

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.3	Average percentage of courses having focus on employability/ entrepreneurship/ skill development offered by the department.

DEPARTMENT OF CIVIL ENGINEERING

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

S.	Programme name
No.	
1	Bachelor of Technology(Civil Engineering)(Full Time)
2	Bachelor of Technology((Civil Engineering)(Part Time)
3	Master of Technology(Environmental Engineering)(Full Time)
4	Master of Technology(Environmental Engineering)(Part Time)

2. Syllabus of the courses as per the list.

- Legend : Words highlighted with **Blue Color** Words highlighted with **Red Color** Words highlighted with **Purple Color**
- Entrepreneurship
- Employability
- Skill Development

Name of the Course	Course Code	Year of introduction	Activities/Content with direct bearing on Employability/ Entrepreneurship/ Skill development
Calculus and Linear Algebra	XMA101	2018-19	Skill Development - Assignment and Seminar
Electrical and Electronic Engineering Systems	XBE102	2018-20	Skill Development - Assignment and Seminar
Physics	XAP103	2018-21	Skill Development - Assignment and Seminar
Engineering Graphics and Design	XEG104	2018-22	Skill Development- Understand the views of the objects, Drawings under various views
Speech Communication	XGS105	2021-22	Skill Development - Assignment and Seminar
Constitution of India	XUM106	2017-18	Skill Development - Assignment and Seminar
Electrical and Electronic Engineering Systems Laboratory	XBE107	2021-22	Skill Development - Assignment and Seminar
Applied Physics for Engineers Laboratory	XAP108	2008-09	Skill Development - Assignment and Seminar
Calculus, Ordinary Differential Equations and Complex Variable	XMA201	2018-19	Skill Development - Assignment and Seminar
Programming for Problem Solving	XCP202	2013-14	Employability- Test,Assignment, Seminar,Poster Presentation
Chemistry	XAC203	2008-09	Skill Development-Assignment, Seminar
Technical Communication	XGS204	2021-22	Skill Development - Assignment and Seminar
Workshop Practices	XWP205	2008-09	Skill Development- Understand the views of the objects, Drawings under various views
Engineering Mechanics	XEM206	2008-09	Skill Development - Assignment and Seminar
Programming for Problem Solving Laboratory	XCP207	2013-14	Employability- Test,Assignment, Seminar,Poster Presentation
Chemistry Laboratory	XAC208	2008-09	Skill Development - Assignment

			and Seminar		
Disaster Preparedness & Planning	XCE302	2019-20	Skill Development - Album and Seminar		
Computer Aided Civil Engineering Drawing	XCE303	2019-20	Skill Development-Assignment and Tutorial		
Engineering Mechanics	XCE304	2014-15	Skill Development-Assignment and Tutorial		
Energy Science and Engineering	XCE305	2014-15	Employability-Field work and Assignments		
Surveying – I	XCE306	2014-15	Skill development- Assignment		
Introduction to Civil Engineering	XCE307	2019-20	Skill Development - Assignment and Seminar		
Effective Technical Communication	XGS308	2016-17	Skill Development-Assignment, Seminar, Technical Report		
Inplant Training - I	XCE309	2014-15	Skill Development-Assignment, Seminar, Technical Report		
Digital Land surveying and mapping	XCEM09	2019-20	Entrepreneurship-Case study		
Concrete Technology	XCE402	2011-12	Skill development-Literature survey		
Engineering Geology	XCE403	2008-09	Employability, Quiz/case study		
Mechanics of Fluids	XCE404	2015-16	Skill Development-Assignment and Tutorials		
Entrepreneurship Development	XUM405	2016-17	Skill development- Tutorials and Assignment		
Mechanics of Solids	XCE406	2013-14	Skill development- Tutorials and Assignment		
Geotechnical Engineering	XCE407	2015-16	Employability, Quiz/case study		
Surveying II	XCE408	2014-15	Skill development- Tutorials and Assignment		
Material Testing and Evaluation	XCE409	2018-19	Skill development- Tutorials and Assignment		

Mechanics of Materials	XCE501	2019-20	Employability-Tutorials, solving complex problems
Hydraulic Engineering	XCE502	2019-20	Skill Development-Assignment, Seminar, Technical Report
Structural Analysis	XCE503	2019-20	Employability-Tutorials, solving complex problems
Hydrology & Water Resources Engineering	XCE504	2019-20	Skill Development-Assignment, Seminar, Technical Report
Environmental Engineering	XCE505	2019-20	Employability –Tutorials and Case Study
Constitution of India	XUM506	2019-20	Skill Development-Assignment, Seminar, Technical Report
Transportation Engineering	XCE507	2019-20	Skill Development-Assignment, Seminar, Technical Report
Construction Engineering & Management	XCE508	2019-20	Skill Development-Assignment, Seminar, Technical Report
Professional Practice, Law & Ethics	XCE509	2019-20	Skill Development-Assignment, Seminar, Technical Report
In-plant Training - II	XCE510	2019-20	Skill development-Field work
Survey Camp	XCEM08	2008-09	Skill Development-Assignment, Seminar, Technical Report
Structural Engineering	XCE601	2019-20	Employability –Tutorials and Seminar
Engineering Economics, Estimation & Costing	XCE602	2019-20	Skill Development - Assignment and Seminar
Elective-I	XCEE**	2019-20	Skill Development - Assignment and Seminar
Elective-II	XCEE**	2019-20	Skill Development - Assignment and Seminar
Elective-III	XCEE**	2019-20	Skill Development - Assignment and Seminar
Elective-IV	XCEE**	2019-20	Skill Development - Assignment and Seminar

Elective V	XCEE**	2021-22	Skill Development-Assignment, Seminar, Technical Report
Elective-VI	XCEE**	2021-22	Skill Development-Assignment, Seminar, Technical Report
Elective VII	XCEE**	2021-22	Skill Development-Assignment, Seminar, Technical Report
Project Phase – I	XCE705	2021-22	Employability- Field visit
Inplant Training - III	XCE706	2021-22	Skill development-Field work
Real Estate and Valuation	XCEM01	2019-20	Skill development-Field work
Elective VIII	XCEE**	2021-22	Skill Development - Assignment and Seminar
Project Phase– II	XCE804	2021-22	Skill Development - Assignment and Seminar
Mechanics of Solids-I	PCE102	2012-13	Skill Development-Assignment and Tutorial
Fluid Mechanics and Machinery	PCE103	2012-13	Skill Development-Assignment and Tutorial
Strength of Materials Lab	PCE104	2012-13	Employability-Field work and Assignments
Fluid Mechanics and Machinery Lab	PCE105	2012-13	Skill Development-Assignment and Tutorial
Mechanics of Solids-II	PCE201	2012-13	Employability-Tutorials and Assignments
Geotechnical Engineering - I	PCE202	2012-13	Employability – Tutorials, Seminar and Assignments
Concrete Technology	PCE203	2012-13	Skill development- Drawing Preparation
Disaster Management	P**204	2012-13	Entrepreneurship-Case study
Geotechnical Engineering Lab	PCE205	2012-13	Employability-Field work and Document Preparation

Chemistry and Microbiology for Environmental Engineers	YEN101	2014-15	Skill development-Case study, Assignment
Unit Operation and Processes in Environmental Systems	YEN102	2019-20	Employability- Case study, Problem solving
Air Pollution and Control	YEN103C	2014-15	Employability- Case study, Assignment
Environment Economics	YEN103B	2018-19	Skill development-Report writing
Environmental Policies and Legislation	YEN104C	2018-19	Employability- Case study, Seminar
Environmental Quality Measurements Laboratory - I (Water & Wastewater)	YEN105	2014-15	Skill development-Analysis
Microbiology Laboratory	YEN106	2014-15	Skill development- Analysis
Research Methodology and IPR	YRM107	2014-15	Skilldevelopment-Reportwriting
Transport of Water and Waste water	YEN201	2014-15	Employability-Case study, Assignments
Biological Treatment of Waste water	YEN202	2018-19	Employability- Case Study
Solid and Hazardous Waste Management	YEN203	2014-15	Employability- Case study, field visit
Environmental Geotechnology	YEN204B	2018-19	Skill development- Case study, Assignments
Environmental Quality Measurements Laboratory - II (Air, Noise and Solidwaste)	YEN205	2014-15	Skill development- analysis
Unit Operation Laboratory	YEN206	2014-15	Skill Development- analysis
Mini Project	YEN207	2014-15	Skill development-Experimental work

Ground Water Contamination and Transport Modeling	YEN301A	2014-15	Employability- Case study		
Industrial Safety	YMEOE1	2018-19	Employability- Case Study, Report writing		
Dissertation Phase - I	YEN303	2014-15	Employability- Design and Analysis		
Dissertation Phase - I	YEN401	2014-15	Employability- Design, Analysis Fabrication, Testing , Report preparation		
ChemistryandMicrobiologyforEnvironmental Engineers	QEN101	2018-19	Skill development-Case study, Assignment		
Microbiology Laboratory	QEN103	2018-19	Skill development- Analysis		
Unit Operation and Processes in Environmental Systems	QEN201	2018-19	Skill development- Analysis		
Environmental Quality Measurements Laboratory - I (Water &Waste water)	QEN203	2018-19	Skill development- Analysis		
Transport of Water and Wastewater	QEN301	2012-13	Employability-Case study, Assignments		
Environmental Quality Measurements Laboratory - II(Air, Noise and Solid waste)	QEN303	2018-19	Skill development- analysis		
Biological Treatment of Waste water	QEN401	2018-19	Employability- Case Study, Report writing		
Mini Project	QEN404	2012-13	Employability- Design and Analysis		
Project Work - Phase I	QEN501	2012-13	Employability- Design and Analysis		
Project Work - Phase II	QEN601	2012-13	Employability - Field work and Lab scale performance		

COURSE CODE	XMA101	L	Т	Р	С
COURSE NAME	CALCULUS AND LINEAR ALGEBRA	3	1	0	4
PREREQUISITES	NIL	L	Т	Р	Н
C:P:A= 3:0.5:0.5		3	1	0	4

COURSE OBJECTIVES

Understand the application of calculus and linear algebra in engineering.

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Apply</i> orthogonal transformation to reduce quadratic form to canonical forms.	Cognitive	Remembering Applying
CO2	<i>Apply</i> power series to tests the convergence of the sequences and series. Half range Fourier sine and cosine series.	Cognitive Psychomotor	Applying Remembering Guided Response
CO3	<i>Find</i> the derivative of composite functions and implicit functions. Euler's theorem and Jacobian.	Cognitive Psychomotor	RememberingGuid ed Response
CO4	<i>Explain</i> the functions of two variables by Taylor's expansion, by finding maxima and minima with and without constraints using Lagrangian Method. Directional derivatives, Gradient, Curl and Divergence.	CognitiveAffec tive	Remembering Understanding Receiving
CO5	<i>Apply</i> Differential and Integral calculus to notions of Curvature and to improper integrals.	Cognitive	Applying

UNIT I MATRICES

Linear Transformation - Eigen values and Eigen vectors - Properties of Eigen values and Eigen vectors -Cayley-Hamilton Theorem – Diagonalisation of Matrices – Real Matrices: Symmetric - Skew-Symmetric and Orthogonal Quadratic form - canonical form - Nature of Quadratic form and Transformation of Quadratic form to Canonical form (Orthogonal only).

UNIT II SEQUENCES AND SERIES

Sequences: Definition and examples-Series: Types and convergence- Series of positive terms - Tests of convergence: comparison test, Integral test and D'Alembert's ratio test-Fourier series: Half range sine and cosine series- Parseval's Theorem.

UNIT III MULTIVARIABLE CALCULUS: PARTIAL DIFFERENTIATION 12L+3T

Limits and continuity -Partial differentiation - Total Derivative - Partial differentiation of Composite Functions: Change of Variables - Differentiation of an Implicit Function - Euler's Theorem- Jacobian.

MULTIVARIABLE CALCULUS: MAXIMA AND MINIMA AND UNIT IV 12L+3T **VECTOR CALCULUS**

Taylor's theorem for function of Two variables- Maxima, Minima of functions of two variables: with and without constraints - Lagrange's Method of Undetermined Multipliers - Directional Derivatives - Gradient, Divergence and Curl.

UNIT V DIFFERENTIAL AND INTEGRAL CALCULUS

12L+3T

12L+3T

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

TEXT BOOKS

- 1. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill New Delhi, 11th Reprint, 2015. (Unit-1, Unit-3 and Unit-4).
- 2. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2014. (Unit-2).
- 3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40th Edition, 2010. (Unit-5)

REFERENCE BOOKS

- 1. G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.
- 2. Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi, 2008.
- **3.** D. Poole, "Linear Algebra: A Modern Introduction", 2nd Edition, Brooks/Cole, 2005.
- 4. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

E-**REFERENCES**

1. <u>http://nptel.ac.in/faq/1101010/Prof.IndrajitMukherjee,IIT,Bombay</u> and Prof. Tapan P.Bagchi, IIT, Kharagpur.

LECTURE: 60	TUTORIAL: 15	PRACTICAL: 0	TOTAL :75
LECTURE: 60	IUIOKIAL: 15	PRACTICAL: 0	101AL :/5

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	2	1	1	2	2	8	2
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	2	0	0	0	1	3	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0
PO ₁₀	1	1	1	1	1	5	1

XMA101 - Mapping of CO with PO

PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	2	1	1	1	2	7	2
PSO ₁	0	0	0	0	0	0	0
PSO ₂	1	1	1	1	1	5	1
TOTAL	11	7	7	8	10	-	-

 $1\text{-}6 \rightarrow 1, 7\text{-}12 \rightarrow 2, 13\text{-}18 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURS	SE CODE	XBE102	L	Т	Р	С	
COURS	SE NAME	ELECTRICAL AND ELECTRONIC ENGINEERING SYSTEMS	3	1	0	4	
PRERF	QUISITES	NIL		L	Т	Р	H
C:P:A=	: 3:0:0			3	1	0	4
COURS	SE OUTCOME	S		LF	EVEI	L	
CO1	Cognitive		Und	ersta	nd		
CO2	Define and E.	Cognitive		Und	ersta	nd	
CO3	their applicati	<i>ustrate</i> various semiconductor devices and ons and displays the input output of basic semiconductor devices.	Cognitive		Und	ersta	nd
CO4		<i>plain</i> thenumber systems and logic gates. different digital circuit.	Cognitive		Und	ersta	nd
CO5	Label and Ou and their appl	<i>tline</i> thedifferent types of microprocessors cations.	Cognitive		Und	ersta	nd

UNIT I FUNDAMENTALS OF DC AND AC CIRCUITS, MEASUREMENTS 9+3

Fundamentals of DC– Ohm's Law – Kirchhoff's Laws - Sources - Voltage and Current Relations – Star/Delta Transformation - Fundamentals of AC – Average Value, RMS Value, Form Factor - AC power and Power Factor, Phasor Representation of sinusoidal quantities, Simple Series, Parallel, Series Parallel Circuit - Operating Principles of Moving coil and Moving Iron Instruments (Ammeter, Voltmeter) and Dynamometer type meters (Watt meter and Energy meter).

UNIT II ELECTRICAL MACHINES

Construction, Principle of Operation, Basic Equations, Types and Application of DC Generators, DC motors - Basics of Single-Phase Induction Motor and Three Phase Induction Motor- Construction, Principle of Operation of Single-Phase Transformer, Three phase transformers, Auto transformer.

UNIT III SEMICONDUCTOR DEVICES

Classification of Semiconductors, Construction, Operation and Characteristics: PN Junction Diode -

9+3

9+3

Zener Diode, PNP, NPN Transistors, Field Effect Transistors and Silicon Controlled Rectifier – Applications

UNIT IV DIGITAL ELECTRONICS

Basic of Concepts of Number Systems, Logic Gates, Boolean Algebra, Adders, Subtractors, multiplexer, demultiplexer, encoder, decoder, Flipflops, Up/Down counters, Shift Registers.

UNIT V MICROPROCESSORS

Architecture, 8085, pin diagram of 8085, ALU timing and control unit, registers, data and address bus, timing and control signals, Instruction types, classification of instructions, addressing modes, Interfacing Basics: Data transfer concepts – Simple Programming concepts.

LECTURE: 45 TUTORIAL: 15 PRACTICAL:0 TOTAL: 60

TEXT BOOK

- 1. Metha V.K, Rohit Mehta, 2020. Principles of Electronics, 12th ed, S Chand Publishing.
- 2. Albert Malvino, David J.Bates., 2017. Electronics Principles. 7th ed, Tata McGraw-Hill. New Delhi.
- 3. Rajakamal, 2014. Digital System-Principle & Design. 2nd ed. Pearson education.
- 4. Morris Mano, 2015. Digital Design. Prentice Hall of India.
- **5.** Ramesh, S. Gaonkar, 2013, Microprocessor Architecture, Programming and its Applications with the 8085, 6th ed , India: Penram International Publications.

REFERENCE BOOKS:

- 1. Cotton, H.,2005 Electrical Technology. CBS Publishers & Distributors Pvt Ltd.
- 2. Syed, A. Nasar, 1998, Electrical Circuits. Schaum Series.
- **3.** Jacob Millman and Christos, C. Halkias, 1967, Electronics Devices, New Delhi: Tata McGraw-Hill.
- **4.** Millman, J. and Halkias, C. C., 1972. Integrated Electronics: Analog and Digital Circuits and Systems, Tokyo: McGraw-Hill, Kogakusha Ltd.
- **5.** Mohammed Rafiquzzaman, 1999. Microprocessors Theory and Applications: Intel and Motorola. Prentice Hall International.

E-REFERENCES:

- 1. NTPEL, Basic Electrical Technology (Web Course), Prof. N. K. De, Prof. T. K. Bhattacharya and Prof. G.D. Roy, IIT Kharagpur.
- **2.** Prof.L.Umanand,http://freevideolectures.com/Course/2335/Basic-Electrical-Technology#, IISc Bangalore.
- 3. http://nptel.ac.in/Onlinecourses/Nagendra/, Dr. Nagendra Krishnapura, IIT Madras.
- **4.** Dr.L.Umanand, http://www.nptelvideos.in/2012/11/basic-electrical-technology.html, IISC Bangalore.

9+3

9+3

CO/GA	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	3	1	1	1	1			1	1	1	
CO 2	3	3	1	1	1	1			1	1	1	
CO 3	2	2	2	1	2	2	1	1	1	1	1	
CO 4	2	2	1	1	1	1	1	1	1	1	1	
CO 5	2	2	1	1	1	1	1	1	1	1	1	
Total	12	12	6	5	6	6	3	3	5	5	5	
Scaled	3	3	2	1	2	2	1	1	1	1	1	

XBE102- Mapping of COs with GAs

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COL	JRSE CODE	XAP103]	L	Т	Р	С		
	IRSE NAME	APPLIED PHY	YSICS FOR I	ENGINEERS	,	3	1	0	4		
	C:P:A	2.8:0.8:0.4]	L	Т	Р	Н		
PRE	REQUISITE	BASIC PHYSI	ICS IN HSC I	LEVEL	÷	3	1	0	4		
COUR	SE OUTCOMI	ES				Do	omain		Level		
CO1		its significance in		principles of elasticits systems and	y	C	Cognitive	ne	Remember, Understand		
	teennological a	luvances.]	Psyc	homotor	Me	echanism		
CO2		C	Cognitive	Ar	Remember, Analyze, Mechanism						
	electromagnet	c induction to tec	mology.]	Psychomotor: Affective:			echanism espond			
CO3		ne working princi		ptics by measuremen ation of various lase		C	Cognitive:	01	nderstand, oply		
	and note optics	5.							echanism		
						1	Affective	Re	ceive		
CO4		y bands in solids, blogy using semic		<i>se</i> physics principles ces.	5	C	Cognitive		nderstand, nalyze		
]	Psyc	homotor	Me	echanism		
					•	Affective		ceive			
CO5	-	vledge on particle		C	Cognitive	Understand,					
	equation for sin	inple potential.		Cogintive				. Apply			
UNIT - I MECHANICS OF SOLIDS											

Mechanics: Force - Newton's laws of motion - work and energy - impulse and momentum - torque - law of conservation of energy and momentum - Friction.

Elasticity: Stress - Strain - Hooke's law - Stress strain diagram - Classification of elastic modulus - Moment, couple and torque - Torsion pendulum - Applications of torsion pendulum - Bending of beams - Experimental determination of Young's modulus: Uniform bending and non-uniform bending.

UNIT -II ELECTROMAGNETIC THEORY

Laws of electrostatics - Electrostatic field and potential of a dipole; Dielectric Polarisation, Dielectric constant, internal field - Clausius Mossotti Equation - Laws of magnetism - Ampere's Faraday's law; Lenz's law - Maxwell's equation - Plane electromagnetic waves; their transverse nature - expression for plane, circularly and elliptically polarized light - quarter and half wave plates - production and detection of plane, circularly and elliptically polarized light.

UNIT -III OPTICS, LASERS AND FIBRE OPTICS

Optics: Dispersion- Optical instrument: Spectrometer - Determination of refractive index and dispersive power of a prism- Interference of light in thin films: air wedge - Diffraction: grating.

LASER: Introduction - Population inversion -Pumping - Laser action - Nd-YAG laser - CO_2 laser - Applications

Fibre Optics: Principle and propagation of light in optical fibre - Numerical aperture and acceptance angle - Types of optical fibre - Fibre optic communication system (Block diagram).

UNIT -IV SEMICONDUCTOR PHYSICS

Semiconductors: Energy bands in solids - Energy band diagram of good conductors, insulators and semiconductors - Concept of Fermi level - Intrinsic semiconductors - Concept of holes - doping - Extrinsic semiconductors - P type and N type semiconductors - Hall effect.

Diodes and Transistors: P-N junction diode - Forward bias and reverse bias - Rectification action of diode - Working of full wave rectifier using P N junction diodes - PNP and NPN transistors - Three different configurations - Advantages of common emitter configuration - working of NPN transistor as an amplifier in common emitter configuration.

UNIT -V QUANTUM PHYSICS

Introduction to quantum physics, black body radiation, Compton effect, de Broglie hypothesis, wave – particle duality, uncertainty principle, Schrodinger wave equation (Time dependent and Time independent), particle in a box, Extension to three dimension - Degeneracy.

TEXT BOOKS

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
Hours	45	15		60

TEXT BOOKS

- 1. Gaur R. K. and Gupta S. L., "Engineering Physics", Dhanpat Rai Publications, 2009.
- 2. Avadhanulu M. N. "Engineering Physics" (Volume I and II), S. Chand & Company Ltd., New Delhi, 2010.

REFERENCE BOOKS

- 1. Palanisamy P. K., "Engineering Physics", Scitech Publications (India) Pvt. Ltd, Chennai.
- 2. Arumugam M., "Engineering Physics" (Volume I and II), Anuradha Publishers, 2010.
- **3.** Senthil Kumar G., "Engineering Physics", 2nd Enlarged Revised Edition, VRB Publishers, Chennai, 2011.

9+3

9+3

9+3

9+3

4. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2007.

E RESOURCES

1. NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

AAT 105 Wapping of CO S with 1 O											
CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3				
PO ₁	3	3	3	3	3	15	3				
PO ₂	2	0	2	2	0	6	2				
PO ₃	2	1	2	2	2	9	2				
PO ₄	2		2	2	0	6	2				
PO ₅	1	1	1	1	0	4	1				
PO ₆	0	0	0	0	0	0					
PO ₇	0	0	0	0	0	0					
PO ₈	0	0	0	0	0	0					
PO ₉	1		1	1	0	3	1				
PO ₁₀	0	0	0	0	0	0					
PO ₁₁	0	0	0	0	0	0					
PO ₁₂	1	1	1	1	1	5	1				
PSO ₁	0	0	0	0	0	0					
PSO ₂	0	0	0	0	0	0					
TOTAL	12	6	12	12	6	-	-				

XAP103 Mapping of CO's with PO

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XEG104	L	Т	Р	С
COURSE NAME	ENGINEERING GRAPHICS AND DESIGN	1	0	2	3
PREREQUISITES	NIL	L	Т	Р	Н
C:P:A= 3:0:0		1	0	2	5

COURSE OBJECTIVES

- To prepare the student to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- To prepare the student to communicate effectively
- To prepare the student to use the techniques, skills, and modern engineering tools necessary for engineering practice

COUF	RSE OUTCOMES	DOMAIN	LEVEL
C01	<i>Apply</i> the national and international standards, <i>construct</i> and <i>practice</i> various curves	Cognitive Psychomotor Affective	Apply Guided response Respond
CO2	<i>Interpret, construct</i> and <i>practice</i> orthographic projections of points, straight lines and planes.	Cognitive Psychomotor Affective	Understand Mechanism Respond
CO3	<i>Construct Sketch</i> and <i>Practice</i> projection of solids in various positions and true shape of sectioned solids.	Cognitive Psychomotor Affective	Apply overt response Respond
CO4	<i>Interpret, Sketch</i> and <i>Practice</i> the development of lateral surfaces of simple and truncated solids, intersection of solids.	Cognitive Psychomotor Affective	Understand Overt response Respond
CO5	<i>Construct sketch</i> and <i>practice</i> isometric and perspective views of simple and truncated solids.	Cognitive Psychomotor Affective	Apply Overt response Respond

UNIT IINTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS6L+12PAND CONSTRUCTION OF PLANE CURVE6L+12P

Importance of graphics in engineering applications – use of drafting instruments – BIS specifications and conventions as per SP 46-2003.

Pictorial representation of engineering objects – representation of threedimensional objects in two dimensional media – need for multiple views – developing visualization skills through free hand sketching of three dimensional objects.

Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves – construction – drawing of tangents to the above curves. Practice on basic tools of CAD.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES

6L+12P

General principles of orthographic projection – first angle projection – layout of views – projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclinations to the planes of projection – traces – projection of polygonal surfaces and circular lamina inclined to both the planes of projection-CAD practice on points and lines

UNIT III PROJECTION OF SOLIDS AND SECTIONS OF SOLIDS

Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to one plane of projection – change of position & auxiliary projection methods – sectioning of above solids in simple vertical positions by cutting plane inclined to one reference plane and perpendicular to the other and above solids in inclined position with cutting planes parallel to one reference plane – true shapes of sections-CAD practice on solid models.

UNIT IV DEVELOPMENT OF SURFACES AND INTERSECTION OF SOLIDS

Need for development of surfaces – development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders and cones – development of lateral surfaces of the above solids with square and circular cutouts perpendicular to their axes – intersection of solids and curves of intersection –prism with cylinder, cylinder & cylinder, cone & cylinder with normal intersection of axes and with no offset-CAD practice on intersection of solids.

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS

Principles of isometric projection – isometric scale – isometric projections of simple solids, truncated prisms, pyramids, cylinders and cones – principles of perspective projections – projection of prisms, pyramids and cylinders by visual ray and vanishing point methods-CAD practice on isometric view.

TEXT BOOKS

- 1. Natarajan, K.V, "A Textbook of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2006.
- 2. Dr. P.K. Srividhya, P. Pandiyaraj, "Engineering Graphics", PMU Publications, Vallam, 2013.

REFERENCE BOOKS

- 1. Luzadder and Duff, "Fundamentals of Engineering Drawing" Prentice Hall of India PvtLtd, XI Edition- 2001.
- 2. Venugopal,K. and Prabhu Raja, V., "Engineering Graphics", New Age International(P) Ltd., 2008
- 3. Gopalakrishnan K.R. "Engineering Drawing I & II" Subhas Publications, 1998.
- 4. Shah. M.B and Rana B.C "Engineering Drawing" Pearson Education, 2005.

E-REFERENCES

- 1. http:// periyarnet/e-content
- 2. Http://nptel.ac.in/courses/112103019/

LECTURE: 15

TUTORIAL: 0

PRACTICAL: 30 TO

TOTAL:45

XEG104 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	3	3	3	3	3	15	3
PO ₃	3	3	3	3	3	15	3
PO ₄	2	1	1	1	1	6	2

6L+12P

6L+12P

6L+12P

PO ₅	3	3	3	3	3	15	3
PO ₆	2	1	1	1	1	6	2
PO ₇	3	3	3	3	3	15	3
PO ₈	1	1	1	1	1	5	1
PO ₉	1	1	1	1	1	5	1
PO ₁₀	2	1	1	1	1	6	2
PO ₁₁	3	2	2	2	2	11	3
PO ₁₂	3	3	3	3	3	15	3
PSO ₁	0	0	0	0	0	0	0
PSO ₂	1	1	1	1	1	5	1
TOTAL	30	26	26	26	26	-	-

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0-No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURSE CO	ODE	XGS10)5					L	Т	Р	SS	С	
COURSE NA	AME	SPEEC	CH COMM	MUNIC	CATIO	N		0	1	2	0	3	
PRE-REQU	UISITES	NIL						L	Т	Р	SS	H	
C:2.6 P:0).4 A:0	-						0	1	4	0	5	
COURSE OUTCOMES							DO	MAI	N	LEVEL			
CO1 A	<i>bility</i> to rec	call the ty	pes of spec	eches			Co	gnitiv	/e	Re	memb	er	
CO2 A	<i>pply</i> the tea	chniques	in public s	peaking	g		Co	gnitiv	/e	Apply			
CO3 <i>I</i> a	<i>dentify</i> the c	common j	patterns in	organiz	zing a sj	peech	Co	gnitiv	/e	Remember			
CO4 C	CO4 <i>Construct</i> the nature and style of speaking							gnitiv	/e	Create			
CO5 P	Practicingth	nespeakin	g skills				Psycl	nome	otor	Guided Response			
UNIT I T	YPES OF	SPEECI	HES								9		
1.1 – Four ty	pes of speed	ches											
1.2 – Analyzi	ing the audi	ience											
1.3 - Develop	oing ideas a	and suppo	orting mate	rials									
UNIT II PUBLIC SPEAKING											9		
2.1 - Introduction to Public Speaking													
2.2 - Competencies Needed for successful speech making													
2.3 – Speakin	ng about eve												

UNIT III ORGANIZATION OF SPEECH	9
3.1 – Developing a speech out line	
3.2 - Organizing the speech	
3.3 – Introduction - development – conclusion	
UNIT IV PRESENTATION	9
4.1 - Tips for preparing the draft speech	
4.2 – Presentation techniques using ICT tools	
4.3 – Using examples from different sources	
UNIT V ACTIVITIES	9
5.1 – Reading activities	
5.2 – Creative presentations	

5.3 - Media presentation techniques

SUGGESTED READINGS

- 1. Sanjay Kumar and Pushp Lata. Communication Skills. Oxford University Press. 2011
- 2. Michael Swan. Practical English Usage. OUP. 1995

CO Vs PO	C01	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	0	0	0	0	0	0	0
PO ₂	0	0	0	0	0	0	0
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	0	0	0	0
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	1	1	1	1	1	5	1
PO ₉	3	3	2	2	2	12	2
PO ₁₀	3	3	3	3	3	15	3
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	2	2	2	2	2	10	2
PSO ₁	0	0	0	0	0	0	0

XGS105 - Mapping of CO with PO

PSO2 0 <th>PSO₂</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th>	PSO ₂	0	0	0	0	0	0	0
--	------------------	---	---	---	---	---	---	---

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

	E CODE E NAME	XUM106 CONSTITUTION OF INDIA		L 0	Т 0	Р 0	C 0
PRERE	QUISITE:	NIL		L	Т	Р	Н
C:P:A		3:0:0		0	0	0	3
COURS	E OUTCOM	ES	DOMAIN		LE	VEL	4
CO1	Understand	the Constitutional History	Cognitive	U	nders	stand	ing
CO2	Understand	the Powers and Functions	Cognitive	U	nders	stand	ing
CO3	Understand	the Legislature	Affective	R	emer	nberi	ng
CO4	Understand	the Judiciary	Affective	R	emer	nberi	ng
CO5	Understand	the Centre State relations	Cognitive	U	nders	stand	ing
UNIT I							08

UNIT I

Constitutional History- The Constitutional Rights- Preamble- Fundamental Rights- Fundamental Duties- Directive principles of State Policy.

UNIT II

The Union Executive- The President of India (powers and functions)- Vice-President of India-The Council of Ministers-Prime Minister- Powers and Functions.

UNIT III

Union Legislature- Structure and Functions of Lok Sabha- Structure and Functions of Rajya Sabha-Legislative Procedure in India- Important Committee of Lok Sabha- Speaker of the Lok Sabha.

UNIT IV

The Union Judiciary- Powers of the Supreme Court- Original Jurisdiction- Appelete jurisdictions-Advisory Jurisdiction- Judicial review.

UNIT V

09

09

10

09

Centre State relations- Political Parties- Role of governor, powers and functions of Chief Minister-Legislative Assembly- State Judiciary- Powers and Functions of the High Courts.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

REFERENCES

1. W.H.Morris Shores- Government and politics of India, NewDelhi, B.1. Publishers, 1974.

2. M.V.Pylee- Constitutional Government in India, Bombay, Asia Publishing House, 1977.

3. R.Thanker- The Government and politics of India, London:Macmillon, 1995.

4. A.C.Kapur- Select Constitutions S, Chand & Co., NewDelhi, 1995

- 5. V.D.Mahajan- Select Modern Governments, S, Chand & Co, NewDelhi, 1995.
- 6. B.C.Rout- Democractic Constitution of India.
- 7. Gopal K.Puri- Constitution of India, India 2005.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	2			1					
CO 2	2			1					
CO 3	2			1					1
CO 4	2			1				1	1
CO 5	2	2		1				1	1
Total	10	2		5				2	3
Scaled to 0,1,2,3	2	1		1				1	1

XUM106- Mapping of COs with POs

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2- Medium Relation, 3- High Relation

COI	JRSE CODE	XBE107	L	т	Р	С	
			_	-	_	-	
COL	JRSE NAME	ELECTRICAL AND ELECTRONIC ENGINEERING SYSTEMS LAB	0	0	1	1	
	C:P:A	1.5:1:0.5	L	Т	Р	Н	
PRE	REQUISITE:	BASIC PHYSICS IN HSC LEVEL	0	0	1	2	
COUR	RSE OUTCOM	Do	mair	l	Level		
CO1		Cog	gnitiv	e	Understand		
	<i>Apply</i> the fund various electro	Psychomotor			Set		
	various creen	sine components.	Affective			Valuing	
CO2			Cog	gnitiv	Understand		
	<i>Implement</i> an	d <i>execute</i> the different types of wiring connections.	Psychomotor			Set	
			Affective			Valuing	
CO3			Cog	gnitiv	e	Understand	
	Demonstrate	the Fluorescent lamp connection with choke.	Psych	nomo	tor	Set	
			Aff	ectiv	e	Valuing	
CO4			Cog	gnitiv	e	Understand	
		and <i>display</i> the basic knowledge on the working of nd Zener diode.	Psychomotor			Set	
	i i gunetion u		Affective			Valuing	
CO5	<i>Implement</i> an	d <i>execute</i> the various digital electronic circuits such	Cog	gnitiv	Understand		

	as Adders and Subtractors.	Psychomotor Affective	Set Valuing						
OBJEC	CTIVES		C						
The cou	ırse helpsto								
a.	Learn the basic concepts of electrical and electronics components.								
b.	Understand the basic wiring methods and connection.								
с.	c. Study the characteristics of diodes, Zener diodes, NPN transistors.								
d. Verify the working of simple logic gates, adders and subtractors.									
LIST OF EX	XPERIMENTS								
Ex. N	lo Experiments		COs						
1.	Study of Electrical Symbols, Tools and Safety Precautions, Po	ower Supplies.	-						
2.	Study of Active and Passive elements – Resistors, Inductors a	nd Capacitors, Bread	Board						
3.	Testing of DC Voltage and Current in series and parallel resis breadboard by using Voltmeter, Ammeter and Multimeter.	tors which are connec	eted in _						
4.	Fluorescent lamp connection with choke.		-						
5.	Staircase Wiring		-						
6.	Forward and Reverse bias characteristics of PN junction diode	2.	-						
7.	Forward and Reverse bias characteristics of zener diode.		-						
8.	Input and Output Characteristics of NPN transistor.		-						
9. Construction and verification of simple logic gates.									
10.	Construction and verification of adders and subtractors.		-						
LECU	JRE:0 TUTORIAL: 0 PRACTICAL: 30	TOTAL:3	0						

TEXT BOOKS

1. Laboratory Manual "Electrical and Electronic Engineering SystemsLab", Department of Electrical and Electronics Engineering, PMIST, Thanjavur.

CO/GA	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	3	1	1	1	1			1	1	1	
CO 2	3	3	1	1	1	1			1	1	1	
CO 3	2	2	2	1	2	2	1	1	1	1	1	
CO 4	2	2	1	1	1	1	1	1	1	1	1	
CO 5	2	2	1	1	1	1	1	1	1	1	1	
Total	12	12	6	5	6	6	3	3	5	5	5	
Scaled Value	3	3	2	1	2	2	1	1	1	1	1	

XBE107- Mapping of COs with GAs

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COU	JRSE CODE	XAP108	L	Т	Р	С			
COL	JRSE NAME	APPLIED PHYSICS FOR ENGINEERS LAB	0	0	1	1			
	C:P:A	0:1.5:0.5	L	Т	Р	Н			
PRE	REQUISITE:	BASIC PHYSICS IN HSC LEVEL	0	0	1	2			
COUR	RSE OUTCOM	Domain			Level				
CO1		sics of mechanics, and <i>determine</i> its significance in stems and technological advances.	Psy	chome	Mechanism				
CO2		basic applications of electromagnetic induction to	•	chomo Affect	Analyze, Mechanism Respond				
CO3	<i>describe</i> the working principle and application of various lasers and fibre optics. Psychomotor: Affective:								
CO4	Analyse energ of latest techno	chomo Affect		Analyze Mechanism Receive					
LI	LIST OF EXPERIMENTS								

Ex. Experiments

No

- **1.** Torsional Pendulum determination of moment of inertia and rigidity modulus of the given material of the wire.
- **2.** Uniform Bending Determination of the Young's Modulus of the material of the beam.
- **3.** Non-Uniform Bending Determination of the Young's Modulus of the material of the beam.
- 4. Meter Bridge Determination of specific resistance of the material of the wire.
- 5. Spectrometer Determination of dispersive power of the give prism.
- **6.** Spectrometer Determination of wavelength of various colours in Hg source using grating.
- 7. Air wedge Determination of thickness of a given thin wire.
- **8.** Laser Determination of wavelength of given laser source and size of the given micro particle using Laser grating.
- 9. Post office Box Determination of band gap of a given semiconductor.
- 10. PN Junction Diode Determination of V-I characteristics of the given diode.

LECURE:0 TUTORIAL: 0 PRACTICAL: 30 TOTAL: 30 TEXT BOOKS COs

1. Laboratory Manual "PhysicsLab", Department of Physics, PMIST, Thanjavur.

REFERENCE BOOKS

- 1. Samir Kumar Ghosh, "A text book of Advanced Practical Physics", New Central Agency (P) Ltd, 2008.
- 2. Arora C.L., "Practical Physics", S. Chand & Company Ltd., New Delhi, 2013.
- **3.** Umayal Sundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	2		2	2	0	6	2
PO ₃	2	1	2	2	2	9	2
PO ₄	2		2	2	0	6	2
PO ₅	1	1	1	1	0	4	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0
PO ₉	1		1	1	0	3	1
PO ₁₀	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	1	1	1	1	1	5	1
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
TOTAL	12	6	12	12	6	-	-

XAP108 - Mapping of CO with PO

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XMA201	L	Т	Р	С
COURSE NAME	CALCULUS, ORDINARY DIFFERENTIAL EQUATIONS AND COMPLEX VARIABLE	3	1	0	4
PREREQUISITES	NIL	L	Т	Р	Н
C:P:A= 3:0.5:0.5		3	1	0	4

COURSE OBJECTIVES

• Understand the application of Calculus, Ordinary Differential Equations and Complex Variable in engineering.

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	Find double and triple integrals and to find line, surface and volume of an integral by Applying Greens, Gauss divergence and Stokes theorem.	Cognitive	Remember, Apply
CO2	Solve first order differential equations of different types which are solvable for p, y, x and Clairaut's type.	Cognitive	Apply
CO3	Solve Second order ordinary differential equations with variable coefficients using various methods.	Cognitive	Apply
CO4	Use CR equations to verify analytic functions and to find harmonic functions and harmonic conjugate.Conformal mapping of translation and rotation. Mobius transformation.	Cognitive Psychomotor	Remember, Apply Guided Response
CO5	Apply Cauchy residue theorem to evaluate contour integrals involving sine and cosine function and to state Cauchy integral formula, Liouvilles theorem.Taylor's series, zeros of analytic functions, singularities, Laurent's series.	Cognitive Affective	Apply Receiving

UNIT I MULTIVARIABLE CALCULUS (INTEGRATION)

Multiple Integration: Double integrals (Cartesian) - change of order of integration in double integrals - Change of variables (Cartesian to polar) - Triple integrals (Cartesian), Scalar line integrals - vector line integrals - scalar surface integrals - vector surface integrals - Theorems of Green, Gauss and Stokes.

UNIT II FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS 9L+3T

Exact - linear and Bernoulli's equations - Euler's equations - Equations not of first degree: equations solvable for p - equations solvable for y- equations solvable for x and Clairaut's type.

UNIT III ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDERS 9L+3T

Second order linear differential equations with variable coefficients- method of variation of parameters -Cauchy-Euler equation- Power series solutions- Legendre polynomials- Bessel functions of the first kind and their properties.

UNIT IV COMPLEX VARIABLE – DIFFERENTIATION

Differentiation-Cauchy-Riemann equations- analytic functions-harmonic functions-finding harmonic conjugate- elementary analytic functions (exponential, trigonometric, logarithm) and their properties-

9L+3T

Conformal mappings- Mobius transformations and their properties.

UNIT V COMPLEX VARIABLE – INTEGRATION

Contour integrals - Cauchy-Goursat theorem (without proof) - Cauchy Integral formula (without proof)-Liouville's theorem (without proof)- Taylor's series- zeros of analytic functions- singularities- Laurent's series – Residues- Cauchy Residue theorem (without proof)- Evaluation of definite integral involving sine and cosine- Evaluation of certain improper integrals using the Bromwich contour.

TEXT BOOKS

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40thth Edition, 2008.

REFERENCE BOOKS

LECTURE: 45 TUTORIAL: 15	PRACTICAL: 0	TOTAL :60
--------------------------	--------------	-----------

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	2	1	1	2	2	8	2
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	2	0	0	0	1	3	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0
PO ₁₀	1	1	1	1	1	5	1
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	2	1	1	1	2	7	2
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
TOTAL	10	6	6	7	9	-	-

XMA201 - Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUR	SE CODE		L	Т	Р	С	
COUR	SE NAME	PROGRAMMING FOR PROBLEM	1 SOLVING	3	0	0	3
PRERE	EQUISITES	BASIC UNDERSTANDING SKILL	'S	L	Т	Р	Η
C:P:A=	= 3:0:0			3	0	0	3
COUR	SE OBJECTIVI	ES					
 To 2 To 2 To 2 To 2 	ignite logical thir understand struct deal with user de	ured programming approach fined data types storage in secondary memory	DOMAII	N		LEVI	EL
CO1	<i>Define</i> program programs using	ming fundamentals and <i>Solve</i> simple I/O statements	Cognitive	e	Remember Understand		
CO2	Define syntax a structures and as	nd <i>write simple programs</i> using control trays	Cognitive	e		Appl Remen Unders Appl	mber stand
CO3	<i>Explain</i> and <i>wr</i> pointers	ite simple programs using functions and	d Cognitive	9	I	Remei Unders	tand
CO4	<i>Explain</i> and <i>wr</i> unions	ite simple programs using structures an	d Cognitive	e		Appl Remen Unders	mber stand
CO5	<i>Explain</i> and <i>wr</i> simple projects	ite simple programs using files and Bui	de Cognitive	e	١	Appl Remei Unders	mber tand
UNIT I	PROGR	AMMING FUNDAMENTALS AND 1	I/O STATEMEN	JTS		Appl	ly 9

UNIT I PROGRAMMING FUNDAMENTALS AND I/O STATEMENTS

Introduction to components of a computer system, Program - Flowchart - Pseudo code - Software -Introduction to C language - Character set - Tokens: Identifiers, Keywords, Constants, and Operators sample program structure -Header files – Data Types- Variables - Output statements – Input statements.

