| theorem.                                                                           |                 |
| UNIT V                                                                             | 6               |
| Mathematical Induction - The pigeon hole principle - The principle of inclusive    | and exclusive   |
| Derangements.                                                                      |                 |
| LECTURE                                                                            | TOTAL           |
| 30                                                                                 | 30              |
|                                                                                    |                 |
| TEXTBOOK                                                                           |                 |

### REFERENCES

- 1. P.R. Halmos, Naive "Set Theory", Springer, 1974.
- 2. E. Kamke, "Theory of Sets", Dover Publishers, 1950.
- 3. G. Ramesh and Dr.C. Ganesamoorthy, "Discrete Mathematics", Research gate, Feb, 2018.

## **TABLE 1: COs VS POs Mapping**

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO 1        | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 2        | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 3        | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| <b>CO 4</b> | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 5        | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
|             | 15  | 10  | 5   | 5   | 5   | 5   | 5   | 5   | 5   |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

|      | URS              |                        | DE        | COURSE NAME                                                |                 | L     | Т              | Р          | C    |
|------|------------------|------------------------|-----------|------------------------------------------------------------|-----------------|-------|----------------|------------|------|
|      | MT302            |                        |           | PROGRAMMING IN C                                           |                 | 3     | 1              | 0          | 4    |
| С    | Р                | Α                      |           |                                                            |                 |       | 1              |            |      |
| 3    | 0.5              | 0.5                    |           |                                                            |                 | L     | Т              | Р          | Η    |
|      |                  |                        |           |                                                            |                 | 3     | 1              | 0          | 4    |
|      | ERE(             | _                      |           | Nil                                                        |                 |       |                |            |      |
|      | urse (           |                        |           |                                                            | Domain          |       | Leve           |            |      |
|      | Ex               | pressi                 | ons.      | stants, Variables, Data types, Operator and                | Cognitive       |       | Unde           | rstan      | ding |
| CO   | <b>)2:</b> Ex    | plain                  | Input     | t and Output operations, Decision                          | Cognitive       |       | Unde           | rstan      | ding |
|      | Ma               | king                   | and B     | ranching, Decision making and Looping.                     | Psychomotor     |       | Guide<br>Respo |            |      |
| CO   |                  | <b>plain</b><br>nction |           | acter Arrays and Strings and User defined                  | Cognitive       |       | Unde           | rstan      | ding |
| CO   |                  | _                      |           | <b>Apply</b> Structures and unions, Pointers and ent in C. | Cognitive       |       | Unde<br>Apply  |            | ding |
| CO   | 95: Ap           | ply D                  | )<br>ynan | nic memory allocation, Linked lists, Pre-                  | Cognitive       |       | Appl           |            |      |
|      |                  |                        |           | d Programming Guide lines.                                 | Affective       |       | Recei          |            |      |
| UN   | ITI              |                        |           |                                                            |                 | U     |                | 12         |      |
| Intr | oduct            | ion to                 | C – (     | Constants, Variables, Data types – Operator a              | and Expression  | s.    |                |            |      |
| UN   | IT II            |                        |           |                                                            |                 |       |                | 12         |      |
|      | naging<br>oping. | g Inpu                 | ıt and    | Output operations – Decision Making and E                  | Branching – Dee | cisi  | on ma          | king       | and  |
|      | IT II            | Ι                      |           |                                                            |                 |       |                | 12         |      |
| Arr  | ays –            | Chara                  | icter A   | Arrays and Strings – User defined Functions.               |                 |       |                |            |      |
|      | IT IV            |                        |           | • •                                                        |                 |       |                | 12         |      |
| Str  | ucture           | s and                  | unior     | ns – Pointers – File management in C.                      |                 |       |                |            |      |
| UN   | IT V             |                        |           |                                                            |                 |       |                | 12         |      |
| Dy   | namic            | mem                    | ory al    | location – Linked lists- Preprocessors – Prog              | gramming Guid   | le li | nes.           |            |      |
|      | LECT             |                        |           | UTORIAL                                                    | -               |       |                | <b>)TA</b> | L    |
| 4    | 5                |                        | 15        |                                                            |                 |       | 60             |            |      |
| TE   | XT B             | OOK                    |           |                                                            |                 |       | •              |            |      |
|      | 1. B             | alagu                  | rusam     | y E.,"Programming in ANSI C", Sixth Editi                  | on, McGraw-H    | ill,  | 2012.          |            |      |
| RE   | FERI             | ENCE                   | 2         |                                                            |                 |       |                |            |      |
|      | 1. B             | ichka                  | r, R.S    | ., "Programming with C", University Press,                 | 2012.           |       |                |            |      |
|      |                  |                        |           |                                                            |                 |       |                |            |      |

# Table 1: COs VS POs Mapping

|          | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | <b>PO9</b> |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|------------|
| CO 1     | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1          |
| CO 2     | 3   | 2   |     | 1   |     |     | 1   | 1   | 1          |
| CO 3     | 3   | 2   |     | 1   |     |     | 1   | 1   | 1          |
| CO 4     | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1          |
| CO 5     | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1          |
| Scaled   | 15  | 10  | 0   | 5   | 3   | 0   | 5   | 5   | 5          |
| Valued   |     |     |     |     |     |     |     |     |            |
| Function |     |     |     |     |     |     |     |     |            |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| COU   | RSE CO     | ODE         | COURSE NAME                        |                    | L     | Т      | Р      | C    |
|-------|------------|-------------|------------------------------------|--------------------|-------|--------|--------|------|
| XMT   | Г303       |             | REAL ANALYSIS                      |                    | 4     | 1      | 0      | 5    |
| С     | Р          | Α           |                                    |                    | L     | Т      | Р      | Η    |
| 5     | 0          | 0           |                                    |                    | 4     | 1      | 0      | 5    |
| PRE   | REQUI      | SITE:       | Nil                                |                    |       |        |        |      |
| Cour  | se Outc    | omes:       |                                    |                    |       |        |        |      |
|       |            |             |                                    | Domain             | Le    | vel    |        |      |
| CO1   | : Explai   | n           |                                    | Cognitive          | Un    | dersta | andin  | g    |
| The f | field axio | oms, Field  | properties, Order in R,            |                    |       |        |        | -    |
| Abso  | lute valu  | ie, Compl   | eteness, Representation of Real    |                    |       |        |        |      |
| numb  | pers on a  | straight li | ine, Intervals, Countable and      |                    |       |        |        |      |
|       | untable    |             |                                    |                    |       |        |        |      |
| CO2   | : Define   | and Exp     | lain Open sets, Closed sets,       | Cognitive          | Ren   | nemł   | bering | 5    |
| Limit | t points o | of a set an | d Closure of a set.                |                    | Un    | dersta | andin  | g    |
| CO3   | : Define   | and Exp     | lain Limits, Continuous            | Cognitive          | Ren   | nemł   | bering | 5    |
| funct | ions, Ty   | pes of dise | continuities, Algebra of           |                    | Un    | dersta | andin  | g    |
| Cont  | inuous fi  | unctions a  | nd Boundedness of continuous       |                    |       |        |        |      |
| funct |            |             |                                    |                    |       |        |        |      |
|       |            |             | ain Derivability and               | Cognitive          |       |        | bering |      |
|       |            |             | lerivatives, Inverse function      |                    | Un    | dersta | andin  | g    |
| theor | em for d   | erivatives  | and Darboux's theorem.             |                    |       |        |        |      |
|       |            | -           | in conditions for integrability,   | Cognitive          |       |        | pering |      |
|       |            |             | functions, continuity and          |                    | Un    | dersta | andin  | g    |
|       |            |             | functions, Mean value              |                    |       |        |        |      |
|       | ,          |             | ntal theorem of Calculus and       |                    |       |        |        |      |
|       |            | value the   |                                    |                    |       |        |        |      |
| UNI   |            | eal numbe   |                                    |                    | 15    |        |        |      |
|       |            |             | properties-Order in R- Absolute    |                    |       |        |        |      |
| -     | esentatic  | on of Real  | numbers on a straight line - Inter | rvals – Countable  | and U | Incou  | intab  | le   |
| sets. |            |             |                                    |                    | 1     |        |        |      |
|       |            |             | oods and limit points              |                    | 15    |        |        |      |
| Open  | sets – C   | Closed sets | -Limit points of a set – Closure   | of a set.          |       |        |        |      |
|       |            |             | d Continuity                       |                    | 15    |        |        |      |
|       |            |             | nctions – Types of discontinuitie  | s- Algebra of Cont | tinuo | ıs fu  | nctior | 1S — |
| Boun  | dedness    | of continu  | uous functions.                    |                    |       |        |        |      |

| UNIT IV Derivatives                                                                             | 15                   |               |
|-------------------------------------------------------------------------------------------------|----------------------|---------------|
| Introduction – Derivability and continuity- Algebra of derivat                                  | ives – Inverse func  | ction theorem |
| for derivatives – Darboux's theorem.                                                            |                      |               |
| UNIT V                                                                                          | 15                   |               |
| Riemann Integration- Definition – Daurboux's theorem – con                                      | ditions for integrab | oility –      |
| properties of integrable functions – continuity and derivability                                | of integral function | ons – Mean    |
| value theorems - the fundamental theorem of Calculus and th                                     | e first mean value   | theorem.      |
| LECTURE                                                                                         | TUTORIAL             | TOTAL         |
| 60                                                                                              | 15                   | 75            |
| TEXT BOOKS                                                                                      |                      |               |
|                                                                                                 |                      |               |
| 1. M.K.Singhal and Asha Rani Singhal, "A first course in Re                                     | al Analysis"., R. C  | hand &        |
|                                                                                                 | al Analysis"., R. C  | hand &        |
| 1. M.K.Singhal and Asha Rani Singhal, "A first course in Re                                     |                      |               |
| 1. M.K.Singhal and Asha Rani Singhal , "A first course in Re<br>Co., June,1997 (Units I to IV). |                      |               |

- Chapter 2 Sec 2.1 2.6Unit-III Chapter 5 Sec 5.1 - 5.5
- Unit IV Chapter 6 Sec 6.1 6.5
- Unit V Chapter 6 Sec 6.2, 6.3 & 6.5 6.7 6.8, 6.9 of [2]

## Table 1: COs VS POs Mapping

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO 1 | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| CO 2 | 3   | 2   |     | 1   |     |     | 1   | 1   | 1   |
| CO 3 | 3   | 2   |     | 1   |     |     | 1   | 1   | 1   |
| CO 4 | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| CO 5 | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
|      | 15  | 10  | 0   | 5   | 3   | 0   | 5   | 5   | 5   |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| COUR          | RSE CO    | DE          | COURSE NAME                           |                | L                       | Τ           | Р         | С        |  |
|---------------|-----------|-------------|---------------------------------------|----------------|-------------------------|-------------|-----------|----------|--|
| XMT3          | 304       |             | ANALYTICAL GEOMETRY                   | 7 <b>3D</b>    | 4                       | 1           | 0         | 5        |  |
| С             | Р         | Α           |                                       |                | L                       | Т           | P         | Н        |  |
| <u>c</u><br>5 | 0         | 0           |                                       |                | 4                       | 1           | 0         | 5        |  |
| -             | EQUISI    | v           |                                       |                | -                       | -           | v         | 0        |  |
|               | e outcon  |             |                                       |                | Domai                   | n           | Level     |          |  |
|               |           |             | in space, direction cosines of a lin  |                | Cogniti                 |             | Remem     | bering   |  |
|               |           | line and to |                                       | C              |                         | Underst     | 0         |          |  |
|               |           | of a plane  |                                       |                |                         |             | •         |          |  |
| <b>CO2:</b>   | Find line | e of inters | kew lines,                            | Cogniti        | ive                     | Remem       | bering    |          |  |
|               | Shortest  | distance    | between skew lines.                   |                |                         |             |           |          |  |
|               | -         |             |                                       | Cogniti        | ive                     | Underst     | anding    |          |  |
|               |           |             | ystem of spheres generated by two     | spheres.       |                         |             |           |          |  |
|               | -         | and to fi   |                                       | Cogniti        | ive                     | Remembering |           |          |  |
|               |           |             | aight line and quadric cone, tange    | nt plane       | Understandin            |             |           |          |  |
|               | and norn  |             |                                       |                |                         |             |           |          |  |
|               |           |             | ition for plane to touch the quadrid  |                | Cognitive Understanding |             |           | anding   |  |
|               |           |             | cone has three mutually perpendic     |                |                         |             |           |          |  |
|               | •         | rs and co   | ndition for the plane to touch the c  | onicoid.       |                         |             |           |          |  |
| UNIT          |           | <b>D</b> '  |                                       |                |                         |             |           | 15       |  |
|               |           |             | rection cosines of a line in space-ar |                |                         |             | ice – equ | ation of |  |
| a plane       | e in norm | al form. A  | Angle between planes – Distance of    | or a plane fro | om a poi                | int.        |           |          |  |
| UNIT          |           |             |                                       |                |                         |             |           | 15       |  |
|               |           |             | line of intersection of planes – plan |                |                         |             |           |          |  |
|               |           | shortest d  | istance between skew lines- lengt     | n of the perp  | endicul                 | ar fro      | om point  | to line. |  |
| UNIT          |           |             |                                       |                |                         |             |           |          |  |
|               |           |             | here-Section of sphere by plane-ta    |                |                         |             |           |          |  |
|               |           | es genera   | ted by two spheres - System of sp     | heres genera   | ited by a               | a sph       | ere and j | 1        |  |
| UNIT          |           |             |                                       |                |                         |             |           | 15       |  |
| -             |           | f surface - | - cone – intersection of straight lin | e and quadri   | ic cone                 | – tai       | ngent pla | ane and  |  |
| norma         |           |             |                                       |                |                         |             |           |          |  |
| UNIT          |           | 1           | 1.1 11 1.                             |                | • •                     | • • •       |           | 15       |  |
|               |           |             | buch the quadric cone - angle betw    |                |                         |             |           |          |  |
|               |           |             | e cone has three mutually perpe       |                |                         |             |           |          |  |
| the cor       |           | a nne and   | d quadric – tangents and tangent j    | names – con    | amon 1                  | orth        | e piane   | to touch |  |
| the cor       |           |             | LECTUR                                | <u>г</u> т     | UTOD                    | ΑΤ          | ,         | TOTAL    |  |
|               |           |             |                                       | E 10           | UTORI                   | AL<br>15    |           |          |  |
|               |           |             |                                       |                |                         | 13          |           | 75       |  |

### **TEXT BOOK**

- 1. Shanthi Narayanan and Mittal P.K,"Analytical Solid Geometry" 16<sup>th</sup> Edition S.Chand & Co., New Delhi,2005.
- 2. Narayanan and Manickavasagam Pillay, T.K.," Treatment as Analytical Geometry" S.Viswanathan (Printers & Publishers ) Pvt. Ltd.,2008
  - Unit I : Chapter I, Sec 1.5 to 1.9, Chapter II Sec 2.1 to 2.3, Pages : 10-31 Chapter II Sec 2.4 to 2.8 pages : 32-47 of [1]

Unit II : Chapter III section 3.1-3.7, pages 55-89 of [1]

Unit III : Chapter VI Sec. 6.1 to 6.6 pages : 121-143 of [1]

Unit IV : Chapter V Sec.43 to 47 pages : 103-113 of [2]

Unit V : Chapter V Sec.49 to 53, Pages:115-125 of [2]

### REFERENCE

1. P.Duraipandian & others, "Analytical Geometry 3 Dimensional", Edition, 1998.

### Table 1: COs VS POs Mapping

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO 1 | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| CO 2 | 3   | 2   |     | 1   |     |     | 1   | 1   | 1   |
| CO 3 | 3   | 2   |     | 1   |     |     | 1   | 1   | 1   |
| CO 4 | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| CO 5 | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
|      | 15  | 10  | 0   | 5   | 3   | 0   | 5   | 5   | 5   |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| COURSE CODE COURSE NAME |                                                                        |          |                                         |                   | L             | Τ                      | Р      | C  |  |  |
|-------------------------|------------------------------------------------------------------------|----------|-----------------------------------------|-------------------|---------------|------------------------|--------|----|--|--|
| XMT                     | T <b>305</b>                                                           |          | <b>PROGRAMMING IN C (PRACT</b>          | FICAL)            | 0             | 0                      | 2      | 2  |  |  |
| С                       | Р                                                                      | Α        |                                         |                   | L             | Т                      | Р      | Η  |  |  |
| 2                       | 0                                                                      | 0        |                                         |                   | 0             | 0                      | 2      | 4  |  |  |
|                         | REQUI                                                                  | SITE     | Nil                                     |                   | -             | -                      |        | -  |  |  |
|                         | RSE O                                                                  |          |                                         |                   |               |                        |        | 1  |  |  |
|                         | se Outc                                                                | Le       | vel                                     |                   |               |                        |        |    |  |  |
| CO1                     | : Apply                                                                | Const    | ants, Variables, Data types,            | Cognitive         | Understanding |                        |        |    |  |  |
| Opera                   | ator and                                                               |          |                                         | _                 |               |                        |        | -  |  |  |
|                         | Expres                                                                 | sions    | to write simple programmes              |                   |               |                        |        |    |  |  |
| CO <sub>2</sub>         | : Apply                                                                | Input    | and Output operations, Decision         | Cognitive         | Un            | derst                  | tandiı | ng |  |  |
|                         | to wri                                                                 | te sim   | ple programmes                          | Psychomotor       |               | ided                   |        |    |  |  |
|                         |                                                                        |          |                                         |                   | Re            | Response Understanding |        |    |  |  |
|                         | CO3: Apply Character Arrays and Strings and User   Cognitive   Underst |          |                                         |                   |               |                        | tandiı | ıg |  |  |
| define                  |                                                                        |          |                                         |                   |               |                        |        |    |  |  |
|                         |                                                                        |          | write simple programmes                 |                   | _             |                        |        |    |  |  |
| CO4:                    |                                                                        |          | tures and unions, Pointers and          | Cognitive         |               | Understanding          |        |    |  |  |
|                         |                                                                        | anage    | ment in C to write simple               |                   | Ap            | Applying               |        |    |  |  |
| <u> </u>                | ammes                                                                  | <u> </u> |                                         |                   | _             |                        |        |    |  |  |
|                         | : Apply                                                                | Dyna     | mic memory allocation, Linked           | Cognitive         | Ap            | Applying               |        |    |  |  |
| lists,                  | Deco                                                                   |          | and Decomposition Cuida lines to        | Affective         | Receiving     |                        |        |    |  |  |
| write                   | -                                                                      | ocesso   | ors and Programming Guide lines to      | Affective         | Re            | ceivi                  | ng     |    |  |  |
| write                   |                                                                        | nrom     | ammes                                   |                   |               |                        |        |    |  |  |
|                         | simple                                                                 | , progr  | List of Programmes                      |                   |               |                        |        |    |  |  |
|                         |                                                                        |          | List of Frogrammes                      |                   |               |                        |        |    |  |  |
| 1. Wı                   | rite a Pro                                                             | ogram    | to convert temperature from degree      | Centigrade to Fah | renhe         | it.                    |        |    |  |  |
| 2. W1                   | rite a Pro                                                             | ogram    | to find whether given number is Eve     | en or Ödd.        |               |                        |        |    |  |  |
| 3. W1                   | rite a Pro                                                             | ogram    | to find greatest of three numbers.      |                   |               |                        |        |    |  |  |
|                         |                                                                        |          | t of names in alphabetical order        |                   |               |                        |        |    |  |  |
|                         |                                                                        |          | t of numbers in ascending order         |                   |               |                        |        |    |  |  |
|                         |                                                                        | •        | to using switch statement to display    |                   | ıy.           |                        |        |    |  |  |
|                         |                                                                        | •        | to display first Ten Natural Number     |                   |               |                        |        |    |  |  |
|                         |                                                                        | <u> </u> | to find Sum and Multiplication of T     |                   |               |                        |        |    |  |  |
|                         |                                                                        | -        | to find the maximum number in Arr       | ay using pointer. |               |                        |        |    |  |  |
|                         |                                                                        | <u> </u> | n to reverse a number using pointer.    | <b>C</b>          |               |                        |        |    |  |  |
|                         |                                                                        | <u> </u> | n to solve Quadratic Equation using     |                   |               |                        |        |    |  |  |
|                         |                                                                        | -        | n to find factorial of a number using   |                   |               |                        |        |    |  |  |
|                         | -                                                                      | <u> </u> | n to calculate Mean, Variance and SI    |                   |               |                        |        |    |  |  |
| 14. N                   | vrite a P                                                              | rograf   | n to create a file containing Student l | Detalls.          |               |                        |        |    |  |  |

| Course N              | Name     | DISASTER MANAGEMENT                                                                                                                                        |                                   |  |  |  |  |  |  |  |  |
|-----------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|--|--|--|
| Course (              |          | XUM306                                                                                                                                                     |                                   |  |  |  |  |  |  |  |  |
| Prerequi              | isite    | NIL                                                                                                                                                        | L –T –P –C                        |  |  |  |  |  |  |  |  |
| •                     |          |                                                                                                                                                            | 3-0-0-                            |  |  |  |  |  |  |  |  |
|                       |          |                                                                                                                                                            | 0                                 |  |  |  |  |  |  |  |  |
| <b>C</b> : <b>P</b> : | A        |                                                                                                                                                            | L -T - P- H                       |  |  |  |  |  |  |  |  |
| 2.64 : 0.2            | 24 :0.12 |                                                                                                                                                            | 3 - 0 - 0 - 3                     |  |  |  |  |  |  |  |  |
| Course (              | Dutcom   | e                                                                                                                                                          | Domain                            |  |  |  |  |  |  |  |  |
|                       |          |                                                                                                                                                            | C or P or A                       |  |  |  |  |  |  |  |  |
| CO1                   |          | standing the concepts of application of                                                                                                                    | C(Application)                    |  |  |  |  |  |  |  |  |
|                       | types c  | of disaster preparedness                                                                                                                                   | C(Application)                    |  |  |  |  |  |  |  |  |
| CO2                   | Infer    | the end conditions & <b>Discuss</b> the failures                                                                                                           | C(A = 1 =)                        |  |  |  |  |  |  |  |  |
|                       | due to   | disaster.                                                                                                                                                  | C(Analyze)                        |  |  |  |  |  |  |  |  |
| CO3                   | Under    | standing of importance of seismic waves                                                                                                                    | C(A palyza)                       |  |  |  |  |  |  |  |  |
|                       | occurri  | ing globally                                                                                                                                               | C(Analyze)                        |  |  |  |  |  |  |  |  |
| CO4                   | Estima   | ate Disaster and mitigation problems.                                                                                                                      | C(Application)                    |  |  |  |  |  |  |  |  |
| CO5                   |          | <b>knowledge</b> on essentials of risk reduction                                                                                                           | C(Application)                    |  |  |  |  |  |  |  |  |
| UNIT I                | INT      | RODUCTION                                                                                                                                                  | 9                                 |  |  |  |  |  |  |  |  |
|                       | hrs      |                                                                                                                                                            |                                   |  |  |  |  |  |  |  |  |
|                       |          | oduction – Disaster preparedness – Go                                                                                                                      |                                   |  |  |  |  |  |  |  |  |
|                       |          | Programme- Risk identification – Risk sharing – Disaster and development:                                                                                  |                                   |  |  |  |  |  |  |  |  |
|                       |          | elopment plans and disaster management-A                                                                                                                   |                                   |  |  |  |  |  |  |  |  |
|                       |          | saster – development linkages - Principle of                                                                                                               |                                   |  |  |  |  |  |  |  |  |
| UNIT II               |          | PLICATION OF TECHNOLOGY IN DIS                                                                                                                             |                                   |  |  |  |  |  |  |  |  |
|                       |          | DUCTION                                                                                                                                                    | 9 hrs                             |  |  |  |  |  |  |  |  |
|                       |          | lication of various technologies: Data bas                                                                                                                 |                                   |  |  |  |  |  |  |  |  |
|                       |          | Information systems – Decision support system and other systems – Geographic                                                                               |                                   |  |  |  |  |  |  |  |  |
|                       |          | information systems – Intranets and extranets – video teleconferencing. Trigger mechanism – Remote sensing-an insight – contribution of remote sensing and |                                   |  |  |  |  |  |  |  |  |
|                       |          | - Case study.                                                                                                                                              | information of remote sensing and |  |  |  |  |  |  |  |  |
| UNIT II               |          | ARENESS OF RISK REDUCTION                                                                                                                                  | 9                                 |  |  |  |  |  |  |  |  |
|                       | hrs      |                                                                                                                                                            | ,                                 |  |  |  |  |  |  |  |  |
|                       |          | Trigger mechanism – constitution of trigger mechanism – risk reduction by                                                                                  |                                   |  |  |  |  |  |  |  |  |
|                       |          | education – disaster information network – risk reduction by public awareness                                                                              |                                   |  |  |  |  |  |  |  |  |
| UNIT IV               |          | VELOPMENT PLANNING ON DISASTE                                                                                                                              |                                   |  |  |  |  |  |  |  |  |
|                       | hrs      |                                                                                                                                                            |                                   |  |  |  |  |  |  |  |  |
|                       |          | lication of development planning – Finar                                                                                                                   | ncial arrangements – Areas of     |  |  |  |  |  |  |  |  |
|                       | -        | improvement – Disaster preparedness – Community based disaster management                                                                                  |                                   |  |  |  |  |  |  |  |  |
|                       | -        | nergency response.                                                                                                                                         | ,                                 |  |  |  |  |  |  |  |  |
| UNIT V                |          | SMICITY                                                                                                                                                    | 9 hrs                             |  |  |  |  |  |  |  |  |
|                       |          | mic waves – Earthquakes and faults – measure                                                                                                               |                                   |  |  |  |  |  |  |  |  |
|                       |          | intensity – ground damage – Tsunamis and e                                                                                                                 | 1 · · · ·                         |  |  |  |  |  |  |  |  |
|                       |          |                                                                                                                                                            | L -45 hrs Total-45 hrs            |  |  |  |  |  |  |  |  |
| TEXT B                | OOKS     |                                                                                                                                                            |                                   |  |  |  |  |  |  |  |  |
|                       |          | a Gautam and K Leelakrisha Rao, "Disaste                                                                                                                   | r Management Programmes and       |  |  |  |  |  |  |  |  |
|                       |          | , Vista International Pub House, 2012                                                                                                                      |                                   |  |  |  |  |  |  |  |  |
|                       |          | mar, "Global Disaster Management", SBS Pu                                                                                                                  | ıblishers, 2008                   |  |  |  |  |  |  |  |  |
| REFERI                |          |                                                                                                                                                            |                                   |  |  |  |  |  |  |  |  |
|                       |          | aedia Of Disaster Management, Neha Publis                                                                                                                  | 1 0 D! !! 0000                    |  |  |  |  |  |  |  |  |

- 2. Pardeep Sahni, Madhavi malalgoda and ariyabandu, "Disaster risk reduction in south asia", PHI, 2002
- 3. Amita sinvhal, "Understanding earthquake disasters" TMH, 2010.
- **4.** Pardeep Sahni, Alka Dhameja and Uma medury, "Disaster mitigation: Experiences and reflections", PHI, 2000

|            | PO<br>1 | PO<br>2 | PO<br>3 | P<br>04 | PO<br>5 | P<br>06 | Р<br>07 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO1<br>2 | PSO<br>1 | PSO2 |
|------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|------|
| CO1        | 1       |         |         |         |         | 5       | 2       |         |         |          |          |          |          |      |
| CO2        | 2       |         |         |         |         | 1       | 2       |         |         |          |          | 1        |          |      |
| CO3        | 1       |         |         |         |         | 2       | 2       | 1       |         |          |          | 2        |          |      |
| <b>CO4</b> | 1       |         |         |         |         | 2       | 2       | 1       |         |          |          | 1        |          |      |
| CO5        |         |         |         |         |         | 5       | 2       | 3       |         |          |          | 1        |          |      |
|            | 5       |         |         |         |         | 15      | 10      | 5       |         |          |          | 5        |          |      |

## **Table 1: Mapping of COs with Pos**

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

### **IV SEMESTER**

| COURSE                                                                                                                                                                                                                                     | COURSE NAME                                                                    | L         | Τ            |                | Р      | С        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------|--------------|----------------|--------|----------|--|--|
| CODE                                                                                                                                                                                                                                       |                                                                                | •         | •            |                | 0      |          |  |  |
| XMT401                                                                                                                                                                                                                                     | THEORY OF EQUATIONS                                                            | 2         | 0            |                | 0      | 2        |  |  |
| C P A                                                                                                                                                                                                                                      |                                                                                | L         | T<br>^       | P              | SS     | H        |  |  |
| 2 0 0                                                                                                                                                                                                                                      |                                                                                | 2         | 0            | 0              | 2      | 4        |  |  |
| -                                                                                                                                                                                                                                          | Foundation Course in Mathematics                                               | D         |              | Ŧ              |        |          |  |  |
| Course outcomes:                                                                                                                                                                                                                           |                                                                                | Doma      |              | Leve           |        |          |  |  |
| <b>CO1: Explain</b> Graphical representation of a polynomials,<br>maximum and minimum values of a polynomials.CognitiveRememb<br>Applying                                                                                                  |                                                                                |           |              |                |        |          |  |  |
| <b>CO2: Apply</b> Gene signs positive and r roots and the coeffi                                                                                                                                                                           | Cogni                                                                          | tive      | Remo<br>Appl | emberi<br>ying | ing    |          |  |  |
| <b>CO3: Define</b> and <b>Explain</b> Sets, subsets, Set operations, the laws of set theory and Venn diagrams. Examples of finite and infinite Sets.                                                                                       |                                                                                |           |              |                |        |          |  |  |
| CO4: Define and Explain with Examples Finite sets and<br>counting principle. Empty set, properties of empty set. StandardCognitiveUndersta<br>Applyingset operations. Classes of sets. Power set of a set.StandardStandardStandardStandard |                                                                                |           |              |                |        |          |  |  |
| <b>CO5:</b> Solve reciprocal and binomial equations, and to find algebraic solutions of the cubic and biquadratic with Properties of the derived functions.                                                                                |                                                                                |           |              |                |        |          |  |  |
| UNIT I                                                                                                                                                                                                                                     |                                                                                | 1         |              |                | 6      |          |  |  |
| General properties<br>minimum values of                                                                                                                                                                                                    | of polynomials, Graphical representation of a polynomials.                     | oolynon   | nials,       | maxii          | num a  | nd       |  |  |
| UNIT II                                                                                                                                                                                                                                    | w por prominist                                                                |           |              |                | 6      |          |  |  |
| General properties                                                                                                                                                                                                                         | of equations, Descarte's rule of signs positive a                              | and neg   | ative        | rule.          |        |          |  |  |
|                                                                                                                                                                                                                                            | ne roots and the coefficients of equations.                                    | 0         |              |                |        |          |  |  |
| UNIT III                                                                                                                                                                                                                                   | A                                                                              |           |              |                | 6      |          |  |  |
| Sets, subsets, Set op<br>and infinite sets.                                                                                                                                                                                                | perations, the laws of set theory and Venn diag                                | grams. E  | lxamj        | ples of        | finite |          |  |  |
| UNIT IV                                                                                                                                                                                                                                    |                                                                                |           |              |                | 6      |          |  |  |
| Finite sets and cour                                                                                                                                                                                                                       | ting principle. Empty set, properties of empty                                 | set. Sta  | ndaro        | d set          |        |          |  |  |
| · · ·                                                                                                                                                                                                                                      | of sets. Power set of a set.                                                   |           |              |                | 6      |          |  |  |
| UNIT V                                                                                                                                                                                                                                     | and hinamial aquations. Alsohusia solution                                     | ac of 41- |              | in and         | 6      |          |  |  |
| -                                                                                                                                                                                                                                          | ocal and binomial equations. Algebraic solution ties of the derived functions. |           | e cub        | ic and         |        |          |  |  |
|                                                                                                                                                                                                                                            | LECT                                                                           |           |              |                | TOT    | AL<br>30 |  |  |
| 30                                                                                                                                                                                                                                         |                                                                                |           |              |                |        |          |  |  |
| <b>TEXTBOOKS</b><br>1 W.S. Burnside and A.W. Panton, "The Theory of Equations", Dublin University Press, 1954.                                                                                                                             |                                                                                |           |              |                |        |          |  |  |
| 2. C. C. MacDuffee                                                                                                                                                                                                                         | e, "Theory of Equations", John Wiley & Sons I                                  | Inc., 195 | 54.          |                |        |          |  |  |

### TABLE 1: COs VS POs Mapping

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO 1        | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 2        | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 3        | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| <b>CO 4</b> | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 5        | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
|             | 15  | 10  | 5   | 5   | 5   | 5   | 5   | 5   | 5   |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| COURSE<br>CODE                                        | COURSE NAME                                             | L        | Т        | Р         | C        |  |  |
|-------------------------------------------------------|---------------------------------------------------------|----------|----------|-----------|----------|--|--|
| XMT402                                                | INTRODUCTION TO MATLAB                                  | 3        | 1        | 0         | 4        |  |  |
|                                                       |                                                         |          | T        | P         | H        |  |  |
| C         P         A           4         0         0 |                                                         | 3        | 1        | 0         | 4        |  |  |
| PREREQUI                                              | SITE · Nil                                              | 5        | I        | U         |          |  |  |
| Course Outo                                           |                                                         | Doma     | in       | Level     |          |  |  |
|                                                       | Variables, assignment, statements, expressions,         | Cogni    |          | Applyi    | ng       |  |  |
|                                                       | coding, vectors and matrices.                           | 00811    |          |           | 8        |  |  |
|                                                       | <b>in</b> about creating row vectors and column         | Cogni    | tive     | Unders    | standing |  |  |
|                                                       | nsions in using functions with vectors and              | U        |          | Applyi    | -        |  |  |
| matrices.                                             | C                                                       |          |          | 11.2      | U        |  |  |
| CO3: Apply                                            | Matlab Scripts, Input and Output, scripts with          | Cogni    | tive     | Applyi    | ng       |  |  |
|                                                       | put, user defined functions in simple                   | -        |          |           | -        |  |  |
| applications.                                         | -                                                       |          |          |           |          |  |  |
| CO4: Apply                                            | Selection Statement, relational expressions,            | Cogni    | tive     | Applyi    | ng       |  |  |
|                                                       | ement, menu function, looping, FOR loop,                |          |          |           |          |  |  |
| nested FOR 1                                          | oop, WHILE loop.                                        |          |          |           |          |  |  |
|                                                       | String manipulations, creating string variable,         | Cogni    | tive     | Applying  |          |  |  |
| -                                                     | strings, fundamentals of arrays, structure and          |          |          |           |          |  |  |
|                                                       | s with simple applications.                             |          |          |           |          |  |  |
| UNIT I                                                |                                                         |          |          | 12        |          |  |  |
|                                                       | to MATLAB – Variables and assignment statement          | is –exp  | ressior  | ıs –      |          |  |  |
|                                                       | d encoding – vectors and matrices.                      |          |          |           |          |  |  |
| UNIT II                                               |                                                         |          |          | 12        |          |  |  |
| Creating row                                          | vectors and column vectors - matrix variables - di      | mensic   | ons in u | using fur | octions  |  |  |
| with vectors a                                        | and matrices.                                           |          |          |           |          |  |  |
| UNIT III                                              |                                                         |          |          | 12        |          |  |  |
|                                                       | ogrammes - Matlab Scripts, Input and Output, scri       |          |          |           | put,     |  |  |
|                                                       | to file input and output – user defined functions – s   | imple a  | pplica   |           |          |  |  |
| UNIT IV                                               |                                                         |          |          | 12        |          |  |  |
|                                                       | tement – relational expressions, SWITCH statemen        | t, men   | u funct  | ion, loop | oing     |  |  |
| 1 · ·                                                 | nested FOR loop, WHILE loop.                            |          |          | 1         |          |  |  |
| UNIT V                                                |                                                         |          |          | 12        |          |  |  |
| U 1                                                   | ulations, creating string variable, operations on strin | <b>U</b> |          | ntals of  |          |  |  |
| arrays, struct                                        | ure and file operations- simple applications on the     | ne abov  | ve.      |           |          |  |  |
|                                                       |                                                         |          |          |           |          |  |  |

| LECTURE | TUTORIAL | TOTAL |
|---------|----------|-------|
| 45      | 15       | 60    |

### **TEXT BOOK**

1.Stormy Attaway, "MATLAB - A Practical Approach", Butterworth-Heinemann Publications, 2009.

