

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.3	Average percentage of courses having focus on employability/
		entrepreneurship/ skill Development offered by the department

DEPARTMENT OF PHYSICS

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

S. No.	Programme Name
i.	Bachelor of Science (Physics)(Full Time)
ii.	Master of Science (Physics)(Full Time)

2. Syllabus of the courses as per the list.

Legend :	Words highlighted with Blue Color	-	Entrepreneurship
	Words highlighted with Red Color	-	Employability
	Words highlighted with Purple Color	-	Skill Development

1. List of Courses

Name of the Course	Course Code	Year of introduction	Activities/Content with direct bearing on Employability/ Entrepreneurship/ Skill development
Communication electronics	XPH502A	2021-22	Employability - Implementing skill-applying problem solving, reasoning skill
Mathematical Physics	XPH503A	2021-22	Skill Development - Problem solving
Measurement and Instrumentation	XPH504A	2021-22	Employability - Implementing skill-applying problem solving, reasoning skill
Measurement and Instrumentation Lab	XPH506A	2021-22	Skill Development - Problem solving
Microprocessor and C programming Lab	XPH506B	2021-22	Skill Development - Problem solving
Laser Physics	XPH603A	2021-22	Employability - Implementing skill-applying problem solving, reasoning skill
Nano Material and Applications	XPH603B	2021-22	Employability - Implementing skill-applying problem solving, reasoning skill
Power electronics	XPH604A	2021-22	Employability - Implementing skill-applying problem solving, reasoning skill
Astronomy and Astrophysics	XPH604B	2021-22	Employability - Implementing skill-applying problem solving, reasoning skill
Introduction of Microcontroller	XPH605A	2021-22	Employability - Implementing skill-applying problem solving, reasoning skill
Quantum mechanics	XPH605B	2021-22	Skill Development - Problem solving
Mathematical Methods of Physics - I	YPH101	2021-22	Skill Development - Problem solving

- Electronics	YPH103	2021-22	Employability - Implementing skill-applying problem solving, reasoning skill
- Instrumental Methods of Analyses	YPH104C	2021-22	Skill Development - Problem solving
Mathematical Methods of Physics-II	YPH201 -	2021-22	Skill Development - Problem solving
Quantum Mechanics -I	YPH202	2021-22	Skill Development - Problem solving
Microprocessor and Microcontroller	YPH203	2021-22	Employability - Implementing skill-applying problem solving, reasoning skill
Digital & Microprocessor Laboratory	YPH205	2021-22	Skill Development - Problem solving
Quantum Mechanics -II	YPH302	2021-22	Skill Development - Problem solving
Micro Electro Mechanical Systems (MEMS)	YPH304A	2021-22	Employability - Implementing skill-applying problem solving, reasoning skill
Solar Thermal and Photovoltaic Technology	YPH304B	2021-22	Employability - Implementing skill-applying problem solving, reasoning skill
Industrial Electronics	YPH304C	2021-22	Employability - Implementing skill-applying problem solving, reasoning skill

Course			XPH502A			L			C
Course		ne	COMMUNICATION ELEC	FRONICS		3	1	0	4
С	Р	Α			L		Т	P	Η
3	0	0			3		1	0	4
COUR On the to	succe	essful co	ompletion of this course students we		DOM	IAIN		LEVI	
CO1			nding the basic knowledge about a ency modulation	ımplitude	Cogr	nitive		ement and nderst	
CO2		evelop mmuni	the knowledge about fibr cation	e optic	Cogr	nitive		analyz Inderst	
CO3	co	nderstar mmuni	cation		Cogr	nitive	u	lemenr and nderst	and
CO4	sa	tellites	he function of satellite and list th		Cogr	nitive	u	emenr and nderst	and
CO5	ex	plain va	the working of mobile communic trious function and usage of mobile.		Cogr	nitive		Analyze and understand	
UNIT -			O TRANSMISSION AND RECE tion-need for modulation- types of						+3
amplitu Receive UNIT - Introdu propaga fibers l commu	de m er- de - II: ction ation based nicat	nodulati modula FIBE -struct of light on m ion sys	modulation factor-sideband freq on – frequency modulation-block ation-AM & FM radio receivers-sup R OPTIC COMMUNICATION ure of optical fiber –total internal re in optical fiber - acceptance angle aterial – number of modes – re- tem (block diagram) - fiber optic	diagram of er heterody flection in o – numerical fractive inc	AM and the radio optical lapert	and F io rec fiber ure – ofile	^T M Tu eiver. ^T – pri types - fib	ransmi 9. ncipal of op er op	tter. +3 and tical tical
	- III	: RAI	DAR COMMUNICATION						+3
systems radar sy	s – B ystem	asic pu is – Mo	e of radar – Radar performance fact lsed radar system – Antennas and oving target indication – Radar bea r – Radar receivers uses of radar.	scanning –	Displ	ay me	ethods	s – Pu	lsed
			ELLITE COMMUNICATION	·				9.	+3
classifie – const power s	cation ruction source	n of sat onal fea e – sate	ory of satellites – satellite comm ellites – types of satellites – basic c atures of satellites- multiple access llite foot points- satellite communic	omponents –communi	of satication	ellite	comn	nunica - anter	tion nna-
			LE COMMUNICATION	1.1		• ,	6		+3
			vices- concept of cell – system as						
(FAX)	– ap	plicatio	e hierarchy – protocols – localizati n – VSAT (very small aperture to Wi Ei – 2C (Pasia ideas only)						
protoco	n tele	vision) – Wi-Fi - 3G (Basic ideas only).						
			т	FCTIDE	TI	TOP	TAT	тот	'A T
			HOURS L	ECTURE 45	TU	TOR 15	IAL	TOT 6	

TEXT BOOKS

- <u>A K Chhabra & Anokh Singh</u>, "*Principles of Communication Engineering*", 17th edition, S. Chand Publishing, A–27, 2nd Floor, Mohan Co–operative Industrial Estate, New Delhi – 110044,,2013.
- <u>George Kennedy</u>, <u>Brendan Davis</u>, <u>Srm Prasanna</u>, "Kennedy's Electronic Communication Systems", 5th Edition, McGraw Hill Education, 2011
- 3. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2007.

REFERENCE BOOK

- 1. I.Poornima Thangam, "Satellite Communication", Charulatha Publications, 2012.
- 2. <u>Dennis Roddy</u>, <u>John Coolen</u> "Electronic Communications", 4th edition, Pearson, 1995.

E REFERENCES

1. DEEPA VENKITESH, Department of Electrical Engineering,IIT Madras, "Fiber Optic Communication Technology", National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/courses/108/106/108106167/</u>

2. Kalyankumar Bandyopadhyay, Electronics and Electrical Communication,IIT Kharagpur, "Satellite Communication Systems", National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/courses/117/105/117105131/</u>

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	0	3	3	3	0	1
CO2	3	2	0	2	3	2	0	1
CO3	3	2	0	2	3	2	3	2
CO4	3	2	0	2	3	2	0	2
CO5	3	2	0	2	3	2	0	2
Total	15	10		11	15	11	3	8
Scaled to 1, 2, 3	3	2		3	3	3	1	1

Mapping with Programme Outcomes

Cours	e Code XPH503A					L	Т	Р	C
Cours	e Nan	ie		MATHEMATICAL PHYSICS		3	1	0	4
С	Р	Α				L	Т	Р	Н
3	0	0				3	1	0	4
		UTCO ssful co		n of this course students would able to	D	OMA	IN	LEV	EL
CO1	solve problems on Matrices and apply them to relevant problems				Cognitive			Analyze	
CO2	apply Stoke's and Gauss theorems to suitable physical problems					Cognitive		Evaluate	
CO3		e proble ant prob		Analytic Function and apply them to	C	ogniti	ve	Apply	
CO4	analy	ze gam	ma and	beta functions and their applications	C	ogniti	ve	App	oly
CO5		y and sforms	solve	problems on Fourier Series And	C	Cognitive		Apply evalu	
UNIT	- I:	MATR	ICES		•				9+3
Introd	uction	– specia	al types	of Matrices – Transpose of a Matrix – T	he C	onjug	ate o	f a Ma	trix –

Conjugate Transpose of a Matrix - Symmetric and Anti symmetric - Hermitian and	d skew
Hermitian - Orthogonal and Unitary Matrices - Properties - Characteristic equation -	- Roots
and characteristic vector - Diagonalization of matrices - Cayley-Hamilton theorem -Pro	blems
UNIT – II: VECTOR CALCULUS	9+3
∇ Operator – Divergence – Second derivative of Vector functions or fields – The La	placian
Operator - Curl of a Vector - Line Integral - Line Integral of a Vector field arou	und an
infinite in all materials and of Communities field. Southers Internal Malance I	1

infinitesimal rectangle – Curl of Conservative field – Surface Integral – Volume Integral (without problem) – Gauss's Divergence theorem and it's proof - Simple problems – Stoke's theorem and its proof - Simple problems.

UNIT - III: COMPLEX ANALYSIS

9+3

Definition of Analytic Function – Cauchy Riemann equations – Properties of analytic functions – Determination of harmonic conjugate – Milne–Thomson's method – Conformal mappings: 1/z, az , az+b and bilinear transformation. Line integral – Cauchy's integral theorem (without proof) – Cauchy's integral formulae and its applications – Taylor's and Laurent's expansions (statements only)

UNIT – IV: SPECIAL FUNCTIONS

9+3

9+3

Beta and gamma functions – problems – relation between beta and gamma functions – Bessel's differential equations – Legendre's differential equations – Hermite's differential equations – Laguerre's differential equations – series solutions – Dirac delta functions - properties.

UNIT – V: FOURIER SERIES AND TRANSFORMS

Introduction - Periodic functions: Properties - Even & Odd functions – Properties - Special wave forms - Square wave - Half wave Rectifier - Full wave Rectifier - Sawtooth wave - Triangular wave - Euler's Formulae for Fourier Series - Fourier Series for functions of period 2π - Fourier Integral Theorem (statement only) - Fourier Transform of a function - Properties of Fourier Transform - Linearity, Shifting, Change of scale, Modulation - Examples - Fourier Transform of Derivatives – Examples - Convolution Theorem (statement only) - Inverse of Fourier Transform,

		LECTURE	TUTORIAL	TOTAL
	HOURS	45	15	60
TEXT BOOKS				

- S. PRAKASH, "Mathematical Physics with Classical Mechanics", sixth edition, S. Chand Publishing, A–27, 2nd Floor, Mohan Co–operative Industrial Estate, New Delhi – 110044, 2014
- 2. <u>B D Gupta</u>, "*Mathematical Physics*", 4th Edition, Vikas Publication House Pvt Ltd, 2009.

REFERENCE BOOK

- 1. <u>B S Rajput</u>, "Mathematical Physics", A Pragati Edition, Anu Books, 2019.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, Wiley, 2010.
- 3. M. C. Jain, "Vector Spaces And Matrices In Physics", Narosa, 2007.

E REFERENCES

1. Saurabh Basu, Department of Physics IIT Guwahati, "Mathematical Physics", National Programme ,on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/courses/115/103/115103036/

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	1	2	3	2	2	3
CO2	3	3	2	3	2	3	1	2
CO3	3	2	2	3	3	2	1	2
CO4	3	3	1	2	3	2	2	2
CO5	3	3	2	1	2	3	3	2
Total	15	13	8	11	13	12	9	11
Scaled to 1, 2, 3	3	3	2	3	3	3	2	3