UNIT II CONTROL STRUCTURES AND ARRAYS

Control Structures - Conditional Control statements: Branching, Looping - Unconditional control structures: switch, break, continue, goto statements - Arrays: One Dimensional Array - Declaration -Initialization - Accessing Array Elements - Searching - Sorting - Two Dimensional arrays - Declaration -Initialization - Matrix Operations - Multi Dimensional Arrays - Declaration - Initialization. Storage classes: auto - extern - static. Strings: Basic operations on strings.

UNIT III FUNCTIONS AND POINTERS

Functions: Built in functions – User Defined Functions - Parameter passing methods - Passing arrays to functions - Recursion - Programs using arrays and functions. Pointers - Pointer declaration - Address operator - Pointer expressions & pointer arithmetic - Pointers and function - Call by value - Call by Reference - Pointer to arrays - Use of Pointers in self-referential structures-Notion of linked list.

UNIT IV STRUCTURES AND UNIONS

9

9

9

Structures and Unions - Giving values to members - Initializing structure - Functions and structures - Passing structure to elements to functions - Passing entire function to functions - Arrays of structure - Structure within a structure and Union.

UNIT V FILES

File management in C - File operation functions in C - Defining and opening a file - Closing a file - The getw and putw functions - The fprintf & fscanf functions - fseek function – Files and Structures.

TEXT BOOKS

- **1.** Byron Gottfried, "Programming with C", III Edition, (Indian Adapted Edition), TMH publications, 2010
- 2. Yeshwant Kanethker, "Let us C", BPB Publications, 2008

REFERENCE BOOKS

- 1. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill, 7th edition 2017.
- Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education Inc. 2005
- **3.** Johnson baugh R. and Kalin M., "Applications Programming in ANSI C", III Edition, Pearson Education India, 2003

E-**REFERENCES**

LECTURE: 45

- 1. https://www.indiabix.com/c-programming/questions-and-answers/
- 2. <u>https://www.javatpoint.com/c-programming-language-tutorial</u>

TUTORIAL: 0

3. https://www.w3schools.in/c-tutorial/

PRACTICAL: 0

TOTAL :45

9

XCP202 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	2	2	2	12	3
PO ₂	2	2	2	2	2	10	2
PO ₃	0	0	1	1	1	3	1
PO ₄	0	0	2	2	0	4	1
PO ₅	3	2	2	2	2	11	3
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	1	1	1
PO ₉	0	0	0	0	0	0	0
PO ₁₀	0	0	0	0	2	2	1
PO ₁₁	2	2	2	2	2	10	2

PO ₁₂	3	3	2	2	2	12	3
PSO ₁	2	2	2	2	2	10	2
PSO ₂	0	0	0	0	0	0	0
TOTAL	15	14	15	15	16	-	-

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0-No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COUR	RSE CODE	XAC203			L	Т	Р	С		
COUR	RSE NAME	APPLIED CHEN	AISTRY FOR ENGI	NEERS	3	1	0	4		
PRER	EQUISITES	NIL			L	Т	Р	Н		
C:P:A	= 2.5:1:0.5				3	1	0	4		
COU	RSE OBJECTIV	ES								
• Ur	nderstand the app	lication of chemistry	in engineering.							
COUF	RSE OUTCOME	ES		DOMAI	N	LEVEL				
				Cognitiv Psychomo				0		
CO2	Explain and Measure microscopic chemistry in terms of Cognitive					Understanding Set				
CO3		properties and proce c and kinetic conside	-	Cognitiv Psychomo Affective	tor	Applying Mechanism Receive				
CO4	Describe, Illustrate and Discuss the chemical reactions Cognitiv				tor	Remembering Analyzing Perception Responding				
CO5	electromagnetic molecular ener techniques	e and Distinguish the construction of the spectrum used for a gy levels in various a	exciting different spectroscopic	Cognitiv Psychomo		ŀ	Rememb Apply Mechar	ving nism		
UNIT	I PERIOI	DIC PROPERTIES	AND WATER CHE	EMISTRY				8L+3T		

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries. **Water Chemistry**-Water quality parameters-Definition and explanation of hardness, determination of hardness by EDTA method-Introduction to alkalinity.

UNIT II USE OF FREE ENERGY IN CHEMICAL EQUILIBRIA

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Corrosion-Types, factors affecting corrosion rate and Control methods. Use of free energy considerations in metallurgy through Ellingham diagrams. Advantages of electroless plating, electroless plating

of nickel and copper on Printed Circuit Board (PCB).

UNIT III ATOMIC AND MOLECULAR STRUCTURE

Schrodinger equation. Particle in a box solution and their applications for conjugated molecules and nanoparticles.. Molecular orbitals of diatomic molecules and plots of the multicenter orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic molecules. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

Intermolecular forces and potential energy surfaces

Ionic, dipolar and Vander waals interactions. Equations of state of real gases and critical phenomena. Potential energy surfaces of H₃, H₂F and HCN and trajectories on these surfaces.

UNIT IV SPECTROSCOPIC TECHNIQUES AND APPLICATIONS

Principles of spectroscopy and selection rules. Electronic spectroscopy-chromophore, auxochromes, types of electronic transition and application. Fluorescence and its applications in medicine. Vibrational spectroscopy-types of vibrations, Instrumentation and applications. Rotational spectroscopy of diatomic molecules. Nuclear magnetic resonance spectroscopy-concept of chemical shift and applications-magnetic resonance imaging. Diffraction and scattering.

UNIT V STEREOCHEMISTRY AND ORGANIC REACTIONS

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization reactions and ring opening reactions. Synthesis of a commonly used drug molecule- Aspirin and paracetamol.

TEXT BOOKS

- 1. Puri B.R. Sharma, L.R., Kalia K.K. Principles of Inorganic Chemistry, (23rdedition), New Delhi, Shoban Lal Nagin Chand & Co., 1993.
- 2. Lee. J.D. Concise Inorganic Chemistry, UK, Black well science, 2006.
- **3.** Trapp. C, Cady, M. Giunta. C, Atkins's Physical Chemistry, 10th Edition, Oxford publishers, 2014.
- 4. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd, 1983.
- 5. Morrison R.T. and Boyd R.N. Organic Chemistry (6th edition), New York, Allyn

& Bacon Ltd., 1976.

- **6.** Banwell. C.N, Fundamentals of Molecular Spectroscopy, (3th Edition), McGraw-Hill Book Company, Europe 1983.
- 7. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (4th edition), S./ Chand & Company Ltd. New Delhi, 1977.
- P. S. Kalsi, Stereochemistry: Conformation and mechanism, (9th Edition), New Age International Publishers, 2017.

REFERENCES

10L+3T

8L+3T

- 1. Puri B R Sharma L R and Madan S Pathania, "Principles of Physical Chemistry", Vishalpublishing Co., Edition 2004.
- 2. Kuriocose, J C and Rajaram, J, "Engineering Chemistry", Volume I/II, Tata McGraw-Hill Publishing Co. Ltd. New Delhi, 2000.

E- REFERENCES

- 1. http://www.mooc-list.com/course/chemistry-minor-saylororg
- 2. <u>https://www.canvas.net/courses/exploring-chemistry</u>
- 3. http://freevideolectures.com/Course/2263/Engineering-Chemistry-I
- 4. <u>http://freevideolectures.com/Course/3001/Chemistry-I</u>
- 5. http://freevideolectures.com/Course/3167/Chemistry-II
- 6. <u>http://ocw.mit.edu/courses/chemistry/</u>

LECTURE:45

TUTORIAL:15 PRACTICAL:0

TOTAL:60

XAC203 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	2	3	3	3	13	3
PO ₂	0	0	0	0	0	0	0
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	0	0	0	0
PO ₆	0	0	0	0	0	0	0
PO ₇	2	1	2	3	2	10	2
PO ₈	3	2	3	3	2	13	3
PO ₉	3	2	3	3	3	14	3
PO ₁₀	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	0	0	0	0	0	0	0
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0

 $1\text{-}6 \rightarrow 1, 7\text{-}12 \rightarrow 2, 13\text{-}18 \rightarrow 3$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURS	SE CODE	XGS204	L	Т	Р	SS	С	
COURS	SE NAME	TECHNICAL COMMUNICATION	2	0	0	0	2	
PRE-R	EQUISITES	NIL	L	Т	Р	SS	Н	
С	:3 P:0 A:0	-	2	0	0	0	2	
COURS	SE OUTCOMES	5	DOMA	AIN	I	EVEI		
CO1	Ability to unde	rstand the basic principles	Cognit	tive	Re	Remember		
CO2	Apply the tech	niques in writing	Cognit	tive		Apply		
CO3	<i>Identify</i> commu	inicative styles	Cognit	tive	Re	memb	er	
CO4	Construct the 1	nature of writing	Cognit	tive	(Create		
UNIT I	– Basic Princip	les				9)	
1.1 – Ba	asic Principles of	Technical Writing						
$1.2 - St_{2}$	1.2 – Styles used in Technical Writing							
1.3 – La	-							
UNIT I	I – Techniques					9)	
2.1 – <mark>S</mark> p	ecial Techniques	used in writing						
2.2 – De	efinition & Descr	iption of mechanism						
2.3 – De								
UNIT I	II – Communica	tion				ç)	
3.1 – M	odern developme	nt in style of writing						
3.2 - No	ew letter writing	formats						
UNIT I	V – Report Wri	ting				9)	
4.1 – Ty	pes of Report wi	iting						
4.2 – Pr	oject writing forr	nats						
SUGGI	ESTED READIN	NGS						
1.	John Sealy, W	riting and Speaking Author; Oxford University I	Press, Ne	ew Del	hi, 20	09		

2. Williams K.S, Communicating Business. Engage Learning India Pvt Ltd, 2012

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	0	0	0	0	0	0	0
PO ₂	0	0	0	0	0	0	0
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	0	0	0	0
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	1	1	1	1	1	5	1
PO ₉	3	3	2	2	2	12	2
PO ₁₀	3	3	3	3	3	15	3
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	2	2	2	2	2	10	2
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
$\begin{array}{c} \text{TOTAL} \\ 1.6 \rightarrow 1.7 12 \rightarrow 2.13 18 \end{array}$							

XGS204 - Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XWP205	L	Т	Р	С
COURSE NAME	WORKSHOP PRACTICES	1	0	2	3
PREREQUISITES	NIL	L	Т	Р	H
C:P:A= 1:3:0		1	0	2	5

COURSE OBJECTIVES

• To obtain skills in machining methods, casting process, moulding methods and welding etc.

COURSE OUTCOMES DOMAIN LEVEL Summarize the machining methods and Practice Cognitive UnderstandGuided CO1 machining operation. Psychomotor Response Defining metal casting process, moulding methods and Cognitive Remember **CO2** relatesCasting and Smithy applications. Psychomotor Perception Plan basic carpentry and fitting operation and Practice Cognitive Apply **CO3** carpentry and fitting operations. Psychomotor **Guided Response** Summarize metal joining operation and Practice welding Cognitive UnderstandGuided **CO4** operation. Psychomotor Response Illustrate the, electrical and electronics basics and Cognitive Understand Makes appropriate connections. **CO5** Psychomotor Origination

COURSE CONTENT

EXP.NO		TITLE	COs
1	Introduction to machining	process	CO1
2	Plain turning using lathe op	peration	CO1
3	Introduction to CNC		CO1
4	Demonstration of plain turn	ning using CNC	CO1
5	Study of metal casting oper	ration	CO2
6	Demonstration of moulding	g process	CO2
7	Study of smithy operation		CO2
8	Study of carpentry tools		CO3
9	Half lap joint – Carpentry		CO3
10	Mortise and Tenon joint –	Carpentry	CO3
11	Study of fitting tools		CO3
12	Square fitting		CO3
13	Triangular fitting		CO3
14	Study of welding tools		CO4
15	Square butt joint – welding		CO4
16	Tee joint – Welding		CO4
17	Introduction to house wirin	g	CO5
18	One lamp controlled by on	e switch	CO5
19	Two lamps controlled by s	ingle switch	CO5
20	Staircase wiring		CO5
THEORY: 15	TUTORIAL:0	PRACTICAL:30	TOTAL:45

TEXT BOOKS

- 1. Workshop Technology I,II,III, by S K Hajra, Choudhary and A K Chaoudhary. Media Promoters and Publishers Pvt. Ltd., Bombay
- 2. Workshop Technology by Manchanda Vol. I,II,III India Publishing House, Jalandhar.

REFERENCES

- 1. Manual on Workshop Practice by K Venkata Reddy, KL Narayana etal; MacMillan India Ltd.
- 2. Basic Workshop Practice Manual by T Jeyapoovan; Vikas Publishing House (P) Ltd.,New Delhi
- 3. Workshop Technology by B.S. Raghuwanshi, Dhanpat Rai and Co., New Delhi.
- 4. Workshop Technology by HS Bawa, Tata McGraw Hill Publishers, New Delhi.

E RESOURCES

1. <u>http://nptel.ac.in/courses/112107145/</u>

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	2	2	2	2	2	10	2
PO ₂	1	1	1	1	1	5	1
PO ₃	2	2	2	2	2	10	2
PO ₄	2	2	2	2	2	10	2
PO ₅	1	1	1	1	1	5	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	1	1	1	1	1	5	1
PO ₉	1	1	1	1	1	5	1
PO ₁₀	0	0	0	0	0	0	0
PO ₁₁	1	1	1	1	1	5	1
PO ₁₂	2	2	2	2	2	10	1
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
TOTAL	13	13	13	13	13	-	-

XWP205 - Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XEM206	L	Т	Р	С
COURSE NAME	ENGINEERING MECHANICS	0	0	3	3
PREREQUISITES	NIL	L	Т	Р	Н
C:P:A= 3.5:0.25:0.25		0	0	3	3

COURSE OBJECTIVES

Upon successful completion of the course, student will have:

- *Ability to apply mathematics, science, and engineering.*
- Ability to design and conduct experiments, as well as to analyze and interpretdata.
- Ability to identify, formulate, and solve engineeringproblems.
- Ability to apply modern engineering tools, techniques and resources to solve complex mechanical engineering activities with an understanding of thelimitations.
- Ability to comprehend the thermodynamics and their corresponding processes that influence the behavior and response of structural components.
- Ability to apply principles of engineering, basic science, and mathematics (including multivariate calculus and differential equations) and thermodynamics to model, analyze, design, and realize physical systems, components, orprocesses.

COURSE OUTCOMES		DOMAIN	LEVEL	
CO1	<i>Explain</i> the principles forces, laws and theirapplications.	Cognitive	Understanding, Apply	
CO2	<i>Classification</i> of friction, and <i>apply</i> the forces in Trusses and beams.	Cognitive	Understanding, Apply	
CO3	<i>Explain</i> and <i>Apply</i> moment of Inertia and Virtual work	Cognitive	Understanding, Apply	
CO4	Outline and Examine Dynamics	Cognitive	Understanding, Apply	
CO5	<i>Explain</i> free and forced vibration	Cognitive	Remember, Understanding	

UNIT I INTRODUCTION TO ENGINEERING MECHANICS

Force Systems Basic concepts, Particle equilibrium in 2-D & 3-D; Rigid Body equilibrium; System of Forces, Coplanar Concurrent Forces, Components in Space – Resultant- Moment of Forces and its Application; Couples and Resultant of Force System, Equilibrium of System of Forces, Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial Systems; Static indeterminacy.

UNIT II FRICTION AND BASIC STRUCTURAL ANALYSIS

Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack; Equilibrium in three dimensions; Method of Sections; Method of Joints; How to determine if a member is in tension or compression; Simple Trusses; Zero force members; Beams & types of beams; Frames & Machines.

9L+3T

UNIT III CENTROID, CENTRE OF GRAVITY AND VIRTUAL WORK AND ENERGY METHOD

Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.

Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom. Active force diagram, systems with friction, mechanical efficiency. Conservative forces and potential energy (elastic and gravitational), energy equation for equilibrium. Applications of energy method for equilibrium. Stability of equilibrium.

UNIT IVREVIEW OF PARTICLE DYNAMICS AND INTRODUCTION TO9L+3TKINETICS OF RIGID BODIES

Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3-D curvilinear motion; Relative and constrained motion; Newton's 2nd law (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique). Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D'Alembert's principle and its applications in plane motion and connected bodies; Work energy principle and its application of connected bodies; Kinetics of rigid bodyrotation.

UNIT V MECHANICAL VIBRATIONS

Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedom; Derivation for frequency and amplitude of free vibrations without damping and single degree of freedom system, simple problems, types of pendulum, use of simple, compound and torsion pendulums.

TEXT BOOKS

- 1. Hisrich, 2016, Entrepreneurship, Tata McGraw Hill, New Delhi.
- 2. S.S.Khanka, 2013, Entrepreneurial Development, S.Chand and Company Limited, New Delhi.

REFERENCE BOOKS

- Mathew Manimala, 2005, Entrepreneurship Theory at the Crossroads, Paradigms & Praxis, Biztrantra ,2nd Edition.
- Prasanna Chandra, 2009, Projects Planning, Analysis, Selection, Implementation and Reviews, Tata McGraw-Hill.
- 3. P.Saravanavel, 1997, Entrepreneurial Development, Ess Pee kay Publishing House, Chennai.
- **4.** Arya Kumar,2012, Entrepreneurship: Creating and Leading an Entrepreneurial organisation, Pearson Education India.
- Donald F Kuratko, T.V Rao, 2012, Entrepreneurship: A South Asian perspective, Cengage Learning India.
- 6. Dinesh Awasthi, Raman Jaggi, V.Padmanand, Suggested Reading / Reference Material for Entrepreneurship Development Programmes (EDP/WEDP/TEDP), EDI Publication, Entrepreneurship Development Institute of India, Ahmedabad.

E-REFERENCES

1. Jeff Hawkins, "Characteristics of a successful entrepreneur", ALISON Online entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills

9L+3T

2. Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education, https://www.udemy.com/entrepreneurship-from-idea-to-launch/

LECTURE: 45 TUTORIAL: 15 PRACTICAL: 0 TOTAL:60

	XEM206 - Mapping of CO with PO													
CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3							
PO ₁	1	1	1	1	1	5	1							
PO ₂	2	2	2	2	3	11	3							
PO ₃	3	3	3	3	3	15	3							
PO ₄	1	1	1	1	1	5	1							
PO ₅	0	0	0	0	0	0	0							
PO ₆	3	3	3	3	3	15	3							
PO ₇	1	1	1	1	1	5	1							
PO ₈	0	3	0	1	3	7	2							
PO ₉	3	3	3	3	3	15	3							
PO ₁₀	1	1	1	3	3	9	2							
PO ₁₁	2	2	2	3	3	12	3							
PO ₁₂	2	2	2	3	3	12	3							
PSO ₁	2	2	2	3	3	12	3							
PSO ₂	2	2	2	3	3	12	3							
TOTAL	23	26	23	30	33	-	-							

XEM206 - Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURS	SE CODE	XCP207		L	Т]	P	С
COURS	SE NAME	PROGRAMMING FOR PROBLEM SOLVIN	١G	0	0	1	1	1
PRERE	QUISITES	BASIC UNDERSTANDING SKILLS		L	Т	J	Р	Н
C:P:A		0.75:0.25:0		0	0		2	2
LEARN	NING OBJECT	IVES						
• • •	To ignite logica To understand s To deal with us	structured programming approach er defined data types data storage in secondary memory	DC	OMAIN		L	EVI	EL
CO1	Solve simple p	programs using I/O statements	Cogn	itive		Apply	/	
CO2		as using control structures and arrays	Psyce Cogn	omotor		Respo Apply Respo	ondi V	-
CO3	Solve program	as using functions and pointers	Cognitive Apply Psycomotor Respo					
CO4	Solve program	as using structures	Cogn Psyce	itive omotor		Apply Respo		ng
CO5	<i>Solve</i> program	as using files	Cogn Psyce	itive omotor		Apply Respo		ng
T OF E	XPERIMENTS							
Ex.	Experiment	S						COs
No 1.	Duo guo mato d	lisplay a Leave Letter as per proper format						COI
1. 2.	-	n for addition of two numbers						COI
4.		n to solve any mathematical formula.						COI
3.		ind greatest of 3 numbers using Branching Statemer	nts					CO2
4.	-	lisplay divisible numbers between n1 and n2 using h		g Statem	nent			CO2
5.	e e	earch an array element in an array.	1	C				CO2
6.	e	ind largest / smallest element in an array.						CO2
7.	Program to p	perform string operations.						CO3
8.	Program to f	ind area of a rectangle of a given number use four fu	unctio	n types.				CO3
9.	Programs to	pass and receive array and pointers using four funct	ion ty	pes				CO3
10.	Programs usi	ing Recursion for finding factorial of a number						CO3
11.	Program to r	ead and display student mark sheet of a student strue	ctures	with va	riab	les		CO ₂
12.	Program to r	ead and display student marks of a class using struc	tures	with arra	iys			CO ₂
13.	Program to c	reate linked list using structures with pointers						CO4
14.	-	copying contents of one file to another file.						COS
15.	<u> </u>	ng files to store and display student mark list of a cla	ass us	ing struc	ture	s with	1	C05

TUTORIAL:0

PRACTICAL:30

TOTAL:30

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	2	2	2	12	3
PO ₂	2	2	2	2	2	10	2
PO ₃	0	0	1	1	1	3	1
PO ₄	0	0	2	2	0	4	1
PO ₅	3	2	2	2	2	11	3
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	1	1	1
PO ₉	0	0	0	0	0	0	0
PO ₁₀	0	0	0	0	2	2	1
PO ₁₁	2	2	2	2	2	10	2
PO ₁₂	3	3	2	2	2	12	3
PSO ₁	2	2	2	2	2	10	2
PSO ₂	0	0	0	0	0	0	0
TOTAL	15	14	15	15	16	-	-

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURSE	CODE XAC208		L	Т	Р	С
COURSE	NAME APPLIED CHEMISTRY FOR ENGINEERS L	AB	0	0	1	1
PREREQ	UISITES NIL		L	Т	Р	Н
C:P:A= 0	2:0		0	0	1	2
COURSE	OBJECTIVES					
COURSE	OUTCOMES DOMA	IN			LEV	EL
CO1	Abilityto Identify the principles of chemistryrelevant to the study of science and engineeringCognit Psychom				Reme Percej	
CO2	AnalyzeMeasuremolecular/systempropertiessuch as surface tension, viscosity, conductance of solutions, redox potentials, extent of hardness, chloride content of water, etc.Cognit 	notor			Under Anal Percej Rece	yze ption
CO3	<i>Analyze</i> the synthetic procedure and rate constants of reactions from concentration of reactants/products as afunction of time	ive			App	bly
LIST OF	EXPERIMENTS					
Ex. No	Experiments					COs
1.	Determination of chloride ion present in the water sample by A	rgento	omet	ric n	nethod	. CO1
2.	Determination of total, temporary and permanent hardness EDTA method.	of w	ater	sam	ple by	y CO1
3.	Determination of cell constant and conductance of solutions.					CO2
4.	Potentiometry - determination of redox potentials and emfs.					CO2
5.	Determination of surface tension and viscosity.					CO3
6.	Adsorption of acetic acid by charcoal.					CO3
7.	Determination of the rate constant of a reaction.					CO3
8.	Estimation of iron by colorimetric method.					CO3
9.	Synthesis of a polymer/drug.					CO3
10.	Saponification/acid value of oil.					CO3
LECURE		TC)TA	L:3()	
TEXT BO						
1.	Laboratory Manual "ChemistryLab", Department of Chemistry	, PMIS	ST,	I'han	javur.	

REFERENCE BOOKS

- 1. Mendham, Denney R.C., Barnes J.D and Thomas N.J.K., "Vogel's Textbook of Quantitative Chemical Analysis", 6th Edition, Pearson Education, 2004.
- 2. Garland, C. W.; Nibler, J. W.; Shoemaker, D. P. "Experiments in Physical Chemistry", 8th Ed.; McGraw-Hill: New York, 2003.

E-RESOURCES- MOOC's

- 1. <u>http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques</u>
- 2. <u>http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques</u>
- 3. <u>http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011</u>

CO Vs PO	CO1	CO2	CO3	Total	Scaled to 0,1,2 and 3
PO ₁	3	2	2	7	2
PO ₂	3	2	2	7	2
PO ₃	3	2	2	7	2
PO ₄	3	2	2	7	2
PO ₅	2	1	1	4	1
PO ₆	3	2	2	7	2
PO ₇	3	2	2	7	2
PO ₈	0	1	0	1	0
PO ₉	1	1	1	3	1
PO ₁₀	1	1	1	3	1
PO ₁₁	1	1	0	2	1
PO ₁₂	0	1	0	1	0
PSO ₁	0	1	0	1	0
PSO ₂	0	1	0	1	0

XAC208 - Mapping of CO with PO

 $1 \overline{-5 \rightarrow 1, 6 \overline{-10 \rightarrow 2, 11 \overline{-15 \rightarrow 3}}$

0-No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

Semester III

Subject Name H	FLUID MECHANICS
----------------	-----------------

Subject Code XCE 302

	L	Т	Р	С			С	Р	Α			L	Т	Р	Н			
	3	1	0	4			3	1	0			3	2	0	5			
	Course Outcome: After the completion of the course, students will Domain C be able to Or P or A													Level				
CO 2	O1 Acquiring knowledge of fluid mechanics Cognitive Knowledg fundamentals, including concepts of mass and momentum conservation												e					
CO		Appli fluid i			Bernou	lli equat	ion to s	solve p	orobler	ns in	Cognit	ive		Appli	catio	n		
CO.	3	Identify the losses in pipes and field applications Cognitive Reasu Measu										U	e					
CO		Performer former former former former black and the second			sional	analysis	for p	roblem	is in	fluid	Cognit	ive		Ana	lyse			
CO	5.	Acqui	iring	kno	wledge	e of	fluid	mech	nanics		Cognit	ive		Knov	vledg	e		

CO5 Acquiring knowledge of fluid mechanics fundamentals, including concepts of mass and momentum conservation

COURSE CONTENT

UNIT I FLUID PROPERTIES AND FLUID STATICS12 hrs

Fundamental definitions dimensions and units – fluid properties – classification of fluids. Concepts of fluid pressure and its measurement (manometer) – forces on solid surfaces buoyancy and floatation – fluid mass under relative equilibrium.

UNIT II FLUID KINEMATICS12 hrs

Lagrangian and Eulerian methods – Classification of flow – Streamlines, path lines and streak lines – Continuity equation – Velocity potential and Stream function – Flow nets.

UNIT III FLUID DYNAMICS

Euler's and Bernoulli's equations – Application of Bernoulli's equation – orifice meter, Venturimeter, Pitot tube, flow through orifice, mouthpiece, weir and notch, momentum principle. Flow through pipes: Loss of energy in pipes – pipes in series and parallel – moody diagram.

UNIT IV DIMENSIONAL ANALYSIS AND SIMILITUDE

Dimensional homogeneity - Non Dimensional parameter - Π theorem - dimensional analysis - choice of variables - Rayleigh methods. Model analysis - similitude, types of similarities, force ratio, similarity laws - model classification, scale effects.

UNIT V BOUNDARY LAYER

Definition of boundary layer – Displacement, momentum and energy thickness – laminar and turbulent boundary layers – Total drag on flat plate due laminar and turbulent boundary layer - Separation of boundary layers and its control.

L	Т	Р	Total
45	15	0	60

TEXT BOOKS

1. Bansal, R.K., Fluid Mechanics and Hydraulic Machines, Laxmi Publications (P) Ltd., New Delhi,

15

15

15

2011.

- 2. Kumar K.L., Engineering Fluid Mechanics, S.Chand (p) Ltd., New Delhi, 2008.
- 3. Natarajan, M.K., Principles of Fluid Mechanics, Oxford and IBH publishing Co. New Delhi, 2008.
- 4. Jain, A.K., Fluid Mechanics, Khanna Publishers, New Delhi, 2010

REFERENCES

- 1. Prof. S. Nagarathinam , Fluid Mechanics , Khanna Publishers, New Delhi
- 2. K. R. Arora, Fluid Mechanics, Hydraulics and Hydraulics Machines, Standard Publishers, New Delhi, 2011
- 3. P. N. Modi & S. M. Sethi "Hydraulics, Fluid Mechanics and Hydraulics Mechanics" Standard Publishers, New Delhi, 2009

Mapping of CO with PO'S

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	3	3												
CO 2	3	3	1										2	1
CO 3	3	3												
CO 4	2	2											2	
CO 5	1	1												
	12	12	1										4	1

1 - Low, 2 – Medium, 3 – High

Semest	er	III													
Subject	t Name	SUI	RVEY	ING											
Subject	t Code	XC	E 30 3												
L	T 1	P C				С	Р	Α			L	Т	Р	Η]
3	0	1 4				1.5	1.0	0.5			3	0	2	5	1
	Course Outcome: After the completion of the course, students will Domain Level														
be able to C or P or A															
CO1	D1 <i>Identify</i> the Principles and function of various surveying Cognitive Understanding														
	methods	3								Psychomo	otor	ľ	Manip	oulation	on
CO2	Identify	the	types	of Le	velling	an	d <i>det</i>	ermine	the	Cognitive	;		App	olying	,
	reduced	levels	usin	g Dump	y Leve	el				Psychomo	otor	Ν	Manip	oulatio	on
										Affective			Resp	ondin	g
CO3	Classify	the 1	nethc	ds of	Contou	ring	and n	neasure	the	Cognitive	;	U	Inders	standi	ing
	capacity of Reservoir Psychomotor Manipulation														
CO4	O4 Describe the methods and measure the angles and Cognitive Understanding												ing		
distances using Theodolite and Tacheometric Surveying									ing	Psychomo	otor	N	Manip	oulatio	on
										Affective		Responding			

CO5Identify the Principles and function of various surveying
methodsCognitiveUnderstandingManipulation

COURSE CONTENT

UNIT I BASIC SURVEYING

Introduction to Plane and Geodetic Surveying –Scales- Chain surveying- Distance Measurement –offsets- Field Book- Compass Instrument - Measurement of angles and directions - Magnetic declination and its variation- Local attraction - traverse-Plane Table Surveying – Principle-Equipment -Two point and three point problem.

UNIT II LEVELLING

Leveling - terms and definitions - Instruments and its parts -Temporary and permanent adjustments - Reduction of level - Height of collimation and Rise and fall methods - Reciprocal leveling -Longitudinal and cross sectioning - Contouring -Capacity of reservoirs.

UNIT III THEODOLITE AND TACHEOMETRY

Description of theodolite - Measurement of horizontal angles and vertical angles - Methods of repetition and reiteration –Tachometry - Tachometric systems - Determination of Instrument constants-Problems in tachometry survey.

UNIT IV TRIANGULATION

Triangulation system, Requirements for selection of triangulation stations - Satellite station, signals, Phase of signal -Trignometrical leveling Both base of object accessible and inaccessible, problems.

UNIT V MODERN SURVEYING

Introduction to advance surveying - Total Station and Global positioning system - Geographic information system (GIS)- Photogrammetry - Stereoscopy – Principle of Electromagnetic distance measurement

PRACTICAL

- 1. Chain surveying- Distance Measurements.
- 2. Magnetic declination and its variation.
- 3. Two point and three point problem.
- 4. Height of collimation and Rise and fall methods.
- 5. Longitudinal and cross sectioning Contouring.
- 6. Single plane method and double plane method.
- 7. Determination of Instrument constants.
- 8. Determination of reduce level using theodalite by Angle of elevation and depression method.
- 9. Area calculation and contouring using Total Station.
- 10. Co ordinate measurement using Global positioning.

L	Т	Р	Total
45	15	0	60

TEXT BOOKS

- 1. Punmia B.C. Surveying, Vols. I, II and III, Laxmi Publications, 2014
- 2. Bannister A. and Raymond S., Surveying, ELBS, Sixth Edition, 2014
- 3. Kanitkar T.P., Surveying and Levelling, Vols. I and II, United Book Corporation, Pune, 2014.
- 4. S.C.Rangwala and P. S. Rangwala, Charotar Surveying and leveling, Publishing House

9

30

9

9

9

Pvt. Ltd, 2014.

REFERENCES

- 1. Agor ,"A Text Book of Surveying and Levelling" Khanna Publishers, 11th Edition, 2014
- Basak.N. "Surveying and Leveling" McGraw Hill Education (India) Private Limited, 2nd Edition,2014
- 3. Subramanian.R Surveying and Leveling by Oxford University Press, 2007

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	3	3	3	3	3	3	2	3	2	2	3	3	3	2
CO 2	2	2	2	3	3	2	2	3	2	3	2	3	3	3
CO 3	3	1	2	3	3	2	1	3	2	2	2	3	3	3
CO 4	2	1	3	3	3	2	1	3	2	3	3	3	3	3
CO 5	3	3	3	3	3	3	1	3	3	1	3	3	3	3
	13	10	13	15	15	12	7	15	11	11	13	15	15	14

Mapping of CO with PO'S

Semeste	er]	III												
Subject	Name	1	SOLI	D M	ECH	IANIC	S								
Subject	Code		XCE	304											
L	Т	Р	С				С	Р	Α			L	Т	Р	H
3	1	1	5				1.5	1.0	0.5			3	2	2	7
Course		ne: A	fter tl	ne co	mple	tion of	the co	urse, s	tudents	s will	Doma	in	Level		
be able	to										C or P a	or A			
CO1 Analyse stresses and strains in members subjected Cognitive Analyse															
	to axial, bending and torsional loads. Psychome									otor		Mea	asure		
CO2					•		tural r al force		rs by		Cognitive		Analyse		
CO3					•		struct				Cognitive		Analyse		
	where occur						nd ber ns.	ding	momei	nt	Affective				ponse
CO4	Evalua	ate tl	he det	flecti	on a	nd she	ar stres	ss dist	ributio	n for	Cognitive		۸	a 1 - va : a	Maa
beams of varioussections. Ana Psychomotor								Analysis Measure							
CO5	CO5 Assess the output of springs and shafts for its maximum Cog						Cognitive			Knov	vledge				
	energy	<i>.</i>									Psychomo	otor		Resp	oonse
COURS	SE COI	NTE	NT												
UNIT I	I ST	ΓRE	SS, S	ГRA	IN A	ND D	EFOR	MATI	ON O	F SOI	LIDS				

Stress, Strain, Hooke's Law, Elastic Constants, Thermal stress, deformation of simple and compound bars – shear modulus, bulk modulus, relationship between elastic constants, biaxial state of stress – stress at a point – stress on inclined plane – Principal stresses and Principal planes.

UNIT II ANALYSIS OF PLANE TRUSS, THIN CYLINDERS/SHELLS

Stability and equilibrium of plane frames – types of truss – analysis of forces in truss members method of joints, method of sections– Graphical Method - Thin cylinders and shells – under internal pressure – deformation of thin cylinders and shells.

UNIT III TRANSVERSE LOADING AND STRESSES OF BEAMS

Beams–Types of Supports, Types of Load –Relationship between Bending Moment and Shear Force–Shear Force and Bending Moment Diagrams for Statically Determinate Beam with Concentrated Load, Uniformly Distributed Load, Uniformly Varying Load. Theory of Simple Bending – Analysis of Stresses.

UNIT IV DEFLECTION AND SHEAR STRESSES OF BEAMS

Double Integration Method - Macaulay's Methods - Area Moment Method - Conjugate Beam Method for computation of Slopes and Deflections of determinant beams-Variation of Shear Stress– Shear Stress distribution in Rectangular and I Sections, Solid and Hollow Circular Sections, Angle and Channel Sections.

UNIT V TORSION AND SPRINGS

Stresses and deformation in circular (solid and hollow shafts) – stepped shafts – shafts fixed at both ends – leaf springs – stresses in helical springs – deflection of springs

PRACTICAL

- 1.Tension test on HYSD bar / MS rod
- 2. Impact Test(Izod and Charpy)
- 3. Hardness Test(Brinells and Rockwell)
- 4. Test on timber
 - i) Compressive strength test
 - ii)Tensile strength test
 - iii)Shear Strength test
 - iv) Static bending test
- 5. Deflection Test

	L	Т	Р	Total
	45	30	30	105
TEXT BOOKS				

- 1. Bansal.R.K. "A Text Book of Strength of materials", Laxmi Publications, Sixth Edition, 2015
- 2. Bhavikatti.S. "Strength of Materials", Vikas Publishing House Pvt Limited, Fourth Edition, 2013
- 3. Khurmi. R.S "Strength of Materials ", S.Chand Limited, Revised edition, 2013
- 4. Rajput. R.K. "Strength of Materials", 2012, S.Chand Limited, Revised Edition, 2012.

REFERENCES

- 1. Egor P Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 2012, Second Edition.
- Srinath L.S, "Advanced Mechanics of Solids", Tata McGraw-Hill Publishing Co., New Delhi, 2009, Third Edition.
- 3. William Nash, Theory and Problems of Strength of Materials, Schaum's Outline Series, McGraw-Hill International Edition, 2011.

15

15

15

15

Mana	in a of	<u> </u>	4 00	<u>c</u>											
wapp	oing of			3											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO	2	PSO1	PSO2
CO 1	2	3		1	3						2		-	2	
CO 2	1	2									1		-	1	
CO 3	1	3				2					2		-	2	
CO 4	1	2	2	1			1	1			2		-	1	
CO 5	1	1	1		3		1	1					-	1	
~	6	11	3	2	6	2	2	2			7		-	7	
Seme			III	IFFDT		ATEDI									
•	ect Nan ect Cod		ENGIN XCE30		NG MA	ALEKI	IALS								
				0		С	Р	A			L	Т	Р	H	
_	$\frac{1}{3}$ 0		3			3	0	0			3	0	0	3	
Cours	se Outc	ome: A	fter the	comp	lation o	f the cu		tudanta	<i>i</i> 11	Dom	ain		I	evel	
be abl		ome. A	gier ine	e compi	enon o	j ine ce	jurse, s	iuuenis	wiii	C or H			L	ævei	
CO1	Ide	ntifv ar	nd chara	acterize	e buildi	no mata	erials			Cognitiv			Und	erstand	
CO1		•	the mat			0		ks and		Cognitiv				nember	
	cement														
CO3	CO3 Identify the methods for preservation of timber and Cognitive Understand metals														
CO4			l the us	a of no	n oonu	ontiono				Cognitiv	10		Und	erstand	
04			g mater			CIILIOIIA				Cogiiiti	ve		Ullu	erstanu	
COU	RSE C	ONTE	NT												
UNI	ГΙ	BUIL	DING S	STONI	ES, BR	ICK &	OTH	ER CL	AY PR	ODUC'	ТS				9
										ilding s ses. Co					
										l buildin					
		•	of brid igs. Ter	-	•	-	Dricks	and th	ieir use	es. Type	es of th	es ar	ia u	ierr use	111
UNIT	II	LIME	& CE	MENT											9
										nanufact					
			cal com	.			IS spec	ificatio	ns and	tests on	Portlan	id ce	men	t, differ	ent
UNIT		• 1	ГAR &												9
							concrete	e, propo	ortion o	f mortar	s and co	oncre	te fo	or differ	ent
		• •	of worl h of co	· •	•			· ·		hardene use.	ed stage	s, fa	ctors	s affecti	ing
UNIT	IV	TIMB	ER &	WOOI) BASI	E D PR	ODUC	TS							9
									-	us tree, uses, pl					od,
UNIT			TRUC		•	••									9
		comme	ercial f	orms c	of steel	and th	neir use	es. Int	roducti	rength s ion to s s, paints	ome ne	w m	ater	ials: Fe	

0	45

1. Civil Engineering Materials and Construction Practices by R.K. GUPTA, Jain Brothers, New Delhi, 5th Edition, 2014

- 2. Civil Engineering Materials by S.C. Rangwala, Charotar Publishing House 41 edition, 2014
- 3. B.C Punmia, Ashok Kumar Jain, Arun Kumar Jain, Building Construction 10th Edition, Laxmi Publications Pvt., Ltd., 2010.

REFERENCES

- 1. S. K. Sharma, B. K. Kaul, Textbook Of Building Construction, Indiawise, 1980-05
- 2. Bujang B. K. Huat, Faisal Haji Ali, Husaini Omar, Foundation Engineering: Design and Construction in Tropical Soils, Taylor & Francis Group, 2006
- 3. National Building Code of India, Part I -X 2010

Mapping of CO with PO'S

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	2			1	1	1						2		
CO 2	1			2	2	1	2					1		
CO 3	1			2	1		1					1		
CO 4	2			2	2							2		
	6			7	6	2	3					6		

Semest	er		III												
Subject	t Name	:	ENT	REPRENEURSI	HIP DI	EVEL	OPMI	ENT							
Subject	t Code		XEP	306											
L	Т	Р	C		С	Р	Α			L	S	Т	Р	H	
2	0	0	2		3	0	1			2	1	0	0	3	
		ne: A	fter t	he completion of	the cou	urse, s	tudent	s will	l	Doma	in	•	L	evel	
be able	to								C	or P o	or A				
CO1	Recog entrep	-		lescribe the perso	n		•	nitive ective		Understand Receive					
CO2		ermine the new venture ideas and analyse the ibility report.							Cog	nitive	;	Understand Analyse			&
CO3		-		iness plan and an	alyse t	he plai	n as an		Cog	nitive	;	Analyse Rec			eive
	indivi	dual	or in	team.					Affe	ective					
CO4	consi	Describe various parameters to be taken into consideration for launching and managing small business.								nitive	;	Understand			d
CO5		Describe Technological management and Intellecture Property Rights.						ıl	Cognitive Psychomotor			Understand			d

COURSE CONTENT

UNIT I ENTREPRENEURIAL TRAITS AND FUNCTIONS

Definition of Entrepreneurship; competencies and traits of an entrepreneur; factors affecting Entrepreneurship Development; Role of Family and Society; Achievement Motivation; Entrepreneurship as a career and national development.

UNIT II NEW PRODUCT DEVELOPMENT AND VENTURE CREATION

Ideation to Concept development; Sources and Criteria for Selection of Product; market assessment ; Feasibility Report ;Project Profile; processes involved in starting a new venture; legal formalities; Ownership; Case Study.

UNIT III ENTREPRENEURIAL FINANCE

Financial forecasting for a new venture; Finance mobilization; Business plan preparation; Sources of Financing, Angel Investors and Venture Capital; Government support in startup promotion.

UNIT IV LAUNCHING OF SMALL BUSINESS AND ITS MANGEMENT

Operations Planning - Market and Channel Selection - Growth Strategies - Product Launching – Incubation, Monitoring and Evaluation of Business - Preventing Sickness and Rehabilitation of Business Units.

UNIT V TECHNOLOGY MANAGEMENT, IPR PORTFOLIO FOR NEW PRODUCT 9 VENTURE

Technology management; Impact of technology on society and business; Role of Government in supporting Technology Development and IPR protection; Entrepreneurship Development Training and Other Support Services.