## Table 1: COs VS POs Mapping

| PO1 | PO2                        | PO3                                                                                         | PO4                                                                                         | PO5                                                   | PO6                                                   | <b>PO7</b>                                            | PO8                                                    | PO9                                                   |
|-----|----------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| 3   | 2                          |                                                                                             | 1                                                                                           | 1                                                     |                                                       | 1                                                     | 1                                                      | 1                                                     |
| 3   | 2                          |                                                                                             | 1                                                                                           |                                                       |                                                       | 1                                                     | 1                                                      | 1                                                     |
| 3   | 2                          |                                                                                             | 1                                                                                           |                                                       |                                                       | 1                                                     | 1                                                      | 1                                                     |
| 3   | 2                          |                                                                                             | 1                                                                                           | 1                                                     |                                                       | 1                                                     | 1                                                      | 1                                                     |
| 3   | 2                          |                                                                                             | 1                                                                                           | 1                                                     |                                                       | 1                                                     | 1                                                      | 1                                                     |
| 15  | 10                         | 0                                                                                           | 5                                                                                           | 3                                                     | 0                                                     | 5                                                     | 5                                                      | 5                                                     |
|     | 3<br>3<br>3<br>3<br>3<br>3 | 3     2       3     2       3     2       3     2       3     2       3     2       3     2 | 3     2       3     2       3     2       3     2       3     2       3     2       3     2 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| COURSE CODE                                                                      | COURSE NAME                            |                     | L      | Т      | Р        | С    |  |
|----------------------------------------------------------------------------------|----------------------------------------|---------------------|--------|--------|----------|------|--|
| XMT403                                                                           | VECTOR CALCULUS & FO                   | URIER SERIES        | 4      | 1      | 0        | 5    |  |
| C P A                                                                            |                                        |                     | L      | Т      | Р        | Η    |  |
| 5 0 0                                                                            |                                        |                     | 4      | 1      | 0        | 5    |  |
| PREREQUISITE: I                                                                  | Differential Calculus and Integr       | al Calculus         |        |        |          |      |  |
| <b>Course Outcomes:</b>                                                          |                                        | Domain              | Lev    | vel    |          |      |  |
| CO1:FindGradient of                                                              | a vector, Directional derivative,      | Cognitive           | Ren    | nemb   | ering    | 5    |  |
| divergence & cu                                                                  | url of a vector, solenoidal &          |                     | App    | olying | 5        |      |  |
| irrigational vec                                                                 | tor functions, Laplacian double        | Psychomotor         | Gui    | ded    |          |      |  |
| operator and to                                                                  | solve simple problems.                 |                     | Res    | pons   | e        |      |  |
| CO2: Find vector inte                                                            | egration ,tangential line integral,    | Cognitive           | Ren    | nemb   | ering    | 5    |  |
|                                                                                  | rce field, scalar potential, work      |                     | App    | olying | 5        |      |  |
| done by a force,                                                                 | , Normal surface integral,             |                     |        |        |          |      |  |
| Volume integral                                                                  | l and to <b>solve</b> simple problems. |                     |        |        |          |      |  |
|                                                                                  | Divergence Theorem, Stoke's            | Cognitive           |        | nemb   | <u> </u> | 5    |  |
|                                                                                  | en's Theorem and to solve              |                     | App    | olying | 5        |      |  |
|                                                                                  | ems & Verification of the              |                     |        |        |          |      |  |
|                                                                                  | mple problems.                         |                     |        |        |          |      |  |
|                                                                                  | r Series expansion of periodic         | Cognitive           |        | lersta | •        | g    |  |
|                                                                                  | Period $2\pi$ Make <b>Use</b> of odd   |                     | App    | olying | 5        |      |  |
|                                                                                  | ns in Fourier Series.                  |                     |        |        |          |      |  |
| -                                                                                | ange Fourier cosine Series &           | Cognitive           |        | lersta |          | g    |  |
| -                                                                                | ange of interval & Combination         | Affective           | Rec    | eivin  | g        |      |  |
| of series.                                                                       |                                        |                     |        |        |          |      |  |
| UNIT I                                                                           |                                        |                     | 15     |        |          |      |  |
|                                                                                  | -velocity & acceleration-Vector        |                     |        |        |          |      |  |
|                                                                                  | - divergence & curl of a vecto         | r solenoidal & irr  | otatio | nal v  | vector   | rs – |  |
| Laplacian double operation                                                       |                                        | -                   |        |        |          |      |  |
| UNIT II                                                                          |                                        |                     | 15     |        |          |      |  |
| Vector integration – Tangential line integral – Conservative force field – scala |                                        |                     |        |        |          |      |  |
| Work done by a force -                                                           | - Normal surface integral- Volum       | e integral – simple | probl  | lems.  |          |      |  |

| UNIT III                                                                                         |                       | 15            |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-----------------------|---------------|--|--|--|--|--|--|
| Gauss Divergence Theorem – Stoke's Theorem- Gree                                                 | en's Theorem – Simpl  | e problems &  |  |  |  |  |  |  |
| Verification of the theorems for simple problems.                                                |                       |               |  |  |  |  |  |  |
| UNIT IV                                                                                          | 15                    |               |  |  |  |  |  |  |
| Fourier series- definition - Fourier Series expansion of periodic functions with period $2\pi$ – |                       |               |  |  |  |  |  |  |
| Use of odd & even functions in Fourier Series.                                                   |                       |               |  |  |  |  |  |  |
| UNIT V                                                                                           |                       | 15            |  |  |  |  |  |  |
| Half-range Fourier Series – definition- Development                                              | in Cosine series & in | Sine series - |  |  |  |  |  |  |
| change of interval – Combination of series.                                                      |                       |               |  |  |  |  |  |  |
| LECTURE                                                                                          | TUTORIAL              | TOTAL         |  |  |  |  |  |  |
| 60                                                                                               | 15                    | 75            |  |  |  |  |  |  |

### **TEXT BOOKS**

1.M.L. Khanna, "Vector Calculus", Jai Prakash Nath and Co., 8th Edition, 1986.

2. S. Narayanan, T.K. Manicavachagam Pillai, "Calculus", Vol. III, S. Viswanathan Pvt Limited and Vijay Nicole Imprints Pvt Ltd, 2004.

UNIT – I - Chapter 1 Section 1 & Chapter 2 Sections 2.3 to 2.6, 3, 4, 5, 7 of [1]

UNIT-II - Chapter 3 Sections 1 , 2 , 4 of  $\left[1\right]$ 

UNIT – III - Chapter 3 Sections 5 & 6 of [2]

UNIT – IV - Chapter 6 Section 1, 2, 3 of [2]

UNIT – V - Chapter 6 Section 4, 5.1, 5.2, 6, 7 of [2]

#### REFERENCES

1. P. Duraipandiyan and Lakshmi Duraipandian, "Vector Analysis", Emarald publishers 1986.

2. Dr. S.Arumugam and prof. A.Thangapandi Issac, "Fourier series", New Gamma publishing House 2012.

### **Table 1: COs VS POs Mapping**

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 |
|--------|-----|-----|-----|-----|-----|-----|------------|-----|-----|
|        |     |     |     |     |     |     |            |     |     |
| CO 1   | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| CO 2   | 3   | 2   |     | 1   |     |     | 1          | 1   | 1   |
| CO 3   | 3   | 2   |     | 1   |     |     | 1          | 1   | 1   |
| CO 4   | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| CO 5   | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| Scaled | 15  | 10  | 0   | 5   | 3   | 0   | 5          | 5   | 5   |
| Value  |     |     |     |     |     |     |            |     |     |
| Total  | 3   | 2   | 0   | 1   | 1   | 0   | 1          | 1   | 1   |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| COURSE CODE                                            | COURS                                                                                        | E NAME                                |         | L        | Т         | P         |      | С        |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------|---------|----------|-----------|-----------|------|----------|
| XMT404                                                 | ALGEB                                                                                        |                                       |         | 4        | 1         | 0         |      | 5        |
| C P A                                                  |                                                                                              |                                       |         | L        | T         | P         |      | H        |
| 5 0 0                                                  |                                                                                              |                                       |         | 4        | 1         | 0         |      | 5        |
| PREREQUISITE: N                                        | Jil                                                                                          |                                       |         |          |           |           |      |          |
| Course outcomes:                                       |                                                                                              |                                       |         | Domai    | n         | Leve      | 1    |          |
| CO1: Define groups,                                    | , abelian and                                                                                | non-abelian groups                    | with    | Cognit   | ive       | Reme      | emł  | pering   |
|                                                        |                                                                                              | er under addition                     |         | Psycho   |           | Guid      | ed   | C        |
| multiplication modu                                    |                                                                                              |                                       |         | -        |           | Resp      | ons  | se       |
| CO2: Explain Cy                                        | clic groups                                                                                  | from number syste                     | ems,    | Cognit   | ive       | Unde      | rsta | anding   |
| complex roots of u                                     | nity, circle g                                                                               | oup, the general lin                  | near    | •        |           |           |      | -        |
| group GLn (n,R), gr                                    | roups of symn                                                                                | netries of (i) an isosc               | eles    |          |           |           |      |          |
| triangle, (ii) an equ                                  | ilateral triang                                                                              | le, (iii) a rectangle,                | and     |          |           |           |      |          |
| (iv) a square, the permutation group Sym (n), Group of |                                                                                              |                                       |         |          |           |           |      |          |
| quaternions.                                           |                                                                                              |                                       |         |          |           |           |      |          |
| CO3: Explain Subgro                                    | oups, cyclic si                                                                              | ubgroups, the concep                  | ot of   | Cognit   | ive       | Unde      | rsta | anding   |
| a subgroup generate                                    |                                                                                              |                                       |         |          |           |           |      |          |
| subgroup of group, e                                   | examples of s                                                                                | subgroups including                   | the     |          |           |           |      |          |
| center of a group.                                     |                                                                                              |                                       |         |          |           |           |      |          |
| CO4: State and E                                       | -                                                                                            | Ũ                                     | - ·     | Cognit   | ive       |           |      | pering   |
| Lagrange's theorem                                     |                                                                                              | an element, Nor                       | mal     |          |           | Unde      | rsta | anding   |
| subgroups, Quotient g                                  |                                                                                              |                                       |         |          |           |           |      |          |
| CO5: Define and E                                      |                                                                                              |                                       |         | Cognit   | ive       |           |      | pering   |
|                                                        |                                                                                              | om number systems,                    |         |          |           |           |      | anding   |
| the ring of integers m                                 |                                                                                              |                                       | nial    | Affecti  | ve        | Receiving |      |          |
| rings, and rings of cor                                | ntinuous funct                                                                               | ions.                                 |         |          |           |           |      |          |
| UNIT I                                                 |                                                                                              |                                       |         |          |           |           |      | 15       |
| Definition and examp                                   |                                                                                              |                                       |         |          |           |           |      |          |
| Zn of integers under a                                 | addition modu                                                                                | lo n and the group U                  | (n) of  | units u  | nder mu   | ltiplica  | tio  | n        |
| modulo n.                                              |                                                                                              |                                       |         |          |           |           |      |          |
| UNIT II                                                |                                                                                              |                                       |         |          |           |           |      | 15       |
| Cyclic groups from m                                   | umber system                                                                                 | s, complex roots of u                 | nity. c | circle g | roup, the | e gener   | al l | inear    |
| group GLn (n,R), group                                 |                                                                                              | -                                     | -       | -        | -         | -         |      |          |
| (iii) a rectangle, and (                               | • •                                                                                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |         |          | · ·       |           |      | <b>U</b> |
| UNIT III                                               |                                                                                              |                                       |         |          |           |           |      |          |
| Subgroups, cyclic sub                                  | ogroups, the co                                                                              | oncept of a subgroup                  | gener   | ated by  | a subse   | t and th  | ne   |          |
| commutator subgroup                                    | o of group, exa                                                                              | imples of subgroups                   | includ  | ling the | center o  | of a gro  | up.  |          |
| UNIT IV                                                |                                                                                              |                                       |         |          |           |           |      | 15       |
| Cosets, Index of subg                                  | roup, Lagrang                                                                                | ge's theorem, order o                 | f an el | ement,   | Normal    | subgro    | oup  | s: their |
| definition, examples,                                  |                                                                                              |                                       |         |          |           | -         | •    |          |
| UNIT V                                                 |                                                                                              |                                       |         |          |           |           |      | 15       |
| Definition and examp                                   | oles of rings, e                                                                             | xamples of commuta                    | tive a  | nd non-  | -commu    | tative r  | ing  | s:       |
|                                                        | rings from number systems, Zn the ring of integers modulo n, ring of real quaternions, rings |                                       |         |          |           |           |      |          |
| of matrices, polynomi                                  |                                                                                              |                                       |         |          |           |           |      |          |
| domains and fields, ex                                 | xamples of fie                                                                               | lds: Zp, Q, R, and C                  | Field   | of rati  | onal fun  | ctions.   |      |          |
|                                                        |                                                                                              | LECTUR                                | E       |          |           |           |      | OTAL     |
|                                                        |                                                                                              | 6                                     | 0       |          | 15        |           |      | 75       |
| TEXT BOOKS                                             |                                                                                              |                                       |         |          |           |           | _    |          |

- 1. S. Narayanan & T. K. Manickavasagam Pillai, "Algebra", Vol. 1, S. Viswanathan Pvt. Ltd.,
  - Chennai, 2004.
- 2. S. Narayanan & T. K. Manickavasagam Pillai, "Algebra", Vol. 2, S. Viswanathan Pvt. Ltd.
  - Chennai, 2004.
- 3. Joseph A Gallian, "Contemporary Abstract Algebra", 4<sup>th</sup> Ed., Narosa, 1999.
- 4. George E Andrews, "Number Theory", Hindustan Publishing Corporation, 1984.

### REFERENCES

- 1. John B. Fraleigh, "A First Course in Abstract Algebra", 7th Ed., Pearson, 2002.
- 2. M. Artin, "Abstract Algebra", 2nd Ed., Pearson, 2011.

### Table 1: COs VS POs Mapping

|                 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 |
|-----------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|
| CO 1            | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| CO 2            | 3   | 2   |     | 1   |     |     | 1          | 1   | 1   |
| CO 3            | 3   | 2   |     | 1   |     |     | 1          | 1   | 1   |
| CO 4            | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| CO 5            | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| Scaled<br>Value | 15  | 10  | 0   | 5   | 3   | 0   | 5          | 5   | 5   |
| Total           | 3   | 2   | 0   | 1   | 1   | 0   | 1          | 1   | 1   |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| CO                                                                                                                                              | URSE (                                                                                                        | CODE    | COURSE NAME                                                               | L      | Т        | Р                         | C |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------|--------|----------|---------------------------|---|
| XM                                                                                                                                              | XMT 405                                                                                                       |         | INTRODUCTION TO MATLAB<br>PRACTICAL                                       | 0      | 0        | 2                         | 2 |
| С                                                                                                                                               | Р                                                                                                             | Α       |                                                                           | L      | Т        | Р                         | Н |
| 2                                                                                                                                               | 0                                                                                                             | 0       |                                                                           | 0      | 0        | 2                         | 4 |
| PRF                                                                                                                                             | PREREQUISITE: Nil Course Outcome                                                                              |         |                                                                           |        |          |                           |   |
| Cou                                                                                                                                             | rse Outo                                                                                                      | come    |                                                                           | Domai  | n        | Level                     | • |
| CO                                                                                                                                              | <b>CO1: Apply</b> Variables, assignment, statements, expressions, characters, encoding, vectors and matrices. |         | Cognitive                                                                 |        | Applying |                           |   |
| vect                                                                                                                                            | -                                                                                                             |         | ut creating row vectors and column<br>in using functions with vectors and | Cognit | ive      | Understanding<br>Applying |   |
| with                                                                                                                                            |                                                                                                               | nd outp | b Scripts, Input and Output, scripts<br>ut, user defined functions in     | Cognit | ive      | Applying                  | g |
| <b>CO4: Apply</b> Selection Statement, relational expressions, SWITCH statement, menu function, looping, FOR loop, nested FOR loop, WHILE loop. |                                                                                                               |         |                                                                           | Cognit | ive      | Applying                  | g |

| CO5: Apply String manipulations, creating string         | Cognitive | Applying |
|----------------------------------------------------------|-----------|----------|
| variable, operations on strings, fundamentals of arrays, |           |          |
| structure and file operations with simple applications.  |           |          |
|                                                          |           |          |

Assessment Plan for Formative Assessment:

### (CIA -1) Lab Experiment: No. of Experiments: 15 (30 marks)

1: Aim & Apparatus Required (understanding) (10 marks)

- 2. Procedure / Programme (applying) (30 marks)
- 3. Output (Applying) (10 marks)

### (CIA Lab 2) (30 marks)

- 1. Aim & Apparatus Required (10%) Cog (U) CO1, CO2 & CO3 (10 marks)
- 2. Procedure & programme(30%) Cog (Ap) CO1, CO2 & CO3 (30 marks)
- 3. Output (10%) Cog (Ap) (10 marks)

### (CIA -3) Project FA-(10marks)

1. Aim & Apparatus Required (10%) Cog (U) Psy(3) Aff(1)CO4 (10 marks)

2. Procedure & programme(30%) Cog (Ap) Psy(4) Aff(2)CO4 (30 marks)

3. Output (10%) Cog (Ap) (10 marks)

| COU<br>COI                                                 | URSE<br>DE |          | COURSE NAME                                     | L        | Т    |               | Р                | C        |
|------------------------------------------------------------|------------|----------|-------------------------------------------------|----------|------|---------------|------------------|----------|
| XM                                                         | Г501       |          | Probability and Statistics                      | 2        | 0    |               | 0                | 2        |
| С                                                          | Р          | Α        |                                                 | L        | Т    | Р             | SS               | H        |
| 2                                                          | 0          | 0        |                                                 | 2        | 0    | 0             | 2                | 4        |
| PRE                                                        | REQU       | ISITE    | Algebra                                         |          |      |               |                  |          |
|                                                            | rse outo   |          |                                                 | Doma     | in   | Leve          |                  |          |
| CO1 real                                                   | : Defin    | e and l  | Explain Sample space, probability axioms,       | Cogni    | tive |               | ember<br>erstand | <u> </u> |
|                                                            | rando      | m varia  | ables (discrete and continuous), cumulative     |          |      |               |                  |          |
|                                                            | distrib    | oution f | unction, and probability mass/density           |          |      |               |                  |          |
| funct                                                      | tions.     |          |                                                 |          |      |               |                  |          |
| CO2: Define and Explain Mathematical expectation, moments, |            |          |                                                 |          | tive | Remembering   |                  |          |
| moment generating function, characteristic function.       |            |          |                                                 |          |      | Understanding |                  |          |
|                                                            |            | e and l  | Explain Discrete distributions: uniform,        | Cogni    | tive |               | ember            | 0        |
| bino                                                       | ,          |          |                                                 |          |      | Understanding |                  |          |
|                                                            |            | on, cont | inuous distributions: uniform, normal,          |          |      |               |                  |          |
|                                                            | nential.   |          |                                                 |          |      |               |                  |          |
|                                                            |            |          | Explain Joint cumulative distribution           | Cogni    | tive | Remembering   |                  |          |
| funct                                                      | tion and   |          |                                                 |          |      | Unde          | erstand          | ling     |
|                                                            | its pro    | perties  | , joint probability density functions, marginal |          |      |               |                  |          |
| and                                                        | 1.         |          |                                                 |          |      |               |                  |          |
| 0.0                                                        |            |          | istributions.                                   | <u> </u> |      | D             | 1                | •        |
|                                                            |            | e and I  | Explain Expectation of function of two          | Cogni    | tive |               | ember            | 0        |
| rand                                                       |            | 1        | 1. 1                                            |          |      | Unde          | erstand          | ling     |
|                                                            |            | ies, coi | nditional expectations, and independent         |          |      |               |                  |          |
| rand                                                       |            | 100      |                                                 |          |      |               |                  |          |
| UNI                                                        | variab     | ies.     |                                                 |          |      |               | 6                |          |
|                                                            |            | o nuch   | ability aviona real random variables (discrete  | and co   | ntin |               | 0                |          |
|                                                            |            | · ·      | ability axioms, real random variables (discrete |          | nunu | ous),         |                  |          |
| cum                                                        | uiauve (   | nsundu   | tion function, and probability mass/density fun | icuons.  |      |               |                  |          |

| UNIT II                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Mathematical expectation, moments, moment generating function, characteristic                                                                                                                                                                                                                                                                                                                           |                                  |
| function.                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
| UNIT III                                                                                                                                                                                                                                                                                                                                                                                                | 6                                |
| Discrete distributions: binomial, Poisson, continuous distributions: uniform, norm                                                                                                                                                                                                                                                                                                                      | nal,                             |
| exponential.                                                                                                                                                                                                                                                                                                                                                                                            |                                  |
| UNIT IV                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                |
| Joint cumulative distribution function and its properties, joint probability density                                                                                                                                                                                                                                                                                                                    | functions,                       |
| marginal and conditional distributions.                                                                                                                                                                                                                                                                                                                                                                 |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                         | (                                |
| UNIT V                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                |
| <b>UNIT V</b><br>Expectation of function of two random variables, conditional expectations, indepe                                                                                                                                                                                                                                                                                                      | ÷                                |
|                                                                                                                                                                                                                                                                                                                                                                                                         | ÷                                |
| Expectation of function of two random variables, conditional expectations, indepe                                                                                                                                                                                                                                                                                                                       | ÷                                |
| Expectation of function of two random variables, conditional expectations, indeperandom variables.                                                                                                                                                                                                                                                                                                      | endent                           |
| Expectation of function of two random variables, conditional expectations, indeperandom variables.                                                                                                                                                                                                                                                                                                      | TOTAL                            |
| Expectation of function of two random variables, conditional expectations, indeperandom variables.           LECTURE           30                                                                                                                                                                                                                                                                       | TOTAL<br>30                      |
| Expectation of function of two random variables, conditional expectations, indeperandom variables.           LECTURE           30           TEXTBOOK                                                                                                                                                                                                                                                    | TOTAL<br>30                      |
| Expectation of function of two random variables, conditional expectations, indeperandom variables.           LECTURE           30           TEXTBOOK           1. S.C. Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth                                                                                                                                                               | TOTAL<br>30                      |
| Expectation of function of two random variables, conditional expectations, indeperandom variables.           LECTURE           30           TEXTBOOK           1. S.C. Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth edition Sultan Chand and Sons, New Delhi, 2002.                                                                                                               | endent<br>TOTAL<br>30<br>revised |
| Expectation of function of two random variables, conditional expectations, indeperandom variables.           LECTURE           30           TEXTBOOK           1. S.C. Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth edition Sultan Chand and Sons, New Delhi, 2002.           REFERENCES                                                                                          | endent<br>TOTAL<br>30<br>revised |
| Expectation of function of two random variables, conditional expectations, indeperandom variables.           LECTURE           30           TEXTBOOK           1. S.C. Gupta and Kapoor, "Fundamentals of Mathematical Statistics", tenth edition Sultan Chand and Sons, New Delhi, 2002.           REFERENCES           1. Irwin Miller and Marylees Miller, John E. Freund, "Mathematical Statistics" | revised                          |

# TABLE 1: COs VS POs Mapping

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO 1   | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 2   | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 3   | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 4   | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| CO 5   | 3   | 2   | 1   | 1   | 1   | 1   | 1   |     | 1   |
| Scaled | 15  | 10  | 5   | 5   | 5   | 5   | 5   | 0   | 5   |
| Value  |     |     |     |     |     |     |     |     |     |
| Total  | 3   | 2   | 1   | 1   | 1   | 1   | 1   | 0   | 1   |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| COURS     | SE CO   | DE     | COURSE NAME                                             |            | L                | Т       | Р      | C        |
|-----------|---------|--------|---------------------------------------------------------|------------|------------------|---------|--------|----------|
| XMT50     | 2B      |        | Discrete Mathematics                                    |            | 4                | 2       | 0      | 6        |
| C P       | Α       |        |                                                         |            | L                | Т       | Р      | Η        |
| 6 0       | 0       |        |                                                         |            | 4                | 2       | 0      | 6        |
|           |         |        | Logic and Sets                                          |            |                  |         |        |          |
| Course    |         |        |                                                         | Doma       |                  | Leve    |        |          |
|           |         |        | <b>pply</b> truth tables and the rules of propositional | Cognit     | ive              |         | embei  | ring     |
|           | 1       |        | calculus.                                               | ~ .        |                  | Appl    |        |          |
|           |         |        | lowing methods direct proof, indirect proof, and        | Cognit     | ive              | Appl    | ying   |          |
| -         |         | y con  | tradiction, and case analysis to formulate short        |            |                  |         |        |          |
| 1         | proofs. |        | 1                                                       |            | •                | A 1     | •      |          |
|           |         |        | ecurrence relation with constant coefficients,          | Cognit     | ive.             | Appl    | ying   |          |
|           |         | 0      | neous recurrence relations and non                      |            |                  |         |        |          |
|           |         |        | s recurrence relations using methods of nctions.        |            |                  |         |        |          |
|           |         |        | c theorems on Boolean Algebra, Duality                  | Cognit     | ive              | Und     | erstan | din ~    |
|           |         |        | olean functions.                                        | Cogini     | ive              | Unde    | rstan  | ung      |
|           | 1       | ,      | an algebra, Logic gates and circuits                    | Cognit     | ive              | Appl    | vina   |          |
|           |         |        | l circuits, Boolean expression and karnaugh             | Cogini     | gnitive Applying |         | ying   |          |
|           | nap.    | atoria | reneuris, boolean expression and karnadgi               |            |                  |         |        |          |
| UNIT I    | inap.   |        |                                                         |            |                  |         | 18     |          |
|           | atical  | Logic  | Propositional calculus- Basic Logical operators-        | conditio   | onal             | statem  | -      | Bi       |
|           |         |        | t- tautologies- contradictions- equivalence implic      |            |                  |         |        |          |
| UNIT I    |         |        |                                                         |            |                  |         | 18     |          |
| Norms f   | orms-   | Theor  | y of inference for the statement calculus- The pre      | dicate c   | alcul            | us info | erence | •        |
|           |         |        | calculus.                                               |            |                  |         |        |          |
| UNIT I    | II      |        |                                                         |            |                  |         | 18     |          |
| Recurren  | nce rel | ations | and generating functions- recurrence relation- so       | lution of  | f line           | ear rec | urrend | ce       |
| relation  | with co | onstar | t coefficients- Non homogeneous recurrence rela         | tions sol  | utio             | n of N  | on –   |          |
| homoger   | neous   | recurr | ence relations- Methods of generating functions.        |            |                  |         |        |          |
| UNIT I    |         |        |                                                         |            |                  |         | 18     |          |
| Basic the | eorems  | s on B | oolean Algebra- Duality principle Boolean functi        | ons.       |                  |         |        |          |
| UNIT V    | r       |        |                                                         |            |                  |         | 18     |          |
|           |         | ons- / | Applications of Boolean algebra- Logic gates and        | circuits   | -con             | hinat   |        |          |
|           |         |        | pression – karnaugh map.                                | encurts    | COL              | lomat   | onun   |          |
| T         |         |        | LECTURE                                                 | TUTO       | RIA              | L       | ТО     | TAI      |
|           |         |        | 60                                                      | 0          | 3                |         | 9      |          |
| TEXT I    | BOOK    |        |                                                         |            | -                | 1       |        |          |
|           |         |        | , R. Manohar, "Discrete Mathematical structures         | with ap    | plica            | tions   | to     |          |
|           |         |        | ience", Tata McGraw Hill, International edition N       | <b>.</b> . |                  |         |        | t        |
|           | 2007.   |        |                                                         |            |                  | ,       | -      |          |
| REFER     | ENCE    | 2      |                                                         |            |                  |         |        |          |
| 1 M V     | Vonle   | trom   | n N Sridharan & N Chandrasalianan "Discrete N           | 1 oth area | tice?            | , The   | Net    | <u>1</u> |
|           |         |        | an, N.Sridharan & N.Chandrasekaran, "Discrete N         | namema     | uics             | , ine   | inatio | лаl      |
| Publi     | sning ( | compa  | any India, 2000.                                        |            |                  |         |        |          |

### Table 1: COs VS POs Mapping

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO 1        | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| CO 2        | 3   | 2   |     | 1   |     |     | 1   | 1   | 1   |
| CO 3        | 3   | 2   |     | 1   |     |     | 1   | 1   | 1   |
| <b>CO 4</b> | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| CO 5        | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
|             | 15  | 10  | 0   | 5   | 3   | 0   | 5   | 5   | 5   |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| COU               | RSE CO               | ODE      | COURSE NAME                                                                |                   | L         T           4         2           L         T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | P        | С          |
|-------------------|----------------------|----------|----------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|------------|
| XMT               | C503A                | _        | Numerical Methods                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 0        | 6          |
| С                 | P                    | Α        |                                                                            |                   | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Τ      | Р        | Η          |
| 6                 | 0                    | 0        |                                                                            |                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2      | 0        | 6          |
| PRE               | REQUIS               | SITE:    | Differential Calculus and Integral (                                       | Calculus          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          |            |
|                   | se Outc              |          |                                                                            | Domain            | 4       2         L       T         4       2         Image: Constraint of the second sec |        |          |            |
| CO1:              |                      |          | olve Algorithms, Convergence,                                              | Cognitive         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | -        | 5          |
|                   |                      |          | nod, False position method, Fixed                                          |                   | Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | olyin  | g        |            |
|                   | _                    |          | method, Newton's method.                                                   |                   | Applyin<br>Remem<br>Applyin<br>Unders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |          |            |
| CO <sub>2</sub> : |                      | •        | of linear equations using iterative                                        | Cognitive         | Underst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | -        | 5          |
|                   |                      |          | -Jacobi, Gauss-Seidel and SOR                                              |                   | Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | olyin  | g        |            |
| ~~~               | iterative            |          |                                                                            | ~                 | 4       2         L       T         4       2         Level       Remem Applyin         Remem Applyin       Remem Applyin         Remem Applyin       Unders: Applyin         Unders:       Applyin         point iter       remain and the second applyin         tral Diffe       remain and the second applyin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | <u> </u> |            |
| CO3               |                      |          | nge and Newton interpolation: linear                                       | Cognitive         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | -        | 5          |
| 004               |                      |          | er, finite difference operators.                                           | <u> </u>          | Remen<br>Applyi<br>Remen<br>Applyi<br>Unders<br>Applyi<br>Unders<br>point ite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |          |            |
| CO4               |                      |          | difference, backward difference and nee to find Numerical differentiation: | Cognitive         | Applyin<br>Underst<br>Applyin<br>Underst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          | g          |
|                   | central              | Differen | ice to find Numerical differentiation:                                     |                   | Ар                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | orym   | g        |            |
| CO5               | : Solve I            | ntegrati | on using trapezoidal rule, Simpson's                                       | Cognitive         | Une                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dersta | ndin     | g          |
|                   |                      |          | 's method.                                                                 | C                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          |            |
| UNI               |                      |          |                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          | 18         |
|                   | rithms, C<br>od, New |          | ence, Bisection method, False position ethod.                              | method, Fixed     | point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | itera  | tion     |            |
| UNI               |                      |          |                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          | 18         |
| Secar             | nt metho             | d, LU d  | ecomposition, Gauss-Jacobi, Gauss-Sei                                      | idel and SOR it   | erativ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ve me  | ethod    | <b>S</b> . |
| UNI               | ГШ                   |          |                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          | 18         |
| Lagra             | ange and             | Newton   | n interpolation: linear and higher order,                                  | finite difference | e op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | erato  | rs.      |            |
| UNI               | ГІ                   |          |                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          | 18         |
| Nume              | erical dif           | ferentia | tion: forward difference, backward diff                                    | ference and cen   | tral I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Differ | ence.    |            |
| UNI               |                      |          |                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          | 18         |
| Integ             | ration: tr           | apezoid  | al rule, Simpson's rule, Euler's method                                    |                   | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |            |
|                   |                      |          | LECTURE                                                                    | TUTORIAL          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | TOT      |            |
|                   |                      |          | 60                                                                         | 30                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          | 90         |
|                   | T BOOI               |          |                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          |            |
| 1.B. I            | Bradie, "            | A Frien  | dly Introduction to Numerical Analysis                                     | s", Pearson Edu   | catio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n, In  | dia,     |            |

2007.