Mapping of COs with POs

0 - No relation 1 - Low relation 2 - Medium relation 3 - High relation

Cours	se Cod	le	XPH504A		L	С				
Cours	se Nar	ne	MEASUREMENT AND		3	1	0	4		
С	Р	Α	INSTRUMENTATION		L	Т	Р	H		
3	0	0		3		1	0	4		
COU	RSE (OUTCO	OMES	D	OMA	т				
On the	e succe	essful c	completion of this course students would able	יע	N N	.1	LEV	/EL		
to					IN					
			he different errors in measurements and	Co	gnitiv	<i>ie</i>				
CO1			he working principle of different measuring	0	Sinti		Reme	mber		
		uments								
~~~			ding about the instruments used for different	Co	gnitiv	/e	Unde	rstan		
CO2			C measurements. Carryout calibration test	0.08.111.0		d				
			ng electrical instruments							
	of	amere	nt types bridge circuits for the measurements				Apply			
CO3		own n	assive elements. <b>Polate</b> the different types of	Co	anitiz	10				
005		-	acers. <b>Demonstrate</b> the use of different	Percenter different types of Cognitive Cognitive						
			transducers.							
		/	e construction and operation of recording and							
<b>CO4</b>	-		ruments. Establish Relations between analog	Co	gnitiv	/e	Understan d			
			signal conversions		0	-				
			e construction and working of different types							
CO5			itioners and <b>Demonstrate</b> the recent trends in	Co	gnitiv	/e	Reme	mber		
	meas	ureme	nt of AC quantities.		-					
UNIT	'– I:	INTR	ODUCTION				9+	-3		
			rrors & classification, Measurement of voltage							
			oil and moving iron meters, Measurement							
-			induction instruments, Instrument transformers	s – <b>(</b>	Currei	nt ai	nd Pot	ential		
	ormers									
			AND AC BRIDGES					9+3		
			resistance, inductance and capacitance usir	<u> </u>		nd	ac bri	idges,		
			Maxwell bridge, Kelvin's Bridge, Schering B	ridg	e					
			ANSDUCERS		1	•		9+3		
Active	Active and Passive transducers, Piezoelectric transducer, Photoelectric transducers,									

Fiber optic transducers, Resistive, Inductive and capacitive transducers. UNIT – IV: SIGNAL CONDITIONING UNITS								9+3
			ers – Instrumentation amplifiers,		rent	convert	ers. A	
D/A		laition	instrumentation unprincis,	vonage ea	Tent	convert		JD un
con	verters	volta	ge-frequencyconverters, analog mu	ltiplexers ar	nd d	e-multir	olexers	5.
			Based Measurements, Case Studies					
	<b>•</b>		CORDERS AND DISPLAY					9+3
Sig	nal sou	rces -	Oscillators, Function generator a	and pulse g	enera	tors. O	scillos	copes
			rage and Analog storage Oscillos					
			al Recorders and printers. Spectrum					
				LECTUR	Т	UTORI	A '	ГОТА
			HOURS	Е	L		]	L
				45		15		60
3.		I.S, "Ľ	vigital Instrumentation", Tata McGr	aw-Hill Edu				2010
			easurements Systems", Tata McGr	aw Hill Pub	licati	ons, 2nd	d Editi	
	2010. FERE	NCE F	•	aw Hill Pub	licati	ons, 2nd	d Editi	
RE	2010. FERE		BOOK					ion,
RE	2010. FERE W. D. C	Cooper	•					ion,
<b>RE</b> 1.	2010. FERE W. D. C Hall of	Cooper Indial	<b>OOK</b> , "Electronic Instrumentation and M	leasurement	Tech	iniques"	, Pren	tice
<b>RE</b> 1. 2.]	2010. FERE W. D. C Hall of Rangan 2nd Ec	Cooper Indial C.S., lition,2	<b>COOK</b> , 'Electronic Instrumentation and M Publications, 1st Edition, 2009. "Instruments Devices and System' 2009.	leasurement	Tech	iniques"	, Pren	tice
<b>RE</b> 1. 2.]	2010. FERE W. D. C Hall of Rangan	Cooper Indial C.S., lition,2	<b>COOK</b> , 'Electronic Instrumentation and M Publications, 1st Edition, 2009. "Instruments Devices and System' 2009.	leasurement	Tech	iniques"	, Pren	tice
<b>RE</b> 1. 2.] <b>E F</b> 1.	2010. FEREN W. D. C Hall of Rangan 2nd Ec REFER NTPEI	Cooper Indial C.S., <u>lition,2</u> ENCE L, Elec	<b>COOK</b> , "Electronic Instrumentation and M Publications, 1st Edition, 2009. "Instruments Devices and System" 2009. <b>S</b> trical Machines (Web Course), Pro-	leasurement ', Tata McG	Tech raw	niques" Hill Put	, Pren olicatio	tice
<b>RE</b> 1. 2.] <b>E F</b> 1.	2010. FEREN W. D. C Hall of Rangan 2nd Ec REFER NTPEI	Cooper Indial C.S., <u>lition,2</u> ENCE L, Elec	<b>COOK</b> , "Electronic Instrumentation and M Publications, 1st Edition, 2009. "Instruments Devices and System" 2009. S	leasurement ', Tata McG	Tech raw	iniques" Hill Put	, Pren olicatio	tice
<b>RE</b> 1. 2. <b>E R</b> 1. Pr	2010. FEREN W. D. C Hall of Rangan 2nd Ec REFER NTPEI of. G.D	Cooper Findial C.S., dition,2 ENCE L, Eleco Roy,	<b>BOOK</b> , "Electronic Instrumentation and M Publications, 1st Edition, 2009. "Instruments Devices and System" 2009. <b>S</b> trical Machines (Web Course), Pro IIT Kharagpur.	leasurement ', Tata McG	Tech raw Prof.7	niques" Hill Put T.K.Bha	', Pren blicatio ttacha	ion, tice ons, rya and
RE 1. 2.] E R 1. Pr	2010. FEREN W. D. C Hall of Rangan 2nd Ec REFER NTPEI rof. G.D	Cooper Findial C.S., dition,2 ENCF L, Elec D. Roy,	<b>COOK</b> , "Electronic Instrumentation and M Publications, 1st Edition, 2009. "Instruments Devices and System" 2009. <b>S</b> trical Machines (Web Course), Pro-	leasurement ', Tata McG	Tech raw	iniques" Hill Put	, Pren olicatio	tice
<b>RE</b> 1. 2.] <b>E R</b> 1. Pr	2010. FEREN W. D. C Hall of Rangan 2nd Ec REFER NTPEI of. G.D	Cooper Findial C.S., dition,2 ENCF L, Elec D. Roy,	<b>BOOK</b> , "Electronic Instrumentation and M Publications, 1st Edition, 2009. "Instruments Devices and System" 2009. <b>S</b> trical Machines (Web Course), Pro IIT Kharagpur.	Ieasurement ', Tata McG of.N.K.De, F	Tech raw Prof.7	niques" Hill Put T.K.Bha	', Pren blicatio ttacha	tice ons, rya and
<b>RE</b> 1. 2.] <b>E R</b> 1. Pr	2010. FEREN W. D. C Hall of Rangan 2nd Ec REFER NTPEI rof. G.D	Cooper Findial C.S., dition,2 ENCF L, Elec D. Roy,	COOK , "Electronic Instrumentation and M Publications, 1st Edition, 2009. "Instruments Devices and System" 2009. 25 trical Machines (Web Course), Pro- IIT Kharagpur. XPH505A	leasurement ', Tata McG of.N.K.De, F	Tech raw Prof.7	niques" Hill Put f.K.Bha	² , Pren blicatio ttacha	tice ons, rya and

С	Р	Α	<b>INSTRUMENTATION - LAB</b>	L	Т	Р	Н	
0	1.5	0.5		0	0	4	4	
	COURSE OUTCOMES					_	_	
		essful	completion of this course students would	Dor	nain	Le	evel	
	able to         CO1       Describe the different errors in measurements and Describe the working principle of different measuring instruments					Mechanis m		
CO2	diffe	rent t	<b>ding</b> about the instruments used for ypes of AC measurements. <b>Carryout</b> test for measuring electrical instruments	-	omoto ective:	Mec	lyze, hanis n pond	
<b>CO3</b>	the o	sureme differei	rent types bridge circuits for the nts of unknown passive elements. <b>Relate</b> nt types of the transducers. <b>Demonstrate</b> ifferent bridges and transducers.	1	omoto r: ctive:	Mec	ply hanis n eive	

<b>CO4</b>	between analog and digital signal conversions. r: Affective:						
<b>CO5</b>	<b>Explain</b> the construction and working of types signal conditioners. <b>Demonstrate</b> the trends in measurement of AC quantities.	he recent	Psychomoto r: Affective:	Analyze Mechanis m Receive			
Ex. No	No   Experiments						
1.	1. Calibration of Current Transformer and Potential transformer.						
2.	Measurement of three phase active, React						
3.	Calibration of Single phase / Three Phase		•	CO1			
4.	Resistance measurement using Wheat stor			CO2			
5.	Inductance measurement using Maxwell E			CO2			
6.	Capacitance measurement using Schering	Bridge		CO2			
7.	Study of Transducers			CO3			
8.	A/D converters			CO4			
<u> </u>	D/A converters Measurement of Current / Voltage / po			CO4 no CO5			
	board.						
		LECTUR E	PRACTICA L				
	HOURS	<u>Е</u> 0	L 40	40			
5. A. Ins 6.Bou (200 7. Kal 8. Dec <b>REFE</b> 3.W. I Ind	HOURS BOOKS K. Sawhney, "A Course in Electrical and E trumentation", Dhanpat Rai & Co., 9th Editio wens A. J., "Digital Instrumentation", Tata N	E 0 Clectronic Mea on, 2015. AcGraw Hill I raw-Hill Educ raw Hill Publi Ieasurement T	L 40 asurements an Publications, 1 ation, 3rd Edi cations, 2nd E 'echniques'', P	40 40 66th Reprint tion, 2010. Edition, 2010. rentice Hall of			

Со	urse Co	ode	XPH505B	L	Т	Р	С	
Cou	irse Na	nme	MICROPROCESSOR AND C	0	0	2	2	
С	Р	Α	PROGRAMMING LAB	L	Т	Р	Н	
0	1.5	0.5		0	0	4	4	
		UTCO ssful co	<b>MES</b> mpletion of this course students would able	Dor	nain	Le	vel	
C01			the working principle of 8085 and <b>Explain</b> s function of 8085.	Psych	omotor :	Mech	anism	
CO2		<b>-</b>	the function of assembly language e and <b>apply</b> to suitable problems,		omotor ective:	Analyze, Mechanism Respond		
CO3			nding the basic concepts of C programming e various operators.		omotor : ctive:	Mech	ply anism eive	
CO4			<b>n</b> the various types of artithmetic operators in Psychomotor			Mech	lyze anism eive	
CO5	out	put, A	nding the basic concepts of data input and rrays function in C programming and apply problems.		omotor ective:	Mech	Receive Analyze Mechanism Receive	

Ex. No	Experiments	COs				
1.	Perform the Arithmetic operations (addition and Subtraction) using microprocessor 8085.	CO1				
2. Perform the Arithmetic operations (multiplication and division) using microprocessor 8085.						
3.	Microprocessor – Decimal to Octal and Octal to Decimal Conversion.	CO1				
4.	Programs for Sorting and Searching Using 8085	CO2				
5.	Interfacing ADC and DAC using 8085.	CO2				
6.	Write a program to find sum of two numbers using functions	CO3				
7.	Write a program to print the given strings in ascending order	CO4				
8.	Write a program to read and display a value using getchar(), putchar(),gets() and puts()	CO5				
9. Write a program to store 10 elements in the 1-D array and print sum of the array.						
10.	Write a program to perform matrix addition and matrix subtraction.	CO5				
	LECTURE PRACTICAL 7	FOTAL				

## **TEXT BOOKS**

1. jeri R. Hanly and Elli B.Koffman, "Problem Solving and Program Design in C", 7th edition, Pearson, 2004

0

**40** 

**40** 

HOURS

- 2. Pradip Dey, Manas Ghosh "Programming in C", 2nd edition, Oxford, 2011
- 3. B. Ram, *"Fundamentals of Microprocessors and Microcontrollers"*, Dhanpat Rai Publications (P) Ltd.-New Delhi, 2012.

# **REFERENCE BOOK**

- 1.E. Balagurusamy, "Programming in Ansi C", McGraw Hill Education, 1st Edition, 2010
- 2. Ramesh Gaonkar, "*Microprocessor Architecture, Programming and Applications with the* 8085", 6th edition, Penram International Publishing India Pvt Ltd., 2013.

#### **E-RESOURCES**

1. JANAKIRAMAN VIRARAGHAVAN, Department of Computer Science and Engineering, IIT Madras, "C PROGRAMMING AND ASSEMBLY LANGUAGE", National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/courses/106/106/106106210/</u> 2. SANTANU CHATTOPADHYAY, Department of Electronics and Electrical Communication Engineering, IIT Kharagpur, "MICROPROCESSORS AND MICROCONTROLLERS", National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/courses/108/105/108105102/</u>

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8
CO1	3	1		2	1	2	3	3
CO2	3	1		2	1	2	3	2
CO3	3	1		1	1	2	2	1
CO4	3	1		2	1	2	3	2
CO5	3	1		2	1	2	3	3
Total	15	5		9	5	10	14	11

### Mapping of COs with POs

Course Code		ode	XPH603A	L	Т	Р	С
Course Name		ame	LASER PHYSICS	3	1	0	4
С	Р	Α		L	Т	Р	Н
3 0 0		0		3	1	0	4
		•					

	<b>RSE OUTCOMES</b> successful completion of this course students would able	DOMAIN	LEVEL
CO1	Understand the fundamentals of Laser.	Cognitive	Remember and Understand
CO2	Describe the production of Laser and its working	Cognitive	Remember, Understand
CO3	List and explain the application of laser in industry	Cognitive	Apply
CO4	List the application of laser in medicine and explain laser with interaction of light	Cognitive	Analyze, Understand
CO5	Understand the fundamentals of laser communication	Cognitive	Understand

UNIT – I: CONVENTIONAL LASERS	9+3
Spontaneous and Stimulated Emission - Einstein Coefficients - Levels of laser ac	tion: Two
level - Three level - Four level lasers - Types of lasers (outline only) - Solid Sta	ite Lasers:
Ruby laser and Nd:YAG laser - Gas lasers : He-Ne laser and CO2 laser - Liquid la	aser : Dye
laser – Liquid Eu3+ laser – Semiconductor laser.	
UNIT – II: ADVANCED LASERS	9+3
General description of Q-Switching – Production of Q-Switching : Electro-optic Shu	utter (Kerr
	utter (K

effect and Pockels effect) – Mechanical and Saturable absorber Shutters – Peak power emitted during the pulse – Theory of Giant Pulse dynamics – Laser amplifiers – Mode locking –

Ultrafast lasers – Fiber optic lasers						
UNIT – III: BASICS OF NONLINEAR OPTICS			9+3			
Wave propagation in an anisotropic crystal - Polari	zation respon	se of materials	to light –			
Harmonic generation – Second harmonic generation	on – Sum	and difference	frequency			
generation – Phase matching – Third harmonic generat			- ·			
UNIT – IV: NONLINEAR ABSORPTION AND REFRACTION 9+3						
Fundamentals of multi-quantum photoelectric effect			process –			
Experiment evidences of 2PA materials – Multi and T	•	1	1			
scattering – Intensity dependent refractive index – Se						
Optics – Photorefractive effect.	ii iocusiiig oi	ingine i nuse (	eonjuguteu			
UNIT – V: APPLICATIONS OF LASER			9+3			
Materials processing with lasers : Drilling, Cutting, and	d Welding _ N	Juclear fusing w	· · ·			
Communication by lasers – Principle of holography	•	•				
LASIK – Optical computing	Luser rung		Ser Gyro			
	LECTUR	TUTORIAL	TOTAL			
	E	TUTURIAL	IUIAL			
UOUDS	45	15	60			
HOURS	45	15	00			
TEXT BOOKS	1	<i>к</i> '11 т 1'	1006			
1. Thyagarajan and Ghatak, "Laser Theory and Aj			i, 1986.			
2. W.T. SilfvasT, "Laser Fundamentals", Cambrid	lge Univ. Pres	ss, 1998.				
<b>REFERENCE BOOK</b>						
1. W. Demtroder, "Laser Spectroscopy", 3rd edition	on ,Springer, 2	2003.				
2. R. W. Boyd, "Nonlinear Optics", Academic Pre	ess, 2003.					
E REFERENCES						
1 M R Shenov Department of Physics IIT Γ	alle: "Trature de	sation to Logan	Notional			

M R Shenoy, Department of Physics IIT Delhi, "Introduction to Laser", National on Technology Programme Enhanced Learning (NPTEL), https://nptel.ac.in/courses/115/102/115102124/

# Mapping of COs with POs

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8
CO1	1	0	2	0	0	0	0	0
CO2	1	2	1	3	1	0	0	0
CO3	0	0	0	0	0	1	2	0
CO4	1	1	2	2	1	0	0	0
CO5	1	2	2	1	0	0	3	0
Total	4	5	7	6	2	1	5	0
Scaled to 1, 2, 3	3	1		2	1	2	3	2

0 – No relation 1 – Low relation 2 – Medium relation 3 – High relation

Cours	e Code		XPH603B		L	Т	Р	C
Cours	e Name	<u>,</u>	NANOMATERIAL AND APPLICATIONS		3	1 0 4		4
С	Р	Α			L	Т	Р	Η
3	0	0	1		3	1	0	4
	RSE OU		<b>IES</b> apletion of this course students would able	DOM N	[AI	L	EVE	L
CO1	Descri	be the i	mportance and properties of nanomaterials.	Cogni	tive		ember dersta	
CO2	Explai	n and li	st the different types of nanomaterials.	Cognitive			ember dersta	
CO3	Descri	be the s	ynthesis process of nanomaterials.	Cognitive			embei dersta	
					_	Rem	ember	. and

CO4	Explain the characterisation studies of nano materials.	Cognitive	Remember and
04	Explain the characterisation studies of halfo materials.	Cognitive	Understand
CO5	List and explain the various applications of nano materials.	Cognitive	Understand & Apply

UNIT – I: INTRODUCTION TO NANOSCIENCE	9	+3				
Nano revolution of the 20th century - Difference between bulk and nanoscale materials and						
their significance - Properties at the nanoscale - Optical property - Magnetic property and						
electronic property - Size dependent behavior - Scaling - Mechanical pro-	operties	of Nano				
materials and Chemical properties of Nanoparticles.						
UNIT – II: CLASSES OF NANOMATERIALS	9	9+3				
Metals and Semiconductor Nanomaterials – Quantum dots – Nano wells – N	Jano rib	bons and				
Nano Wires – Bucky balls – Carbon nanotubes – Single walled and Multi walle	ed CNT-	Structure				
- Synthesis- Properties- Functionalization and applications - Fullerenes/Bu	icky Bal	lls/ C60-				
Synthesis – Properties – Functionalization and application	•					
UNIT – III: SYNTHESIS OF NANOMATERIAL	9	9+3				
Top-down approach – Nanolithography – Soft lithography and hard lithog	raphy –	Physical				
Vapor deposition (PVD) – Chemical Vapor Deposition(CVD) – E-beam lithog	graphy –	Bottom-				
up approach– Sol–gel processing and chemical methods – Self assembly.						
UNIT – IV: CHARACTERIZATION OF NANOMATERIALS	9	9+3				
Scanning Electron Microscope (SEM) – Transmission Electron Microscope	(TEM) -	- Atomic				
Force Microscope (AFM) – Scanning Tunneling Microscopy (STM) – Type	es– Man	ipulating				
atoms and Molecules with STM - Scanning Tunneling Spectroscopy	y and	Dip pen				
Nanolithography.						
UNIT – V: APPLICATIONS OF NANOTECHNOLOGY	9	+3				
Nanotechnology in Energy systems - Electronics - Environment - Space	and A	viation –				
Textiles - Food and Agriculture - Automotive Industry - Solar Technol	logy – (	Chemical				
engineering - Building and Construction - Biotech and Biomedical	Engine	eering –				
Pharmaceutical and drugs – Molecular Nano electronics.						
LECTURE TUTO	'RIA	TOTAL				
HOURS 45 15	5	60				
TEXT BOOKS						
1. Pradeep T, "Fundamentals of Nanoscience and Nanotechnology", Mc C	<del>J</del> raw Hil	1, 2012.				

2. Chris Binns, "Introduction to Nanoscience and Nanotechnology", 1st Edition, Willey-Publication, 2010.

# **REFERENCE BOOK**

- 1. K.K Chattopadhyay, "Introduction to Nanoscience and Nanotechnology", 3rdEdition, Prentice Hall India Learning Private Limited, 2009.
- 2. Gabor L.Hornyak, H.F.Tibbals, Joydeep Dutta, John J.Moore, "Introduction to Nanoscience and Nanotechnology", 1st edition, CRC Press, 2008
- 3. Robert W. Kelsall, Ian W. Hamley and Mark Geoghegan, "NanoscaleScience and Technology,"1st edition, John Wiley and Sons, Ltd., 2005.

# **E REFERENCES**

1. Prathap Haridoss, Department of Metallurgical and Material Engineering, IIT Madras, "NANOTECHNOLOGY, SCIENCE AND APPLICATIONS", National Programme on Technology Enhanced Learning (NPTEL). https://nptel.ac.in/courses/113/106/113106093/

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8
CO1	3	2	0	3	3	3	0	1
CO2	3	2	0	2	3	2	0	1
CO3	3	2	0	2	3	2	3	2
CO4	3	2	0	2	3	2	0	2
CO5	3	2	0	2	3	2	0	2
Total	15	10		11	15	11	3	8
Scaled to 1, 2, 3	3	2		3	3	3	1	2

#### Mapping of COs with POs

0 - No relation

1 - Low relation 2 - Medium relation

3 – High relation

Cours	se Cod	e	XPH604A	Τ	P	C		
Cours	se Nan	ıe	POWER ELECTRONICS		3	1	0	4
С	Р	Α			L	Т	Р	Н
3	0	0			3	1	0	4
		UTCC ssful c	OMES completion of this course students would able	Ι	DOMA N	I	LEV	EL
CO1	Understand the structure, operation and characteristics of power switching devices. Cognitive					Understand		
CO2			the operation, characteristics and parameters of controlled rectifiers.	С	ogniti	ve	Under	stand
CO3	An	alysis t	he operation of DC - DC choppers.	С	ogniti	ve	Analyzing	
CO4		•	he operation of various inverters and infer PWM techniques.					