L	S	Т	Р	Total
30	15	0	0	45

TEXT BOOKS

- 1. Hisrich, Entrepreneurship, Tata McGraw Hill, New Delhi, 2016.
- 2. S.S.Khanka, Entrepreneurial Development, S.Chand and Company Limited, New Delhi, 2013.

REFERENCES

- 1. Mathew Manimala, Entrepreneurship Theory at the Crossroads, Paradigms & Praxis, Biztrantra ,2nd Edition2005,.
- Prasanna Chandra, Projects Planning, Analysis, Selection, Implementation and Reviews, Tata McGraw-Hill, 2009.
- 3. P.Saravanavel, Entrepreneurial Development, Ess Pee kay Publishing House, Chennai, 1997,.
- 4. Arya Kumar, Entrepreneurship: Creating and Leading an Entrepreneurial Organisation, Pearson Education India,2012
- 5. Donald F Kuratko, T.V Rao, Entrepreneurship: A South Asian perspective, Cengage Learning India,2012.
- 6. Dinesh Awasthi, Raman Jaggi, V.Padmanand, Suggested Reading / Reference Material for Entrepreneurship Development Programmes (EDP/WEDP/TEDP), EDI Publication.

E-REFERENCES

- 1. Jeff Hawkins, "Characteristics of a successful entrepreneur", ALISON Online entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills
- 2. Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education, https://www.udemy.com/entrepreneurship-from-idea-to-launch/
- 3. Entrepreneurship Development Institute of India, Ahmedabad. Available from: http://www.ediindia.org/doc/EDP-TEDP.pdf

9

9

Mapping of CO with GA's

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1										3	3	
CO 2			1	2	2	2	1	1	1	2	3	
CO 3			1	1		1		2		3	1	
CO 4	1	1	1	1		1	1		3		3	3
CO 5	1		1	3		1	1					3
	2	1	4	7	2	5	3	3	4	8	10	6
Semeste	er	III										
Subject	Name	IN-PL	ANT T	RAINI	NG-I							
Subject	Code	XCE 3	308									
L	ΤI	P C			С	Р	Α			LT	P]	H
0	0 () 1			2	2	2			0 0	0	0
	Outcome	: After th	e comp	letion oj	f the coi	ırse, stu	dents w	vill	Domai	n	Leve	el
be able	to							0	or Por	r A		
CO1	Relate cl	assroom	theory	with wo	rkplace	practice	e	Co	gnitive		Unders	tand
CO2	Comply business		•	discip	line, n	nanagen	nent a	nd Af	fective		Respo	nse
CO3	Demons	trates tea	mwork	and tim	e manag	gement.		Af	fective		Valu	le
CO4	Describe skills ob		•		-	ence on	practic	cal Psy	ychomo	tor P	erceptior	n & Set
CO5	Summar documer					one by	technic	cal Co	gnitive		Evalu	ate

Mapping of CO with GA's

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	2											
CO 2							1	3			1	
CO 3									3	1	3	1
CO 4		1	2	1	3							3
CO 5				3						3		1
	2	1	2	4	3	0	1	3	3	4	4	5

1-Low , 2- Medium ,3-High

Semo	ester	•	J	[V																		
Subj	ect I	Name		CON	CRET	Е ТЕС	HNOL	OGY														
Subj	ect (Code	Σ	XCE	402																	
	L	Т	Р	С]		С	Р	Α			L	Т	Р	Н							
	2	0	1	3			2	0.75	0.25			2	0	2	4							
			ne: Aj	fter ti	he com	pletion	of the	course, s	students	will	Doma	in		L	evel	3						
be al	ble to)									C or P a	or A										
CO1		Identi		and	test t	he pro	operties	of ing	redients	of	Cognitive			Unde								
	,	Conci	rete								Psychomo Affective			Manip Resp								
CO2	j	Identi	ify an	d <i>test</i>	the pr	operties	s of Coi	ncrete			Cognitive	•		Unde	erstan	d						
											Psychomo Affective			Manip Resp								
CO3	. (Carry	out t	he m	ix desi	gn of N	120 and	M35 as	per IS4:	56	Cognitive			Responding Understand								
GO 4						-		r .	~		Psychomo			Manipulation Understand								
CO4					luring concre		orting, I	Laying,	Compac	tıng	Cognitive	•		Unde	erstan	d						
CO5				•			hnologi	ies to m	neet out	the	Cognitive	;		Unde	erstan	d						
COL					ction re	quirem	ents.															
COL	JKSI	E CO	NTE	NT																		
UNI	TI	С	ONS	TITU	JENT	MATE	RIALS	5								(
					· · ·		•				f analysis											
			Aggregates: Classification- Properties-Testing-Artificial aggregates; Water: Various ources-Sta – Standards -Admixtures and Chemicals: Properties, Uses.																			
UNI	ТП		FRESH CONCRETE													(
		R	Rheology-Workability: Factors affecting- Measurement- Testing; Manufacture of																			
			concrete: Process- Compaction; Properties: Segregation-Bleeding- Setting times-																			
	T 111		Curing-Finishing. 6																			
UNI	1 111							:		. 1		1 10	1.			1 .						
			-			-			-		gn- ACI a ble Concre											
				-			-	l –Samp		-			ſ			0						
							TF									(
UNI	T IV	H	ARD	ENE	D CO	NCRE'					Concepts of mix design - Factors influencing mix design – ACI and IS code recommended											
UNI	T IV	С	oncep	ots of	mix d	esign -	Factors						code	e reco	mmei	ndeo						
		C m	oncep ix de	ots of sign 1	mix d method	esign - ls; Non	Factors -pump a				gn – ACI a ble concret		code	e reco	mmei							
UNI'		C m Sl	oncer ix de PECI	ots of sign 1 [ALC	mix d method	esign - ls; Non RETES	Factors -pump a	able con	crete; Pu	imp al	ble concret	æ.										
		C m SI M	oncer ix de PECI Ianufa	ots of sign 1 I ALC acture	[°] mix de method CONCI e, Prop	esign - ls; Non RETES erties a	Factors -pump a and Use	able condes: High	crete; Pu strength	amp al	ble concret	rman	ce co	ncrete	e - Us	se o						
		C m SI M ec	oncep ix de PECI Ianufa co-frie	ots of sign 1 I ALC acture endly	mix d method CONCI e, Prop	esign - ls; Non- RETES erties a clable	Factors -pump a ind Use and su	able cond s: High stainable	strength mater	and in and in a second	ble concret high perfor Waterpro	æ. rman oofin	ce co g co	ncrete	e - Us - F	se o Fibe						
		C m SI M ec R O	oncer ix de PECI lanufa co-frid einfor rgani	ots of sign 1 IALC acture endly rced c con	mix d method CONCI e, Prop recyc concre acrete;	esign - ls; Non- RETES erties a elable te - Li Special	Factors -pump a and Use and su ght we l concre	able cond s: High stainable ight and eting me	strength mater High I thods: S	and	ble concret	rman oofin e - A conc	ce co g co verate rete ·	ncrete ncrete d - N · Hot	e - Us - F lo fir and (se o Fibe nes Colo						

PRACTICAL					15
S.No.	List of Experiments			Cos	5
1				1	
1.	Determination of Specific gravity of Cement			1	
2.	Work out the fineness of Cement			1	
3.	Find out the Consistency of Cement			1	
4	Compute the Setting time of Cement			1	
5	Determine the Fineness modulus of fine aggregate			1	
6	Calculate the Specific gravity of fine aggregate			1	
7	Find out the Bulking of fine aggregate			1	
8	Estimate the Fineness modulus of coarse aggregate			1	
9	Compute the Specific Gravity of Coarse aggregate			1	
10	Find out the Bulking of coarse aggregate			1	
11	Carry out the Aggregate Impact test			1	
12	Determine the workability of Concrete through Slump Cone T	est		2	
13	Compute the Compaction Factor for the given mix ratio of con	ncrete		2	
14	Carry outthe mix design of M20 and M35 as per IS 456			3	
15	Determine the Compressive Strength of Concrete Cube			3	
		L	Т	Р	Total
		30	0	15	45
TEXT BOOF	KS				

1. Shetty,M.S. "Concrete Technology: Theory and Practice",7th edition, S.Chand& Company, New Delhi,2014.

REFERENCES

- 1. Gambhir, M.L. "Concrete Technology", 5th edition, Tata McGraw Hill New Delhi, 2013.
- 2. Santhakumar, A.R., "Concrete Technology", Oxford University Press, New Delhi, 2006
- 3. Neville, A.M. and Brookes, J.J. "Concrete Technology", Pearson Publishers, New Delhi, 2010.
- 4. Sandor Popovic, "Concrete Materials, 2nd Edition, Properties, Specifications and Testing", William Andrew, 2012.
- 5. John Newman,"Advanced Concrete Technology Processes" 1st edition, Elsevier Science, 2003

E-REFERENCES

- 1. http://nptel.ac.in/courses/105102012
- 2. http://nptel.ac.in/courses/105104030
- 3. http://freevideolectures.com/Course/3357/Concrete-Technology
- 4. http://engineeringvideolectures.com/course/289

Mapping of CO with PO'S

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	1	3	1	1	3	2	0	3	2	3	1	3	1	0
CO 2	1	3	3	3	2	3	0	3	1	3	1	3	0	0
CO 3	3	2	3	3	3	3	0	3	3	2	3	1	3	0
CO 4	3	0	0	0	2	3	3	2	3	3	0	1	0	1
CO 5	3	2	3	3	1	3	0	2	2	3	2	3	0	0
	11	10	10	10	11	14	3	13	11	14	7	11	4	1

Semest	ter	IV											
Subjec	rt Name	GEO	TECHNICAL	ENGI	NEERIN	IG							
Subjec	ct Code	XCE	403										
Ι		C C		С	Р	Α	1		L	Т	Р	H	
3	3 0 1	l 4		1.25	0.75	0.25			3	0	2	5	
Course	e Outcome.	After t	he completion of	udents w	vill	Doma	in		L	evel			
be able	e to	or A											
CO1 <i>Identify</i> and <i>test</i> various types and properties of soils for Cognitive Understanding													
	engineer	ring utili	ization.			Psychomo	otor	0	bserv	ation			
CO2	Recogni	se the d	eformation beh	aviour	of soil			Cognitive	;	U	nders	tandi	ng
								Psychomo	otor	Manipulation			
								Affective		R	espor	nding	
CO3	Determi	ne and	analyse the Stre	ength pa	arameter	s of soil.		Cognitive		A	pplyi	ng	
								Psychomo		Μ	anipu	ulatio	n
								Affective		V	aluin	g	
CO4	<i>Comput</i> foundati		load carryin	f Shallo	OW	Cognitive	•	A	nalys	ing			
CO5	<i>Comput</i> for diffe	foundati	on	Cognitive Analysing									

COURSE CONTENT

UNIT I SOIL PROPERTIES Index properties including consistency limits and grain size distribution - Identification

and classification of soil - Textural HRB and BIS specification -Soil water - Concept effective and neutral stresses - Darcy's law, Permeability -Seepage flow, seepage pressure, exit gradient - significance of Laplace equation - quick sand condition, Soil sensors applied in field, Modern advancements, Trenchless Technology.

UNIT II COMPACTION AND CONSOLIDATION

Compaction – Factors affecting compaction – Field compaction – Field compaction controls, CBR value. Consolidation of soils - Terzaghi's one dimensional consolidation theory - pressure void ratio relationship - prediction of pre

9

consolidation pressure – Total settlement and time rate settlement – secondary compression – coefficient of consolidation – Curve fitting methods, consolidation models.

UNIT III STRESS DISTRIBUTION AND SHEAR STRENGTH

Vertical stress distribution in soil - Boussinesq's and Westerguard's equations – New mark's influence chart – Principle, Construction and use - Equivalent point load and other approximate procedures, stress isobars & pressure bulbs Shear Strength; Mohr – Coulomb failure criterion and models – shear properties of cohesion less and cohesive soils - Shear Strength. Parameters for under consolidated, normally consolidated and over consolidated clays

UNIT IV BEARING CAPACITY AND SUB SOIL INVESTIGATION

Bearing capacity - Ultimate and allowable theories of bearing capacity - Terzaghi, Balla, Skempton, Mayerhof & Hansan. I.S.Code on B.C., Determination of BC, factors affecting BC, limits of total and differential settlement, Methods of exploration, geophysical and conventional methods; Sounding drilling and boring technique; Field tests – penetration tests

UNIT V FOUNDATIONS

Foundations - types & selection, footing, rafts and floating foundation, -Philosophy of deep foundation, piles, estimation of individual and group capacity of piles in cohesive and non-cohesive soils, static and dynamic approaches, pile load test, settlement of pile groups, negative skin friction.

PRACTICAL

S.No.

List of Experiments

- 1. Moisture content of Soil
- 2. Atterberg Limits Test
- 3. Grain Size Distribution-Sieve Analysis and Hydrometer Analysis
- 4 Field Density of soil by Sand Replacement method and Core Cutter method
- 5 Relative Density of Soil and Free Swell index of soil
- 6 Specific Gravity by Pycnometer and density bottle
- 7 Moisture- Density relationship using standard Proctor test.
- 8 Permeability determination(constant head and falling head methods)
- 9 Direct shear test on cohesionless soil.
- 10 Unconfined compression test on cohesive soil
- 11 Triaxial compression test
- 12 One dimensional consolidation test(co-efficient)

L	Т	Р	Total
45	0	30	75

TEXT BOOKS

- 1. Punmia. B.C., Asok Kumar Jain and Arun Kumar Jain, "Soil Mechanics and Foundations" Laxmi Publications Pvt. Ltd., New Delhi, Sixteenth edition, 2006.
- 2. Murthy, V.N.S. Soil Mechanics and Foundation Engineering, CBS Publishers and Distributors, Reprint, 2009.
- 3. Venkatramaiah, C. "Geotechnical Engineering", New Age International Publishers, New Delhi, 4th edition, 2012.

9

9

9

REFERENCES

- 1. Braja.M.Das, "Principles of Geotechnical Engineering", Cengage Engineering published by Global Engineering, 8th Edition ,2014
- 2. IS 1080:1985, Code of practice for design and construction of foundations in soils (other than raft, ring and shell) (second revision) Re affirm date Dec 2011
- 3. IS 1498:1970, Classification and identification of soils for general Engineering purposes (first revision) Reaffirm Dec 20113

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	3	3			3				1			1	1	1
CO 2	3				3				1			1	1	1
CO 3	2	3			3				1			2	1	1
CO 4	2		3	3		3		1	1	2	2		2	1
CO 5	2		3	3		3		1	1	1	2		2	1
	12	6	6	6	9	6		2	5	3	4	4	7	5

Mapping of CO with PO'S

Sem	ester	•		IV													
Sub	ject I	Name	•	OPE	N CH	ANNE	L FLOW	AND H	YDRAU	JLI	C MACHI	NES					
Sub	ject (Code		XCE	404												
	L	Т	Р	C			С	Р	Α			L	Т	Р	H		
	3	1	1	5			1.25	0.75	0.25			3	2	2	7		
			ne: A	After t	he co	mpletio	n of the co	udents w	vill	Doma	in	1	L	evel			
be a	e able to C or P or A																
CO								•		ow	Cognitive		A	pplyi	ng		
	O1Illustratethe varioustheoriesdealingwiththe flowCognitiveApplyingphenomenon of fluids and Designthe open channelsAffectiveResponding																
			otor	Observation													
CO2	2	Ident	<i>ify</i> the	e impa	act of	jet on c	lifferent sł	napes of	plate.		Cognitive		U	nders	tandi		
											Affective	Valuing					
CO3	3	Class	ify a	und d	esign	of the	e hydro-n	nachiner	y and t	he	Cognitive		Applying				
				ts, fu	inctio	n and	use of o	different	types	of	Affective		E	valua	ting		
		turbin	ies.								Psychomo	otor	Μ	anipu	ulation		
CO4	1	Desc	ribe	and D	iscus	s the wo	orking prin	nciples o	f pumps		Cognitive		R	emen	ıberir		
CO	5 <i>Choice</i> the type of pump for a practical situation Cognitive Remer												emen	nberir			
											Affective		V	aluin	g		
											Psychomo			bserv			

COURSE CONTENT

15 in open channels energy - specific urface profiles – 15 plate, stationary 1 inclined plates, 15 urbines – Francis speed and their
energy - specific urface profiles – 15 plate, stationary d inclined plates, 15 urbines – Francis speed and their
plate, stationary d inclined plates, 15 arbines – Francis speed and their
I inclined plates, 15 arbines – Francis speed and their
rbines – Francis speed and their
speed and their
15
efficiency of a ed of a pump –
15
nd slip – power e against friction o well pumps – , sewage pump np.
30
))

L	Т	Р
45	15	15

L	Т	Р	Total
45	15	15	75

TEXT BOOKS

- 1. Subramanya, "Flow in Open channels", McGraw Hill Education (I), New Delhi, 2015.
- 2. Bansal, R.K., Fluid Mechanics and Hydraulic Machines, Laxmi Publications (P) Ltd., New Delhi, 2011.
- 3. R.K.Rajput, Fluid Mechanics and Hydraulic Machines, S.Chand & Company Ltd., New Delhi, 2002.

REFERENCES

- 1. Hydraulics, Fluid Mechanics and Hydraulics Mechanics by K. R. Arora, Standard Publishers, New Delhi.
- 2. Hydraulics, Fluid Mechanics and Hydraulics Mechanics by P. N. Modi & S. M. Sethi Standard Publishers, New Delhi.
- 3. Bakhmeteff, "Hydraulics of open channel", Tata Mc Graw Hill Education (P) Ltd., New Delhi, 2011

Mapping of CO with PO'S

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	3	3	2	0	3	2	1	1	1	1	1	1	2	1
CO 2	3	3	2	0	1	1	1	1	0	1	0	1	1	1
CO 3	3	3	2	1	2	2	1	1	1	1	1	1	1	1
CO 4	2	3	2	1	2	1	0	1	0	1	0	1	2	1
CO 5	2	3	2	1	1	1	1	0	1	1	1	1	1	1
	13	15	10	3	2	7	4	5	3	5	3	5	7	5

Semest	ter		IV													
Subjec	t Name	e	STR	UCTU	RAL M	ECHAN	NICS									
Subjec	t Code		XCE	2 405												
L	, T	Р	C	1		C	Р	Α			L	Т	Р	H		
3	31042.000.500.50320Jourse Outcome: After the completion of the course, students willDomainL															
		me: A	After	the con	ıpletion	of the co	ourse, st	udents w	ill	Doma	in		L	evel	1	
be able	to									C or P of	or A					
CO1	<i>Ident</i> the fa				of structu	iral elem	ent and	Discuss		Cognitive Affective	&		emen espon	nberin 1d	ıg &	
CO2	Analy	yse in	detei	rminate	structur	res and R	<i>Reports</i> t	he result	S	Cognitive Affective	&	Analyzing & Respond				
CO3	•			ndition cylind		uss the fa	ailure cr	iteria of		Cognitive Affective	&		Understanding &			
												R	espon	ıd		
CO4	Comp princ			Locate 1	he defle	ction of	beams b	y energy	7	Cognitive Affective	&		pplica eceivo	ation	&	
CO5	•			0		<i>follows</i> t	-	nciples t	0	Cognitive	&			ing &		
	check	the s	stabil	ity of s	tructura	lelemen	ts			Psychomo	otor	-	uided espon			

COURSE CONTENT

UNIT I STATE OF STRESS IN THREE DIMENSIONS

Stress and strain tensor - Principal stresses and principal planes –Theories of failure - Application of strain gauges for stress analysis.

UNIT II	INDETERMINATE BEAMS				12
	Propped cantilever beams and fixed beams - Fixed end mome Analysis of continuous beam - Theorem of Three Moments	ents an	d supp	ort rea	actions –
UNIT III	COLUMNS AND THICK CYLINDERS				12
	Short and Long Columns, Euler's Theory, Eccentrically Gordon formula - Thick cylinders – Compound cylinders	loaded	colur	nn - I	Rankine-
UNIT IV	ENERGY PRINCIPLES				12
	Unit load method for deflection – Castigliano's theorem – I Application of energy theorems for computing deflections in be		ole of	virtual	work –
UNIT V	ADVANCED TOPICS				12
	Unsymmetrical bending - Curved Beams -Stability of dams an	d Reta	ining v	valls.	
		L	Т	Р	Total

TEXT BOOKS

1. Bansal R.K. "A Text Book of Strength of materials", 2010, Laxmi Publications, Fourth Edition.

45

15

0

60

- 2. Bhavikatti.S. S. "Strength of Materials", 2010, Vikas Publishing House Pvt Limited.
- 3. Rajput. R.K. "Strength of materials", 2011, S.Chand Limited.

REFERENCES

- 1. Egor P Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 2012, Second Edition.
- 2. Srinath L.S, "Advanced Mechanics of Solids", Tata McGraw-Hill Publishing Co., New Delhi, 2009, Third Edition.
- 3. William Nash, Theory and Problems of Strength of Materials, Schaum's Outline Series, McGraw-Hill International Edition, 2011.
- 4. Timoshenko.S.B.andGere.J.M, "MechanicsofMaterials", VanNosReinbhold, NewDelhi, 2010.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	1					1			1					
CO 2	2	1				1		1			1		3	1
CO 3	1				1		1				1			
CO 4	3	1		3			1						1	
CO 5	3	3											1	
	10	5		3	1	2	2	1	1		2		5	1

Mapping of CO with PO'S

Seme	ester	•		IV											
Subj	ect I	Name	•	ECO	NOMICS FO	R ENGI	NEERS								
Subj	ect (Code		XEE	406										
	L	Т	Р	С		С	Р	Α			L	Т	Р	H	
	3	0	0	3		3	0	0			3	0	0	3	
			me: 1	After t	the completion	of the co	udents w	vill	Doma	in		L	evel		
be ab	ble to C or P or A														
CO1		<i>Explain</i> the concepts of economics in engineering and Cognitive Understand <i>identify</i> element of cost to prepare cost sheet Psychomotor Perception													
	1	identi	ify el	ement	t of cost to prep	bare cost	sheet			Psychomo	otor	Pe	Perception		
CO2				<i>and</i> costing	g Explain the	e Break	x-even	point a	nd	Cognitive			nders pply	tand	
										Psychomo	otor	Pe	ercept	tion	
CO3				e and	Use value eng	ineering	procedu	ire for co	ost	Cognitive		U	nders	tand	
	:	analy	sis							Affective		Re	eceiv	e	
CO4	L	Estim	<i>ate</i> 1	eplac	ement problem			Cognitive		U	nders	tand			
CO5		<i>Comp</i> ofdep		-	<i>ain</i> and <i>make U</i>	Jse of di	nethods		Cognitive			nders pply	tand		

COURSE CONTENT

UNIT I

INTRODUCTION TO ECONOMICS	8
Flow in an economy, Law of supply and demand, Concept of Engineering Economics Engineering efficiency, Economic efficiency, Scope of engineering economics- types costing, element of costs, preparation of cost sheet and estimation, Marginal cost Marginal Revenue, Sunk cost, Opportunity cost	of

UNIT II BREAK-EVEN ANALYSIS & SOCIAL COST BENEFIT ANALYSIS

Margin of Safety, Profit, Cost & Quantity analysis-Product Mix decisions and CVP analysis, Profit/Volume Ratio (P/V Ratio), Application of Marginal costing, Limitations Social Cost Benefit Analysis: compare different project alternatives, Calculate direct,

indirect and external effects; Monetizing effects; Result of a social cost benefit analysis.

UNIT III VALUE ENGINEERING & COST ACCOUNTING

Value engineering - Function, aims, Value engineering procedure - Make or buy decision.Business operating costs, Business overhead costs, Equipment operating costs

UNIT IV REPLACEMENT ANALYSIS

Replacement analysis – Types of replacement problem, determination of economic life of an asset, Replacement of an asset with a new asset.

UNIT V **DEPRECIATION**

Depreciation- Introduction, Straight line method of depreciation, declining balance method of depreciation-Sum of the years digits method of depreciation, sinking fund method of depreciation, Annuity method of depreciation, service output method of depreciation.

L	Т	Р	Total
45	0	0	45

12

10

7

TEXT BOOKS

- 1. S.P Gupta, Ajay Sharma & Satish Ahuja, "Cost Accounting", V K Global Publications, Faridabad, Haryana, 2012
- 2. S.P.Jain & Narang, "Cost accounting Principles and Practice", Kalyani Publishers, Calcutta, 2012
- 3. Panneer Selvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2001.
- 4. William G.Sullivan, James A.Bontadelli & Elin M.Wicks, "Engineering Economy", Prentice Hall International, New York, 2001.

REFERENCES

- 1. Luke M Froeb / Brian T Mccann, "Managerial Economics A problem solving approach" Thomson learning 2007
- 2. Truett & Truett, "Managerial economics- Analysis, problems & cases " Wiley India 8th edition 2004.
- 3. Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2002.
- 4. Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2002.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	1	2	0	1	0	0	1	1	1	2	2	3		
CO 2	2	2	1	2	0	0	2	1	1	2	3	3		
CO 3	2	2	1	3	0	0	2	2	1	2	2	3		
CO 4	1	2	1	2	0	0	0	1	1	1	2	3		
CO 5	1	2	0	1	0	0	1	1	0	1	2	3		
	7	10	3	9	0	0	6	6	4	8	11	15		

Mapping of CO with PO'S

Sen	neste	r]	IV											
Suł	oject	Name	; '	ГЕСІ	HNICAL COM	IMUNI	CATIO	N							
Suł	oject	Code]	XGS	407										
	L	Т	Р	С		С	Р	Α			L	S	Т	Р	Η
	1	0	0	1		3	0	0			1	2	0	0	3
<i>Cor</i>	ırse (Outcon	ne: A	fter t	he completion	of the co	udents w	vill	I	Doma	in		L	evel	
e c	able t	0								C	or P e	or A			
CO	1		ledge	e on	atures of a tec the linguistic					C	ognit	ive		Ren	emb
												Create			
CO	2	<i>Integ</i> t to wri			echnical subject.	ct skill	and lang	guage sl	cill	C	ognit	ive		C	reate
CO CO		to wri	te a p	orojec	U				till		ognit ffect				reate pons

stress in a word and in a sentence properly

CO5 *Enables* the speaker speaks clearly and fluently with confidence and it trains the learner to listen actively and Psychomotor Perception critically

COURSE CONTENT

UNIT I BASIC PRINCIPLES OF GOOD TECHNICAL WRITING

Style in technical writing, out lines and abstracts, language used in technical writing: technical words, jargons etc.,

UNIT II SPECIAL TECHNIQUES

Technical writing: Definition, description of mechanism, Description of a process, Classifications, division and interpretation.

UNIT III REPORT/ PROJECT

Layout the formats: chapters, conclusion, bibliography, annexure and glossary, Graphics aids etc - Presentation of the written project 10 - 15 minutes

UNIT IV SOUNDS OF ENGLISH LANGUAGE

Vowels, consonants, diphthongs, word stress, sentence stress, intonation patterns, connected speech etc. - Vocabulary building – grammar, synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, idioms and phrases.

UNIT V READING COMPREHENSION

Reading for facts, meanings from context, scanning, skimming, inferring meaning, critical reading, active listening, listening for comprehension etc.

L	S	Т	Р	Total
15	30	0	0	45

TEXT BOOKS

1. Gordon H. Mills, Technical Writing – April, 1978, Oxford Univ Press

2. Barun K. Mitra, Effective Technical Communication: A Guide for scientists and Engineers. Author, Publication: Oxford University press. 2007

Mapping of CO with PO'S

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1						1	3							
CO 2						1	1							
CO 3						1	2							
CO 4						1	1							
CO 5						1	1							
						5	8							

9

9

9

9

Semester V **Subject Name** STRUCTURAL ANALYSIS **Subject Code XCE 502** Т Р С Р L С Α L Т Р Η 2 1 2.5 2 0 3 0 0.5 2 4 0 Course Outcome: After the completion of the course, students will Domain С Level be able to or P or A **CO1** Identify the behavior of structural element under various Cognitive Analysis loading condition. Affective Response **CO2** Understand the advantage of statically indeterminate Cognitive Analysis structure and the statically determinate structure. **CO3** Superimpose the effects of settlement and rotation of the Cognitive Analysis supports over the regular analysis. **CO4** Apply knowledgeonadvanced methods of analysis of Cognitive Analysis structuresincludingarches and cables. **CO5** Recognize the failure mechanism of structural elements. Cognitive Analysis **COURSE CONTENT** UNIT I **SLOPE DEFLECTION METHOD** 12 Continuous beams and Rigid frames (with And without sway) - Symmetry and Asymmetry- Simplification for hinged end - Support Displacements-Introduction to matrix methods **UNIT II MOMENT DISTRIBUTION METHOD** 12 Stiffness and carry over factors-Distribution and carryover of Moments- Analysis of continuous Beams with and without displacement - Plane Rigid Frames with and without Sway **UNIT III** MOVING LOADS AND INFLUENCE LINES 12 Influence Lines for Reactions, Shear Forces and Bending Moments in Determinate Structures - Muller Breslau's principle for indeterminate structures(Reactions, Shear Forces and Bending Moments) **UNIT IV** ARCHES AND SUSPENSION CABLES 12 Types of Arches – Transfer of loads - Arch action- Horizontal forces- Analysis of

Parabolic and Circular Arches(Hinged,fixed) - Cables- Components and their functions – Analysis of Suspension Cables, Reaction-Tension and Length of suspension cables

UNIT V PLASTIC ANALYSIS OF STRUCTURES

Plastic hinge and mechanism – Plastic moment of resistance – Plastic modulus – Shape factor – Load factor –Plastic analysis of indeterminate beams and frames – Upper and lower bound theorems.

L	Т	Р	Total
30	30	0	60

12

TEXT BOOKS

- 1. Vaidyanadhan, R and Perumal, P, "Comprehensive Structural Analysis Vol. 1 & Vol. 2", Laxmi Publications, New Delhi, 2013.
- 2. L.S. Negi& R.S. Jangid, Structural Analysis", Tata McGraw-Hill Publications, New Delhi,

2013

3. S SBhavikatti, Structural Analysis", Vikas Publishing House, 2011.

REFERENCES

- 1. C.K. Wang, "Analysis of Indeterminate Structures", Tata McGraw-Hill, 2010.
- 2. B.C Punmia, Ashok Kumar Jain, Arun Kumar Jain, "Theory of Structures", Laxmi Publication, 2012.
- 3. Devdas Menon, "Structural Analysis", Narosa Publishers, 2010.

Mapping of CO with PO'S

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	2	3				1	2						1	
CO 2	3	1	1			1								
CO 3	1	3	2					1	1		1			
CO 4	3	2	2		1	1					1		1	
CO 5	1	1	1		1								1	1
	10	10	6		2	3	2	1	1		2		3	1

1 - Low, 2 – Medium, 3 – High

Seme	Semester V													
Subje	ect Nan	e	ENV	IRONMENTA	L ENG	INEER	ING							
Subje	ect Cod	e	XCE	503										
	LT	P	С		С	Р	Α			L	Т	Р	H	
	3 1	1 0 4 2.0 0.5 0.5								3	2	0	5	
Cours be ab	e Outcome: After the completion of the course, students will Domain Level													
CO1	syst	An insight into the structure of drinking water supply Cognitive Knowledge systems, including water transport, treatment and distribution												
CO2			esign t units.	he various wate	er and w	aste wat	er		Cognitive	;	C	ompr	ehens	
CO3				ng of water qua n to public heal	-	eria and	standard	S	Cognitive	;		Ana	alysis	
CO4	sew	age, d		l be able to ider	•			f	Cognitive Psychomo				alysis asure	
GO -	syst		1		1 1				·				1 .	
CO5		The student will have the knowledge on operation and maintenance of treatment unitsCognitiveAnalysisAffectiveResponse												

COURSE CONTENT

UNIT I WATER AND ENVIRONMENT Public water supply schemes, Forms and properties of water -per capita demand population forecasts - variation in demand pattern - Water Quality standards - water borne diseases – planning of public water supplies. SOURCES AND TRANSMISSION OF WATER **UNIT II** 12 Types of water sources- Intake structures -wells, infiltration galleries – Transmission of water through pipes and channel - Hydraulics of pipe flow - use of charts and nomograms for computations – pipe materials - laying, jointing and testing of pipes-Distribution networks. **UNIT III** WATER TREATMENT 12 Layout of Treatment plants for conventional water treatment plant. Principles and Functions of Screen, Flash Mixer, Flocculator, Sedimentation Tank, Slow and Rapid Sand Filters, and Disinfection Process- advanced water treatment techniques. **UNIT IV** WASTE WATERTREATMENT 12 Characteristics and composition of sewage - cycles of decomposition of organic wastes -

D.O, BOD and COD and their significance. Treatment methods - Layout of waste water treatment plant - Activated sludge process and its modifications; Tricking filters and Rotating biological contactors - oxidation pond- Operational problems -planning organizing and controlling of plant operations and Trouble shooting.

UNIT V **DISPOSAL OPTIONS**

Land disposal - sewage farming practice - dilution - discharge into rivers, estuaries and ocean - river pollution - oxygen sag - self-purification - eutrophication. - sludge treatment - properties and characteristics of sludge - sludge digestion and drying beds -Recycle and reuse.

PRACTICAL

- 1. Determination of pH, turbidity and conductivity.
- 2. Determination of the available chlorine in bleaching powder and estimation of the residual chlorine.
- 3. Determination of optimum dosage of coagulant
- 4. Determination of Iron and Fluoride.
- 5. Determination of Phosphorous
- 6. Determination of Potassium
- 7. Determination of Total Solids and Suspended solids.
- 8. Determination of Biochemical Oxygen Demand.
- 9. Determination of Chemical Oxygen Demand.
- 10. Determination of Ammonia Nitrogen.
- 11. Demonstration of Bacteriological analysis of water.

L	Т	Р	Total
30	0	30	60

TEXT BOOKS

- 1. Gurucharan Singh," Water supply and Sanitary Engineering", Standard Publishers Distributors, 2009
- 2. Garg, S.K., "Environmental Engineering I & II", Khanna Publishers, New Delhi 2007

12

- 3. S.K. Garg, Wastewater Engineering, Khanna Publishers, New Delhi, 2007
- 4. CPHEEO Manual on Water Supply And Treatment, 1999
- 5. CPHEEO Manual on Sewerage And Sewage Treatment, 1993

REFERENCES

- 1. Karia G L & Christian R A, "Wastewater Treatment", Prentice Hall of India, New Delhi, 2013.
- 2. Rangwala, "Water Supply and Sanitary Engineering PB,24/e, Charotar Publishing house Pvt. Ltd.-Anand, 2011
- 3. B.C. Punmia, Wastewater Engineering, Volume II, Laxmi Publication 2008
- 4. LinvilG.Rich, Unit operations of Sanitary Engineering, Tata Mcgraw Hill, New Delhi, 2007
- 5. Standard methods for the Examination of Water and Wastewater, 17thEdition, WPCF, APHA and AWWA,USA,1989.

	8 -													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1		1	4	1	1	1			1				1	
CO 2		1	2	1	1	1			2				2	1
CO 3	1		3	2			1		1	1	1		2	
CO 4	1	1	1	1			1	1	2			1	1	
CO 5			2	2				1	4	1		2	5	
	2	3	12	7	2	2	2	2	10	2	1	3	11	1

Mapping of CO with PO'S

Semester	V
Subject Name	BUILDING PLANNING AND DRAWING
Subject Code	XCE 504

	L	Т	Р	С		С	Р	Α			L	Т	Р	Н			
	3	1	1	5		2.0	0.5	0.5			3	2	2	7			
			me: A	fter t	he completion	vill	Doma										
be a	ble to)								C or P or A							
CO 2		•			lding plans sa elaws.	of	Psychomo	otor	Guided response								
CO	2	Draw	plan	eleva	ation, section for	or reside	ntial bu	ilding.		Cognitive Analysis							
CO.		Impart knowledge on constructional details of different building components							ent	Cognitive		Analysis					
CO	4	Draw	plan	eleva	ation, section fo	or public	e buildin	ıg.		Cognitive		Analysis					

CO5 Knowledge on the development of 2D building drawings Affective Develop using computer aided tools

COURSE CONTENT

UNIT I INTRODUCTION

BIS conventions and specifications- Symbols of the buildings- Size, Layout, Lettering and Dimensioning- Principles of isometric projections - Isometric scales Classification of buildings- Perspective projection -Building bye-laws - floor area ratio, open spaces-orientation of buildings.

UNIT I	IIPRINCIPLES OF PLANNING15
	Functional design of residential buildings and circulation principles- Positioning of various components of buildings - Development of plan, elevation, section and openings
UNIT I	IIICOMPONENTS OF BUILDINGS18
	Isolated and Combined footings –Raft and Spread footings-Columns – Beams-Slabs-Staircases-Doors, Windows and Ventilators-Building services.
UNIT I	IVPUBLIC BUILDINGS AND TRUSSES18
	Planning of educational buildings-Hospitals- Offices - Factory buildings -Roof trusses.
UNIT V	V COMPUTER AIDED DRAFTING 9
	Introduction to Coordinates, Units, Dimension, Line, Ray, Polyline, Arc, Hatch, Offset, Scale, Layer, Colour, etc., using CAD
PRAC	TICAL 30
1.	Bonds in masonry-Walls and quoins
2.	Drawing of footings

- 3. Drawing of doors and windows
- 4. Drawing of staircase
- 5. Drawing of Steel truss
- 6. Plan, elevation and section of two bed room single storeyed building
- 7. Plan, elevation and section of two bed room two storeyed building
- 8. Plan, elevation and section of school building
- 9. Practising CAD

45 30 30 105	L T P Tota	L
	45 30 30 105	45

TEXT BOOKS

- Gurcharn Singh, Building Planning, Designing & Scheduling, Standard Publishers, New Delhi, 2005
- 2. National Building Codeof India, 2005.
- 3. Specifications of building planning and scheduling Gurcharn Singh, Jagdish Singh -2012

REFERENCES

- 1. Verma B.P., Civil Engg. Drawing & House Planning Khanna publishers, New Delhi, 2003
- 2. Shah.M.G., Building drawing Tata McGraw-Hill, 2006
- 3. Kumaraswamy N., KameswaraRaoA.,Building Planning & Drawing , CharotarPublishing, Second revised edition, 2007

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	2	1	1	1			1		1				1	1
CO 2		1		1			1		1	1	1	1		1
CO 3	1	1	2	1	1	1		1	1	1		1		1
CO 4	1	2		1		1		1				1		1
CO 5	3	2	3		1									
	7	7	6	4	2	2	2	2	3	2	1	3	2	4

Mapping of CO with PO'S

Sem	ieste	er		V										
Sub	ject	Name	e	BASI	CS OF EART	HQUA	KE ENO	GINEER	ING AND S	EISM	IC D	ESIG	N	
Sub	ject	Code		XCE:	505A									
Pre	requ	iisite		Nil										
	L	Т	Р	С		С	Р	A		L	Т	Р	H	
	2	1	0	3		0	0.5		2	2	0	4		
Cou be a			me: A	After t	he completion	of the co	ourse, st	udents w	ill Domo C or P		1	L	evel	
CO	1	Diffe	renti	ate the	e static and dyn	amic and	alysis.		Cognitiv	e	Understand			
CO	2	•	<i>,</i>		and MDOF sys ystem.	ss Cognitiv	e	Analyse						
CO	3	Quan	tify t	he eff	ect of seismic v	waves.		Cognitiv	e	Analyse				

- **CO4** Understand the concept of response spectrum and Cognitive Understand application of structural dynamics.
- **CO5** Design Earthquake resistant structures with codal Cognitive Evaluation recommendations.

COURSE CONTENT

UNIT I THEORY OF VIBRATIONS

Concept of inertia and damping – Types of Damping – Difference between static forces and dynamic excitation – Degrees of freedom – SDOF idealisation – Equations of motion of SDOF system for mass as well as base excitation – Free vibration of SDOF system – Response to harmonic excitation – Impulse and response to unit impulse – Duhamel integral.

Affective

UNIT II MULTIPLE DEGREE OF FREEDOM SYSTEM

Two degree of freedom system – Normal modes of vibration – Natural frequencies – Mode shapes - Introduction to MDOF systems – Decoupling of equations of motion – Concept of mode superposition (No derivations).

UNIT III ELEMENTS OF SEISMOLOGY

Causes of Earthquake – Geological faults – Tectonic plate theory – Elastic rebound – Epicentre – Hypocentre – Primary, shear and Raleigh waves – Seismogram – Magnitude and intensity of earthquakes – Magnitude and Intensity scales – Spectral Acceleration – Information on some disastrous earthquakes.

UNIT IV RESPONSE OF STRUCTURES TO EARTHQUAKE

Response and design spectra – Design earthquake – concept of peak acceleration – Site specific response spectrum – Effect of soil properties and damping – Liquefaction of soils – Importance of ductility – Methods of introducing ductility into RC structures.

UNIT V DESIGN METHODOLOGY

IS 1893, IS 13920 and IS 4326 – Codal provisions – Design as per the codes – Base isolation techniques – Vibration control measures – Important points in mitigating effects of earthquake on structures.

	L	Т	Р	Total	
	30	15	0	45	
TEXT BOOKS					

9

9

9

Response

9

- 1. Biggs, J.M., "Introduction to Structural Dynamics", McGraw- Hill Education India Pvt.Ltd New Delhi
- 2. Dowrik., "Earthquake Resistant Design" Willey, 2012
- 3. Paz, M., "Structural Dynamics-Theory & Computattions" Shahdara, Delhi, 2010
- 4. Anil k chopra " Dynamics of structures '' Theory and application to Earthquake Engineering,2014

REFERENCES

- 1. George G.Penelis and AndreasJ.Kappos,Earthquake Resistant Concrete Structures,E& FN Spon.London,UK
- 2. Kavitha S., Damodarasamy S. R. "Basic of Structural Dynamics and Aseismic Design" PHI Learning Private Limited publishers, 2009.
- 3. Shashikant k. Duggal "Earthquke resistant design of structures" India, 2013

Mapping of CO with PO'S

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	3	2	2			1				1			2	
CO 2	2	3											1	
CO 3	2	1	1			2				1			1	1
CO 4	1	2			1		1	1	1	1	1	1		
CO 5	2		3		1		1	1				1	2	1
	10	8	6		2	3	2	2	1	3	1	2	6	2

1 - Low, 2 – Medium, 3 – High

Sem	ester	•		V									
Sub	ject I	Name	•	тот									
Sub	ject (Code		ХТQ	506								
	L	Т	Р	С		С	Р	Α		L	Т	Р	Η
	3	0	0	0		3	0	0		3	0	0	3
	rse C ble to		me: A	After t	the completion	of the co	ourse, st	udents w	till Domai C or P or			Le	evel

Remembering, Understanding

Comprehension

Understanding, Appling

Remembering,

Understanding

CO1	List and	explain	the	basic	concepts	of	total	quality	Cognitive	
	concepts	and its lir	nitati	ions.						

- **CO2** Analyze and explain the customer satisfaction, employee Cognitive involvement, supplier selection and appraise the performance by TQM principle.
- CO3 Explain and apply the statistical process control tools. Cognitive
- **CO4** Select and explain the different TQM tools and their Cognitive significance.
- CO5 Explain the importance aspects of different quality Cognitive Understanding systems.