2. M.K. Jain, S.R.K. Iyengar and R.K. Jain, "Numerical Methods for Scientific and Engineering Computation", 5th Ed., New age International Publisher, India, 2007.

### Table 1: COs VS POs Mapping

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO 1 | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| CO 2 | 3   | 2   |     | 1   |     |     | 1   | 1   | 1   |
| CO 3 | 3   | 2   |     | 1   |     |     | 1   | 1   | 1   |
| CO 4 | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| CO 5 | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
|      | 15  | 10  | 0   | 5   | 3   | 0   | 5   | 5   | 5   |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| COUR        | SE COI    | DE         | COURSE NAME                               | I      |      | Т     | Р       | С        |
|-------------|-----------|------------|-------------------------------------------|--------|------|-------|---------|----------|
| XMT5        | )4A       |            | Linear Algebra                            | 4      | ŀ    | 2     | 0       | 6        |
| С           | Р         | A          |                                           | I      |      | Т     | Р       | Н        |
| <u> </u>    | <br>0     | A<br>0     |                                           | 4      |      | 2     | 0       | <u> </u> |
| •           | v         | TE: Mati   | ices                                      |        | r    |       | U       | U        |
|             |           | COMES      |                                           | Dom    | aiı  | n ]   | Level   |          |
| <b>CO1:</b> | Define a  | nd Expla   | in vector spaces, subspaces, linear       | Cogr   | niti | ve ]  | Remem   | bering   |
|             |           |            | nd span of a set with examples.           | C      |      |       | Underst | -        |
| <b>CO2:</b> | Define L  | inear Ind  | ependence, Basis and Dimension and        | Cogr   | niti | ve ]  | Remem   | bering   |
|             |           | ank and I  |                                           | _      |      |       |         | _        |
|             |           |            | linear transformation ,Inner product      | Cogr   | niti |       | Remem   |          |
|             |           |            | e with examples orthogonality, Gram       |        |      | 1     | Underst | anding   |
|             |           | -          | lisation process and orthogonal           |        |      |       |         |          |
|             | omplem    |            |                                           |        |      |       |         |          |
|             |           | -          | Matrices, Types of Matrices and to        | Cogr   | niti | ve 1  | Remem   | bering   |
|             |           |            | f a matrix and Rank of a matrix.          | ~      |      |       | _       |          |
|             |           |            | istic equation and Cayley -Hamilton       | Cogr   | niti |       | Remem   | 0        |
|             |           |            | <b>d</b> Eigen values and Eigen vectors.  |        |      |       | Underst | 0        |
|             |           | or Spaces  |                                           |        |      |       |         | 18       |
|             |           |            | n and examples – Subspaces-linear tran    | sform  | ati  | on –  | Span of |          |
| UNIT I      | I Basis a | and Dim    | ension                                    |        |      |       |         | 18       |
| Linear      | ndepend   | lence – B  | asis and Dimension –Rank and Nullity.     |        |      |       |         |          |
| UNIT        | III : M   | atrix and  | I Inner Product Space                     |        |      |       |         | 18       |
|             |           |            | rmation -Inner product space – Definition |        |      |       |         |          |
| Orthog      | onality – | Gram Sc    | hmidt orthogonalisation process – Ortho   | ogona  | 1 C  | ompl  | lement. |          |
|             |           | eory of N  |                                           |        |      |       |         | 18       |
|             |           |            | pes of Matrices – The Inverse of a Matr   | ix – E | len  | nenta | iry     |          |
|             |           |            | of a matrix.                              |        |      |       |         |          |
| UNIT Y      | V: Chara  | acteristic | equation and Bilinear forms               |        |      |       |         | 18       |

| LECTURE                                                      | TUTORIAL             | TOTAL       |
|--------------------------------------------------------------|----------------------|-------------|
| 60                                                           | 30                   | 90          |
| TEXT BOOK                                                    |                      |             |
| 1. Arumugam S and Thangapandi Isaac A, "Modern Algebra"      | ", SciTech Publicati | ons (India) |
| Ltd., Chennai, Edition 2012.                                 |                      |             |
| Unit1: Chapter 5, Sec 5.1 to 5.4                             |                      |             |
| Unit2: Chapter 5, Sec 5.5 to 5.7                             |                      |             |
| Unit3: Chapter 5, Sec 5.8, Chapter 6, Sec 6.1 to 6.3         |                      |             |
| Unit4: Chapter 7 Sec 7.1 to 7.5                              |                      |             |
| Unit5: Chapter 7, Sec 7.7, 7.8                               |                      |             |
| REFERENCE                                                    |                      |             |
| 1. I. N. Herstein, "Topics in Algebra", Second Edition, John | Wiley & Sons (Asia   | ), 1975.    |

### Table 1: COs VS POs Mapping

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO 1   | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| CO 2   | 3   | 2   |     | 1   |     |     | 1   | 1   | 1   |
| CO 3   | 3   | 2   |     | 1   |     |     | 1   | 1   | 1   |
| CO 4   | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| CO 5   | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| Scaled | 15  | 10  |     | 5   | 3   |     | 5   | 5   | 5   |
| Value  |     |     |     |     |     |     |     |     |     |
| Total  | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0- No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

### **VI SEMESTER**

| COUH        | RSE C     | ODE       | COURSE NAME                           |    | L      | Τ   |                        |                                                                                                         |    |  |  |  |
|-------------|-----------|-----------|---------------------------------------|----|--------|-----|------------------------|---------------------------------------------------------------------------------------------------------|----|--|--|--|
| XMT         | 501       |           | Graph Theory                          |    | 2      | 0   |                        | 0                                                                                                       | 2  |  |  |  |
| С           | Р         | Α         |                                       |    | L      | Τ   | Р                      | P     SS       0     2         Level         Rememberin       Applying   Remembering                    |    |  |  |  |
| 2           | 0         | 0         |                                       |    | 2      | 0   | 0                      | 2                                                                                                       | 4  |  |  |  |
| PRER        | EQUIS     | SITE: M   | atrices                               |    |        |     |                        | 0       P     SS       0     2       evel       emembering       oplying       emembering       oplying |    |  |  |  |
| Cours       | e outco   | mes:      |                                       | Do | main   | ı . | Level                  |                                                                                                         |    |  |  |  |
| <b>CO1:</b> | Define    | and Exp   | blain The Konigsberg Bridge Problem,  | Co | gnitiv | /e  | Rememberin<br>Applying |                                                                                                         |    |  |  |  |
| -           |           | 0 1       | , Degrees, Subgraphs , Isomorphism. , |    |        |     | Applying               |                                                                                                         |    |  |  |  |
| indepe      | ndent s   | ets and c | overings.                             |    |        |     |                        |                                                                                                         |    |  |  |  |
| <b>CO2:</b> | Define    | and Ex    | plain Matrices, Operations on Graphs, | Co | gnitiv | /e  | Reme                   | mberi                                                                                                   | ng |  |  |  |
| Walks       | , Trails  | and Path  | s, Connectedness and Components and   |    |        |     | Apply                  | ing                                                                                                     |    |  |  |  |
| Euleria     | an Grap   | hs.       |                                       |    |        |     |                        |                                                                                                         |    |  |  |  |
| <b>CO3:</b> | Define    | and Exp   | olain Hamiltonian Graphs,             | Co | gnitiv | /e  | Reme                   | mberi                                                                                                   | ng |  |  |  |
| Charac      | cterizati | on of Tr  | ees and Centre of a Tree.             |    |        |     | Apply                  | ing                                                                                                     |    |  |  |  |
| <b>CO4:</b> | Define    | and Ex    | plain Planarity, Properties and       | Co | gnitiv | /e  | Under                  | standi                                                                                                  | ng |  |  |  |
| Charac      | eterizati | on of Pla | anar Graphs.                          |    |        |     | Apply                  | ing                                                                                                     |    |  |  |  |
| <b>CO5:</b> | Define    | and Ex    | plain Directed Graphs, Basic          | Co | gnitiv | /e  | Under                  | ememberin<br>pplying<br>ememberin<br>pplying<br>inderstandin<br>pplying<br>inderstandin                 |    |  |  |  |
| Proper      | ties,So   | ne Appli  | cations, Connector Problem, Kruskal's |    |        |     |                        |                                                                                                         |    |  |  |  |
| algorit     | hm , Sł   | ortest Pa | th Problem and Dijkstra's algorithm.  |    |        |     |                        |                                                                                                         |    |  |  |  |

| UNIT I                                                                                                                                                                  | 6          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Introduction - The Konigsberg Bridge Problem - Graphs and subgraphs: Definition                                                                                         | and        |
| Examples - Degrees - Subgraphs – Isomorphism. –independent sets and coverings.                                                                                          |            |
| UNIT II                                                                                                                                                                 | 6          |
| Matrices - Operations on Graphs - Walks, Trails and Paths - Connectedness and Co                                                                                        | omponents  |
| - Eulerian Graphs.                                                                                                                                                      |            |
| UNIT III                                                                                                                                                                | 6          |
| Hamiltonian Graphs (Omit Chavatal Theorem) - Characterization of Trees - Centre                                                                                         | of a Tree. |
| UNIT IV                                                                                                                                                                 | 6          |
| Planarity: Introduction - Definition and Properties - Characterization of Planar Grap                                                                                   | ohs.       |
| UNIT V:                                                                                                                                                                 | 6          |
| Directed Graphs: Introduction - Definitions and Basic Properties - Some Application                                                                                     | ons:       |
| Connector Problem - Kruskal's algorithm - Shortest Path Problem - Dijkstra's algo                                                                                       | rithm.     |
| LECTURE                                                                                                                                                                 | TOTAL      |
| 30                                                                                                                                                                      | 30         |
| TEXT BOOK                                                                                                                                                               |            |
| 1. S. Arumugam and S. Ramachandran, "Invitation to Graph Theory", SciTech                                                                                               | 1          |
| Publications (India) Pvt. Ltd., Chennai, 2006.                                                                                                                          |            |
| Unit-I Chapter-1 Sec 1.0, 1.1 and Chapter -2 Sec 2.0, 2.1, 2.2, 2.3, 2.4.2.6                                                                                            |            |
| Unit-II Chapter-2 Sec 2.8,2.9 ,Chapter-4 Sec 4.1,4.2 and Chapter-5 Sec 5.0,                                                                                             | ,5.1       |
| Unit-III Chapter-5 Sec 5.2, Chapter-6 Sec 6.0, 6.1, 6.2.                                                                                                                |            |
| Unit-IV Chapter-8 Sec 8.0, 8.1, 8.2.                                                                                                                                    |            |
| Unit-1 v Chapter-0 Sec 0.0, 0.1, 0.2.                                                                                                                                   |            |
| Unit-V Chapter-10 Sec 10.0, 10.1 Chapter-11 Sec 11.0, 11.1, 11.2                                                                                                        |            |
| Unit-V Chapter-10 Sec 10.0, 10.1 Chapter-11 Sec 11.0, 11.1, 11.2                                                                                                        |            |
| Unit-V Chapter-10 Sec 10.0, 10.1 Chapter-11 Sec 11.0, 11.1, 11.2<br>REFERENCES                                                                                          | aianaa?    |
| Unit-V Chapter-10 Sec 10.0, 10.1 Chapter-11 Sec 11.0, 11.1, 11.2                                                                                                        | cience",   |
| Unit-V Chapter-10 Sec 10.0, 10.1 Chapter-11 Sec 11.0, 11.1, 11.2<br><b>REFERENCES</b><br>1. Narsingh Deo, "Graph Theory with applications to Engineering and Computer S |            |

# Table 1: CO Vs PO Mapping

|                 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO 1            | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| CO 2            | 3   | 2   |     | 1   |     |     | 1   | 1   | 1   |
| CO 3            | 3   | 2   |     | 1   |     |     | 1   | 1   | 1   |
| <b>CO 4</b>     | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| CO 5            | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| Scaled<br>Value | 15  | 10  | 0   | 5   | 3   | 0   | 5   | 5   | 5   |
| Total           | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

| COURSE<br>CODE                    | (      | COURSE       | NAME       |           |          |             |          | L       | Т         | Р      | С        |
|-----------------------------------|--------|--------------|------------|-----------|----------|-------------|----------|---------|-----------|--------|----------|
| XMT602A                           | (      | Complex A    | nalysis    |           |          |             |          | 4       | 2         | 0      | 6        |
| C P A                             | 4      |              |            |           |          |             |          | L       | Т         | Р      | Н        |
| 6 0 0                             | 0      |              |            |           |          |             |          | 4       | 2         | 0      | 6        |
| PREREQUISI                        | TE: I  | Differential | Calculus   | and In    | tegral   | Calculus    |          |         |           |        |          |
| Course outcon                     |        |              |            |           |          |             | Don      | nain    | Lev       | vel    |          |
| CO1: Use CR                       | Equati | ions in cart | esian and  | l polar o | co-ordi  | inates to   | Cog      | nitive  | Une       | dersta | nding    |
| find analytic fu                  |        |              |            |           |          |             | -        |         |           | plying | -        |
| Properties and a                  | applic | cations.     |            |           |          |             |          |         |           |        |          |
| <b>CO2:</b> Explain               | Conf   | formal map   | pings - Li | inear aı  | nd Nor   | n-linear    | Cog      | nitive  | Une       | dersta | nding    |
| transformations                   |        | to Apply ci  | ross ratio | to cons   | struct E | Bilinear    |          |         | Ap        | plying | ç.       |
| transformations                   |        |              |            |           |          |             |          |         |           |        |          |
| CO3: Solve t                      |        |              |            |           |          |             |          | nitive  |           |        | nding    |
| cauchy's integr                   |        |              | _          |           |          |             |          |         | Ap        | plying | 5        |
| Maximum moo                       | dulus  | theorem      | and to     | apply     | them     | in simple   | •        |         |           |        |          |
| problems.                         |        |              |            | • -       |          |             | ~        |         |           |        |          |
| CO4: Using Ta                     |        |              |            |           |          |             | Cog      | nitive  | Ap        | plying | <b>,</b> |
| functions in Po                   |        |              | _          |           | _        |             |          | •,•     | •         | 1 .    |          |
| CO5: Apply C                      |        |              |            |           | Integra  | ation of    | Cog      | nitive  | Ap        | plying | 5        |
| functions of the                  |        |              | cosx, sinx | <b>.</b>  |          |             |          |         |           |        | 10       |
| UNIT I : Analy                    |        |              | monn Ea    | notion    | in Cor   | tacion and  |          |         | lingto    |        | 18       |
| Analytic function function Proper |        |              |            | uation    | in Car   | testan and  | i polar  | co-orc  | imate     | з - п  | armonic  |
| UNIT II : Con                     |        |              |            | ransfa    | rmatic   | nc          |          |         |           |        | 18       |
| Conformal map                     |        |              |            |           |          |             | Dilingo  | *       |           |        | 10       |
| transformations                   | · ·    |              |            |           | alision  | nations –   | Diffica  | 1       |           |        |          |
| UNIT III : Co                     |        |              |            | 10115     |          |             |          |         |           |        | 18       |
| Integration in t                  | -      | 0            |            | chv's     | Integra  | l theorem   | - Cau    | chy's   | Integ     | ral fo |          |
| Liouville's theo                  |        |              |            |           |          |             |          |         |           |        | imana    |
| UNIT IV : Cor                     |        |              |            |           |          | phoanon     | o una or |         |           | •      | 18       |
| Taylor's and La                   | _      |              |            | n of fu   | nctions  | in power    | series   | - Sing  | ılar r    | oints  |          |
| of singularities                  |        |              |            |           |          |             |          |         | r         |        | - 7      |
| UNIT V: Calc                      |        | •            | -          |           |          |             | 0        |         |           |        | 18       |
| Calculus of Re                    | sidue  | s: Residue   | theorem    | - Integ   | gration  | of function | ons of   | the typ | be in     | volvii | ng cosx, |
| sinx- Application                 |        |              |            | -         |          |             |          | • •     | -         |        |          |
|                                   |        |              |            |           | LE       | CTURE       | TUT      | ORIA    | L         | r      | FOTAL    |
|                                   |        |              |            |           |          | 60          |          |         | <b>30</b> |        | 90       |
| <b>TEXT BOOK</b>                  |        |              |            |           |          |             |          |         |           |        |          |
| 1. S. Narayar                     |        |              | Ianickava  | sagaml    | Pillai,  | "Comple     | x Ana    | lysis", | S.        | Visw   | anathan  |
| Publishers, Che                   |        |              |            |           |          |             |          |         |           |        |          |
| Unit 1:                           | -      |              |            |           |          |             |          |         |           |        |          |
| Unit 2: C                         | -      |              |            |           |          |             |          |         |           |        |          |
| Unit 3: C                         | -      |              |            |           |          |             |          |         |           |        |          |
| Unit 4:                           | -      |              |            |           |          |             |          |         |           |        |          |
| Unit 5: 0                         | -      | ter 5        |            |           |          |             |          |         |           |        |          |
| REFERENCE                         | 3      |              |            |           |          |             |          |         |           |        |          |

- 1. S. Arumugam, A. Thangapandi Isaac& A. Somasundaram, "Complex Analysis", SciTech Publications, India, Pvt. Ltd., 2004.
- 2. S. Ponnusamy, "Foundations of Complex Analysis", 2ndEdition, Narosa Publication, New Delhi, 2005.
- 3. R. V. Churchill & J.W.Brown, "Complex variables and applications", 5thEdition, McGraw Hill, Singapore, 1990.

### Table 1: CO Vs PO Mapping

|                 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO 1            | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| CO 2            | 3   | 2   |     | 1   |     |     | 1   | 1   | 1   |
| CO 3            | 3   | 2   |     | 1   |     |     | 1   | 1   | 1   |
| CO 4            | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| CO 5            | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |
| Scaled<br>Value | 15  | 10  | 0   | 5   | 3   | 0   | 5   | 5   | 5   |
| Value           |     | -   |     |     |     |     |     |     |     |
| Total           | 3   | 2   |     | 1   | 1   |     | 1   | 1   | 1   |

 $1 - 5 \rightarrow 1, \qquad 6 - 10 \rightarrow 2, \qquad 11 - 15 \rightarrow 3$ 

| COUF    | RSE C                | ODE      | COURSE NAME                                        |         | L       | Т        | Р      | С      |
|---------|----------------------|----------|----------------------------------------------------|---------|---------|----------|--------|--------|
| XMT6    | 603A                 |          | LINEAR PROGRAMMING                                 |         | 4       | 2        | 0      | 6      |
|         | D                    |          |                                                    |         | T       | T        | D      | TT     |
| C       | P                    | A        |                                                    |         | L       | <u>T</u> | P      | H      |
| 5       | 0.5                  | 0.5      | 111                                                |         | 4       | 2        | 0      | 6      |
|         |                      | SITE: N  | NIL                                                | Dama    | •       | т        |        |        |
|         | e outco              |          |                                                    | Doma    |         |          | evel   | . ·    |
|         |                      | -        | l Solution, <b>Solve</b> LPP using Simplex Method, | Cogni   | tive    |          |        | bering |
|         |                      |          | Phase Method.                                      | ~ .     |         |          | pplyin | -      |
|         |                      |          | Programming problem Formulation of Primal          | Cogni   |         |          | pplyin | g      |
| Dual P  | airs, D              | uality a | nd Simplex Method.                                 | Psych   | omoto   |          | uided  |        |
|         |                      |          |                                                    |         |         |          | espons |        |
|         |                      | -        | tation Problems, finding initial basic feasible    | Cogni   | tive    | A        | pplyin | g      |
| solutio |                      | U        | orth West Corner Rule and Vogel's                  |         |         |          |        |        |
|         |                      |          | d, Solve unbalanced Transportation                 |         |         |          |        |        |
|         |                      | -        | nt Problems and Routing Problems.                  |         |         |          |        |        |
|         |                      | -        | ing Problems, Problems with 'n' jobs and 'k'       | Cogni   |         |          | pplyin | -      |
|         |                      |          | with 'n' jobs and 2 machines, Problems with        | Affect  | tive    | R        | eceivi | ng     |
| 2 jobs  | and k n              | nachine  | s and Problems with 2 jobs and 3 machines.         |         |         |          |        |        |
| CO 5:   | Solve                | Game T   | heory problems Two persons Zero sum                | Cogni   | tive    | A        | pplyin | ıg     |
| games   | , maxiı              | nin and  | minimax principle, Games without saddle            |         |         |          |        |        |
| points  | , Mixe               | d strate | gies, using Graphical method and Dominance         |         |         |          |        |        |
| proper  | ty.                  |          |                                                    |         |         |          |        |        |
| UNIT    | Ι                    |          |                                                    |         |         |          | 18     | 3      |
| Introd  | uction               | to conv  | ex sets - Mathematical Formulation of LPP - G      | raphica | l Solut | tion - S | Simple | ex     |
| Metho   | d – <mark>Big</mark> | M Met    | hod - Two Phase Method.                            |         |         |          |        |        |
| UNIT    | II                   |          |                                                    |         |         |          | 18     | 3      |
| Duality | y in Lin             | ear Pro  | gramming: Formulation of Primal - Dual Pairs       | - Duali | ty and  | Simp     | lex Me | ethod  |
|         |                      |          |                                                    |         | -       | -        |        |        |

| - Dual Simplex Method                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------|
| UNIT III                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            | 18                              |
| Transportation Problems: Mathematical formulation of the problem                                                                                                                                                                                                                                                                                                                                                                                                  | n - finding initial bas                                                    | sic feasible                    |
| solution using North West Corner Rule and Vogel's approximation                                                                                                                                                                                                                                                                                                                                                                                                   | n method - Moving t                                                        | owards                          |
| Optimality - Unbalanced Transportation Problems. Assignment Pro                                                                                                                                                                                                                                                                                                                                                                                                   | oblems: Mathematic                                                         | al                              |
| formulation of Assignment Problems - Assignment algorithm - Ro                                                                                                                                                                                                                                                                                                                                                                                                    | uting Problems.                                                            |                                 |
| UNIT IV                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            | 18                              |
| Sequencing Problems: Problems with 'n' jobs and 'k' machines - H                                                                                                                                                                                                                                                                                                                                                                                                  | Problems with 'n' jo                                                       | bs and 2                        |
| machines- Problems with 2 jobs and k machines - Problems with 2                                                                                                                                                                                                                                                                                                                                                                                                   | iobs and 3 machine                                                         | s                               |
| findefinites Treefenis with 2 jees and it indefinites Treefenis with 2                                                                                                                                                                                                                                                                                                                                                                                            | Jobs und 5 machine                                                         | 0.                              |
| UNIT V                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Joos une 5 machine                                                         | 18                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                          | 18                              |
| UNIT V                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ax principle - Game                                                        | 18                              |
| <b>UNIT V</b><br>Game Theory: Two persons Zero sum games - maximin and minin                                                                                                                                                                                                                                                                                                                                                                                      | ax principle - Game                                                        | 18                              |
| <b>UNIT V</b><br>Game Theory: Two persons Zero sum games - maximin and minin<br>saddle points - Mixed strategies - Graphical method - Dominance p                                                                                                                                                                                                                                                                                                                 | nax principle - Game<br>property.                                          | 18<br>es without                |
| UNIT V<br>Game Theory: Two persons Zero sum games - maximin and minin<br>saddle points - Mixed strategies - Graphical method - Dominance p<br>LECTURE<br>60                                                                                                                                                                                                                                                                                                       | nax principle - Game<br>property.<br>TUTORIAL                              | 18<br>es without<br>TOTAL       |
| UNIT V<br>Game Theory: Two persons Zero sum games - maximin and minin<br>saddle points - Mixed strategies - Graphical method - Dominance p<br>LECTURE<br>60<br>TEXT BOOK                                                                                                                                                                                                                                                                                          | nax principle - Game<br>property.<br>TUTORIAL<br>30                        | 18<br>es without<br>TOTAL<br>90 |
| UNIT V<br>Game Theory: Two persons Zero sum games - maximin and minin<br>saddle points - Mixed strategies - Graphical method - Dominance p<br>LECTURE                                                                                                                                                                                                                                                                                                             | nax principle - Game<br>property.<br>TUTORIAL<br>30                        | 18<br>es without<br>TOTAL<br>90 |
| UNIT V<br>Game Theory: Two persons Zero sum games - maximin and minin<br>saddle points - Mixed strategies - Graphical method - Dominance p<br>LECTURE<br>60<br>FEXT BOOK<br>1. KantiSwarup, P. K. Gupta& Man Mohan, "Operations Research"                                                                                                                                                                                                                         | nax principle - Game<br>property.<br>TUTORIAL<br>30<br>2, Sultan Chand& Sc | 18<br>es without<br>TOTAL<br>90 |
| UNIT V<br>Game Theory: Two persons Zero sum games - maximin and minin<br>saddle points - Mixed strategies - Graphical method - Dominance p<br>LECTURE<br>60<br>FEXT BOOK<br>1. KantiSwarup, P. K. Gupta& Man Mohan, "Operations Research'<br>Delhi, Twelfth Revised Edition, 2005.                                                                                                                                                                                | nax principle - Game<br>property.<br>TUTORIAL<br>30<br>2, Sultan Chand& Sc | 18<br>es without<br>TOTAL<br>90 |
| UNIT V<br>Game Theory: Two persons Zero sum games - maximin and minin<br>saddle points - Mixed strategies - Graphical method - Dominance p<br>LECTURE<br>60<br>TEXT BOOK<br>1. KantiSwarup, P. K. Gupta& Man Mohan, "Operations Research"<br>Delhi, Twelfth Revised Edition, 2005.<br>Unit 1: chapter 2: 2.1, 2.2, chapter 3: 3.2, chapter 4; 4.1, 4.4<br>Unit 2: chapter 5: 5.2, 5.3, 5.7, 5.9.<br>Unit 3: Chapter 10: 10.2, 10.9, 10.14, Chapter 11: 11.2, 11.3 | nax principle - Game<br>property.<br>TUTORIAL<br>30<br>2, Sultan Chand& Sc | 18<br>es without<br>TOTAL<br>90 |
| UNIT V<br>Game Theory: Two persons Zero sum games - maximin and minin<br>saddle points - Mixed strategies - Graphical method - Dominance p<br>LECTURE<br>60<br>TEXT BOOK<br>1. KantiSwarup, P. K. Gupta& Man Mohan, "Operations Research"<br>Delhi, Twelfth Revised Edition, 2005.<br>Unit 1: chapter 2: 2.1, 2.2, chapter 3: 3.2, chapter 4; 4.1, 4.4<br>Unit 2: chapter 5: 5.2, 5.3, 5.7, 5.9.                                                                  | nax principle - Game<br>property.<br>TUTORIAL<br>30<br>2, Sultan Chand& Sc | 18<br>es without<br>TOTAL<br>90 |

REFERENCES

1. P. K. Gupta & D. S. Hira, "Operations Research", S. Chand & Company Ltd., New Delhi, 2002.

2. J. K. Sharma, "Operations Research theory and its applications", 2nd Edition, Macmillan, New Delhi, 2006.

3. R. Panneerselvam, "Operations Research", Prentice Hall of India Pvt. Ltd., New Delhi, 2002.

### Table 1: COs VS POs Mapping

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 |
|--------|-----|-----|-----|-----|-----|-----|------------|-----|-----|
| CO 1   | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| CO 2   | 3   | 2   |     | 1   |     |     | 1          | 1   | 1   |
| CO 3   | 3   | 2   |     | 1   |     |     | 1          | 1   | 1   |
| CO 4   | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| CO 5   | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| Scaled | 15  | 10  | 0   | 5   | 3   | 0   | 5          | 5   | 5   |
| Value  |     |     |     |     |     |     |            |     |     |
| Total  | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-15 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