CO5	vol	derstan tage trollers	nd the concept of various types of AC Cognitive Unde					stand

UNIT – I: POWER SWITCHING DEVICES			9+3			
Review on Semiconductor devices - I-V characteristics and Switching Characteristics of						
power Diodes, SCR, TRIAC, power BJT, power MOSFET and IGBT. Triggering and						
Commutation Circuits.						
UNIT – II: THYRISTOR RECTIFIERS			9+3			
Single phase half-wave and full-wave thyristor rectif	iers – Single p	hase full-bridge	thyristor			
rectifier with R-load and highly inductive load - Th	ree phase full	-bridge thyristo	r rectifier			
with R-load and highly inductive load.	-					
UNIT – III: DC TO DC CHOPPERS			9+3			
Types of Choppers, Class A to E, step-up and step-	down chopper	s – Analysis of	Voltage,			
Current and Load commutated choppers -Introduction	to Resonant c	converters				
UNIT – IV: INVERTERS			9+3			
Single phase, Three phase voltage source inverters (E	oth 120° and 1	80°mode of con	ductions)			
- Bipolar sinusoidal modulation and unipolar sinus	oidal modulat	ion, Modulation	n Index -			
PWM Techniques- Current Source Inverters.						
UNIT – V: AC VOLTAGE CONTROLLERS			9+3			
Single-phase and three phase AC voltage controllers	Multi-stage	sequence contr	ol – step-			
up and step- down cycloconverter – Single phase to	single phase a	nd Single phase	to Three			
phase cyclo converters.						
	LECTUR	TUTORIAL	TOTAL			
	E					
HOURS	45	15	60			
TEXT BOOKS						
1. <u>Muhammad H. Rashid</u> , "Power Electronics	Devices, Circi	iits and Applica	tions   ",			
4 th edition, Pearson Education, 2017.						

- 2. <u>M D Singh</u>; <u>K B Khanchandani</u>, "*Power Electronics*", 2nd Edition, Tata McGraw-Hill,Delhi, 2007
- 3. Robbins Mohan, Undeland ,"Power Electronics: Converters Applications and Design, Media Enhanced", 3rd edition, wiley, 2007.

## **REFERENCE BOOK**

- 1. Umanand, L., "Power Electronics: Essentials and Applications", Wiley India, 2009
- 2. Erickson, R.W and Maksimovic, D., "Fundamentals of Power Electronics", Springer Science& Business Media, 2007
- 3. Dubey, G.K., Doradia, S.R., Joshi, A. and Sinha, R.M., "Thyristorised Power Controllers", Wiley Eastern Limited, 1986

## **E REFERENCES**

1. Bhuvaneshwari, Department of Electrical and Electronics Engineering, IIT Delhi "POWER ELECTRONICS", National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/courses/108/102/108102145/</u>

#### Mapping of COs with POs

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	0	3	3	3	0	1
CO2	3	2	0	2	3	2	0	1
CO3	3	2	0	2	3	2	3	2
CO4	3	2	0	2	3	2	0	2
CO5	3	2	0	2	3	2	0	2
Total	15	10		11	15	11	3	8
Scaled to 1, 2, 3	3	2		3	3	3	1	2

0 - No relation

1 - Low relation 2 - Medium relation

3 – High relation

Co	ourse Co	ode	XPH604B	XPH604B         L         T				
Co	urse Na	me	ASTRONOMY AND	3	1	0	4	
С	Р	Α	ASTROPHYSICS	L	Т	Р	Η	
3	0	0		3	1	0	4	
	SE OU success		ES pletion of this course students would able	DOM N	AI	LEVEL		
CO1	Explain	n the fur	action of solar system.	Cognit	tive	Remen Unders		
CO2	<b>CO2</b> Describe the function of wave nature of light and explain basic concepts of Doppler effect.					Remer Unders	· ·	
CO3	CO3 Understand the concepts of evolution of star.					Remer Unders	,	
<b>CO4</b>	Explai	<b>n</b> the co	ncepts of Stellar Physics	Cognitive Remember				
CO5	Unders	tand the	concepts of galaxies.	Cognit	ive	Remen	nber	

**UNIT – I: INTRODUCTION TO ASTRONOMY** 9+3 Solar System Overview- Constituents- Astronomical measurements- Units of length time and mass-Constellations - Motion of the Sky- Celestial Sphere-Positions- Equinoxes And Eccentricity - The Length Of A Day - The Length Of Daylight - The Length Of A Second -Solar Calendar - Eclipses – Time Zones - The International Date Line. **UNIT – II: LIGHT AND OBSERVATION** 9+3 Inertial Frames- Elliptical Orbits -Kepler's Laws Derived the Virial Theorem-Stellar Parallax -The Magnitude Scale - Qualitative Overview: The Wave Nature of Light - Blackbody Radiation Time and Space in Special-Relativity - Relativistic Momentum and Energy-Doppler Effect of Light. Telescopes: Optical Telescopes- Short Overview of Radio Telescopes - Infrared, Ultraviolet, X-ray, and Gamma-Ray Astronomy. UNIT – III: THE STARS 9+3 Thermonuclear Energy- A Model of the Sun - Solar Neutrinos - The Photosphere - The Chromosphere - The Corona - Sunspots - The Sunspot Cycle - The Active Sun. Stellar Evolution: Models and Observations-The Evolution of a Star-The Stellar Evolution Cycle - Brief overview: Protostars- Giantstars- Death of Stars-Planetary Nebulae-White Dwarfs- Exploding White Dwarfs- Novae-Chandrasekhar Limit-Supernovae-Neutron Stars-Black Holes.

DIACK						
	<b>C – IV: STELLAR PHYSICS</b>			9+3		
The Classification of Binary Stars- Mass Determination Using Visual Binaries - The						
Formation of Spectral Lines- The Hertzsprung-Russell Diagram - Mass Continuity -						
Radia	tive Energy Transport - Energy Conservation	on - The Equat	ions of Stellar	Structure -		
Opaci	ty - Scaling Relations on The Main Sequen	ce - Nuclear Er	nergy Production	n - Nuclear		
React	ion Rates - Solution of The Equations of Ste	llar Structure -	High Energy Ph	nenomena -		
Nova	e And Supernovae - Pulsars - Quasars - Gamr	na ray bursts - A	Accreting black l	hole.		
UNIT	<b>C- V: COSMOLOGY</b>			9+3		
Mass	and Motions in the Milky Way-The Galac	ctic Centre and	Edge-Density	Waves and		
Spiral	Arms- Early Observations of Galaxies- Dist	ances of Galaxi	es-Hubble's Lav	w - Olbers'		
Parad	ox -Universal gravitation The Age Of Th	ne Universe - E	Expansion In A	Newtonian		
World	d - Thermal History of the Universe - The	Early Radiation	Era - Photon a	and Lepton		
Deco	upling - Big Bang-Nucleo synthesis.					
		LECTURE	TUTORIAL	TOTAL		
	HOURS	45	15	60		
		73	13	00		
	Г ВООКЅ	1	-			
	<b>F BOOKS</b> <u>Bradley Carroll</u> , <u>Dale Ostlie</u> , "Introduction	1	-			
	Bradley Carroll, Dale Ostlie, "Introduction Pearson, 2013.	on to Modern .	Astrophysics", 2	2 nd edition,		
	Bradley Carroll, Dale Ostlie, "Introduction Pearson, 2013. Stephen E. Schneider, Thomas T. Arny, , "	on to Modern .	Astrophysics", 2	2 nd edition,		
1.	Bradley Carroll, Dale Ostlie, "Introduction Pearson, 2013.	on to Modern .	Astrophysics", 2	2 nd edition,		
1. 2. REFI	Bradley Carroll, Dale Ostlie, "Introduction Pearson, 2013. Stephen E. Schneider, Thomas T. Arny, , McGraw-Hill Education, 2014. ERENCE BOOK	on to Modern . "Pathways to A	Astrophysics", 2 stronomy ", 4 ^t	2 nd edition, ^h Edition,		
1. 2. REFI	Bradley Carroll , Dale Ostlie , "Introduction Pearson, 2013. Stephen E. Schneider, Thomas T. Arny, , " McGraw-Hill Education, 2014. ERENCE BOOK Dinah L. Moche , "Astronomy: A Self-Teach	on to Modern . "Pathways to A	Astrophysics", 2 stronomy ", 4 ^t	2 nd edition, ^h Edition,		
1. 2. REFI 1.	Bradley Carroll, Dale Ostlie, "IntroductionPearson, 2013Stephen E. Schneider, Thomas T. Arny, , "McGraw-Hill Education, 2014.ERENCE BOOKDinah L. Moche, "Astronomy: A Self-TeachEdition, 2010.	on to Modern . "Pathways to A hing Guide", 7 th	Astrophysics", 2 stronomy ", 4 ^t edition Wiley I	2 nd edition, ^h Edition, ndia		
1. 2. REFI 1.	Bradley Carroll , Dale Ostlie , "IntroductionPearson, 2013.Stephen E. Schneider, Thomas T. Arny, , "McGraw-Hill Education, 2014.ERENCE BOOKDinah L. Moche , "Astronomy: A Self-TeachEdition, 2010.Linda S. Sparke, and John S. Gallagher , "Compared to the second	on to Modern A "Pathways to A hing Guide", 7 th Galaxies in the U	Astrophysics", 2 stronomy ", 4 ^t edition Wiley I	2 nd edition, ^h Edition, ndia		
1. <b>2.</b> <b>REFI</b> 1. 2.	Bradley CarrollDale Ostlie"IntroductionPearson, 2013.Stephen E. Schneider, Thomas T. Arny, , "McGraw-Hill Education, 2014.ERENCE BOOKDinah L. Moche, "Astronomy: A Self-TeachEdition, 2010.Linda S. Sparke, and John S. Gallagher , "C2 nd edition, Cambridge University Press, 20	on to Modern A "Pathways to A hing Guide", 7 th Galaxies in the U 07.	Astrophysics", 2 stronomy ", 4 ^t edition Wiley I Iniverse: An Intr	2 nd edition, ^h Edition, ndia roduction",		
1. <b>2.</b> <b>REFI</b> 1. 2.	Bradley Carroll , Dale Ostlie , "Introduction Pearson, 2013.Stephen E. Schneider, Thomas T. Arny, , " McGraw-Hill Education, 2014.ERENCE BOOK Dinah L. Moche , "Astronomy: A Self-Teach Edition, 2010.Linda S. Sparke, and John S. Gallagher , "C 2 nd edition, Cambridge University Press, 20 Matts Roos, "Introduction to Cosmology", "	on to Modern A "Pathways to A hing Guide", 7 th Galaxies in the U 07.	Astrophysics", 2 stronomy ", 4 ^t edition Wiley I Iniverse: An Intr	2 nd edition, ^h Edition, ndia roduction",		
1. <b>2.</b> <b>REFI</b> 1. 2. 3.	<ul> <li>Bradley Carroll , Dale Ostlie , "Introduction Pearson, 2013.</li> <li>Stephen E. Schneider, Thomas T. Arny, , " McGraw-Hill Education, 2014.</li> <li>ERENCE BOOK</li> <li>Dinah L. Moche , "Astronomy: A Self-Teach Edition, 2010.</li> <li>Linda S. Sparke, and John S. Gallagher , "C 2nd edition, Cambridge University Press, 20 Matts Roos, "Introduction to Cosmology", 2 2003.</li> </ul>	on to Modern A "Pathways to A hing Guide", 7 th Galaxies in the U 07. 3rdEdition, John	Astrophysics", 2 stronomy ", 4 ^t edition Wiley I Iniverse: An Intr n Wiley andSons	2 nd edition, ^h Edition, ndia roduction", s Ltd,		
1. <b>2.</b> <b>REFI</b> 1. 2. 3.	Bradley Carroll , Dale Ostlie , "IntroductionPearson, 2013.Stephen E. Schneider, Thomas T. Arny, , "McGraw-Hill Education, 2014.ERENCE BOOKDinah L. Moche , "Astronomy: A Self-TeachEdition, 2010.Linda S. Sparke, and John S. Gallagher , "O2 nd edition, Cambridge University Press, 20Matts Roos, "Introduction to Cosmology", 12003.Richard A. Matzner, Dictionary of Geophysic	on to Modern A "Pathways to A hing Guide", 7 th Galaxies in the U 07. 3rdEdition, John	Astrophysics", 2 stronomy ", 4 ^t edition Wiley I Iniverse: An Intr n Wiley andSons	2 nd edition, ^h Edition, ndia roduction", s Ltd,		
1. <b>2.</b> <b>REFI</b> 1. 2. 3. 4.	Bradley Carroll , Dale Ostlie , "Introduction Pearson, 2013.Stephen E. Schneider, Thomas T. Arny, , " McGraw-Hill Education, 2014.ERENCE BOOKDinah L. Moche , "Astronomy: A Self-Teach Edition, 2010.Linda S. Sparke, and John S. Gallagher , "C 2 nd edition, Cambridge University Press, 20 Matts Roos, "Introduction to Cosmology", 2003. Richard A. Matzner, Dictionary of Geophyse edition, CRC Press, 2001.	on to Modern A "Pathways to A hing Guide", 7 th Galaxies in the U 07. 3rdEdition, John	Astrophysics", 2 stronomy ", 4 ^t edition Wiley I Iniverse: An Intr n Wiley andSons	2 nd edition, ^h Edition, ndia roduction", s Ltd,		
1. 2. REFI 1. 2. 3. 4. E RE	Bradley Carroll , Dale Ostlie , "IntroductionPearson, 2013.Stephen E. Schneider, Thomas T. Arny, , "McGraw-Hill Education, 2014.ERENCE BOOKDinah L. Moche , "Astronomy: A Self-TeachEdition, 2010.Linda S. Sparke, and John S. Gallagher , "O2 nd edition, Cambridge University Press, 20Matts Roos, "Introduction to Cosmology", 12003.Richard A. Matzner, Dictionary of Geophysic	on to Modern A "Pathways to A hing Guide", 7 th Galaxies in the U 07. 3rdEdition, John sics, "Astrophys	Astrophysics", 2 stronomy ", 4 ^t edition Wiley I Iniverse: An Intr n Wiley andSons	2 nd edition, ^h Edition, ndia coduction", s Ltd, ny," 1 st		

1. S. Bharadwa, Department of Physics & Meteorology IIT Kharagpur, "Astrophysics & Cosmology", National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/courses/115/105/115105046/</u>

			wiapp	nng or			3			
	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
	CO1	3	2	0	3	2	2	1	1	
	CO2	3	2	0	2	2	2	0	1	
	CO3	3	2	0	2	2	2	3	1	
	CO4	3	2	0	2	2	2	1	2	
	CO5	3	2	0	2	2	2	1	2	
	Total	15	10		10	10	10	5	7	
	Scaled to 1, 2, 3	3	2		2	2	2	1	2	
0 - No rel	ation	1 – Lo	w relati	on	2 - N	Iedium	relatio	n	3 – Hig	gh relation

# Mapping of COs with POs

Co	ourse Co	ode	ХРН605А	Р	С		
Co	urse Na	me	INTRODUCTION TO	3	1	0	4
С	Р	А	MICROCONTROLLER	L	Т	Р	Н
3	0	0		3	1	0	4
	RSE OU success		DOMA	AIN	LEV	EL	
CO1			erstand, construct and report embedded and development	Cognit Affect		Underst Remem Apply	bering,
CO2			e architecture, Timing diagrams and eles of 8051	Cognitive Understandi			anding
CO3	types		e types of addressing modes, Instruction inderstand the basic concepts of				5
CO4		rstand ir D/A, tim	terfacing design of peripherals like I/O, her etc.	O, Understandin Cognitive g Affective Set Responding			; et
CO5		rstand c external	ommunication protocols and interfacing devices	nunication protocols and interfacing Cognitive Und			

## UNIT – I: INTRODUCTION TO EMBEDDED SYSTEMS AND DESIGN ANALYSIS

9+3

Complex systems and microprocessors – Embedded system design process – Formalism for system design-ARM processor – Architecture, Instruction sets and programming. CPU: Programming input and output – Coprocessor – Memory system mechanism– Memory devices – I/O devices – Component interfacing – Design with microprocessors – Development and Debugging – Program design – Model of programs – Assembly and Linking – Basic compilation techniques – Analysis and optimization of execution time, power, energy, program size – Program validation and testing

# UNIT - II: THE 8051 ARCHITECTURE9+3Internal Block Diagram, CPU, ALU, address, data and control bus, working registers, SFRs,<br/>Clock and RESET circuits, Stack and Stack Pointer, Program Counter, I/O ports, Memory<br/>Structures, Data and Program Memory, Timing diagrams and Execution Cycles

UNIT – III: INSTRUCTION SET AND PROGRAMMING	9+3				
Addressing modes: Introduction, Instruction syntax, Data types, Subroutines	Immediate				
addressing, Register addressing, Direct addressing, Indirect addressing, Relative a	addressing,				
indexed addressing, Bit inherent addressing, bit direct addressing. 8051 Instru	uction set,				
Instruction timings. Data transfer instructions, Arithmetic instructions, Logical in	nstructions,				
Branch instructions, Subroutine instructions, Bit manipulation instruction. Assembl	y language				
programs, C language programs. Assemblers and compilers. Programming and Debuggin	ng tools.				
UNIT – IV: MEMORY AND I/O INTERFACING	9+3				
Memory and I/O expansion buses, control signals, memory wait states. Interfacing of	peripheral				
devices such as General Purpose I/O, ADC, DAC, timers, counters, memory devices.					
UNIT – V: INTERFACING MICROCONTROLLER	9+3				

Synchronous and Asynchronous Communication. RS232, SPI, I2C.Introduction and interfacing to

protocols like Blue-tooth and Zig-bee LED, LCD and keyboard interfacing. Stepper motor interfacing, DC Motor interfacing, sensor interfacing.

	LECTURE	TUTORIAL	TOTAL
HOURS	45	15	60

## **TEXT BOOKS**

- 1. R. Kamal, "Embedded System", McGraw Hill Education, Third Edition, 2017.
- 2. John H. Davies," MSP430 Microcontroller Basics", Elsevier Ltd., 2008.
- 3. M.A.Mazidi, J.G.Mazidi and R.D.McKinlay, "The 8051 Microcontroller and Embedded

Systems: Using Assembly and C", Pearson Education, 2007.

4. K.J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.

## **REFERENCE BOOK**

1. K.UmaRao, AndhePallavi, "The 8051 Microcontrollers, Architecture and programming and Applications", Pearson Education, 2009.

2. I. S. MacKenzie and R.C.W.Phan., "The 8051 Microcontroller.(4/e)", Pearson education, 2008.

3. Ajay.V. Deshmukh "Microcontrollers and Applications", TMGH, 2005.

#### **E REFERENCES**

SANTANU CHATTOPADHYAY, Department of Electronics and Electrical 1. Engineering, Kharagpur, "MICROPROCESSORS AND Communication IIT MICROCONTROLLERS", National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/courses/108/105/108105102/

		Mapp	ing of	COs w	ith PO	S		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8
CO1	1	0	2	0	0	0	0	0
CO2	1	2	1	3	1	0	0	0
CO3	0	0	0	0	0	1	2	0
CO4	1	1	2	2	1	0	0	0
CO5	1	2	2	1	0	0	3	0
Total	4	5	7	6	2	1	5	0
Scaled to 1, 2, 3	1	1	2	2	1	1	1	
ion 1	l – Lov	v relatio	on	$2 - N_{2}$	Iedium	relatio	n	3 – H

0 - No relation

- High relation

Cours	se Code		XPH605B	L	Т	Р	С
Cour	se Coue			<b>L</b> 3			4
			QUANTUM MECHANICS		1 T	0 D	_
C	P	A		L	T	P	H
3	0	0		3	1	0	4
COU	RSE OU	TTCO	MIEC				
			ompletion of this course students would able	DON	IAIN	LE	VEL
to			-				
CO1	Recall	the d	ual nature of light waves.	Cogi	nitive		ember, rstand
<b>aaa</b>	Explai	in the	fundamental concepts of quantum	~			ember,
CO2	mecha			Cogi	nitive		rstand
CO3	Descri	be the	e one dimensional problems in quantum	Com	nitive	Unde	rstand
	mecha						pply
CO4	Under	stand	the quantum theory in hydrogen atom.	Cogi	nitive		rstand
~~-				a		Unde	rstand
CO5	Explai	n the	effect of field of atoms.	Cogi	nitive		, mber.
UNIT	 		NATURE OF MATTER				<u>1110er.</u> +3
			t of matter waves – De Broglie wavelength –	- Wave	veloci		
			Broglie waves – Experimental study of ma				
			t - G.P. Thomon's experiment for verifying				
	-		ainty Principle – Electron microscope –Gamm	-	-		
			CS OF QUANTUM MECHANICS				9+3
			wave Mechanics - Development of Schrodin	ger wa	ve equ	ation –	Time
indepe	endent a	nd de	pendent forms of equations - Properties of w	vave fu	nction -	- Orth	ogonal
			we function Eigen function and eigen values	s –Exp	ectation	n value	es and
	fest's the						
		QUA	<b>NTUM MECHANICS IN ONE DIMENSIO</b>				
	article S				<u>C1</u>		9+3
			on and Plane Wave Normalization – Particle in		of lengt		
Eigen	value ar	nd nor	on and Plane Wave Normalization – Particle in malized Eigen function.	a box (	-	hL-I	Energy
Eigen Barri	value ar er penet	nd non tratio	on and Plane Wave Normalization – Particle in malized Eigen function. n problems: Finite potential well – Tunnel ef	a box offect –	Scanni	h L – F ng Tun	Energy neling
Eigen Barrie Micro	value ar er penet scope (]	<mark>nd non</mark> t <b>ratio</b> Princi	on and Plane Wave Normalization – Particle in malized Eigen function. n problems: Finite potential well – Tunnel ef ple and Working). Simple Harmonic Oscil	a box of ffect – <b>lator</b> :	Scannii Classic	h L – H ng Tun al pict	Energy neling ure of
Eigen Barrie Micro Harmo	value ar er penet scope (1 onic Osc	<mark>nd non</mark> t <b>ratio</b> Princi	on and Plane Wave Normalization – Particle in malized Eigen function. n problems: Finite potential well – Tunnel ef	a box of ffect – <b>lator</b> :	Scannii Classic	h L – H ng Tun al pict	Energy neling ure of
Eigen Barrie Micro Harmo point o	value an er penet scope (I onic Osc energy.	nd non t <b>ratio</b> Princi cillato	on and Plane Wave Normalization – Particle in malized Eigen function. <b>n problems:</b> Finite potential well – Tunnel ef ple and Working). <b>Simple Harmonic Oscil</b> r – Quantum Harmonic Oscillator wave funct	a box of ffect – lator: ion – E	Scannii Classic Energy	h L – F ng Tun al pict levels	Energy neling ure of - Zero