COURSE CONTENT

UNIT I INTRODUCTION

Definition of quality – Dimensions of quality – Quality planning – Quality costs – Analysis techniques for quality costs – Basic concepts of Total Quality Management – Historical review –Principles of TQM – Leadership – Concepts – Role of senior management – Quality Council –Quality statements – Strategic planning – Deming philosophy – Barriers to TQM implementation.

UNIT II TQM PRINCIPLES

Customer satisfaction – Customer perception of quality – Customer complaints – Service quality –Customer retention – Employee involvement – Motivation, empowerment, teams, recognition and reward – Performance appraisal – Benefits – Continuous process improvement – Juran trilogy – PDSA cycle – 5S – Kaizen – Supplier partnership – Partnering – Sourcing – Supplier selection – Supplier rating – Relationship development – Performance measures – Basic concepts – Strategy – Performance measure.

UNIT III STATISTICAL PROCESS CONTROL (SPC)

The seven tools of quality – Statistical fundamentals – Measures of central tendency and dispersion – Population and sample – Normal curve – Control charts for variables and attributes – Process capability – Concept of six sigma – New seven management tools.

UNIT IV TQM TOOLS

Benchmarking – Reasons to benchmark – Benchmarking process – Quality Function Deployment (QFD) – House of quality – QFD process – Benefits – Taguchi quality loss function – Total Productive Maintenance (TPM) – Concept – Improvement needs – FMEA – Stages of FMEA.

UNIT V QUALITY SYSTEMS

Need for ISO 9000 and other quality systems – ISO 9000:2000 quality system – Elements –Implementation of quality system – Documentation – Quality auditing – TS 16949 – ISO 14000 –Concept, requirements and benefits.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Dale H. Besterfiled, et. Al. "Total Quality Management", New Delhi, Pearson Education, Inc,2007.
- 2. James R. Evans and William M. Lidsay, "The Management and Control of Quality", 5th Edition, South-Western, 2002.

REFERENCES

- 1. Feigenbaum, A.V., "Total Quality Management", McGraw Hill, 1991.
- 2. Oakland, J.S., "Total Quality Management", Butterworth Heineman, 1989.
- 3. Narayana V. and Sreenivasan, N.S., "Quality Management Concepts and Tasks", New Age International, 1996.
- 4. Zeiri, "Total Quality Management for Engineers", Wood Head Publishers, 1991.

9

9

9

9

Mapping of CO with PO's

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	2			1	1	1	1	1	1	1		1
CO 2	1			1	1	1	1	1	1	1		1
CO 3	2			2	2	2	1	1	1	1		
CO 4	1			2	2	1	1	2		2		
CO 5	1			1	1	2	1	2	1	2		2
	7			7	7	7	5	7	4	7		4

L

1

Domain

C or P or A

Cognitive

Cognitive

Cognitive

Cognitive

Psychomotor

S

2

Т

0

Р

0

Η

3

Level

Knowledge

Understand

Understand

Grasp

Apply

Semester V

Subject Name BUSINESS COMMUNICATION

Subject Code XGS 507

L	Т	Р	С	C	Р	A
1	0	0	1	3	0	0

Course Outcome: After the completion of the course, students will be able to

- CO1 To choose and apply different styles to various forms of business communication.
- CO2 Identify the proper tone of language required in writing and speaking in business communication.
- CO3 Display knowledge on grammar and other linguistic features in writing various forms of business communication.
- CO4 To distinguish between letters and memos and various forms of Business Communication.
- **CO5** Learn how to write business reports, minutes, proposals.

COURSE CONTENT

UNIT I	9
	Introduction to business communication; modern developments in the style of writing letters memos and reports: block letters, semi block letters, full block letters, simplified letters etc.,
UNIT II	9
	The language used in memos/minutes/telephone memos/ letters/ assignments art of writing E-mail etc. Advantages of written and spoken communication.
UNIT III	9
	The use of active and passive voice; the use of grammar, propriety, accuracy, exactness, the tone & other elements of language used in these writings.
UNIT IV	9
	The format of various types of Reports/ projects etc.,
UNIT V	9
	Writing Business reports, proposals and minutes.
	L S T P Total

L	S	Т	Р	Total
15	30	0	0	45

TEXT BOOKS&REFERENCES

- 1. John Sealy, Writing and Speaking Author:, Oxford University Press, New Delhi Third Edition 2009.
- 2. Williams K S, Communicating in Business (8th Edition) Engage Learning India Pvt. Ltd.; 2012
- 3. John Sealy, Writing and Speaking, Oxford University Press, New Delhi Third Edition 2009.

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1							2			2		
CO 2							2			2		
CO 3				2			2			1		1
CO 4				2			2					1
CO 5							2			1	2	
				4			10			6	2	2

Mapping of CO with GA's

Semes	ster		V												
	ubject Name IN-PLANT TRAINING-II														
Subject Code XCE 508															
]	LI	P	•	С			С	Р	Α			L	Т	Р	Η
(0 0	0)	1			2	2	2			0	0	0	0
<i>Course Outcome: After the completion of the course, students will be able to</i>							Domo C or P			Le	evel				
C O 1	Rel	ate cl	assr	oom	theory	with wo	rkplace	e practi	ice		Cognitiv	e	Understand		
CO2		nply			•	discip	line, 1	nanag	ement	and	Affective			Res	ponse
CO3	Der	Demonstrates teamwork and time management.							Affective	e,	Value				
CO4		Describe and display hands-on experience on practical skills obtained during the programme.						ctical	Psychomotor			Perception & S			
CO5		Summarize the tasks and activities done by technica documents and oral presentations.							y tech	nical	Cognitiv	e		Eva	luate

Mapping of CO with GA's

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	2											
CO 2							1	3			1	
CO 3									3	1	3	1
CO 4		1	2	1	3							3
CO 5				3						3		1
	2	1	2	4	3		1	3	3	4	4	5

1 - Low, 2 – Medium, 3 – High

VI

Subject Name IRRIGATION ENGINEERING

regulators and structures involved in cross drainage

Subject Code XCE 602

Semester

-	r se (ble to		me: A	fter t	ne completion of	the co	ourse, st	udents w	vill Doma CorPo	
	3	0	0	3		2.5	0.5	0		3
	L	Т	Р	С		C	Р	Α		L

be able	10	C or P or A	
CO1	Understand the knowledge on methods of irrigation including canal irrigation.	Cognitive	Understand
CO2	Find the crop water requirement for various crops in the commanded area.	Psychomotor	Measure
CO3	Understand the design aspects of dams and channel systems.	Cognitive	Comprehension
CO4	Understand the concept of various hydraulic structures such as dam, energy dissipaters, head and cross	Cognitive	Knowledge

CO5 Know the water resources available and management Cognitive Knowledge system.

COURSE CONTENT

works.

UNIT I **IRRIGATION ENGINEERING**

Catchment area - Ayacut- Duty, delta and base period- relationship - Irrigation efficiencies - Crop water requirement - Estimation of consumptive use of water.

UNIT II METHODS OF IRRIGATION

Surface and subsurface irrigation-Sprinkler and Drip irrigation- Lift irrigation- Tank irrigation- Well irrigation - Flooding methods.

UNIT III HYDRAULIC STRUCTURES

Weir and Barrage - Site selection for dam construction- Gravity dam -Earthen dam- Arch dam - Buttress dam- Diversion head works with drawings- Canal drop-Canal regulators-Canal outlets- Forces acting on dam – Spillway.

UNIT IV CANAL IRRIGATION

Classifications of canals- Canal alignment- Canal lining -Cross drainage works including drawing -River training works.

UNIT V WATER RESOURCES AND MANAGEMENT

Water resources survey - water resources of India and Tamilnadu -Estimation of water requirements for irrigation and drinking-Single and multipurpose reservoir-Storage of reservoir -National water policy- Water prizing-Water losses - Participatory irrigation management-Irrigation scheduling-water distribution.

L	Т	Р	Total
45	0	0	45

Р

0

Η

3

Level

L

Т

0

9

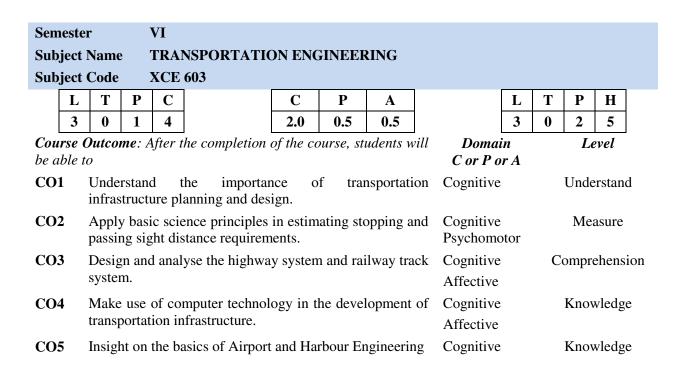
9

9

9

TEXT BOOKS

- 1. Linsley R.K and Franzini J.B, "Water Resources Engineering", McGraw-Hill Inc, 2000.
- 2. Punmia B.C., et.al; Irrigation and water power Engineering, Laxmi Publications, 16th Edition, New Delhi, 2009.
- 3. GargS.K.,"Irrigation Engineering and Hydraulic structures", Khanna Publishers, 23rd Revised Edition, New Delgi. 2009.
- 4. Sharma, S.K., Principles and Practice of Irrigation Engg, S.Chand Co, 1984.


REFERENCES

- 1. Duggal, K.N. and Soni, J.P., "Elements of water Resources Engineering", New Age International Publishers. 2005.
- 2. Chaturvedi M.C., "Water Resources Systems Planning and Management", Tata Mcgraw-Hill Inc., New Delhi, 1997.
- 3. Michael A.M., Irrigation Theory and Practice, 2nd Edition, Vikas Publishing House Pvt. Ltd., Noida, Up, 2008.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	3	2			2								1	1
CO 2		3							1				1	2
CO 3	2		2	1				1	1				1	
CO 4	2	2				1	1	1					1	1
CO 5	2	2	1		2	1							2	2
	9	9	3	1	4	2	1	2	2				6	6

Mapping of CO with PO'S

1 - Low, 2 – Medium, 3 – High

COURSE CONTENT UNIT I 9 INTRODUCTION TO TRANSPORTATION ENGINEERING Types, characteristics and components of transportation systems - Transportation capacity - Concept - Level of service- transportation planning and evaluation -Environmental issues- Transportation safety – Introduction to intelligent transportation and application of information technology in transportation development. **UNIT II** 9 **HIGHWAY ENGINEERING** Functional Classification of Highway System - History of road development - pioneer works of Romans, Tresaguat, Telford, Metcalf and Macadam -Highway Alignment and Geometric Design; Alignment factors - Engineering surveys; Cross-section elements -Superelevation – pavement widening - sight distances – Horizontal Alignment – Vertical Alignment – Grade compensation – Geometric design of Hill roads. UNIT III **HIGHWAY PAVEMENT DESIGN** 9 Pavement Design - Flexible pavement - CBR Method, IRC: 37-2001 - Rigid pavement: Westergaard's analysis of wheel load stress, temperature stresses IRC: 58-2002 method of design. Types of joints and their functions,; Highway materials, construction procedure of WMM roads, bituminous roads, concrete roads and soil stabilized road -MOST specifications. Highway Drainage: Maintenance and repairs. Intersections -Miscellaneous Elements (Pedestrian facilities on Urban Roads, CycleTracks, Bus bays, Parking facilities, Traffic Signs and Markings). **UNIT IV RAILWAY ENGINEERING** Railway Engineering - Location surveys and alignment - Permanent way - Gauges -Components - Functions and requirements - Geometric design Track Junctions-Points and crossings - types and functions - design and layout - simple problems - Railway stations and yards. Signalling and interlocking - Control systems of train movements UNIT V DOCK, HARBOUR AND AIRPORT Airport Engineering-Aircraft characteristics - Airport obstructions and zoning - Runway taxiways and aprons- Terminal area planning. Docks and Harbours - Types - Layout and planning principles- Breakwaters - Docks-Wharves and Quays - Transit sheds- Warehouses- Navigation aids. Urban transportation systems - Bus transit - Mass Rapid Transit System - Light Rail Transit. Transport economics and Financing - Intelligent Transportation Systems (ITS). PRACTICAL 30 I. Tests on Aggregates a. Specific Gravity b. Water absorption c. Impact Strength d. Crushing strength e. Abrasion f. Grading g. Flakiness and Elongation Index h. Stripping Value **II.** Tests on Bitumen

- a. Penetration
- b. Softening point
- c. Flash and fire point
- d. Ductility
- e. Viscosity

L	Т	Р	Total
45	0	30	75

TEXT BOOKS

- 1. Khanna S.K., HighwayEngineering, Nem Chand & Bros., 2011.
- 2. L.R.Kadiyali and N.B.Lal: Principles and Practice of Highway Engineering, Khanna publishers, 2007.
- 3. Ministry of Road Transport and Highways. Specifications for Road and Bridge Works, 5thRevision, Indian Roads Congress, 2014.
- 4. Rangwala, S.C., Railway Engineering, Charotar Publishing House, Pvt. Limited, 2008.
- 5. Saxena, S.C. Railway Engineering, DhanpatRai, 2015

REFERENCES

- 1. Papacostas C.S. and PD Prevedouros. Transportation Engineering and Planning, Third Edition. Prentice Hall of India Pvt. Ltd, New Delhi, India, 2002.
- 2. JotinKhisty C. and B. Kent Lall.Transportation Engineering, Third Edition, Phi Learning publishers, 2009
- 3. IRC: 37-2001 Guidelines for the Design of flexible Pavements for Highways, IRC, New Delhi, 2012.
- 4. IRC: 58-2002(Second Revision) Guidelines for the Design of Rigid Pavements for Highways, IRC, New Delhi, 2002.
- 5. Horonjeff Robert: The Planning and Design of Airports, McGraw Hill Co., New York, 2010.
- 6. Chandra S. and M.M. Agarwal, Railway Engineering, Second Edition, Oxford University Press, New Delhi, 2013.

Mapping of CO with PO'S

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1			1	1									1	1
CO 2		1	1	1	1			1	1		1		1	
CO 3	2		3	2	1	1		1	1				3	
CO 4			1	1	2	1	1			3		3	1	
CO 5	1	2		1			1						1	
	3	3	6	6	4	2	2	2	2	3	1	3	7	1

Semester

Subject Name DESIGN OF CONCRETE STRUCTURES

Subject Code XCE 604

VI

L	Т	Р	С	С	Р	А	L	Т	Р
3	1	1	5	1.5	0.5	1	3	2	2

Course Outcome: After the completion of the course, students will be able to

- CO1 Acquaint knowledge on design processes for idealising RC structures and construct their load paths.
- **CO2** Interpret ultimate and serviceability limit state approaches in current structural design philosophy
- **CO3** Estimate primary design loads on structural elements to find the critical load combination that governs design.
- **CO4** Model building structure and analyse structural elements for design actions

	3	2	2	7	
Doma	in		L	evel	•
C or P o	r A				
Cognitive			Und	erstar	ıd
Cognitive			Арј	olying	5
Affective			Rec	eivin	g

Η

Valuing

- Analysing
- Affective

Cognitive

Cognitive Evaluation Psychomotor Manipulation

UNIT I	METHODS OF DESIGN OF CONCRETE STRUCTURES	15
	Methods and principles of Design-Properties of Concrete and Steel –Code specified for structural members –Working stress method- Yield line theory- Design of be slabs.	
UNIT II	LIMIT STATE DESIGN FOR FLEXURE	15
	Design of one way and two way slab - singly anddoubly reinforced beams - conbeams –Flanged beams – Staircase.	ntinuous
UNIT III	LIMIT STATE DESIGN FOR SHEAR, BOND AND TORSION	15
	Behaviour of RC members in bond and anchorage – Design requirements –Beha RC beams in shear and torsion – Design of RC members for combined bending st torsion.	
UNIT IV	DESIGN OF COLUMNS AND FOOTINGS	15
	Types of columns-Design of shortcolumns and long columns-Footings- rectangular and circular footing –Raft and pile foundations.	Square,
UNIT V	DESIGN OF MISCELLANEOUS STRUCTURES	15
	Liquid retaining structures-Bridge deck slabs-Retaining walls-Culverts	
PRACTICA	L	30
Design and d	rafting of slabs, beams and columns using software.	

L	Т	Р	Total
45	30	30	105

TEXT BOOKS

- 1. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, Pvt. Ltd., New Delhi, Second Edition, 2010.
- 2. Krishna Raju, N., "Design of Reinforced Concrete Structures", CBS Publishers & Distributors, New Delhi, 2007.

REFERENCES

- 1. DevadasMenon&UnnikrishnanPillai, Reinforced Concrete Design,Tata McGraw-Hill Publishing Company Ltd., New Delhi 2011
- 2. Dr.P.Purushothaman, Reinforced Concrete Structures, Oxford Publication (P) Ltd, Delhi, 2007.
- 3. M.L.Gambhir, Design of reinforced concrete structures, PHI Learning Private Limited, 2013.
- 4. IS 456 -2000, Plain and Reinforced Concrete Code of Practice, 4th revision
- 5. SP16-1980 Design Aids for Reinforced Concrete to IS:456-1978

Mapping of CO with PO'S

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	3		1										2	
CO 2	2	3		1		1	1						3	1
CO 3	1	1	3	1		1	1	1			1		1	
CO 4	1		2	1				1	1		1		3	
CO 5	7	4	6	3	1	2	2	2	1		2		9	1
	13	11	12	14	14	8	13	12	5	10	2	5	11	8

1 - Low, 2 - Medium, 3 - High

Sem	este	r		VI										
Sub	ject	Name		STRUCTURAL STEEL DESIGN										
Sub	ject	Code		XCE	605									
	L	Т	Р	С		С	Р	A		L	Т	Р	H	
·	3	1	0	4		2	1	0		3	2	0	5	
Cou be a			me: A	After t	he completion	of the co	ourse, st	udents w	ill Domo C or P		•	Le	evel	
CO	l	Desig	n of	struct	ural connection	ıs			Cognitiv	e		Unde	erstan	
									Psychom	otor	1	Manip	oulatio	
CO2	2	Desig	n of	tensio	n and compres	sion mei	mbers		Cognitiv	e		App	olying	
CO	3	Unde girder		d fab	rication of	plate gi	irders a	and gant					erstan	
		gilde	18						Psychom	otor	1	Manip	oulatio	
CO ₄	ŀ	Desig	n of	struct	ural elements o	of Industr	rial Stru	ctures.	Cognitiv	e		Eval	uatio	

CO5

COURSE CONTENT

UNIT I INTRODUCTION

Properties of steel – Structural steel sections – Limit State Design Concepts – Loads on Structures – Metal joining methods using welding, bolting – Design of bolted and welded joints – Eccentric connections - Efficiency of joints – High Tension bolts.

12

12

12

UNIT II TENSION MEMBERS

Types of sections – Net area – Net effective sections for Angles and Tee – Design of connections in tension members – Use of lug angles – Design of tension splice – Concept of shear lag.

UNIT III COMPRESSION MEMBERS

Types of compression members – Theory of columns – Basis of current codal provision for compression member design – Slenderness ratio – Design of single section and compound section compression members – Design of lacing and battening type columns – Design of column bases – Gusseted base.

UNIT	T IV	BEA	MS												12
		to bia	xial be	•	- Desig	gn of p	late gir			Built u diate an	L			5	
UNIT	ΓV	TRUS	SSES A	AND IN	DUST	RIAL	STRU	CTUR	ES						12
				– Roof n of gar			erings -	- Desig	n loads	- Desig	n of pu	rlin aı	nd ele	ements	of
		u uss-	Desigi	i oi gai	itry gift	JC1.					L	Т	Р	Tot	tal
											45	15	0	7	
TEXT	г вос	OKS													
1.		ubramaı s, 2010	niayan	, "Desig	gn of S	teel Str	uctures	: Theor	y and F	Practice'	', Oxf	ord Ui	nivers	sity	
2.		-	atti "D	esion o	f Steel	Structu	res" L	K Inter	nationa	l Publis	hing Ha	uises l	Pvt I	td	
2.	2012		iiii, D	esign o		Structu	105 , 1.	It inter	lutionu	11 40115	ining Th	45051		Jua,	
3.		nachand ni,2010	ra S.,	"Desig	n of S	Steel S	tructure	es – V	ol. I &	& II", S	Standar	i Pub	licati	on, N	ew
		~ ~ ~													
REFH	EREN								- nd						
REFH 1.	. Dug	gal S.K		nit state	e Desig	n of Ste	el Stru	ctures"	, 2 nd edi	ition, Ta	ata McC	braw -	Hill		
1.	. Dug Edu	gal S.K cation, 2	2014		-					ition, Ta				8	
1.	. Dug Edu . Day	gal S.K cation, 2 aratnam	2014 1, P., "I	Design	of Steel	Struct	ures", A	A.H.Wł	neeler&		d., Alla	nabad,	2008		
1. 2. 3.	. Dug Educ . Day . Jack	gal S.K cation, 2 aratnam	2014 1, P., "I	Design	of Steel	Struct	ures", A	A.H.Wł	neeler&	c Co. Lto	d., Alla	nabad,	2008		
1. 2.	. Dug Edu . Day . Jack des	gal S.K cation, 2 aratnam	2014 n, P., "I Cormac	Design (c , Stepl	of Steel hen F.C	Struct Sernak	ures", A , "Stru	A.H.Wł ctural S	neeler& Steel De	c Co. Lto esign"Pi	d., Alla	nabad,	2008		
1. 2. 3. IS coo	. Dug Edu . Day . Jack des . IS 8	gal S.K cation, 2 aratnam C. Mc(2014 n, P., "I Cormac 7, Gene	Design (c , Stepl eral Co	of Steel hen F.C nstructi	Struct Sernak	ures", 4 , "Stru Steel, Co	A.H.Wi ctural S ode of I	neeler& Steel De Practice	c Co. Lto esign"Pi	d., Alla	nabad,	2008		
1. 2. 3. IS coo 1. 1.	Dug Educ Day Jack des IS 8 SP6	gal S.K cation, 2 aratnam C. Mc 00 -200 – 1 : IS	2014 n, P., "I Cormac 7, Gene I Hand	Design (c , Stepl eral Co	of Steel hen F.C nstructi	Struct Sernak	ures", 4 , "Stru Steel, Co	A.H.Wi ctural S ode of I	neeler& Steel De Practice	c Co. Lto esign"Pi	d., Alla	nabad,	2008		
1. 2. 3. IS coo 1. 1.	Dug Educ Day Jack des IS 8 SP6	gal S.K cation, 2 aratnam C. Mc 00 -200	2014 n, P., "I Cormac 7, Gene I Hand	Design (c , Stepl eral Co	of Steel hen F.C nstructi	Struct Sernak	ures", 4 , "Stru Steel, Co	A.H.Wi ctural S ode of I	neeler& Steel De Practice	c Co. Lto esign"Pi	d., Alla	nabad,	2008		
1. 2. 3. IS coo 1. 1.	Dug Educ Day Jack des IS 8 SP6	gal S.K cation, 2 aratnam C. Mc 00 -200 – 1 : IS	2014 n, P., "I Cormac 7, Gene I Hand	Design (c , Stepl eral Co	of Steel hen F.C nstructi	Struct Sernak	ures", 4 , "Stru Steel, Co	A.H.Wi ctural S ode of I	neeler& Steel De Practice	c Co. Lto esign"Pi	d., Alla	nabad,	, 2008 ul 20		PSO
1. 2. 3. IS coo 1. 1.	Dug Educ Day Jack des IS 8 SP6	gal S.K cation, 2 aratnam c C. Mc(00 -200 – 1 : IS C O with	2014 n, P., "I Cormac 7, Gena I Hand PO'S	Design (c , Stepl eral Co Book (of Steel hen F.C nstructi of Struc	Struct Sernak on in S ctural E	ures", 4 , "Stru Steel, C	A.H.Wl ctural S ode of I rs, Part	neeler& Steel De Practice : –I	c Co. Lta esign"Pr e.	d., Alla	nabad. Hall, J	, 2008 ul 20	911.	PSO
1. 2. 3. IS coo 1. 1. Mapp	Dug Educ Day Jack des IS 8 SP6 ing of 0	gal S.K cation, 2 aratnam C. Mc 00 -200 – 1 : IS CO with PO2	2014 n, P., "I Cormac 7, Gend I Hand PO'S PO3	Design (c , Stepl eral Co Book (PO4	of Steel hen F.C nstructi of Struc	Struct Sernak on in S ctural E	ures", <i>1</i> , "Stru teel, C nginee	A.H.Wf ctural S ode of I rs, Part PO8	neeler& Steel De Practice : –I PO9	c Co. Lto esign"Pr e.	d., Alla	nabad. Hall, J	, 2008 ul 20	911. PSO1	PSO
1. 2. 3. IS coo 1. 1. 1. Mapp CO 1 CO 2	 Dug Educ Day Jack des IS 8¹ SP6 sp6 ing of 0 PO1 2 	gal S.K cation, 2 aratnam c C. Mc 00 -200 – 1 : IS CO with PO2 1	2014 n, P., "I Cormac 7, Gend I Hand PO'S PO3 3	Design (c , Stepl eral Co Book (PO4 2	of Steel hen F.C nstructi of Struc	Struct Sernak on in S ctural E	ures", <i>1</i> , "Stru Steel, Co Inginees PO7	A.H.Wf ctural S ode of I rs, Part PO8	neeler& Steel De Practice : –I PO9 1	c Co. Lto esign"Pr e.	d., Alla	nabad. Hall, J	, 2008 ul 20	PSO1 2	PSO
1. 2. 3. IS coo 1. 1. 1. Mapp <u>CO 1</u> <u>CO 2</u> <u>CO 3</u>	 Dug Educ Day Jack des IS 8 SP6 sP6 ing of 0 PO1 2 2 	gal S.K cation, 2 aratnam c C. Mc 00 -200 – 1 : IS CO with PO2 1 1	2014 h, P., "I Cormac 7, Gend I Hand PO'S PO3 3 3	Posign of constraints of the second s	of Steel hen F.C nstructi of Struc	Struct Sernak on in S ctural E PO6	ures", <i>1</i> , "Stru Steel, Co Inginees PO7	A.H.Wf ctural S ode of I rs, Part PO8	neeler& Steel De Practice : –I PO9 1	c Co. Lto esign"Pr e.	d., Alla	nabad. Hall, J	, 2008 ul 20	PSO1 2 2 2	PSO
1. 2. 3. IS coo 1. 1. Mapp CO 1	 Dug Educ Day Jack des IS 8 SP6 ing of 0 PO1 2 2 1 	gal S.K cation, 2 aratnam C. Mc 00 -200 – 1 : IS CO with PO2 1 1 1	2014 n, P., "I Cormac 7, Gend I Hand PO'S PO3 3 3 3	Posign of constraints of the second s	PO5	Struct Sernak on in S etural E PO6	ures", <i>1</i> , "Stru Steel, Co Inginees PO7	A.H.Wf ctural S ode of I rs, Part PO8	neeler& Steel De Practice : –I PO9 1	c Co. Lto esign"Pr e.	d., Alla	nabad. Hall, J	, 2008 ul 20	PSO1 2 1 1	PSO

Sem	este	r		VI										
Sub	ject	Name	9	CON	STRUCTION	TECH	NIQUE	S, EQUI	IPME	NTS AN	D PR	RACI	FICE	S
Sub	ject	Code		XCE	606A									
Pre	requ	isite		CON	CRETE TEC	HNOLO	OGY							
	L	Т	Р	С		С	Р	Α			L	Т	Р	H
	3	0	0	3		2	0	1			3	0	0	3
Cou be a			me: A	After t	he completion	of the co	ourse, si	tudents w		Domai C or P o			L	evel
CO	1	Unde	rstan	d the	properties of f	resh and	l harder	ned	С	ognitive			Unde	erstand
		concr	ete.						А	ffective			Res	ponse
CO	2	Imple	ement	t mod	ular constructio	on practi	ces rela	ted to	С	ognitive			Unde	erstand
		subst	ructu	re and	l superstructure	constru	ction						Res	ponse
CO.	3	Analy techn	-		tivity and econo	omics in	constru	iction	C	ognitive			Eva	luate
CO	4				te construction			can		ognitive			Unde	erstand
	estimate ownership and operating costs.								А	ffective			Res	ponse
CO	URS	E CO	NTE	INT										

UNIT I CONCRETE TECHNOLOGY

Cements – Grade of cements - concrete chemicals and Applications – Grade of concrete - manufacturing of concrete – Batching – mixing – transporting – placing – compaction of concrete – curing and finishing - Testing of fresh and hardened concrete – quality of concrete – Extreme Weather Concreting - Ready Mix Concrete - Non-destructive testing.

UNIT II CONSTRUCTION PRACTICES

Specifications, details and sequence of activities and construction co-ordination – Site Clearance – Marking – Earthwork - masonry – stone masonry – Bond in masonry - concrete hollow block masonry – flooring – damp proof courses – construction joints – movement and expansion joints – pre cast pavements – Building foundations – basements – temporary shed – centering and shuttering – slip forms – scaffoldings – de-shuttering forms – Fabrication and erection of steel trusses – frames – braced domes – laying brick – weather and water proof – roof finishes – acoustic and fire protection.

UNIT III SUB STRUCTURE CONSTRUCTION

Techniques of Box jacking – Pipe Jacking -under water construction of diaphragm walls and basement-Tunneling techniques – Piling techniques - well and caisson - sinking cofferdam - cable anchoring and grouting-driving diaphragm walls, sheet piles - shoring for deep cutting - well points -Dewatering and stand by Plant equipment for underground open excavation.

UNIT IV SUPER STRUCTURE CONSTRUCTION

Launching girders, bridge decks, off shore platforms – special forms for shells - techniques for heavy decks – in-situ pre-stressing in high rise structures, Material handling - erecting light weight components on tall structures - Support structure for heavy Equipment and conveyors -Erection of articulated structures, braced domes and space decks.

UNIT V CONSTRUCTION EQUIPMENT

Selection of equipment for earth work - earth moving operations - types of earthwork equipment - tractors, motor graders, scrapers, front end waders, earth movers – Equipment for foundation and pile driving. Equipment for compaction, batching and mixing and concreting - Equipment for material handling and erection of structures - Equipment for

9

9

9

9

dredging, trenching, tunnelling.

L	Т	Р	Total
45	0	0	45

Receive

TEXT BOOKS

- 1. A.M. Neville, J.J.Brooks "Concrete Technology", Prentice Hall; 2nd edition, 2010.
- 2. B.C. Punmia, Ashok Kumar Jain, Arun Kumar Jain, "Building Construction", Laxmi publications; 10 th edition, 2008.
- 3. Varghese, P.C. "Building construction", Prentice Hall of India Pvt. Ltd, New Delhi, 2007.
- 4. Douglas D. Gransberg, Calin M. Popescu, Richard Ryan, "Construction equipment management for engineers estimators and owners", CRC Press, 2006.

REFERENCES

- 1. Deodhar, S.V. "Construction Equipment and Job Planning", Khanna Publishers, New Delhi, 2012.
- 2. Robert L Peurifoy, Clifford J. Schexnayder, Aviadshapira, and Robert Schmitt" Construction Planning, Equipment and Methods", 8th Edition, McGraw-Hill Higher Education, 2010.
- 3. Jha J and Sinha S.K., "Construction and Foundation Engineering", Khanna Publishers, 2009
- 4. Gambhir, M.L, "Concrete Technology", Tata McGraw Hill Publishing Company Ltd, New Delhi, 2004.

Mapping of CO with PO'S

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	1	1	3	1										
CO 2	1				1			1				2		
CO 3	1	2			2	1	1	1	1				1	1
CO 4	2	2		1		1	1	1			1		1	
	5	5	3	2	3	2	2	3	1	-	1	2	2	1

1 - Low, 2 – Medium, 3 – High

Sem	ester	ſ	VI												
Sub	ject I	Name	9	ENVIRONMENTAL STUDIES											
Sub	ject (Code		XCE	607										
	L	Т	P C P A L T P H												
	0	0	0	0 2.5 0 0.5 3 0 0 3											
	rse C ble to		me: A	After t	the comple	tion of the co	ourse, si	tudents v	vill	Domai C or P o			L	evel	
CO 1				<u> </u>	nificance ompacts	of natural reso	ources	and expl	ain	Cognitive		Ι		mber erstan	
CO2		Illustrate the significance of ecosystem and biodiversity Co for maintaining ecological balance											Unde	erstan	
CO	3	Identify the facts, consequences, preventive measures of Cognitive Remember													

major pollution and Recognize the disaster phenomenon Affective

CO4	Explain the socio- economics, policy dynamics and practice the control measures of global issues for sustainable development.	Cognitive	Understand & Analyse
CO5	Recognize the impact of population and apply the concept to develop various welfare programs.	Cognitive	Understand & Apply

UNIT I INTRODUCTION TO ENVIRONMENTAL STUDIES AND ENERGY

Definition, scope and importance – Need for public awareness – Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies - Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizerpesticide problems, water logging, salinity, case studies - Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. case studies - Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification - Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

UNIT II ECOSYSTEMS AND BIODIVERSITY

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers - Energy flow in the ecosystem - Ecological succession -Food chains, food webs and ecological pyramids - Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) - Introduction to Biodiversity - Definition: genetic, species and ecosystem diversity -Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT III ENVIRONMENTAL POLLUTION

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Soil waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies - Disaster management: flood, earthquake, cyclone and landslide.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wasteland reclamation - Consumerism and waste products - Environment Production Act - Air (Prevention and Control of Pollution) Act - Water (Prevention and control of Pollution) Act - Wildlife Protection Act - Forest Conservation Act - Issues involved in enforcement of environmental legislation – Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – Population explosion – Family Welfare Programme – Environment and human health – Human Rights – Value Education - HIV / AIDS – Women and Child Welfare – Role of Information Technology in Environment and human health - Case studies.

L	Т	Р	Total
45	0	0	45

6

9

9

9

TEXT BOOKS

- 1. Miller T.G. Jr., Environmental Science, Wadsworth Publishing Co, USA, 2000.
- 2. Townsend C., Harper J and Michael Begon, Essentials of Ecology, Blackwell Science, UK, 2003
- 3. Trivedi R.K and P.K.Goel, Introduction to Air pollution, Techno Science Publications, India, 2003.
- 4. Disaster mitigation, Preparedness, Recovery and Response, SBS Publishers & Distributors Pvt. Ltd, New Delhi, 2006.
- 5. Introduction to International disaster management, Butterworth Heinemann, 2006.
- 6. Gilbert M.Masters, Introduction to Environmental Engineering and Science, Pearson Education Pvt., Ltd., Second Edition, New Delhi, 2004.

REFERENCES

- 1. Trivedi R.K., Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards, Vol. I and II, Enviro Media, India, 2009.
- 2. Cunningham, W.P.Cooper, T.H.Gorhani, Environmental Encyclopedia, Jaico Publications House, Mumbai, 2001.
- 3. S.K.Dhameja, Environmental Engineering and Management, S.K.Kataria and Sons, New Delhi, 2012.
- 4. Sahni, Disaster Risk Reduction in South Asia, PHI Learning, New Delhi, 2003.
- 5. Sundar, Disaster Management, Sarup& Sons, New Delhi, 2007.
- 6. G.K.Ghosh, Disaster Management, A.P.H.Publishers, New Delhi, 2006
- 7. Benny Joseph, Environmental Studies, Tata McGraw Hill Publications, 2005

E- RESOURCES

- 1. Bharat Raj Singh, 2015, Global Warming: Causes, Impacts and Remedies, InTech.
- 2. Richard C. J. Somerville, The Forgiving Air: Understanding Environmental Change, 1998, University of California Press

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3											
CO 2	2					2	1			1		
CO 3	2	1	3			1			1		1	
CO 4	1	1	2					2				
CO 5	2	1	1					1				1
	10	3	6			3	1	1	1	1	1	1

Mapping of CO with GA's

1 - Low, 2 - Medium, 3 - High

Semester VI **Subject Name** ACADEMIC WRITING **Subject Code XGS 608** Т Р С Р Р L С Α L Т Η 0 0 2 0.5 0.5 2 2 0 0 0 0 Course Outcome: After the completion of the course, students will Domain Level C or P or A be able to **CO1** Ability to identify the features of a technical project Cognitive Comprehension report and knowledge on the linguistic competence to write a technical report **CO2** Ability to integrate both technical subject skill and Cognitive Synthesis language skill to write a project. **CO3** Confidence to present a project in 10 to 15 minutes Affective Response **CO4** The learner identifies and absorbs the pronunciation of Cognitive Comprehension sounds in English Language and learns how to mark the stress in a word and in a sentence properly The program enables the speaker speaks clearly and **CO5** Psychomotor Palpate fluently with confidence and it trains the learner to listen actively and critically **COURSE CONTENT** UNIT I 10 Basic principles of good technical writing, Style in technical writing, out lines and abstracts, language used in technical writing: technical words, jargons etc., **UNIT II** 10 Special techniques used in technical writing: Definition, description of mechanism, Description of a process, Classifications, division and interpretation., **UNIT III** 25 Report/ project layout the formats: chapters, conclusion, bibliography, annexure and glossary, Graphics aids etc - Presentation of the written project 10 - 15 minutes. **UNIT IV** 15 Sounds of English Language; vowels, consonants, diphthongs, word stress, sentence

stress, intonation patterns, connected speech etc. - Vocabulary building – grammar, synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, idioms and phrases.

15

Reading comprehension – reading for facts, meanings from context, scanning, skimming, inferring meaning, critical reading, active listening, listening for comprehension etc.

	U	0.	0.	0.	U				
						L	Т	Р	Total
						45	0	30	75
TEXT BOOKS									

1. Gordon H. Mills, Technical Writing – April, 1978, Oxford University Press

UNIT V

2. Barun K. Mitra, Effective Technical Communication: A Guide for Scientists and Engineers. Author, Publication: Oxford University press. 2007

Mapping of CO with PO'S

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1														
CO 2	1	1							1	2				
CO 3				2						2		2		
CO 4				2						2	1	2		
CO 5										2	1	2		
	1	1		4					1	8	2	6		

1 - Low, 2 – Medium, 3 – High

Semester	ster VII													
Subject N	lame		CON	STRUCTION	PROJE	CT MA	NAGE	MEN	T					
Subject C	ode		XCE7	702										
L	Т	Р	C		С	Р	Α		L		Т	Р	H	
3	0	1	4		2	0.5	0.5			3	0	2	5	
Course Ou be able to	utcon	ne: A	After t	he completion	of the co	ourse, sti	udents w	vill	Domain L C or P or A				evel	
CO1 F	Formu	ulate	and e	xecute the cons	struction	projects	8	(Cognitive	;		Unde	erstan	d
	Psychomotor Manipulation													
CO2 S	2 Schedule the activities using network diagrams. Cognitive Applying													
	Psychomotor Manipulation													
СОЗ Р	lan t	he re	sourc	es like material	ls, men a	and macl	nine.	(Cognitive	•		App	olying	
]	Psychom	otor	ľ	Manipulation		
CO4 U	Jnder	rstan	d the a	aspects of quali	ty contr	ol		(Cognitive	•		Unde	erstan	d
]	Psychom	otor	ľ	Manip	oulatio)1
CO5 K	Know	abo	ut safe	ety measures to	be adop	oted in th	ne	(Cognitive	•		Unde	erstan	d
C	onstr	uctio	on fiel	d.	-				Affective			Resp	ondin	g
COURSE	CO	NTE	NT									_		
UNIT I	(CON	STRU	UCTION PRO	JECT I	FORMU	JLATIC)N						
	I	Econ	omics	n to Constru - Economic D Alternatives –	Decision	Making	- Time	value	e of mon					
UNIT II	(CON	STRU	UCTION PLA	NNING	AND S	CHEDU	ULIN	IG					

CONSTRUCTION PLANNING AND SCHEDULING UNIT II

Basic concepts in the development of construction plans- types of project plans - work breakdown structure - planning techniques - bar charts - preparation of network diagram critical path method -program evaluation and review technique -.

UNIT III **RESOURCE PLANNING**

Materials- inventory control: types of inventory, EOQ - different tools for inventory controls. Equipment: Classification of construction equipment- planning and selecting of equipment. Manpower: Classes of labour - cost of labour- labour productivity.

UNIT IV TENDERING AND CONTRACT ADMINISTRATION

9

Tender notice-Tender document-EMD-SD-Prebid conference-Award and signing of contract agreement-Site meeting-Payment of bills-Breach of contract-Liquidated damages-Project closure

UNIT V QUALITY CONTROL AND SAFETY MANAGEMENT

Introduction to construction quality - Inspection, quality control and quality assurance – Quality circle - Quality management system. - Construction safety – accidents and injuries - Personal protective equipments - Health and safety act and OSHAS regulations - Safety and health management system- Safety manual.

PRACTICAL 30

Introduction to Microsoft Projects and Primavera

L	Т	Р	Total
45	0	30	75

9

TEXT BOOKS

- 1. Kumar NeerajJha, "Construction Project management", Dorling Kindersley, Publishers, New Delhi.2013
- 2. Sengupta .B, Guha .H, "Construction Management and Planning", Tata McGraw Hill, New Delhi, 2001.
- 3. Sharma.S.C, "Construction Engineering and Management", Khanna Publishers, Delhi, 2008.
- 4. Chitkara.K.K, Construction Project Management planning, Scheduling and control, Tata McGraw Hill Publishing Company, New Delhi, 2010.

REFERENCES

- 1. Joy.P.K, Total Project Management The Indian context, Macmillan India Ltd, New Delhi, 2000
- 2. Vohra.N.D., Quantitative Techniques in Management, Tata McGraw Hill Publishing Company, New Delhi, 2010
- 3. Billy E.Gillett., Introduction to Operations Research Computer Oriented Algorithmic Approach, Tata McGraw Hill, 2005.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1				1	3	2	1	1	1					1
CO 2	2	1						2	1	1		1	1	1
CO 3	2	1		2		1	1	1	2		1		1	
CO 4						2	1	1	1	1			1	
CO 5			2				1							
	4	2	2	3	3	5	4	5	5	2	1	1	3	2
1 1.		1.1.		1.		•				•	•	•	•	•

Mapping of CO with PO'S

1 - Low, 2 – Medium, 3 – High

	leste			VII COST ESTIMATION AND VALUATION											
Sub	ject	Name)	COS	ΓΕSTIMATIO	ON ANI	D VALU	ATION	N						
Sub	ject	Code		XCE	703										
	L	Т	Р	С		С	Р	Α]		L	Т	Р	Η	
	3	1	1	5		2	0.5	0.5			3	2	2	7	
	rse (ble t		me: A	After t	he completion	of the co	ourse, st	vill	Doma C or P o			L	evel		
CO		Unde proje		d and	l test the conc	ept of "	f a	Cognitive			Understand				
CO2	2	Unde	rstan	d the	principles and 1	nethods	of meas	urement	ts	Cognitive		Applying			
CO3	3	Unde	rstan	d the	methodology o	f pricing	g and to	determi	ine	Cognitive			App	lying	
		the u	nit co	st of '	'components"					Psychomo	otor	ľ	Manip	oulatio	n
CO4	4	Learr	ning f	from I	aboratory dem.	onstratio	eld visit	ts	Cognitive		Understa			ł	
										Psychomo	otor	ľ	Manip	oulatio	n
CO	5	Prepa	re th	e actu	al estimate of a	ny prop	erty/proj	ect	ct Cognitive Une				Unde	erstanc	1
										Affective			Resp	onding	g

UNIT I	ESTIMATION OF BUILDINGS 20
	Process of estimating - Construction activities and sequence – Units of measurements – Methods of estimating – Calculation of quantities of brick work, PCC, RCC, wood work, plastering, white washing, colour washing, painting, varnishing etc., relating to residential and non-residential multi- storeyed buildings.
UNIT II	ESTIMATION OF OTHER STRUCTURES 20
	Estimation of services – Sanitary and water supply installations –Estimation of other structures – Bituminous and cement concrete roads –Irrigation works - Retaining walls and culverts – Steel structures.
UNIT III	SPECIFICATION 10
	Specifications – Sources – Detailed and general specifications – Introduction of estimation software.
UNIT IV	RATE ANALYSIS15
	Analysis of rates using standard data and schedule of rates for conventional items – Principles of pricing of new items.
UNIT V	VALUATION 10
	Necessity – Basics of valuation – Capitalized value – Depreciation – Escalation – Value of property – Calculation of Standard rent – Report preparation.
PRACTICA	AL 30
1. Buil	ding marking
2. Estin	mation using Spread Sheet
	L T P Total
	45 30 30 105

TEXT BOOKS

- 1. Dutta, B.N., "Estimating and Costing in Civil Engineering Theory and Practice", UBS Publishers & Distributors Pvt. Ltd., New Delhi, 2010.
- 2. Kohli, D.D and Kohli, R.C., "A Text Book of Estimating and Costing (Civil)", S.Chand& Company Ltd., New Delhi, 2004
- 3. M.Chakraborty,"Estimating,Costing, Specification and Valuation in Civil Engineering",Kolkata,1997.