### M.SC (MATHEMATICS) I SEMESTER

| COURSE CODE             | C       | DURSE NAME                                                                | L       | Т      | P             |      | С      |
|-------------------------|---------|---------------------------------------------------------------------------|---------|--------|---------------|------|--------|
| YMA101                  | G       | ROUPS AND RINGS                                                           | 4       | 0      | 0             |      | 4      |
| C P A                   |         |                                                                           | L       | Т      | Р             |      | Н      |
| 4 0 0                   |         |                                                                           | 4       | 0      | 0             |      | 4      |
| <b>PREREQUISITE:</b>    | Basic   | concepts of sets, groups and rings                                        |         | •      | •             | •    |        |
| <b>Course outcomes:</b> |         |                                                                           | Domai   | in     | Level         |      |        |
| CO1: Define and         | Expla   | in Subgroups, Normal subgroups and                                        | Cognit  | ive    | Reme          | mb   | ering  |
| Quotient Groups, La     | agrang  | e's Theorem.                                                              |         |        | Under         | sta  | nding  |
| CO2: Define and I       | Explai  | <b>n</b> Homomorphism Theorems,                                           | Cognit  | ive    | Reme          | mb   | ering  |
| Isomorphism Theore      | ems, A  | automorphisms Theorems, Cayley's                                          |         |        | Under         | sta  | nding  |
| theorem. Permutation    | on gro  | ups, Another Counting principle.                                          |         |        |               |      |        |
| CO2. Define and F       | Tunlai  | Sylow's Theorems and their simple                                         | Cognit  |        | Dama          |      |        |
|                         |         | • Sylow's Theorems and their simple<br>cts: External and Internal, Finite | Cogint  | Ive    | Reme<br>Under |      | 0      |
| Abelian Groups.         | FIOUU   | cts. Externar and internar, Finite                                        |         |        | Under         | sta  | namg   |
| 1                       | Fvn     | ain Rings, Subrings, Ideals, Factor                                       | Cognit  | ive    | Reme          | mh   | ering  |
|                         | _       | and Integral Domains. Maximal and                                         |         | 110    | Under         |      | 0      |
|                         |         | Quotients of an integral domain.                                          |         |        | Under         | sta  | nunng  |
| 1                       |         | <b>Jain</b> Euclidean Ring, A Particular                                  | Cognit  | ive    | Reme          | mh   | erina  |
|                         |         | nial Ring, and Polynomial over the                                        | Cogini  | 100    | Under         |      | •      |
|                         |         | l Rings over Commutative Rings.                                           |         |        | Under         | sta  | numg   |
| UNIT I                  | nonne   | r Kings over Commutative Kings.                                           |         |        |               |      | 12     |
|                         | nnlag   | Groups, Subgroups, Normal subgro                                          |         |        | otiont        | G    |        |
| Lagrange's Theorem      | -       | Gloups, Subgroups, Normai subgro                                          | ups and | ı Qı   | iotient       | U    | Toups, |
| UNIT II                 | 11.     |                                                                           |         |        |               |      | 12     |
|                         | haara   | ns, Isomorphism Theorems, Auton                                           | ornhian | л т    | haara         | ma   | 14     |
|                         |         | ation groups, Another Counting principl                                   |         | 15 1   | Theorem       | 118, |        |
| UNIT III                | cimu    | ation groups, Another Counting principi                                   | с.      |        |               |      | 12     |
|                         | and th  | eir simple applications, Direct Products:                                 | Externa | l and  | Interr        | 1 1  |        |
| Abelian Groups.         |         | In simple applications, Direct Products.                                  | LAUIIIa |        | men           | iai, | Time   |
| UNIT IV                 |         |                                                                           |         |        |               |      | 12     |
|                         | als F   | actor Rings, Homomorphism, Integral D                                     | omains  | Max    | imal a        | nd   | 1      |
|                         |         | nts of an integral domain.                                                | omanis. | Max    | iiiiai a      | nu   | printe |
| UNIT V                  | Quoine  |                                                                           |         |        |               |      | 12     |
|                         | Partici | lar Euclidean Ring, Polynomial Ring, I                                    | Polynom | ial or | ver the       | R    |        |
| <b>e</b> •              |         | ver Commutative Rings.                                                    | orynom  | iui o  | ver the       | . 1  | uionui |
|                         | 0       | LECTURE                                                                   |         |        |               | Т    | DTAL   |
|                         |         | 60                                                                        |         |        |               |      | 60     |
|                         |         |                                                                           | 1       |        |               |      |        |
| ТЕХТВООК                |         |                                                                           |         |        | 1             |      |        |
|                         | opics   | n Algebra", Willey Eastern 1975.                                          |         |        |               |      |        |
| Unit I - Chapter 2      | -       |                                                                           |         |        |               |      |        |
| Unit II - Chapter       | •       |                                                                           |         |        |               |      |        |
| Unit III - Chapter      |         |                                                                           |         |        |               |      |        |
| Unit IV - Chapter       |         |                                                                           |         |        |               |      |        |
| Unit V - Chapter        |         |                                                                           |         |        |               |      |        |
| REFERENCES              |         |                                                                           |         |        |               |      |        |
|                         |         |                                                                           |         |        |               |      |        |

1. John B. Fraleigh, "A First Course in Abstract Algebra", Narosa Publication, Third Edition, 2003.

2. Cohn P. M., "Basic Algebra", Springer's Publications, Second Edition, 2005.

### **TABLE 1: COs VS POs Mapping**

| <b>PO1</b> | PO2                         | PO3                                                                                                  | PO4                                                                                           | PO5                                                                                           | <b>PO6</b>                                             | <b>PO7</b>                                             | <b>PO8</b>                                             | PO9                                                    |
|------------|-----------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| 3          | 2                           |                                                                                                      |                                                                                               | 1                                                                                             | 1                                                      | 1                                                      | 1                                                      | 1                                                      |
| 3          | 2                           |                                                                                                      |                                                                                               | 1                                                                                             | 1                                                      | 1                                                      | 1                                                      | 1                                                      |
| 3          | 2                           |                                                                                                      |                                                                                               | 1                                                                                             | 1                                                      | 1                                                      | 1                                                      | 1                                                      |
| 3          | 2                           |                                                                                                      |                                                                                               | 1                                                                                             | 1                                                      | 1                                                      | 1                                                      | 1                                                      |
| 3          | 2                           |                                                                                                      |                                                                                               | 1                                                                                             | 1                                                      | 1                                                      | 1                                                      | 1                                                      |
| 15         | 10                          |                                                                                                      |                                                                                               | 5                                                                                             | 5                                                      | 5                                                      | 5                                                      | 5                                                      |
| 3          | 2                           |                                                                                                      |                                                                                               | 1                                                                                             | 1                                                      | 1                                                      | 1                                                      | 1                                                      |
|            | 3<br>3<br>3<br>3<br>3<br>15 | $\begin{array}{c cccc} 3 & 2 \\ 3 & 2 \\ 3 & 2 \\ 3 & 2 \\ 3 & 2 \\ 3 & 2 \\ 15 & 10 \\ \end{array}$ | 3     2       3     2       3     2       3     2       3     2       3     2       15     10 | 3     2       3     2       3     2       3     2       3     2       3     2       15     10 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

 $1-5 \rightarrow 1$ ,  $6-10 \rightarrow 2$ ,  $11-13 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

| COURSE<br>CODE         |     | COURSE NAME                               | L       | ]     | ſ     | Р                        | C        |
|------------------------|-----|-------------------------------------------|---------|-------|-------|--------------------------|----------|
| YMA102                 |     | ANALYSIS - I                              | 4       | (     | )     | 0                        | 4        |
| C P A                  |     |                                           | L       | ]     | Γ     | Р                        | Н        |
| 4 0 0                  |     |                                           | 4       | (     | )     | 0                        | 4        |
| PREREQU                | JI  | SITE: Basic concepts of real numbers      |         |       |       | •                        |          |
| Course out             | cc  | omes:                                     | Doma    | in    | Le    | vel                      |          |
| CO1: Defi<br>Number Sy |     | e and Explain the Real and Complex        | Cogni   | tive  |       | membering<br>derstanding |          |
|                        |     | and Explain Basic Topology.               | Cogni   | tive  |       | membering                |          |
| CO2. Dem               | IC  | and Explain Dasie Topology.               | Cogin   | live  |       | derstanding              |          |
| CO3:Defin              | e   | and Explain convergence of sequences      | Cogni   | tive  | Re    | membering                |          |
| and series             |     |                                           | C       |       |       | derstanding              |          |
| CO4:Defin              | e   | and Explain Continuity of functions       | Cogni   | tive  | Re    | membering                |          |
|                        |     |                                           | -       |       | Un    | derstanding              |          |
|                        |     | e and Explain the derivative of a real    | Cogni   | tive  | Re    | membering                |          |
|                        |     | Continuity of Derivatives, Derivatives    |         |       | Un    | derstanding              |          |
| of Higher C            | )rc | ler, and Taylor's Theorem.                |         |       |       |                          |          |
|                        |     | Real and Complex Number Systems           |         |       |       |                          | 12       |
| Ordered set            | s,  | The real field, The complex field, Euclid | ean spa | ces.  |       |                          |          |
| UNIT II Ba             | asi | ic Topology                               |         |       |       |                          | 12       |
| Finite, Cou            | nt  | able and Uncountable sets, Metric space   | ce, Cor | npac  | t set | ts, Perfect Sets         | ,        |
| Connected              | Se  | ets.                                      |         |       |       |                          |          |
| UNIT III               | Nı  | merical Sequences and Series              |         |       |       |                          | 12       |
|                        |     | sequences (in Metric Spaces), subseque    | ences,  | Cauc  | hy    | sequences, Up            | per and  |
| Lower Lim              | its | , Some Special Sequences, Series, Series  | s of Ne | gativ | e tei | rms, The root a          | nd ratio |
| tests.                 |     |                                           |         |       |       |                          |          |
| UNIT IV                | Co  | ontinuity                                 |         |       |       |                          | 12       |

| Limits of functions (in metric spaces) Continuous functions, Conti | nuity and        |              |
|--------------------------------------------------------------------|------------------|--------------|
| Compactness, Continuity and Connectedness, Discontinuities, Mo     | notonic function | ons, Uniform |
| Continuity, Infinite Limits and Limits at Infinity.                |                  |              |
| UNIT V Differentiation                                             |                  | 12           |
| The Derivative of a Real Function, Mean Value Theorems, The        | Continuity of    | Derivatives, |
| L'Hospital's Rule, Derivatives of Higher Order, Taylor's Theorem   | 1.               |              |
|                                                                    | LECTURE          | TOTAL        |
|                                                                    | 60               | 60           |

#### TEXTBOOK

- Walter Rudin,"Principles of Mathematical Analysis", (3<sup>rd</sup> Edition) McGraw-Hill, 2016. Unit I - Chapter 1 (Pages: 3-5, 8-11, 12-16)
  - Unit II Chapter 2 (Pages: 24 42)
  - Unit III Chapter 3 (Pages: 47-63, 65-69)
  - Unit IV Chapter 4 (Pages: 83-97)
  - Unit V Chapter 5 (Section 103-111)

#### REFERENCES

- 1. Shanti Narayan,"A Course of Mathematical Analysis", S.Chand & Co, 2005.
- 2. Apostol, T.M,"Mathematical Analysis", 2<sup>nd</sup> Edition,1996.
- 3. Malik, S.C,"Mathematical Analysis", Wiley Eastern Ltd, 2017.

#### **TABLE 1: COs VS POs Mapping**

|                     | PO1 | PO2   | PO3                 | PO4 | PO5     | PO6             | <b>PO7</b> | PO8 | PO9 |
|---------------------|-----|-------|---------------------|-----|---------|-----------------|------------|-----|-----|
| CO1                 | 3   | 2     |                     |     | 1       | 1               | 1          | 1   | 1   |
| CO2                 | 3   | 2     |                     |     | 1       | 1               | 1          | 1   | 1   |
| CO3                 | 3   | 2     |                     |     | 1       | 1               | 1          | 1   | 1   |
| <b>CO4</b>          | 3   | 2     |                     |     | 1       | 1               | 1          | 1   | 1   |
| CO5                 | 3   | 2     |                     |     | 1       | 1               | 1          | 1   | 1   |
| Scaled<br>Value     | 15  | 10    |                     |     | 5       | 5               | 5          | 5   | 5   |
| Total               | 3   | 2     |                     |     | 1       | 1               | 1          | 1   | 1   |
| $1-5 \rightarrow 1$ | ,   | 6 – 1 | $0 \rightarrow 2$ , |     | 11 – 15 | $\rightarrow 3$ |            |     |     |

| CO<br>CO | URSF<br>DE | C           | COURSE NAME                                                      | L     | Τ    | Р         | C    |
|----------|------------|-------------|------------------------------------------------------------------|-------|------|-----------|------|
| YM       | A103       |             | DIFFERENTIAL EQUATIONS                                           | 4     | 0    | 0         | 4    |
| С        | Р          | Α           |                                                                  | L     | Т    | Р         | Н    |
| 4        | 0          | 0           |                                                                  | 4     | 0    | 0         | 4    |
| PRI      | EREQ       | UIS         | <b>ITE:</b> Differentiation and Integration                      |       |      |           |      |
| Cou      | rse o      | utco        | mes:                                                             | Doma  | in   | Level     |      |
| CO       | 1: Fin     | <b>d</b> Tł | ne general solution of the homogeneous                           | Cogni | tive | Remember  | ring |
| equa     | ations     | usin        | g various methods.                                               |       |      | Understan | ding |
|          |            |             | he homogeneous linear system with icients and special functions. | Cogni | tive | Applying  |      |
| CO.      | 3: Fin     | d th        | e critical points and stability for linear                       | Cogni | tive | Remember  | ring |
| syste    | ems b      | y Lia       | apounov's direct method.                                         |       |      | Understan | ding |
| CO4      | 4: Sol     | ve F        | irst order linear partial differential                           | Cogni | tive | Applying  |      |

| equations using various methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| <b>CO5: Solve</b> initial and boundary value problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cognitive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Applyi                                                                                                       | ng                                                                        |
| UNIT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              | 12                                                                        |
| The general solution of the homogeneous equation – The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                           |
| another - The method of variation of parameter - Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                           |
| first order equations – Second order linear equations – o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Regular sin                                                                                                  | ngular                                                                    |
| points – Gauss hyper geometric equations – the point 0 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | at infinity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                           |
| UNIT II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              | 12                                                                        |
| Legendre polynomials - Properties of Legendre polynomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                           |
| gamma function - Properties of Bessel function - linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | systems - Homo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | geneous li                                                                                                   | inear                                                                     |
| system with constant coefficients.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                           |
| UNIT III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              | 12                                                                        |
| The existence and uniqueness of solutions – The method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |                                                                           |
| Picard's theorem – Types of critical points – Critical poi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nts and stability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | for linear s                                                                                                 | systems –                                                                 |
| Stability by Liapunov's direct method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                           |
| UNIT IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              | 12                                                                        |
| First order partial differential equations - Linear equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                           |
| differential equations - Compatible systems - Charpit's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | method – Jacobi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 's method                                                                                                    | <ul> <li>Integral</li> </ul>                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                           |
| surface through a given circle.<br>UNIT V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              | 12                                                                        |
| <b>UNIT V</b><br>Solution of initial and boundary value problems – Chara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              | olution –                                                                 |
| <b>UNIT V</b><br>Solution of initial and boundary value problems – Chara<br>Significance of characteristic curves – Laplace transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ns solutions for d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | isplaceme                                                                                                    | olution –<br>nt in a                                                      |
| <b>UNIT V</b><br>Solution of initial and boundary value problems – Chara<br>Significance of characteristic curves – Laplace transform<br>string – a long string under its weight – Longitudinal vib                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns solutions for d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | isplaceme                                                                                                    | olution –<br>nt in a                                                      |
| <b>UNIT V</b><br>Solution of initial and boundary value problems – Chara<br>Significance of characteristic curves – Laplace transform<br>string – a long string under its weight – Longitudinal vib                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns solutions for d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | isplaceme                                                                                                    | olution –<br>nt in a                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns solutions for department of a elastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | isplaceme                                                                                                    | olution –<br>nt in a                                                      |
| <b>UNIT V</b><br>Solution of initial and boundary value problems – Chara<br>Significance of characteristic curves – Laplace transforn<br>string – a long string under its weight – Longitudinal vib                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns solutions for departed of a elastic department of a elastic LEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | isplaceme<br>c bar with                                                                                      | olution –<br>nt in a<br>prescribe                                         |
| UNIT V<br>Solution of initial and boundary value problems – Chara<br>Significance of characteristic curves – Laplace transform<br>string – a long string under its weight – Longitudinal vib<br>force on one end – free vibrations of string.                                                                                                                                                                                                                                                                                                                                                                                                                       | ns solutions for departed of a elastic department of a elastic LEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | isplaceme<br>c bar with<br>TURE                                                                              | olution –<br>nt in a<br>prescribe<br>TOTA                                 |
| UNIT V<br>Solution of initial and boundary value problems – Chara<br>Significance of characteristic curves – Laplace transforn<br>string – a long string under its weight – Longitudinal vib<br>force on one end – free vibrations of string.                                                                                                                                                                                                                                                                                                                                                                                                                       | ns solutions for departements of a elastic department | isplaceme<br>c bar with<br>TURE<br>60                                                                        | olution –<br>nt in a<br>prescribe<br>TOTA<br>60                           |
| UNIT V<br>Solution of initial and boundary value problems – Chara<br>Significance of characteristic curves – Laplace transforn<br>string – a long string under its weight – Longitudinal vib<br>force on one end – free vibrations of string.<br>TEXTBOOK                                                                                                                                                                                                                                                                                                                                                                                                           | ns solutions for departements of a elastic department | isplaceme<br>c bar with<br>TURE<br>60                                                                        | olution –<br>nt in a<br>prescribe<br>TOTA<br>60                           |
| UNIT V<br>Solution of initial and boundary value problems – Chara<br>Significance of characteristic curves – Laplace transform<br>string – a long string under its weight – Longitudinal vib<br>force on one end – free vibrations of string.<br>TEXTBOOK<br>1. Simmons, G.F.,"Differential Equations with App                                                                                                                                                                                                                                                                                                                                                      | bration of a elastic<br>LEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | isplaceme<br>c bar with<br>TURE<br>60<br>storical No                                                         | rolution –<br>nt in a<br>prescribed<br>TOTA<br>60<br>otes",               |
| UNIT V<br>Solution of initial and boundary value problems – Chara<br>Significance of characteristic curves – Laplace transforn<br>string – a long string under its weight – Longitudinal vib<br>force on one end – free vibrations of string.<br>TEXTBOOK<br>1. Simmons, G.F.,"Differential Equations with App<br>TMH, New Delhi, 2003                                                                                                                                                                                                                                                                                                                              | bration of a elastic<br>LEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | isplaceme<br>c bar with<br>TURE<br>60<br>storical No                                                         | rolution –<br>nt in a<br>prescribed<br>TOTA<br>60<br>otes",               |
| UNIT V<br>Solution of initial and boundary value problems – Chara<br>Significance of characteristic curves – Laplace transform<br>string – a long string under its weight – Longitudinal vib<br>force on one end – free vibrations of string.<br>TEXTBOOK<br>1. Simmons, G.F., "Differential Equations with App<br>TMH, New Delhi, 2003<br>2. T. Amarnath, "An Elementary Course in Partial 1                                                                                                                                                                                                                                                                       | oration of a elastic<br>LEC<br>blications and His<br>Differential Equa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | isplaceme<br>c bar with<br>TURE<br>60<br>storical No<br>tions", Na                                           | rolution –<br>nt in a<br>prescribed<br>TOTA<br>60<br>otes",               |
| UNIT V<br>Solution of initial and boundary value problems – Chara<br>Significance of characteristic curves – Laplace transform<br>string – a long string under its weight – Longitudinal vib<br>force on one end – free vibrations of string.<br><b>TEXTBOOK</b><br>1. Simmons, G.F.,"Differential Equations with App<br>TMH, New Delhi, 2003<br>2. T. Amarnath, "An Elementary Course in Partial I<br>Delhi, 1997.                                                                                                                                                                                                                                                 | Differential Equa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | isplaceme<br>c bar with<br>TURE<br>60<br>storical No<br>tions", Na<br>o 31                                   | rolution –<br>nt in a<br>prescribed<br>TOTA<br>60<br>otes",               |
| UNIT V<br>Solution of initial and boundary value problems – Chara<br>Significance of characteristic curves – Laplace transform<br>string – a long string under its weight – Longitudinal vib<br>force on one end – free vibrations of string.<br>TEXTBOOK<br>1. Simmons, G.F.,"Differential Equations with App<br>TMH, New Delhi, 2003<br>2. T. Amarnath, "An Elementary Course in Partial I<br>Delhi, 1997.<br>Unit I- Chapter 3: Sections – 15,16,19, Chapter 5                                                                                                                                                                                                   | Differential Equa<br>5: Sections – 26 to<br>10: Sections – 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | isplaceme<br>c bar with<br>TURE<br>60<br>storical No<br>tions", Na<br>o 31<br>to 56                          | rolution –<br>nt in a<br>prescribed<br>TOTA<br>60<br>otes",               |
| UNIT V<br>Solution of initial and boundary value problems – Chara<br>Significance of characteristic curves – Laplace transform<br>string – a long string under its weight – Longitudinal vib<br>force on one end – free vibrations of string.<br>TEXTBOOK<br>1. Simmons, G.F.,"Differential Equations with App<br>TMH, New Delhi, 2003<br>2. T. Amarnath, "An Elementary Course in Partial I<br>Delhi, 1997.<br>Unit I- Chapter 3: Sections – 15,16,19, Chapter 5<br>Unit II- Chapter 8: Sections – 44 to 47, Chapter 5                                                                                                                                             | Differential Equa<br>5: Sections – 26 to<br>10: Sections – 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | isplaceme<br>c bar with<br>TURE<br>60<br>storical No<br>tions", Na<br>o 31<br>to 56                          | rolution –<br>nt in a<br>prescribed<br>TOTA<br>60<br>otes",               |
| <ul> <li>UNIT V</li> <li>Solution of initial and boundary value problems – Chara Significance of characteristic curves – Laplace transform string – a long string under its weight – Longitudinal vib force on one end – free vibrations of string.</li> <li>TEXTBOOK <ol> <li>Simmons, G.F., "Differential Equations with App TMH, New Delhi, 2003</li> <li>T. Amarnath, "An Elementary Course in Partial I Delhi, 1997.</li> <li>Unit I- Chapter 3: Sections – 15,16,19, Chapter 5 Unit II- Chapter 13: Sections – 68, 69, Chapter 5</li> </ol> </li> </ul>                                                                                                       | LEC<br>Differential Equa<br>Sections – 26 to<br>11: Sections – 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | isplaceme<br>c bar with<br>TURE<br>60<br>storical No<br>tions", Na<br>to 31<br>to 56<br>, 61                 | rolution –<br>nt in a<br>prescribed<br>TOTA<br>60<br>otes",<br>arosa, New |
| <ul> <li>UNIT V</li> <li>Solution of initial and boundary value problems – Chara Significance of characteristic curves – Laplace transform string – a long string under its weight – Longitudinal vib force on one end – free vibrations of string.</li> <li>TEXTBOOK <ol> <li>Simmons, G.F., "Differential Equations with App TMH, New Delhi, 2003</li> <li>T. Amarnath, "An Elementary Course in Partial I Delhi, 1997.</li> <li>Unit I- Chapter 3: Sections – 15,16,19, Chapter 5 Unit II- Chapter 13: Sections – 68, 69, Chapter 10, 111 Unit IV – Chapter 13: Sections – 1.4 to 1.9 Unit V - Chapter 2: Sections – 2.1, 2.2, 2.3.1, 2.3</li> </ol> </li> </ul> | LEC<br>Differential Equa<br>Sections – 26 to<br>11: Sections – 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | isplaceme<br>c bar with<br>TURE<br>60<br>storical No<br>tions", Na<br>to 31<br>to 56<br>, 61                 | rolution –<br>nt in a<br>prescribed<br>TOTA<br>60<br>otes",<br>arosa, New |
| <ul> <li>UNIT V</li> <li>Solution of initial and boundary value problems – Chara Significance of characteristic curves – Laplace transform string – a long string under its weight – Longitudinal vib force on one end – free vibrations of string.</li> <li>TEXTBOOK <ol> <li>Simmons, G.F., "Differential Equations with App TMH, New Delhi, 2003</li> <li>T. Amarnath, "An Elementary Course in Partial I Delhi, 1997.</li> <li>Unit I- Chapter 3: Sections – 15,16,19, Chapter 5 Unit II- Chapter 13: Sections – 68, 69, Chapter 1 Unit IV – Chapter 1: Sections – 1.4 to 1.9 Unit V - Chapter 2: Sections – 2.1, 2.2, 2.3.1, 2.3</li> </ol> </li> </ul>        | LEC<br>LEC<br>LEC<br>LEC<br>Differential Equa<br>S: Sections – 26 to<br>10: Sections – 54<br>11: Sections – 60<br>5.2, 2.3.3, 2.3.5, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | isplaceme<br>c bar with<br>TURE<br>60<br>storical No<br>tions", Na<br>to 31<br>to 56<br>, 61<br>2.5.1, 2.5.2 | rolution –<br>nt in a<br>prescribed<br>TOTA<br>60<br>otes",<br>arosa, New |
| <ul> <li>UNIT V</li> <li>Solution of initial and boundary value problems – Chara Significance of characteristic curves – Laplace transform string – a long string under its weight – Longitudinal vib force on one end – free vibrations of string.</li> <li>TEXTBOOK <ol> <li>Simmons, G.F., "Differential Equations with App TMH, New Delhi, 2003</li> <li>T. Amarnath, "An Elementary Course in Partial I Delhi, 1997.</li> <li>Unit I- Chapter 3: Sections – 15,16,19, Chapter 5 Unit II- Chapter 13: Sections – 68, 69, Chapter 10, 111 Unit IV – Chapter 13: Sections – 1.4 to 1.9 Unit V - Chapter 2: Sections – 2.1, 2.2, 2.3.1, 2.3</li> </ol> </li> </ul> | LEC<br>LEC<br>LEC<br>LEC<br>Differential Equa<br>Sections – 26 to<br>10: Sections – 26 to<br>11: Sections – 54<br>11: Sections – 60<br>2.2, 2.3.3, 2.3.5, 2<br>Viley, New York,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | isplaceme<br>c bar with<br>TURE<br>60<br>storical No<br>tions", Na<br>to 56<br>, 61<br>2.5.1, 2.5.2<br>1971. | olution –<br>nt in a<br>prescribe<br>TOTA<br>60<br>otes",<br>arosa, Nev   |

3. J.N. Sneddon, "Elements of Partial Differential Equations", Mc Graw Hill Publishing Company, Newyork, 1957.

### **TABLE 1: COs VS POs Mapping**

|        | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | PO8 | <b>PO9</b> |
|--------|------------|-----|-----|-----|-----|------------|------------|-----|------------|
| CO1    | 2          | 1   | 1   | 1   |     | 2          |            |     | 1          |
| CO2    | 2          | 1   | 1   | 1   |     | 2          |            |     | 1          |
| CO3    | 2          | 1   | 1   | 1   |     | 2          |            |     | 1          |
| CO4    | 2          | 1   | 1   | 1   |     | 2          |            |     | 1          |
| CO5    | 2          | 1   | 1   | 1   |     | 2          |            |     | 1          |
| Scaled | 10         | 5   | 5   | 5   |     | 10         |            |     | 5          |
| Value  |            |     |     |     |     |            |            |     |            |
| Total  | 2          | 1   | 1   | 1   |     | 2          |            |     | 1          |

 $1 - 5 \rightarrow 1, \qquad 6 - 10 \rightarrow 2, \qquad 11 - 15 \rightarrow 3$ 

| COUR<br>CODE                                                                    |                       |        |      | C     | OUR     | RSE   | NA    | AM    | ſE    |        |          |       |          |        |        | L     | T     |      | Р              |      | С             |
|---------------------------------------------------------------------------------|-----------------------|--------|------|-------|---------|-------|-------|-------|-------|--------|----------|-------|----------|--------|--------|-------|-------|------|----------------|------|---------------|
| YMA1                                                                            | .04                   |        |      | D     | ISCI    | REI   | ΓE Ι  | MA    | TH    | IEM    | AT       | ГIC   | S        |        |        | 4     | 0     |      | 0              |      | 4             |
| С                                                                               | Р                     | Α      |      |       |         |       |       |       |       |        |          |       |          |        |        | L     | Т     |      | Р              |      | Η             |
| 4                                                                               | 0                     | 0      |      |       |         |       |       |       |       |        |          |       |          |        |        | 4     | 0     |      | 0              |      | 4             |
| PRER                                                                            | EQUIS                 | SITE:  | 2: A | Al    | gebra   | a     |       |       |       |        |          |       |          |        |        |       |       |      |                |      |               |
| Course                                                                          | e outco               | mes:   | :    |       |         |       |       |       |       |        |          |       |          |        | ]      | Dom   | ain   | L    | evel           |      |               |
| <b>CO1:</b> ]                                                                   | Define                | and F  | Ex   | Exp   | lain    | Basi  | ic lo | ogic  | cal c | opera  | atio     | ons.  |          |        | (      | Cogn  | itive |      | emen<br>Inders |      | 0             |
|                                                                                 | Define stateme        |        |      | -     |         | the 1 | thec  | ory   | of i  | nfere  | enc      | e fo  | or the   |        | (      | Cogn  | itive |      | emen<br>Under  |      | ring<br>nding |
| CO3: 5                                                                          | Solve R               | lecurr | rrer | enc   | e Re    | latic | ons   | usir  | ng C  | Gener  | rati     | ing   | Funct    | ions.  | (      | Cogn  | itive | A    | pplyi          | ng   |               |
| CO4: Define and Explain Lattices and Boolean Algebra.CognitiveRememberUnderstan |                       |        |      |       |         |       |       |       | •     |        |          |       |          |        |        |       |       |      |                |      |               |
| CO5:                                                                            | Define                | and ]  | l E  | Exp   | plain   | Gra   | amn   | nar   | and   | l Lan  | igu      | age   | s.       |        | •      | Cogn  | itive |      | emen<br>Inders |      | 0             |
| UNIT                                                                            | I Mat                 | hema   | ati  | atica | al Lo   | ogic  |       |       |       |        |          |       |          |        |        |       |       | 1    |                |      | 12            |
|                                                                                 | ogical o<br>l forms   |        | atic | tion  | IS, CO  | ndit  | iona  | al a  | ind t | bicon  | ndit     | tion  | al stat  | temen  | ts, ta | autol | ogies | , co | ntrad          | icti | on,           |
| UNIT                                                                            | II The                | theor  | ory  | ry o  | of info | erer  | ice   | for   | • the | e stat | tem      | není  | t Calc   | ulus   |        |       |       |      |                |      | 12            |
|                                                                                 | of infere<br>iers, In |        |      |       |         |       |       |       |       |        |          |       |          | ing, P | redi   | icate | Calcı | ılus | ,              |      |               |
| UNIT                                                                            | III Re                | curre  | ·en  | ence  | e Rela  | atio  | ns a  | and   | l Ge  | enera  | atir     | ng J  | Funct    | ions   |        |       |       |      |                |      | 12            |
| Polyno                                                                          | mial ex<br>n, solut   | press  | ssic | ion   | s, tele | esco  | opic  | e for | rm, 1 | recur  | rsic     | on tl | heorei   | n, clo |        | form  | expi  | essi | ion, g         | ene  | erating       |
|                                                                                 | IV Lat                |        |      |       |         |       |       |       |       |        | <u> </u> |       |          |        |        |       |       |      |                |      | 12            |
|                                                                                 | ordered               |        |      |       |         |       |       |       |       |        | tice     | es a  | s Alge   | ebraic | Sys    | stems | , Boo | olea | n Alg          | gebr | a.            |
|                                                                                 | V Grai                |        |      |       |         |       |       |       |       |        |          |       |          |        |        |       |       |      |                |      | 12            |
|                                                                                 | structu<br>ar, regu   |        |      |       |         |       |       |       |       |        |          |       |          |        |        |       |       | ige  | gener          | ate  | d by          |
|                                                                                 | , <sub>0</sub> .      |        |      |       |         |       |       |       |       |        |          |       | <u> </u> |        |        | -     | CTU   | RE   | ,              | T    | OTAL          |

|                                                             | 60                  | 60             |
|-------------------------------------------------------------|---------------------|----------------|
| ТЕХТВООК                                                    | ·                   |                |
| 1. P. Tremblay, R. Manohar,"Discrete Mathematical Structure | re with Application | ns to          |
| Computer Science", Mc Graw- Hill International Edition,     | 1997.               |                |
| Unit I - Chapter 1 (Section 1.1,1.2 & 1.3)                  |                     |                |
| Unit II - Chapter 1 (Section 1.4, 1.5 & 1.6)                |                     |                |
| Unit IV - Chapter 4 (Section 4.1& 4.2)                      |                     |                |
| Unit V – Chapter 4 (Section 4.6)                            |                     |                |
| 2. Alan Doerr, "Applied Discrete Structure for Computer Sci | ience", Pearson Ed  | lucation, 2013 |
| Unit III – Chapter 8 (Section 8.1,8.2,8.3 &8.5)             |                     |                |
| DEFEDENCE                                                   |                     |                |