Eigen Barrie Micro Harmo point o UNIT	value an er penet scope (1 onic Osc energy. - IV:	nd non tratio Princi cillato QUA	on and Plane Wave Normalization – Particle in malized Eigen function. n problems: Finite potential well – Tunnel ef ple and Working). Simple Harmonic Oscil r – Quantum Harmonic Oscillator wave funct: NTUM THEORY OF HYDROGEN–LIKE	a box of ffect – lator: ion – E	Scannin Classic Inergy	h L – F ng Tun al pict levels -	Energy neling ure of – Zero 9+3
Eigen Barrie Micro Harmo point o UNIT Schröd	value ar er penet scope (l onic Osc energy. - IV: dinger's	nd nor tratio Princi cillato QUA Equa	on and Plane Wave Normalization – Particle in malized Eigen function. <b>n problems:</b> Finite potential well – Tunnel ef ple and Working). Simple Harmonic Oscill r – Quantum Harmonic Oscillator wave funct NTUM THEORY OF HYDROGEN–LIKE tion for the Hydrogen Atom (Spherical Polar C	a box of ffect – lator: ion – E ATOM	Scannin Classic Chergy	h L – F ng Tun al pict levels - Separa	Energy neling ure of - Zero 9+3 tion of
Eigen Barrie Micro Harmo point o UNIT Schröo Variat	value ar er penet scope (1 onic Osc energy. - IV: dinger's oles-Qua	nd non tratio Princi cillato QUA Equa antum	on and Plane Wave Normalization – Particle in malized Eigen function. <b>n problems:</b> Finite potential well – Tunnel ef ple and Working). Simple Harmonic Oscill r – Quantum Harmonic Oscillator wave funct NTUM THEORY OF HYDROGEN–LIKE tion for the Hydrogen Atom (Spherical Polar C Numbers: Principle –Orbital and Magnetic –	a box of ffect – lator: ion – E ATOM Coordin – shape	Scannin Classic Chergy	h L – F ng Tun al pict levels - Separa	Energy neling ure of - Zero 9+3 tion of
Eigen Barrie Micro Harmo point o UNIT Schrö Variat densit	value ar er penet scope (1 onic Osc energy. - IV: dinger's oles-Qua ies for g	nd non tratio Princi cillato QUA Equa antum round	on and Plane Wave Normalization – Particle in malized Eigen function. <b>n problems:</b> Finite potential well – Tunnel ef ple and Working). Simple Harmonic Oscill r – Quantum Harmonic Oscillator wave funct NTUM THEORY OF HYDROGEN–LIKE tion for the Hydrogen Atom (Spherical Polar C	a box of ffect – lator: ion – E ATOM Coordin – shape	Scannin Classic Chergy	h L – F ng Tun al pict levels - Separa e prob	Energy neling ure of - Zero 9+3 tion of
Eigen Barrie Micro Harmo point o UNIT Schröo Variat densit	value ar er penet scope (1 onic Osc energy. - IV: dinger's oles-Qua ies for g	nd non tratio Princi cillato QUA Equa antum round EFFF	on and Plane Wave Normalization – Particle in malized Eigen function. <b>n problems:</b> Finite potential well – Tunnel ef ple and Working). Simple Harmonic Oscill r – Quantum Harmonic Oscillator wave function <b>NTUM THEORY OF HYDROGEN–LIKE</b> tion for the Hydrogen Atom (Spherical Polar Constant) Numbers: Principle –Orbital and Magnetic – states– Radiative Transitions and selection rul	a box of ffect – lator: ion – E ATOM Coordin – shape es.	Scannin Classic Energy MS (AS) (ates) – es of th	h L – F ng Tun al pict levels - Separa e prob	energy neling ure of - Zero 9+3 tion of ability 9+3
Eigen Barrie Micro Harme point o UNIT Schröe Variat densit UNIT Electro Mome	value ar er pener scope (1 onic Osc energy. - IV: dinger's oles-Qua ies for g - V: on ang entum-	nd non tratio Princi cillato QUA Equa antum round EFFE ular Larmo	on and Plane Wave Normalization – Particle in malized Eigen function. n problems: Finite potential well – Tunnel ef ple and Working). Simple Harmonic Oscill r – Quantum Harmonic Oscillator wave function NTUM THEORY OF HYDROGEN–LIKE tion for the Hydrogen Atom (Spherical Polar Constant) Numbers: Principle –Orbital and Magnetic – states– Radiative Transitions and selection rul CCTS OF FIELDS ON ATOMS momentum– Space quantization–Electron pr's Theorem–Pauli Exclusion Principle – Syn	a box of ffect – lator: ion – E ATON Coordin – shape es. Spin hmetric	Scannin Classic Inergy AS (AS) (ates) – (as of the and S) (and A)	h L – F ng Tun al pict levels - Separa e prob pin A ntisym	energy neling ure of - Zero 9+3 tion of ability 9+3 ngular metric
Eigen Barrie Micro Harmo point o UNIT Schröo Variat densit UNIT Electro Mome Wave	value ar er penet scope (1 onic Osc energy. - IV: dinger's oles-Qua ies for g - V: on ang entum- 1 Functio	nd non tratio Princi cillato QUA Equa antum round EFFF ular Larmo ns–Sj	on and Plane Wave Normalization – Particle in malized Eigen function. n problems: Finite potential well – Tunnel ef ple and Working). Simple Harmonic Oscill r – Quantum Harmonic Oscillator wave funct NTUM THEORY OF HYDROGEN–LIKE tion for the Hydrogen Atom (Spherical Polar C Numbers: Principle –Orbital and Magnetic – states– Radiative Transitions and selection rul CCTS OF FIELDS ON ATOMS momentum– Space quantization–Electron or's Theorem–Pauli Exclusion Principle – Syn bin Magnetic Moment and Energy– Stern–Ger	a box of ffect – lator: ion – E ATON Coordin – shape es. Spin nmetric lach E	Scannin Classic Inergy (IS (ates) – es of th and S (and A xperime	h L – F ng Tun al pict levels - Separa e prob pin A ntisym ent – N	Energy neling ure of - Zero 9+3 tion of ability 9+3 ngular metric Iormal
Eigen Barrie Micro Harmo point o UNIT Schröo Variat densit UNIT Electro Mome Wave Zeema	value ar er penel scope (1 onic Osc energy. - IV: dinger's oles–Qua ies for g - V: on ang entum– 1 Functio an Effec	nd non tratio Princi cillato QUA Equa antum round EFFE ular Larmo ns—Sp t — N	on and Plane Wave Normalization – Particle in malized Eigen function. n problems: Finite potential well – Tunnel ef ple and Working). Simple Harmonic Oscill r – Quantum Harmonic Oscillator wave funct: NTUM THEORY OF HYDROGEN–LIKE tion for the Hydrogen Atom (Spherical Polar C Numbers: Principle –Orbital and Magnetic – states– Radiative Transitions and selection rul CTS OF FIELDS ON ATOMS momentum– Space quantization–Electron or's Theorem–Pauli Exclusion Principle – Syn pin Magnetic Moment and Energy– Stern–Ger lagnetic dipole moment and energy – spin–or	a box of ffect – lator: ion – E ATON Coordin – shape es. Spin nmetric flach Est bit cou	Scannin Classic Inergy (IS (ates) – (ates) – (ates) – (ates) – (ates) – (at	h L – F ng Tun al pict levels - Separa e prob pin A ntisym ent – N und En	energy neling ure of - Zero 9+3 tion of ability 9+3 ngular metric Iormal ergy –
Eigen Barrie Micro Harmo point o UNIT Schröe Variat densit UNIT Electro Mome Vave Zeema Lande	value ar er pener scope (1 onic Osc energy. - IV: dinger's oles-Qua ies for g - V: on ang entum-1 Functio an Effec	$\frac{\mathbf{d} \ \mathbf{nor}}{\mathbf{tratio}}$ $\frac{\mathbf{QUA}}{\mathbf{Equa}}$ $\frac{\mathbf{QUA}}{\mathbf{Equa}}$ $\frac{\mathbf{round}}{\mathbf{EFFE}}$ $\mathbf{ular}$ $\mathbf{Larmon}$ $\mathbf{ns}-\mathbf{Sp}$ $\mathbf{t} - \mathbf{N}$ $\mathbf{or} - \mathbf{c}$	on and Plane Wave Normalization – Particle in malized Eigen function. <b>n problems:</b> Finite potential well – Tunnel ef ple and Working). Simple Harmonic Oscill r – Quantum Harmonic Oscillator wave funct <b>NTUM THEORY OF HYDROGEN–LIKE</b> tion for the Hydrogen Atom (Spherical Polar C Numbers: Principle –Orbital and Magnetic – states– Radiative Transitions and selection rul <b>CTS OF FIELDS ON ATOMS</b> momentum– Space quantization–Electron or's Theorem–Pauli Exclusion Principle – Syn bin Magnetic Moment and Energy– Stern–Ger lagnetic dipole moment and energy – spin–or pualitative discussion of Fine structure – Total	a box of ffect – lator: ion – E ATON Coordin – shape es. Spin nmetric flach Est bit cou	Scannin Classic Inergy (IS (ates) – (ates) – (ates) – (ates) – (ates) – (at	h L – F ng Tun al pict levels - Separa e prob pin A ntisym ent – N und En	energy neling ure of - Zero 9+3 tion of ability 9+3 ngular metric Iormal ergy –
Eigen Barrie Micro Harmo point o UNIT Schröe Variat densit UNIT Electro Mome Vave Zeema Lande	value ar er pener scope (1 onic Osc energy. - IV: dinger's oles-Qua ies for g - V: on ang entum-1 Functio an Effec	$\frac{\mathbf{d} \ \mathbf{nor}}{\mathbf{tratio}}$ $\frac{\mathbf{QUA}}{\mathbf{Equa}}$ $\frac{\mathbf{QUA}}{\mathbf{Equa}}$ $\frac{\mathbf{round}}{\mathbf{EFFE}}$ $\mathbf{ular}$ $\mathbf{Larmon}$ $\mathbf{ns}-\mathbf{Sp}$ $\mathbf{t} - \mathbf{N}$ $\mathbf{or} - \mathbf{c}$	on and Plane Wave Normalization – Particle in malized Eigen function. n problems: Finite potential well – Tunnel ef ple and Working). Simple Harmonic Oscill r – Quantum Harmonic Oscillator wave funct NTUM THEORY OF HYDROGEN–LIKE tion for the Hydrogen Atom (Spherical Polar C Numbers: Principle –Orbital and Magnetic – states– Radiative Transitions and selection rul CCTS OF FIELDS ON ATOMS momentum– Space quantization–Electron or's Theorem–Pauli Exclusion Principle – Syn bin Magnetic Moment and Energy– Stern–Ger Iagnetic dipole moment and energy – spin–or pualitative discussion of Fine structure – Total pasic concept only).	a box of ffect – lator: ion – E ATON Coordin – shape es. Spin nmetric lach E bit cou l angul	Scannin Classic Inergy (IS (ates) – es of th and S and A xperime ar mon	h L – F ng Tun al pict levels - Separa e prob pin A ntisym ent – N and En-	Energy neling ure of – Zero 9+3 tion of ability 9+3 ngular metric lormal ergy – –L–S
Eigen Barrie Micro Harmo point o UNIT Schröe Variat densit UNIT Electro Mome Vave Zeema Lande	value ar er pener scope (1 onic Osc energy. - IV: dinger's oles-Qua ies for g - V: on ang entum-1 Functio an Effec	$\frac{\mathbf{d} \ \mathbf{nor}}{\mathbf{tratio}}$ $\frac{\mathbf{QUA}}{\mathbf{Equa}}$ $\frac{\mathbf{QUA}}{\mathbf{Equa}}$ $\frac{\mathbf{round}}{\mathbf{EFFE}}$ $\mathbf{ular}$ $\mathbf{Larmon}$ $\mathbf{ns}-\mathbf{Sp}$ $\mathbf{t} - \mathbf{N}$ $\mathbf{or} - \mathbf{c}$	on and Plane Wave Normalization – Particle in malized Eigen function. n problems: Finite potential well – Tunnel ef ple and Working). Simple Harmonic Oscill r – Quantum Harmonic Oscillator wave funct NTUM THEORY OF HYDROGEN–LIKE tion for the Hydrogen Atom (Spherical Polar C Numbers: Principle –Orbital and Magnetic – states– Radiative Transitions and selection rul CTS OF FIELDS ON ATOMS momentum– Space quantization–Electron or's Theorem–Pauli Exclusion Principle – Syn bin Magnetic Moment and Energy– Stern–Ger lagnetic dipole moment and energy – spin–or pualitative discussion of Fine structure – Total	a box of ffect – lator: ion – E ATON Coordin – shape es. Spin nmetric lach E bit cou l angul	Scannin Classic Inergy (IS (ates) – (ates) – (ates) – (ates) – (ates) – (at	h L – F ng Tun al pict levels - Separa e prob pin A ntisym ent – N and En-	energy neling ure of - Zero 9+3 tion of ability 9+3 ngular metric Iormal ergy –

#### **TEXT BOOKS**

- 1. Arthur Beiser, Shobhit Mahajan, "Concepts of Modern Physics", 6th edition, McGraw Hill Education, 2009.
- 2. K Venkatesan P M Mathews, "A Textbook Of Quantum Mechanics", 2nd Edition, Mc Graw Hill India, 2010.

# **REFERENCE BOOK**

- 1. J. Griffiths David, "Introduction to quantum mechanics", 2nd edition, Pearson Education, 2015.
- 2. Leonard I. Schiff, "Quantum Mechanics", McGraw-Hill Education / Asia, 1969.

#### **E REFERENCES**

1. P. RAMADEVI Department of Physics, IIT Bombay, "QUANTUM MECHANICS I'', National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/courses/115/101/115101107/

## Mapping of COs with POs

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	1	3	3	3	0	1
CO2	3	2	2	2	3	2	1	2
CO3	3	2	1	2	3	2	3	2
CO4	3	2	1	2	3	2	1	2
CO5	3	2	0	2	3	2	0	2
Total	15	10	5	11	15	11	5	9
Scaled to 1, 2, 3	3	2	1	3	3	3	1	2

0 - No relation 1 - Low relation 2 - Medium relation 3 - High relation

	YPH20	)1	MATHEMATICAL METHODS OF PH	YSICS - II	L 4	Т 1	P 0	C 5
C 3	P 0.75	A 0.25			L 4	Т 1	P 0	Н 5
			Basic knowledge in differential equations.					·
On th	ne succ	esstul c	ompletion of the course, students will be able t	0				
			Course Outcome	Domain			Leve	el
<b>CO1</b>			<i>e</i> the physical system using group and tensors.	Cognitive			owle Analy	<b>U</b>
CO2		s <i>ify</i> dif olve pro	ferential equations and choose right method blems.	Cognitive	(		owle preh	dge, ension
CO3	App phys	• •	al differential equation to solve problems in	Cognitive, Psychomotor			owle alysis	dge, s, Set
<b>CO4</b>			the recurrence relation of Legendre's equation and Bessel's differential equation.	Cognitive		Kn	owle	edge
CO5			the Gamma function and Obtain the relation of Beta function.	Cognitive			rcept lowle	

UNIT - I : Grou	ip Theory & Tensor Anal	ysis	12+3
isomorphism of groups- SO(3) groups and their Einstein's summation con	ons of a group-element representation of groups- representations. Tensor: nvention covariant and cor skew symmetric tensors - t	reducible and irreducible Notations and convention ntravariant and mixed tens	representations SU(2), ns in tensor analysis –
•	nary Differential Equation		12+3
ordinary second order di	uations of second order of ferential with variable conded power series method	efficients and their solution	
UNIT - III : Part	ial Differential Equations	(PDEs)	12+3
diffusion and wave equ dimensional Laplace, dif simple practical problems		polar coordinates – Solu	tion of two and three riable method - Solving
<b>^</b>	ial Functions equation: Legendre poly		12+3
equation: Bessel's polyn Bessel's polynomials; He recurrence relation; Lag Recurrence Formulae–ort <b>UNIT - V :</b> Gam Definition of Gamma and of (1/2) and graph of the Beta functions – Relation	formula–orthogonality of omial –generating function ermite differential equation hogonal properties of Lagu <b>ma, Beta and Error Func</b> d Beta functions- Fundame Gamma function- Transfor n between Beta and Gam function / probability integr	ns-Recurrence Formulae- n- Hermite polynomials - on: Laguerre's polynomial terre's polynomials etions ental properties of Gamma functions- Reduction	erthogonal properties of - generating functions – 1 –generating function– 12+3 a functions – Evaluation ion - Different forms of
LECTURE	TUTORIAL	PRACTICAL	TOTAL
60	15	0	75
<b>TEXT BOOKS:</b>			
1. Mathematical Phys	sics - H.K.Dass and R.Verr	na. S. Chand & Co Pvt Lto	l., 1997.
2. Mathematical Phys	sics - B.D. Gupta, Vikas, P	ublishing House Pvt Ltd., 1	New Delhi; 2003.
3. Mathematical Phys	sics - Satya Prakash, Sultar	n Chand & Sons; 2014.	
<b>REFERENCE BOOKS</b>	:		
1. Topics in Mathem	atical Physics, Parthasarath	y H, Ane Books Pvt. Ltd,	2007.
2. Advanced Enginee	ring Mathematics, Kreyszi	g, Wiley Eastern Ltd, 1993	3.

										L	Т	Р		C
	YPH	103								4	1	0		5
						ELECT	RONI	CS						
С	Р	Α								L	Т	P		H
3	0.75	0.25								4	1	0		5
	-	UISITE:	Bas	sic kno	owledg	ge in act	tive a	id passi	ive compon	ents in	n a	circu	ıit	and
		ictors.	1			. 1		1 11						
On the	he suc	cessful co	ompleti	ion of th	ne cou	rse, studer	nts will	be able	to					
				urse Oi					Domair	1		Leve	el	
CO1	dic					s of varie th their <i>aj</i>			Cognitiv	ve i		iowle Analy	-	>,
CO2	ari	<i>nstruct</i> thmetic o put.			<u> </u>	p-amp fo cuits for a		0	Cognitiv	/e	Kn Com	owle preh	-	
CO3	Ex	•		-	-	ion and <i>pe</i> s.	erform	nce of	Cognitiv Psychomo			owle alysis	0	·
CO4	sys	stems.	•			d <i>design</i> di		C	Cognitiv		Kr	nowle	edge	e
CO5	tec					s well as a ut and Cha			Cognitiv	ve .		rcept		
UNI	T - I :		Semic	onduct	or De	vices							12+	.3
PN j	unctio	on diodes	- Vara	actor di	iode -	Schottky	diode	- tunnel	diode - Gui	nn dioc	le -op	otoele	ectr	onic
									es - Depletio					
							axation	oscillato	or - Power co	ntrol D	IAC			
	T - II			ational									12+	
integ curre	grating ent an	and diffed and current	erential to vol	l circuit tage co	s - log nversi	g and antiloons - activ	log amp ve filte	olifiers - rs: low j	rting amplif op-amp as a pass, high pa (Analog com	i compa ass, bai	rator	- vo	ltag	ge to
v	T - II					nverters			0	T	/		12+	.3
Schn conv	nitt ti ersior	igger – (DAC) -	Voltag - Weig	ge contraction contracticon contraction contraction contraction contraction contraction co	rol os sistor I	cillator –	Phase binary	-locked	oth and squ loops B dder DAC	asic D	igital	to	An	alog
UNI	T - IV	:	Digita	l Syste	ms								12+	-3
Digit	tal co	nparator	– Parit	ty gene	rator/c	hecker –	Data s	elector -	- BCD to Se	even se	gmei	nt de	cod	er –
						-	-		serial-out,		-			
•				•	-		ıs, asyn	chronou	s, ring and u	up/dow	n (us	ing n	nod	. 10)
		Multiple			-								10	2
	T - V					I IC Time							12+	
mono conn	olithic ectior	resistors s – Cha	, diode rge co	s, trans upled c	istors, levice	inductors - Applic	and ca	pacitors of CCE	ng impurity – Circuit lay Ds 555 tin ions and pul	yout – <b>(</b> mer: D	Conta escrij	cts a ption	nd i	inter
		CTURE	11		UTO			PRAC	· · · · ·			TAL		
		60			15			<u> </u>		<u> </u>		75	-	
		~~				-			-	1				

TEX	Г BOOKS:
1.	Integrated Electronics - Millman and Halkias, TMH, 2017.
2.	Text Book of Electronics - S. Chattopadhyay, New Central Book Agency P.Ltd, 2012.
REFI	ERENCE BOOKS :
1.	Electronic Devices and Circuits - Anil K. Maini and Varsha Agarwal, Wiley Publications, 2009.
2.	Electronic principles - Malvino, TMH, 2015.
3.	Op-Amps & Linear Integrated Circuits - R.A. Gayakwad, Printice Hall, New Delhi, 1999.
4.	Linear Integrated Circuit - D. Roy Choudhury and S.B. Jain, New Age International
	Publications, New Delhi, 2010.
	Mapping of Course Outcomes (CO) with Programme Outcomes (PO):

= : =	<u></u>				• • • • • • • • • • • • • • • • • • • •				) -	
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	<b>PO8</b>	PS009	PSO10
CO1	3	2	1	1	2	2	3	3	0	1
CO2	3	3	2	1	1	2	3	3	0	1
CO3	3	2	3	1	2	2	3	3	0	1
CO4	3	2	3	1	2	2	3	3	0	1
CO5	3	3	1	1	3	2	3	3	0	1

	H105C	INSTRUMENTAL METHODS OF AN	ALYSES	L 4	T 0	P 0	C 4
C         I           3         0.1			-	L 4	<b>1</b> 0	Р 0	н 4
-		Fundamental knowledge on measuring instrume	ents.				
On the s	successful co	ompletion of the course, students will be able to					
		Course Outcome	Domain			Leve	el
<b>CO1</b>	<i>Explain</i> thanalysis.	ne types of errors in experimental methods of	Cognitive			owle naly	<b>•</b> •
CO2	methods o and differe	ad the principle and working of thermal f analysis such as thermogravimetric analysis ential scanning calorimetric analysis and apply al analysis	Cognitive			owle prehe	dge, ension
CO3		and <i>apply</i> X-ray diffraction method for crystalline materials.	Cognitive, Psychomotor			owle lysis	dge, , Set
<b>CO4</b>		ninescence methods and electron microscopy or material analysis and their application.	Cognitive		Kn	owle	edge
CO5	<i>Learn</i> the	various applications of nanoparticles.	Cognitive			rcept owle	
UNIT -	I:	Errors and Analysis of Experimental Data					12