REFERENCES

- 1. Birdie.G.S., "A Text Book on Estimating and Costing", DhanpatRai and Sons, New Delhi, 2000
- 2. Rangwala. S.C., "Elements of Estimating and Costing", Charotar Publishing House, Anand, 2011
- 3. IS 1200-1974, Parts 1-25, Methods of Measurements of Building and Civil Engineering works Bureau of Indian Standards, New Delhi.
- 4. Standard Data Books and Schedule of rates of Central and State Public Works Departments.

Mapping of CO with PO'S

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	2				1	2				2				
CO 2	2				2	3				3				
CO 3	2				3			1			3	3	1	
CO 4	2			2	3			1	3				1	
CO 5	2			2			2	1		2	3	3	1	3
	10			4	9	5	2	3	3	7	6	6	3	3

1 - Low, 2 – Medium, 3 – High

Sem	lester	r		VII									
Sub	ject I	Name	;	PRI	ESTRESSED C	ONCRE	TE STI	RUCTU	RES				
Sub	ject (Code		XCI	E 704A								
Pre	requi	isite		DES	SIGN OF CON	CRETE	STRUC	CTURES	5				
	L	Т	Р	C		C	Р	А		L	Т	Р	H
	3	0	0	3		2.0	0.5	0.5		3	0	0	3
	rse C ble to		ne: A	After	the completion	vill Dom C or P		Level					
CO 2			•		pply the applicate design of prest		•	U	U	ve		Knov	vledg
CO	2	Discu	iss a	nd	appraise the	recent	advance	es in t	he Cognitiv	ve		Ana	alysis
		-			oncrete technolo erials and application		I SVCHUL	notor	2				
CO.	advanced materials and application of new technologiesCO3Accomplish design calculations to predict serviceAffectibehavior of prestressed concrete structuresAffecti											Resj	ponse

UNIT I	INTRODUCTION – THEORY AND BEHAVIOUR 9												
	Basic concepts – Advantages – Materials required – Systems and methods of prestressing –Analysis of sections – Stress concept – Strength concept – Load balancing concept – Effect of loading on the tensile stresses in tendons – Effect of tendon profile on deflections – Factors influencing deflections – Calculation of deflections – Short term and long term deflections –Losses of prestress – Estimation of crack width.												
UNIT II	DESIGN CONCEPTS 9												
	Flexural strength – Simplified procedures as per codes – Strain compatibility method – Basic concepts in selection of cross section for bending – Stress distribution in end block- Design of anchorage zone reinforcement – Limit state design criteria – Partial prestressing – Applications.												
UNIT III	CIRCULAR PRESTRESSING 9												
	Prestressed Concrete Pipes- Advantages ,Loads –Codal Provisions-Design of cylinder and non cylinderPipes.Prestressed Concrete Tanks-Choice of types of tanks.												
UNIT IV	COMPOSITE CONSTRUCTION 9												
	Types of composite Construction - Analysis of stresses – Differential Shrinkage Estimation of Deflection Flexural and shear strength of composite members.												
UNIT V	PRE-STRESSED CONCRETE BRIDGES 9												
	General aspects – Pretensioned prestressed bridge decks – Post tensioned prestressed bridge decks – Principles of design only.												
	L T P Total												
	45 0 0 45												
TEXT BOO	OKS												

TEXT BOOKS

- 1. Krishna Raju. N, Prestressed Concrete, Tata McGraw Hill Publishing Co. Ltd, New Dehi, 2012
- 2. Fundamentals of Prestressed Concrete by N.C.Sinha&S.K.Roy, S.Chand&Co,New Delhi,2011
- 3. Pandit.G.S. and Gupta.S.P., "Prestressed Concrete", CBS Publishers and Distributers Pvt. Ltd, 2012.
- 4. Libby J.R., Modern Prestressed Concrete, 3e, CBS Publishers & Distributors, New Delhi, 2007
- 5. Mallic S.K. and Gupta A.P., Prestressed concrete, Oxford and IBH publishing Co. Pvt. Ltd.2007.
- 6. Rajagopalan, N, "Prestressed Concrete", Alpha Science, 2002

REFERENCES

- 1. Lin T.Y. and Ned.H.Burns, "Design of prestressed Concrete Structures", Third Edition, Wiley India Pvt. Ltd., New Delhi, 2013.
- 2. Ramaswamy G.S., Modern prestressed concrete design, Arnold Heinimen, New Delhi, 1990
- 3. David A.Sheppard, William R. and Philips, Plant Cast precast and prestressed concrete A design guide, McGraw Hill, New Delhi 1992
- 4. IS1343:1980, Code of Practice for Prestressed Concrete, Bureau of Indian Standards, New Delhi, 2012
- 5. IS 3370-3 (1967): Code of Practice Concrete structures for the storage of liquids, Part 3: Prestressed concrete structures, Bureau of Indian Standards, New Delhi, 2008
- 6. IS 3370-4 (1967): Code of practice for concrete structures for the storage of liquids, Part 4: Design tables, Bureau of Indian Standards, New Delhi, 2008

Mapping of CO with PO'S

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	1	2	1		1	1	1	1		2	1	1	2	4
CO 2	1		2	1	1	1	1	1		1		2	1	3
CO 3	2	2	3	1	1	2		1					2	1
	4	4	6	2	3	4	2	3		3	1	3	5	8

1 - Low, 2 – Medium, 3 – High

Sem	este	r	ŗ	VII											
Sub	ject]	Name		SOLI	D AND HAZA	ARDOU	S WAS	TE MA	NA	GEMENT					
Sub	ject	Code		XCE7	705D										
Prei	requi	isite]	Envir	onmental Eng	gineering	g								
	L	Т	Р	С		С	Р	A]		L	Т	Р	Η	
	3	0	0	3		2	0	1			3	0	0	3	
	rse (ble to		ne: A	fter tl	he completion of	of the co	udents w	vill	Doma C or P o			Le	evel	,	
C O 1										Cognitive			Unde	erstan	d
		Solid and Hazardous waste								Affective		Respond			
CO2		Expla mana			tional elements	s for soli	id waste			Cognitive		Understand			
CO3			•	ne methods of collection, segregation and of solid and Hazardous waste						Cognitive		F	Remei	nberi	n
CO4	4	Unde	rstand	d the	techniques and	in ener	gy	Cognitive		Understand					
		recovery and recovery of materials from solid wastes								Affective			Res	pond	
CO	5	Desc	ribe 1	methods of disposal of solid and hazardous						Cognitive		Understand			
	waste.									Affective			Res	ponse	;

COURSE CONTENT

UNIT I SOURCES, CLASSIFICATION AND REGULATORY FRAMEWORK

Types and Sources of solid wastes - Need for solid waste management – Elements of integrated waste management and roles of stakeholders - Salient features of Indian legislations on management and handling of municipal solid wastes , hazardous wastes, biomedical wastes, E-wastes, Lead Acid batteries, plastics and fly ash - Financing waste management.

UNIT II WASTE CHARACTERIZATION AND SOURCE REDUCTION

Waste generation rates and variation - Composition, physical, chemical and biological properties of solid wastes –Hazardous characteristics - TCLP tests – waste sampling and characterization plan - Source reduction of wastes –Waste exchange - Extended producer responsibility - Recycling and reuse.

UNIT III STORAGE, COLLECTION AND TRANSPORT OF WASTES

Handling and segregation of wastes at source – storage and collection of municipal solid wastes – Analysis of Collection systems - Need for transfer and transport – Transfer

9

stations Optimizing waste allocation –compatibility, storage, labeling and handling and Transport of hazardous wastes.

UNIT IV WASTE PROCESSING TECHNOLOGIES

Course Objectives: of waste processing – material separation and processing technologies – biological and chemical conversion technologies – methods and controls of Composting - thermal conversion technologies and energy recovery – incineration- solidification and stabilization of hazardous wastes – bio medical waste treatment.

UNIT V WASTE DISPOSAL

Waste disposal options – Disposal in landfills - Landfill Classification, types and methods – site selection - design and operation of sanitary landfills, secure landfills and landfill bioreactors – leachate and landfill gas management – landfill closure and environmental monitoring – Rehabilitation of open dumps – landfill remediation

	L	Т	Р	Total
	45	0	0	45
TEXT BOOKS				

1. George Tchobanoglous, Hilary Theisen and Samuel A, Vigil, "Integrated Solid Waste Management, Mc-Graw Hill International edition, New York, 1993.

 Michael D. LaGrega, Philip L Buckingham, Jeffrey C. E vans and Environmental Resources Management, Hazardous waste Management, Mc-Graw Hill International edition, New York, 2001

REFERENCES

- 1. CPHEEO, "Manual on Municipal Solid waste management, Central Public Health and Environmental Engineering Organization, Government of India, New Delhi, 2000.
- 2. Vesilind P.A., Worrell W and Reinhart, Solid waste Engineering, Thomson Learning Inc., Singapore, 2002.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	2	2		1								1	2	1
CO 2	2	2	1	1								2	3	2
CO 3	1	3	1			1	1			1		1	2	3
CO 4	2	2	3	2		1							1	3
CO 5	2	1	3	1								2	1	2
	9	10	8	5		2	1			1		6	9	11

Mapping of CO with PO'S

1 - Low, 2 – Medium, 3 – High

9

Semest			VII			6 7												
Subjec Subjec	t Name t Code		CYB. XUM	ER SECU. 706	KII	Ŷ												
L	, T	Р	C		ſ	С	Р	A			L	Т	Р	Н				
0	0	0	0			3	0	0			3	0	0	3				
Course be able														Level				
CO1	To learn the basic concepts of networks and cyber- Cognitive attacks.												Understand					
CO2	To default the			oncepts of g tools	syst	em vuli	nerabilit	y scanni	ng	Cognitive			Unde	erstan				
CO3				he networ ect and qu			he	Cognitive			Unde	erstan						
CO4	To lear	n th	e diff	erent tools	for s		Cognitive			Unde	erstan							
CO5	To identify the types of cybercrimes, cyber laws and Cognitive Under cyber-crime investigations.									erstan								

UNIT I INTRODUCTION

History of Information Systems and its Importance, Basics, Changing Nature of Information Systems, Need for Distributed Information Systems: Role of Internet and Web Services. Information System Treats and attacks, Classification of Threats and assessing Damages Security in mobile and Wireless Computing-Security Challenges in Mobile Devices, authentication service Security, Security Implication for Organizations, Laptops security Concepts in Internet and World Wide Web: Brief review of Internet Protocols TCP/IP, IPV4, and IPV6. Functions of various networking components-routers, bridges, switches, hub, gateway and Modulation Techniques.

UNIT II SYSTEMS VULNERABILITY SCANNING

Overview of vulnerability scanning, Open Port / Service Identification, Banner / Version check, Traffic Probe, Vulnerability Probe, Vulnerability Examples, OpenVAS, Metasploit. Networks Vulnerability Scanning - Netcat, Socat, understanding Port and Services tools - Datapipe, Fpipe, WinRelay, Network Reconnaissance – Nmap, THC-Amap and System tools. Network Sniffers and Injection tools – Tcpdump and Windump, Wireshark, Ettercap, Hping Kismet.

UNIT III NETWORK DEFENCE TOOLS

Firewalls and Packet Filters: Firewall Basics, Packet Filter Vs Firewall, How a Firewall Protects a Network, Packet Characteristic to Filter, Stateless VsStateful Firewalls, Network Address Translation (NAT) and Port Forwarding, the basic of Virtual Private Networks, Linux Firewall, Windows Firewall, Snort: Introduction Detection System, Cryptool.

UNIT IV TOOLS FOR SCANNING

Scanning for web vulnerabilities tools: Metasploittool,Nikto, W3af, HTTP utilities - Curl, OpenSSL and Stunnel, Application Inspection tools – Zed Attack Proxy, Sqlmap. DVWA, Webgoat, Password Cracking and Brute-Force Tools – John the Ripper, L0htcrack, Pwdump, THC-Hydra.

UNIT V INTRODUCTION TO CYBER CRIME AND LAW

9

9

9

9

Cyber Crimes, Types of Cybercrime, Hacking, Attack vectors, Cyberspace and Criminal Behavior, Clarification of Terms, Traditional Problems Associated with Computer Crime, Introduction to Incident Response, Digital Forensics, Computer Language, Network Language, Realms of the Cyber world, A Brief History of the Internet, Recognizing and Defining Computer Crime, Contemporary Crimes, Computers as Targets, Contaminants and Destruction of Data, Indian IT ACT 2000,Introduction to Cyber Crime Investigation:Password Cracking, Key loggers and Spyware, Virus and Worms, Trojan and backdoors, Steganography, DOS and DDOS attack, SQL injection, Buffer Overflow, Attack on wireless Networks.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- Nina Godbole, "Information Systems Security: Security Management, Metrics, Frameworks and Best Practices, w/cd", Wiley Publications, 2008, ISBN 10: 8126516925, ISBN 13 :9788126516926
- Thomas J. Mowbray, "Cybersecurity: Managing Systems, Conducting Testing and Investigating Intrusions", Wiley Publications, 2013, Kindle Edition, ISBN 10: 812654919X, ISBN 13 :9788126549191
- 3. D.S. Yadav, "Foundations of Information Technology", New Age International publishers, 3rd Edition, 2006, ISBN-10: 8122417620, ISBN-13: 978-8122417623

REFERENCES

- 1. Mike Shema, "Anti-Hacker Tool Kit", McGraw Hill Education, 4th edition, 2014,
- 2. Nina Godbole, SunitBelapure, "Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Wileypublications, 2013, ISBN 10 : 8126521791, ISBN 13:9788126521791.
- 3. Corey Schou, Daniel Shoemaker, "Information Assurance for the Enterprise: A Roadmap to Information Security (McGraw-Hill Information Assurance & Security)",
- 4. Tata McGraw Hill, 2013, ISBN-10: 0072255242, ISBN-13: 978-0072255249.
- VivekSood, "Cyber Laws Simplified", McGraw Hill Education (INDIA) Private Limited in 2001, ISBN-10: 0070435065, ISBN-13: 978-0070435063.Steven M.Furnell, "Computer Insecurity", Springer Publisher, 2005 Edition.

E- RESOURCES

- 1. https://www.cryptool.org/en/
- 2. https://www.metasploit.com/
- 3. http://sectools.org/tool/hydra/
- 4. http://www.hping.org/
- 5. http://www.winpcap.org/windump/install/
- 6. http://www.tcpdump.org/
- 7. https://www.wireshark.org/
- 8. https://ettercap.github.io/ettercap/
- 9. https://www.concise-courses.com/hacking-tools/top-ten/
- 10. https://www.cirt.net/Nikto2
- 11. http://sqlmap.org/

Mapping of CO with GA's

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3	3	3	2	1	1	1	1	1			1
CO 2	2	1	1	1	1	1	1	1	1			1
CO 3	2	2	2	1	1	1	1	1	1			1
CO 4	1	1	1	1								1
CO 5	1	1	1	2	2	1	1	2	2			1
	9	8	8	7	5	4	4	5	5	0	0	5

1 - Low, 2 – Medium, 3 – High

Semest	er	ŗ	VII												
Subject	t Name]	PRO.	ECT PHA	SE I										
Subject	t Code		XCE	707											
L	Т	Р	C		С	Р	Α			L	Т	Р	Η		
0	0	2	2		1.5	0.5	1.0			0	0	2	4		
		ne: A	fter ti	he completi	on of the co	ourse, s	tudent	s will	Doma	in		Le	evel		
be able	be able to C or P or A														
CO1	interest.														
CO2	Interp	ret ar	nd inf	er literature		Cognitive	•	Analyse &							
											Apply				
CO3	Analy the pr			ntify an ap	propriate to	echniqu	e for	solve	Cognitive	•	An	alyze	& A]	ppl	
CO4			-	mentation			ogram	ming	Cognitive	•	C	Create	e, App	oly	
	/Fabri	catio	n, Co	lect and int	erpret data.				Psychom	otor		Prec	cision		
CO5	Recor	d and	l repo	rt the techni	ical finding	ent.	Cognitive	•			mber erstan				
CO6				is a respons to manage p		er and o	display	isplay as a Cognitive				Create & Organization			
									Affective			Val	luing		
CO7	Respo	ondin	g of p	roject findii	ngs among	nnocra	s.	Affective Responding				g			

Mapping of CO with GA's

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3	3				1	1	1				1
CO 2	2	2		1		1						
CO 3	1	1	1	2	2	1	1	1				
CO 4	2	2	3	3	3	1	1	1				
CO 5	1	1	1	1	1				2	3	2	3
CO 6				2		3	1	3	3	3	2	3
CO 7	1	1		2		3			1	3	2	1
	10	10	5	11	6	10	4	6	6	9	6	8

1 – Low, 2 – Medium, 3 – High

Sen	leste	r	1	VII										
Sub	ject]	Name	e (CAR	EER DEVELO)PMEN	T SKII	LLS						
Sub	ject	Code]	XGS	708									
	L	Т	Р	С		С	Р	Α			L	Т	Р	Н
	0	0	0	0		1.8	0.8	0.4			0	0	0	1
Cou	Course Outcome: After the completion of the course, students will Domain Level													
be a	ble to)								C or P o	r A			
CO	1	Know	ledge	e on	a career rela	ated co	mmunic	ation a	ind (Cognitive			Ap	oply
		learni	ng th	e diff	erent formats o	f CV								
CO	2	Prepare how to face an interview and to learn how to Psychomotor Set							Set					
	prepare for an interview													
CO														

UNIT I	CV WRITING 10
	CV Writing; difference between resume and CV; characteristics of resume and CV; basic elements of CV and resume, use of graphics in resume and CV; forms and functions of Cover Letters.
UNIT II	TECHNICAL SKILLS 10
	Interview skills; tips for various types of interviews. Types of questions asked; body language, etiquette and dress code in interview, interview mistakes, and telephonic interview, frequently asked questions. Planning for the interview.
UNIT III	WORKSHOP 10
	Mock interviews - workshop on CV writing - Group Discussion.
	L T P Total
	20 0 10 30

TEXT BOOKS

- 1. Paul McGee, How To Write a CV That Really Works: A Concise, Clear and Comprehensive Guide to Writing an Effective CV, Hachette UK, 2014
- 2. Mary Ellen Guffey, Dana Loewy Essentials of Business Communication, Cengage Learning, 2012
- 3. Michael Spiropoulos, Interview Skills that win the job: Simple techniques for answering all the tough questions, Allen &Unwin, 2005
- 4. William L. Fleisher, Effective Interviewing and Interrogation Techniques, Nathan J. Gordon, Academic Press, 2010.

E- RESOURCES

- 1. http://www.utsa.edu/careercenter/PDFs/Interviewing/Types%20of%20Interviews.pdf
- 2. http://www.amu.apus.edu/career-services/interviewing/types.htm
- 3. http://www.careerthinker.com/interviewing/types-of-interview/

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	1				1	2	2					
CO 2	1		2	2			2				2	2
CO 3	1	2			2	2			2			
	3	2	2	2	3	4	4		2		2	2

Mapping of CO with GA's

VII

Subject Name IN-PLANT TRAINING-III

Semester

Subject Code XCE 708

L	Т	Р	C		С	Р	A		
0	0	0	1		2	2	2		
rse O		ne: A	fter t	ne completion of	the coi	urse, si	tudents	s will	Domo

L	Т	Р	Η
0	0	0	0

	Outcome: After the completion of the course, students will	Domain	Level
be able	to	C or P or A	
CO1	Relate classroom theory with workplace practice	Cognitive	Understand
CO2	Comply with Factory discipline, management and business practices.	Affective	Response
CO3	Demonstrates teamwork and time management.	Affective	Value
CO4	Describe and display hands-on experience on practical skills obtained during the programme.	Psychomotor	Perception & Set
CO5	Summarize the tasks and activities done by technical	Cognitive	Evaluate

CO5 Summarize the tasks and activities done by technical Cognitive Evaluate documents and oral presentations.

Mapping of CO with GA's

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	2											
CO 2							1	3			1	
CO 3									3	1	3	1
CO 4		1	2	1	3							3
CO 5				3						3		1
	2	1	2	4	3		1	3	3	4	4	5

Sub	•	r Name Code	, .		FABRICATED 802 A) STRU	CTURI	ES						
Prei	equi	isite	i	Struc	tural Analysis									
	L	Т	Р	C		С	Р	Α		L	Т	Р	Н	
·	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
	Course Outcome: After the completion of the course, students will Domain Level be able to C or P or A													
CO 1	l	Gain	know	ledge	on prefabrication	ion of st	ructures	•	Cognitive	;		Unde	erstan	
CO2	2	Identi	fy th	e com	ponents of prefabricated structures. Cognitive Affective						Understand Respond			
CO3 Design the structures based on prefabrication elements. Cognitive Remembering														
CO4	1	Hand	le the	e prefa	bricated structu	ures in t	he field.		Cognitive	:		Unde	erstan	

COURSE CONTENT

UNIT I INTRODUCTION – PREFABRICATED STRUCTURES

General Civil Engineering requirements in the prefabrication techniques – material used in prefabrication - Modular co-ordination, standardization, Disuniting, of Prefabricates, production, transportation, erection.

UNIT II PREFABRICATED COMPONENTS

Prefabricated structures - Long wall and cross-wall large panel buildings - one way and two way prefabricated slabs, Framed buildings with partial and curtain walls, - columns – shear wall.

UNIT III DESIGN PRINCIPLES

Loading criteria - Disuniting of structures- Design of cross section based on efficiency of material used –Problems in design because of joint flexibility – Allowance for joint deformation – Code books used in practice.

UNIT IV DESIGN OF JOINTS

Joints for different structural connections – Dimensions and detailing – Design of expansionjoints.

UNIT V DESIGN OF INDUSTRIAL BUILDINGS

Components of single-storey industrial sheds with crane gantry systems, Design of R.C. Roof Trusses, Roof Panels, Design of R.C. crane - gantry girders, corbels and columns, wind bracing design-case study of industries. Case study in prefabrication industries.

L	Т	Р	Total
45	0	0	45

9

9

9

9

TEXT BOOKS

- 1. Hubert Bachmann, Alfred Steinle, "Precast Concrete Construction", Wiley-vchVerlag Gmbh, 2011.
- 2. WaiKwong Lau, Building Construction with Precast Concrete Structural Elements, Lap Lambert Academic Publishing, 2011.

REFERENCES

- 1. B.Lewicki, "Building with Large Prefabricates", Elsevier Publishing Company, New York, 2009.
- 2. Kim Elliott, "Precast Concrete Structures", Spons Architecture Price Book, April, 2012.
- 3. Benjamin Pavlich, "Evaluation of Prefabricated Composite Steel Box Girder Systems for Rapid Bridge Construction", Proquest, Umi Dissertation Publishing, 2011.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	2	2	3	1							2		1	3
CO 2		3	1	1	1	1					1	1	2	1
CO 3			3	2	1				1	1	1	1	2	3
CO 4	2	2		1	1	2			1	1	1	1	2	2
CO 5														
	4	7	7	5	3	3			2	2	5	3	7	9

Mapping of CO with PO'S

1 - Low, 2 – Medium, 3 – High

	nester			VIII										
	•	Name				EGIONAL	PLAN	NING –	FUTURE TH	REND	S			
	•	Code		XCE	803B									
Pre	requi	isite]	NIL				T						
	L	Т	Р	С		С	Р	A		L	Т	Р	Η	
	3	0	0	3		2	1	0		3	0	0	3	
	rse (ble to		me: A	After t	he completion	on of the co	ourse, st	udents w	vill Doma C or P			Le	evel	
CO					rviceable f g – future tr		ls for	urban a	nd Cognitive	e		Unde	rstand	ł
CO		Distir devel	0		e rural a	and urbar	n conc	cepts a	nd Psychon	notor		Aŗ	ply	
CO.					nethods of g tation.	athering a	nd gene	rating ne	ew Cognitive	e		Unde	rstand	d
CO		Plann	ing C	Conce	techniques a pts and Rol nning.				-	9		Know	vledge	e
CO	URS	E CO	NTE	NT										
UN	IT I]	INTF	RODI	JCTION TO	O LAND U	SE PLA	ANNIN	G AND PRIN	CIPL	ES			9
					-		-	-	ng principles- r supply and s		-			
UN	IT II]	MOE	DERN	PLANNIN	G CONCI	EPTS							9
		1	radiar	nt city	and linear	city concep	<mark>pts-</mark> deve	lopment	n-need of mod of new towns development.					
UN	T II	[]	FUT	URE	TRANSPO	RTATION	AND S	SOCIAL	LIFE IN CI	ΓIES				9
					ment strate; t <mark>ransport</mark> -Fu				future city-ne mmunities.	ew tra	anspo	rt teo	chnolo	ogy-
UN	IT IV	7]	ROL	E OF	INFORMA	ATION TE	CHNO	LOGY	IN REGIONA	L PI	ANN	ING		9
		ä	analy	sis-M	odelling wi	ith softwar	e-simul	ated city	nd use-suitab y-decision su hrough softwa	pport				
UN	T V	I	URB.	AN U	TOPIA									9
					es-Undergro arks- Skyscr			ng cities	- Under Wate	r citie	es- Vi	isiona	ry ci	ties-
										L	Т	Р	To	otal
									-	45	0	0	4	15
TE	хт в	OOK	S							1		1	1	

- 1. Clements D, Donald A , Earnshaw M and Williams A The Future of Community, Pluto Press, London, 2013
- 2. Boeri S, BiswasRK . Future City, Routledge, New York, 2012
- 3. Richards B, Future Transport in Cities, Spon Press, London, 2013

REFERENCES

- 1. Read S, Rosemann J and Dldijk J V Future City, Spon Press New York, 2012
- 2. Wagner CG, Seeing through Future New Eyes, 2012
- 3. Gallian.B. Arthur and Simon Eisner, the urban pattern-City Planning and Design,Affiliated Press PvtLtd,New Delhi,2010

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 0	PO11	PO 2	PSO1	PSO2
CO 1	1													
CO 2	1	2			2							1	1	1
CO 3	2		3				2			1	1	1	1	1
CO 4	2	1			1		1			1	1	1	1	1
	6	3	3		3	2	3			2	2	3	3	3

Mapping of CO with PO'S

1 - Low, 2 – Medium, 3 – High

Sem	ester	•	٦	VII											
		Name			ECT PHAS	EII									
Subj	ject (Code	2	XCE	804										
[L	Т	Р	С		С	Р	Α			L	Т	Р	Н	
	0	0	12	12		6	3	3			0	0	12	24	
Cou be a			ne: A	fter ti	he completion	of the cou	s will	Domain or P or	C	E Level					
COI		Identify the engineering problem relevant to the domain Cognitive Analyse interest.													
CO2	2	Interp		Analyse & Apply											
CO3		Analy the pr			ntify an appr	opriate tec	chniqu	e for	solve	Cognitive		An	alyze	& Aj	pp
CO4					mentation /		n /Pr	ogram	ming	Cognitive Psychomo		(e, App cision	•
COS	5	Recor	d and	l repo	rt the technica	l findings	as a d	ocume	nt.	Cognitive		Ι		mber erstan	
CO		Devote oneself as a responsible member and display as a Cognitiv leader in a team to manage projects. Affective											Orgar	ate & nizatic luing	
CO7		Respo	onding	g of p	roject finding	s among th	ne tech	inocrat	s.	Affective			Resp	ondin	g

Mapping of CO with GA's

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3	3				1	1	1				1
CO 2	2	2		1		1						
CO 3	1	1	1	2	2	1	1	1				
CO 4	2	2	3	3	3	1	1	1				
CO 5	1	1	1	1	1				2	3	2	3
CO 6				2		3	1	3	3	3	2	3
CO 7	1	1		2		3			1	3	2	1
	10	10	5	11	6	10	4	6	6	9	6	8

1 - Low, 2 – Medium, 3 – High

Seme	ester		:	II										
Cour	se Cod	e	:	XC	E 305									
Cour	se Nan	ıe	:	ENI	ERGY SCIEN	CE AN	D ENG	GINEERI	ING					
Prer	equisite	e	:											
	L	Т	Р	С		С	Р	Α		L	Т	Р	Н	
	1	1	0	2		1.5	0	1.5	-	3	1	0	4	

Domain

C or P or A

Level

4

Course Outcome: After the completion of the course, students will be able to

CO1	<i>List</i> and generally <i>explain</i> the main sources of energy and their primary applications nationally and internationally	Cognitive Affective	Understand Respond
CO2	<i>Understand</i> effect of using these sources on the environment and climate	Cognitive	Understand
CO3	<i>Describe</i> the challenges and problems associated with the use of various energy sources, including fossil fuels, with regard to future supply and the impact on the environment.	Cognitive	Understand
CO4	<i>List</i> and describe the primary renewable energy resources and technologies.	Cognitive	Understand
CO5	<i>Quantify</i> energy demands and make comparisons among energy uses, resources, and technologies.	Cognitive Affective	Understand Respond

CO6 *Understand* the Engineering involved in projects Cognitive Understand utilizing these sources

COURSE CONTENT

UNIT I INTRODUCTION TO ENERGY SCIENCE

Scientific principles and historical interpretation to place energy use in the context of pressing societal, environmental and climate issues; Introduction to energy systems and resources; Introduction to Energy, sustainability & the environment

UNIT II ENERGY SOURCES

Overview of energy systems, sources, transformations, efficiency, and storage. Fossil fuels (coal, oil, oil-bearing shale and sands, coal gasification) - past, present & future, Remedies & alternatives for fossil fuels - biomass, wind, solar, nuclear, wave, tidal and hydrogen; Sustainability and environmental trade-offs of different energy systems; possibilities for energy storage or regeneration (Ex. Pumped storage hydro power projects, superconductor-based energy storages, high efficiency batteries)

UNIT III ENERGY AND ENVIRONMENT

Energy efficiency and conservation; introduction to clean energy technologies and its importance in sustainable development; Carbon footprint, energy consumption and sustainability; introduction to the economics of energy; How the economic system determines production and consumption; linkages between economic and environmental outcomes; How future energy use can be influenced by economic, environmental, trade, and research policy

UNIT IV CIVIL ENGINEERING PROJECTS

Coal mining technologies, Oil exploration offshore platforms, Underground and under-sea oil pipelines, solar chimney project, wave energy caissons, coastal installations for tidal power, wind mill towers; hydro power stations above-ground and underground along with associated dams, tunnels, penstocks, etc.; Nuclear reactor containment buildings and associated buildings, design and construction constraints and testing procedures for reactor containment buildings; Spent Nuclear fuel storage and disposal systems

UNIT V ENGINEERINGFOR ENERGY CONSERVATION

Concept of Green Building and Green Architecture; Green building concepts (Green building encompasses everything from the choice of building materials to where a building is located, how it is designed and operated); LEED ratings; Identification of energy related enterprises that represent the breath of the industry and prioritizing these as candidates; Embodied energy analysis and use as a tool for measuring sustainability. Energy Audit of Facilities and optimization of energy consumption

L	Т	Р	Total
45	15	0	60

TEXT BOOKS

- 1. Boyle, Godfrey (2004), Renewable Energy (2nd edition). Oxford University Press
- 2. Boyle, Godfrey, Bob Everett, and Janet Ramage (Eds.) (2004), Energy Systems and Sustainability: Power for a Sustainable Future. Oxford University Press
- 3. Schaeffer, John (2007), Real Goods Solar Living Sourcebook: The Complete Guide to Renewable Energy Technologies and Sustainable Living, Gaiam
- 4. Jean-Philippe; Zaccour, Georges (Eds.), (2005), Energy and Environment Set: Mathematics of Decision Making, Loulou, Richard; Waaub, XVIII,
- 5. Ristinen, Robert A. Kraushaar, Jack J. AKraushaar, Jack P. Ristinen, Robert A. (2006) Energy and the Environment, 2nd Edition, John Wiley

REFERENCE BOOKS

- 1. UNDP (2000), Energy and the Challenge of Sustainability, World Energy assessment
- 2. E H Thorndike (1976), Energy & Environment: A Primer for Scientists and Engineers, Addison-Wesley Publishing Company

5

6

10

Mapping of CO with PO's

map																	
			P01		P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1			3		2	1	1	1		1	2	2	1	2	1	2	2
CO 2			3			3	2		1		2	2	1	3	1	2	2
CO 3			3		2	1		2	2	1	3	2	1	1	2	2	2
CO 4			2		3	2	1				2	2	1	2	1	2	2
CO 5			3		2		2	1	2		1	2	1	1	1	2	2
CO6					3	2	1		1	2	1	2	1	2	2	2	2
Total			14		12	9	7	4	6	4	11	12	6	11	8	12	12
Scale	d V	alue	3		3	2	2	1	2	1	3	3	2	3	2	3	3
Total 0 1-5 6-10 11-15 Scaled value 0 1 2 3																	
Scaled value 0 1 2 3																	
	Scaled value0125RelationNoLowMediumHigh																
	se	Code Name iisite	•	: : :	XCE INTI		CTIO	ON TO	CIVII	L ENG	INEE	RING	3				
Γ	L	Т	Р	С				C	Р	A				LT	Р	H	
-	2	0	0	2	_			2	0	0	_		-	2 0	0	2	
Cour, able i		Outco	me: Ą		the co	omplet	ion oj	the co	ourse, s		s will	be	Dom C or l	nain P or A		Leve	el
CO1					e basis nethods		nginee	ering, I	Buildin	g mate	erial a	ind (Cognit	ive	Une	dersta	nding
CO2								of arch ngineei		e, con	structi	on (Cognit	ive	Une	dersta	nding
CO3			rstand y syste		e advai	ncemer	nt of	water &	k waste	e water	syste	em, (Cognit	ive	Une	dersta	nding
CO4					e use o on syst		eying	equipn	nent an	id adva	nceme	ent (Cognit	ive	Une	dersta	nding
CO5			a deta eering		d stuc	ly of	comp	outatior	nal me	thods	in ci	vil (Cognit	ive	Une	dersta	nding
COU	RS	E CO	NTE	NT													

UNIT I Importance of Civil Engineering and Materials

Basic Understanding: Basics of Engineering and Civil Engineering; Broad disciplines of Civil Engineering; Importance of Civil Engineering, Possible scopes for a career, Professional ethics.

5

History of Civil engineering: Early constructions and developments over time; Ancient monuments & Modern marvels; Development of various materials of construction and methods of construction; Industrial lectures and Case studies

Overview of National Planning for Construction and Infrastructure Development: Position of construction industry vis-à-vis other industries, five year plan outlays for

construction; current budgets for infrastructure works

Materials and methods of constructions: Stones, bricks, mortars, Plain, Reinforced &Prestressed Concrete, Construction Chemicals; Structural Steel, High Tensile Steel, Composites; Plastics

UNIT II Introduction of Architecture, Environmental and Management Studies

Fundamentals of Architecture & Town Planning: Aesthetics in Civil Engineering, Examples of great architecture, fundamentals of architectural design & town planning; Building Services; Green Buildings; Development of Smart cities

Basics of Construction Management: Temporary Structures in Construction; Construction Methods for various types of Structures; Major Construction equipment; Automation & Robotics in Construction; Modern Project management Systems; Advent of Lean Construction; Importance of Contracts Management

Environmental Engineering & Sustainability: Water treatment systems; Effluent treatment systems; Solid waste management; Recycling and Sustainability in Construction; Repairs and rehabilitation of structures

UNIT III Introduction of Geotechnical, Water resource and Ocean Engineering

Geotechnical Engineering: Basics of soil mechanics, rock mechanics and geology; various types of foundations; basics of rock mechanics &tunneling

Hydraulics, Hydrology & Water Resources Engineering: Fundamentals of fluid flow, basics of water supply systems; Underground Structures; Multipurpose reservoir projects

Ocean Engineering: Basics of Wave and Current Systems; Sediment transport systems; Ports & Harbors and other marine structures

UNIT IV Introduction of Structural Engineering, Transportation Engineering and Remote Sensing

Structural Engineering: Types of buildings; tall structures; various types of bridges; Water retaining structures; Other structural systems; Experimental Stress Analysis; Power plant structures;

Traffic & Transportation Engineering: Investments in transport infrastructure development in India for different modes of transport; Developments and challenges in integrated transport development in India: road, rail, port and harbor and airport sector; PPP in transport sector; Intelligent Transport Systems; Urban Public and Freight Transportation; Road Safety under heterogeneous traffic; Sustainable and resilient pavement materials, design, construction and management;

Surveying & Geomatics: Traditional surveying techniques, Total Stations, Development of Digital Terrain Models; GPS, LIDAR

UNIT V Computational Methods in Civil Engineering

Computational Methods, IT in Civil Engineering: Typical software used in Civil Engineering- Finite Element Method, Computational Fluid Dynamics; Computational Geotechnical Methods; highway design (MX), Building Information Modeling; Highlighting typical available software systems (SAP, STAAD, ABAQUS, MATLAB, ETAB, NASTRAN, NISA, MIKE 21, MODFLOW, REVIT, TEKLA, AUTOCAD,...GEOSTUDIO, EDUSHAKE, MSP, PRIMAVERA, ArcGIS, VisSIM, ...)

TUTORIALS

- 1. Develop a Strategic Plan for Civil Engineering works for next ten years based on past investments and identify one typical on-going mega project
- 2. Identify ten best civil engineering projects with high aesthetic appeal with one possible factor for

15

8

4

5

each; List down the possible systems required for a typical Smart City.

- 3. List top five tunnel projects in India and their features; collect and study geotechnical investigation report of any one Metro Rail (underground) project;
- 4. Visit a construction site and make a site visit report. Collect visual representations prepared by a Total Station and LIDAR and compare; Study typical Google street map and Google Earth Map and study how each can facilitate the other
- 5. Collect the history of a major rehabilitation project and list the interesting features

L	Т	Р	Total
30	15	0	45

- 1. L S Blake, (1989), Civil Engineer's Reference Book.
- 2. Patil, B.S.(1974), Legal Aspects of Building and Engineering Contract.
- 3. Archer Green. (2017) An Introduction to Civil Engineering.
- 4. MeenaRao (2006), Fundamental concepts in Law of Contract, 3rd Edn. Professional Offset
- 5. Chandiramani, Neelima (2000), The Law of Contract: An Outline, 2nd Edn. Avinash Publications Mumbai

REFERENCE BOOKS

TEXT BOOKS

- 1. Wadhera (2004), Intellectual Property Rights, Universal Law Publishing Co.
- 2. P. S. Narayan (2000), Intellectual Property Rights, Gogia Law Agency
- 3. T. Ramappa (2010), Intellectual Property Rights Law in India, Asia Law House
- 4. Bare text (2005), Right to Information Act
- 5. O.P. Malhotra, Law of Industrial Disputes, N.M. Tripathi Publishers
- 6. K.M. Desai(1946), The Industrial Employment (Standing Orders) Act.

11 8	1	1	r	1	1			1		r	1			
	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	0	0	1	0	1	2	0	1	3	0	0	0	0	2
CO 2	0	3	0	0	2	0	0	0	1	1	0	0	1	1
CO 3	2	0	0	0	2	0	0	2	1	2	0	0	2	2
CO 4	0	0	1	0	3	0	2	1	1	1	0	0	2	0
CO 5	2	2	0	2	0	0	0	1	0	1	0	0	1	1
Total	4	5	2	2	8	2	2	5	6	5	0	0	6	6
Scaled Value	1	1	1	1	2	1	1	1	2	1	0	0	2	2

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Cou		Code			CE 403											
	rse r requi	Name Isita			INGINEEI	RING GEOI	LUGI									
	L	T	Р	: C	1	Г	L	Т	P	н	1					
-	1	0	2	2	1	C 2.5	P 0.5	A 0.5		-	1	1 0	2	1 3	-	
	rse (Dutco			the comple	will	L Dom		Ū	_	Lev	el				
be a	Course Outcome: After the completion of the course, students willDomainLevele able toC or P or A															
CO																
		geolo	gic d	ata u	sing standa	rds in engine	ering pr	actice		Psychom	notor		Guided Respons			
CO	2 '	The f	funda	ment	als of the	engineering	proper	ties of I	Earth	Cognitiv	ve		Applying			
	1	mater	ials a	and fl	uids.					Psychom	notor		Guid	ed Re	esponse	
										Affectiv	e		Resp	ondir	ng	
CO.	3	Rock	mass	s chai	acterization	n and the me	chanics	of plana	r	Cognitiv	ve		Unde	erstan	ding	
	1	rock s	slides	s and	topples.					Affectiv	e		Resp	ondir	ng	
CO	1	Soil c	hara	cteriz	ation and th	he Unified So	oil Class	sification	ı	Cognitiv	ve		Appl	ying		
		Syste	m.							Psychon	notor				esponse	
										Affectiv	e		Resp	ondir	ng	
CO	5 '	The n	necha	anics	of soils and	1	Cognitiv	ve		Unde	erstan	ding				
		attla	mont	lian	efaction, ar		Affectiv			Resp		-				

UNIT I GENERAL GEOLOGY

Introduction-Branches of geology useful to civil engineering, scope of geological studies in various civil engineering projects. Department dealing with this subject in India and their scope of work- GSI, Granite Dimension Stone Cell, Petrology-Rock forming processes. Specific gravity of rocks. Ternary diagram. Igneous petrology- Volcanic Phenomenon and different materials ejected by volcanoes. Types of volcanic eruption. Mineralogical composition, structures & textures in rocks.

UNIT II PHYSICAL GEOLOGY

Physical Geology- Weathering. Erosion and Denudation. Factors affecting weathering and product of weathering. Engineering consideration. Superficial deposits and its geotechnical importance: Water fall and Gorges, River meandering, Alluvium, Glacial deposits, Laterite (engineering aspects), Desert Landform, Loess, Residual deposits of Clay - with flints, Solifluction deposits, mudflows, Coastal deposits.