### REFERENCE

1. Kenneth H. Rosen, "Discrete Mathematics and Its Applications", Mc Graw-Hill International Edition, 2002.

### **TABLE 1: COs VS POs Mapping**

|                     | PO1 | PO2   | PO3                  | PO4 | PO5     | PO6             | <b>PO7</b> | PO8 | PO9 |
|---------------------|-----|-------|----------------------|-----|---------|-----------------|------------|-----|-----|
| CO1                 | 2   | 1     | 1                    | 1   |         | 2               |            |     | 1   |
| CO2                 | 2   | 1     | 1                    | 1   |         | 2               |            |     | 1   |
| CO3                 | 2   | 1     | 1                    | 1   |         | 2               |            |     | 1   |
| CO4                 | 2   | 1     | 1                    | 1   |         | 2               |            |     | 1   |
| CO5                 | 2   | 1     | 1                    | 1   |         | 2               |            |     | 1   |
| Scaled<br>Value     | 10  | 5     | 5                    | 5   |         | 10              |            |     | 5   |
| Total               | 2   | 1     | 1                    | 1   |         | 2               |            |     | 1   |
| $1-5 \rightarrow 1$ | ,   | 6 – 2 | $10 \rightarrow 2$ , |     | 11 - 15 | $\rightarrow 3$ |            |     |     |

| COURSE<br>CODE COURSE NAME                                  | L      | Т         | Р             | C      |  |
|-------------------------------------------------------------|--------|-----------|---------------|--------|--|
| YMA1E1 GRAPH THEORY                                         | 3      | 0         | 0             | 3      |  |
| C P A                                                       | L      | Т         | Р             | Н      |  |
| 3 0 0                                                       | 3      | 0         | 0             | 3      |  |
| PREREQUISITE: Basic concepts of Graph Theory                |        |           |               |        |  |
| Course outcomes:                                            | ]      | Domain    | Level         |        |  |
| <b>CO1: Define and Explain</b> Graphs, subgraphs and trees. | (      | Cognitive | Rememb        | ering  |  |
|                                                             |        |           | Understanding |        |  |
| CO2: Define and Explain Connectivity - Blocks - Euler       | (      | Cognitive | Rememb        | ering  |  |
| tours - Hamilton Cycles.                                    |        |           | Underst       | anding |  |
| CO3: Define and Explain Matchings and Coverings in          | (      | Cognitive | Applying      |        |  |
| Bipartite Graphs, Edge Chromatic Number and Vizing's        |        | C         |               |        |  |
| Theorem.                                                    |        |           |               |        |  |
| CO4: Define and Explain independent sets and clique         | ies, ( | Cognitive | Rememb        | ering  |  |
| vertex colorings.                                           |        |           | Understanding |        |  |
| CO5: Define and Explain Plane and planar Graphs, Dual       | 1 (    | Cognitive | Rememb        | ering  |  |
| graphs, Euler's Formula, The Five-Color Theorem and the     | e      |           | Understa      | nding  |  |
| Four- Color Conjecture- Applications.                       |        |           |               |        |  |

| UNIT I GRAPHS, SUBGRAPHS AND TREES                                                                                     |                   | 9         |
|------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| Graphs and simple graphs - Graph Isomorphism - The Incidence                                                           | and Adjacency M   | atrices - |
| Subgraphs - Vertex Degrees - Paths and Connection - Cycles - Tr                                                        |                   |           |
| - Cut Vertices.                                                                                                        | U                 |           |
| UNIT II CONNECTIVITY, EULER TOURS AND HAMILT                                                                           | ON CYCLES         | 9         |
| Connectivity - Blocks - Euler tours - Hamilton Cycles - Application                                                    | ions.             |           |
| UNIT III MATCHINGS, EDGE COLOURINGS                                                                                    |                   | 9         |
| Matchings - Matchings and Coverings in Bipartite Graphs - Edge                                                         | Chromatic Numb    | ber -     |
| Vizing's Theorem- Applications.                                                                                        |                   |           |
| UNIT IV INDEPENDENT SETS AND CLIQUES, VERTEX                                                                           | COLOURINGS        | 5 9       |
| Independent sets - Ramsey's Theorem - Chromatic Number - Bro                                                           | oks' Theorem -    |           |
| Chromatic Polynomials- Applications.                                                                                   |                   |           |
| UNIT V PLANAR GRAPHS                                                                                                   |                   | 9         |
| Plane and planar Graphs - Dual graphs - Euler's Formula - The Fi                                                       | ive - Colour Theo | orem      |
| and the Four-Colour Conjecture- Applications.                                                                          |                   |           |
|                                                                                                                        | LECTURE           | TOTAI     |
|                                                                                                                        | 45                | 4         |
| ТЕХТВООК                                                                                                               |                   |           |
| 1. J.A.Bondy and U.S.R. Murthy, "Graph Theory and Application                                                          | ns", Macmillan, L | ondon,    |
| 1976.                                                                                                                  | , , ,             | ,         |
| Unit I - Chapter 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2                                                     | 2.3)              |           |
| Unit II - Chapter 3 (Section 3.1 - 3.2); Chapter 4 (Section 4.1 -                                                      |                   |           |
| Unit III - Chapter 5 (Section 5.1 - 5.2); Chapter 6 (Section 6.1 -                                                     | ·                 |           |
| 0 Int III - Chapter 5 (Section 5.1 - 5.2), Chapter 0 (Section 0.1)                                                     |                   |           |
|                                                                                                                        | -8.2, 8.4)        |           |
| Unit IV - Chapter 7 (Section $7.1 - 7.2$ ); Chapter 8 (Section $8.1$<br>Unit V - Chapter 9 (Section $9.1 - 9.3, 9.6$ ) | - 8.2, 8.4)       |           |

1. Harary, "Graph Theory" Narosa Publishing House., 2001.

2. A.Gibbons, "Algorithmic Graph Theory, Cambridge University Press, Cambridge, 1989.

3. R.J.Wilson and J.J.Watkins, "Graphs: An Introductory Approach", John Wiley and Sons, New York, 1989.

4. V.K. Balakrishnan, Schaum's Outlines of "Theory and problems of Graph Theory", Tata McGraw Hill Education Private Limited Delhi, 2004.

5. S.A.Choudum, "A First Course in Graph Theory", MacMillan India Ltd. 1987.

### **TABLE 1: COs VS POs Mapping**

|                     | PO1 | PO2   | PO3                  | PO4 | PO5     | PO6             | <b>PO7</b> | PO8 | PO9 |
|---------------------|-----|-------|----------------------|-----|---------|-----------------|------------|-----|-----|
| CO1                 | 2   | 1     | 1                    | 1   | 1       | 2               | 1          | 1   | 1   |
| CO2                 | 2   | 1     | 1                    | 1   | 1       | 2               | 1          | 1   | 1   |
| CO3                 | 2   | 1     | 1                    | 1   | 1       | 2               | 1          | 1   | 1   |
| CO4                 | 2   | 1     | 1                    | 1   | 1       | 2               | 1          | 1   | 1   |
| CO5                 | 2   | 1     | 1                    | 1   | 1       | 2               | 1          | 1   | 1   |
| Scaled              | 10  | 5     | 5                    | 5   | 5       | 10              | 5          | 5   | 5   |
| Value               |     |       |                      |     |         |                 |            |     |     |
| Total               | 2   | 1     | 1                    | 1   | 1       | 2               | 1          | 1   | 1   |
| $1-5 \rightarrow 1$ | ,   | 6 – 1 | $10 \rightarrow 2$ , |     | 11 - 15 | $\rightarrow 3$ |            |     |     |

|                                                                                                                                                     | E COD                                                                                                                           | ΕI                                                                         | COURSE NAME                                                                                                                                                                                                                                                                                                          |                                                                                                                | L                                                   | Т                                                                                                            | Р                                         | С                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|--|
| YMA1E                                                                                                                                               |                                                                                                                                 |                                                                            | CODING THEORY                                                                                                                                                                                                                                                                                                        |                                                                                                                | 3                                                   | 0                                                                                                            | 0                                         | 3                       |  |
|                                                                                                                                                     | P A                                                                                                                             |                                                                            |                                                                                                                                                                                                                                                                                                                      |                                                                                                                | L                                                   | T                                                                                                            | P                                         | H                       |  |
|                                                                                                                                                     | $\frac{1}{0}$                                                                                                                   |                                                                            |                                                                                                                                                                                                                                                                                                                      |                                                                                                                | 3                                                   | 0                                                                                                            | 0                                         | 3                       |  |
| Course of                                                                                                                                           | -                                                                                                                               | 1                                                                          |                                                                                                                                                                                                                                                                                                                      | Domain                                                                                                         |                                                     | •                                                                                                            | Level                                     | 0                       |  |
|                                                                                                                                                     |                                                                                                                                 |                                                                            | xplain Error detection, Correction and                                                                                                                                                                                                                                                                               | Cognitive                                                                                                      | R                                                   |                                                                                                              | mberin                                    | σ                       |  |
|                                                                                                                                                     | coding                                                                                                                          |                                                                            | concertain Enter detection, concertain and                                                                                                                                                                                                                                                                           | coginave                                                                                                       |                                                     |                                                                                                              | standi                                    | -                       |  |
|                                                                                                                                                     | U                                                                                                                               | 1 E                                                                        | xplain Linear codes                                                                                                                                                                                                                                                                                                  | Cognitive                                                                                                      |                                                     |                                                                                                              | mberin                                    | <u> </u>                |  |
|                                                                                                                                                     |                                                                                                                                 | • 🗖                                                                        | cpluit Effect codes                                                                                                                                                                                                                                                                                                  | coginave                                                                                                       |                                                     |                                                                                                              | standi                                    | 0                       |  |
| CO3:De                                                                                                                                              | fine and                                                                                                                        | Ex                                                                         | plain Linear codes Bounds in coding                                                                                                                                                                                                                                                                                  | Cognitive                                                                                                      |                                                     |                                                                                                              | mberin                                    | -                       |  |
|                                                                                                                                                     | eory                                                                                                                            |                                                                            |                                                                                                                                                                                                                                                                                                                      | coginare                                                                                                       |                                                     |                                                                                                              | standi                                    | -                       |  |
| -                                                                                                                                                   | •                                                                                                                               | d F                                                                        | xplain Cyclic codes: Definitions –                                                                                                                                                                                                                                                                                   | Cognitive                                                                                                      |                                                     |                                                                                                              | mberin                                    | -                       |  |
|                                                                                                                                                     |                                                                                                                                 |                                                                            | ynomials – Generator matrix and parity                                                                                                                                                                                                                                                                               | 8                                                                                                              |                                                     |                                                                                                              | standi                                    | <u> </u>                |  |
|                                                                                                                                                     |                                                                                                                                 | -                                                                          | – Decoding of Cyclic codes                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                     |                                                                                                              |                                           | 0                       |  |
|                                                                                                                                                     |                                                                                                                                 |                                                                            | pecial cyclic codes                                                                                                                                                                                                                                                                                                  | Cognitive                                                                                                      | R                                                   | emei                                                                                                         | mberin                                    | g                       |  |
|                                                                                                                                                     |                                                                                                                                 |                                                                            | 1 2                                                                                                                                                                                                                                                                                                                  | U                                                                                                              |                                                     |                                                                                                              | standii                                   | -                       |  |
| UNIT-I                                                                                                                                              |                                                                                                                                 |                                                                            |                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                     |                                                                                                              | 9                                         | U                       |  |
| Error det                                                                                                                                           | tection,                                                                                                                        | Co                                                                         | rrection and decoding: Communication                                                                                                                                                                                                                                                                                 | channels – I                                                                                                   | Maxi                                                | mun                                                                                                          | n likel                                   | ihood                   |  |
|                                                                                                                                                     |                                                                                                                                 |                                                                            | ing distance – Nearest neighbourhood                                                                                                                                                                                                                                                                                 |                                                                                                                |                                                     |                                                                                                              |                                           |                         |  |
| Distance                                                                                                                                            |                                                                                                                                 |                                                                            |                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                     |                                                                                                              |                                           | Ŭ                       |  |
| UNIT-II                                                                                                                                             | [                                                                                                                               |                                                                            |                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                     |                                                                                                              | 9                                         |                         |  |
| Linear co                                                                                                                                           | odes: Lii                                                                                                                       | nea                                                                        | r codes – Self orthogonal codes – Self d                                                                                                                                                                                                                                                                             | ual codes – E                                                                                                  | Bases                                               | for                                                                                                          | linear                                    | codes                   |  |
|                                                                                                                                                     |                                                                                                                                 |                                                                            | and parity check matrix – Encoding v                                                                                                                                                                                                                                                                                 |                                                                                                                |                                                     |                                                                                                              |                                           |                         |  |
|                                                                                                                                                     |                                                                                                                                 |                                                                            | come decoding.                                                                                                                                                                                                                                                                                                       |                                                                                                                |                                                     |                                                                                                              |                                           | 0                       |  |
| UNIT-III 9                                                                                                                                          |                                                                                                                                 |                                                                            |                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                     |                                                                                                              |                                           |                         |  |
| Bounds i                                                                                                                                            | in coding                                                                                                                       | e th                                                                       | eory: The main coding theory problem                                                                                                                                                                                                                                                                                 | – lower boun                                                                                                   | ds -                                                | Sphe                                                                                                         | ere cov                                   | vering                  |  |
|                                                                                                                                                     |                                                                                                                                 |                                                                            | arshamov bound – Binary Hamming c                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                     |                                                                                                              |                                           |                         |  |
|                                                                                                                                                     |                                                                                                                                 |                                                                            | eton bound and MDS codes – Plotkin bo                                                                                                                                                                                                                                                                                |                                                                                                                |                                                     |                                                                                                              | 0                                         |                         |  |
| UNIT-IV                                                                                                                                             |                                                                                                                                 |                                                                            |                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                     |                                                                                                              | 9                                         |                         |  |
| Cvclic c                                                                                                                                            | odes: D                                                                                                                         | - C:                                                                       | nitions – Generator polynomials – Ge                                                                                                                                                                                                                                                                                 | enerator matr                                                                                                  | iv a                                                | nd n                                                                                                         | arity o                                   | check                   |  |
| -                                                                                                                                                   |                                                                                                                                 | ett                                                                        |                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                     |                                                                                                              |                                           |                         |  |
| muaula =                                                                                                                                            | Decount                                                                                                                         |                                                                            | ÷ •                                                                                                                                                                                                                                                                                                                  |                                                                                                                | па                                                  | P                                                                                                            |                                           |                         |  |
|                                                                                                                                                     |                                                                                                                                 |                                                                            | of Cyclic codes.                                                                                                                                                                                                                                                                                                     |                                                                                                                | 1A a                                                | P                                                                                                            | 9                                         |                         |  |
| UNIT-V                                                                                                                                              | r                                                                                                                               | ng o                                                                       | of Cyclic codes.                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                                     |                                                                                                              | 9<br>CH co                                | dec                     |  |
| UNIT-V<br>Special c                                                                                                                                 | cyclic co                                                                                                                       | ng o<br>ode                                                                | of Cyclic codes.<br>s: BCH codes – Parameters of BCH co                                                                                                                                                                                                                                                              |                                                                                                                |                                                     |                                                                                                              | -                                         | des –                   |  |
| UNIT-V                                                                                                                                              | cyclic co                                                                                                                       | ng o<br>ode                                                                | of Cyclic codes.<br>s: BCH codes – Parameters of BCH co                                                                                                                                                                                                                                                              | des – Decod                                                                                                    | ing (                                               | of B                                                                                                         | CH co                                     |                         |  |
| UNIT-V<br>Special c                                                                                                                                 | cyclic co                                                                                                                       | ng o<br>ode                                                                | of Cyclic codes.<br>s: BCH codes – Parameters of BCH co                                                                                                                                                                                                                                                              | des – Decod                                                                                                    | ing (                                               | of B                                                                                                         | CH co                                     |                         |  |
| UNIT-V<br>Special c<br>Reed Sol                                                                                                                     | cyclic co<br>lomon co                                                                                                           | ng (<br>ode<br>ode                                                         | of Cyclic codes.<br>s: BCH codes – Parameters of BCH co                                                                                                                                                                                                                                                              | des – Decod                                                                                                    | ing (                                               | of B                                                                                                         | CH co                                     |                         |  |
| UNIT-V<br>Special c<br>Reed Sol                                                                                                                     | cyclic co<br>lomon co<br>BOOKS                                                                                                  | ng o<br>ode<br>ode                                                         | of Cyclic codes.<br>s: BCH codes – Parameters of BCH co<br>s.                                                                                                                                                                                                                                                        | des – Decod<br>LECTUI<br>45                                                                                    | ing o<br>RE                                         | of Bo                                                                                                        | CH co<br>TOTA<br>45                       |                         |  |
| UNIT-V<br>Special c<br>Reed Sol<br>TEXT I<br>1. San L                                                                                               | eyclic co<br>lomon co<br>BOOKS<br>.ing and                                                                                      | ng o<br>ode<br>ode                                                         | of Cyclic codes.<br>s: BCH codes – Parameters of BCH co                                                                                                                                                                                                                                                              | des – Decod<br>LECTUI<br>45                                                                                    | ing o<br>RE                                         | of Bo                                                                                                        | CH co<br>TOTA<br>45                       |                         |  |
| UNIT-V<br>Special c<br>Reed Sol<br>TEXT I<br>1. San L<br>Pres                                                                                       | BOOKS<br>ing and<br>s, 2004.                                                                                                    | ng (<br>ode<br>ode                                                         | of Cyclic codes.<br>s: BCH codes – Parameters of BCH co<br>s.<br>aoping Xing , Coding Theory: A first co                                                                                                                                                                                                             | des – Decod<br>LECTUI<br>45<br>burse, Cambri                                                                   | ing o<br>RE<br>dge                                  | of Bo                                                                                                        | CH co<br>TOTA<br>45<br>versity            |                         |  |
| UNIT-V<br>Special c<br>Reed Sol<br>TEXT I<br>1. San L<br>Pres<br>UNIT 1                                                                             | BOOKS<br>ing and<br>s, 2004.                                                                                                    | ng (<br>ode<br>ode<br>ode                                                  | of Cyclic codes.<br>s: BCH codes – Parameters of BCH co<br>s.<br>aoping Xing , Coding Theory: A first co<br>2.1, 2.2, 2.3, 2.4, 2.5 UNIT 2 : Section                                                                                                                                                                 | des – Decod<br>LECTUI<br>45<br>burse, Cambri<br>ns 4.2, 4.3, 4                                                 | ing (<br>RE<br>dge (                                | of Bo                                                                                                        | CH co<br>TOTA<br>45<br>versity<br>6, 4.7, | <u>.L</u><br>4.8        |  |
| UNIT-V<br>Special c<br>Reed Sol<br>TEXT I<br>1. San L<br>Pres<br>UNIT 1<br>UNIT 3                                                                   | BOOKS<br>ing and<br>s, 2004.<br>: Section<br>: Section                                                                          | ng (<br>ode<br>ode<br>ode                                                  | of Cyclic codes.<br>s: BCH codes – Parameters of BCH co<br>s.<br>aoping Xing , Coding Theory: A first co<br>2.1, 2.2, 2.3, 2.4, 2.5 UNIT 2 : Sectio<br>5.1, 5.2, 5.3, 5.4, 5.5, UNIT 4 : Sectio                                                                                                                      | des – Decod<br>LECTUI<br>45<br>burse, Cambri<br>ns 4.2, 4.3, 4                                                 | ing (<br>RE<br>dge (                                | of Bo                                                                                                        | CH co<br>TOTA<br>45<br>versity<br>6, 4.7, | <u>.L</u><br>4.8        |  |
| UNIT-V<br>Special c<br>Reed Sol<br>TEXT I<br>1. San L<br>Pres<br>UNIT 1<br>UNIT 3<br>Sect                                                           | BOOKS<br>ing and<br>s, 2004.<br>: Sectio<br>ions 8.1                                                                            | ng c<br>ode<br>ode<br>code<br>ch<br>ns 2<br>, 8.2                          | of Cyclic codes.<br>s: BCH codes – Parameters of BCH co<br>s.<br>aoping Xing , Coding Theory: A first co<br>2.1, 2.2, 2.3, 2.4, 2.5 UNIT 2 : Sectio<br>5.1, 5.2, 5.3, 5.4, 5.5, UNIT 4 : Sectio                                                                                                                      | des – Decod<br>LECTUI<br>45<br>burse, Cambri<br>ns 4.2, 4.3, 4                                                 | ing (<br>RE<br>dge (                                | of Bo                                                                                                        | CH co<br>TOTA<br>45<br>versity<br>6, 4.7, |                         |  |
| UNIT-V<br>Special c<br>Reed Sol<br>TEXT I<br>1. San L<br>Press<br>UNIT 1<br>UNIT 3<br>Sect<br>REFER                                                 | BOOKS<br>ing and<br>s, 2004.<br>: Section<br>: Section<br>ions 8.1<br>RENCES                                                    | ng c<br>ode<br>ode<br>Ch<br>ns :<br>, 8.:                                  | of Cyclic codes.<br>s: BCH codes – Parameters of BCH co<br>s.<br>aoping Xing , Coding Theory: A first co<br>2.1, 2.2, 2.3, 2.4, 2.5 UNIT 2 : Sectio<br>5.1, 5.2, 5.3, 5.4, 5.5, UNIT 4 : Sectio<br>2                                                                                                                 | des – Decod<br>LECTUI<br>45<br>ourse, Cambri<br>ns 4.2, 4.3, 4<br>ns 7.1, 7.2, 7                               | ing o<br>RE<br>dge <sup>-</sup><br>.4, 4.<br>.3, 7. | Univ<br>5, 4.                                                                                                | TOTA<br>45<br>versity<br>6, 4.7,<br>UN    | 4.8<br>IT 5 :           |  |
| UNIT-V<br>Special c<br>Reed Sol<br>TEXT I<br>1. San L<br>Pres<br>UNIT 1<br>UNIT 3<br>Sect<br>REFER<br>1. S. L                                       | BOOKS<br>ing and<br>s, 2004.<br>: Sectio<br>ions 8.1.<br>ENCES<br>in &D.                                                        | ng (<br>ode<br>ode<br>ode<br>Ch<br>ns (<br>, 8.)<br>S:<br>J.               | of Cyclic codes.<br>s: BCH codes – Parameters of BCH co<br>s.<br>aoping Xing , Coding Theory: A first co<br>2.1, 2.2, 2.3, 2.4, 2.5 UNIT 2 : Section<br>5.1, 5.2, 5.3, 5.4, 5.5, UNIT 4 : Section<br>2<br>Costello, Jr., Error Control Coding:                                                                       | des – Decod<br>LECTUI<br>45<br>ourse, Cambri<br>ns 4.2, 4.3, 4<br>ns 7.1, 7.2, 7                               | ing o<br>RE<br>dge <sup>-</sup><br>.4, 4.<br>.3, 7. | Univ<br>5, 4.                                                                                                | TOTA<br>45<br>versity<br>6, 4.7,<br>UN    | 4.8<br>IT 5 :           |  |
| UNIT-V<br>Special c<br>Reed Sol<br>TEXT I<br>1. San L<br>Pres<br>UNIT 1<br>UNIT 3<br>Sect<br>REFER<br>1. S. L<br>Pren                               | BOOKS<br>ing and<br>s, 2004.<br>: Sectio<br>: Sectio<br>ions 8.1<br>ENCES<br>in &D.<br>atice-Hal                                | ng c<br>ode<br>ode<br>ode<br>:<br>Ch<br>s:<br>, 8.<br>, 8.<br>J.<br>I, I   | s: BCH codes – Parameters of BCH co<br>s.<br>aoping Xing , Coding Theory: A first co<br>2.1, 2.2, 2.3, 2.4, 2.5 UNIT 2 : Sectio<br>5.1, 5.2, 5.3, 5.4, 5.5, UNIT 4 : Sectio<br>2<br>Costello, Jr., Error Control Coding:<br>nc., New Jersey, 1983.                                                                   | des – Decod<br>LECTUI<br>45<br>ourse, Cambri<br>ns 4.2, 4.3, 4<br>ns 7.1, 7.2, 7<br>Fundamenta                 | ing o<br>RE<br>dge<br>.4, 4.<br>.3, 7.<br>ls ar     | of <b>B</b> (<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | TOTA<br>45<br>versity<br>6, 4.7,<br>UN    | 4.8<br>IT 5 :<br>tions, |  |
| UNIT-V<br>Special c<br>Reed Sol<br>TEXT I<br>1. San L<br>Press<br>UNIT 1<br>UNIT 3<br>Sect<br>REFER<br>1. S. L<br>Pren<br>2. Vera                   | BOOKS<br>ing and<br>s, 2004.<br>: Section<br>: Section<br>ions 8.1<br>ENCES<br>in &D.<br>a Pless,                               | ng c<br>ode<br>ode<br>ode<br>:<br>Ch<br>s:<br>, 8.<br>, 8.<br>J.<br>I, I   | of Cyclic codes.<br>s: BCH codes – Parameters of BCH co<br>s.<br>aoping Xing , Coding Theory: A first co<br>2.1, 2.2, 2.3, 2.4, 2.5 UNIT 2 : Section<br>5.1, 5.2, 5.3, 5.4, 5.5, UNIT 4 : Section<br>2<br>Costello, Jr., Error Control Coding:                                                                       | des – Decod<br>LECTUI<br>45<br>ourse, Cambri<br>ns 4.2, 4.3, 4<br>ns 7.1, 7.2, 7<br>Fundamenta                 | ing o<br>RE<br>dge<br>.4, 4.<br>.3, 7.<br>ls ar     | of <b>B</b> (<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | TOTA<br>45<br>versity<br>6, 4.7,<br>UN    | 4.8<br>IT 5 :<br>tions  |  |
| UNIT-V<br>Special c<br>Reed Sol<br>TEXT I<br>1. San L<br>Pres<br>UNIT 1<br>UNIT 3<br>Sect<br>REFER<br>1. S. L<br>Pren<br>2. Vera<br>1982            | BOOKS<br>ing and<br>s, 2004.<br>: Sectio<br>ions 8.1.<br>ENCES<br>in &D.<br>tice-Hal<br>a Pless,<br>2.                          | ng (<br>ode<br>ode<br>ode<br>Ch<br>ns (<br>, 8.<br>S:<br>J.<br>I, I<br>Int | of Cyclic codes.<br>s: BCH codes – Parameters of BCH co<br>s.<br>aoping Xing , Coding Theory: A first co<br>2.1, 2.2, 2.3, 2.4, 2.5 UNIT 2 : Section<br>5.1, 5.2, 5.3, 5.4, 5.5, UNIT 4 : Section<br>2<br>Costello, Jr., Error Control Coding:<br>nc., New Jersey, 1983.<br>roduction to the Theory of Error Correct | des – Decod<br>LECTUI<br>45<br>ourse, Cambri<br>ns 4.2, 4.3, 4<br>ns 7.1, 7.2, 7<br>Fundamenta<br>ecting Codes | ing o<br>RE<br>dge<br>.4, 4.<br>.3, 7.<br>ls ar     | of <b>B</b> (<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | TOTA<br>45<br>versity<br>6, 4.7,<br>UN    | 4.8<br>IT 5 :<br>tions, |  |
| UNIT-V<br>Special c<br>Reed Sol<br>TEXT I<br>1. San L<br>Pres<br>UNIT 1<br>UNIT 3<br>Sect<br>REFER<br>1. S. L<br>Pren<br>2. Vera<br>1982<br>3. E. R | BOOKS<br>ing and<br>s, 2004.<br>: Section<br>: Section<br>ions 8.1<br>ENCES<br>in &D.<br>atice-Hal<br>a Pless,<br>2.<br>Berleka | ng (<br>ode<br>ode<br>ch<br>ns (<br>, 8.<br>J.<br>J.<br>I, I<br>Int        | s: BCH codes – Parameters of BCH co<br>s.<br>aoping Xing , Coding Theory: A first co<br>2.1, 2.2, 2.3, 2.4, 2.5 UNIT 2 : Sectio<br>5.1, 5.2, 5.3, 5.4, 5.5, UNIT 4 : Sectio<br>2<br>Costello, Jr., Error Control Coding:<br>nc., New Jersey, 1983.                                                                   | des – Decod<br>LECTUI<br>45<br>ourse, Cambri<br>ns 4.2, 4.3, 4<br>ns 7.1, 7.2, 7<br>Fundamenta<br>ecting Codes | ing o<br>RE<br>dge<br>.4, 4.<br>.3, 7.<br>ls ar     | of <b>B</b> (<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | TOTA<br>45<br>versity<br>6, 4.7,<br>UN    | 4.8<br>IT 5 :<br>tions, |  |

| COUH        | RSE C   | ODE     | COURSE NAME                                                                            |                 | L     | Т     | P      | C       |
|-------------|---------|---------|----------------------------------------------------------------------------------------|-----------------|-------|-------|--------|---------|
| YMA         | 1E3     |         | Mathematical Logic                                                                     |                 | 3     | 0     | 0      | 3       |
| С           | Р       | Α       | 0                                                                                      |                 | L     | Т     | Р      | Η       |
| 3           | 0       | 0       |                                                                                        |                 | 3     | 0     | 0      | 3       |
| PRER        | EQU     | ISITE   | Discrete Mathematics                                                                   |                 |       |       |        |         |
| Cours       | e outc  | comes:  |                                                                                        | Dom             | ain   |       | Leve   | ł       |
|             |         |         | Explain Syntax of First-Order Logic, Sen                                               | 0               | itive |       | nemb   |         |
|             |         |         | guages, Structures of First-Order Languag                                              |                 |       | Unc   | lersta | nding   |
| <b>CO2:</b> | Define  | e and E | Explain Propositional Logic and Tautolog                                               | y Cogn          | itive |       | nemb   | -       |
|             |         |         |                                                                                        |                 |       | -     |        | nding   |
|             |         |         | Explain Consistency and Completeness and                                               | nd Cogn         | itive |       | nemb   | 0       |
|             |         |         | nition of first order theories                                                         |                 |       |       |        | nding   |
|             |         |         | Explain Embeddings and Isomorphisms                                                    | Cogn            | itive |       | nemb   | 0       |
|             |         |         | em, Categoricity and Complete theories                                                 |                 |       |       |        | nding   |
|             |         |         | Explain Recursive functions, Arithmatiza                                               |                 | itive |       | nemb   | 0       |
|             |         | eories  | and Godel's first Incompleteness theorem                                               | 1.              |       | Unc   | lersta | nding   |
|             |         |         |                                                                                        |                 |       |       | 9      |         |
| -           |         |         | er Logic: First Order Languages, Terms                                                 |                 |       |       |        |         |
| -           | -       |         | er Theories. Semantics of First-Order La                                               | nguages: Str    | uctur | es of | First- |         |
|             |         | ages, 1 | Fruth in a Structure, Model of a Theory                                                |                 |       |       | 6      |         |
| UNIT        |         |         |                                                                                        |                 |       |       | 9      |         |
|             |         |         | : Tautologies and Theorems of proposition                                              |                 |       |       |        |         |
|             |         |         | r Logic, Meta theorems of a first order the                                            | eory, e.g. , th | neore | ms oi | 1 cons | stants. |
|             |         | theore  | m, deduction and variant theorems etc.,                                                |                 |       |       | 6      |         |
| UNIT        |         |         |                                                                                        |                 |       |       | 9      |         |
|             |         |         | ompleteness, Lindenbaum Theorem. Henl<br>s by definition of first order theories, Inte |                 |       |       | etenes | S       |
| UNIT        |         | CHSION  | s by definition of first order theories, ind                                           |                 |       | 11.   | 9      |         |
|             |         | rv Em   | beddings and Isomorphisms, Lowenheim                                                   | -Skolem Th      | eoren |       | mnac   | tness   |
|             |         | -       | ity, Complete Theories.                                                                | Skolem In       | coren | 1, 00 | mpue   | liess   |
| UNIT        |         |         | ky, complete meenes                                                                    |                 |       |       | 9      |         |
| Recurs      | sive fu | nction  | s, Arithmatization of first order theories, I                                          | Decidable T     | heory | ,     |        |         |
|             |         |         | odel's first Incompleteness theorem.                                                   |                 |       |       |        |         |
|             |         |         | <u> </u>                                                                               | LECTU           | RE    | ]     | ΓΟΤΑ   | L       |
|             |         |         |                                                                                        | 45              |       | 1     | 45     |         |
| ТЕХТ        |         | KS:     |                                                                                        |                 |       | I     |        |         |
|             |         |         | . Mathematical logic, Addison-Wesley Pu                                                | ublishing Co    |       |       |        |         |
|             |         |         | I. A Course on Mathematical Logic, Univ                                                | 0               |       |       |        |         |
| REFE        |         |         | ······································                                                 | , -p            | 6-    |       |        |         |
|             |         |         | Introduction to Mathematical Logic, Chap                                               | oman & Hal      | 1.    |       |        |         |
|             |         |         |                                                                                        |                 |       |       |        |         |