• -		Mean, variance and standard deviation, standar s - Chi square test. Experimental Stress Analys					

high t											
	temperature	strain ga	uge tech	iniques -	- photoel	asticity a	nd holog	raphy.			
UNIT	Г-ІІ:	The	ermal A	nalysis							12
- diff capac	duction - the ferential scan city measures	ning cal ments -	orimetri determin	c - instru- nation of	umentatio	on - spec chemical	ific heat				-
	principles - <b>F - III :</b>		point de ay Anal		ion and a	anarysis.					12
ndex hara	e Crystal a ting - unkno cterization - ay fluoresce	own and lattice r	phase inismatch	identifica 1 - tetrag	ation - c	louble a	nd four	crystal	Diffrac	tometer	-
JNIT	Γ - IV :	Opt	tical Me	thods ar	nd Elect	ron Micr	oscopy				12
J <b>NIT</b> Iall I	- Nanolithog <b>F - V :</b> Effect - carr	Ele ier densi	ty - resi	-	two pro		-		ds - sca	attering	12 nechanism
	ler pauw met rity concentr						-				
	LECTUR	E		TUTO	RIAL	]	PRACT	ICAL		ТС	TAL
	60			0			0				60
1. 2.	T BOOKS: Electron n Publishers, Modern M 1971. ERENCE B	London etallogra	, 1979. phic Teo								
KEFI											
1.	Instrument										
	Electron M Science Pu	/licrosco blishers,	py and Londor	Microan 1, 1979.	nalysis o	of Crysta	lline m	aterials	- Stra	dling, R	
1.	Electron M Science Pu	/licrosco blishers,	py and Londor	Microan 1, 1979.	nalysis o		lline m	aterials	- Stra	dling, R	
1.	Electron M Science Pu Ma Course Outcome CO1	Aicrosco blishers, apping o PO1 3	py and Londor of Cours PO2 3	Microan n, 1979. Se Outco PO3 1	nalysis o mes (CC PO4 1	of Crysta D) with P PO5 3	rogram Program PO6 1	aterials me Out PO7 2	- Stra tcomes PO8 3	dling, R (PO): PSO9 0	PSO10
1.	Electron M Science Pu Ma Course Outcome CO1 CO2	Aicrosco blishers, apping o PO1 3 2	py and Londor of Cours PO2 3 3 3	Microan a, 1979. Se Outco PO3 1 1	nalysis o mes (CC PO4 1 1	of Crysta D) with P PO5 3 3	rogram PO6 1 1	me Out PO7 2 2	- Stra tcomes PO8 3 3	dling, R (PO): PSO9 0 0	PSO10
1.	Electron M Science Pu Ma Course Outcome CO1	Aicrosco blishers, apping o PO1 3	py and Londor of Cours PO2 3	Microan n, 1979. Se Outco PO3 1	nalysis o mes (CC PO4 1	of Crysta D) with P PO5 3	rogram Program PO6 1	aterials me Out PO7 2	- Stra tcomes PO8 3	dling, R (PO): PSO9 0	PSO10

				L	т	D	C
<b>YPH201</b>			-	4	1	0	5
1111201		MATHEMATICAL METHODS OF PH	VSICS - II	-		V	5
C P	A			L	Т	Р	Н
	.25		-	4	1	0	5
		Basic knowledge in differential equations.		<u> </u>	-	v	
		ompletion of the course, students will be able t	0				
		Course Outcome	Domain			Leve	1
CO1 Charac operation		<i>e</i> the physical system using group nd tensors.	Cognitive			owle analy	<b>.</b>
CO2 Classify to solve		ferential equations and choose right method blems.	Cognitive			owle prehe	dge, ension
cos physics		al differential equation to solve problems in	Cognitive, Psychomotor			owle alysis	<b>.</b>
		the recurrence relation of Legendre's equation and Bessel's differential equation.	Cognitive		Kn	owle	dge
orthogo	onal	he Gamma function and Obtain the relation of Beta function.	Cognitive			rcepti lowle	dge
UNIT - I :		Group Theory & Tensor Analysis					2+3
		efinitions of a group-elementary propertie					
		oups-representation of groups-reducible and					
		their representations. Tensor: Notations an					
		on convention covariant and contravariant and		-alg	ebrai	c ope	erations
UNIT - II :	neuri	c and skew symmetric tensors - tensor calculus Ordinary Differential Equations	5.				2+3
	12		<b>CC</b> : . :	. 1 .	1		
		ar equations of second order with constant der differential with variable coefficients and					
•		- extended power series method for indicial ec		Uy I	JUwe		ies anu
UNIT - III :		Partial Differential Equations (PDEs)	uurons.			1	2+3
		s and their types – Solutions of PDEs – Me	thods for solvi	no I	PDF		
		e equations in Cartesian and polar coordin		<u> </u>			
		e, diffusion and wave equations using separ					
simple practical	-	· · · · · ·				-	
UNIT - IV :		Special Functions				1	<b>2+3</b>
Legendre's dif	ffere	ntial equation: Legendre polynomials – C	Generating func	tion	s –	Recu	urrence
		ue's formula-orthogonality of Legendre's	· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·		polynomial -generating functions-Recurrence		_	-	-	
· · ·		ls; Hermite differential equation– Hermite p	•				
		Laguerre's differential equation: Laguerre's	·	gene	eratin	ig fui	nction-
<b>UNIT - V :</b>	rmula	ae–orthogonal properties of Laguerre's polyno	mais			1	2+3
	1.	Gamma, Beta and Error Functions					
		na and Beta functions- Fundamental propertie					
		of the Gamma function- Transformation of G elation between Beta and Gamma functions					
		Error function / probability integral.	- Reduction of	uel	mie	meg	siais 10
Summu runvill		Liter reneation, producting integral.					

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
	60	15	0	75
ТЕХ	Г BOOKS:			
4.	Mathematical Physic	cs - H.K.Dass and R.Verr	na. S. Chand & Co Pvt Ltd	., 1997.
5.	Mathematical Physic	cs - B.D. Gupta, Vikas, P	ublishing House Pvt Ltd., I	New Delhi; 2003.
6.	Mathematical Physic	cs – Satya Prakash, Sultai	n Chand & Sons; 2014.	
REFI	ERENCE BOOKS :			
3.	Topics in Mathemat	ical Physics, Parthasarath	y H, Ane Books Pvt. Ltd, 2	2007.
4.	Advanced Engineer	ng Mathematics, Kreyszi	wiley Eastern I td 1003	

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PSO9	PSO10
CO1	3	3	1	2	1	1	2	3	2	1
CO2	3	2	1	2	1	1	2	3	2	1
CO3	3	2	1	2	1	1	2	3	2	1
CO4	3	2	1	2	2	1	2	3	2	1
CO5	2	2	1	2	2	1	2	3	2	1

C 3 (	PH202 P A 0.75 0.25 EQUISITE	QUANTUM MECHANICS - I       P     A								
-		ompletion of the course, students will be able	0							
		Course Outcome	Domain			Leve	el			
<b>CO1</b>		<i>l</i> the fundamental principles of quantum and the <i>formulation</i> of r equation.	Cognitive			owle naly	-			
CO2		independent stationary state problems for the , finite and multiple potential wells.	Cognitive			owle prehe	dge, ension			
CO3	<i>Solve</i> linear problems.	harmonic oscillator and the hydrogen atom	Cognitive, Psychomotor			owle dysis	dge, s, Set			
CO4	Heisenberg understand	1	Cognitive		Kn	owle	dge			
CO5	Solve the e	genvalue problems using commutation rules n of angular momenta.	Cognitive			rcept owle				
UNIT	- I :	Wave Mechanics		•		]	12+3			

of wave function conditions- stationa Expectation values adjoint and self-ad interpretation-expan Uncertainty princip Interacting and Nor UNIT - II :	- norm ary state -probabi joint op nsion co ple-state n-interac Station	halised and orthogonal solution of Schrodinger v ility current density- Ehr perators degeneracy- eig pefficients-momentum eig es with minimum value cting systems. hary State and Eigen sp	renferts theorem. Postulat en value, eigen functions gen functions- e-commuting observables ectrum	on theorem-ad tes of wave n s-observables - constant	dmissibility nechanics - – Physical of motion- 12+3				
values, eigen funct potential – multiple	ions –Po potenti	<b>e</b> 1	in a square well potentia m mechanical tunnelling-		<b>U</b>				
One dimensional linear harmonic oscillator - properties of stationary states- abstract operator method - Angular momentum operators- commutation relation-Parity- spherical symmetry systems -Particle in a central potential - radial wave function - Hydrogen atom: solution of the radial equation - stationary state wave functions - bound states-the rigid rotator: with free axis-in a fixed plane-3-Dimentional harmonic oscillator.									
Harmonic oscillato momentum represe symmetry and antis	or - Scl entations symmetr -Slater d density	d functions- Hilbert spach hrodinger, Heisenberg a s - Projection operator ric wave functions - exc determinant- collision of y matrix.	tum theory and Equation ce-Dirac's Bra - Ket n and Interaction representa Identical Particles and S change degeneracy - Spin f identical particles - spin	otation-matrix ation - coord pin Identical 1 and statistic	linates and Particles - es: Pauli's matrices -				
* *	Angul	ar Momentum			12+3				
	Angui								
UNIT - V : Angular momentum	n -comm	nutation rules - eigen valu							
<b>UNIT - V :</b> Angular momentun basis - spin angular	n -comm r momer	ntum - spin ½ , spin-1- ad	dition of angular moment	a-					
UNIT - V : Angular momentun basis - spin angular Clebsch-Gordan co	n -comm r momer	ntum - spin ½, spin-1- ad ts-spin wave functions fo	dition of angular moment r a system of two spin- ½	a- particles.	in the  jm>				
UNIT - V : Angular momentun basis - spin angular Clebsch-Gordan co LECTURE	n -comm r momer	ntum - spin ½, spin-1- ad ts-spin wave functions fo <b>TUTORIAL</b>	dition of angular moment	a- particles.	in the  jm>				
UNIT - V : Angular momentum basis - spin angular Clebsch-Gordan co LECTURE 60	n -comm r momer	ntum - spin ½, spin-1- ad ts-spin wave functions fo	dition of angular moment r a system of two spin- ½	a- particles.	in the  jm>				
UNIT - V : Angular momentum basis - spin angular Clebsch-Gordan co LECTURE 60 TEXT BOOKS: 1. A Text book Publications 2. Quantum Me 3. QantumMec	n -comm r momer efficient c of Quat , 2010. echanics hanics–	ntum - spin ½, spin-1- ad ts-spin wave functions fo TUTORIAL 15 ntum Mechanics - P. M. s - SatyaPrakash, KedarN Theory and applications	dition of angular moment r a system of two spin- ½	a- particles. TOI 7 san , Tata Mc blications, 20	in the  jm> TAL 5 Graw –Hill 18.				
UNIT - V : Angular momentum basis - spin angular Clebsch-Gordan co LECTURE 60 TEXT BOOKS: 1. A Text book Publications 2. Quantum Mec Ltd Publicati	n -comm r momer efficient c of Quat , 2010. echanics hanics— ion, 201	ntum - spin ½, spin-1- ad ts-spin wave functions fo TUTORIAL 15 ntum Mechanics - P. M. s - SatyaPrakash, KedarN Theory and applications	dition of angular moment r a system of two spin- ½ j PRACTICAL 0 Mathews and K. Venkate fath Ram Nath and Co. Pu	a- particles. TOI 7 san , Tata Mc blications, 20	in the  jm> TAL 5 Graw –Hill 18.				
UNIT - V : Angular momentum basis - spin angular Clebsch-Gordan co LECTURE 60 TEXT BOOKS: 1. A Text book Publications 2. Quantum Me 3. QantumMec Ltd Publication	a -comm r momer efficient c of Quat , 2010. echanics hanics— ion, 201 <b>OKS :</b>	ntum - spin ½, spin-1- ad ts-spin wave functions fo TUTORIAL 15 ntum Mechanics - P. M. s - SatyaPrakash, KedarN Theory and applications 5.	dition of angular moment r a system of two spin- ½ j PRACTICAL 0 Mathews and K. Venkate fath Ram Nath and Co. Pu s -A. K. Ghatak and Loka	a- particles. TOI 7. san , Tata Mc blications, 20 nathan, Macr	in the  jm> <b>FAL</b> <b>5</b> Graw –Hill 18. nillan India				
UNIT - V : Angular momentum basis - spin angular Clebsch-Gordan co LECTURE 60 TEXT BOOKS: 1. A Text book Publications 2. Quantum Mec Ltd Publicati REFERENCE BO 1. Quantum Mec 2003.	n -comm r momer efficient c of Quat , 2010. echanics hanics– ion, 201 <b>OKS :</b> echanics	ntum - spin ½, spin-1- ad ts-spin wave functions fo TUTORIAL 15 ntum Mechanics - P. M. 5 - SatyaPrakash, KedarN Theory and applications 5.	dition of angular moment r a system of two spin- ½ j PRACTICAL 0 Mathews and K. Venkate fath Ram Nath and Co. Pu	a- particles. TOI 7 san , Tata Mc blications, 20 nathan, Macr td. Publicatio	in the  jm> <b>FAL</b> <b>5</b> Graw –Hill 18. nillan India				

PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PSO9	PSO10
1	2	0	3	3	1	2	1	3	1
1	3	0	3	3	1	2	1	3	1
1	3	0	3	3	1	2	1	3	1
1	1	0	3	3	1	2	1	3	1
1	3	0	1	3	1	2	1	3	1
	PO1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO1         PO2           1         2           1         3           1         3           1         1           1         3           1         3	PO1         PO2         PO3           1         2         0           1         3         0           1         3         0           1         1         0           1         3         0           1         3         0           1         3         0	PO1PO2PO3PO412031303130311031301	PO1PO2PO3PO4PO51203313033130331103313013	PO1PO2PO3PO4PO5PO6120331130331130331110331130131	PO1PO2PO3PO4PO5PO6PO7120331213033121303312130331211033121301312	PO1PO2PO3PO4PO5PO6PO7PO81203312113033121130331211103312113013121	PO1PO2PO3PO4PO5PO6PO7PO8PS09120331213130331213130331213110331213130131213130131213

Y	2PH20	3			L 4	T 1	P 0	C 5	
C	Р	Α	MICROPOCESSOR AND MICROCON	TROLLER	L	Т	Р	H	
	0.75	0.25		-	4	1	0	5	
			Fundamental knowledge on electronics.				-		
	-		ompletion of the course, students will be able t	to					
			Course Outcome	Domain			Leve	el	
CO1	micr	oproces	basic concepts of digital fundamentals using ssor 8085. Also, <i>familiarize</i> its internal and operation.	Cognitive			owle naly	-	
CO2	micr	oproces	wledge and <i>demonstrate</i> programming of ssor 8085 and identify various addressing transfer instructions.	Cognitive			owle prehe	dge, ension	
CO3	lang		pecified programme and <i>provide</i> assembly programmes that <i>solve</i> real-world control 5.	Cognitive, Psychomotor		Knowledge, Analysis, Set			
CO4	micr	ocontro	the properties of microprocessor and oller and <i>explain</i> the basic concepts and icrocontroller 8051.	Cognitive		Kn	owle	dge	
CO5	addr to w	essing	asic ideas related to instruction set and modes of microcontroller 8051 and apply it embly language programme for various real- ems.	Cognitive			cept owle		
UNIT		1	Microprocessor Architecture and Interfaci	ng			1	12+3	
Intel 8	8085 r	nicropr	rocessor architecture – Pin configuration – In		-Ti	ming	g dia	gram -	_
			a formats - Addressing modes Memory map						
			I/O interfacing - Data transfer schemes S	Synchronous and	d as	ynch	rono	us data	a
		terrupt	driven data transfer - Interrupts of Intel 8085.						
UNIT			Assembly Language Programs (8085 only)					12+3	
			Addition and subtraction two 8-bit and 16-		-				
			et – Ascending order and descending order –						
			multibyte decimal numbers – Square root of a	number – Block	c mo	vem	ent o	i data	-
	delay -	-	e-wave generator. Peripheral Devices and Microprocessor Ap	nlications			1	12+3	
				-					1
			rol signals for memory and I/O devices I/ ecture of 8255A Control word Program						
			nter Intel 8253 Architecture, control word						
110510	ul		inci inter o200 internetture, control word	- una operation		JUN	*1u51		

interfacing of analog to digital converter (ADC 0800) – Digital to analog converter (DAC 0800) – Stepper motor – Traffic control.

UNIT - IV : M									
Features of 8051 - A	Architecture – Pin configurati	on – Memory organizati	on Externa	al data and					
program memory C	Counters and timers – Serial	data input/output – Interr	upt structure	- External					
interrupts – Addressing modes Comparison between microprocessor and microcontroller.									
UNIT - V : 80	<b>)51 Instruction Set and Prog</b>	ramming		12+3					
	and machine control institution in the second secon		-						
LECTURE	TUTORIAL	PRACTICAL	тот	TAL					
60         15         0         75									
<b>TEXT BOOKS:</b>	1	1	1						

# Fundamentals of Microprocessor and Microcomputers - B. Ram, Dhanpat Rai Publications, New Delhi, 2006. Microprocessor Architecture, Programming and Applications with 8085 - R. Gaonkar, Penram

- International Publishing, Mumbai, 2006.
   Microprocessors and Microcontrollers A.P. Godse and D.A. Godse, Technical Publishers,
- 3. Microprocessors and Microcontrollers A.P. Godse and D.A. Godse, Technical Publishers, Pune, 2008.

# **REFERENCE BOOKS :**

1.	The 8051 Microcontroller and Embbeded Systems using Assembly and C - M.A. Mazidi, J.G.
	Mazidi and R.D. Mckinlay, Dorling Kindersley, New Delhi, 2013.
2	The Microcontroller, K. A. Cangage Learning India, New Delhi, 2013

2. The Microcontroller - K. A, Cengage Learning India, New Delhi, 2013.

## Mapping of Course Outcomes (CO) with Programme Outcomes (PO):

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PSO9	PSO10
CO1	3	2	1	1	2	1	3	2	0	0
CO2	3	3	2	1	1	1	3	2	0	0
CO3	3	2	3	1	2	1	3	3	0	0
CO4	3	2	3	1	2	1	3	2	0	0
CO5	3	3	2	1	3	1	3	2	0	0

VPH204       DIGITAL AND MICROPROCESSOR LABORATORY       Image: constraint of the second seco						L	Т	Р	С	
C       P       A         0.5       2       0.5         PREREQUISITE: Know the basic laws and theory. Have practical experience to apply the theory and measurement tools.       Domain         On the successful completion of the course, students will be able to       Domain       Level         Coll       Understand       the concepts behind various physics experiments.       Cognitive       Knowledge, Analyze         Coll       Construct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.       Cognitive       Knowledge, Comprehension         CO3       Know the conceptual difference between analog and digital circuits.       Cognitive       Knowledge, Comprehension         CO4       Write ALP for arithmetic and logical operations in 8051       Cognitive       Knowledge         S. No.       Execute programs in microprocessor (8051)       Cognitive       Knowledge         S. No.       Experiments       Knowledge       Knowledge         J.       Study the function of multiplexer and demultiplexer       Knowledge       Knowledge         J.       Study the function of adecoder and encoder       Study of Boolean logic operations using ICs       Knowledge         A.       Flip flops - JK, Master & slave       Study of Boolean logic operations using ICs       Knowledge         B.	YP	H20	4			0	0	3	3	
0.5       2       0.5       0       0       0       6       6         PREREQUISITE: Know the basic laws and theory. Have practical experience to apply the theory and measurement tools.         On the successful completion of the course, students will be able to         Course Outcome       Domain       Level         Consecontrol         Consecontrol       Cognitive       Knowledge, Analyze         Construct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.       Cognitive       Knowledge, Comprehension         Consecontruct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.         Cognitive       Knowledge, Comprehension         Cognitive       Knowledge, Comprehension         Cognitive       Knowledge, Comprehension         Stow the conceptual difference between analog and Cognitive       Knowledge, Comprehension         Cognitive       Knowledge, Comprehension         Stow the conceptual bigital circuits.         Stow the function of multiplexer         Stow the function of multiplexer and demultiplexer         Study the function of multiplexer and demultiplexer <td col<="" th=""><th></th><th></th><th></th><th>DIGITAL AND MICROPROCESSOR LABO</th><th>ORATORY</th><th></th><th></th><th></th><th><u> </u></th></td>	<th></th> <th></th> <th></th> <th>DIGITAL AND MICROPROCESSOR LABO</th> <th>ORATORY</th> <th></th> <th></th> <th></th> <th><u> </u></th>				DIGITAL AND MICROPROCESSOR LABO	ORATORY				<u> </u>