UNIT III GEOLOGICAL HAZARDS

Geological Hazards- Rock Instability and Slope movement: Concept of sliding blocks. Different controlling factors. Instability in vertical rock structures and measures to prevent collapse. Types of landslide. Prevention by surface drainage, slope reinforcement by Rock bolting and Rock anchoring, retaining wall, Slope treatment. Ground water: Factors controlling water bearing capacity of rock. Pervious & impervious rocks and ground water. Lowering of water table and Subsidence. Earthquake: Magnitude and intensity of earthquake. Seismic sea waves.Rock masses as construction material: Definition of Rock masses. Main features that affects the quality of rock engineering and design. Basic element and structures of rock those are relevant in civil engineering areas.

UNIT IV ENGINEERING GEOLOGY

Geology of dam and reservoir site- Required geological consideration for selecting

6

6

6

dam and reservoir site. Failure of Reservoir. Favourable &unfavorable conditions in different types of rocks in presence of various structural features, precautions to be taken to counteract unsuitable conditions, significance of discontinuities on the dam site and treatment giving to such structures.

UNIT V ROCK MECHANICS

Rock Mechanics- Sub surface investigations in rocks and engineering characteristics or rocks masses; Structural geology of rocks. Classification of rocks, Field & laboratory tests on rocks, Stress deformation of rocks, Failure theories and sheer strength of rocks, Bearing capacity of rocks.

PRUCTICAL

- 1. Study of physical properties of minerals.
- 2. Study of different group of minerals.
- 3. Study of Crystal and Crystal system.
- 4. Identification of minerals: Silica group: Quartz, Amethyst, Opal; Feldspar group: Orthoclase, Plagioclase; Cryptocrystalline group: Jasper; Carbonate group: Calcite; Element group: Graphite; Pyroxene group: Talc; Mica group: Muscovite; Amphibole group: Asbestos, Olivine, Hornblende, Magnetite, Hematite, Corundum, Kyanite, Garnet, Galena, Gypsum.
- 5. Identification of rocks (Igneous Petrology): Acidic Igneous rock: Granite and its varieties, Syenite, Rhyolite, Pumice, Obsidian, Scoria, Pegmatite, Volcanic Tuff. Basic rock: Gabbro, Dolerite, Basalt and its varieties, Trachyte.
- 6. Identification of rocks (Sedimentary Petrology): Conglomerate, Breccia, Sandstone and its varieties, Laterite, Limestone and its varieties, Shales and its varieties.
- 7. Identification of rocks (Metamorphic Petrology): Marble, slate, Gneiss and its varieties, Schist and its varieties. Quartzite, Phyllite.
- 8. Study of topographical features from Geological maps. Identification of symbols in maps.

L	Т	Р	Total
15	0	30	45

30

TEXT BOOKS

- 1. Engineering and General Geology, Parbin Singh, 8th Edition (2010), S K Kataria& Sons.
- 2. Text Book of Engineering Geology, N. ChennaKesavulu, 2nd Edition (2009), Macmillan Publishers India.
- 3. Engineering Geology, N.ChennaKesavalu, JNTU College of Engineering, Hydrabad. (2014)
- 4. Engineering Geology, SubinoyGangopadhyay,(2016)

REFERENCE BOOKS

1. Geology for Geotechnical Engineers, J.C.Harvey, Cambridge University Press (1982).

E-Resources – MOOC's

NPTEL Video Lectures on Engineering Geology

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	-	3	1	-	-	-	1	1	2	-	3	2	-
CO 2	2	3	3	2	2	-	1	2	-	-	3	-	2	3
CO 3	2	3	3	3	2	2	1	2	-	-	-	2	2	3
CO 4	-	2	2	2	2	1	2	2	2	-	-	-	-	2
CO 5	3	-	2	3	2	-	2	3	2	2	1	2	3	-
Total	9	8	13	11	8	3	6	10	5	4	4	7	9	8
Scaled Value	2	2	3	3	2	1	2	2	1	1	1	2	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

1.5

1.2

0.3

Semester	IV
Subject Name	MATERIALS TESTING & EVALUATION
Subject Code	XCE 409
Prerequisite	
LT	P C C P A

L	Т	Р	Н
2	0	2	4

Course Outcome: After the completion of the course, students will be able to

- CO1 Understand the use of non-conventional Civil Engineering materials
- **CO2** Understand the various modes of failure in compression, tension, and shear
- CO3 Understand the standard testing and evaluation procedure
- **CO4** Apply the concepts of fracture mechanics to various materials
- **CO5** Adopt special concreting technologies to meet out the modern construction requirements.

Domain Level Understand Cognitive Psychomotor Perception Cognitive Understand Mechanism Psychomotor Understand Cognitive Psychomotor Perception Cognitive Apply Affective Response Cognitive Apply Psychomotor Mechanism

COURSE CONTENT

2

0

2

3

UNIT - I CONSTRUCTION MATERIALS

Brick and Stones, Cements, M-Sand, Ceramics, and Refractories, Bitumen and asphaltic materials, Timbers, Glass and Plastics, Structural Steel and other Metals, Paints and Varnishes, Acoustical material, geo-textiles, rubber, asbestos, laminates and adhesives, Graphene, Carbon composites and other engineering materials including properties and uses

UNIT - II INTRODUCTION TO MATERIAL TESTING

Mechanical behaviour and mechanical characteristics; Elasticity – principle and characteristics; Plastic deformation of metals; Tensile test – standards for different materials (brittle, quasi-brittle, elastic etc.,) True stress – strain interpretation of tensile test; hardness tests; Bending and torsion test; strength of ceramics; Internal friction, creep – fundamentals and characteristics; Brittle fracture of steel – temperature transition approach

UNIT- III STANDARD TESTING & EVALUATION

Mechanical testing and discussion, Naming systems for various irons, steels and nonferrous metals - Elastic deformation; Plastic deformation; Impact test

UNIT-IV FRACTURE MECHANICS

Background; Fracture toughness – different materials; Fatigue of material; Creep, concept of fatigue; Structural integrity assessment procedure and fracture mechanics

UNIT – V SPECIAL CONCRETES

Plain, Reinforced and steel fibre/ glass fibre-reinforced, light-weight concrete, High Performance Concrete, Polymer Concrete

PRACTICAL

- 1. Test on Bricks and Blocks
- 2. Test on Timber specimens
- 3. Tests on coarse and fine aggregates
- 4. Tests on Concrete Cubes and Beams
- 5. Hardness tests (Brinnel's and Rockwell)
- 6. Tests on closely coiled and open coiled springs
- 7. Concrete Mix Design as per BIS
- 8. Tests on unmodified bitumen and modified binders with polymers
- 9. Bituminous Mix Design and Tests on bituminous mixes Marshall method

L	Т	Р	Total
30		30	60

TEXT BOOKS

- 1. Chudley, R., Greeno (2006), 'Building Construction Handbook' (6th ed.), R. Butterworth-Heinemann
- 2. Khanna, S.K., Justo, C.E.G and Veeraragavan, A, ' Highway Materials and Pavement Testing', Nem Chand& Bros, Fifth Edition
- 3. KyriakosKomvopoulos (2011), Mechanical Testing of Engineering Materials, Cognella

REFERENCES

- 1. Various related updated & recent standards of BIS, IRC, ASTM, RILEM, AASHTO, etc. corresponding to materials used for Civil Engineering applications
- 2. E.N. Dowling (1993), Mechanical Behaviour of Materials, Prentice Hall International Edition
- 3. American Society for Testing and Materials (ASTM), *Annual Book of ASTM Standards* (post 2000)
- 4. Related papers published in international journals

4

5

8

Mapping of CO with PO's

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO 2
CO1	2	0	0	2	2	0	0	0	0	0	0	2	0	0
CO2	0	1	2	2	0	2	0	0	0	2	1	1	0	0
CO3	1	0	2	2	0	2	0	0	0	2	1	1	0	0
CO4	2	0	2	2	0	2	0	0	0	2	1	1	0	0
CO5	3	2	3	3	1	3	0	2	2	3	2	3	0	0
Total	6	3	9	11	3	9	0	2	2	9	5	8	0	0
Scaled value	1	1	2	2	1	2	0	1	1	2	1	2	0	0

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	neste	r	:	: V	r									
Сот	ırse (Code	:	: X	CE507									
Сог	irse I	Name	: :	: C	CONSTRUCTI	ON EN	GINEE	RING 8	& MANAGEM	ENT				
Pre	requ	isite	:	: N	IL									
	L	Т	Р	C		С	Р	Α		L	Т	Р	Η	
	2	1	0	3		2	0	1		2	1	0	3	

Course Objectives

- To introduce the students to the basic concepts and principles of construction management.
- To familiarize the students with the various construction management techniques including scheduling, resource management.
- To study the elements of quality control and safety of construction projects.

Course be able	Outcome: After the completion of the course, students will to	Domain C or P or A	Level	
CO1	Understand the basic concepts of construction management such as types and functions of management, life-cycle stages of projects, project delivery types of contracts, and bidding	Cognitive	Understanding	
CO2	Ascertain a basic ability to plan, control and monitor construction projects with respect to time and cost	Cognitive Affective	Understanding Respond	
CO3	Understanding of modern construction practices.	Cognitive	Understanding	
CO4	Receiving an idea how construction projects are administered with respect to contract structures and issues.	CognitiveAffec tive	Understanding Respond	
CO5	Ability to put forward ideas and understandings to others with effective communication processes.	Cognitive Affective	Understanding Respond	

COURSE CONTENT

UNIT I BASICS OF CONSTRUCTION

Unique features of construction, construction projects types and features, phases of a project, Agencies involved and their methods of execution

UNIT II	CONSTRUCTION PLANNING AND SCHEDULING	13
	Stages of project planning: pre-tender planning, Pre-construction planning, detailed construction planning, Process of development of plans and schedules, work break- down structure, activity lists, estimating durations, sequence of activities, Techniques of planning- Bar charts, Gantt Charts. Networks:Basic terminology, types of precedence relationships, preparation of CPM networks: activity on link and activity on node representation, computation of float values, PERT- determining three time estimates, analysis	
UNIT III	CONSTRUCTION METHODS & EQUIPMENT BASICS	9
	Types of foundations and construction methods; Basics of Formwork and Staging; Common building construction methods (conventional walls and slabs; conventional framed structure with block work walls; Basics of Slip forming for tall structures)Equipment for Earthmoving, Dewatering; Concrete mixing, transporting & placing; Cranes, Hoists and other equipment for lifting; Equipment for transportation of materials.	
UNIT IV	PROJECT PLANNING, ORGANIZING, MONITORING & CONTROL	9
	Site layout including enabling structures, developing site organization, Documentation at s Manpower: planning, organizing, staffing, motivation; Materials: concepts of plann procurement and inventory control; Equipment: basic concepts of planning and organizi Funds: cash flow, sources of funds; and S-Curves. Earned Value; Resource Scheduling- chart, resource constraints and conflicts; resource aggregation, allocation, smoothening leveling. Common Good Practices in Construction. Supervision, record keeping, perior progress, reports, periodical progress meetings. Updating of plans: purpose, frequency methods of updating. Common causes of time and cost overruns and corrective measures.	ing, ing; Bar and odic
UNIT V	CONSTRUCTION QUALITY & CONTRACTS MANAGEMENT	9

Concept of quality, quality of constructed structure, use of manuals and checklists for quality control, role of inspection, basics of statistical quality control. Safety, Health and Environment on project sites: accidents; their causes, effects and preventive measures, costs of accidents, occupational health problems in construction, organizing for safety and health. Importance of contracts; Types of Contracts, parties to a contract; Common contract clauses (Notice to proceed, rights and duties of Various parties, notices to be given, Contract Duration and Price. Performance parameters; Delays, penalties and liquidated damages; Force Majeure, Suspension and Termination. Changes & variations, Dispute Resolution methods.Classification of costs, time cost, trade-off in construction projects, compression and decompression.

L	Т	Р	Total
30	15	0	45

TEXT BOOKS

- 1. Kumar NeerajJha, "Construction Project management", Dorling Kindersley, Publishers, New Delhi.2013.
- 2. Chitkara.K.K, "Construction Project Management planning, Scheduling and control", Tata McGraw Hill Publishing Company, New Delhi, 2010.
- 3. National Building Code, Bureau of Indian Standards, New Delhi, 2017.

REFERENCE BOOKS

- 1. Punmia, B.C., Khandelwal, K.K., "Project Planning with PERT and CPM", Laxmi Publications, 2016.
- 2. Vohra.N.D., "Quantitative Techniques in Management", Tata McGraw Hill Publishing Company, New Delhi, 2010.
- 3. Joy.P.K, "Total Project Management", Macmillan India Ltd, New Delhi, 2000.

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1				1	3	2	1	1	1					1
CO 2	2	1						2	1	1		1	1	1
CO 3	2	1		2		1	1	1	2		1		1	
CO 4						2	1	1	1	1			1	
CO 5			2				1							
Total	4	2	2	3	3	5	4	5	5	2	1	1	3	2
Scaled Value	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Note:		Total	()	1.	-5	6-	10	11	-15]			
	Scaled value		()	1	1	2	2		3				
	Re	lation	N	lo	Lo	ow	Mec	lium	Hi	gh				

Semester V : **Course Code** XC1509

Course	Cout	•	ACISU

CONSTITUTION OF INDIA Course Name :

Prerequisite NIL :

L	Т	Р	С	С	Р	Α	L	Т	Р	H
2	0	0	2	2	0	0	2	0	0	2

Course Objectives

- To know the Philosophy of Indian Constitution
- To gain the knowledge on Fundamental rights and duties
- To understand the function and role of Election Commission

Course Outcome: After the completion of the course, students will be able to

- **CO1** Understand the salient features of Indian Constitution Cognitive **CO2** Gather the information on the contours of Constituitional Cognitive **Rights and Duties CO3** Cognitive know the functions and powers of Governance
- **CO4** Summarise the Responsibilities of Local administration
- Cognitive **CO5** Able to understand the Function of Election Commission Cognitive

COURSE CONTENT

UNIT I HISTORY AND PHIOLOSOPHY

History of Making of the Indian Constitution: History-Drafting Committee, (Composition& Working) Philosophy of the Indian Constitution: Preamble-Salient Features

Domain

or P or A

С

Level

Understanding

Understanding

Understanding

Understanding

Understanding

UNIT II CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES

Fundamental Rights -Right to Equality-Right to Freedom-Right against Exploitation-Right to Freedom of Religion-Cultural and Educational Rights-Right to Constitutional Remedies-Directive Principles of State Policy-Fundamental Duties.

UNIT III ORGANS OF GOVERNANCE

Parliament-Composition-Qualifications and Disqualifications-Powers and Functions-Executive-President-Governor-Council of Ministers-Judiciary, Appointment and Transfer of Judges, Qualifications-Powers and Functions

UNIT IV LOCAL ADMINISTRATION

District's Administration head: Role and Importance, -Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction, PRI: ZilaPachayat. Elected officials and their roles, CEO ZilaPachayat: Position and role. Block level: Organizational Hierarchy (Different departments),Village level: Role of Elected and Appointed officials, Importance of grass root democracy

UNIT V ELECTION COMMISSION

Election Commission: Role and Functioning. -Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

L	Т	Р	Total
30	0	0	30

TEXT BOOKS

1. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.

REFERENCE BOOKS

1. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.

2. The Constitution of India, 1950 (Bare Act), Government Publication.

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1	1	1			1	1			1			1	1
CO 2	1	1	1			1	1			1			1	1
CO 3	1	1	1			1	1			1				
CO 4	1	1	2			3	1			1			3	2
CO 5	1	1	3			2	1			1			3	2
Total	5	5	8			8	5			5			8	6
Scaled Value	1	1	2	0	0	2	1	0	0	1	0	0	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

9

7

11

Semester	:	
Course Code	: XCEMO2	
Course Name	: DIGITAL LAND SURVEYING AND MAPPING	
Prerequisite	: Nil	
LT	C C P A L	T P H

0.25

0.25

0

1

1

2

0.50

Course Objectives

0

0.5

0.5

At the end of the course the student will be able to

1

- To provide basics of digital surveying and mapping of earth surface using total station, GPS and mapping software.
- The course starts with introduction to land surveying followed by fundamentals of total station and its working & measurements for land surveying.
- Fundamentals, working & measurements using GPS for land surveying will be discussed.
- Followed by mapping fundamentals, digital surveying procedure, working, data reduction etc.
- Finally, the course will deals with working and demonstration of a digital land surveying and mapping of an area.

	e Outcome: After the completion of the course, students able to	Domain C or P or A	Level
CO1	Understand the importance of digital surveying and mapping of earth surface.	Cognitive	Understanding
CO2	Understand the importance of total station and its working & measurements for land surveying.	Cognitive	Understanding
CO3	Understand the importance of Fundamentals, working & measurements using GPS for land surveying.	Cognitive	Understanding
CO4	Learn some of the best management practices in, digital surveying procedure, working, data reduction etc.	Psychomotor Affective	Guided ResponseRespon ding
CO5	Understand the concepts of preparation of master demonstration of a digital land surveying and mapping of an area.	Psychomotor Affective	Guided ResponseRespon ding

COURSE CONTENT

FUNDAMENTALS OF LAND SURVEYING & GPS

10

Overview -Fundamentals -GPS and Land Surveys- CORS Networks - Practical Application /-Strengths -Weaknesses - Coping with Reality.

TOTAL STATION: Introduction to GPS - Spatial data. Total station survey – practice.

GEOGRAPHIC INFORMATION SYSTEM (GIS) REVELUTION:

Building a Foundation - Sources of Information-System Maintenance-Potential Users - Potential for Misapplication,

GEOMETRY

Plane Geometry - Land Point & Line - Straight Land Line -Plumb Line - Level -Land Distances - Elevation –Area- Horizontal Angles - Degrees, Minutes & Seconds- Maps or Plats.

SURVEY APPLICATIONS

10

Traversing using various instruments, Contouring Characteristics, uses and methods Measurements of areas and volumes using different methods, setting out works buildings, curves, and Project surveys Highways, Railways and Waterways.

L	Т	Р	Total			
15	0	15	30			

TEXT BOOKS

- 1. A Text Book on GPS Surveying Paperback– December 28, 2015by **Dr. Jayanta Kumar Ghosh Ph.D.**
- 2. Robillard, W. G. and Bouman, Lane J. (1998). Clark on Surveying and Boundaries, Seventh Edition. Charlottesville, Va.: LEXIS Law Pub.
- 3. Paine, D.P. and J.D. Kiser. 2012. Aerial Photography and Image Interpretation. New York. John Wiley Inc.
- 4. Kiser, J.D. Surveying for Forestry and the Natural Resources. 2010. Corvallis, OR: John Bell and Assoc.

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3	2			2							2
CO 2	3	2			2							2
CO 3	3	2	1	2	2							2
CO 4	3	2	1	2	2							2
CO 5	3	2	1		2			1			2	2
Total	15	10	3	4	10			1			2	10
Scaled Value	3	2	1	1	2	0	0	1	0	0	1	2

Mapping of CO with GA's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester

Course Code : PCE102

:

С

Р

0 3

Course Name : MECHANICS OF SOLIDS-I

: I

Prerequisite

Т

1

L

2

ENGINEERING MECHANICS

С	Р	A
2.5	0	0.5

Course Outcome: After the completion of the course, students will be able to

- CO1 Analyse stresses and strains in members when subjected to loads.
- **CO2** Evaluate the strain energy under various forces
- CO3 Calculate the shear force and bending moment due to various

	L	Т	Р	H		
	2	2	0	4		
	Don		Le	evel		
(C or P or A					
Cognitive				Anal	yse	
Cognitive				Anal	yse	
Cognitive				Anal	yse	

loading conditions.

CO4 Examine the stability of structural members by studying the Cognitive Analyse reactions and internal forces.

CO5 Assess the output of shafts and springs for its maximum energy. Cognitive Knowledge

COURSE CONTENT

UNIT I SIMPLE STRESSES & STRAINS

Concept and types of Stress and Strain, Hooke's Law, Elastic moduli and the relationship between them, Thermal stress, deformation of simple and compound bars.

UNIT II STRAIN ENERGY

Strain energy and strain energy density – strain energy in traction, shear in flexure and torsion – Strain Energy due to axial force - Resilience - stresses due to impact and suddenly applied load - Principal stress and principal planes - Mohr's circle

UNIT III TRANSVERSE LOADING AND STRESSES OF BEAMS

Beams – types of supports and loads – shear force and bending moment for simply supported, cantilever and over hanging beams. Theory of simple bending – analysis of stresses.

UNIT IV ANALYSIS OF PLANE TRUSS, THIN CYLINDERS / SHELLS

Types of truss – analysis of forces in truss members -method of joints- method of sections. -Thin cylinders and shells – under internal pressure – deformation of thin cylinders and shells

UNIT V TORSION AND SPRINGS

Stresses and deformation in solid and hollow circular shaft– stepped shafts – shafts fixed at both ends. Spring – leaf springs – stresses in helical springs – deflection of springs.

L	Т	Р	Total
30	15	0	45

TEXT BOOKS

1.Dr. R.K.Bansal," Strength of Materials", Laxmi Publications Pvt Ltd, New Delhi, 8th Edition

- 2. R.K. Rajput, "Strength of Materials", S.Chand and Company Ltd, New Delhi, 8th Edition
- 3. R.S. Khurmi, "Strength of Materials", S. Chand & Company Ltd, New Delhi, 2013.

REFERENCE BOOKS

- 1. William Nash, Theory and Problems of Strength of Materials, Schaum's Outline Series, McGraw-Hill International Edition.
- 2. Strength of Materials by R. Subramanian, Oxford University Press, New Delhi
- 3. Egor P Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 2012, Second Edition.

9

9

9

9

Mapping of CO with PO's

	PO1	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	3		1	3						2		2	
CO 2	1	3				2					2		2	
CO 3	1	2	2	1			1	1			2		1	
CO 4	1	2	2	1			1	1			2		1	
CO 5	1	2												
Total	6	12	4	3	3	2	2	2			8		6	
Scaled Value	2	3	1	1	1	1	1	1			2		2	

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester

Course Code : PCE 103

Course Name

Prerequisite

: NIL

:

: I

L	Т	Р	С
2	1	0	3

C	Р	Α
2.5	0	0.5

FLUID MECHANICS AND MACHINERY

L	Т	Р	Н
2	2	0	4

Course Objectives

- To understand about properties of fluids
- To Analyse the flow of fluid under various conditions
- To understand about various hydraulic Machines

Course Outcome: After the completion of the course, students will be able to

CO1	Understand the basic terms used in fluid mechanics,	
	under static condition	
CO2	Apply the principles of fluids under kinematics and	

- CO2 Apply the principles of fluids under kinematics and dynamic conditions
- CO3 Perform the dimensional analysis for problems in fluid mechanics
- **CO4** Apply and analyze distribution of water through pipe and pipes

Domain	Level		
C or P or A			
Cognitive	Understand and Apply		
Cognitive	Apply and Analyse		
Cognitive Affective	Analyse		
Cognitive	Apply and Analyse		

Cognitive Affective

Understand

COURSE CONTENT

UNIT I PROPERTIES OF FLUID AND FLUID STATICS

Basic Concepts and Definitions – Distinction between a fluid and a solid; Density, Specific weight, Specific gravity, Kinematic and dynamic viscosity; variation of viscosity with temperature, Newton's law of viscosity; vapour pressure, boiling point, cavitation; surface tension, capillarity, Bulk modulus of elasticity, compressibility.

Fluid Statics - Fluid Pressure: Pressure at a point, Pascal's law, Hydrostatic Law, Pressure measuring devices-manometers and its types- Pressure gauges and its types

UNIT II FLUID KINEMATICS AND DYNAMICS

Classification of fluid flow - Types of Flow lines-stream function, velocity potential function, flow net- Continuity equation along stream lines and Cartesian coordinates. Equations of motion - Euler's equation; Bernoulli's equation – Derivation; Energy Principle; PRACTICAL applications of Bernoulli's equation: Venturimeter, orifice meter and Pitot tube; Momentum principle

UNIT III FLOW THROUGH PIPES AND OPEN CHANNEL FLOW

Laminar flow through: circular pipes,-Hegen Poisullis Equation a Laminar flow through parallel plates. Loss of head through pipes, Darcy-Wisbech equation, minor losses, total energy equation- hydraulic gradient line- Pipes in series, equivalent pipes- pipes in parallel, power transmission through pipes., Syphon and Water hammer.

Comparison between open channel flow and pipe flow, geometrical parameters of a channel, classification of open channels, classification of open channel flow, Velocity Distribution of channel section

UNIT IV DIMENSIONAL ANALYSIS AND HYDRAULIC SIMILITUDE

Dimensional homogeneity, Rayleigh method, Buckingham's Pi method and other methods. Dimensionless groups. Similitude, Model studies, Types of models. Application of dimensional analysis and model studies to fluid flow problem.

UNIT V HYDRAULIC MACHINES

Turbines – classification –Pelton wheel –Francis and Kaplan turbines – draft tubes – performance of turbines – specific speed and their significance.

Pumps:-Centrifugal pump – description and working – head, discharge and efficiency of a Centrifugal pump. Reciprocating pump - description and working – types –working principle and use.

L	Т	Р	Total
30	15	0	45

TEXT BOOKS

- 1. R.K.Rajput, Fluid Mechanics and Hydraulic Machines, S.Chand& Company Ltd., New Delhi, 2002.
- Bansal, R. K., Fluid Mechanics and Hydraulic Machines, Laxmi Publications (P) Ltd., New Delhi, 2011.

9

9

9

9

- 3. Hydraulics, Fluid Mechanics and Hydraulics Mechanics by P. N. Modi& S. M. Sethi Standard Publishers, New Delhi.
- 4. Hydraulics, Fluid Mechanics and Hydraulics Mechanics by K. R. Arora, Standard Publishers, New Delhi

REFERENCE BOOKS

- 1. Theory and Applications of Fluid Mechanics, K. Subramanya, Tata McGraw Hill.
- 2. Introduction to fluid mechanics, Robert W. Fox, Philip J. Pritchard & Alan T. Mcdonald, Wiley Student Edition, 2009.
- 3. Fluid Mechanics and Machinery, C. S. P. Ojha, R. Bengtsson and P. N. Chadramouli0, Oxford University Press, 2010.
- 4. Fluid Mechanics with Engineering Applications, R.L. Daugherty, J.B. Franzini and E.J.Fennimore, International Student Edition, McGraw Hill.

Mapping of (CO wit	h PO's	5											
	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	1	0	0	0	1	0	1	1	1	0	0	0	1
CO 2	3	2	2	1	1	2	0	1	1	1	0	0	2	1
CO 3	3	2	2	1	1	2	1	1	2	2	0	1	2	1
CO 4	3	3	3	2	1	2	1	1	2	2	0	1	2	1
CO 5	2	1	0	0	1	0	1	2	2	1	0	1	0	1
Total	13	9	7	4	4	7	3	6	6	7	0	3	6	5
Scaled Value	3	2	1	1	1	1	1	1	1	1	0	1	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester : I

Course Code : PCE 104

Course Name : STRENGTH OF MATERIALS LAB

Prerequisite :

MECHANICS OF SOLIDS-I

L	Т	Р	С	С	Р	Α
0	0	2	2	0	3	0

Course Outcome: After the completion of the course, students will be able to

- **CO1** Perception about the behavior of solids under stress and strain.
- **CO2** Calculate the forces and moments.
- **CO3** Predict the properties of surfaces of solids.
- **CO4** Behaviour of beams under different loading systems.
- **CO5** Calculate the deflection of springs.

L	Т	Р	Н
0	0	2	2
Do	main		Level
C or	P or A		
Psycho	motor	R	lespond
Psycho	motor	Ν	leasure
Psycho	motor	Ν	leasure
Psycho	motor	Ν	leasure
Psycho	motor	R	lespond

COURSE CONTENT

- 1. Tension test on HYSD bar / MS rod
- 2. Impact Test (Izod and Charpy)
- 3. Hardness Test (Brinell and Rockwell)
- 4. Test on timber
 - i) Compressive strength test
 - ii)Tensile strength test
 - iii)Shear Strength test
 - iv) Static bending test
- 5. Deflection Test
- 6. Young's modulus of the given material (steel or wood)
- 7. Tests on springs.

L	Т	Р	Total
0	0	30	30

TEXT BOOKS

- 1. Egor P Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 2012, Second Edition.
- 2. Srinath L.S, "Advanced Mechanics of Solids", Tata McGraw-Hill Publishing Co., New Delhi, 2009, Third Edition.
- 3. William Nash, Theory and Problems of Strength of Materials, Schaum's Outline Series, McGraw-Hill International Edition, 2011.

REFERENCE BOOKS

- 1. Timoshenko, S. and Young, D. H., "Elements of Strength of Materials", DVNC, New York, USA.
- 2. Kazmi, S. M. A., "Solid Mechanics" TMH, Delhi, India.
- 3. Hibbeler, R. C. Mechanics of Materials. 6th ed. East Rutherford, Pearson Prentice Hall, 2004

Mapping of CO with PO's

	P01	P02	P03	P04	P05	P06	P07	PO8	P09	P010	P011	P012	PSO 1	PSO2
CO1	2	3		1	3						2		2	
CO2	1	3				2					2		2	
CO3	1	2	2	1			1	1			2		1	
CO4	1	2	2	1			1	1			2		1	
CO5	1	2												
Total	6	12	4	3	3	2	2	2			8		6	
Scaled Value	2	3	1	1	1	1	1	1			2		2	

1 - Low, 2 - Medium, 3 - High

Semeste	r	:	I												
Course	Code	:	P	CE 105											
Course 1	Name	e :	F	LUID M	IECHA	NICS 2	AND M	ACHIN	ERY LAE	3					
Prerequ	isite	:	N	IL											
L	Т	Р	С			С	Р	Α			L	Т	Р	Н	
0	0	2	2		-	0	3	0		_	0	0	2	2	
Course					L				1	L					

Course Objectives

• Upon Completion of this subject, the students can able to have hands on experience in flow measurements using different devices and also perform calculation related to losses in pipes and also perform characteristic study of pumps, turbines etc.,

Course Outcome:	Domain C or P or A	Level
Determine the coefficient of discharge through pipe and notch	Psychomotor	Respond
Verify the principle of Bernoullis Equation.	Psychomotor	Measure
Determine the minor losses for various fittings.	Psychomotor	Measure
Perform test on Efficiency of the Pumps	Psychomotor	Measure
Perform test on Efficiency of the Turbines	Psychomotor	Respond

LIST OF EXPERIMENTS

- 1. Determination of the Coefficient of discharge of given Orifice meter.
- 2. Determination of the Coefficient of discharge of given Venturi meter.
- 3. Verification of Bernoullis Equation.
- 4. Determination of friction factor for a given set of pipes.
- 5. Determination of minor losses for various fitting.
- 6. Determination of rate of flow through notches
- 7. Conducting performance test on centrifugal pump and draw their characteristic curves
- 8. Conducting performance test on Reciprocating pump and draw their characteristic curves
- 9. Conducting performance test submersible pump and draw their characteristic curves
- 10. Conducting load test on Pelton Turbine and draw their characteristic curves
- 11. Conducting load test on Francis Turbine and draw their characteristic curves
- 12. Study about Axial flow turbine- Kaplan turbine.

L	Т	Р	Total
0	0	15	15

TEXT BOOKS

- 1. R.K.Rajput, Fluid Mechanics and Hydraulic Machines, S.Chand& Company Ltd., New Delhi, 2002.
- 2. Bansal, R. K., Fluid Mechanics and Hydraulic Machines, Laxmi Publications (P) Ltd., New Delhi, 2011.
- 3. Hydraulics, Fluid Mechanics and Hydraulics Mechanics by P. N. Modi& S. M. Sethi Standard Publishers, New Delhi.
- 4. Hydraulics, Fluid Mechanics and Hydraulics Mechanics by K. R. Arora, Standard Publishers, New

Delhi

REFERENCE BOOKS

- 1. Theory and Applications of Fluid Mechanics, K. Subramanya, Tata McGraw Hill.
- 2. Introduction to fluid mechanics, Robert W. Fox, Philip J. Pritchard & Alan T. Mcdonald, Wiley Student Edition, 2009.
- 3. Fluid Mechanics and Machinery, C. S. P. Ojha, R. Bengtsson and P. N. Chadramouli0, Oxford University Press, 2010.
- 4. Fluid Mechanics with Engineering Applications, R.L. Daugherty, J.B. Franzini and E.J.Fennimore, International Student Edition, McGraw Hill.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2		2	2	1				1		1	1	1	
CO 2	1		1	1	1				1		1	1		
CO 3	1			1					1				1	
CO 4	1		1						1					
CO 5	2			1	1						1		1	1
Total	7		4	5	3				4		3	2	3	1
Scaled Value	2		1	1	1				1		1	1	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	ieste	r	:	: II											
Cot	irse	Code	:	: P	CE 201										
Cou	irse	Name	e :	: N	IECHANIC	CS OF SOL	IDS-II								
Pre	requ	isite	:	: N	IECHANIO	CS OF SOL	IDS-I								
	L	Т	Р	С		С	Р	Α			L	Т	Р	Н	
	2	1	0	3		2.5	0	0.5			2	2	0	4	
Cou to	erse (Outco	me: A	fter t	he completi	on of the co	urse, sti	udents w	ill be able		Dom or P			Level	
со	1	Deteri	mine	the de	eflection of	Simple and	Curved	member	S	Co	gniti	ve	Ana	lyse	
CO						uctures for	shear	force	and		gniti		Ana	lyzing &	
	1	bendiı	ng mo	oment	•					Af	fectiv	Resp	Respond		
CO					re criteria o	f the columr	n and cy	linder b	ased on		gniti		Und	erstand	
	(end co	onditi	on						Af	fectiv	ve	&		
													Resp	oond	
CO	4	Compute the deflection of beams by energy principles									gniti		App	lication	
										Af	fectiv	ve	Rece	eive	
CO		Analy frame:		e degr	rees of freed	lom for stati	c and ki	inematic		Co	gniti	ve	Ana	lyse	

COURSE CONTENT

UNIT IDEFLECTIONS OF BEAMS9

Introduction, Equation of Elastic Curve, Methods for Determining Deflections (Double Integration, Macaulay's Method, Moment-Area Method). Strain energy and dummy unit load approaches to deflection of Simple and Curved members.

UNIT II INDETERMINATE BEAMS

Propped cantilever and fixed beams-fixed end moments and reactions– Theorem of Three Moments – Shear force and Bending moment diagrams for continuous beams.

UNIT III COLUMNS AND THICK CYLINDERS

Introduction – Short and Long Columns, Euler's Theory, Rankine-Gordon Formula, Eccentrically Loaded Columns - Thick cylinders – compound cylinders.

UNIT IV ENERGY PRINCIPLES

Castigliano's theorems – principle of virtual work – Maxwell's reciprocal theorems.application of energy theorems for computing deflections in beams and trusses.

UNIT V INDETERMINATE BEAMS AND FRAMES

Degree of static and kinematic indeterminacies for beams and plane frames - analysis of indeterminate pin-jointed frames - rigid frames.

9

9

9

	L	Т	Р	Total
	45	0	0	45
TEXT BOOKS				

1 .Dr. R.K.Bansal," Strength of Materials", Laxmi Publications Pvt Ltd, New Delhi, 8th Edition

- 2. R.K. Rajput, "Strength of Materials", S.Chand and Company Ltd, New Delhi, 8th Edition
- 3. R.S. Khurmi, "Strength of Materials", S. Chand & Company Ltd, New Delhi, 2013

REFERENCE BOOKS

1. William Nash, Theory and Problems of Strength of Materials, Schaum's Outline Series, McGraw-Hill International Edition.

- 4. Strength of Materials by R. Subramanian, Oxford University Press, New Delhi
- 5. Egor P Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 2012, Second Edition.

Mapping of CO with PO's

	PO1	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1					1			1					
CO 2	2	1				1		1			1		3	
CO 3	1				1		1				1			
CO 4	3	1		3			1						1	
CO 5	3	3											1	
Total	10	5	0	3	1	2	2	1	1	0	2	0	5	0
Scaled Value	2	1	0	1	1	1	1	1	1		1		1	

ote

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

Semester : II	Semester	:	II
---------------	----------	---	----

Course Code : PCE 202

Course Name : GEOTECHNICAL ENGINEERING – I

NIL

:

Prerequisite

L	Т	Р	С
2	1	0	3

С	Р	Α
2	0.5	0.5

L	Т	Р	H
2	2	0	4

Course Objectives

- To understand the soil properties, composition and structure
- To Familiarize the students an understanding of permeability and seepage of soils
- To learn the stress-strain relationship
- To know about the strength of soil and its analysis

	e Outcome: After the completion of the course, students	Domain	Level
will be	e able to	C or P or A	
CO1	Identify and analyze various types of soils for	Cognitive &	Remembering &
	engineering utilization.	Psychomotor	Observation
CO2	Determine the necessary index and engineering	Cognitive	Analyzing
	properties of soils.	Affective	Respond to
		Psychomotor	Phenomena
			Observation
CO3	Predicts the stress distribution pattern of soil	Cognitive,	Application
		Affective & Psychomotor	Respond to
		rsycholilotoi	Phenomena
			Manipulation
CO4	Illustrate the failure modes of Soil	Cognitive &	Understanding
		Psychomotor	Manipulation
CO5	Investigate the soil using appropriate methods and	Cognitive &	Remembering
	equipments.	Psychomotor	Observation

COURSE CONTENT

	UNIT I	SOIL PROPERTIES AND SUB SOIL INVESTIGATION
--	--------	--

9

Origin of Soils and Rocks; Rock cycle; Soil minarology; Index properties including consistency limits and grain size distribution – Identification and classification of soil – Textural HRB and BIS specification

Methods of exploration, geophysical and conventional methods; Sounding drilling and boring

technique; Field tests - penetration tests

UNIT II SOIL - WATER STATICS

Concept effective and neutral stresses – Darcy's law, Permeability – Field and Laboratory permeability tests –Seepage flow, seepage pressure, exit gradient - Flownet – significance of Laplace equation – quick sand condition, Liquefaction

UNIT III COMPRESSIBILITY AND CONSOLIDATION OF SOIL

Compaction – Factors affecting compaction – proctor test – Field compaction – Field compaction controls, CBR value and CBR test

Consolidation of soils – Terzaghi's one dimensional consolidation theory – pressure void ratio relationship – prediction of pre consolidation pressure – Total settlement and time rate settlement – secondary compression – coefficient of consolidation – Curve fitting methods, consolidation models.

UNIT IV STRESSES IN SOIL FROM SURFACE LOADS

Vertical stress distribution in soil - Boussinesq's and Westerguard's equations – Newmark's influence chart – Principle, Construction and use - Equivalent point load and other approximate procedures, stress isobars & pressure bulbs

UNIT V SHEAR STRENGTH OF SOIL

Shear Strength; Mohr – Coulomb failure criterion and models – laboratory and field tests – shear properties of cohesion less and cohesive soils - Shear Strength. Parameters for under consolidated, normally consolidated and over consolidated clays; Soil sensors applied in field, Modern advancements; Trenchless Technology

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Murthy, V. N. S. "Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering", CRC Press, 2002
- 2. Ranjan, Gopal & Rao, A.S.R., "Basic and Applied Soil Mechanics", New Age Int. Pvt. Ltd., 2004.
- 3. Venkatramaiah, C. "Geotechnical Engineering", New Age International Publishers, New Delhi, 3rd edition, 2005, Reprint 2011.
- 4. Punmia. B.C., Asok Kumar Jain and Arun Kumar Jain, "Soil Mechanics and Foundations" Laxmi Publications Pvt. Ltd., New Delhi, Sixteenth edi.tion, 2005

REFERENCE BOOKS

- 1. Terzaghi, K., Peck, R. B. & Mesri, G., "Soil Mechanics in Engineering Practice", Wiley, 1996.
- 2. Craig, R.F. "Craig's Soil Mechanics", 7th Ed., Spon Press, 2004.
- 3. Holtz, R.D. & Kovacs, W.D., "An Introduction to Geotechnical Engineering", Prentice Hall, 1981.
- 4. Lambe, T.W. & Whitman, R.V., "Soil Mechanics", John Wiley & Sons, 1979.
- 5. Mitchell, J.K. & Soga, K., "Fundamentals of Soil Behaviour", John Wiley & Sons, 2005.
- 6. Coduto, D.P. "Geotechnical Engineering: Principles and Practices", Pearson Education, Prentice Hall, 2007.

7

12

9

- 7. Bolton, M.D. "A Guide to Soil Mechanics", Universities Press, 2003.
- 8. Das, B.M. "Principles of Geotechnical Engineering", Thomson Books, 2013.

E-REFERENCES

- 1. https://nptel.ac.in
- 2. https://nptel.ac.in/courses/105/101/105101201/
- 3. http://www.nitttrchd.ac.in/sitenew1/civil/civil.php#page=page-1

IS Codes

1. IS 1498:1970, Classification and identification of soils for general Engineering purposes (first revision) Reaffirm Dec 2011

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	1		1		1		2		1		1	2	2
CO 2	1	2	1	1		2		2		1		1	2	2
CO 3	2	1	1	1		1		3		1	1	1	2	2
CO 4	1	2	1	1	1	1		2		1	1	1	2	2
CO 5	1	3	1	1	1	1	2	2	3	1	1	1	2	2
Total	7	9	4	5	2	6	2	11	3	5	3	5	10	10
Scaled Value	2	2	1	1	1	2	1	3	1	1	1	1	2	2

Note:

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

Sen	neste	r	:	: П	[
Cou	irse (Code	:	e P	CE 203							
Сог	irse I	Name	e :	c C	ONCRETE T	ECHNO	LOGY					
Pre	requ	isite	:	: N	IL							
	L	Т	Р	С		C	Р	Α		L	Т	P H
	3	0	0	3	-	2.5	0	0.5		3	0	0 3
Cou	ırse (Objec	ctives	1	J			1	I	L	I	
•	Acquire knowledge on construction materials											
•	• Study the properties of fresh and hardened concrete.											
•	Lear	n the	mix c	lesigr	n procedure							
	irse (able t		me: A	fter t	he completion o	of the cou	urse, sti	ıdents w		in 9 or A	C	Level
CO	1 1	denti	fy an	nd <i>test</i>	t the properties	of ingree	dients of	f Concre	te	С		(Understand)
CO	2 1	denti	fy an	d <i>test</i>	the properties of	of Concr	ete			С		(Remember)
CO	3 (Carry	<i>out</i> t	he mi	ix design of M2	20 and M	35 as p	er IS456	C	C,A		(Understand)
							(.,A		Manipulation		
СО	CO4 <i>Ensure</i> quality during Transporting, Laying, Compacting						g			(Understand)		
	and finishing of concrete					C	C,A		Manipulation			
CO	CO5 <i>Adopt</i> special concreting technologies to meet out the modern construction requirements.					(C		(Remember)			

COURSE CONTENT

UNIT I CONSTITUENT MATERIALS

Cement: - Properties - Testing – modern methods of analysis - Blended Cements; Aggregates: Classification- Properties - Testing - Artificial aggregates; Water: Various sources - Quality Testing; Admixtures and Chemicals: Properties – Uses - Use of eco-friendly recyclable and sustainable materials

UNIT II FRESH CONCRETE

Rheology - Workability: Factors affecting - Measurement - Testing; Manufacture of concrete: Process -Compaction; Properties: Segregation - Bleeding - Setting times - Curing - Finishing.

UNIT III HARDENED CONCRETE

Strength: Compressive - Tensile - Flexure - Strength relationships - Testing as per IS codes – Factors influencing strength – NDT techniques; Thermal properties: Durability of concrete: Shrinkage - Creep - Cracks - Acid, Sulphate and Chloride attack.