### **II SEMESTER**

| CO<br>CO | URSE<br>DE  | 2      | COURSE NAME                                                                            | L        | Т        | Р         | C            |
|----------|-------------|--------|----------------------------------------------------------------------------------------|----------|----------|-----------|--------------|
| YM       | A201        |        | LINEAR ALGEBRA                                                                         | 4        | 0        | 0         | 4            |
| С        | P           | Α      |                                                                                        | L        | Т        | Р         | Н            |
| 4        | 0           | 0      |                                                                                        | 4        | 0        | 0         | 4            |
| PRI      | EREQ        | UIS    | ITE: Group theory and Ring theory                                                      |          |          |           |              |
|          | irse o      |        |                                                                                        | Don      | nain     | Level     |              |
| CO       | 1:Defi      | ine a  | nd Explain Elementary Basic Concepts- Linear                                           | Cog      | nitive   | Remer     | nbering      |
|          | -           |        | and Bases.                                                                             |          |          |           | standing     |
|          |             | fine   | and Explain Dual Spaces- Inner Product Space                                           | - Cog    | nitive   |           | nbering      |
| Moc      | lules.      |        |                                                                                        |          |          | Unders    | standing     |
| CO       | 3: So       | ve t   | he Algebra of Linear Transformations to fin                                            | d Cog    | nitive   | Applyi    | ng           |
|          | acteri      |        |                                                                                        |          |          |           | 0            |
|          |             |        | and Explain Canonical Forms, Triangular form                                           | n, Cog   | nitive   | Remer     | nbering      |
|          | otent       |        | ansformations, Jordan Form and Rationa                                                 | -        |          |           | standing     |
| -        | onical      |        | n.                                                                                     |          |          |           | C            |
| CO       | 5: Def      | ïne a  | and Explain Trace and Transpose,                                                       | Cog      | nitive   | Remer     | nbering      |
|          |             |        | Hermitian, Unitary and Normal                                                          |          |          | Unders    | standing     |
| Trar     | nsform      | natio  | ns, Real Quadratic forms.                                                              |          |          |           |              |
| UNI      |             |        |                                                                                        |          |          |           | 12           |
| Eler     | nentai      | y Ba   | sic Concepts- Linear Independence and Bases.                                           |          |          |           |              |
|          | IT II       |        |                                                                                        |          |          |           | 12           |
| Dua      | l Spac      | es- I  | nner Product Space- Modules.                                                           |          |          |           |              |
| UN       | T II        | [      |                                                                                        |          |          |           | 12           |
| The      | Algel       | ora o  | f Linear Transformations- Characteristics Roots                                        | - Matrio | ces.     |           |              |
| UNI      | T IV        |        |                                                                                        |          |          |           | 12           |
| Can      | onical      | For    | ns: Triangular form- Nilpotent Transformations                                         | - Jorda  | n Form   | - Rationa | ıl           |
| Can      | onical      | form   | n.                                                                                     |          |          |           |              |
| UNI      | IT V        |        |                                                                                        |          |          |           | 12           |
|          |             |        | spose – Determinants- Hermitian, Unitary and                                           | Normal   | Transfo  | ormation  | S-           |
| Real     | l Qua       | lratic | e forms.                                                                               |          |          |           |              |
|          |             |        |                                                                                        |          | ECTUR    |           | <b>FOTAL</b> |
|          |             | 0.17   |                                                                                        |          |          | 60        | 60           |
|          | <u>XTBC</u> |        |                                                                                        |          |          |           |              |
|          |             |        | M.,"Topics in Algebra", Willey Eastern 1975.                                           |          |          |           |              |
|          |             |        | pter 4 (Section 4.1 & 4.2)<br>apter 4 (Section 4.4 – 4.5) Unit III - Chapter 6         | (Sectio  | n 6 1    | 63)       |              |
|          |             |        | hapter 6 (Section $4.4 - 4.3$ ) Unit III - Chapter 6<br>upter 6 (Section $6.4 - 6.7$ ) |          |          | ,         | )            |
|          | FERE        |        |                                                                                        |          |          | 0 - 0.11  | ,            |
|          |             |        | eigh, "A First Course in Abstract Algebra", Na                                         | rosa Pu  | blicatio | n. Third  | Edition      |
| 2013     |             | iiu    |                                                                                        | 100414   | circuito | , 11110   | ,            |
|          |             | 'ohn.  | "Basic Algebra", Springer's Publications, Seco                                         | nd Edit  | ion, 200 | )3.       |              |
|          |             |        |                                                                                        |          |          |           |              |

|                 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO1             | 3   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   |
| CO2             | 3   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   |
| CO3             | 3   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   |
| CO4             | 3   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   |
| CO5             | 3   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   |
| Scaled<br>Value | 15  | 10  | 10  | 5   | 5   | 5   | 5   | 5   | 5   |
| Total           | 3   | 2   | 2   | 1   | 1   | 1   | 1   | 1   | 1   |

| COUR<br>CODE                                                                             |          |        | COURSE NAME                                                        | L         | Т      | Р               | С              |
|------------------------------------------------------------------------------------------|----------|--------|--------------------------------------------------------------------|-----------|--------|-----------------|----------------|
| YMA2                                                                                     |          |        | ANALYSIS - II                                                      | 4         | 0      | 0               | 4              |
| С                                                                                        | <u>P</u> | Α      |                                                                    | L         | Ť      | P               | H              |
| 4                                                                                        | 0        | 0      |                                                                    | 4         | 0      | 0               | 4              |
| PRER                                                                                     | EQUIS    | SITE:  | Basic concepts of convergence and uniform co-                      | nvergen   | ice    |                 |                |
| Course                                                                                   | e outco  | mes:   |                                                                    | Doma      | in     | Level           |                |
|                                                                                          |          |        | <b>Explain</b> Existence, Properties of the Integral, erentiation. | Cogni     | tive   | Remen<br>Unders | bering tanding |
| CO2: Define and Explain Uniform convergence and Continuity. Cognitive Rememb<br>Understa |          |        |                                                                    |           |        |                 |                |
| CO3: I and Di                                                                            |          |        | xplain Uniform convergence and Integration                         | Cogni     | tive   | Remen<br>Unders | bering tanding |
| CO4: 1                                                                                   | Define   | and E  | xplain Set functions, Construction of                              | Cogni     | tive   | Remen           | nbering        |
| Lebesg<br>measur                                                                         |          | asures | Measurable function, Simple functions in                           |           |        | Unders          | tanding        |
| CO5:                                                                                     | Define   | and l  | Explain Integration Comparison with the                            | Cogni     | tive   | Remen           | bering         |
|                                                                                          | nn Integ |        | ntegration of Complex functions, Functions of                      |           |        |                 | tanding        |
| UNIT                                                                                     | I        |        |                                                                    |           |        |                 | 12             |
| Definit<br>Differe                                                                       |          |        | ence of the Integral, Properties of the Integral,                  | Integrat  | ion a  | nd              |                |
| UNIT                                                                                     | II       |        |                                                                    |           |        |                 | 12             |
| Unifor                                                                                   | m Conv   | vergen | ce, Uniform convergence and Continuity.                            |           |        |                 |                |
| UNIT                                                                                     | III      |        |                                                                    |           |        |                 | 12             |
| Unifor                                                                                   | m conv   | ergen  | ce and Integration, Uniform convergence and D                      | oifferent | iatior | ۱.              |                |
| UNIT                                                                                     | IV       |        |                                                                    |           |        |                 | 12             |
| Set fun<br>measur                                                                        |          | Const  | ruction of Lebesgue Measures, Measurable fun                       | ction, S  | imple  | e functio       | ons in         |
| UNIT                                                                                     |          |        |                                                                    |           |        |                 | 12             |

Integration Comparison with the Riemann Integral, Integration of Complex functions, Functions of class  $J^2$ .

|  | LECTURE | TOTAL |
|--|---------|-------|
|  | 60      | 60    |

### TEXTBOOK

1. Walter Rudin, "Principles of Mathematical Analysis", (3<sup>rd</sup> Edition), McGraw-Hill, 2016 Unit I - Chapter 6 (Pages: 120-135)

Unit II - Chapter 7 (Pages: 143-151)

Unit III - Chapter 7 (Pages: 151-154)

Unit IV - Chapter 11 (Pages: 300-314)

Unit V - Chapter 5 (Section 314-325)

#### **REFERENCES:**

1.Shanti Narayan, "A course of Mathematical Analysis", S. Chand & Company Ltd New Delhi, 2005.

2. Apostol, T.M, "Mathematical Analysis", Narosa Book Distributors Pvt Ltd, 2<sup>nd</sup> Edition, New Delhi, 1996.

3. Malik, S.C, "Mathematical Analysis", Wiley Eastern Ltd. 2017.

|              | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | <b>PO9</b> |
|--------------|------------|-----|-----|-----|-----|-----|------------|-----|------------|
| CO1          | 3          | 2   |     |     | 1   | 1   | 1          | 1   | 1          |
| CO2          | 3          | 2   |     |     | 1   | 1   | 1          | 1   | 1          |
| CO3          | 3          | 2   |     |     | 1   | 1   | 1          | 1   | 1          |
| CO4          | 3          | 2   |     |     | 1   | 1   | 1          | 1   | 1          |
| CO5          | 3          | 2   |     |     | 1   | 1   | 1          | 1   | 1          |
| Scaled Value | 15         | 10  |     |     | 5   | 5   | 5          | 5   | 5          |
| Total        | 3          | 2   |     |     | 1   | 1   | 1          | 1   | 1          |

| COUR        | SECOI     | DE     | COURSENAME                                   | L       | Т   | Р        | С       |
|-------------|-----------|--------|----------------------------------------------|---------|-----|----------|---------|
| YMA2        | 03        |        | INTEGRAL EQUATIONS, CALCULUS                 | 3       | 1   | 0        | 4       |
|             |           |        | <b>OF VARIATIONS AND TRANSFORMS</b>          |         |     |          |         |
| С           | Р         | Α      |                                              | L       | Т   | Р        | Η       |
| 4           | 0         | 0      |                                              | 3       | 1   | 0        | 4       |
| PRERI       | EQUIS     | ITE:   | Multivariable calculus and vector calculus   |         |     |          |         |
| Course      | outcon    | nes:   |                                              | Domai   | n   | Level    |         |
| <b>CO1:</b> | Define    | and    | Explain Calculus of variations, Maxima and   | Cogniti | ive | Rememb   | ering   |
|             | Minima    | a, th  | e simplest case, Natural boundary and        |         |     | Understa | nding   |
|             | transitio | on co  | nditions, variational notation               |         |     |          |         |
| <b>CO2:</b> | Define    | and ]  | Explain Fourier sine and cosine transforms - | Cogniti | ive | Remem    | bering  |
|             | Propert   | ies (  | Convolution -Solving integral equations -    |         |     | Unders   | tanding |
|             | Finite F  | Fourie | er transform                                 |         |     |          |         |
| <b>CO3:</b> | Define    | and    | Explain Hankel Transform : Definition -      | Cogniti | ive | Rememb   | ering   |
|             | Inverse   | form   | nula – Some important results for Bessel     | _       |     | Understa | nding   |
|             | function  | n - L  | inearity property                            |         |     |          |         |

| <b>CO4: Define and Explain</b> Linear Integral Equations -Cognitive Definition, Regularity conditions – special kind of kernels –eigen values and eigen functions – convolution Integral                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remembering<br>Understanding                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| <b>CO5: Define and Explain</b> Volterra Integral equation –Cognitive examples – some results about the resolvent kernel. Classical FredholmTheory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remembering<br>Understanding                                                                                           |
| UNIT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                                                                     |
| Calculus of variations – Maxima and Minima – the simplest case – Natural I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                        |
| transition conditions - variational notation – more general case – constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                      |
| multipliers – variable end points – Sturm - Liouville problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | und Eugrange s                                                                                                         |
| UNIT II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                     |
| Fourier transform - Fourier sine and cosine transforms - Properties Convolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                        |
| integral equations - Finite Fourier transform - Finite Fourier sine and cosine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                               |
| Fourier integral theorem - Parseval's identity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                        |
| UNIT III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                     |
| Hankel Transform : Definition – Inverse formula – Some important r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | esults for Besse                                                                                                       |
| function – Linearity property – Hankel Transform of the derivatives of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                        |
| Transform of differential operators – Parseval's Theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |
| UNIT IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                     |
| Linear Integral Equations - Definition, Regularity conditions – special kind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of kernels -Eiger                                                                                                      |
| values and eigen functions - convolution Integral - the inner and scal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ar productof two                                                                                                       |
| functions – Notation – reduction to a system of Algebraic equations – ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | amples-Fredholn                                                                                                        |
| alternative - examples – an approximate method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                        |
| UNIT V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                                                                     |
| Method of successive approximations: Iterative scheme – examples –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                        |
| equation - examples - some results about the resolvent kernel. Classical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Volterra Integra                                                                                                       |
| equation – examples – some results about the resolvent kernel. Classical the method of solution of Fredholm – Fredholm's first theorem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Volterra Integra<br>FredholmTheory                                                                                     |
| equation – examples – some results about the resolvent kernel. Classical the method of solution of Fredholm – Fredholm's first theorem.<br>LECTURE TUTORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Volterra Integra<br>FredholmTheory                                                                                     |
| equation – examples – some results about the resolvent kernel. Classical<br>the method of solution of Fredholm – Fredholm's first theorem.<br>LECTURE TUTORI<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Volterra Integra<br>FredholmTheory                                                                                     |
| equation – examples – some results about the resolvent kernel. Classical the method of solution of Fredholm – Fredholm's first theorem.<br>LECTURE TUTORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VolterraIntegraFredholmTheoryIAL156                                                                                    |
| equation – examples – some results about the resolvent kernel. Classical<br>the method of solution of Fredholm – Fredholm's first theorem.<br>LECTURE TUTORI<br>45<br>TEXTBOOK<br>[1] Ram.P.Kanwal – Linear Integral Equations Theory and Practice, Acade                                                                                                                                                                                                                                                                                                                                                                            | VolterraIntegraFredholmTheoryIALTOTAI156emic Press                                                                     |
| equation – examples – some results about the resolvent kernel. Classical<br>the method of solution of Fredholm – Fredholm's first theorem.<br>LECTURE TUTORI<br>45<br>TEXTBOOK<br>[1] Ram.P.Kanwal – Linear Integral Equations Theory and Practice, Acad<br>1971.                                                                                                                                                                                                                                                                                                                                                                    | VolterraIntegraFredholmTheoryIALTOTAI156emic Press2.                                                                   |
| equation – examples – some results about the resolvent kernel. Classical<br>the method of solution of Fredholm – Fredholm's first theorem.<br>LECTURE TUTORI<br>45<br>TEXTBOOK<br>[1] Ram.P.Kanwal – Linear Integral Equations Theory and Practice, Acade<br>1971.<br>[2] F.B. Hildebrand, Methods of Applied Mathematics II ed. PHI, ND 1972                                                                                                                                                                                                                                                                                        | VolterraIntegraFredholmTheoryIALTOTAI156emic Press2.                                                                   |
| equation – examples – some results about the resolvent kernel. Classical<br>the method of solution of Fredholm – Fredholm's first theorem.<br>LECTURE TUTORI<br>45<br>TEXTBOOK<br>[1] Ram.P.Kanwal – Linear Integral Equations Theory and Practice, Acad<br>1971.<br>[2] F.B. Hildebrand, Methods of Applied Mathematics II ed. PHI, ND 1972<br>[3] A.R. Vasishtha, R.K. Gupta, Integral Transforms, Krishna Prakashan M                                                                                                                                                                                                             | VolterraIntegraFredholmTheoryIALTOTAI156emic Press2.                                                                   |
| equation – examples – some results about the resolvent kernel. Classical<br>the method of solution of Fredholm – Fredholm's first theorem.<br>LECTURE TUTORI<br>45<br>TEXTBOOK<br>[1] Ram.P.Kanwal – Linear Integral Equations Theory and Practice, Acad<br>1971.<br>[2] F.B. Hildebrand, Methods of Applied Mathematics II ed. PHI, ND 1972<br>[3] A.R. Vasishtha, R.K. Gupta, Integral Transforms, Krishna Prakashan M<br>Ltd, India, 2002.                                                                                                                                                                                        | VolterraIntegraFredholmTheoryIALTOTAI156emic Press2.                                                                   |
| equation – examples – some results about the resolvent kernel. Classical<br>the method of solution of Fredholm – Fredholm's first theorem.<br>LECTURE TUTORI<br>45<br>TEXTBOOK<br>[1] Ram.P.Kanwal – Linear Integral Equations Theory and Practice, Acada<br>1971.<br>[2] F.B. Hildebrand, Methods of Applied Mathematics II ed. PHI, ND 1972<br>[3] A.R. Vasishtha, R.K. Gupta, Integral Transforms, Krishna Prakashan M<br>Ltd, India, 2002.<br>UNIT – I Chapter 2: Sections 2.1 to 2.9 of [2]<br>UNIT – II Chapter 7 of [3]<br>UNIT – III Chapter 9 of [3]; UNIT – IV -Chapters 1 and 2 of [1]                                    | VolterraIntegraFredholmTheoryIALTOTAI156emic Press2.                                                                   |
| equation – examples – some results about the resolvent kernel. Classical<br>the method of solution of Fredholm – Fredholm's first theorem.<br>LECTURE TUTORI<br>45<br>TEXTBOOK<br>[1] Ram.P.Kanwal – Linear Integral Equations Theory and Practice, Acade<br>1971.<br>[2] F.B. Hildebrand, Methods of Applied Mathematics II ed. PHI, ND 1972<br>[3] A.R. Vasishtha, R.K. Gupta, Integral Transforms, Krishna Prakashan N<br>Ltd, India, 2002.<br>UNIT – I Chapter 2: Sections 2.1 to 2.9 of [2]<br>UNIT – II Chapter 7 of [3]<br>UNIT – II Chapter 9 of [3]; UNIT – IV -Chapters 1 and 2 of [1]<br>UNIT – V Chapters 3 and 4 of [1] | VolterraIntegraFredholmTheoryIALTOTAI156emic Press2.                                                                   |
| equation – examples – some results about the resolvent kernel. Classical<br>the method of solution of Fredholm – Fredholm's first theorem.<br>LECTURE TUTORI<br>45<br>TEXTBOOK<br>[1] Ram.P.Kanwal – Linear Integral Equations Theory and Practice, Acada<br>1971.<br>[2] F.B. Hildebrand, Methods of Applied Mathematics II ed. PHI, ND 1972<br>[3] A.R. Vasishtha, R.K. Gupta, Integral Transforms, Krishna Prakashan M<br>Ltd, India, 2002.<br>UNIT – I Chapter 2: Sections 2.1 to 2.9 of [2]<br>UNIT – II Chapter 7 of [3]<br>UNIT – III Chapter 9 of [3]; UNIT – IV -Chapters 1 and 2 of [1]                                    | VolterraIntegraFredholmTheoryIALTOTAI156emic Press2.                                                                   |
| equation – examples – some results about the resolvent kernel. Classical<br>the method of solution of Fredholm – Fredholm's first theorem.<br>LECTURE TUTORI<br>45<br>TEXTBOOK<br>[1] Ram.P.Kanwal – Linear Integral Equations Theory and Practice, Acade<br>1971.<br>[2] F.B. Hildebrand, Methods of Applied Mathematics II ed. PHI, ND 1972<br>[3] A.R. Vasishtha, R.K. Gupta, Integral Transforms, Krishna Prakashan N<br>Ltd, India, 2002.<br>UNIT – I Chapter 2: Sections 2.1 to 2.9 of [2]<br>UNIT – II Chapter 7 of [3]<br>UNIT – II Chapter 9 of [3]; UNIT – IV -Chapters 1 and 2 of [1]<br>UNIT – V Chapters 3 and 4 of [1] | Volterra     Integra       FredholmTheory       IAL     TOTAI       15     6       emic Press       2.       Iedia Pvt |

|        | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | PO8 | PO9 |
|--------|------------|-----|-----|-----|-----|------------|------------|-----|-----|
| CO1    | 2          |     |     |     | 1   | 1          | 2          |     | 1   |
| CO2    | 2          |     |     |     | 1   | 1          | 2          |     | 1   |
| CO3    | 2          |     |     |     | 1   | 1          | 2          |     | 1   |
| CO4    | 2          |     |     |     | 1   | 1          | 2          |     | 1   |
| CO5    | 2          |     |     |     | 1   | 1          | 2          |     | 1   |
| Scaled | 10         |     |     |     | 5   | 5          | 10         |     | 5   |
| Value  |            |     |     |     |     |            |            |     |     |
| Total  | 2          |     |     |     | 1   | 1          | 2          |     | 1   |

| CO<br>CO                    |                                | SE           | COURSE NAME                                                                                                                                                                                             | L                    | Т               | Р                              | С                       |
|-----------------------------|--------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|--------------------------------|-------------------------|
| YM                          |                                | )4           | <b>OPERATIONS RESEARCH</b>                                                                                                                                                                              | 4                    | 0               | 0                              | 4                       |
| С                           | Р                              | Α            |                                                                                                                                                                                                         | L                    | Т               | Р                              | Н                       |
| 4                           | 0                              | 0            |                                                                                                                                                                                                         | 4                    | 0               | 0                              | 4                       |
| PRI                         | ERF                            | QU           | ISITE: Nil                                                                                                                                                                                              |                      | I               |                                |                         |
| Cou                         | irse                           | oute         | comes:                                                                                                                                                                                                  | Doma                 | in              | Level                          |                         |
| CO                          | 1: D                           | efin         | e and Explain Decision theory in detail.                                                                                                                                                                | Cogni                | tive            | Remember<br>Understand         | 0                       |
| CO                          | 2: E                           | xpla         | in and solve problems in PERT and CPM                                                                                                                                                                   | Cogni                | tive            | Understand<br>Applying         | ling                    |
| and                         | pro                            | babi         | <b>ain</b> deterministic inventory control models<br>listic Inventory Control Models and <b>solve</b><br>using the methods:                                                                             | Cogni                |                 | Understand<br>Applying         | ling                    |
| Clas                        | ssifi                          | catio        | in Essential Features of Queueing System,<br>on of Queueing Models and find solution of<br>odels.                                                                                                       | Cogni                | tive            | Understand<br>Remember         | -                       |
| CO                          | 5: I                           | Expl         | ain replacement and maintenance models oblems by using these methods.                                                                                                                                   | Cogni                | tive            | Understand<br>Applying         | ling                    |
|                             |                                |              | ECISION THEORY                                                                                                                                                                                          |                      |                 |                                | 12                      |
| Mal                         | cing                           | Un           | cision theory Approach - Types of Decision<br>der Uncertainty - Decision Making under I<br>nalysis - Decision Tree Analysis - Decision Ma                                                               | Risk -               | Poste           | erior Probab                   |                         |
|                             |                                |              | <b>OJECT MANAGEMENT : PERT AND CI</b>                                                                                                                                                                   |                      |                 |                                | 12                      |
| Net<br>PEF                  | worl<br>RT A                   | k Co<br>Maly | ences between PERT and CPM - Steps in PER<br>mponents and Precedence Relationships - Crit<br>vsis - Project time-cost Trade Off - Updating th                                                           | ical Pat<br>1e Proje | h Ana<br>ct - R | alysis - Prob<br>Resource Allo | ability in              |
|                             |                                |              | DETERMINISTIC INVENTORY CONTRO                                                                                                                                                                          |                      |                 |                                | 12                      |
| - Fe<br>with<br>Mod<br>Sing | atur<br>1 no<br>1els:<br>gle I | es o<br>sho  | Inventory Control - Functional Classification<br>f Inventory System - Inventory Model building<br>rtage - Deterministic Inventory with Shortag<br>od Probabilistic Models without Setup cost -<br>cost. | g - Dete<br>ges Prol | ermin<br>oabili | istic Invento                  | ry Models<br>ry Control |
|                             |                                | -            | UEUEING THEORY                                                                                                                                                                                          |                      |                 |                                | 12                      |
|                             |                                |              | eatures of Queueing System - Operating Ch                                                                                                                                                               | aracteri             | stic o          | of Queueing                    |                         |

| Probabilistic Distribution in Queueing Systems - Classifi    | cation of Que                | eueing Models -   |
|--------------------------------------------------------------|------------------------------|-------------------|
| Solution of Queueing Models - Probability Distribution       |                              |                   |
| Erlangian Service times Distribution with k-Phases.          |                              | *                 |
| UNIT V REPLACEMENT AND MAINTENANCE MODI                      | ELS                          | 12                |
| Failure Mechanism of items - Replacement of Items Deteriora  | ates with Time               | - Replacement of  |
| items that fail completely - other Replacement Problems.     |                              |                   |
|                                                              | LECTURE                      | TOTAL             |
|                                                              | 60                           | 60                |
| ТЕХТВООК                                                     |                              |                   |
| 1. J.K.Sharma, "Operations Research Theory and               | Applications",               | Third Edition,    |
| Macmillan India Ltd., 2007,                                  |                              |                   |
| Unit I - Chapter-11 (Section 11.1 - 11.8)                    |                              |                   |
| Unit II - Chapter-13 (Section 13.1 - 13.9)                   |                              |                   |
| Unit III - Chapter-14 (Section 14.1 - 14.8); Chapter-15      | 5 : (Section15.1             | - 15.4)           |
| Unit IV - Chapter-16 (Section 16.1 - 16.9); Appendix         | 16. A (PP 774-'              | 781)              |
| Unit V - Chapter-17 (Section 17.1 - 17.5)                    |                              |                   |
| REFERENCES                                                   |                              |                   |
| 1.F.S. Hillier and J.Lieberman, "Introduction to Operations  | Research" (81                | th Edition), Tata |
| McGraw                                                       |                              |                   |
| Hill Publishing Company, New Delhi, 2006.                    |                              |                   |
| 2. Beightler. C, D.Phillips, B. Wilde, "Foundations of Optim | nization" (2nd               | Edition) Prentice |
| Hall Pvt                                                     |                              |                   |
| Ltd., New York, 1979                                         |                              |                   |
| 3.Bazaraa, M.S; J.J.Jarvis, H.D.Sharall, "Linear Programm    | ing and Netw                 | ork flow", John   |
| Wiley and                                                    |                              |                   |
| sons, New York, 1990.                                        | w card - w                   |                   |
| 4. Gross, D and C.M.Harris, "Fundamentals of Queueing Th     | heory", (3 <sup>rd</sup> Edi | ition), Wiley and |
| Sons,                                                        |                              |                   |
| New York, 1998.                                              | D / 11 11                    |                   |
| 5. Hamdy A. Taha, "Operations Research" (sixth edition),     | Prentice - Hall              | of India Private  |
| Limited,                                                     |                              |                   |
| New Delhi. 2007                                              |                              |                   |

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 |
|--------|-----|-----|-----|-----|-----|-----|------------|-----|-----|
| CO1    | 2   | 1   |     | 1   | 2   |     | 1          |     | 1   |
| CO2    | 2   | 1   |     | 1   | 2   |     | 1          |     | 1   |
| CO3    | 2   | 1   |     | 1   | 2   |     | 1          |     | 1   |
| CO4    | 2   | 1   |     | 1   | 2   |     | 1          |     | 1   |
| CO5    | 2   | 1   |     | 1   | 2   |     | 1          |     | 1   |
| Scaled | 10  | 5   |     | 5   | 10  |     | 5          |     | 5   |
| Value  |     |     |     |     |     |     |            |     |     |
| Total  | 2   | 1   |     | 1   | 2   |     | 1          |     | 1   |

| COUF        | RSE C  | ODE     | COURSE NAME                                  |            | L      | Т          | Р       | С       |
|-------------|--------|---------|----------------------------------------------|------------|--------|------------|---------|---------|
| YMA2        | 2E1    |         | ALGEBRAIC NUMBER THEORY                      |            | 3      | 0          | 0       | 3       |
| С           | Р      | Α       |                                              |            | L      | Т          | Р       | Н       |
| 3           | 0      | 0       |                                              |            | 3      | 0          | 0       | 3       |
| PRER        | EQUI   | SITE:   | Nil                                          |            |        |            |         |         |
| Cours       |        | omos    |                                              | Do         | mair   | <u>,</u> т | evel    |         |
| -           |        |         | Explain Primes, Congruences, Fermat's, Eu    |            |        |            |         | bering  |
|             |        |         | s Theorems                                   |            | giinti |            |         | anding  |
|             |        |         | Explain Techniques of numerical calculation  | 1s - Co    | onitiv |            |         | bering  |
| 00-         |        |         | ryptography – Prime power Moduli – Prim      |            | 8      |            |         | anding  |
|             |        |         | wer Residues                                 |            |        |            |         |         |
|             |        |         | Explain Number theory from an Algebraic      | Со         | gniti  | ve R       | lemem   | bering  |
|             |        |         | The Legendre symbol (a/r) where r is an odd  |            | 0      |            |         | anding  |
|             |        | -       | dratic Reciprocity– The Jacobi Symbol (P/c   |            |        |            |         | C       |
|             | -      |         | odd positive integer.                        | 1/         |        |            |         |         |
| <b>CO4:</b> | Defin  | e and   | Explain Equivalence and Reduction of Bina    | ry Co      | gniti  | ve R       | lemem   | bering  |
|             | Quadi  | atic F  | orms, Sums of three squares, Arithmetic      |            |        | U          | Inderst | anding  |
|             | Funct  | ions –  | The Mobius Inversion Formula – Recurrence    | ce         |        |            |         |         |
|             |        |         | Combinatorial number theory                  |            |        |            |         |         |
|             |        |         | Explain Diophantine Equations – The equation |            | gniti  |            |         | bering  |
|             | •      |         | imultaneous Linear Diophantine Equations     | -          |        | U          | Inderst | anding  |
|             |        | gorear  | Triangles                                    |            |        |            |         |         |
| UNIT        |        |         |                                              |            |        |            |         | 9       |
|             |        |         | sibility – Primes – The Binomial Theorem     |            |        |            |         | totient |
|             |        |         | and Wilson's Theorems - Solutions of con     | gruences   | – Th   | e Ch       | inese   |         |
| Remai       |        | heore   | 1.                                           |            |        |            |         |         |
| UNIT        |        |         |                                              |            |        |            |         | 9       |
|             | -      |         | erical calculations – Public key cryptograph | •          | le po  | wer        | Modul   | i –     |
|             |        | ots an  | Power Residues –Congruences of degree t      | WO.        |        |            |         |         |
| UNIT        | -III   |         |                                              |            |        |            |         | 9       |
|             |        | •       | m an Algebraic Viewpoint – Groups, rings     |            | _      |            |         |         |
|             |        |         | endre symbol (a/r) where r is an odd prime   | – Quadra   | tic R  | ecip       | rocity  | – The   |
|             |        | ool (P/ | I) where q is an odd positive integer.       |            |        |            |         |         |
| UNIT        | -IV    |         |                                              |            |        |            |         | 9       |
|             |        |         | forms – Equivalence and Reduction of Bina    |            |        |            |         | ms of   |
|             |        |         | itive Definite Binary Quadratic forms - Gr   |            |        |            |         |         |
|             |        |         | ns – The Mobius Inversion Formula – Recu     | irrence Fi | incti  | ons -      | _       |         |
|             |        | ial nui | iber theory .                                |            |        |            |         |         |
| UNIT        |        |         |                                              |            |        |            |         | 9       |
|             |        |         | ions - The equation ax+by=c - Simultaneou    | us Linear  | Diop   | ohan       | tine    |         |
| Equati      | ions – | Pytha   | orean Triangles – Assorted examples.         | IEAMI      | DE     |            | TOT     | . T     |
|             |        |         |                                              | LECTU      | KĽ     | -          | TOTA    | 4L      |
|             |        |         |                                              | 45         |        |            | 45      |         |

### LIST OF ELECTIVES

#### **TEXT BOOKS:**

 Ivan Niven, Herbert S, Zuckerman and Hugh L, Montgomery, An Introduction to the Theory of Numbers, Fifth edn., John Wiley & Sons Inc, 2004. UNIT I Chapter 1 and Chapter 2 : Sections 2.1 to 2.3 UNIT II Chapter 2 : Sections 2.4 to 2.9 UNIT III Chapter 2 : Sections 2.10, 2.11 and Chapter 3: Sections 3.1 to 3.3

UNIT IV Chapter 3 : Sections 3.4 to 3.7 and Chapter 4

UNIT V Chapter 5: Sections 5.1 to 5.4.