0.5     2     0.5     0     0     6     6       PREREQUISITE: Know the basic laws and theory. Have practical experience to apply the theory and measurement tools.       On the successful completion of the course, students will be able to       Course Outcome     Domain     Level       Consecontront is circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.       Construct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.       Construct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.       Construct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.       Construct simple electronic circuits and make out the characteristics of transistors and pignal difference between analog and Cognitive Roowledge, Comprehension filters.       Cost Write ALP for arithmetic and logical operations in 8051     Cognitive     Knowledge.       S. No.     Experiments       1.     Study the function of multiplexer and demultiplexer     Viowledge.       2.     Study the function of multiplexer and demultiplexer     Viowledge.       3.     Flip flops- SL, Master & slave     Viowledge.       4.     Flip flops- SL, Master & slave     Viowledge.       3.     Flip flop	C	P	Α			L	Т	Р	Н	
PREREQUISITE:         Know the basic laws and theory.         Have practical experience to apply the theory and measurement tools.           On the successful completion of the course, students will be able to         Domain         Level           Course Outcome         Domain         Level           Construct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.         Cognitive         Knowledge, Comprehension           CO3         Know the conceptual difference between analog and digital circuits.         Cognitive         Knowledge, Comprehension           CO4         Write ALP for arithmetic and logical operations in 8051         Cognitive         Knowledge           S. No.         Execute programs in microprocessor (8051)         Cognitive         Knowledge           S. No.         Experiments         Knowledge         Rowledge           A. Digital Electronics (Any eight experiments)         Knowledge         Rowledge           S. Mudy the function of multiplexer and demultiplexer         Knowledge         Rowledge           S. Mudy the function of multiplexer and demultiplexer         Study the function of multiplexer and demultiplexer         Rowledge           S. Study of Boolean logic operations using ICS         Half adder and Full adder, using only NAND & NOR gates.         Energinal           B. BCD to seven segment display         Study of Solidan logic	_					0				
and measurement tools.           Course Outcome         Domain         Level           Course Outcome         Domain         Level           Construct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.         Cognitive         Knowledge, Comstruct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.         Cognitive         Knowledge, Comprehension           Construct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.         Construct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.         Construct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.           Construct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and forgenetic dege, Comprehension         Knowledge, Construct Simple electronics (Row Electronics (Row Electronics (Row Electronics (Row Electronics (Row Electronics (Row Electronics (8051))         Cognitive         Knowledge, Comprehension           Comprehension           Construct programs in microprocessor (8051)         Cognitive         Knowledge           Situdy the function of multiplexer	PRER	EO	UIS	<b>TE:</b> Know the basic laws and theory. Have prac	tical experienc	e to	appl	y the	theory	
Course OutcomeDomainLevelCO1Understand the concepts behind various physics experiments.CognitiveKnowledge, AnalyzeCO2Construct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and digital circuits.Cognitive, PsychomotorKnowledge, ComprehensionCO3Know the conceptual difference between analog and digital circuits.Cognitive, PsychomotorKnowledge, Analysis, SetCO4Write ALP for arithmetic and logical operations in 8051CognitiveKnowledge, Analysis, SetCO5Execute programs in microprocessor (8051)CognitiveKnowledgeS.No.ExperimentsPerception, Knowledge1.Study the function of multiplexer and demultiplexer2.Study the function of decoder and encoder3.Flip flops - SK, T - FF and D - FF4.Flip flops - SK, T - FF and D - FF4.Flip flops - SK, T - FF and D - FF3.Study of Boolean logic operations using ICs6.Half adder and Full adder, using only NAND & NOR gates.7.Half subtractor and Full Subtractor (using only NAND & NOR gates)8.BCD to seven segment display9.Study of souther using IC 749010.Combinational Logic Circuit Design11.Asynchronous counter: Mod-N Counters12.Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF & 7495)8.Microproc					1			-		
ColUnderstand experiments.Knowledge, AnalyzeCoConstruct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.CognitiveKnowledge, ComprehensionCO3Know the conceptual difference between analog and digital circuits.Cognitive, PsychomotorKnowledge, ComprehensionCO4Write ALP for arithmetic and logical operations in 8051CognitiveKnowledgeCO5Execute programs in microprocessor (8051)CognitiveKnowledgeS.No.ExperimentsKnowledgeA. Digital Electronics (Any eight experiments)Knowledge1Study the function of multiplexer and demultiplexer2.Study the function of multiplexer and demultiplexer3.Flip flops - RS, T. – FF and D FF4.Flip flops - RS, T. – FF and D FF4.Flip flops - RS, T. – FF and D FF4.Study of Boolean logic operations using ICS6.Half adder and Full adder, using only NAND & NOR gates.7.Half subtractor and Full Subtractor (using only NAND & NOR gates)8.BCD to seven segment display9.Study of Sociater Study of shift right, SIPO, SISO, PIPO, PISO (using FF 7495)8.Microprocessor - addition, subtraction (8 Bit)1.Microprocessor - Multiplectiation 8 bit by 8 bit and 16 bit by 8 bit4.Microprocessor - Multiplication 8 bit by 8 bit and 16 bit by 8 bit7.Microprocessor - To find the largest and smallest number in an	On the	e suc	cess	ful completion of the course, students will be able to	0					
CO1       experiments.       Cognitive       Analyze         C02       Construct simple electronic circuits and make out the characteristics of transistors, amplifiers, oscillators and filters.       Cognitive       Knowledge, Comprehension         C03       Know the conceptual difference between analog and digital circuits.       Cognitive       Knowledge, Analysis, Set         C04       Write ALP for arithmetic and logical operations in 8051       Cognitive       Knowledge, Analysis, Set         C05       Execute programs in microprocessor (8051)       Cognitive       Perception, Knowledge         S. No.       Experiments       Experiments       Knowledge         A. Digital Electronics (Any eight experiments)       I.       Study the function of multiplexer and demultiplexer       Perception, Knowledge         2.       Study the function of decoder and encoder       Study of Boolean logic operations using ICs       Filp flops - JK, Master & slave         5.       Study of Boolean logic operations using ICs       Study of counter using IC 7490       Study of counter using IC 7490         10.       Combinational Logic Circuit Design       I.       Asynchronous counter: Mod-N Counters         12.       Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF & 7495)       Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF & 7495)         8.       Microprocessor – addition, sub				Course Outcome	Domain			Leve	ł	
CO2       characteristics of transistors, amplifiers, oscillators and filters.       Cognitive, Comprehension filters.       Knowledge, Comprehension filters.         CO3 <i>Know</i> the conceptual difference between analog and figital circuits.       Cognitive, Psychomotor       Knowledge, Analysis, Set         CO4 <i>Write</i> ALP for arithmetic and logical operations in 8051       Cognitive       Knowledge, Analysis, Set         CO5 <i>Execute</i> programs in microprocessor (8051)       Cognitive       Perception, Knowledge         S. No.       Experiments       Perception, Knowledge         A. Digital Electronics (Any eight experiments)       Study the function of multiplexer and demultiplexer       Perception, Knowledge         3.       Study the function of decoder and encoder       Study of Boolean logic operations using ICs       Perception         6.       Half adder and Full adder, using only NAND & NOR gates.       Study of counter using IC 7490       Study of counter using IC 7490         10.       Combinational Logic Circuit Design       Interoprocessor - addition, subtraction (8 Bit)       Still Amicroprocessor - addition, subtraction (8 Bit)       Microprocessor - addition, subtraction (8 Bit)         1.       Microprocessor - Division 8 bit by 8 bit and 16 bit by 8 bit       Microprocessor - To find the largest and smallest number in an array       Microprocessor - Division 8 bit by 8 bit and 16 bit by 8 bit       Microprocessor - Division 8 bit by 8 bit and 16 bit by	<b>CO1</b>			1 1 2	Cognitive				<b>U</b>	
CO3digital circuits.PsychomotorAnalysis, SetC04Write ALP for arithmetic and logical operations in 8051CognitiveKnowledgeC05Execute programs in microprocessor (8051)CognitivePerception, KnowledgeS. No.ExperimentsA. Digital Electronics (Any eight experiments)CognitivePerception, Knowledge1.Study the function of multiplexer and demultiplexer2.Study the function of decoder and encoder3.Flip flops - RS, T - FF and D - FF4.Flip flops - JK, Master & slave5.Study of Boolean logic operations using ICs6.Half adder and Full adder, using only NAND & NOR gates.7.Half subtractor and Full Subtractor (using only NAND & NOR gates)8.BCD to seven segment display9.Study of counter using IC 749010.Combinational Logic Circuit Design11.Asynchronous counter: Mod-N Counters12.Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF & 7495)8.BCD to seven addition, subtraction (A rray)3.Microprocessor - addition, subtraction (Array)3.Microprocessor - Division 8 bit by 8 bit and 16 bit by 8 bit4.Microprocessor - To find the largest and smallest number in an array6.Microprocessor - Ascending and descending order.7.Write a program using 8085 Microprocessor for addition and subtraction of two NCD numbers.9.Microprocessor - Counter and Time Delay	CO2	cha	aracte		Cognitive				<b>U</b>	
Cost       Execute programs in microprocessor (8051)       Cognitive       Perception, Knowledge         S. No.       Experiments       Image: Signal Amount of Multiplexer and demultiplexer       Study the function of multiplexer and demultiplexer         2.       Study the function of decoder and encoder       Study the function of decoder and encoder         3.       Flip flops - RS, T – FF and D - FF       Image: Study of Boolean logic operations using ICS         6.       Half adder and Full adder, using only NAND & NOR gates.       Image: Signal Amount of Signal Amoun	<b>CO3</b>				<b>U</b> (				<b>U</b> .	
Cos       Exercise programs in microprocessor (8051)       Cognitive       Knowledge         S. No.       Experiments         A. Digital Electronics (Any eight experiments)	<b>CO4</b>	Wi	rite A	Cognitive		Kn	owle	dge		
<ul> <li>A. Digital Electronics (Any eight experiments) <ol> <li>Study the function of multiplexer and demultiplexer</li> <li>Study the function of decoder and encoder</li> <li>Flip flops - RS, T – FF and D - FF</li> <li>Flip flops - JK, Master &amp; slave</li> </ol> </li> <li>Study of Boolean logic operations using ICs</li> <li>Half adder and Full adder, using only NAND &amp; NOR gates.</li> <li>Half subtractor and Full Subtractor (using only NAND &amp; NOR gates)</li> <li>BCD to seven segment display</li> <li>Study of counter using IC 7490</li> <li>Combinational Logic Circuit Design</li> <li>Asynchronous counter: Mod-N Counters</li> <li>Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF &amp; 7495)</li> <li>B. Microprocessor – addition, subtraction (8 Bit)</li> <li>Microprocessor – addition, subtraction (Array)</li> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ul>	CO5	Ex	ecut	<i>p</i> programs in microprocessor (8051)	Cognitive			-		
<ol> <li>Study the function of multiplexer and demultiplexer</li> <li>Study the function of decoder and encoder</li> <li>Flip flops - RS, T – FF and D - FF</li> <li>Flip flops - JK, Master &amp; slave</li> <li>Study of Boolean logic operations using ICs</li> <li>Half adder and Full adder, using only NAND &amp; NOR gates.</li> <li>Half subtractor and Full Subtractor (using only NAND &amp; NOR gates)</li> <li>BCD to seven segment display</li> <li>Study of counter using IC 7490</li> <li>Combinational Logic Circuit Design</li> <li>Asynchronous counter: Mod-N Counters</li> <li>Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF &amp; 7495)</li> <li>Microprocessor and Microcontroller Experiments (Any eight experiments)</li> <li>Microprocessor – addition, subtraction (8 Bit)</li> <li>Microprocessor – Division 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>	S. No.	•		Experiments						
<ol> <li>Study the function of multiplexer and demultiplexer</li> <li>Study the function of decoder and encoder</li> <li>Flip flops - RS, T – FF and D - FF</li> <li>Flip flops - JK, Master &amp; slave</li> <li>Study of Boolean logic operations using ICs</li> <li>Half adder and Full adder, using only NAND &amp; NOR gates.</li> <li>Half subtractor and Full Subtractor (using only NAND &amp; NOR gates)</li> <li>BCD to seven segment display</li> <li>Study of counter using IC 7490</li> <li>Combinational Logic Circuit Design</li> <li>Asynchronous counter: Mod-N Counters</li> <li>Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF &amp; 7495)</li> <li>Microprocessor and Microcontroller Experiments (Any eight experiments)</li> <li>Microprocessor – addition, subtraction (8 Bit)</li> <li>Microprocessor – Division 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>	A. Dia	gital	Ele	ctronics (Any eight experiments)						
<ol> <li>Study the function of decoder and encoder</li> <li>Flip flops - RS, T – FF and D - FF</li> <li>Flip flops - JK, Master &amp; slave</li> <li>Study of Boolean logic operations using ICs</li> <li>Half adder and Full adder, using only NAND &amp; NOR gates.</li> <li>Half subtractor and Full Subtractor (using only NAND &amp; NOR gates)</li> <li>BCD to seven segment display</li> <li>Study of counter using IC 7490</li> <li>Combinational Logic Circuit Design</li> <li>Asynchronous counter: Mod-N Counters</li> <li>Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF &amp; 7495)</li> <li>Microprocessor – addition, subtraction (8 Bit)</li> <li>Microprocessor – addition, subtraction (7 Array)</li> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> <li>Write a program using 8085 Microprocessor for Addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>										
<ol> <li>Flip flops - RS, T – FF and D - FF</li> <li>Flip flops - JK, Master &amp; slave</li> <li>Study of Boolean logic operations using ICs</li> <li>Half adder and Full adder, using only NAND &amp; NOR gates.</li> <li>Half subtractor and Full Subtractor (using only NAND &amp; NOR gates)</li> <li>BCD to seven segment display</li> <li>Study of counter using IC 7490</li> <li>Combinational Logic Circuit Design</li> <li>Asynchronous counter: Mod-N Counters</li> <li>Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF &amp; 7495)</li> <li>Microprocessor and Microcontroller Experiments (Any eight experiments)</li> <li>Microprocessor – addition, subtraction (Array)</li> <li>Microprocessor – Multiplication 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>										
<ul> <li>4. Flip flops - JK, Master &amp; slave</li> <li>5. Study of Boolean logic operations using ICs</li> <li>6. Half adder and Full adder, using only NAND &amp; NOR gates.</li> <li>7. Half subtractor and Full Subtractor (using only NAND &amp; NOR gates)</li> <li>8. BCD to seven segment display</li> <li>9. Study of counter using IC 7490</li> <li>10. Combinational Logic Circuit Design</li> <li>11. Asynchronous counter: Mod-N Counters</li> <li>12. Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF &amp; 7495)</li> <li>B. Microprocessor and Microcontroller Experiments (Any eight experiments)</li> <li>1. Microprocessor – addition, subtraction (8 Bit)</li> <li>2. Microprocessor – addition, subtraction (Array)</li> <li>3. Microprocessor – Multiplication 8 bit by 8 bit and 16 bit by 8 bit</li> <li>4. Microprocessor – To find the largest and smallest number in an array</li> <li>6. Microprocessor – Ascending and descending order.</li> <li>7. Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.</li> <li>8. Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>9. Microprocessor - Counter and Time Delay</li> </ul>			•							
<ol> <li>Study of Boolean logic operations using ICs</li> <li>Half adder and Full adder, using only NAND &amp; NOR gates.</li> <li>Half subtractor and Full Subtractor (using only NAND &amp; NOR gates)</li> <li>BCD to seven segment display</li> <li>Study of counter using IC 7490</li> <li>Combinational Logic Circuit Design</li> <li>Asynchronous counter: Mod-N Counters</li> <li>Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF &amp; 7495)</li> <li>Microprocessor and Microcontroller Experiments (Any eight experiments)</li> <li>Microprocessor – addition, subtraction (8 Bit)</li> <li>Microprocessor – addition, subtraction (Array)</li> <li>Microprocessor – Division 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> <li>Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>	4.		-	*						
<ul> <li>6. Half adder and Full adder, using only NAND &amp; NOR gates.</li> <li>7. Half subtractor and Full Subtractor (using only NAND &amp; NOR gates)</li> <li>8. BCD to seven segment display</li> <li>9. Study of counter using IC 7490</li> <li>10. Combinational Logic Circuit Design</li> <li>11. Asynchronous counter: Mod-N Counters</li> <li>12. Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF &amp; 7495)</li> <li>B. Microprocessor and Microcontroller Experiments (Any eight experiments)</li> <li>1. Microprocessor – addition, subtraction (8 Bit)</li> <li>2. Microprocessor – addition, subtraction (Array)</li> <li>3. Microprocessor – Multiplication 8 bit by 8 bit and 16 bit by 8 bit</li> <li>4. Microprocessor – To find the largest and smallest number in an array</li> <li>6. Microprocessor – Ascending and descending order.</li> <li>7. Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.</li> <li>8. Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>9. Microprocessor - Counter and Time Delay</li> </ul>	5.		<u> </u>	*						