9

9

UNIT IV CONCRETE MIX DESIGN

Concepts of mix design - Factors influencing mix design – ACI and IS code recommended mix design methods; Non-pumpable concrete; Pumpable concrete:.

UNIT V SPECIAL CONCRETES

Manufacture, Properties and Uses: High strength and high performance concrete -Waterproofing concrete - Fiber Reinforced concrete - Light weight and High Density Concrete - Aerated - No fines - Organic concrete; Special concreting methods: Self compacting concrete - Hot and Cold weather concreting - Prepacked - Vacuum - Gunite and Shotcrete – Ferrocement - Quality control - Sampling and testing-Acceptance criteria

L	Т	Р	Total				
45	0	0	45				

TEXT BOOKS

- 1. Shetty M S. Concrete Technology: Theory and Practice, 7th Edition, S. Chand & Company Ltd-New Delhi, 2014.
- 2. Varghese PC. Building Materials (English), 2nd Edition, PHI Learning, 2014.
- 3. Neville AM. Properties of Concrete, Pearson India, 2012.
- 4. Zongjin Li. Advanced Concrete Technology, John Wiley & Sons. 2011.

REFERENCE BOOKS

- 1. Santhakumar AR. Concrete Technology, 1st Edition, Oxford University Press-New Delhi, 2006.
- 2. Ghambir ML. Concrete Technology, 5th Edition, McGraw Hill Education, 2013.
- 3. Sandor Popovic. Concrete Materials, 2nd Ed.: Properties, Specifications, and Testing, William Andrew, 2012.
- 4. John Newman. Advanced Concrete Technology 3: Processes 1st Edition, Elsevier Science, 2003.

E-REFERENCES

http://nptel.ac.in/courses/105102012

http://nptel.ac.in/courses/105104030

http://freevideolectures.com/Course/3357/Concrete-Technology

http://engineeringvideolectures.com/course/289

9

Mapping of CO with PO's

	PO1	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	1	3	1	1					1	3	1	3	1	
CO 2					1				2	2				
CO 3	1	3	3	3					1				3	
CO 4	1					1	1		1			1		1
CO 5					1					3				
Total	3	6	4	4	2	1	1		5	8	1	4	4	1
Scaled Value	1	2	1	1	1	1	1		1	2	1	1	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sem	Semester : II														
Cou	rse	Code	:	: Р	**204										
Cou	rse]	Name	e :	: D	ISASTER MA	NAGE	MENT								
Pre	Prerequisite : NIL														
	L	Т	Р	С		С	Р	A			L	Т	Р	Н	
	0	0	0	0		3	0	0			2	0	0	2	
	Course Outcome: After the completion of the course, students will Domain Level														
be a	ble t	0								C or]	P or A	4			
CO 2	CO1 Understand the concepts of disasters, their significance and Cognitive Understand types														
CO	CO2 Understand the relationship between vulnerability, disasters, Cognitive Understand disaster prevention and risk reduction									t					
CO.	CO3 Able to understanding of preliminary approaches of Disaster Cognitive Understand Risk Reduction (DRR)										t				

Application

CO4 Develop awareness of institutional processes in the country Cognitive

CO5 Develop rudimentary ability to respond to their Cognitive Application surroundings with potential disaster response in areas where they live, with due sensitivity

COURSE CONTENT

UNIT I INTRODUCTION TO DISASTERS

Importance & Significance, Types of Disasters, Climate Change, DM cycle

UNIT II RISK ASSESSMENT

Risk, Vulnerability, Types of Risk, Risk identification, Emerging Risks, Risk Assessment, Damage Assessment, Risk modeling.

UNIT III DISASTER MANAGEMENT

Phases, Cycle of Disaster Management, Institutional Framework, Incident Command System, DM Plan, Community Based DM, Community health and safety, Early Warning and Disaster Monitoring, Disaster Communication, Role of GIS and Remote Sensing, Do's and Don'ts in various disasters.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness), Disaster Management Act and Policy – Other related policies, plans, programmes and legislation

UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES

Landslide Hazard Zonation, Earthquake Vulnerability Assessment of Buildings and Infrastructure, Drought Assessment, Coastal Flooding, Forest Fire, Man Made disasters, Space Based Inputs for Disaster Mitigation and Management, Cast Study

L	Т	Р	Total
45	0	0	45

6

12

10

10

7

TEXT BOOKS

- 1. Singhal J.P. Disaster Management, Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, Disaster Science and Management, McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10**: 1259007367, **ISBN-13**: 978-1259007361)
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. KapurAnu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010

REFERENCE BOOKS

- 1. Siddhartha Gautam and K Leelakrisha Rao, "Disaster Management Programmes and Policies", Vista International Pub House, 2012
- 2. Arun Kumar, "Global Disaster Management", SBS Publishers, 2008

- 3. Pardeep Sahni, Alka Dhameja and Uma medury, "Disaster mitigation: Experiences and reflections", PHI, 2000
- 4. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
- 5. Government of India, National Disaster Management Policy, 2009

E-REFERENCES

- NIDM Publications at http://nidm.gov.in- Official Website of National Institute of Disaster Management (NIDM), Ministry of Home Affairs, Government of India
- http://cwc.gov.in , http://ekdrm.net , http://www.emdat.be , http://www.nws.noaa.gov , http://pubs.usgs.gov , http://nidm.gov.ini http://www.imd.gov.ini

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1			2	1	1		1		1		1	1		
CO 2	1	1	3	2	3		1	1						
CO 3					2		1		1					
CO 4	1	1	2	2	2		1				1	1		
CO 5	2	3		2	3		1	2	1			2		
Total	4	5	7	7	11		5	3	3		2	4		
Scaled Value	1	1	2	2	3		1	1	1		1	1		

Mapping of CO with PO's

Note:

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

Se	meste	r	:	I										
Co	urse	Code	:	P	CE205									
Co	urse l	Name	e :	G	EOTECHNIC	CAL EN	GINEE	RING I	AB					
Pr	erequ	isite	:	G	EOTECHNIC	CAL EN	GINEE	RING						
	L	Т	Р	С		С	Р	Α		L	Т	Р	Н	
	0	0	2	2		2	0.5	0.5		0	0	2	2	

Course Objectives

- To understand the handling of equipments
- To provide the hands on training in determination of Engineering and index properties of soils, applied in field problems.
- To provide the knowledge on the use of experimental results pertaining to foundation problems

Course be able	e Outcome: After the completion of the course, students will e to	will Domain Level C or P or A				
CO1	<i>Identify</i> and <i>analyze</i> various types of soils for engineering utilization.	Psychomotor	Remembering & Observation			
CO2	<i>Determine</i> the necessary index and engineering properties of soils.	Psychomotor	Analyzing Respond to Phenomena Observation			
CO3	<i>Investigate</i> the soil using appropriate methods and equipments.	Psychomotor	Remembering Observation			

COURSE CONTENT

Experiments in Geotechnical Engineering

- Water content determination (Oven drying method)
- Grain size distribution Sieve analysis and Hydrometer analysis
- Determination of Specific gravity by Pycnometer and density bottle method
- Determination of Liquid and Plastic limit (Casagrande method)
- Determination of Shrinkage limit of soil
- Determination of moisture-density relationship (Standard Proctor's)
- Determination of Permeability by Constant and Variable head method
- Determination of in-situ density by sand replacement and core cutter method
- Determination of Relative density Sand
- Unconfined compression test for fine grained soils
- Triaxial Compression Test
- Direct shear test for coarse grained soils
- California Bearing Ratio (CBR) Test

• Plate load test, SPT and SCPT – study experiments

L	Т	Р	Total				
0	0	30	30				

TEXT BOOKS

- 1. Murthy, V. N. S. "Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering", CRC Press, 2002
- 2. Ranjan, Gopal & Rao, A.S.R., "Basic and Applied Soil Mechanics", New Age Int. Pvt. Ltd., 2004.

REFERENCE BOOKS

- 1. K.H. Head and R. J. Epps, "Manual of Soil Laboratory Testing vol II", 3rd Edition, Whittles Publishing, 2011.
- 2. B.M. Das, "Soil Mechanics Laboratory Manual", 6th Ed., London, University Press, 2001.
- 3. 2. J.E. Bowles, "Physical Properties of Soils", 2nd Ed., McGraw Hill International, Singapore, 1990.

E-REFERENCES

- 1. https://nptel.ac.in
- 2. https://nptel.ac.in/courses/105/101/105101201/
- 3. http://www.nitttrchd.ac.in/sitenew1/civil/civil.php#page=page-1

IS Codes

- 1. IS 1498:1970, Classification and identification of soils for general Engineering purposes (first revision) Reaffirm Dec 2011
- 2. IS 1888: 1982 Method of Load Test on Soils. IS 1892: 1979 Code of Practice for Subsurface Investigation for Foundations
- 3. IS 2131: 1981 Method for Standard Penetration Test for Soils.
- 4. IS 2720: Part 31: 1990 Methods of Test for Soils Part 1 to 31:
- IS 4968: Part III: 1976 Method for Subsurface Sounding for Soils Part II: Static Cone Penetration Test.

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2				3			1				1	1	1
CO 2	2				3			1				1	1	1
CO 3	2				3			1	1	1		1	1	1
Total	6				9			3	1	1		3	3	3
Scaled Value	2				2			1	1	1		1	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester Subject Na	ame :	_	UTF1	мтс	T	v	FO	RE	NI 1/1	IDA	NIN/	IFN	T A 1	ודד	NCI	NFE	DC	ı				
•				102		\1	гU	'N Ei		INU	1 NIVI		IAI		IUGI	.191212	IN O)				
Subject Co						f					•											
Designed b	•		-					vil Eı	0	neeri	ing											
Prerequisi		-	_	ieer	ing	g Cł	hen	nistry	y													7
	T P	C															L	Т	I		H	_
3	1 0	4															3	2	()	5	
							С	OUI	RSE	E CO)NT	'EN'	Т									
UNIT I	FUNI	DAM	IEN	TA	LS	O	N A	NAI	LYI	ΓΙCΑ	AL (CHI	EM	IST	RY							12
	electro Flame visible	e ph e sp	otc	met	ry	_	Α	tomi	ic .	Adsc	orpti	ion	Sp	ectr rmir	opho natio	otom on o	etry f 1	merci	prin ury,	ncip , le	ole- ead	UV-
	instru		in	wa	ater	r s	sam	ples.	Ċ	Chron	nato	ograj										mple
UNIT II		ment	in atio	wa on –	ater - Aj	r s ppli	sam icat	ples. ion i	C n m	Chron leasu	nato	ograj										mple
UNIT II	instru	menta RAD port a	in atic AT anc	wa on – T ON tra	ater - Aj N O nsf	r s ppli)F (form	sam icat CH nati	ples. ion ii EMI on o	C n m ICA	Chron leasur LS nemic	nato ring cals	ograj g SO	D ₂ , N	IO ₂ &	k H ₂ D a	S by nd C	spe OD	ectrop	hot	tom	etry	12
UNIT II UNIT III	instru DEG Trans	menta RAD port a datio	in catio AT and on c	wa on – TON l tra f foo	ater - A _l N O nsf	r s ppli)F (form stuf	sam icat CH nati fs, c	ples. ion in EMI on or deter	C n m ICA	Chron leasur LS nemic	nato ring cals	ograj g SO	D ₂ , N	IO ₂ &	k H ₂ D a	S by nd C	spe OD	ectrop	hot	tom	etry	12 /sis -
	instru DEG Transj Degra	menta RAD port a datio ATIC s- Re on –	in atic AT and on c C C emo	wa on – TON tra tra f foo HE oval	ater - A _I N O nsf ods MI of	r s ppli)F form stuf: [ST f he	sam icat CH nati fs, o RY eavy	ples. ion in EMI on or deterg	C n m ICA of ch gent etals	Chron leasur LS nemic ts, pe	mato ring cals estic	ograj 5 SO - I cides	D_2 , N DO, s and	BO d hy	k H ₂ D α droc	S by nd C carbo oxida	spe OD ns tior	ectrop) – P n and	hot hot	o ca	etry ataly	12 /sis - 12 and
	instru: DEGI Trans Degra AQU. Metal sorptio	menta RAD port a datio ATIC s- Re on – cals.	in atic AT and on c C C emo	wa on – TON tra f foo HE oval	ater - Aj N O nsf ods MI of p ^H	r s ppli)F form stuf t ST f he dia	sam icat CH nati fs, o RY agra	ples. ion in EMI on o deter y me ams	C n m ICA of ch gent etals - ch	Chron leasur LS nemic ts, pe	mato ring cals estic	ograj 5 SO - I cides	D_2 , N DO, s and	BO d hy	k H ₂ D α droc	S by nd C carbo oxida	spe OD ns tior	ectrop) – P n and	hot hot	o ca	etry ataly	12 /sis - 12 and
UNIT III	instru: DEGI Trans Degra AQUA Metal sorptio chemi	ment: RAD port a datio ATIC s- Re on – cals. OSP ns of	in catic AT and on c C C C C C ema ema - E ¹	wa on – TION I tra I tra I foo HE Dval I – RIC mosj	ater - Aj N O nsf ods MI of p ^H C C	r s ppli)F corn stuf (ST dia (ST dia (ST dia chi f	sam icat CH nati ffs, o RY agra agra	ples. ion in EMI on o deter y me ams ISTF hemio	r C n m ICA of ch rgent etals - ch RY cal a	Chron leasur LS nemic ts, pe - con hemi	mato ring cals estic ical pho	bgraj g SO - I - I cides ex 1 spe	DO, DO, s and form ciat	BO d hy natic ion	$E H_2$ D a redroc	S by nd C carbo oxida QSAF	spe OD ns tior 2 -	ectrop) – P 1 and Risl	hot hot l re che	o ca educ valu	etry ataly tion	12 /sis - 12 and on of 12
UNIT III	instru: DEGI Transp Degra AQUA Metal sorption chemi ATMO	menta RAD port a datio ATIC s- Re on – cals. OSP layer	in atic AT and on c C C emo - E ¹ HE f ati r de	wa on – TON I tra I tra of foo HE oval ' – RIC mospet	ater - Aj N O nsf ods MI of P ^H C C phe tion	r s ppli)F corn stuf (ST che dia che dia	sam icat CH nati ffs, o RY agra agra	ples. ion in EMI on o deter y me ams ISTF hemio	r C n m ICA of ch rgent etals - ch RY cal a	Chron leasur LS nemic ts, pe - con hemi	mato ring cals estic ical pho	bgraj g SO - I - I cides ex 1 spe	DO, DO, s and form ciat	BO d hy natic ion	$E H_2$ D a redroc	S by nd C carbo oxida QSAF	spe OD ns tior 2 -	ectrop	hot hot l re che	o ca educ valu	etry ataly tion	12 /sis - 12 . and on of 12 mog,
UNIT III UNIT IV	instru: DEGI Trans Degra AQU Metal sorption chemi ATM Regio ozone	menta RAD port a datio ATIC s- Re on – cals. OSPI ns of layer CHI prope	in catic AT and on c C C emo - E ¹ HE f atur de EM ertie	wa wa TON I tra I tra I tra I tra I tra TON I tra TON TON I tra TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON 	ater - Aj N O nsf ods MI of p ^H C C phe tion TRY	r s ppli)F Corn stuf (ST Che dia Che che che che y m	sam icat CH mati ffs, o TRY eavy agra agra EMI - CI Gree	ples. ion in EMI on or deterg y me ams ISTF hemio enho	r C n m ICA of ch rgent etals - ch RY cal a cause - a	Chron leasur LS nemic ts, pe s- con hemi hemi	matc ring cals estic mpl ical pho es a	g SO g SO e – I cides lex 1 spe	DO, DO, s and form ciat	BO BO d hy natic ion	k H ₂ D a droc on, c - C reac	S by nd C carbo oxida QSAF tions ng –	spe OD ns tior tior - r Ac	ectrop) – P n and Risl photo id rai	hot hot c e che n.	o ca educ valu	etry ataly tion atic	12 7/sis - 12 and n of 12 mog, 12
UNIT III UNIT IV	instruit DEGI Transy Degra AQU Metal sorption chemi ATM Regio ozone SOIL Soil p	menta RAD port a datio ATIC s- Re on – cals. OSPI ns of layer CHI prope	in catic AT and on c C C emo - E ¹ HE f atur de EM ertie	wa wa TON I tra I tra I tra I tra I tra TON I tra TON TON I tra TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON 	ater - Aj N O nsf ods MI of p ^H C C phe tion TRY	r s ppli)F Corn stuf (ST Che dia Che che che che y m	sam icat CH mati ffs, o TRY eavy agra agra EMI - CI Gree	ples. ion in EMI on or deterg y me ams ISTF hemio enho	r C n m ICA of ch rgent etals - ch RY cal a cause - a	Chron leasur LS nemic ts, pe s- con hemi hemi	matc ring cals estic mpl ical pho es a	g SO g SO e – I cides lex 1 spe	DO, DO, s and form ciat	BO BO d hy natic ion	k H ₂ D a droc on, c - C reac	S by nd C carbo oxida QSAR tions ing –	spe OD ns tior tior - r Ac	ectrop) – P n and Risl photo id rai	hot hot c e che n. s in	o ca educ valu	etry ataly tion atic cal s	12 7sis - 12 and n of 12 mog, 12
UNIT III UNIT IV	instruit DEGI Transy Degra AQU Metal sorption chemi ATM Regio ozone SOIL Soil p	menta RAD port a datio ATIC s- Re on – cals. OSPI ns of layer CHI prope	in catic AT and on c C C emo - E ¹ HE f atur de EM ertie	wa wa TON I tra I tra I tra I tra I tra TON I tra TON TON I tra TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON TON 	ater - Aj N O nsf ods MI of p ^H C C phe tion TRY	r s ppli)F Corn stuf (ST Che dia Che che che che y m	sam icat CH mati ffs, o TRY eavy agra agra EMI - CI Gree	ples. ion in EMI on or deterg y me ams ISTF hemio enho	r C n m ICA of ch rgent etals - ch RY cal a cause - a	Chron leasur LS nemic ts, pe s- con hemi hemi	matc ring cals estic mpl ical pho es a	g SO g SO e – I cides lex 1 spe	DO, DO, s and form ciat	BO BO d hy natic ion	k H ₂ D a droc on, c - C reac	S by nd C carbo oxida QSAF tions ing – inge	spe OD ns tior - F Ac rea	o – P a and Rish ohoto id rai	hot hot c e che n. s in	o ca educ valu emic	etry ataly tion atic cal s	12 /sis - 12 and n of 12 mog, 12 - salt

- 1. Sawyer, C.N., MacCarty, P.L. and Parkin, G.F., Chemistry for Environmental Engineering and Science, Tata McGraw Hill, Fifth edition, New Delhi 2003.
- 2. Colin Baird 'Environmental Chemistry', Freeman and company, New York, 2011.
- 3. Manahan, S.E., Environmental Chemistry, Eighth Edition, CRC press, 2009.

- 1. Des W. Connell, "Basic Concepts of Environmental Chemistry", CRC Press, 2nd Edition, 2005
- 2. Finar, I.L. "Organic Chemistry" Vol-I, Pearson, 6thEdition, 2002
- 3. Gary W VanLoon, Stephen J Duffy," Environmental Chemistry: A Global Perspective", Oxford University Press, 2010

Semester		:	Ι							
Subject N	ame	:	MIC	ROBIOLOGY FOR ENVIRONMENT	TAL EN	GINE	ERS			
Subject C	ode	:	YEN	103						
Designed	by	:	Dep	rtment of Civil Engineering						
Prerequis	site	:	Mic	biology						_
L	Т	Р	С			L	Т	Р	Η	
3	0	1	4			3	0	2	5	
				COURSE CONTENT						
UNIT I	I	NTR	ODU	FION TO MICROORGANISMS						12
	m gi ai	ixed rowth nd alg	cultu kine gae.	es of microbiology- structure and fun s-metabolism-Aerobic and Anaerobic cs-Classification and morphological asp	pathway pects of	s- M	icrobi	al gr	owth	and ozoa
UNIT II				NUTRITIONAL REQUIREMENTS						12
	m	ethoo	ls of e	trition –Growth of micro-organism in umeration of micro-organisms, steriliza				-	th cu	
UNIT III		-		IICROBIOLOGY						12
	cl	hronio	с, со	 r - toxicants and toxicity - factors in centration response relationships, te on - bioaccumulation - bio-magnification 	st orga	nismn	is, to	oxicit	y te	
UNIT IV	Μ	IICR	OBIC	LOGY IN WASTE WATER						12
	ar	nd bi	o scru	thods to treat waste water-Microbiolog ber), biodegradation of toxic pollutant organisms in environmental cultures	-					
UNIT V	A	PPL	ICAT	ON						12
	В	iofue	ls: - F	Recycling of waste biomass- Biofertili le of microorganism role in algal biofu nd Health, Vermi - composting.	· · · ·					
						L	Т	Р	Т	otal
						45	0	15		60
TEXT BO)OK	S								
				S., Krieg, R.Noel., and Pelczar Merna blishing Company Limited, New Delhi-2		Aicro	biolog	gy 5tł	n edit	ion.,
2. Maei	r. R.	M. I.	L.Per	er and C.P. Gerba, "Environmental Mi	crobiolog	v". A	cade	nic P	ress.	New

- Maeir, R.M., I.L.Pepper and C.P. Gerba, "Environmental Microbiology", Academic Press, New York, 2008
- 3. Stainer, R.Y., Ingrahum, J.L., Wheelis, M.C and Painter, P.R. "General Microbiology", Mac Millan Edn., Ltd., London, 2007

- 1. Reddy S. Ram Reddy S. M. "Microbial Physiology" by Scitech publishersa, 2005
- 2. Talaro K and Talaro A Cassida Pelzar and Reid, Foundations in Microbiology, by W.C.Brown Publishers, 2008.
- 3. Gerard J. Tortora, Microbiology : An Introduction, byPearson 9th Edition, 2008