#### **REFERENCES:**

- 1. Elementary Number Theory, David M. Burton W.M.C. Brown Publishers, Dubuque, Lawa, 1989
- 2. Number Theory, George Andrews, Courier Dover Publications, 1994.
- 3. Fundamentals of Number Theory, William J. Leveque Addison-Wesley Publishing Company, Phillipines, 1977.

#### **COs VS POs Mapping**

|              | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 |
|--------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|
| CO 1         | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| CO 2         | 3   | 2   |     | 1   |     |     | 1          | 1   | 1   |
| CO 3         | 3   | 2   |     | 1   |     |     | 1          | 1   | 1   |
| CO 4         | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| CO 5         | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |
| Total        | 15  | 10  | 0   | 5   | 3   | 0   | 5          | 5   | 5   |
| Scaled value | 3   | 2   |     | 1   | 1   |     | 1          | 1   | 1   |

 $1 - 5 \rightarrow 1, 6 - 10 \rightarrow 2, 11 - 15 \rightarrow 3$ 

| COUR          | RSE CO | ODE      | COURSE NAME                        |           | L | Т            | Р                | С    |
|---------------|--------|----------|------------------------------------|-----------|---|--------------|------------------|------|
| YMA2          | 2E2    |          | DATA STRUCTURE AND ALGO            | RITHMS    | 3 | 0            | 0                | 3    |
| С             | Р      | Α        |                                    |           | L | Т            | Р                | Η    |
| 3             | 0      | 0        |                                    |           | 3 | 0            | 0                | 3    |
| PRERI         | EQUIS  | ITE: D   | iscrete Mathematics                |           |   |              |                  |      |
| Course        | outcor | mes:     |                                    | Domain    |   | Leve         | 1                |      |
| <b>CO1:</b> ] | Unders | stand an | nd apply linear data structures    | Cognitive |   | Unde<br>Appl | erstand<br>lying | ing  |
| <b>CO2:</b> 1 | Unders | stand an | nd apply nonlinear data structures | Cognitive |   | Unde<br>Appl | erstand<br>lying | ing  |
| <b>CO3:</b> 1 | Unders | tand a   | nd apply sorting techniques        | Cognitive |   | Unde<br>Appl | erstand<br>lying | ing  |
| CO 4:         | Under  | stand a  | nd apply graph algorithms          | Cognitive |   | Unde<br>Appl | erstand<br>ying  | ling |
| CO 5:         | Design | n differ | ent algorithm techniques.          | Cognitive |   | Unde<br>Appl | erstand<br>lying | ing  |
| UNIT-         | I      |          |                                    |           |   |              | Ī                | 9    |
| ADT –         | List A | DT – S   | Stack ADT – Queue ADT.             |           |   |              | <b>I</b>         |      |

| UNIT-II |
|---------|
|---------|

Trees – Binary Trees – Binary Search Trees – AVL Trees – Splay Trees – Tree Traversal – B Trees- B+ Tree

#### UNIT-III

Insertion sort – Shell sort – Heap sort – Merge sort – Quick sort – Bucket sort – External Sorting.

9

9

9

9

#### UNIT-IV

Topological sort – Shortest path algorithms – Network Flow problems – Minimum Spanning Tree – Applications of Depth First search – NP completeness.

#### UNIT-V

Greedy Algorithms – Divide and Conquer – Dynamic Programming - Randomized Algorithms – Backtracking algorithms.

| LECTURE | TOTAL |
|---------|-------|
| 45      | 45    |

#### **TEXT BOOKS /REFERENCE BOOKS**

1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Second Edition, Pearson Education Reprint 2011.

- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein, "Introduction to Algorithms", Second Edition, Mcgraw Hill, 2002
- 3. ReemaThareja, "Data Structures Using C", Oxford University Press, 2011
- 4. Algorithms, Data Structures, and Problem Solving with C++", Illustrated Edition by Mark Allen Weiss, Addison-Wesley Publishing Company
- 5. "How to Solve it by Computer", 2nd Impression by R. G. Dromey, Pearson Education

|              | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 |
|--------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|
| CO 1         | 3   | 2   | 1   | 1   | 1   |     | 1          | 1   | 1   |
| CO 2         | 3   | 2   | 1   | 1   |     |     | 1          | 1   | 1   |
| CO 3         | 3   | 2   | 1   | 1   |     |     | 1          | 1   | 1   |
| CO 4         | 3   | 2   | 1   | 1   | 1   |     | 1          | 1   | 1   |
| CO 5         | 3   | 2   | 1   | 1   | 1   |     | 1          | 1   | 1   |
| Total        | 15  | 10  | 5   | 5   | 3   | 0   | 5          | 5   | 5   |
| Scaled value | 3   | 2   | 1   | 1   | 1   |     | 1          | 1   | 1   |

#### **COs VS POs Mapping**

 $1 \text{-} 5 \rightarrow 1, 6 \text{-} 10 \rightarrow 2, 11 \text{-} 15 \rightarrow 3$ 

| COURSE CODE                               | COURSE NAME                                                                                 | L                       | Т             | Р         | С         |
|-------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------|---------------|-----------|-----------|
| YMA2E3                                    | FUZZY SETS AND FUZZY LOGIC                                                                  | 3                       | 0             | 0         | 3         |
| C P A                                     |                                                                                             | L                       | Т             | Р         | Н         |
| 3 0 0                                     |                                                                                             | 3                       | 0             | 0         | 3         |
| PREREQUISITE:                             | Discrete Mathematics                                                                        |                         |               |           |           |
| Course outcomes:                          |                                                                                             | Domai                   | n             | Level     |           |
| CO1: Define and <b>F</b>                  | xplain basic definitions of Crisp sets, the                                                 | Cognit                  | ive           | Remem     | bering    |
| notion of fuz                             | y sets and basic concepts of fuzzy sets.                                                    |                         |               | Unders    | -         |
| CO2: Define and F                         | xplain operation on Fuzzy Sets.                                                             | Cognit                  | ive           | Remem     | bering    |
|                                           |                                                                                             |                         |               | Unders    | tanding   |
| CO3: Define and H                         | xplain Fuzzy Relations                                                                      | Cognit                  | ive           | Remem     | bering    |
|                                           |                                                                                             |                         |               | Unders    | tanding   |
| CO4: Define and F                         | xplain Classical Logic.                                                                     | Cognit                  | ive           | Remem     | bering    |
|                                           |                                                                                             |                         |               |           | tanding   |
| CO5: Define and H                         | xplain Fuzzy logic, fuzzy tautologies -                                                     | Cognit                  | ive           | Remem     | bering    |
| contradiction                             | s - equivalence and logical proofs.                                                         |                         |               | Unders    | tanding   |
| UNIT I Crisp S                            | ets and Fuzzy Sets                                                                          |                         |               |           | 9         |
| Crisp sets basic defi                     | nitions - the notion of fuzzy sets - basic conce                                            | pts of fuz              | zy se         | ts.       |           |
| UNIT II Operati                           | on on Fuzzy Sets                                                                            |                         |               |           | 9         |
|                                           | · fuzzy union - fuzzy intersection - combination                                            | on and ger              | neral         | aggrega   | -         |
| operations.                               |                                                                                             | fil alla ger            | lerui         | u99109u   |           |
|                                           | Relations                                                                                   |                         |               |           | 9         |
|                                           | tions - binary relation - equivalence and simil                                             | arity relat             | ions          | - tolerar | ice       |
| relations                                 | <b>y</b> 1                                                                                  | -                       |               |           |           |
| - orderings.                              |                                                                                             |                         |               |           |           |
| UNIT IV Classic                           | al Logic                                                                                    |                         |               |           | 9         |
|                                           | dictions - equivalence - exclusive OR and exc                                               | lusive NC               | <b>)R -</b> ] | logical p | proofs.   |
| UNIT V Fuzzy                              | Jogic                                                                                       |                         |               |           | 9         |
|                                           | timate reasoning - fuzzy tautologies - contradi                                             | ictions - e             | quiva         | alence a  | nd        |
| logical proofs.                           |                                                                                             |                         | 1             |           |           |
|                                           |                                                                                             | LECT                    | <b>TUR</b>    | E T       | OTAL      |
|                                           |                                                                                             | 4                       | 5             |           | 45        |
| TEXTBOOKS                                 |                                                                                             |                         |               |           |           |
| 1. George J. Klir &<br>India Pvt. Ltd., N | Tina A. Folger, "Fuzzy Sets, Uncertainty, and ew Delhi, 1988                                | l Informat              | ion",         | Prentic   | e Hall of |
| 2. Timothy J. Ross,<br>Inc, 2010.         | "Fuzzy Logic with Engineering Applications"                                                 | ", 3 <sup>rd</sup> edit | ion, I        | McGraw    | -Hill.    |
| REFERENCES                                |                                                                                             |                         |               |           |           |
| Netherlands, 2015                         | , "Fuzzy Set Theory and Its Applications", 4<br>ral Networks and Fuzzy Systems", Prentice-F |                         |               |           | 2.        |

|        | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 |
|--------|------------|-----|-----|-----|-----|-----|------------|-----|-----|
| CO1    | 1          | 2   | 1   | 1   | 1   |     |            |     | 1   |
| CO2    | 1          | 2   | 1   | 1   | 1   |     |            |     | 1   |
| CO3    | 1          | 2   | 1   | 1   | 1   |     |            |     | 1   |
| CO4    | 1          | 2   | 1   | 1   | 1   |     |            |     | 1   |
| CO5    | 1          | 2   | 1   | 1   | 1   |     |            |     | 1   |
| Scaled | 5          | 10  | 5   | 5   | 5   |     |            |     | 5   |
| Value  |            |     |     |     |     |     |            |     |     |
| Total  | 1          | 2   | 1   | 1   | 1   |     |            |     | 1   |

| COURSE<br>CODE    | (     | COURSE TITLE                                        | L        | T      | Р      | C       |
|-------------------|-------|-----------------------------------------------------|----------|--------|--------|---------|
| YMA301            | I     | FIELD THEORY                                        | 4        | 0      | 0      | 4       |
| C P A             |       |                                                     | L        | Τ      | Р      | Η       |
| 4 0 0             |       |                                                     | 4        | 0      | 0      | 4       |
| PREREQUISI        | TE    | : Algebra                                           |          |        |        |         |
| Course outcom     | nes:  |                                                     | Doma     | nin    | Level  |         |
| CO1: Define an    | nd    | Explain Extension fields – Finite Extension –       | Cogni    | tive   | Remen  | obering |
|                   |       | on - Transcendence of e.                            |          |        |        | tanding |
| CO2: Define a     | nd    | Explain Roots of Polynomials Remainder              | Cogni    | tive   | Remem  | nbering |
| Theorem - Spl     | ittiı | ng field - More about roots.                        |          |        | Unders | tanding |
|                   |       | Explain Elements of Galois Theory- Fixed            | Cogni    | tive   | Remem  | nbering |
| field – Normal o  | exte  | ension- Fundamental Theorem.                        |          |        | Unders | tanding |
| CO4: Define a     | nd    | Explain Solvability by radicals – Solvable          | Cogni    | tive   | Remen  | bering  |
|                   |       | up over the rational.                               | C        |        |        | tanding |
| CO5: Define a     | nd    | <b>Explain</b> Finite fields - Wedderburn's theorem | Cogni    | tive   | Remen  | bering  |
|                   |       | ings – A Theorem of Frobenius.                      | Ũ        |        |        | tanding |
| UNIT I            |       |                                                     | •        |        |        | 12      |
| Extension fields  | s –   | Finite Extension – Algebraic Extension - Trans      | cenden   | ce of  | e.     |         |
| UNIT II           |       |                                                     |          |        |        | 12      |
| Roots of Polyno   | omi   | als Remainder Theorem – Splitting field - Mo        | ore abou | it roo | ts.    |         |
| UNIT III          |       |                                                     |          |        |        | 12      |
|                   | aloi  | s Theory- Fixed field – Normal extension- Fund      | dament   | al Th  | eorem. | 1       |
| UNIT IV           |       |                                                     |          |        |        | 12      |
| Solvability by r  | adi   | cals – Solvable group – Galois group over the r     | ational  |        |        |         |
| UNIT V            |       |                                                     |          |        |        | 12      |
| Finite fields - W | Ved   | derburn's theorem on finite division rings – A 7    |          | n of F |        |         |
|                   |       | LECTU                                               | RE       |        | Т      | TOTAL   |
|                   |       |                                                     | 60       |        |        | 60      |
| TEXTBOOK          |       |                                                     |          |        |        |         |
|                   |       | ppics in Algebra", Willey Eastern, 1975.            |          |        |        |         |
| REFERENCE         | S     |                                                     |          |        |        |         |

**1.** John B. Fraleigh,"A First Course in Abstract Algebra", Narosa Publication, Third Edition, 2013

2. P. M. Cohn,"Basic Algebra", Springers Publications, Second Edition, 2003.

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | <b>PO9</b> |
|--------|-----|-----|-----|-----|-----|-----|------------|-----|------------|
| CO1    | 3   | 2   |     |     | 1   | 1   | 1          | 1   | 1          |
| CO2    | 3   | 2   |     |     | 1   | 1   | 1          | 1   | 1          |
| CO3    | 3   | 2   |     |     | 1   | 1   | 1          | 1   | 1          |
| CO4    | 3   | 2   |     |     | 1   | 1   | 1          | 1   | 1          |
| CO5    | 3   | 2   |     |     | 1   | 1   | 1          | 1   | 1          |
| Scaled | 15  | 10  |     |     | 5   | 5   | 5          | 5   | 5          |
| Value  |     |     |     |     |     |     |            |     |            |
| Total  | 3   | 2   |     |     | 1   | 1   | 1          | 1   | 1          |

| COU<br>COI                                                                       | URSE<br>DE       |        |      | C    | DUI   | RSE    | T    | ITL    | Æ        |         |          |      |        |               |      | L        | ı     |       | Τ     |       | Р             |     | С        | ,   |
|----------------------------------------------------------------------------------|------------------|--------|------|------|-------|--------|------|--------|----------|---------|----------|------|--------|---------------|------|----------|-------|-------|-------|-------|---------------|-----|----------|-----|
| YM                                                                               | A302             |        |      | T    | )P(   | )LO    | )GY  | Y      |          |         |          |      |        |               |      | 4        |       |       | 0     |       | 0             |     | 4        |     |
| С                                                                                | Р                | Α      |      |      |       |        |      |        |          |         |          |      |        |               |      | L        | 1     |       | Т     |       | Р             |     | Η        | [   |
| 4                                                                                | 0                | 0      |      |      |       |        |      |        |          |         |          |      |        |               |      | 4        | I     |       | 0     |       | 0             |     | 4        |     |
| PRE                                                                              | REQ              | UISI   | SI ] | ITE  | :     |        |      |        |          |         |          |      |        |               |      |          |       |       |       |       |               |     |          |     |
| Cou                                                                              | rse ou           | tcon   | m    | nes  |       |        |      |        |          |         |          |      |        |               |      | Dor      | nai   | n     |       | L     | evel          |     |          |     |
| CO1                                                                              | : Defi           | ine a  | an   | nd   | Exp   | olair  | n To | opol   | logic    | cal S   | Space    | es   |        |               |      | Cog      | gniti | ive   |       |       | emei<br>Inder |     |          |     |
| CO2: Define and Explain Continuous Functions Cognitive Rememberin<br>Understandi |                  |        |      |      |       |        |      |        | <u> </u> |         |          |      |        |               |      |          |       |       |       |       |               |     |          |     |
| CO3:Define and Explain Connectedness                                             |                  |        |      |      |       |        |      |        | Cog      | gniti   | ive      |      |        | emei<br>Inder |      | <u> </u> |       |       |       |       |               |     |          |     |
|                                                                                  | :Defi            |        |      |      | •     |        |      |        |          |         |          |      |        |               |      | Cog      | gniti | ive   |       |       | emei<br>Inder |     | <u> </u> |     |
| CO5<br>Axic                                                                      | 5: Def           | ine a  | a    | and  | Ex    | plai   | n C  | Coun   | ıtabi    | ility a | and      | Sep  | arat   | ion           |      | Cog      | gniti | ive   |       |       | emei<br>Inder |     | <u> </u> |     |
| UNI                                                                              | TII              | Γορο   | ol   | olog | ical  | Spa    | aces | 5      |          |         |          |      |        |               |      |          |       |       |       |       |               |     | 12       |     |
| Торо                                                                             | ologica<br>x Y - | al sp  | pa   | ace  | 5 - E | Basis  | s fo | r a to | -        | logy    | 7 - TI   | he o | order  | · topo        | olog | y - T    | The   | pro   | duc   | et to | opolo         | gу  |          |     |
| UNI                                                                              | T II C           | Conti  | tir  | inu  | ous   | Fun    | ncti | ons    | -        |         |          |      |        |               |      |          |       |       |       |       |               |     | 12       | 2   |
|                                                                                  | ed set<br>logy   |        |      |      |       |        |      |        |          |         |          |      |        |               |      |          |       |       | ' - T | 'he   | metr          | ic  |          |     |
| UNI                                                                              | T III            | Co     | n    | nne  | cteo  | Ines   | S    |        |          |         |          |      |        |               |      |          |       |       |       |       |               |     | 12       | 2   |
|                                                                                  | nected           | -      |      |      | - co  | nneo   | cted | l sut  | ospa     | ices (  | of th    | ne R | leal l | line -        | - Co | mpo      | nen   | its a | and   | loc   | al            |     |          |     |
| UNI                                                                              | TIV              | Con    | m    | npa  | ctn   | ess    |      |        |          |         |          |      |        |               |      |          |       |       |       |       |               |     | 12       | 2   |
|                                                                                  | pact s           |        |      | -    |       |        | ct s | subs   | pace     | es of   | f the    | e Re | eal l  | ine -         | - Li | mit 1    | Poi   | nt    | Con   | npa   | ctnes         | s - | - Loc    | cal |
|                                                                                  | pactne           |        |      |      |       |        |      |        |          |         | <u>.</u> |      |        |               |      | <u>.</u> |       |       |       |       |               |     |          |     |
|                                                                                  | ΤVC              |        |      |      |       |        |      |        |          |         |          |      |        |               |      |          |       |       |       |       |               |     | 12       |     |
|                                                                                  | Count<br>Uryso   |        |      |      |       |        |      |        |          |         |          |      |        |               |      |          |       | - T   | he U  | Jry   | sohn          | Le  | emma     | a - |
| The                                                                              | Uryso            | iiii n | 116  | letr | Zati  | .011 . | 1 ne | orer   | .11 - 1  | ine .   | Tiet     | zex  | liens  |               | meo  | rem.     |       |       |       |       |               |     |          |     |

|  | LECTURE | TOTAL |
|--|---------|-------|
|  | 60      | 60    |

#### TEXTBOOK

1. James R. Munkres, "Topology", (2nd Edition) PHI Learning Pvt. Ltd., (Third Indian Reprint) New Delhi, 2014

Unit I - Chapter 2: Sections 12 to 17

- Unit II Chapter 2: Sections 18 to 21 (Omit Section 22)
- Unit III Chapter 3: Sections 23 to 25
- Unit IV Chapter 3: Sections 26 to 29
- Unit V Chapter 4: Sections 30 to 35

#### REFERENCES

- 1. J. Dugundji, "Topology", Prentice Hall of India, New Delhi, 1975.
- 2. George F.Sinmons, "Introduction to Topology and Modern Analysis", McGraw Hill Book Co., 1963.
- 3. J.L. Kelly, "General Topology", Van Nostrand, Reinhold Co., New York. 1995
- 4. L.Steen and J.Subhash, "Counter Examples in Topology", Holt, Rinehart and Winston, New York, 1970.
- 5. S.Willard, "General Topology", Addison Wesley, Mas.1970.

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> |
|-----|-----|-----|-----|-----|-----|-----|------------|------------|------------|
| CO1 | 3   | 2   |     |     | 1   | 1   | 1          | 1          | 1          |
| CO2 | 3   | 2   |     |     | 1   | 1   | 1          | 1          | 1          |
| CO3 | 3   | 2   |     |     | 1   | 1   | 1          | 1          | 1          |
| CO4 | 3   | 2   |     |     | 1   | 1   | 1          | 1          | 1          |
| CO5 | 3   | 2   |     |     | 1   | 1   | 1          | 1          | 1          |

| COU                 | RSEC    | ODE                 | COURSENAME                                             | L       | Т    | Р                              | С      |  |
|---------------------|---------|---------------------|--------------------------------------------------------|---------|------|--------------------------------|--------|--|
| YMA                 | 303     |                     | AUTOMATA THEORY                                        | 3       | 1    | 0                              | 4      |  |
| С                   | Р       | Α                   |                                                        | L       | Т    | Р                              | Н      |  |
| 4                   | 0       | 0                   |                                                        | 3       | 1    | 0                              | 4      |  |
| PRERI               | EQUIS   | SITE: A             | nalysis                                                |         |      |                                |        |  |
| Course              | outco   | mes:                |                                                        | Domai   | in   | Level                          |        |  |
| C01:                | Define  | and E               | xplain Strings, Alphabets and Languages                | Cognit  | ive  | Rememb<br>Understa             | U      |  |
| CO2:                |         | and Ex<br>gular set | <b>xplain</b> Regular expressions and Properties<br>s. | Cognit  | ive  | Remembering<br>Understanding   |        |  |
| CO3:                | Define  | and E               | xplain Context Free grammars                           | Cognit  | ive  | e Remembering<br>Understanding |        |  |
| CO4:                | Define  | and E               | xplain Pushdown Automata & properties                  | Cognit  | ive  | Rememb                         | bering |  |
|                     | of Cor  | ntext fre           | e languages                                            |         |      | Understa                       | anding |  |
| CO5:                | Define  | and E               | xplain Turning Machine and Chomski                     | Cognit  | ive  | Rememb                         | bering |  |
|                     | hierarc | chy.                |                                                        |         |      | Understa                       | unding |  |
| UNIT I              | [       |                     |                                                        |         |      |                                | 12     |  |
| Strings.<br>Section |         |                     | d Languages (Section 1.1 of the Text) Finit            | e Autor | nata | (Chapter                       | rs 2,  |  |

| UNIT II                                                                                                                      |                       | 12           |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|
| Regular expressions and Properties of Regular sets.(Sections 2.                                                              | 5 to 2.8 and 3.1 to 3 | .4)          |
| UNIT III                                                                                                                     |                       | 12           |
| Context Free grammars (Section 4.1 to 4.5)                                                                                   |                       | ·            |
| UNIT IV                                                                                                                      |                       | 12           |
| Pushdown Automata & properties of Context free languages Th                                                                  | eorem 5.3, 5.4 (with  | nout proof)  |
|                                                                                                                              |                       | iout proor), |
| (Section is 5.1 to 5.3 and 6.1 to 6.3)                                                                                       |                       | iout proor), |
|                                                                                                                              |                       | 12           |
| (Section is 5.1 to 5.3 and 6.1 to 6.3)                                                                                       |                       | -            |
| (Section is 5.1 to 5.3 and 6.1 to 6.3)<br>UNIT V                                                                             |                       | -            |
| (Section is 5.1 to 5.3 and 6.1 to 6.3)<br>UNIT V<br>Turning Machine and Chomski hierarchy, (Sections 7.1 to 7.3 a            | and 9.2 to 9.4)       | 12           |
| (Section is 5.1 to 5.3 and 6.1 to 6.3)<br>UNIT V<br>Turning Machine and Chomski hierarchy, (Sections 7.1 to 7.3 a<br>LECTURE | and 9.2 to 9.4)       | 12<br>TOTA   |

Computation, Narosa, 1999

### REFERENCES

- 1. G.ERevesz,Introduction to Formal Languages
- 2. P.Linz,Introduction to Forma Languages and Automata,Narosa2000

3. G.Lallment, Semigroups and Applications

|        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | <b>PO9</b> |
|--------|-----|-----|-----|-----|-----|-----|------------|-----|------------|
| CO1    | 2   | 1   |     | 1   | 2   |     | 1          |     | 1          |
| CO2    | 2   | 1   |     | 1   | 2   |     | 1          |     | 1          |
| CO3    | 2   | 1   |     | 1   | 2   |     | 1          |     | 1          |
| CO4    | 2   | 1   |     | 1   | 2   |     | 1          |     | 1          |
| CO5    | 2   | 1   |     | 1   | 2   |     | 1          |     | 1          |
| Scaled | 10  | 5   |     | 5   | 10  |     | 5          |     | 5          |
| Value  |     |     |     |     |     |     |            |     |            |
| Total  | 2   | 1   |     | 1   | 2   |     | 1          |     | 1          |

| COU<br>COD                                                                         |          |        | COURSE NAME                                                                                                                                  | L                         | T                | Р                              | C           |  |
|------------------------------------------------------------------------------------|----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|--------------------------------|-------------|--|
| YMA                                                                                |          |        | MATHEMATICAL STATISTICS                                                                                                                      | 4                         | 0                | 0                              | 4           |  |
| C                                                                                  | <u>P</u> | Α      |                                                                                                                                              | L                         | Ť                | P                              | H           |  |
| 4                                                                                  | 0        | 0      |                                                                                                                                              | 4                         | 0                | 0                              | 4           |  |
|                                                                                    |          |        |                                                                                                                                              |                           |                  |                                |             |  |
| PREF                                                                               | -        |        |                                                                                                                                              |                           |                  |                                | l           |  |
|                                                                                    |          |        | COMES:                                                                                                                                       |                           |                  |                                |             |  |
| Cours                                                                              |          |        |                                                                                                                                              | Doma                      | ain              | Level                          |             |  |
| CO1:                                                                               | Defin    | e an   | d Explain Estimation Theory.                                                                                                                 | Cogni                     | itive            |                                | nbering     |  |
| Unders                                                                             |          |        |                                                                                                                                              |                           |                  |                                |             |  |
|                                                                                    |          |        | and solve Tests based on normal, t and f                                                                                                     | Cogni                     | tive             |                                | tanding     |  |
|                                                                                    |          |        | testing of means, variance and proportions –<br>tables – Goodness of fit                                                                     |                           |                  | Арр                            | lying       |  |
|                                                                                    |          |        | nd solve Correlation And Regression.                                                                                                         | Cogni                     | itive            | Unders                         | tanding     |  |
| Appl                                                                               |          |        |                                                                                                                                              |                           |                  |                                |             |  |
| CO4: Explain and solve Design of Experiments Cognitive Under Apply                 |          |        |                                                                                                                                              |                           |                  |                                |             |  |
| <b>CO5: Explain and solve</b> Statistical Quality Control by X , R Cognitive Under |          |        |                                                                                                                                              |                           |                  |                                |             |  |
| charts, p, c and np charts.                                                        |          |        |                                                                                                                                              |                           |                  |                                |             |  |
| UNIT I Estimation Theory   12                                                      |          |        |                                                                                                                                              |                           |                  |                                |             |  |
|                                                                                    |          |        | iasedness, Consistency, Efficiency and Sufficien                                                                                             | $\mathbf{v} - \mathbf{M}$ | aximu            | ım likeli                      |             |  |
|                                                                                    |          |        | hod of moments.                                                                                                                              |                           |                  |                                |             |  |
| UNIT                                                                               | ' II To  | ctine  | g Of Hypothesis                                                                                                                              |                           |                  |                                | 12          |  |
|                                                                                    |          | -      | ormal, t and f distributions for testing of means,                                                                                           | variance                  | and              |                                | 14          |  |
|                                                                                    |          |        | alysis of $r \times c$ tables – Goodness of fit.                                                                                             | variance                  | anu              |                                |             |  |
|                                                                                    |          |        | elation And Regression                                                                                                                       |                           |                  |                                | 12          |  |
|                                                                                    |          |        | tial correlation – Method of least squares – Plan                                                                                            | e of Re                   | gressi           | on – Pr                        |             |  |
|                                                                                    |          |        | Coefficient of multiple correlation – Coefficie                                                                                              |                           |                  |                                |             |  |
|                                                                                    |          |        | ion with total and partial correlation – Regression                                                                                          | -                         |                  |                                |             |  |
| -                                                                                  | -        |        | der co-efficient.                                                                                                                            |                           |                  |                                |             |  |
|                                                                                    |          | 0      | n of Experiments                                                                                                                             |                           |                  |                                | 12          |  |
|                                                                                    |          |        | nce – One way and two way classifications – Co                                                                                               | ompletel                  | ly ran           | domized                        | l design    |  |
| – Ran                                                                              | domiz    | ed bl  | ock design – Latin square design.                                                                                                            |                           |                  |                                |             |  |
| UNIT                                                                               | ' V Sta  | ntisti | cal Quality Control                                                                                                                          |                           |                  |                                | 12          |  |
|                                                                                    |          |        | nce: Control charts for measurements (X and R                                                                                                | charts) -                 | - cont           | rol char                       |             |  |
| attribu                                                                            | ites (p  |        | d np charts) – Tolerance limits – Acceptance sa                                                                                              |                           |                  |                                |             |  |
| SPSS.                                                                              |          |        | LECTURE                                                                                                                                      |                           |                  | 1                              | OTAL        |  |
|                                                                                    |          |        | <u> </u>                                                                                                                                     |                           |                  |                                | <u>60</u>   |  |
| ТЕХТ                                                                               | FRAA     | K      | 00                                                                                                                                           | 1                         |                  | <u> </u>                       | 00          |  |
| 1. Gu                                                                              | upta. S  | .C.,   | and Kapoor. V.K., "Fundamentals of Mathemati<br>nth Edition, 2014.                                                                           | cal Stati                 | stics"           | ', Sultan                      | Chand and   |  |
| REFF                                                                               |          |        |                                                                                                                                              |                           |                  |                                |             |  |
| 2. Ja                                                                              | y L. D   | evor   | 'Mathematical Statistical'', 5 <sup>th</sup> Edition, Prentice 1<br>e, "Probability and Statistics for Engineering and<br>, Singapore, 2002. | Hall of I<br>I the Sci    | India,<br>iences | 2001.<br>s",5 <sup>th</sup> Ed | ition, Thor |  |

### TABLE 1: COs VS POs Mapping

|     | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 |
|-----|------------|-----|-----|-----|-----|-----|------------|-----|-----|
| CO1 | 2          | 1   | 1   | 1   |     | 2   |            |     | 1   |
| CO2 | 2          | 1   | 1   | 1   |     | 2   |            |     | 1   |
| CO3 | 2          | 1   | 1   | 1   |     | 2   |            |     | 1   |
| CO4 | 2          | 1   | 1   | 1   |     | 2   |            |     | 1   |
| CO5 | 2          | 1   | 1   | 1   |     | 2   |            |     | 1   |