<ol> <li>BCD to seven segment display</li> <li>Study of counter using IC 7490</li> <li>Combinational Logic Circuit Design</li> <li>Asynchronous counter: Mod-N Counters</li> <li>Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF &amp; 7495)</li> <li>B. Microprocessor and Microcontroller Experiments (Any eight experiments)</li> <li>Microprocessor – addition, subtraction (8 Bit)</li> <li>Microprocessor – addition, subtraction (Array)</li> <li>Microprocessor – Multiplication 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> <li>Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>	6.				ates.					
<ul> <li>9. Study of counter using IC 7490</li> <li>10. Combinational Logic Circuit Design</li> <li>11. Asynchronous counter: Mod-N Counters</li> <li>12. Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF &amp; 7495)</li> <li>B. Microprocessor and Microcontroller Experiments (Any eight experiments)</li> <li>1. Microprocessor – addition, subtraction (8 Bit)</li> <li>2. Microprocessor – addition, subtraction (Array)</li> <li>3. Microprocessor – Multiplication 8 bit by 8 bit and 16 bit by 8 bit</li> <li>4. Microprocessor – Division 8 bit by 8 bit and 16 bit by 8 bit</li> <li>5. Microprocessor – To find the largest and smallest number in an array</li> <li>6. Microprocessor – Ascending and descending order.</li> <li>7. Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.</li> <li>8. Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>9. Microprocessor - Counter and Time Delay</li> </ul>	7.		Half	subtractor and Full Subtractor (using only NAND &	& NOR gates)					
<ol> <li>Combinational Logic Circuit Design</li> <li>Asynchronous counter: Mod-N Counters</li> <li>Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF &amp; 7495)</li> <li>B. Microprocessor and Microcontroller Experiments (Any eight experiments)</li> <li>Microprocessor – addition, subtraction (8 Bit)</li> <li>Microprocessor – addition, subtraction (Array)</li> <li>Microprocessor – Multiplication 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – Division 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> <li>Write a program using 8085 Microprocessor for Addition and subtraction of two BCD numbers.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>	8.									
<ol> <li>Asynchronous counter: Mod-N Counters</li> <li>Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF &amp; 7495)</li> <li>B. Microprocessor and Microcontroller Experiments (Any eight experiments)         <ol> <li>Microprocessor – addition, subtraction (8 Bit)</li> <li>Microprocessor – addition, subtraction (Array)</li> <li>Microprocessor – Multiplication 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – Division 8 bit by 8 bit and 16 bit by 8 bit</li> </ol> </li> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> <li>Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.</li> </ol> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li>	9.		Study	y of counter using IC 7490						
<ol> <li>Shift Register: Study of shift right, SIPO, SISO, PIPO, PISO (using FF &amp; 7495)</li> <li>Microprocessor and Microcontroller Experiments (Any eight experiments)         <ol> <li>Microprocessor – addition, subtraction (8 Bit)</li> <li>Microprocessor – addition, subtraction (Array)</li> <li>Microprocessor – Multiplication 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – Division 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> </ol> </li> <li>Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>	10.									
B. Microprocessor and Microcontroller Experiments (Any eight experiments)1.Microprocessor – addition, subtraction (8 Bit)2.Microprocessor – addition, subtraction (Array)3.Microprocessor – Multiplication 8 bit by 8 bit and 16 bit by 8 bit4.Microprocessor – Division 8 bit by 8 bit and 16 bit by 8 bit5.Microprocessor – To find the largest and smallest number in an array6.Microprocessor – Ascending and descending order.7.Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.8.Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.9.Microprocessor - Counter and Time Delay										
<ol> <li>Microprocessor – addition, subtraction (8 Bit)</li> <li>Microprocessor – addition, subtraction (Array)</li> <li>Microprocessor – Multiplication 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – Division 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> <li>Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>							495)			
<ol> <li>Microprocessor – addition, subtraction (Array)</li> <li>Microprocessor – Multiplication 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – Division 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> <li>Mitroprocessor – Ascending 8085 Microprocessor for addition and subtraction of two BCD numbers.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>					ht experiment	s)				
<ol> <li>Microprocessor – Multiplication 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – Division 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> <li>Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>										
<ol> <li>Microprocessor – Division 8 bit by 8 bit and 16 bit by 8 bit</li> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> <li>Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>					1 0 1 1					
<ol> <li>Microprocessor – To find the largest and smallest number in an array</li> <li>Microprocessor – Ascending and descending order.</li> <li>Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>					· · · · · · · · · · · · · · · · · · ·					
<ol> <li>Microprocessor – Ascending and descending order.</li> <li>Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>										
<ol> <li>Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.</li> <li>Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>Microprocessor - Counter and Time Delay</li> </ol>				· · · · · · · · · · · · · · · · · · ·	er in an aftay					
numbers.         8.       Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.         9.       Microprocessor - Counter and Time Delay					and subtraction	n of	two	BCD		
<ol> <li>8. Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.</li> <li>9. Microprocessor - Counter and Time Delay</li> </ol>	/.					01 01	ιωΟ	DCD	,	
9. Microprocessor - Counter and Time Delay	8.		Write	e a program using 8085 Microprocessor for Hexade	cimal addition	and	subtr	actio	n	
10 Microcontrollar Assembly language program to concrete 10VIIz service wave	9.									
TO. Interocontroller – Assembly language program to generate TOKHZ square wave	10.			ocontroller – Assembly language program to genera	ate 10KHz squa	are w	vave			

11		• •	n & interfacing of display vith microcontroller 8051.	devices like LCD,							
12		• •	n & interfacing of differer with microcontroller 8051								
	LECTURE	TUTORIAL	PRACTICAL	TOTAL							
	0	0	90	90							
TEX	EXT BOOKS:										
1.	An Advanced Cour Book Agency (P) L		D. Chattopadhyay, P. C	. Rakshit, New Central							
2.	A Textbook of Adv	anced Practical Physics - S	S. K. Ghosh, New Central	Publishers, 2000.							
3.	Practical Electronic Technical Publication	· · · · · · · · · · · · · · · · · · ·	Г. Veeramanikandasamy	and A. Balamurugan,							
REFI	ERENCE BOOKS :										
1.	. Advanced Practical Physics Volume I – Dr. S.P. Sing, Pragati Prakasan Educational publishers, 2011.										
2.	Practical Physics a Printers & Publisher		Duseph, U.J. Rao, V. Vi	ayendran, Viswanathan							

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PSO9	PSO10
CO1	3	3	1	1	3	2	2	3	0	0
CO2	2	3	1	1	3	2	2	3	0	0
CO3	3	3	1	1	1	2	2	3	0	0
CO4	3	2	1	1	1	2	2	3	0	0
CO5	2	3	1	1	2	2	2	3	0	0

	YPH30	2	<b>QUANTUM MECHANICS -</b>	П	L 4	Т 1	P 0	C 5		
С	Р	Α			L	Т	Р	Н		
3	0.75	0.25			4	1	0	5		
PRE	REQU	<b>SITE:</b>	Basic knowledge in principles of quantum m	echanics and ca	lculu	ls.				
On t	he succe	ssful co	mpletion of the course, students will be able t	0						
	Course Outcome Domain Level									
<b>CO1</b>	degei		rbation theory in Non-degenerate and problems in systems under magnetic and s.	Cognitive			owle naly	0		
CO2		<i>Solve</i> problems in time dependent perturbation and semi-classical theory of radiation. Cognitive Comprehensi								
CO3	with	screene	Born approximation and <i>explore</i> scattering ed potential and different scattering cross arious potentials.	Cognitive, Psychomotor			owle lysis	dge, , Set		

CO4 Dira quan Quan CO5 $Exp$ mole UNIT - I : Time indep order-Norm correction-s ground stat Asymptotic formula for potential ba UNIT - II : Time dependent probability: approximation	ic equations. A ntization. lore the theory ecular orbital theory endent perturbance al Helium at stark effect in here e of Helium at solution-validation rrier. Appro- ndent Perturbance Fermi Golden ion. Semi-classical theory here the theory theory of theory theory of the theory of theory th	ic problems using Klein-O Also <i>understand</i> the theo y of Central field approxim- neory. <u>roximation Methods for T</u> pation theory – stationary om– Zeeman effect with hydrogen atom. Variation r atom –Hydrogen molecula lity of WKB approximation parrier – Bohr-Summer fi <b>roximation Methods for T</b> ttion theory - first order Rule - Periodic perturbation sical theory of radiation: eory of radiation - Einstein	ry of field Cog mation and Cog Fime Independent F theory- Non-degen hout electron spin nethod: Variation Pr e-WKB approximat ion-solution near a eld quantization co Fime Dependant Pe transitions - consi on -harmonic pertur	Problems       Problems       erate case: first       -Degenerate c       rinciple – upper b       ion - Schroding       turning point –       ondition tunnelin       rturbation       stant perturbation	ase: Energy bound states- er equation- connection g through a 12+3
CO5 Exp mole UNIT - I : Time indep order-Norm correction- ground stat Asymptotic formula for potential ba UNIT - II : Time depen probability: approximati theory to se	lore the theory ecular orbital theory endent perturb al Helium at stark effect in he of Helium at solution-valid penetration be rrier. Apprendent Perturbat Fermi Golden ion. Semi-classical theory	neory. roximation Methods for T pation theory – stationary om– Zeeman effect with hydrogen atom. Variation r atom –Hydrogen molecule lity of WKB approximation parrier – Bohr-Summer fi roximation Methods for T tion theory - first order Rule - Periodic perturbation sical theory of radiation:	<b>Cog</b> <b>Fime Independent H</b> theory- Non-degen hout electron spin nethod: Variation Pr e-WKB approximat ion-solution near a eld quantization co <b>Fime Dependant Pe</b> transitions - cons on -harmonic pertur	Kı       Problems       herate case: first       -Degenerate c       rinciple – upper b       ion - Schroding       turning point –       ondition tunnelin       rturbation       stant perturbation	nowledge 12+3 and second ase: Energy bound states- ger equation- connection g through a 12+3
Time indep order-Norm correction- ground stat Asymptotic formula for potential ba <b>UNIT - II :</b> Time depen probability: approximati theory to se	endent perturb al Helium at stark effect in l e of Helium a solution-valid penetration b rrier. Appr ndent Perturba Fermi Golden ion. Semi-class mi-classical th	bation theory – stationary om– Zeeman effect with hydrogen atom. Variation r atom –Hydrogen molecule lity of WKB approximation parrier – Bohr-Summer fi coximation Methods for T stion theory - first order Rule - Periodic perturbation sical theory of radiation:	theory- Non-degen hout electron spin nethod: Variation Pr e-WKB approximat ion-solution near a eld quantization co Fime Dependant Pe transitions - cons on -harmonic pertur	herate case: first -Degenerate c rinciple – upper b ion - Schroding turning point – ondition tunnelin rturbation stant perturbation	and second ase: Energy bound states- er equation- - connection g through a 12+3
order-Norm correction- ground stat Asymptotic formula for potential ba <b>UNIT - II :</b> Time depen probability: approximati theory to se	al Helium at stark effect in l e of Helium a solution-valid penetration b rrier. Appindent Perturba Fermi Golden ion. Semi-class mi-classical the	om– Zeeman effect with hydrogen atom. Variation r atom –Hydrogen molecula lity of WKB approximation parrier – Bohr-Summer fi <b>coximation Methods for T</b> tion theory - first order Rule - Periodic perturbation sical theory of radiation:	hout electron spin nethod: Variation Pr e-WKB approximat on-solution near a eld quantization co Fime Dependant Pe transitions - cons on -harmonic pertur	-Degenerate c rinciple – upper b ion - Schroding turning point – ondition tunnelin rturbation	ase: Energy bound states- er equation- connection g through a 12+3
correction- ground stat Asymptotic formula for potential ba <b>UNIT - II :</b> Time depen probability: approximati theory to se	stark effect in l e of Helium a solution-valid penetration b rrier. Appi adent Perturba Fermi Golden ion. Semi-class mi-classical the	hydrogen atom. Variation r atom –Hydrogen molecula lity of WKB approximation parrier – Bohr-Summer fi <b>coximation Methods for T</b> tion theory - first order Rule - Periodic perturbation sical theory of radiation:	nethod: Variation Pr e-WKB approximat ion-solution near a eld quantization co Fime Dependant Pe transitions - cons on -harmonic pertur	rinciple – upper b ion - Schroding turning point – ondition tunnelin rturbation	cound states- er equation- - connection g through a 12+3
ground stat Asymptotic formula for potential ba <b>UNIT - II :</b> Time depen probability: approximati theory to se	e of Helium a solution-valid penetration b rrier. Appr adent Perturba Fermi Golden ion. Semi-class mi-classical th	atom –Hydrogen molecule lity of WKB approximation parrier – Bohr-Summer fin coximation Methods for T stion theory - first order Rule - Periodic perturbation sical theory of radiation:	e-WKB approximat ion-solution near a eld quantization co Fime Dependant Pe transitions - cons on -harmonic pertur	ion - Schröding turning point - ondition tunnelin rturbation stant perturbation	er equation- - connection g through a 12+3
Asymptotic formula for potential ba <b>UNIT - II :</b> Time dependent probability: approximation theory to se	solution-valid penetration b rrier. Appindent Perturba Fermi Golden ion. Semi-class mi-classical th	ity of WKB approximati barrier – Bohr-Summer fi <b>coximation Methods for T</b> ttion theory - first order Rule - Periodic perturbation sical theory of radiation:	ion-solution near a eld quantization co Fime Dependant Pe transitions - cons on -harmonic pertur	turning point – ondition tunnelin rturbation stant perturbation	- connection g through a 12+3
formula for potential ba <b>UNIT - II :</b> Time deper probability: approximati theory to se	rrier. Appr Adent Perturba Fermi Golden ion. Semi-class mi-classical the	<b>coximation Methods for T</b> tion theory - first order Rule - Periodic perturbations sical theory of radiation:	eld quantization co <b>Fime Dependant Pe</b> transitions - cons on -harmonic perturb	ndition tunnelin rturbation stant perturbation	g through a
potential ba UNIT - II : Time dependent probability: approximation theory to set	rrier. Appr ndent Perturba Fermi Golden on. Semi-class mi-classical th	<b>coximation Methods for T</b> tion theory - first order Rule - Periodic perturbations sical theory of radiation:	Fime Dependant Pe transitions - cons on -harmonic pertur	rturbation stant perturbation	12+3
<b>UNIT - II :</b> Time dependent probability: approximation theory to se	App ndent Perturba Fermi Golden on. Semi-class mi-classical th	tion theory - first order Rule - Periodic perturbation sical theory of radiation:	transitions - cons	stant perturbation	
Time deper probability: approximati theory to se	ndent Perturba Fermi Golden on. Semi-class mi-classical th	tion theory - first order Rule - Periodic perturbation sical theory of radiation:	transitions - cons	stant perturbation	
probability: approximati theory to se	Fermi Golden on. Semi-class mi-classical th	Rule - Periodic perturbations ical theory of radiation:	on -harmonic pertur	-	n- transition
approximati theory to se	on. Semi-class mi-classical th	sical theory of radiation:	-		
theory to se	mi-classical th	The second s	Annlication of the		
		eory of radiation - Einstein		-	-
an antan a arri		-			
1		Einsteim's transition prol	babilities- dipole tr	ansition - selec	tion rules –
forbidden tr					10.0
UNIT - III		ering Theory			12+3
		rocess - wave mechanical	÷	-	-
and its vali	dity -Born set	ries - screened coulombic	e potential scattering	g from Born ap	proximation.
Partial wave	e analysis: asyr	nptotic behavior - phase sh	nift - scattering amp	litude in terms of	phase shifts
- differentia	al and total cros	ss sections - optical theore	m - low energy scat	ttering - resonant	t scattering -
non-resonar	nt scattering-sca	attering length and effectiv	e range- Ramsauer-	-Townsend effect	t - scattering
<b>·</b>	ell potential.				1
UNIT - IV	: Rela	tivistic Quantum Mechan	ics and Quantisation	on of Field	12+3
Schrodinger	relativistic ec	juation- Klein-Gordan equ	ation-charge and cu	urrent densities	- interaction
with electro	magnetic field	l- Hydrogen like atom -	nonrelativistic limit	- Dirac relativis	tic equation:
Dirac relati	vistic Hamilto	nian - probability density	y- Dirac matrices-p	blane wave solut	tion - eigen
spectrum -	spin of Dirac p	particle - significance of ne	egative eigen states	- electron in a m	agnetic field
-		Quantisation of the Field			-
		n.wave quantisation of	<u> </u>		
		perators of photons.			•
UNIT - V :		ntum Theory of Atomic a	nd Molecular Struc	cture	12+3
central fiel consistent fi	d: Thomas Foi ields) - Atomic	n: residual electrostatic interminant statistical method-H structure and Huns's rule ogen molecule Ion $(H_2+)$	lartree and Hartree . Molecules: Born-C	e-Fock approxin Oppenheimer app	nations (self roximation -
LEC	TURE	TUTORIAL	PRACTICAL	то	TAL
	60	15	0	,	75
TEXT BOO	OKS:				
	xt book of Qua cations, 2010.	antum Mechanics - P. M. M	Aathews and K. Ven	katesan , Tata M	cGraw –Hill

2.	Quantum Mechanics - SatyaPrakash, KedarNath Ram Nath and Co. Publications, 2018.