### LIST OF ELECTIVES

| COUR<br>CODR                                                                      |                       |              | COURSE NAME                                       | L         | T       | Р         | С        |  |
|-----------------------------------------------------------------------------------|-----------------------|--------------|---------------------------------------------------|-----------|---------|-----------|----------|--|
| YMA3                                                                              |                       |              | DATA ANALYSIS USING SPSS                          | 3         | 0       | 0         | 3        |  |
| C                                                                                 | Р                     | A            | DATA ANAL ISIS USING SI 55                        | L         | T       | P         | H        |  |
| 3                                                                                 | 0                     | 0            |                                                   | 3         | 0       | 0         | 3        |  |
| -                                                                                 | v                     | v            | Probability and Statistics                        | 0         | Ū       | v         | 0        |  |
| COUF                                                                              | RSE O                 | UTCO         | MES:                                              |           |         |           |          |  |
| Cours                                                                             | e outco               | mes:         |                                                   | Doma      | in      | Level     |          |  |
| <b>CO1:</b>                                                                       | Define                | and <b>E</b> | xplain Starting SPSS, SPSS Main Menus,            | Cogni     | tive    | Remen     | bering   |  |
| ,                                                                                 | Workin                | ng with      | the Data Editor, Importing and Exporting          | Ũ         |         | Unders    | tanding  |  |
| data, Plotting of Charts using Bar and Pie diagram.                               |                       |              |                                                   |           |         |           |          |  |
|                                                                                   |                       |              | Explain measures of central tendencies and        | Cogni     | tive    | Remen     | bering   |  |
| ]                                                                                 | measur                | es of d      | lispersion using SPSS                             |           |         | Unders    | standing |  |
| CO3:Define and Explain Type I and Type II error, Basics of one Cognitive Remember |                       |              |                                                   |           |         |           | ibering  |  |
| sample t-test, independent sample t-test and paired t-test Understa               |                       |              |                                                   |           |         |           | 0        |  |
|                                                                                   | using S               |              |                                                   |           | C       |           |          |  |
| CO4:I                                                                             | Define a              | and E        | xplain One way ANOVA, two way ANOVA               | Cogni     | tive    | Remen     | bering   |  |
|                                                                                   |                       |              | re test using SPSS                                | Ũ         |         |           | tanding  |  |
| CO5:                                                                              | Define                | and 1        | Explain correlation and regression using SPSS     | Cogni     | tive    | Remen     | bering   |  |
|                                                                                   |                       |              |                                                   | C         |         |           | tanding  |  |
| UNIT                                                                              | I                     |              |                                                   | <b></b>   |         |           | 9        |  |
| Introdu                                                                           | action t              | to SPS       | S – Starting SPSS – SPSS Main Menus – Wo          | rking w   | vith tl | ne Data   | Editor – |  |
|                                                                                   |                       |              | orting and Exporting data. Plotting of Charts: S  |           |         |           |          |  |
|                                                                                   |                       |              | e Diagram.                                        | -         |         | •         | -        |  |
| UNIT                                                                              | II                    |              |                                                   |           |         |           | 9        |  |
| Descri                                                                            | ptive S               | Statisti     | cs and Frequencies using SPSS. Measures o         | of centr  | al te   | ndencies  | :        |  |
| Arithm                                                                            | netic m               | ean, N       | Aedian, Mode, Geometric mean and Harmonic         | Mean.     | Me      | asures o  | f        |  |
| Disper                                                                            | sion: 1               | Range        | inter quartile range, Mean Deviation and          | Standa    | ard d   | leviation |          |  |
| Measu                                                                             | res of S              | Skewn        | ess and Kurtosis                                  |           |         |           |          |  |
| UNIT                                                                              | III                   |              |                                                   |           |         |           | 9        |  |
| Testing                                                                           | g of Hy               | pothe        | sis: Type I error and Type II Errors – Concept of | of p val  | ues –   | Basic C   | Concepts |  |
| of On                                                                             | e Sam                 | ple t-1      | est, Independent Samples t-test, Paired samp      | oles t-te | est u   | sing SP   | SS with  |  |
| interpr                                                                           | etation               |              |                                                   |           |         |           |          |  |
| UNIT                                                                              |                       |              |                                                   |           |         |           | 9        |  |
| Analys                                                                            | sis of V              | 'arianc      | e: Basic concepts of ANOVA – One Way and T        | wo Wa     | y AN    | OVA us    | ing      |  |
| SPSS v                                                                            | with int              | terpret      | ation. Chi-square Test for Independence of attri  | butes us  | sing S  | SPSS.     |          |  |
| UNIT                                                                              | V                     |              |                                                   |           |         |           | 9        |  |
| Correla                                                                           | ation: <mark>F</mark> | Karl Pe      | earson's coefficient of Correlation - Spearman's  | Rank c    | orrel   | ation – S | imple    |  |
|                                                                                   |                       |              | •                                                 |           |         |           |          |  |

| li | inear Regression using SPSS with interpretation. |        |   |      |    |
|----|--------------------------------------------------|--------|---|------|----|
|    |                                                  | LECTUR | E | ТОТА | L  |
|    |                                                  | 4      | 5 | 4    | 45 |
|    |                                                  | 45     |   | 45   |    |
| -  |                                                  |        |   |      |    |

#### TEXTBOOK

1. Ajai J Gaur and Sanjaya S. Gaur (2008): Statistical Methods for Practice and Research A guide to data analysis using SPSS, First Edition, Sage Publications.

**REFERENCES:** 

1. Andy Field.(2011); Discovering Statistics Using SPSS, Sage Publications.

2. Hinton P R, Brownlow C, McMurray, I. and Cozens, B. (2004) SPSS Explained, Routledge

| COURSE<br>CODE                                                                        |             | COURSE TITLE                                       | L             | Τ      | Р          | С             |  |  |  |
|---------------------------------------------------------------------------------------|-------------|----------------------------------------------------|---------------|--------|------------|---------------|--|--|--|
| YMA3E2                                                                                |             | NUMERICAL METHODS                                  | 3             | 0      | 0          | 3             |  |  |  |
|                                                                                       | A           | NUMERICAL METHODS                                  | L             | T      | P          | - S<br>H      |  |  |  |
|                                                                                       | A<br>0      |                                                    | <u>L</u><br>3 | 0      | <b>r</b>   | <u>п</u><br>3 |  |  |  |
|                                                                                       | Ŭ           |                                                    | 3             | U      | U          | 3             |  |  |  |
| PREREQUIS                                                                             |             | -                                                  |               |        |            |               |  |  |  |
| COURSE OU                                                                             | J <b>T(</b> | COMES:                                             |               |        |            |               |  |  |  |
| Course outcom                                                                         |             |                                                    | Doma          |        | Level      |               |  |  |  |
|                                                                                       |             | lution by using Bisection method-Newton-           | Cogni         | tive   | Remen      | bering        |  |  |  |
|                                                                                       |             | I-Curve fitting straight line and parabola.        |               |        |            |               |  |  |  |
| CO2: Solve S                                                                          | Sim         | ultaneous Linear Equations.                        | Cogni         | tive   | Remen      | bering        |  |  |  |
|                                                                                       |             |                                                    |               |        | Unders     | tanding       |  |  |  |
| CO3:Find the                                                                          | e va        | lue of $y = f(x)$ using interpolation formula.     | Cogni         | tive   | Remen      |               |  |  |  |
|                                                                                       |             |                                                    |               |        | Unders     | tanding       |  |  |  |
| CO4:Find the                                                                          | e fir       | st and second derivative of $f(x)$ and to find the | Cogni         | tive   | Remen      | 0             |  |  |  |
|                                                                                       |             | s using numerical methods.                         |               |        | Unders     | tanding       |  |  |  |
| <b>CO5:</b> Solve ordinary differential equations by using various Cognitive Remember |             |                                                    |               |        |            |               |  |  |  |
| methods. Understandi                                                                  |             |                                                    |               |        |            |               |  |  |  |
| UNIT I 9                                                                              |             |                                                    |               |        |            |               |  |  |  |
| Solution of N                                                                         | Nur         | nerical Algebraic Equations & Curve fitting        | Bisecti       | on n   | nethod-N   | lewton-       |  |  |  |
| Raphson meth                                                                          | od          | -Curve fitting straight line and parabola.         |               |        |            |               |  |  |  |
| UNIT II                                                                               |             |                                                    |               |        |            | 9             |  |  |  |
| Solution of S                                                                         | Sim         | ultaneous Linear Equations-Gauss-Elimination       | n meth        | od-M   | ethod o    | f             |  |  |  |
|                                                                                       | Gau         | ss Jacobi and Gauss-Seidel methods                 |               |        |            |               |  |  |  |
| UNIT III                                                                              |             |                                                    |               |        |            | 9             |  |  |  |
|                                                                                       |             | Gregory-Newton forward and backward interp         | olation       | forn   | nulae St   | erling's      |  |  |  |
| formula-Lagra                                                                         | ng          | e's formula.                                       |               |        |            |               |  |  |  |
| UNIT IV                                                                               |             |                                                    |               |        |            | 9             |  |  |  |
|                                                                                       |             | rentiation and Integration, Numerical differe      | entiation     | ı, Tr  | apezoida   | l rule-       |  |  |  |
|                                                                                       | e-th        | ird rule –Simpson's three-eighth rule.             |               |        |            |               |  |  |  |
| UNIT V                                                                                |             |                                                    |               |        |            | 9             |  |  |  |
|                                                                                       |             | on of Ordinary Differential Equations, Euler's m   | ethod –       | - four | th order   | Runge-        |  |  |  |
| Kutta method-                                                                         | Mi          | lne's predictor corrector method.                  |               |        |            |               |  |  |  |
|                                                                                       |             | LECTUR                                             |               |        | T          | OTAL          |  |  |  |
|                                                                                       |             |                                                    | 45            |        |            | 45            |  |  |  |
| TEXTBOOK                                                                              |             |                                                    |               |        | 44 2 -     |               |  |  |  |
| 1. Sastry.                                                                            | S.S         | s, "Introductory Methods of Numerical Analysis"    | ", Prent      | ice H  | all of Ind | dia, 2000     |  |  |  |

#### REFERENCES

- 1. Gerald, Curtis and Wheatley, Patrick.O,"Applied Numerical Analysis", (Fifth Edition) Addison-Wesley, 1989.
- 2. Kandasamy.P, Thilakavathy.K, Gunavathy.K-Numerical Methods, S.Chand & Co. Ltd, New Delhi, Reprint 2001.

|            | <b>PO1</b> | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> |
|------------|------------|-----|-----|------------|-----|------------|------------|------------|------------|
| CO1        | 2          | 1   | 1   | 1          |     | 2          |            |            | 1          |
| CO2        | 2          | 1   | 1   | 1          |     | 2          |            |            | 1          |
| CO3        | 2          | 1   | 1   | 1          |     | 2          |            |            | 1          |
| <b>CO4</b> | 2          | 1   | 1   | 1          |     | 2          |            |            | 1          |
| CO5        | 2          | 1   | 1   | 1          |     | 2          |            |            | 1          |

| E OU'<br>outcon                                                                          | А<br>0<br>(ТЕ: Ni<br>ГСОМ                                                                                  | COMMUTATIVE ALGEBRA                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 0<br>QUISI<br>E OU'<br>outcon                                                            | 0<br>ITE: Ni<br>FCOM                                                                                       | 1                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| QUISI<br>E OU'                                                                           | ITE: Ni<br>ICOM                                                                                            | 1                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Η                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| E OU'<br>outcon                                                                          | тсом                                                                                                       | 1                                                                                                                                                                                         | 3         0         0         3           PREREQUISITE: Nil         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| outcon                                                                                   |                                                                                                            | COURSE OUTCOMES:                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                          |                                                                                                            | ES:                                                                                                                                                                                       | Domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | evel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| <b>CO1:</b> Define and Explain special algebraic structures and their Cognitive Remember |                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| roperties. Understand                                                                    |                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                          |                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Understand                                                                               |                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                          |                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                          |                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                          |                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| •                                                                                        |                                                                                                            | •                                                                                                                                                                                         | n, modules and 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nodu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| •                                                                                        |                                                                                                            | •                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                          |                                                                                                            |                                                                                                                                                                                           | erties – extended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | contra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | acted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| I                                                                                        |                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                          |                                                                                                            | n – Integral dependence – The going-up theory                                                                                                                                             | em – The going o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | theor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | em –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 7                                                                                        |                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| nditio                                                                                   | ns – <mark>P</mark> ri                                                                                     | mary decomposition in Noetherian rings.                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                          |                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                          | efine<br>Define<br>lecom<br>Define<br>Dedeki<br>d ring<br>roduct<br>rings of<br>I<br>Decon<br>n rings<br>7 | efine and Exp<br>Define and Exp<br>lecomposition<br>Define and Ex<br>Dedekind dom<br>d ring homom<br>rphism – exact<br>roduct of mod<br>rings of fracti<br>I<br>Decomposition<br>n rings. | <ul> <li>define and Explain the methods of decomposition of rings.</li> <li>Define and Explain Chain conditions – Primary</li> <li>decomposition in Noetherian rings.</li> <li>Define and Explain Artin rings – Discrete valuation rings – Dedekind domains – Fractional ideals</li> <li>d ring homomorphism's – ideals – Extension and Contraction rphism – exact sequences.</li> <li>roduct of modules – Tensor product of algebra – Local proprings of fractions.</li> <li>I</li> <li>Decomposition – Integral dependence – The going-up theorem rings.</li> </ul> | efine and Explain the methods of decomposition of rings.       Cognitive         Define and Explain Chain conditions – Primary       Cognitive         lecomposition in Noetherian rings.       Cognitive         Define and Explain Artin rings – Discrete valuation rings –       Cognitive         Dedekind domains – Fractional ideals       Cognitive         d ring homomorphism's – ideals – Extension and Contraction, modules and rephism – exact sequences.       roduct of modules – Tensor product of algebra – Local properties – extended rings of fractions.         I       Decomposition – Integral dependence – The going-up theorem – The going of rings. | understand       Understand         understand       Explain the methods of decomposition of rings.       Cognitive       Refure         Define and Explain Chain conditions – Primary       Cognitive       Refure         Decomposition in Noetherian rings.       Understand       Understand         Define and Explain Artin rings – Discrete valuation rings –       Cognitive       Refure         Dedekind domains – Fractional ideals       Cognitive       Refure         understand       Understand       Understand       Understand         d ring homomorphism's – ideals – Extension and Contraction, modules and modu       Understand       Understand         roduct of modules – Tensor product of algebra – Local properties – extended and rings of fractions.       I       Decomposition – Integral dependence – The going-up theorem – The going down nrings. | Underst         efine and Explain the methods of decomposition of rings.       Cognitive       Rememing         Define and Explain Chain conditions – Primary       Cognitive       Rememing         lecomposition in Noetherian rings.       Underst       Underst         Define and Explain Artin rings – Discrete valuation rings –       Cognitive       Rememing         Dedekind domains – Fractional ideals       Cognitive       Rememing         Inderst       Underst       Underst         roduct of modules – Tensor product of algebra – Local properties – extended and contrarings of fractions.       I         Decomposition – Integral dependence – The going-up theorem – The going down theor n rings.       The going down theorem – | understanding         understanding         vefine and Explain the methods of decomposition of rings.       Cognitive       Remembering         Define and Explain Chain conditions – Primary       Cognitive       Remembering         lecomposition in Noetherian rings.       Understanding       Understanding         Define and Explain Artin rings – Discrete valuation rings –       Cognitive       Remembering         Dedekind domains – Fractional ideals       Cognitive       Remembering         understanding       Understanding       Understanding         d ring homomorphism's – ideals – Extension and Contraction, modules and module       rphism – exact sequences.         roduct of modules – Tensor product of algebra – Local properties – extended and contracted rings of fractions.       Image: Composition – Integral dependence – The going-up theorem – The going down theorem – n rings. |  |  |  |  |  |

Artin rings – Discrete valuation rings – Dedekind domains – Fractional ideals.

|  | LECTURE | TOTAL |
|--|---------|-------|
|  | 45      | 45    |

#### **TEXT BOOKS:**

1. Atiyah, M., MacDonald, I.G., Introduction to Commutative Algebra, AddisonWesley, Massachusetts 1969.

UNIT 1 : Chapter 1, Chapter 2 (up to page 23)UNIT 2 : Chapter 2 (pages 24 - 31), Chapter 3.UNIT 3 : Chapters 4, 5.UNIT 4 : Chapters 6, 7.UNIT 5 : Chapters 8, 9.

#### **REFERENCES:**

1. H.Matsumura, Commutative ring theory, Cambridge University Press, 1986.

 N.S. Gopalakrishnan, Commutative Algebra, Oxonian Press Pvt. Ltd, New Delhi, 1988. R.Y.Sharp, Steps in Commutative Algebra, Cambridge University Press, 1990.

|                                                                                        | OURSE    | 2    | COURSE NAME                                           | L       | Т      | Р        | С       |  |  |
|----------------------------------------------------------------------------------------|----------|------|-------------------------------------------------------|---------|--------|----------|---------|--|--|
|                                                                                        | AA401    |      | COMPLEX ANALYSIS                                      | 4       | 0      | 0        | 4       |  |  |
| С                                                                                      | Р        | Α    |                                                       | L       | Т      | Р        | Н       |  |  |
| 4                                                                                      | 0        | 0    |                                                       | 4       | 0      | 0        | 4       |  |  |
| PREF                                                                                   | REQUI    | ISIT | E:                                                    | I       | 1      |          |         |  |  |
| Cours                                                                                  | se outc  | ome  | s:                                                    | Doma    | in     | Level    |         |  |  |
| <b>CO1:</b>                                                                            | Define   | and  | <b>Explain</b> Line Integrals- Rectifiable arc – Line | Cogni   | tive   | Remem    | bering  |  |  |
| integra                                                                                | als as f | unct | ions of arc- Cauchy's Theorem for rectangle-          | _       |        | Unders   | tanding |  |  |
| Cauch                                                                                  | iy's Th  | eore | m for disc                                            |         |        |          |         |  |  |
| <b>CO2:</b>                                                                            | Defin    | e an | d Explain Integral Formula – Higher                   | Cogni   | tive   | Remem    | bering  |  |  |
| deriva                                                                                 | tives –  | Rer  | novable singularities – Taylor's theorem –            |         |        | Unders   | tanding |  |  |
| Zeros                                                                                  |          |      |                                                       |         |        |          |         |  |  |
| Principle.                                                                             |          |      |                                                       |         |        |          |         |  |  |
| <b>CO3:</b>                                                                            | Define   | and  | Cogni                                                 | tive    | Remem  | bering   |         |  |  |
| Theor                                                                                  | em – P   | roof |                                                       |         | Unders | tanding  |         |  |  |
| Differ                                                                                 | entials  | -M   | ultiply Connected Regions.                            |         |        |          |         |  |  |
|                                                                                        |          |      | Explain The Residue Theorem – The                     | Cogni   | tive   | Remem    |         |  |  |
| -                                                                                      |          |      | ciple – Evaluation of Definite Integrals – The        |         |        | Unders   | tanding |  |  |
|                                                                                        |          |      | operty – Poisson's formula- Schwarz's                 |         |        |          |         |  |  |
|                                                                                        |          |      | Reflection Principle.                                 |         |        |          |         |  |  |
|                                                                                        |          |      | <b>d Explain</b> Weierstrass's Theorem – The Taylor   | Cogni   | tive   | Remem    |         |  |  |
|                                                                                        |          |      | rrent Series – Partial Fractions- Jensen's            |         |        | Unders   | tanding |  |  |
| Form                                                                                   |          | Had  | amard's Theorem                                       |         |        |          |         |  |  |
| UNIT                                                                                   |          |      |                                                       |         |        |          | 12      |  |  |
|                                                                                        | -        |      | Rectifiable arc – Line integrals as functions of      | arc- Ca | uchy   | 's Theor | rem for |  |  |
|                                                                                        | 0        | auch | y's Theorem for disc.                                 |         |        |          |         |  |  |
| UNIT                                                                                   | ' II     |      |                                                       |         |        |          | 12      |  |  |
|                                                                                        |          |      | oint - Integral Formula – Higher derivatives – Re     |         |        |          |         |  |  |
| – Tay                                                                                  | lor's    | theo | rem - Zeros and Poles - The Local Mappir              | ng – T  | he N   | laximun  | 1       |  |  |
| Principle.                                                                             |          |      |                                                       |         |        |          |         |  |  |
| UNIT III 12                                                                            |          |      |                                                       |         |        |          |         |  |  |
| Chains and Cycles – Simple Connectivity – Homology – The General Statement of Cauchy's |          |      |                                                       |         |        |          |         |  |  |
| Theorem - Proof of Cauchy's Theorem - Locally Exact Differentials - Multiply Connecte  |          |      |                                                       |         |        |          |         |  |  |

| Regions.                                                                                     |               |                 |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|---------------|-----------------|--|--|--|--|--|--|
| UNIT IV                                                                                      |               | 12              |  |  |  |  |  |  |
| The Residue Theorem – The Argument Principle – Evaluation of                                 | Definite Inte | grals – The     |  |  |  |  |  |  |
| Mean – value property – Poisson's formula- Schwarz's Theorem – The Reflection Principle.     |               |                 |  |  |  |  |  |  |
| UNIT V                                                                                       |               | 12              |  |  |  |  |  |  |
| Weierstrass's Theorem – The Taylor Series – The Laurent Series – Partial Fractions- Jensen's |               |                 |  |  |  |  |  |  |
| Formula – Hadamard's Theorem.                                                                |               |                 |  |  |  |  |  |  |
| LECTURE                                                                                      | LECTURE       |                 |  |  |  |  |  |  |
| 60                                                                                           |               | 60              |  |  |  |  |  |  |
| ТЕХТВООК                                                                                     |               |                 |  |  |  |  |  |  |
| 1.Lars V.Ahlfors, "Complex Analysis", 3 <sup>rd</sup> Edition McGraw Hill Ed                 | ucation (Indi | a) Private      |  |  |  |  |  |  |
| Ltd.2013.                                                                                    |               |                 |  |  |  |  |  |  |
| Chapter 4 - Section 1.1 to 1.5, Section 2.1 to 2.3, Section 3.1 t                            | o 3.4, Sectio | n 4.1 to 4.7,   |  |  |  |  |  |  |
| Section 5.1                                                                                  |               |                 |  |  |  |  |  |  |
| to 5.3, Section 6.1 to 6.5.                                                                  |               |                 |  |  |  |  |  |  |
| Chapter 5 - Section 1.1 to 1.3, Section 2.1, Section 3.1 & 3.2.                              |               |                 |  |  |  |  |  |  |
| <b>REFERENCES:</b>                                                                           |               |                 |  |  |  |  |  |  |
| 1. S. Poonusamy, "Complex Analysis", Alpha Science                                           | Internationa  | 1 Ltd; $2^{nc}$ |  |  |  |  |  |  |
| Revised edition,2005.                                                                        |               |                 |  |  |  |  |  |  |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|
| CO1 | 2   | 1   | 1   | 1   |     | 2   |            |     | 1   |
| CO2 | 2   | 1   | 1   | 1   |     | 2   |            |     | 1   |
| CO3 | 2   | 1   | 1   | 1   |     | 2   |            |     | 1   |
| CO4 | 2   | 1   | 1   | 1   |     | 2   |            |     | 1   |
| CO5 | 2   | 1   | 1   | 1   |     | 2   |            |     | 1   |

| COURSE<br>CODECOURSE NAME                                                              | L     | Т    | Р             | C       |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|-------|------|---------------|---------|--|--|--|--|--|--|
| YMA402 FUNCTIONAL ANALYSIS                                                             | 4     | 0    | 0             | 4       |  |  |  |  |  |  |
| C P A                                                                                  | L     | Т    | Р             | Η       |  |  |  |  |  |  |
| 4 0 0                                                                                  | 4     | 0    | 0             | 4       |  |  |  |  |  |  |
| PREREQUISITE:                                                                          |       |      |               |         |  |  |  |  |  |  |
| COURSE OUTCOMES:                                                                       |       |      |               |         |  |  |  |  |  |  |
| Course outcomes:                                                                       | Doma  | in   | Level         |         |  |  |  |  |  |  |
| <b>CO1:Define and Explain</b> Normed Spaces – Continued of                             | Cogni | tive | Remembering   |         |  |  |  |  |  |  |
| Linear Maps – Hahn – Banach Theorems.                                                  |       |      | Understanding |         |  |  |  |  |  |  |
| CO2: Define and Explain Banach Spaces – Uniform                                        | Cogni | tive | Remem         | bering  |  |  |  |  |  |  |
| Boundedness Principle – Closed Graph and Open Mapping                                  |       |      | Unders        | tanding |  |  |  |  |  |  |
| Theorems.                                                                              |       |      |               |         |  |  |  |  |  |  |
| CO3:Define and Explain Bounded Inverse Theorem –                                       | Cogni | tive | Remem         | bering  |  |  |  |  |  |  |
| Spectrum of a Bounded Operator. Understanding                                          |       |      |               |         |  |  |  |  |  |  |
| <b>CO4:Define and Explain</b> Inner Product Spaces – Orthonormal Cognitive Remembering |       |      |               |         |  |  |  |  |  |  |
| Sets – Projection and Riesz Representation Theorems.                                   |       |      | Unders        | tanding |  |  |  |  |  |  |

|                                                                        | 60             |            | 60  |  |  |  |
|------------------------------------------------------------------------|----------------|------------|-----|--|--|--|
| LECTUR                                                                 | E              | TO         | TAL |  |  |  |
| Bounded Operators and adjoint, Normal, Unitary and Self-adjoin         | t Operators.   |            |     |  |  |  |
| UNIT V                                                                 |                |            |     |  |  |  |
| Inner Product Spaces – Orthonormal Sets – Projection and Riesz I       | Representation | on Theorei | ns. |  |  |  |
| UNIT IV                                                                |                |            |     |  |  |  |
| Bounded Inverse Theorem – Spectrum of a Bounded Operator.              |                |            |     |  |  |  |
| UNIT III                                                               |                |            |     |  |  |  |
| Theorems.                                                              |                |            |     |  |  |  |
| Banach Spaces – Uniform Boundedness Principle – Closed Grap            | h and Open     | Mapping    |     |  |  |  |
| UNIT II                                                                |                |            | 12  |  |  |  |
| Normed Spaces – Continued of Linear Maps – Hahn – Banach Th            | eorems.        |            |     |  |  |  |
| UNIT I                                                                 |                |            | 12  |  |  |  |
| Normal, Unitary and Self-adjoint Operators. Understa                   |                |            |     |  |  |  |
| CO5: Define and Explain Bounded Operators and adjoint, Cognitive Remem |                |            |     |  |  |  |

#### TEXTBOOK

1.Balmohan V Limaye, "Functional Analysis", 3<sup>rd</sup> Edition, New Age International (P) Limited

publishers, New Delhi, 2017.

#### REFERENCES

- 1. G.F. Simmons, "Introduction to Topology and Modern Analysis", McGraw Hill International Book Company, New York, 1963.
- 2. W. Rudin, "Functional Analysis", Tata McGraw-Hill Publishing Company, New Delhi, 1973.
- 3. E. Kreyszig, "Introductory Functional Analysis with Applications", John Wiley & Sons, New York, 1978.
- 4. H. C. Goffman and G.Fedrick, "First Course in Functional Analysis", Prentice Hall of India, New Delhi, 1987.

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|
| CO1 | 2   | 1   | 1   | 1   |     | 2   |            |     | 1   |
| CO2 | 2   | 1   | 1   | 1   |     | 2   |            |     | 1   |
| CO3 | 2   | 1   | 1   | 1   |     | 2   |            |     | 1   |
| CO4 | 2   | 1   | 1   | 1   |     | 2   |            |     | 1   |
| CO5 | 2   | 1   | 1   | 1   |     | 2   |            |     | 1   |

| YMA40                                                                                                                 | 3              |        |     |                                                    |                        |        |                                           |       |
|-----------------------------------------------------------------------------------------------------------------------|----------------|--------|-----|----------------------------------------------------|------------------------|--------|-------------------------------------------|-------|
| С                                                                                                                     | CODE<br>YMA403 |        |     | MATHEMATICAL MODELING                              | 3                      | 1      | 0                                         | 4     |
|                                                                                                                       | Р              | Α      |     |                                                    | L                      | Т      | Р                                         | H     |
| 3                                                                                                                     | 0              | 1      |     |                                                    | 3                      | 1      | 0                                         | 4     |
|                                                                                                                       | QUIS           | ITE:   | : F | Probability and Statistics                         |                        |        |                                           | L     |
| Course o                                                                                                              | outcom         | es:    |     |                                                    | Doma                   | ain    | Level                                     |       |
| <b>CO1:Define and explain</b> Mathematical Modeling through Ordinary Differential Equations of First order            |                |        |     |                                                    | Cognitive<br>Affective |        | Remembering<br>Understanding<br>Receiving |       |
| <b>CO2:Define and explain</b> Mathematical Modeling through Systems of Ordinary Differential Equations of First Order |                |        |     |                                                    | Cognitive<br>Affective |        | Remembering<br>Understanding<br>Receiving |       |
| <b>CO3:Define and explain</b> Mathematical Modeling through Ordinary Differential Equations of Second Order           |                |        |     |                                                    | Cognitive              |        | Remembering<br>Understanding              |       |
| <b>CO4:Define and explain</b> Mathematical Modeling through Difference Equations                                      |                |        |     |                                                    | Cognitive              |        | Remembering<br>Understanding              |       |
| CO5: Define and explain Mathematical Modeling through Graphs                                                          |                |        |     |                                                    | Cognitive              |        | Remembering<br>Understanding              |       |
| UNIT I:<br>order                                                                                                      | Math           | iema   | ıti | cal Modeling through Ordinary Differential Equ     | uations                | s of F | irst                                      | 9+3   |
|                                                                                                                       | browth         | and    | D   | Decay Models – Non-Linear Growth and Decay Models  | dels –C                | Compa  | artment                                   |       |
|                                                                                                                       |                |        |     | problems – Geometrical problems.                   |                        |        |                                           |       |
| UNIT II<br>of First                                                                                                   |                |        | at  | tical Modeling through Systems of Ordinary Dif     | ferenti                | al Eq  | uations                                   | s 9+3 |
|                                                                                                                       |                |        |     | s – Epidemics – Compartment Models – Economics     | s –Med                 | icine, | Arms l                                    | Race, |
|                                                                                                                       |                |        |     | onal Trade – Dynamics.                             |                        |        | •                                         | 0.2   |
| UNIT I<br>Second                                                                                                      |                |        | m   | atical Modeling through Ordinary Differential H    | quatio                 | ons of |                                           | 9+3   |
|                                                                                                                       |                |        | _ ( | Circular Motion and Motion of Satellites – Mathem  | natical                | Mode   | ling thr                                  | ough  |
| -                                                                                                                     |                |        |     | quations of Second Order –Miscellaneous Mathema    |                        |        | -                                         | ougn  |
|                                                                                                                       |                |        |     | tical Modeling through Difference Equations        |                        |        |                                           | 9+3   |
| Simple N                                                                                                              | Models         | s - Ba | as  | sic Theory of Linear Difference Equations with Cor | nstant C               | Coeffi | cients -                                  | _     |
| Economi                                                                                                               | ics and        | d Fina | ar  | nce – Population Dynamics and Genetics – Probabil  | ity The                | ory.   |                                           |       |
|                                                                                                                       |                |        |     | ical Modeling through Graphs                       |                        |        |                                           | 9+3   |
|                                                                                                                       |                |        |     | Modeled through Graphs – Mathematical Modelin      | g interi               | ms of  | f Direct                                  | ed    |
| Graphs,                                                                                                               | Signed         | d Gra  | ap  | hs, Weighted Digraphs and Un oriented Graphs.      |                        |        |                                           |       |
|                                                                                                                       |                | _      |     | LECTURE                                            | TUTORIA                |        |                                           |       |
|                                                                                                                       |                |        |     | 45                                                 | 1                      | 5      | 6                                         | )     |
| ТЕХТВО                                                                                                                | JOKS           |        |     |                                                    |                        |        |                                           |       |
|                                                                                                                       |                |        | ne  | matical Modeling, Wiley Eastern Limited, New De    | lhi. 198               | 88.    |                                           |       |
| REFER                                                                                                                 | -              |        |     | initial inducting, they Eastern Emitted, itew De   | , 170                  |        |                                           |       |
|                                                                                                                       |                |        | he  | ematical Models in Biology and Medicine, Affiliate | ed East                | -Wes   | st Press                                  | Pvt   |
|                                                                                                                       | New            |        |     | e.                                                 |                        |        |                                           |       |