3.	QantumMechanics– Theory and applications -A. K. Ghatak and Lokanathan, Macmillan India Ltd Publication, 2015.
REF	ERENCE BOOKS :
1.	Quantum Mechanics - V. K. Thankappan, New Age International Publication, 2003.
2.	Principle of Quantum Mechanics - R. Shankar, Plenum US Publication, 1994.

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PSO9	PSO10
CO1	3	3	0	1	3	1	2	1	3	1
CO2	3	3	0	1	3	1	2	1	3	1
CO3	2	2	0	2	3	1	2	1	3	1
CO4	3	3	0	1	3	1	2	1	3	1
CO5	2	2	0	3	3	1	2	1	3	1

Ŋ	7 <b>PH30</b>	5A	MICRO-ELECTRO-MECHANICAL S	SYSTEMS	L 4	T 0	P 0	C 4	
C	P	A	(MEMS)	-	L	T	P	H	
3 PRF	0.75	0.25	Basic knowledge on electronics		4	0	0	4	
	-			to					
0	On the successful completion of the course, students will be able to Course Outcome Domain L								
CO1	-	<i>uire</i> kn rosystei	owledge and <i>get</i> introduced to the field of ns.	Cognitive			owle maly		
CO2			w materials, science and technology for ms and its applications	Cognitive			owle preh	dge, ension	
CO3	Des	c <i>ribe</i> M	EMS fabrication technologies	Cognitive, Psychomotor			owledge, alysis, Set		
CO4	Ana feas		Microsystems technology for technical s well as practicality.	Cognitive		Kn	owle	edge	
CO5			nowledge and <i>understand</i> the state-of-art ining and packaging technologies.	Cognitive			rcept owle		
UNI	T - I :		<b>Overview of MEMS and Microsystems</b>					12	
			es and application, MEMS and Microsystem						
Mini	aturiza	tion. M	of micro fabrication - Microsystem and n EMS with micro actuator - Microgrippers - 1 elerometers.						
	<b>T</b> - <b>II</b> :		Scaling laws and materials for MEMS					12	
Scali Elect	ng: Int tromag	roductionetic, E	on to scaling - Scaling in geometry - rigid bo lectricity, Fluid mechanics - Scaling in Heat lbstrate materials - Silicon as a substrate mat	transfer - Mate	rials	s: Su	bstra	Forces, tes and	

UNIT - III :	Micro	system Fabrication Proc	cess		12
•		• • • •	tation - Oxidation - Diffu g) - Deposition by epitaxy		-
UNIT - IV :	Micro	Manufacturing			12
comparison, Surfac	ce micro omachin	machining -general descr	vic etching - wet etching - ription - process - mechan - general description-sub	ical problems	associated
UNIT - V :	Micro	system Design and Pack	aging		12
0	aging - I	•	evices using CAD tools. I packaging - Essential Pac <b>PRACTICAL</b>	•	ologies.
60		0	0	60	
UU					
		i			
TEXT BOOKS:	Microsy	/stems Design and Manufa	acture - Hsu & Tai Ran, T	ata McGraw H	Hill, 2000.
TEXT BOOKS:     1.   MEMS and	-		acture - Hsu & Tai Ran, T ations - Ri-Choudhury & I		
TEXT BOOKS:1.MEMS and2.MEMS and	MOEM				
TEXT BOOKS:      1.    MEMS and      2.    MEMS and      REFERENCE BO	MOEM	S Technology and Applica		Prosenjit, SPII	E, 2000.

2. Smart Material Systems and MEMS: Design and Development Methodologies - Vijay K. Vardan, K. J. Vinoy, S. Gopalakrishnan, John Wiley & Sons, 2011.

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PSO9	PSO10
CO1	1	2	2	2	3	2	3	2	0	1
CO2	1	2	2	2	3	2	3	2	0	1
CO3	1	2	3	2	3	2	3	2	0	1
CO4	1	2	3	2	3	2	3	2	0	1
CO5	1	2	3	2	3	2	3	2	0	1

# Mapping of Course Outcomes (CO) with Programme Outcomes (PO):

							L	Т	Р	С	
Ŋ	(PH30	5B	5	OLAR THERMAL AN	D PHOTOVO	OLTAIC	4	0	0	4	
C	Р	Α		TECHNO	LOGY		L	Т	Р	H	
3	0.75	0.25					4	0	0	4	
				knowledge on energy so							
On th	ne succ	essful c	omplet	on of the course, students	s will be able t	to					
			Co	urse Outcome		Domain			Leve	ક્ષ	
CO1				les that underlie the abili to deliver solar energy.	ty to various	Cognitive			owle Analy	•	
CO2Outline the technologies that are used to harness the power of solar energy for various applications.CognitiveKnowledg ComprehenEvaluate the choice of solar collector for a givenKnowledgKnowledg											
CO3 <i>Evaluate</i> the choice of solar collector for a given application.Cognitive, PsychomotorKnowledge Analysis, S											
CO4	syste		nd <i>app</i>	potential impact of so by knowledge for design		Cognitive		Kn	nowle	edge	
CO5				orking principle of solar e performance of the devi		Cognitive			rcept lowle		
	Г-І:			<b>y Resources and Solar S</b> - Indian energy scenario						12	
Elect energ	romagi	netic sp	ectrum onstant	ces and their importan basic laws of radiation. for earth. Applications							
		heaters		space conditioning syste	ems - Solar Co	ooking – Distill	atior	1 - D	esali		
				ve Architecture – Solar I							
lighti									1		
	Г - III			Collectors						12	
parab conce	oolic tre entratin	ough co g colle	ollector ctors (l	centrating solar collectors s - flat plate collectors - ow temperature solar the concentrating collectors	- evacuated tu rmal plants fo	be collectors - r space heating	App and	plicat cool	tion ling,	of non- drying,	
	<b>Γ - IV</b> :			Thermal Energy Conve						12	
Ther	mal de	sign of	receiv	damentals of solar collecters - Thermal Energy St thermal power generation	orage System						
UNI	<b>Γ - V :</b>		Solar	Photovoltaic Energy Co	nversion					12	
of so	lar PV	system	s, Solar	conversion - Principles - cell energy conversion e rature, losses. Solar PV po	fficiency, I-V						
	LEC	TURE		TUTORIAL	PRACT	FICAL	_	то	TAL		
	(	50		0	0	)		(	50		
TEX	T BOO	<b>DKS:</b>				1					
1.	Solar	Energ	y: Princ	iples of Thermal Collec	tion and Stora	age - Sukhatme	, Ta	ta M	cGra	ıw Hill,	

	New York, 2008.
2.	Thin Film Phenomena - K. L. Chopra, Tata McGraw Hill Book Company, New York, 1969.
REF	ERENCE BOOKS :
1.	Hand Book of Thin Films - Hari Singh Nalwa, Academic Press, 2002.
2.	Physics of Thin Films - L. Eckertova. Plenum Press, New York , 1977.
3.	Material Science of Thin Films - Milton Ohring, Academic Press, 2002.

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO9	PSO10
CO1	1	2	3	1	3	3	3	3	0	0
CO2	1	2	3	1	3	3	3	3	0	0
CO3	1	2	3	1	3	3	3	3	0	0
CO4	1	2	3	1	3	3	3	3	0	0
CO5	1	2	3	1	3	3	3	3	0	0

3-High Relation, 2-Medium Relation, 1-Low Relation, 0-No Relation

PH305C		-	L 4	Т 0	P 0	C 4			
	INDUSTRIAL ELECTRONICS	5	4	U	U	-4			
P A			L	Т	P	Η			
			4	0	0	4			
successful co	ompletion of the course, students will be able to								
Course Outcome     Domain     Level									
		Cognitive				0			
<i>Study</i> the ordevices.	peration of circuits used in power electronic	Cognitive		0					
<i>Know</i> the devices.	industrial applications of power electronic	Cognitive, Psychomotor				•			
	• 1	Cognitive		Kn	owle	dge			
		Cognitive			-				
- I :	Power Electronic Devices					12			
of switching	devices: Silicon controlled rectifiers (SCR) - U	nijunction trans	sisto	rs (Ū	JT)	Bipolar			
	e i	·			<u> </u>				
		ggering and con	nmu	tatio	n cire	cuit for			
introduction t	o driver and snuber circuit.								
	.750.25EQUISITE: successful coUnderstand and their switStudy the or devices.Know the devices.Know the basensors used understand and general for f switching on transistor C) - Insulated	.75       0.25         EQUISITE: Basic knowledge on electronics.         successful completion of the course, students will be able to         Course Outcome         Understand       different types of power electronic devices and their switching.         Study       the operation of circuits used in power electronic devices.         Know       the industrial applications of power electronic devices.         Know       the industrial applications of power electronic devices.         Know       the basics of transducers and sensors and types of sensors used for Robotics.         Understand       the working principle of ECG, EEG & EMG and general biomedical imaging techniques.         I:       Power Electronic Devices         of switching devices:       Silicon controlled rectifiers (SCR) – Unattention of the sources of the source	75       0.25         EQUISITE:       Basic knowledge on electronics.         successful completion of the course, students will be able to       Domain         Understand       Course Outcome       Domain         Understand       different types of power electronic devices and their switching.       Cognitive         Study the operation of circuits used in power electronic devices.       Cognitive         Know the industrial applications of power electronic devices.       Cognitive, Psychomotor         Know the basics of transducers and sensors and types of sensors used for Robotics.       Cognitive         Understand       the working principle of ECG, EEG & EMG and general biomedical imaging techniques.       Cognitive         I:       Power Electronic Devices       Cognitive         of switching devices: Silicon controlled rectifiers (SCR) – Unijunction transin transistor (BJT) – Diode for alternating current (DIAC) – Triode for C) - Insulated gate bipolar junction transistor (IGBT) - triggering and complexity of the principle of transistor (IGBT) - triggering and complexity of the principle of transistor (IGBT) - triggering and complexity of the principle of transistor (IGBT) - triggering and complexity of transi	75       0.25       4         EQUISITE: Basic knowledge on electronics.       successful completion of the course, students will be able to         successful completion of the course, students will be able to       Domain         Understand different types of power electronic devices and their switching.       Cognitive         Study the operation of circuits used in power electronic devices.       Cognitive         Know the industrial applications of power electronic devices.       Cognitive, Psychomotor         Know the basics of transducers and sensors and types of sensors used for Robotics.       Cognitive         Understand the working principle of ECG, EEG & EMG and general biomedical imaging techniques.       Cognitive         I:       Power Electronic Devices       Cognitive         of switching devices: Silicon controlled rectifiers (SCR) – Unijunction transistor (BJT) – Diode for alternating current (DIAC) – Triode for alternation communication transistor (IGBT) - triggering and communication tran	7.75       0.25       4       0         EQUISITE: Basic knowledge on electronics.         successful completion of the course, students will be able to         Course Outcome       Domain       Image: Completion of the course, students will be able to         Understand different types of power electronic devices and their switching.       Domain       Image: Completion of circuits used in power electronic devices.         Study the operation of circuits used in power electronic devices.       Cognitive       Knot Completion         Know the industrial applications of power electronic devices.       Cognitive, Formation of circuits used in power electronic devices.       Knot Cognitive, Knot Cognitive, Knot Cognitive, Completion, Cognitive, Cognitive, Completion, Cognitive, Cognitive, Completion, Cognitive, Cognitine, Cognitive, Cognitive, Cognitive, Cognitive	75       0.25       4       0       0         EQUISITE: Basic knowledge on electronics.         successful completion of the course, students will be able to         Course Outcome       Domain       Leve         Understand different types of power electronic devices and their switching.       Cognitive       Knowled Analyz         Study the operation of circuits used in power electronic devices.       Cognitive       Knowled Comprehe         Know the industrial applications of power electronic devices.       Cognitive, Psychomotor       Knowled Comprehe         Know the basics of transducers and sensors and types of sensors used for Robotics.       Cognitive       Knowled Cognitive, Psychomotor         Understand the working principle of ECG, EEG & EMG and general biomedical imaging techniques.       Cognitive       Knowled Cognitive, Cognitive, Percepti Knowled Cognitive, Percepti Knowled Cognitive, Power Electronic Devices         I:       Power Electronic Devices       Cognitive       Nnowled Cognitive, Cognitive, Cognitive, Percepti Knowled Cognitive, Power Electronic Devices         I:       Power Electronic Devices       Cognitive       Cognitive         I:       Power Electronic Devices       Image: Cognitive, Cognitive, Cognitive, Percepti Knowled Cognitive, Cognitive, Cognitive, Power Electronic Devices       Image: Cognitive,			

UNIT - I	II :	Power Electronic Circuits a	nd Controls		12
Converte	ers: Chopper	– Cyclo converters – Mat	ix converters; Rectifiers: S	ingle-phase	half-wave
rectifiers	- Single-ph	ase full-wave rectifiers; Inverte	ers: Single-phase inverters – T	Three-phase	inverters -
Multileve	el inverters –	Line-commutated inverters.			
UNIT - I	III :	<b>Applications of Power Elect</b>	ronic Devices		12
SCR DC	c drives – Po	wer electronic converter - Pos	tion sensing – Types and ope	eration of St	ep Motors:
Variable	reluctance s	tep motor – Drive circuits for	variable reluctance step motor	rs – Perman	ent magnet
step moto	or – Control	of step motor; Uninterruptible	power supplies (UPS): UPS	functions –	Static UPS
topologie	es – Rotary L				
UNIT - I	IV :	Sensors in Robotics			12
ange sen	nsors – Misco	ducers and sensors – Types of ellaneous sensors and sensor ba o machine vision – Sensing and	sed systems – Uses of sensors		
UNIT - V	V :	<b>Concepts of Medical Electro</b>			12
Electrom Electrode system:	iyogram (EN es for EMG Principle ar	and electrodes: Electrocardic MG); Electrode-tissue interfac – Electrical conductivity of ad Working of – X-ray mac	ogram (ECG) – Electroenc e; Electrodes for ECG – I electrode jellies and creams	Electrodes f s; Biomedic	(EEG) – or EEG – al imaging
Electrom Electrode system: resonance	yogram (EN es for EMG	and electrodes: Electrocardic MG); Electrode-tissue interfac – Electrical conductivity of ad Working of – X-ray mac	ogram (ECG) – Electroenc e; Electrodes for ECG – I electrode jellies and creams	Electrodes f s; Biomedic	(EEG) - for EEG - al imaging Magnetic
Electrom Electrode system: resonance	nyogram (EM es for EMG Principle ar e imaging (M	and electrodes: Electrocardic MG); Electrode-tissue interfac – Electrical conductivity of ad Working of – X-ray mac MRI).	ogram (ECG) – Electroenc e; Electrodes for ECG – I electrode jellies and creams hine, Computed tomography	Electrodes f s; Biomedica y (CT) and	(EEG) - for EEG - al imaging Magnetic AL
Electrom Electrode system: resonance	nyogram (EM es for EMG Principle ar te imaging (M LECTURE 60	and electrodes: Electrocardic MG); Electrode-tissue interfac – Electrical conductivity of ad Working of – X-ray mac MRI). TUTORIAL	pgram (ECG) – Electroence; Electrodes for ECG – Helectrode jellies and creams hine, Computed tomography PRACTICAL	Electrodes f s; Biomedica y (CT) and TOT	(EEG) - for EEG - al imaging Magnetic AL
Electrom Electrode system: resonance I	nyogram (EM es for EMG Principle ar ee imaging (N LECTURE 60 BOOKS:	and electrodes: Electrocardic MG); Electrode-tissue interfac – Electrical conductivity of ad Working of – X-ray mac MRI). TUTORIAL 0	ogram (ECG) – Electroence; Electrodes for ECG – I electrode jellies and creams hine, Computed tomography PRACTICAL 0	Electrodes f s; Biomedics y (CT) and TOT 6(	(EEG) - for EEG - al imaging Magnetic AL
Electrom Electrode system: resonance I TEXT B 1. In	nyogram (EM es for EMG Principle ar te imaging (M LECTURE 60 BOOKS: idustrial Elect	and electrodes: Electrocardic MG); Electrode-tissue interfac – Electrical conductivity of ad Working of – X-ray mac MRI). TUTORIAL	ogram (ECG) – Electroence; Electrodes for ECG – I electrode jellies and creams hine, Computed tomography PRACTICAL 0	Electrodes f s; Biomedics y (CT) and TOT 6(	(EEG) – for EEG – al imaging Magnetic AL
Electrom Electrode system: resonance I TEXT B 1. Inte Let 2. Ha	nyogram (EN es for EMG Principle ar te imaging (N LECTURE 60 BOOKS: Idustrial Elect earning India andbook of	and electrodes: Electrocardic MG); Electrode-tissue interfac – Electrical conductivity of ad Working of – X-ray mac MRI). TUTORIAL 0 etronics – Circuits, Instruments Pvt. Ltd, New Delhi, 2009. Biomedical Instrumentation,	pgram (ECG) – Electroence; Electrodes for ECG – I electrode jellies and creams hine, Computed tomography PRACTICAL 0 c, and Control Techniques - 7 R.S. Khandpur, Tata Mc	Electrodes f s; Biomedica y (CT) and TOT 60 Terry Bartel	(EEG) - for EEG - al imaging Magnetic 'AL ) t, Cengage
Electrom Electrode system: resonance I TEXT B 1. Inc Le 2. Ha Co	nyogram (EN es for EMG Principle ar te imaging (N LECTURE 60 BOOKS: Idustrial Elect earning India andbook of	and electrodes: Electrocardio MG); Electrode-tissue interfac – Electrical conductivity of ad Working of – X-ray mac (RI). TUTORIAL 0 etronics – Circuits, Instruments Pvt. Ltd, New Delhi, 2009. Biomedical Instrumentation, New Delhi, Second edition: 20	pgram (ECG) – Electroence; Electrodes for ECG – I electrode jellies and creams hine, Computed tomography PRACTICAL 0 c, and Control Techniques - 7 R.S. Khandpur, Tata Mc	Electrodes f s; Biomedica y (CT) and TOT 60 Terry Bartel	(EEG) - for EEG - al imaging Magnetic 'AL ) t, Cengage
Electrom Electrode system: resonance I TEXT B 1. Inc Le 2. Ha Cc REFERI	anyogram (EM es for EMG Principle ar the imaging (M LECTURE 60 BOOKS: Idustrial Elect earning India andbook of ompany Ltd, ENCE BOO	and electrodes: Electrocardio MG); Electrode-tissue interfac – Electrical conductivity of ad Working of – X-ray mac (RI). TUTORIAL 0 etronics – Circuits, Instruments Pvt. Ltd, New Delhi, 2009. Biomedical Instrumentation, New Delhi, Second edition: 20	pgram (ECG) – Electroence; Electrodes for ECG – I electrode jellies and creams hine, Computed tomography PRACTICAL 0 c, and Control Techniques - ' R.S. Khandpur, Tata Mc 03.	Electrodes f s; Biomedic: y (CT) and TOT 60 Terry Bartel	(EEG) - for EEG - al imaging Magnetic 'AL ) t, Cengage
Electrom Electrode system: resonance I TEXT B 1. Ind Le 2. Ha CC REFERI 1. M 2. El	nyogram (EN es for EMG Principle ar te imaging (N LECTURE 60 BOOKS: idustrial Elect earning India andbook of ompany Ltd, ENCE BOO	and electrodes: Electrocardio MG); Electrode-tissue interfac – Electrical conductivity of ad Working of – X-ray mac MRI). TUTORIAL 0 etronics – Circuits, Instruments Pvt. Ltd, New Delhi, 2009. Biomedical Instrumentation, New Delhi, Second edition: 20 KS :	ogram (ECG) – Electroence;         e; Electrodes for ECG – I         electrode jellies and creams         hine, Computed tomography         PRACTICAL         0         and Control Techniques - 7         R.S. Khandpur, Tata Mc03.	Electrodes f s; Biomedica y (CT) and TOT 60 Terry Bartel cGraw-Hill	(EEG) - for EEG - al imaging Magnetic PAL ) t, Cengage Publishing

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PSO9	PSO10
CO1	1	2	3	2	3	3	3	3	0	1
CO2	1	2	3	2	3	3	3	3	0	1
CO3	1	2	3	2	3	3	3	3	0	1
CO4	1	2	3	2	3	3	3	3	0	1
CO5	1	2	3	2	3	3	3	3	0	1