Subject Na	:	: I																			
~~~jeee 140	me :	: T	RA	ANS	SPO	RT	OF	WA	ATEI	R AN	ND V	VAS'	TEW	ATI	ER						
Subject Co	de :	: Y	EN	N 10	04																
Designed b	y :	: D	epa	part	men	t of	Civ	il E	ngin	leerii	ng										
Prerequisi	te :	: <b>E</b>	nvi	viro	nme	ntal	l Eng	gine	eerin	ng — I	I & I	Ι									
L	T P	0	2													L	Т		P	H	
3	0 1	4	1													3	0		2	5	
								CC	OURS	SE C	CON	ΓEN	Т			L					
UNIT I	TRA	NSP	OR	RT	OF V	WA	TEF	ł													20
	pressi	ure co omic	ond des	duit esig	<mark>ts, hy</mark> 3n of	y <mark>dra</mark> È pui	ulics mps	s - p and	oump 1 eco	os and onom	d pui nic de	npin sign	g uni	ts, ca	pacit	oundir y - sel pumpi	ection	n of	wate	r pu	mps
UNIT II	MAT	ERI	AL	LS I	FOR	R PI	PES	5													Ģ
	-					-										, <mark>types</mark> nting a					
UNIT III	DIST	RIB	UT	ГЮ	DN S	YST	ГЕМ	1													1(
UNIT IV	design corros SANI Storm estima water technol	n of 1 sion, TAR Dr ation drain ology	stor stor RY ( aina - ] n m	two orag Z SE nago - Ra mato sele	rks, ge, di EWE e: B infal erials ectior	main istri CRA Basic Il d s an n -	ntena butic GE c p lata ad se sanit	ance on a hilo ana ectic tary	e of a and ba osoph alysis ons - v sew	distri alanc ny in s - hy desi vage	ibutio cing stor ydrau gn o	on sy reser rm o ilics f sto	voirs draina of orm di matic	s, me – EF age flow rains on –	ANE ANE - drai in s - stor sew	s of co T- LO nage storm m wate	ayou ayou wate er in cerial	ts - r dra lets S -	storr ains - - S hydi	entio n ru sta stanita raulic	n of 12 nof orm atior
	flow i and C	•		<b>4</b>					1 flor					CAN	.a. 1a		- An	alvs	ic of		
			nita								sewe		sign	- 50 m	er la	youts.	7 111		15 01	phy	
UNIT V	OPE	Themi RAT	nita ical IOI	al ch DN d	narac & M	teris AIN	stics	of NA	Was NCE	ste wa E	sewe ater.	er de									sica 9
UNIT V	Maint requir safety	Chemi RAT tenan remer requ	nita ical ION ce nt iire	al ch DN d re eme	narac & M quire Equ ents-	eteris AIN eme ipm cor	stics NTE nts ent rosic	of NA of s re on in	Was NCE sanita equire n sev	ste wa E ary remen wers	sewe ater. sewe nt - pi	er de erage - 1 reven	e - s preve	torm ntive and c	drain m contro	nage s aintena bl - Sp pumpi	ysten nce ecific ng ne	ns pro	- m m blen orks	anpo onitc as rel	sical 9 wer oring atec
UNIT V	Maint requir safety	Chemi RAT tenan remer requ	nita ical ION ce nt iire	al ch DN d re eme	narac & M quire Equ ents-	eteris AIN eme ipm cor	stics NTE nts ent rosic	of NA of s re on in	Was NCE sanita equire n sev	ste wa E ary remen wers	sewe ater. sewe nt - pi	er de erage - 1 reven	e - s preve	torm ntive and c	drain m contro	nage s aintena ol - Sp pumpi L	ysten nce ecific ng no T	ns pro	- m m blen orks <b>P</b>	anpo onito ns rel	sical 9 wer oring atec
	Maint requir safety to was	Chemi RAT tenan remer requ	nita ical ION ce nt iire	al ch DN d re eme	narac & M quire Equ ents-	eteris AIN eme ipm cor	stics NTE nts ent rosic	of NA of s re on in	Was NCE sanita equire n sev	ste wa E ary remen wers	sewe ater. sewe nt - pi	er de erage - 1 reven	e - s preve	torm ntive and c	drain m contro	nage s aintena bl - Sp pumpi	ysten nce ecific ng ne	ns pro	- m m blen orks	anpo onito ns rel	sica 9 wer oring atec
<b>TEXT BO</b> 1. G.S.Bri 2010. 2. Hamme	Maint requir safety to was OKS idie & J er, M.J.	Themi RAT tenan remer requiste w	nita ical ION ce nt iiren ater &rid	al ch n die e re e re e re e re e re die, & V	war Waste	etteris (AIN) eme iipm corr iing tter s e wa	stics NTE ent rosic - pur	of NA of s recon in mpi	Was NCE sanita equiro n sew ing - j and s hnolc	ste wa E ary remen wers pump Sanit	sewe ater. sewe nt - pr p sel- tary Johr	er de erage - I even ectio Engi	e - sorevention n - v neeri	torm ntive and c vaste ng, I Sons	drain m contro water Dhanp s, Nev	nage s aintena ol - Sp pumpi L 45 oatRai w York	ysten nce ecific ng nc T 0 and 3	ns prcetwc	- m moblem orks P 15 s, Ne	anpo onito is rel To w D	sica wer pring atec otal 60
<b>TEXT BO</b> 1. G.S.Bri 2010. 2. Hamme 3. Garg, S 4. Manual	Maint requir safety to was OKS die & J er, M.J. S.K., "En l on Wa	Themi RAT tenan remer requise ste w .S. B Wate	nita cal ION ce nt iiren ater ater ce to sup	al ch <b>DN</b> ( <b>e</b> re <b>e</b> <b>e</b> <b>e</b> <b>e</b> <b>e</b> <b>e</b> <b>e</b> <b>e</b>	naracc & M quire Equ ents- ump Wa Wa Vaste al Er y and	etteris (AIN eme- iipm corr iing tter { e wa ngin d Tr	stics NTE ent rosic - pur Supp tter 7 eerin eatm	of NA of s recon in mpi	Was NCE sanita equiro n sew ing - ] and \$ hnolco [ & II c, CPI	ste wa ary emer yers pumj Sanit ogy, (", KI	sewa ater. sewa nt - pr p sel tary Johr hann CO, G	er de erage - I reven ectio Engi a Vil a Pul over	e - s prevention n - v neeri ey & blishe	torm ntive and c vaste ng, I Sons ers, N it of J	drain m contro water Dhanp s, New Jew E ndia,	nage s aintena ol - Sp pumpi L 45 oatRai w York Delhi 20 New I	ysten nce ecific ng nc T 0 and $($ $, 7^{TH}$ $, 7^{TH}$ , 007	15 pro two Sons edit	- m m bblen orks P 15 s, Ne iion,	anpo onito is rel To w D	sica wer pring dated otal
<b>TEXT BO</b> 1. G.S.Bri 2010. 2. Hamme 3. Garg, S	Maint requir safety to was OKS die & J er, M.J. E.K., "En l on Wa l on Sev	Themi RAT tenan remer requise ste w .S. B Wate	nita cal ION ce nt iiren ater ater ce to sup	al ch <b>DN</b> ( <b>e</b> re <b>e</b> <b>e</b> <b>e</b> <b>e</b> <b>e</b> <b>e</b> <b>e</b> <b>e</b>	naracc & M quire Equ ents- ump Wa Wa Vaste al Er y and	etteris (AIN eme- iipm corr iing tter { e wa ngin d Tr	stics NTE ent rosic - pur Supp tter 7 eerin eatm	of NA of s recon in mpi	Was NCE sanita equiro n sew ing - ] and \$ hnolco [ & II c, CPI	ste wa ary emer yers pumj Sanit ogy, (", KI	sewa ater. sewa nt - pr p sel tary Johr hann CO, G	er de erage - I reven ectio Engi a Vil a Pul over	e - s prevention n - v neeri ey & blishe	torm ntive and c vaste ng, I Sons ers, N it of J	drain m contro water Dhanp s, New Jew D ndia,	nage s aintena ol - Sp pumpi L 45 oatRai w York Delhi 20 New I	ysten nce ecific ng nc T 0 and $($ $, 7^{TH}$ $, 7^{TH}$ , 007	15 pro two Sons edit	- m m bblen orks P 15 s, Ne iion,	anpo onito is rel To w D	sica wer pring atec otal

- 1. 'Water supply and wastewater removal' Vol.I. John Wiley and Sons Manual on Water Treatment, CPHEEO, Government of India, New Delhi, 2010
- 2. Hussain S.K. A Text book of water supply and sanitary Engineering, Oxford and IBH Publishing Co., New, 2010.
- 4. Larry W. Mays, Mays Larry." Water Distribution System Handbook, "McGraw-Hill Professional Publishing, 1999.

Som	ester		:	T					
			•	-		EMC			
	-	Name			T OPERATION IN ENVIRONMENTAL SYST	ENIS			
	ject (		:		N 105				
Des	igned	by	:	Dep	artment of Civil Engineering				
Pre	requi	site	:	Env	ironmental Engineering – I & II				
	L	Т	Р	С		L	Т	Р	Н
	3	1	0	4		3	2	0	5
					COURSE CONTENT				
UN	ΤΙ	Р	RIM	ARY	TREATMENT METHODS				12
					olid Separation-Floatation – Equalization – m and flocculation	easure	ement	– N	lixing –
UNI	TII	S	EDIN	AENT	ATION AND FILTRATION				12
					Types of settling – Thickening – Dick's theory , Tal arman – Kozeny equation – Types of filters	lmadge	e theo	ry, pri	nciple of
UN	T III	A	ERA	TION	1				12
					ory – Mass transfer – Fixed and floating aerators – acked columns and trays	Desig	ning o	f aera	tor – Air
UN	T IV	A	DSO	RPTI	ON				12
		L	•	ng – L	sorption – Isotherms – fixed and fluidized beds – br Definition and types, ion exchange studies, Determin		•		
UN	T V	B	IOL	OGIC	AL TREATMENT				12
		рі	ocess	s – sus	s of microbiology of wastewater – kinetics of aerol pended growth and attached growth – Biological re mixed.				
						L	Т	Р	Total
						45	15	0	60

### **TEXT BOOKS**

- 1. Metcalf Eddy ,Inc. George Tchobanoglous, Franklin Burton H, David Stensel," Wastewater Engineering", Tata McGraw-Hill Education ,2002
- 2. Hendricks," Water Treatment Unit Processes: Physical and Chemical," CRC, 2006.
- 3. Pelczar Jr. Michael," Microbiology", Tata McGraw-Hill Education, 2001

- 1. Tushar p,"Adsorption: Surface Chemistry," Rajat Publications, 2004.
- 2. Ajey Kumar Patel, Achanta Ramakrishna Rao," Aeration Systems for Wastewater Treatment", Lap Lambert Academic PublishinG,-2011
- 3. James Cappucciono, Natalic Sherman,"Microbiology: A Laboratory Manual," Pearson, 2007.

Sem	ester		:	II								
		Name	•		ORY AND PRACTICE OF WATER AND WAS	STE V	VATE	R	P H D 5 11 Flocculators 12 Flocculators 12 Flocculators 12 12 12 12 12 12 12 12 12 12			
0 an	Jeee 1	ume	•		ATMENT							
Sub	ject (	Code	:	YEN	201							
Des	igned	by	:	Depa	artment of Civil Engineering							
Pre	requi	site	:		sport of water and waste water , Unit operation	L T P H $L$ T       P       H $3$ $2$ $0$ $5$ 12         Skimming Tank         12         Skimming Tank       12         ing tanks, Flash mixers, Flocculators,         12         ing tanks, Rotating Biological ted lagoons, waste stabilization ponds Bed Reactor         12         ing tant coperational nd Controlling of plant operations         L       T       P       Total						
			-	Syst	ems							
	L	Т	Р	C				Р				
	3	1	0	4		3	2	0	5			
					COURSE CONTENT							
UNI	T I				TREATMENT					12		
					d Design of Screening – Grit Chamber, Skimming	Гank						
UNI	T II			-	L TREATMENT					12		
					d Design of Equalisation, chemical dosing tanks, l n tanks, Clariflocculators.	Flash 1	mixers	s, Floo	culat	ors,		
UNI	T III	A	DVA	NCE	O WATER TREATMENT					12		
			· ·		d Design of filter units - Nano filtration, ultra filtr units - Reverse Osmosis, Electro dialysis and distil		and hy	per fi	ltrati	on -		
UN	T IV	B	IOL	OGIC	AL TREATMENT					12		
		cc	ontact	or, ac	Aerobic and anaerobic treatment : Trickling fi ivated sludge process, Septic tank, aerated lagoons pond – UASB Reactor and Fluidized Bed Reactor	s, wast		•	•			
UN	TV	SI	LUD	GE T	REATMENT AND DISPOSAL					12		
					essing and management - Effluent Disposal in n rouble shooting, Planning, Organising and Controll					onal		
						L	Т	Р	To	otal		
						45	15	0	6	50		
ТЕХ	KT B	OOK	S					1				
1.					Fundamentals of Water Treatment Unit Processes	s: Phys	sical,	Chem	ical,	and		
2.		nual c w Del			Supply and Treatment ", CPHEEO, Ministry of U	rban	TPH205121212mixers, Flocculators,12and hyper filtration -12Rotating Biological12Rotating Biological12water - Operationalplant operationsTPTotal15060vsical, Chemical, andDevelopment, GOI,Stensel," Wastewater		θΟΙ,			
3.			-		George Tchobanoglous, Franklin Burton H, Da AcGraw-Hill Education ,2002.	avid S	tensel	P       H         0       5         1       1         ers, Flocculators       1         hyper filtration       1         ating Biologica       1         abilization pond       1         er - Operationant operations       1         er - Operationant operations       1         ker - Operationant operations       1         ker - Operationant operations       1         abilization pond       1         sel, "Wastewate       1	ater			
4.					Asolekar R," Wastewater Treatment For Pollution te Limited, 3 rd Edition,2006.	on Coi	ntrol",	Tata	Mcg	raw		
REI	FERF	ENCE	S									
				t treat	ment processes in water and wastewater Engineer	ing, Jo	hn W	ïley a	5         12         12         13         14         15         16         17         17         18         19         11         11         12         12         13         14         15         16         17         17         18         11         11         12         13         14         15         16         17         17         18         19         11         11         12         12         13         14         15         16         17         18         19         11         11         12         12         13         14         15         16         16         17         18			
	Lond	on 19	97.									

- 2. <u>Edward M. Motley</u>, <u>Guang Zhu</u>, <u>Syed R. Qasim</u>," Water Works Engineering: Planning, Design and Operation", Prentice Hall, 2000.
- 3. <u>Ronald L. Droste</u>," Theory And Practice of Water And Wastewater Treatment," Wiley India Pvt Ltd, 2011

	nester		:	II						
Sub	ject N	Name	:	ENV	IRONMENTAL IMPACT ASSESSMENT					
Sub	ject (	Code	:	YEN	202					
Des	igned	l by	:	Dep	rtment of Civil Engineering					
Pre	requi	site	:	Non	2					
	L	Т	Р	С		L	Т	Р	H	
	3	1	0	4		3	2	0	5	
					COURSE CONTENT					4
UN	IT I	I	NTR	ODU	TION TO EIA					12
		E li	<mark>nviro</mark> mitati	nmen	al Impact Assessment (EIA)- Environmental al Risk assessment -Legal and Regulatory aspect EIA - Terms of reference in EIA - Issues in EIA - N ltural.	ts in		a - ]		and
UN	IT II	N	IETH	IODC	LOGIES					12
					IA –Check lists – Matrices – Networks – Cost-benef Case Studies.	ït an	alysis	– An	alysis	s of
UN	IT III	F	PREE	DICTI	ON AND ASSESSMENT					12
					of Impact on land, water and air, noise, social, o l models; public participation – Rapid EIA.	cultu	ral fl	ora a	nd f	auna;
UN	IT IV	ŀ	ENVI	RON	MENTAL MANAGEMENT PLAN					12
		W	ater,	air an	gation of adverse impact on environment – options for d land, flora and fauna; Addressing the issues relate 14000					
UN	IT V	C	ASE	STU	DIES					12
					structure projects – Bridges – Stadium – Highway Vater Supply and Drainage Projects	∕s − ]	Dams	- M	ulti-s	torey
					Г	L	Т	Р	T	otal
						45	15	0		60
TE	XT B(	OOK	S							
1.	Car	nter I	W	"Envi	onmental Impact Assessment". McGraw-Hill, New Y	York	2006	5		

- 1. Canter, L.W., "Environmental Impact Assessment", McGraw-Hill, New York. 2006.
- 2. Lawrence, D.P., "Environmental Impact Assessment Practical solutions to recurrent problems", Wiley-Interscience, New Jersey 2003.
- 3. Petts, J., "Handbook of Environmental Impact Assessment", Vol., I and II, Conwell Science London. 2009.

- 1. Biswas, A.K. and Agarwala, S.B.C., "Environmental Impact Assessment for Developing Countries", Butterworth Heinemann, London. 2004.
- 2. The World Bank Group, "Environmental Assessment Source Book Vol. I, II and III. The World Bank, Washington. 2001.

Semester	: 11
Subject Na	me : SOLID AND HAZARDOUS WASTE MANAGEMENT
Subject Co	ode : YEN203
Designed b	
Prerequisit	
L	T P C L T P H
3	
	COURSE CONTENT
UNIT I	SOURCES, CLASSIFICATION AND REGULATORY FRAMEWORK 9
	Types and Sources of solid and hazardous wastes - Need for solid and hazardous waste management – Elements of integrated waste management and roles of stakeholders - Salient features of Indian legislations on management and handling of municipal solid wastes, hazardous wastes, biomedical wastes, lead acid batteries, electronic wastes , plastics and fly ash – Financing waste management.
UNIT II	WASTE CHARACTERIZATION AND SOURCE REDUCTION 20
	<ul> <li>properties of solid wastes – Hazardous Characteristics – TCLP tests – waste sampling and characterization plan - Source reduction of wastes –Waste exchange - Extended producer responsibility - Recycling and reuse</li> <li>Practical: Composition of MSW, Determination of Physical and Chemical Properties of MSW</li> </ul>
UNIT III	STORAGE, COLLECTION AND TRANSPORT OF WASTES 9
	Handling and segregation of wastes at source – storage and collection of municipal solid wastes – Analysis of Collection systems - Need for transfer and transport – Transfer stations Optimizing waste allocation– compatibility, storage, labeling and handling of hazardous wastes – hazardous waste manifests and transport
UNIT IV	WASTE PROCESSING TECHNOLOGIES 12
	Objectives of waste processing – material separation and processing technologies – biological &chemical conversion technologies – methods and controls of Composting - thermal conversion technologies, energy recovery – incineration – solidification & stabilization of hazardous wastes- treatment of biomedical wastes
UNIT V	WASTE DISPOSAL 10
	Waste disposal options – Disposal in landfills - Landfill Classification, types and methods – site selection - design and operation of sanitary landfills, secure landfills and landfill bioreactors – leachate and landfill gas management – landfill closure and environmental monitoring – Rehabilitation of open dumps – landfill remediation
	L T P Total
	45 0 15 60
TEXT BO	
1. George	e Techobanoglous et al,"Integrated Solid Waste Management", McGraw - Hill, 2014.

- 2. Manual on Municipal Solid waste Management, CPHEEO, Ministry of Urban Development, Govt. Of. India, New Delhi, 2000.
- 3. Techobanoglous Thiesen Ellasen; Solid Waste Engineering Principles and Management, McGraw Hill 1997.

- 1. R.E.Landrefh and P.A.Rebers," Municipal Solid Wastes-Problems & Solutions", Lewis, 1997.
- 2. Blide A.D.& Sundaresan, B.B,"Solid Waste Management in Developing Countries", INSDOC, 1993.
- **3.** Georges E. Ekosse, Rogers W'O Okut-Uma, Pollution control & Waste management in Developing Countries, Commonwealth Publishers, New Delhi, 2000.
- **4.** B. B. Sundaresan, A. D. Bhide Solid Waste Management, Collection, Processing and Disposal, Mudrashilpa Offset Printers, 2001.

	: 11		
Subject Na	me : AIR POLLUTION AND CONTROL		
Subject Co	de : YEN204		
Designed b	y : Department of Civil Engineering		
Prerequisi	te : None		
L	T P C L T	Р	Н
3	0 0 3 3	0	3
	COURSE CONTENT		
UNIT I	INTRODUCTION TO AIR POLLUTANTS		9
	Air resource management system - Air quality management - Scales of air poll Sources and classification of pollutants and their effect on human health property - Global implications of air pollution - Meteorology Fundamentals stability – Micrometeorology - Atmospheric turbulence - mechanical and therr Wind profiles - Atmospheric Diffusion - Atmospheric diffusion theories atmospheric diffusion equation – Plume rise - Diffusion models - Ambient emission standards – Air pollution indices – Air Quality Sampling and Monitori	vegeta - Atn nal tur - Ste air qu	tion and hospheric bulence - ady-state ality and
UNIT II	CONTROL OF PARTICULATE CONTAMINANTS		9
	Settling chambers - Filters, gravitational, Centrifugal – multiple type cyclone collection efficiency, pressure drop, wet collectors, Electrostatic Precipitation design – Operational Considerations – Process Control and Monitoring – Case S	theor	
UNIT III	CONTROL OF GASEOUS CONTAMINANTS		9
	Absorption – principles - description of equipment-packed and plate column performance equations – Adsorption - principal adsorbents - Equipment descri- and performance equations – Condensation - design and performance equation Equipment description - design and performance equations - Biological Air Per- Technologies – Bio-Scrubbers, Biofilters – Operational Considerations – Proc Monitoring – Case Studies.	ptions – Incir <mark>ollutior</mark>	– Design heration - h Control
UNIT IV	EMERGING TRENDS		9
	Process Modification – Automobile Air Pollution and its control – Fuel Mechanical Particulate Collectors – Entrainment Separation – Internal Combu Membrane Process – Ultraviolet Photolysis – High Efficiency Particulate Technical & Economic Feasibility of selected emerging technologies for Air pol	stion E Air	ingines – Filters –
UNIT V	INDOOR AIR QUALITY		9
	Sources and Causes of Indoor Air Quality Problems- Risk due to Indoor Air pol of indoor Air pollutants- Indoor Air Quality Regulations- Indoor Air Quality Air Quality Control- Case Studies		
		Р	
			Total
	45 0	0	Total 45
TEXT BO	45 0		
	45 0		

2004.

3. Anjaneyulu. Y, 'Air Pollution and Control Technologies', Allied Publishers (P) Ltd., India, 2002.

- 1. David H.F. Liu, Bela G. Liptak 'Air Pollution', Lweis Publishers, 2000.
- 2. Arthur C.Stern, 'Air Pollution (Vol.I Vol.VIII)', Academic Press, 2006.
- 3. Wayne T.Davis, 'Air Pollution Engineering Manual', John Wiley & Sons, Inc., 2000

Seme	ester		:	II																
Subje	ect N	ame	:	SPE	EC	I CO	OMN	AUN	NICA	TIO	DN									
Subje			:	YEN																
Desig			:			ent	of C	'ivil	Engi	neer	·ino									
Prere		•	:	Non		iciit	ore	/1 / 11	Lingi	incer	mg									
	L	T	Р	C	1											L	Т	P		H
_																				
	1	0	1	2					~~~~		~~~					1	0	2	•	3
								C	COUR	RSE	CON	TEN	T							
UNIT	ГΙ																			9
		cc in	mpet	encies	s ne	ded	for s	succe	essful	l spee	ech m	naking	g; imp	porta	nce of	unicati f publio 1 other	c spea	king s	skill	S
UNIT	г тт																			
UNI																				ç
	. 11	sp	eeche		alyz	ng t										d and eas; fir				IS
UNIT		sp	eeche	s; ana	alyz	ng t														IS
		sp su D cc	eeche pport evelo onclus	es; and ing m ping s ion; la	alyz ater spee ang	ng t als ch or age	he a ut lin used	ne; in	ence : Orga	and anizat	occas	sion; of Sp	Deve peech	elopin n; int	ng ide roduc		nding eveloj	and u	usin t an	ls g d
	r III	sp su D cc	eeche pport evelo onclus	es; and ing m ping s ion; la	alyz ater spee ang	ng t als ch or age	he a ut lin used	ne; in	ence a Orga vario	and anizat	occas	sion; of Sp	Deve peech	elopin n; int	ng ide roduc	eas; fir tion, d	nding eveloj	and u	usin t an	ls g d
UNIT	r III	sp su D cc to	evelo onclus the A	s; and ing m oing s ion; la udien y of sp	alyz ater spee ang nce;	ng t als ch or age paral	he a ut lin used ingu basio	ne; in istic	Orga variou e featu	and anizatous ty ures w to j	occas ation c ypes o	sion; of Spec of spec	Deve peech eeches	elopin n; int s; Ad	ng ide roduc apting	eas; fir tion, d	nding eveloj peech	and u	usin tan ture	ls g d ss
UNIT	Г III Г IV	sp su D cc to	evelo onclus the A	s; and ing m oing s ion; la udien y of sp	alyz ater spee ang nce;	ng t als ch or age paral	he a ut lin used ingu basio	ne; in istic	Orga variou e featu	and anizatous ty ures w to j	occas ation c ypes o presen	sion; of Spec of spec	Deve peech eeches	elopin n; int s; Ad	ng ide roduc apting	eas; fin tion, d g the s	nding eveloj peech	and u	usin tan ture	ls g d ss
UNIT UNIT	Г III Г IV	Sp Su D CC to D to	evelop onclus the A eliver the sj	y of speecho	alyz ater spee ang nce; peec es; n	ng t als ch or age paral hes, sing and	he a ut lin used ingu basic body	ne;   in iistic c tip y lar ech	orga variou e featu os; how nguag anxie	and anizatous ty ures w to j ge to o	occas ation c ypes o preser comm	sion; of Spoor of speor nt a p nunica	Deve peech eeches paper/ ate	elopin n; int s; Ad /assig	ng ide roduc apting	eas; fin tion, d g the s	nding evelop peech using v	and u oment struc	usin tan ture	s s
UNIT UNIT	Г III Г IV	Sp Su D CC to D to	evelop onclus the A eliver the sj	s; and ping m ping s ion; la udien y of sp peeche speak	alyz ater spee ang nce; peec es; n	ng t als ch or age paral hes, sing and	he a ut lin used ingu basic body	ne;   in iistic c tip y lar ech	orga variou e featu os; how nguag anxie	and anizatous ty ures w to j ge to o	occas ation c ypes o preser comm	sion; of Spoor of speor nt a p nunica	Deve peech eeches paper/ ate	elopin n; int s; Ad /assig	ng ide roduc apting	tion, d g the s t etc; u	nding evelop peech using v	and u oment struc	asin t an ture aid:	s s

#### **TEXT BOOKS & REFERENCES**

- 1. Principles and Types of Public Speaking 2002 by Raymie E. McKerrow (Author), Bruce E. Gronbeck ,Douglas Ehninger , Alan H. Monroe
- 2. Communication : Principles for a lifetime, portable Edition- volume 2 Interpersonal Communication, Stevan A. Beebe, Texas State University- San Marcos, 2008.
- 3. Indian's Great Speeches, Compiled by Nitin Agarwal, Grapevine India Publishers Pvt, Ltd., New Delhi.
- 4. Speech Change of the World, Alan J. Whiticker, Jaico Publishing House, Mumbai.
- 5. A Course in Phonetics and Spoken English, J. Sethi , P.V Dhamija, PHI Learning Private Limited, Delhi

Sem	ester		•	III				
					DJECT WORK PHASE I			
		Code		YEN				
	gned				artment of Civil Engineering			
	equi	•		Non				
IICI	cyui	site	•	11011		-	T	
	L	Т	Р	С	L	Т	Р	Н
Ī	0	0	8	8	0	0	16	16
				•	COURSE CONTENT		•	

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

Semester :			:	IV													
Subject Name				PRO	PROJECT WORK PHASE II												
Subject Code :				YEN	YEN401												
Designed by				Dep	Department of Civil Engineering												
Prerequisite			:	Non	e												
	L	Т	Р	С		L	Т	Р	Η								
	0	0	15	15		0	0	30	30								
	v	v				-	-										

The student should continue the phase I work on the selected topic as per the formulated methodology. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated based on the report and the viva-voce examination by a panel of examiners including one external.

C (		Ŧ											
Semester : I													
Subject Na			<b>RGY AND ENVIR</b>	ONMENT									
Subject Code : YEN 106 A													
Designed by : Department of Civil Engineering													
Prerequisit	te :	Envi	onmental science	and Engineeri	ng								
L	T P	С				L	Т	Р	Η				
3	0 0	3				3	0	0	3				
UNIT I	GENE	RAL								9			
			e generation-Proce	ssing Philosop	w- Typical was	te com	nositi	on and	l its 1	-			
Trends in waste generation-Processing Philosophy- Typical waste composition and its uses- Waste recovery methods-Waste recycling methods-Energy recovery methods													
UNIT II	RECO	VER	OF WASTE MAT	FERIAL						9			
Recovery of waste materials-Plastic recovery –Energy recovery-Metal recovery-Glass recovery-Non ferrous metals recovery-Composting-Check list													
UNIT III	RECY	CLIN	G OF WASTE MA	TERIAL						9			
	Separation and recycling of waste – Principles - separation-Air classifier –Screening- Hammer mill-Products of recycling-Recycling applications-Case histories-House hold waste recycling –Scrap fragmentation Process												
UNIT IV	WASTE HANDLING SYSTEMS 9												
	Waste handling and storage-Supply and demand-Compacting and storage-Storage hoppers- Waste handling systems-Access and safety –Compactors												
UNIT V	DISOPAL OF WASTE 9												
	Waste Develo		sal-Management- Chimneys-Control		– Specific ation-Operation		nples- afety.	Ref	racto	ories-			
						L	Т	Р	T	otal			
	45 0 0 45												

### **TEXT BOOKS**

- 1. Vaish Troloki, Enery, Environment and Ecology, Vayu Education of India, New Delhi, 2001
- 2. Salvato, "Environmental Sanitation", John Wiley & Sons, NewYork, 1982
- 3. David Kut and Gerard Hare,"Waste recycling for energy recovery", Architectural Press, 1981.

- 1. Metcalf & Eddy, "Wastewater Engineering Treatment Disposal Reuse", Tata McGraw-Hill, New York, 2003.
- 2. Arcievala S.J., Wastewater treatment and Disposal Engineering and Ecology in pollution control, Marcel Dekker. Inc., New York, 1981.
- 3. Chandra and Adab,"Rubber and plastic Waste", CBS publishers, 2004.

Semester		:	Π																		
Subject Name		:	GROUNDWATER CONTAMINATION AND TRANSPORT MODELING																		
Subject Code			:	YEN 205 B																	
Designed by			:	Dep	partr	nent	of Ci	ivil I	Engi	ginee	erin	ıg									
Prerequisite			:	Tra	anspo	ort of	Wat	ter a	and V	Wa	aste '	Wat	er								
	L T P			С	C									L	Т	Р	Η				
	3	0	0	3													3	0	0	3	
COURSE CONTENT																					
UNIT I INTRODUCTION TO TRANSPORT PHENOMENA														9							
	Transport phenomenon, diffusion, dispersion, advection, adsorption, conservative and non-conservative pollutants, sources and sinks- point and nonpoint.													and							
UNIT II FLOW AND TRANSPORT EQUATIONS											9										
Governing Equations for flow and transport in surface and subsurface waters, chemi biological process models, simplified models for lakes, streams, and estuaries.											emica	l and									
UNI	T III	Μ	IODE	EL CO	COM	PLEX	KITY	<i>č</i>													9
		Selection and development, model resolution, coupled and uncoupled models, Linear nonlinear models, solution techniques, data requirements for calibration, application evaluation of environmental control.																			
UNIT IV NUMERICAL MODELS													9								
FDM, FEM and Finite volume techniques, explicit vs. implicit methods, numerical and stability, High resolution techniques.												cal e	rrors,								
UNI	ΤV	S	SOFTWARE MODELLING 9																		
	Stream quality modeling and Groundwater transport modeling using software.																				
																Γ	L	Т	Р	Т	otal
																ſ	45	0	0		45
TEX	KT BO	OOK	S																		
1	A 1		пл	Char	na	aaab	Daa		Mad	dalim	na (	Crow	ndu	otor	Flow	ond		tomin	ont T	roner	t??

- 1. Alexander H.-d Cheng, Jacob Bear, "Modeling Groundwater Flow and Contaminant Transport", springer 02, 2011.
- 2. PascualHoracio Benito," Approaches to Modeling Contaminant Transport in Porous Media: Pore-Scale to Regional Scale Investigations,"Proquest, Umi Dissertation Publishing, 09-2011.
- **3.** Mark Goltz, Junqi Huang," Analytical Modeling of Solute Transport in Groundwater: Using Models to Understand the Effect of Natural Processes on Contaminant Fate and Transport I",John Wiley & Sons, Aug 2010.

- 1. Rafael Antonio PrietoPiedrahita," Treatment of Contaminated Sediments Using Reactive Cap Technology: Characterization and Modeling of Geotechnical, Hydraulic and Contaminant Transport",Proquest, Umi Dissertation Publishing, Sep 2011.
- 2. ChunmiaoZheng, Gordon D. Bennett," Applied Contaminant Transport Modeling", Wiley-Interscience, February 2002.
- 3. ShaharShlomi,"Combining Geostatistical Analysis and Flow-And-Transport Models to Improve Groundwater Contaminant Plume Estimation,"Proquest, Umi Dissertation Publishing,2011.

Semester		:	II																									
		•		ЛЛ	۲ <b>∩</b> ז	PT (	STEN	JCI	TN		C	4 N	NID		CI	ſĊ												
Subject N			REN				SEN	191	IN	NG	G A	AN	ND	, (	GI	13												
Subject C		:	YEN																									
Designed	by	:	Dep	pai	rtn	nent	t of (	Ci	ivi	vil	l Er	lngi	gine	eer	ring	g												
Prerequis	site	:	Non	1e	e																							
L	Т	Р	С																			L		Т	Р	]	H	
3	0	0	3																			3		0	0		3	
				_					(	C	OU	URS	RSE	E C	CO	NT	'EN'	Т										
UNIT I	F	UND	AME	EN	NTA	<b>ALS</b>	5 OF	F F	RF	EN	MC	<b>OT</b>	ГЕ \$	SE	EN	ISIN	١G											9
			tion, F here,																				nd	its i	ntera	octic	ons	with
UNIT II	Р	LAT	FOR	M	IS A	ANI	D SF	EN	NS	SO	OR	RS																9
			Photo eir sen				Act	tiv	ve	e a	and	d pa	pass	siv	ve s	sens	sors,	, Da	ata j	proc	duc	ts, Va	ario	ous	satel	lite	in	orbit
UNIT III	D	ATA	PRO	<b>)</b> (	CES	SSI	NG																					9
	D	ata ai	nalysi	is -	- V	'isua	al In	ntei	erp	pre	etal	atioı	on a	anc	d D	Digit	tal I	mag	ge P	roc	essi	ng –	cla	ssifi	catio	n		
UNIT IV	G	IS																										9
	In	ıtrodu	iction	tc	to G	HS,	con	icej	ept	ots -	and	nd E	Dat	ita 1	bas	se si	truc	ture	e, va	irioi	ıs C	GIS so	oftv	ware				
UNIT V	R	EMC	)TE S	SE	ENS	SIN	GA	٩N	JD	D (	GI	IS A	AP	PI	LI(	CAT	ГЮ	NS										9
	re	-	ement ces, Id							-	-									-								
																						L		Т	F		T	otal
																						45		0	0	)		45
TEXT BO	OOK	S																										
	<b>D</b> 1	1		.1		1 6	'nD		- 4		C.		•			CIG	а,, т	ססר		1.1:			004	~				

- 1. Anji Reddy.M," Textbook of Remote Sensing and GIS", BPB Publications, 2006
- 2. T. M. Lillesand and R.W.Kiefer," Remote Sensing and Image Interpretation ",Wiley,2011
- 3. E. T. Engman and R. J. Curney," Remote Sensing in Hydrology," Chapman& Hall, 1990

- 1. Lillies and T.M. and Kiefer, R.W., "Remote Sensing and Image Interpretation ", John Wiley and Sons, 1994.
- 2. Burrough, P.A. and McDonnell, R.A., "Principles of Geographical Information Systems", Oxford University Press, 1998.
- 3. Lintz, J. and Simonet, "Remote Sensing of Environment", Addison Wesley Publishing Company, 1994.
- 4. David Martin," Geographic Information Systems", Routledge, 1995.

Semester		т													
Subject No			MICTI	DV FO	D FNV		NINTEN		ENC	TNIE	706				
Ŭ				ат го	KENV	IKUP		NIAL	ENG	TINE	LKS				
Ŭ		-		of Cir	uil Engi	inconi	ina								
U	•	_			-	ineerii	ing								
-	Oxidation and reduction reactions, balancing equation by electron method -Colloids – Redox potentials – partition co-efficient – Beer – Lambert's Law – Limitations – Electrode potential – Applications of potentiometry – pH measurements, glass electrodes, ion selective electrodes – Instrumentations- Atomic spectroscopy – Flame photometry – Atomic Adsorption Spectrophotometry – principle- UV- visible spectrophotometer -Application in determination of mercury, lead and cadmium in water samples. Chromatography – Gas chromatography – simple instrumentation – Application in measuring SO ₂ , NO ₂ & H ₂ S by spectrophotometry12VIT IIDEGRADATION OF CHEMICALS12Transport and transformation of chemicals – DO, BOD and COD – Photo catalysis - Degradation of foodstuffs, detergents, pesticides and hydrocarbons12NIT IIAQUATIC CHEMISTRY12Metals- Removal of heavy metals- complex formation, oxidation and reduction and sorption – E ^h – p ^H diagrams - chemical speciation – QSAR – Risk evaluation of chemicals.12NIT IVATMOSPHERIC CHEMISTRY12Regions of atmosphere - Chemical and photochemical reactions – photochemical smog, ozone layer depletion – Greenhouse gases and global warming – Acid rain.12Soil properties, clay minerals - acid-base and ion-exchange reactions in soil - salt affected soil and its remediation12Stil T PTotal451506060														
															_
3	1 0	4			COUDS	SF CO	омте	TIN				3	2	U	
					COURS	SE CC	UNIE								
UNIT I	FUNDA	AMEN	NTALS	ON A	NALY	TICA	AL CH	IEMIS	STRY	7					12
	photome spectrop water	etry photor sampl	– Ate meter - A es. Ch	omic Applica <mark>romato</mark>	Adsorp ation in ography	ption n dete y – G	Spec cermina Gas chr	ctroph ation <mark>romate</mark>	otome of m ograp	etry ercur hy –	– pri y, lea <mark>simpl</mark>	nciple d and	- UV l cad	∕− v Imiu	isible m in
UNIT II	DEGRA	ADAT	ΓΙΟΝ Ο	<b>DF CH</b>	EMICA	ALS									12
															14
	-			formati	ion of c	chemi						– Ph	oto c	catal	
UNIT III	Degrada	ation o	of foods	formati tuffs, o	ion of c detergen	chemi						– Ph	oto c	catal	ysis -
UNIT III	Degrada AQUA Metals-	ation of TIC C Remo	of foods C <b>HEMI</b> oval of l	formati stuffs, o STRY heavy	ion of c detergen metals- o	chemio nts, per	esticide blex for	es and rmatio	hydro on, oxi	ocarbo idatio	ons n and 1	educt	on ar	nd	ysis - 12
UNIT III UNIT IV	Degrada AQUA Metals- sorption	<b>TIC C</b> Remo $n - E^{h}$	of foods CHEMI oval of l – p ^H dia	formati stuffs, o STRY heavy p agrams	ion of c detergen metals- o s - chemi	chemie nts, pes compl nical sp	esticide blex for	es and rmatio	hydro on, oxi	ocarbo idatio	ons n and 1	educt	on ar	nd	ysis - 12 icals.
	Degrada AQUA Metals- sorption ATMO Regions	<b>FIC C</b> Remo $n - E^h$ <b>SPHE</b> S of at	of foods CHEMI oval of l – p ^H dia ERIC C tmosphe	formati stuffs, o <b>STRY</b> heavy r agrams <b>HEM</b> ere - C	ion of c detergen metals- o s - chemi ISTRY Chemica	chemic nts, per compl nical sp al and	esticide blex for peciation	es and rmatio ion – ( ochem	hydro on, oxi QSAR ical r	idation L – Ris eactio	n and n sk eval	reduct uation	ion ar	nd hemi	ysis - 12 icals. 12
	Degrada AQUA Metals- sorption ATMO Regions ozone la	ation of <b>FIC C</b> Remo $n - E^h$ <b>SPHE</b> s of at ayer do	of foods CHEMI $oval of l -p^{H} diaERIC Ctmospheepletion$	formati stuffs, c STRY heavy f agrams HEM ere - C n – Gre	ion of c detergen metals- o s - chemi ISTRY Chemica	chemic nts, per compl nical sp al and	esticide blex for peciation	es and rmatio ion – ( ochem	hydro on, oxi QSAR ical r	idation L – Ris eactio	n and n sk eval	reduct uation	ion ar	nd hemi	ysis - 12 icals. 12 smog,
UNIT IV	Degrada AQUA Metals- sorption ATMO Regions ozone la SOIL C Soil pro	ation of $\Gamma IC C$ $Remon 1 - E^hSPHEs of atayer doCHEMpertie$	of foods CHEMI oval of I $- p^{H} dia$ ERIC C tmosphe epletion HSTRY ss, clay T	formati atuffs, a STRY heavy f agrams HEMI ere - C a – Gre a minera	ion of c detergen metals- o s - chemi ISTRY Chemica cenhouse	chemio nts, per compl nical sp al and te gases	esticide plex for peciation l photo es and g	es and rmatio ion – ( ochem global	hydro on, oxi QSAR ical r warn	idation C – Ris eaction ning –	ons n and n k eval ns – 1 Acid	reduct uation bhotoc rain.	ion ar 1 of cl hemi	nd hemi cal s	ysis - 12 icals. 12 smog, 12
UNIT IV	Degrada AQUA Metals- sorption ATMO Regions ozone la SOIL C Soil pro	ation of $\Gamma IC C$ $Remon 1 - E^hSPHEs of atayer doCHEMpertie$	of foods CHEMI oval of I $- p^{H} dia$ ERIC C tmosphe epletion HSTRY ss, clay T	formati atuffs, a STRY heavy f agrams HEMI ere - C a – Gre a minera	ion of c detergen metals- o s - chemi ISTRY Chemica cenhouse	chemio nts, per compl nical sp al and te gases	esticide plex for peciation l photo es and g	es and rmatio ion – ( ochem global	hydro on, oxi QSAR ical r warn	idation C – Ris eaction ning –	n and n sk eval ns – p Acid	reduct luation bhotoc rain. n soil	on ar of cl hemi - salt	nd hemi cal s	ysis - 12 icals. 12 smog, 12 cted
UNIT IV	Degrada AQUA Metals- sorption ATMO Regions ozone la SOIL C Soil pro	ation of $\Gamma IC C$ $Remon 1 - E^hSPHEs of atayer doCHEMpertie$	of foods CHEMI oval of I $- p^{H} dia$ ERIC C tmosphe epletion HSTRY ss, clay T	formati atuffs, a STRY heavy f agrams HEMI ere - C a – Gre a minera	ion of c detergen metals- o s - chemi ISTRY Chemica cenhouse	chemio nts, per compl nical sp al and te gases	esticide plex for peciation l photo es and g	es and rmatio ion – ( ochem global	hydro on, oxi QSAR ical r warn	idation C – Ris eaction ning –	n and n sk eval ns – 1 Acid tions in	reduct uation bhotoc rain. n soil T	ion an of cl hemi - salt P	nd hemi cal s	ysis - 12 icals. 12 smog, 12 cted
UNIT IV UNIT V	Degrada AQUA Metals- sorption ATMO Regions ozone la SOIL C Soil pro soil and	ation of $\Gamma IC C$ $Remon 1 - E^hSPHEs of atayer doCHEMpertie$	of foods CHEMI oval of I $- p^{H} dia$ ERIC C tmosphe epletion HSTRY ss, clay T	formati atuffs, a STRY heavy f agrams HEMI ere - C a – Gre a minera	ion of c detergen metals- o s - chemi ISTRY Chemica cenhouse	chemio nts, per compl nical sp al and te gases	esticide plex for peciation l photo es and g	es and rmatio ion – ( ochem global	hydro on, oxi QSAR ical r warn	idation C – Ris eaction ning –	n and n sk eval ns – 1 Acid tions in	reduct uation bhotoc rain. n soil T	ion an of cl hemi - salt P	nd hemi cal s	ysis - 12 icals. 12 smog, 12 cted
UNIT IV UNIT V TEXT BO 1. Sawyer	Degrada AQUA Metals- sorption ATMO Regions ozone la SOIL C Soil pro soil and	ation of <b>FIC C</b> Remon $n - E^h$ <b>SPHE</b> is of at ayer do <b>CHEM</b> pertie its remonstrated acCar	ty, P.L.	formati stuffs, of STRY heavy f agrams HEMI ere - C n – Gree d minera on	ion of c detergen metals- o s - chemi <b>ISTRY</b> Chemica enhouse ls - acid	chemionts, per complicit spinored spino	esticide blex for peciation l photo es and g e and io	es and rmatio ion – ( ochem global on-exc	hydro on, oxi QSAR ical r warn change	idation a – Ris eaction ning – e react	n and n sk eval ns – p Acid tions in L 45	reduct luation bhotoc rain. n soil T 15	ion an of cl hemi - salt P 0	nd hemi cal s affec	ysis - 12 icals. 12 smog, 12 cted Fotal 60
UNIT IV UNIT V TEXT BO 1. Sawyer Science	Degrada AQUA Metals- sorption ATMO Regions ozone la SOIL C Soil pro soil and OKS :,C.N., Ma	ation of <b>FIC C</b> Remon $n - E^h$ <b>SPHF</b> is of at ayer do <b>CHEM</b> opertie its remonstrates acCar cGraw	of foods CHEMI $- p^{H} dia$ ERIC C tmosphe epletion HSTRY s, clay r mediation $ty, P.L.$	formati stuffs, of STRY heavy r agrams HEMI ere - C a – Gre d minera on	ion of c detergen metals- o s - chemi ISTRY Chemica benhouse Is - acid	chemionts, per complicit sp al and d-base d-base	esticide plex for peciation l photo es and g e and io , Cher Delhi 2	es and rmatio ion – ( ochem global on-exc mistry 2003.	hydro on, oxi QSAR ical r warn change	idation a – Ris eaction ning – e react	ons h and h sk eval ns - p · Acid tions in L 45 onmen	reduct luation photoc rain. n soil T 15 tal En	ion an of cl hemi - salt P 0	nd hemi cal s affec	ysis - 12 icals. 12 smog, 12 cted Fotal 60

- 1. Des W. Connell, "Basic Concepts of Environmental Chemistry", CRC Press, 2nd Edition, 2005
- 2. Finar, I.L. "Organic Chemistry" Vol-I, Pearson, 6thEdition, 2002
- 3. Gary W VanLoon, Stephen J Duffy," Environmental Chemistry: A Global Perspective", Oxford University Press, 2010

Sen	nester	•	:	Ι																								
Sub	ject I	Name	:	Mic	icr	cro	robi	olo	gy	fo	or	·E	Env	viro	onm	nen	tal	Eng	inee	ers								
Sub	ject (	Code	:	QE	EN	N	J 10	3																				
Des	igned	l by	:	Dep	pa	pa	artn	nen	nt o	of (	Ci	livi	il I	Eng	gine	eeri	ing											
Pre	requi	site	:	Mic	icr	cro	robi	olo	gy	,																		
	L	Т	Р	С																				L	T		Р	
	3	0	1	4																				3	0	)	2	
						_					(	CC	οι	URS	SE	CO	)NT	'EN'	Т									
UN	IT I	I	NTR	ODU	JC	<b>C</b>	CTI	ON	( <b>T</b> (	0	Μ	AI (	ICF	RO	OR	RGA	ANI	ISM	S									12
		n g	nixed	princi cultu kine gae.	ur	ure	es-r	neta	tabo	oli	isr	m-	-Ae	erol	bic	an	nd A	Anae	robi	c pa	athw	ays	s- M	icrot	ial	grov	wth a	and
UN	IT II	N	<b>1ICR</b>	OBIA	[A	A	LN	IUI	ΓR	RIT	ΓΙ	[0]	)NA	AL	RE	EQU	UIR	REM	IEN'	TS								12
				oial N ls of e														-							-	owth	cur	ve,
UN	IT II	[ A	QUA	TIC	CN	N	MIC	CRO	OB	BIC	OI	LC	OG	GY														12
		c	hroni	ticolog c, co <mark>centra</mark>	con	on	ncer	ntrat	tion	m	r	res	espe	onse	e 1	rela	atior	nship	ps,	test	org	gan	ismi	ns, t	oxic	city	testi	
UN	IT IV	N	<b>IICR</b>	OBIC	[0]	O	LO	GY	I I	N	W	VA	AS	TE	W	AT	'ER											12
		a	nd bi	ical m o scru i micr	ruł	ub	bbe	r),	bio	ode	eg	gra	ada	atio	on o	of to	oxic	e po	lluta			_						
UN	IT V	A	PPL	ICAT	ΤI	ΓΙ	ION	I																				12
		В	iofue	ation: ls: - F lture	R	Ro	ole	of	mic	icro	oc	org	gar	nisn	m ro	ole	in a	algal				_						
																							L	Т		P	Tot	tal
																							45	0	1	15	6	0
TEX	XT B	OOK	S																						<u> </u>			
1.				I.J., E Hill I						-												"N	licro	biolc	gy :	5th (	editio	on.,
2.		eir, R. k, 200		L.Pep	epp	pp	per	and	1 C.	C.P.	P. (	Ge	erb	ba, "	" Er	nvir	ronn	nent	tal N	licro	obiol	log	y", A	Acade	mic	Pre	ss, N	ew
3.				Ingral td., Lo								hee	eelis	is, N	M.C	C ar	nd F	Paint	ter, 1	P.R.	" G	len	eral	Micr	obic	olog	y", N	Iac
RE	FERI	ENCH	ES																									

- 1. Reddy S. Ram Reddy S. M. "Microbial Physiology" by Scitech publishersa, 2005
- 2. Talaro K and Talaro A Cassida Pelzar and Reid, Foundations in Microbiology, by W.C.Brown Publishers, 2008.
- 3. Gerard J. Tortora, Microbiology : An Introduction, byPearson 9th Edition, 2008

Semester	:	II										
Subject Na	ime :	TRAN	NSPORT OF W	ATER A	AND W	ASTE	EWAT	ER				
Subject Co	ode :	QEN2	201									
Designed b	oy :	Depar	rtment of Civil	Engineer	ring							
Prerequisit	te :	Envir	onmental Engi	neering –	- I & II	[						
L	T P	С							L	Т	Р	1
3	0 1	4							3	0	2	
			CO	URSE CO	ONTEN	NT					<u> </u>	1
UNIT I	TRAN	SPOR'	T OF WATER									20
	intakes of wat	, pressu er put	ge and Transm ure conduits, hy- mps -economic us- Analysis of p	draulics - design of	- pumps of pump	s and p ps and	pumpii d ecoi	ng units nomic d	, capao lesign	city - of gi	· selec	ction
UNIT II	MATE	RIAL	S FOR PIPES									9
		s, wate	for pipes, meri r hammer, cause es.									
UNIT III	DISTR	RIBUT	ION SYSTEM									10
	and Ne optima	wton R 1 desig	design, analysis aphson methods n of networks, a n of corrosion, s	, compute maintenar	ter appli ince of	ication distrib	is in di oution	stributio systems	ons net s, meth	work	anal	ysis, ntrol

# UNIT IV SANITARY SEWERAGE

Storm Drainage: Basic philosophy in storm drainage - drainage layouts - storm runoff estimation - Rainfall data analysis - hydraulics of flow in storm water drains - storm water drain materials and sections - design of storm drains - storm water inlets - Sanitation technology selection - sanitary sewage flow estimation - sewer materials - hydraulics of flow in sanitary sewers - partial flows - sewer design - sewer layouts. - Analysis of physical and Chemical characteristics of Waste water.

# UNIT V OPERATION & MAINTENANCE

Maintenance requirements of sanitary sewerage - storm drainage systems - manpower requirement - Equipment requirement - preventive maintenance - monitoring safety requirements- corrosion in sewers - prevention and control - Specific problems related to waste water pumping - pumping - pump selection - wastewater pumping networks

L	Т	Р	Total
45	0	15	60

12

- 1. G.S.Bridie & J.S. Bridie, Water Supply and Sanitary Engineering, DhanpatRai and Sons, New Delhi, 2010.
- 2. Hammer, M.J. Water & Waste water Technology, John Wiley & Sons, New York, 7TH edition, 2012.
- 3. Garg, S.K., "Environmental Engineering I & II", Khanna Publishers, New Delhi 2007
- 4. Manual on Water Supply and Treatment, CPHEEO, Government of India, New Delhi, 2000
- 5. Manual on Sewage and Sewerage system, CPHEEO, Government of India, New Delhi, 2000

- 1. 'Water supply and wastewater removal' Vol.I. John Wiley and Sons Manual on Water Treatment, CPHEEO, Government of India, New Delhi, 2010
- 2. Hussain S.K. A Text book of water supply and sanitary Engineering, Oxford and IBH Publishing Co., New, 2010.
- 3. Larry W. Mays, Mays Larry." Water Distribution System Handbook, "McGraw-Hill Professional Publishing, 1999.

Sem	lester	•	:	II					
Sub	ject N	Name	:	UN	IT OPERATION IN ENVIRONMENTAL SYSTEMS				
Sub	ject (	Code	:	QE	N202				
Des	igned	by	:	Dep	partment of Civil Engineering				
Pre	requi	site	:	Env	ironmental Engineering – I & II				
	L	Т	Р	C		L	Т	Р	
	3	1	0	4		3	2	0	
					COURSE CONTENT				1
UN	IT I	Р	RIM	ARY	TREATMENT METHODS				12
				•	olid Separation-Floatation – Equalization – measure and flocculation	ement	– I	Mixin	g –
UN	IT II	S	EDIN	<b>MEN</b>	FATION AND FILTRATION				12
					Types of settling – Thickening – Dick's theory , Talmadge Carman – Kozeny equation – Types of filters	e theo	ry, pr	incipl	e of
UN	T III	A	ERA	TIO	N				12
					eory – Mass transfer – Fixed and floating aerators – Design backed columns and trays	ning o	of aera	ator –	Air
UN	T IV	A	DSO	RPT	ION				12
		L	•	ng – I	lsorption – Isotherms – fixed and fluidized beds – break th Definition and types, ion exchange studies, Determinations	•			
UN	T V	В	IOL	OGIC	CAL TREATMENT				12
		рі	ocess	s – su	ls of microbiology of wastewater – kinetics of aerobic and spended growth and attached growth – Biological reactors / mixed.				

	L	Т	Р	Total	
	45	15	0	60	
<b>EXT BOOKS</b>					

# 1. Metcalf Eddy ,Inc. George Tchobanoglous, Franklin Burton H, David Stensel," Wastewater Engineering", Tata McGraw-Hill Education ,2002

- 2. Hendricks," Water Treatment Unit Processes: Physical and Chemical," CRC, 2006.
- 3. Pelczar Jr. Michael," Microbiology", Tata McGraw-Hill Education, 2001

- 1. Tushar p,"Adsorption: Surface Chemistry," Rajat Publications, 2004.
- 2. Ajey Kumar Patel, Achanta Ramakrishna Rao," Aeration Systems for Wastewater Treatment", Lap Lambert Academic PublishinG,-2011
- 3. James Cappucciono, Natalic Sherman,"Microbiology: A Laboratory Manual," Pearson, 2007.

Sem	nester	•	:	III					
Sub	ject N	Name	:	The	ory and Practice of Water and Waste Water Treatm	ent			
Sub	ject (	Code	:	QEN	N301				
Des	igned	l by	:	Dep	artment of Civil Engineering				
Pre	requi	site	:	Trai Syst	nsport of water and waste water , Unit operation in ] ems	Enviro	nmenta	al	
	L	Т	Р	C		L	Т	Р	
	3	1	0	4		3	2	0	
					COURSE CONTENT	L	. <u> </u>		1
UN	IT I	Р	HYS	ICAL	TREATMENT				12
		P	rincip	les an	d Design of Screening – Grit Chamber, Skimming Tan	k			
UN	IT II	C	HEN	<b>IICA</b>	L TREATMENT				12
			-		d Design of Equalisation, chemical dosing tanks, Flason tanks, Clariflocculators.	h mixe	rs, Flo	ccula	tors,
UN	T III	[ A	DVA	NCE	D WATER TREATMENT				12
			-		d Design of filter units - Nano filtration, ultra filtration units - Reverse Osmosis, Electro dialysis and distillation		nyper f	iltrati	on -
UN	IT IV	B	IOLO	OGIC	AL TREATMENT				12
		co	ontact	or, ac	Aerobic and anaerobic treatment : Trickling filters tivated sludge process, Septic tank, aerated lagoons, w n pond – UASB Reactor and Fluidized Bed Reactor				
UNI	IT V	S	LUD	GE T	REATMENT AND DISPOSAL				12
					essing and management - Effluent Disposal in natur rouble shooting, Planning, Organising and Controlling				
					I	T	Р	T	otal
					4	5 15	0	(	60
						<u> </u>			

- 1. David Hendricks," Fundamentals of Water Treatment Unit Processes: Physical, Chemical, and Biological", CRC Press, 2010.
- 2. Manual on "Water Supply and Treatment ", CPHEEO, Ministry of Urban Development, GOI, New Delhi, 1999
- 3. Metcalf Eddy ,Inc. George Tchobanoglous, Franklin Burton H, David Stensel," Wastewater Engineering", Tata McGraw-Hill Education ,2002.
- 4. Arceivala.J, Shyam, Asolekar R," Wastewater Treatment For Pollution Control", Tata Mcgraw Hill Education Private Limited, 3rdEdition,2006.

#### REFERENCES

Semester

**Subject Name** 

**Subject Code** 

**Designed by** 

Prerequisite

L

3

: III

**OEN 302** 

None

С

4

:

:

:

:

Р

1

Т

0

- 1. Casey, T.J. Unit treatment processes in water and wastewater Engineering, John Wiley and Sons, London 1997.
- 2. Edward M. Motley, Guang Zhu, Syed R. Qasim," Water Works Engineering: Planning, Design and Operation", Prentice Hall, 2000.
- 3. Ronald L. Droste," Theory And Practice of Water And Wastewater Treatment," Wiley India Pvt Ltd, 2011

#### **COURSE CONTENT**

# UNIT I SOURCES, CLASSIFICATION AND REGULATORY FRAMEWORK

Solid and Hazardous Waste Management

**Department of Civil Engineering** 

Types and Sources of solid and hazardous wastes - Need for solid and hazardous waste management – Elements of integrated waste management and roles of stakeholders - Salient features of Indian legislations on management and handling of municipal solid wastes, hazardous wastes, biomedical wastes, lead acid batteries, electronic wastes , plastics and fly ash – Financing waste management.

#### UNIT II WASTE CHARACTERIZATION AND SOURCE REDUCTION

Waste generation rates and variation - Composition, physical, chemical and biological properties of solid wastes – Hazardous Characteristics – TCLP tests – waste sampling and characterization plan - Source reduction of wastes –Waste exchange - Extended producer responsibility - Recycling and reuse

**Practical:** Composition of MSW, Determination of Physical and Chemical Properties of MSW

#### UNIT III STORAGE, COLLECTION AND TRANSPORT OF WASTES

9

L

3

Т

0

Р

2

9

20

Handling and segregation of wastes at source – storage and collection of municipal solid wastes – Analysis of Collection systems - Need for transfer and transport – Transfer stations Optimizing waste allocation– compatibility, storage, labeling and handling of hazardous wastes – hazardous waste manifests and transport

#### UNIT IV WASTE PROCESSING TECHNOLOGIES

Objectives of waste processing – material separation and processing technologies – biological &chemical conversion technologies – methods and controls of Composting - thermal conversion technologies, energy recovery – incineration – solidification & stabilization of hazardous wastes- treatment of biomedical wastes

# UNIT V WASTE DISPOSAL

Waste disposal options – Disposal in landfills - Landfill Classification, types and methods – site selection - design and operation of sanitary landfills, secure landfills and landfill bioreactors – leachate and landfill gas management – landfill closure and environmental monitoring – Rehabilitation of open dumps – landfill remediation

L	Т	Р	Total
45	0	15	60

### **TEXT BOOKS**

- 1. George Techobanoglous et al,"Integrated Solid Waste Management", McGraw Hill, 2014.
- 2. Manual on Municipal Solid waste Management, CPHEEO, Ministry of Urban Development, Govt. Of. India, New Delhi, 2000.
- 3. Techobanoglous Thiesen Ellasen; Solid Waste Engineering Principles and Management, McGraw Hill 1997.

#### REFERENCES

- 1. R.E.Landrefh and P.A.Rebers," Municipal Solid Wastes-Problems & Solutions", Lewis, 1997.
- 2. Blide A.D.& Sundaresan, B.B,"Solid Waste Management in Developing Countries", INSDOC, 1993.
- 3. Georges E. Ekosse, Rogers W'O Okut-Uma, Pollution control & Waste management in Developing Countries, Commonwealth Publishers, New Delhi, 2000.
- 4. B. B. Sundaresan, A. D. Bhide Solid Waste Management, Collection, Processing and Disposal, Mudrashilpa Offset Printers, 2001.

12

Semester	:	IV																
Subject Na			ironm	ental	Imns	act As	55656	smer	nt									
Subject Co		QEN		ciitai	mp	act Me	55050	SILLI	11									
v		•		- 4 - E	C::1	<b>F</b>		•										
Designed b	•	-	artme	nt of (	Civil	Engu	neer	ring										
Prerequisi		Non	e															ſ
L	T P	С													L	Т	Р	
3	1 0	4													3	2	0	
					CC	OURS	SE C	CON	TEN	T								
UNIT I	INTRO	ODUC	CTION	<b>N TO</b>	EIA													12
	Enviro limitati social a	ions of	f EIA				-			-		•	•				-	
UNIT II	METH	IODO	LOG	IES														12
	Metho alterna					– Mat	trices	s - N	Vetw	ork	s – <b>(</b>	Cost-l	ben	efit aı	nalysis	– Ana	lysis	of
UNIT III	PRED	)ICTI	ON A	ND A	SSES	SSMF	ENT	[										12
	Assess Mather			<b>•</b>									ial,	cult	iral fl	ora ar	id fai	una;
UNIT IV	ENVI	RON	MEN7	TAL N	MAN	AGE	ME	NT I	PLA	N								12
	Plan fo water, People	air and	d land,	flora								-			•		-	
UNIT V	CASE	STUI	DIES															12
	EIA fo Buildir										m –	Hig	hwa	ıys –	Dams	– Mu	lti-sto	orey
																		4 1
														L	Т	Р	To	otal

- 1. Canter, L.W., "Environmental Impact Assessment", McGraw-Hill, New York. 2006.
- 2. Lawrence, D.P., "Environmental Impact Assessment Practical solutions to recurrent problems", Wiley-Interscience, New Jersey 2003.
- 3. Petts, J., "Handbook of Environmental Impact Assessment", Vol., I and II, Conwell Science London. 2009.

- 1. Biswas, A.K. and Agarwala, S.B.C., "Environmental Impact Assessment for Developing Countries", Butterworth Heinemann, London. 2004.
- 2. The World Bank Group, "Environmental Assessment Source Book Vol. I, II and III. The World Bank, Washington. 2001.

S	emester	:

**Subject Name Air Pollution and Control** :

IV

**Subject Code OEN402** :

**Designed by** Prerequisite

None :

:

L	Т	Р	С	
3	0	0	3	

#### **COURSE CONTENT**

#### **UNIT I INTRODUCTION TO AIR POLLUTANTS**

**Department of Civil Engineering** 

Air resource management system - Air quality management - Scales of air pollution problem - Sources and classification of pollutants and their effect on human health vegetation and property - Global implications of air pollution - Meteorology Fundamentals - Atmospheric stability - Micrometeorology - Atmospheric turbulence - mechanical and thermal turbulence - Wind profiles - Atmospheric Diffusion - Atmospheric diffusion theories - Steady-state atmospheric diffusion equation - Plume rise - Diffusion models -Ambient air quality and emission standards – Air pollution indices – Air Quality Sampling and Monitoring.

#### **UNIT II CONTROL OF PARTICULATE CONTAMINANTS**

Settling chambers - Filters, gravitational, Centrifugal – multiple type cyclones, prediction of collection efficiency, pressure drop, wet collectors, Electrostatic Precipitation theory – ESP design – Operational Considerations – Process Control and Monitoring – Case Studies.

#### **UNIT III CONTROL OF GASEOUS CONTAMINANTS**

Absorption – principles - description of equipment-packed and plate columns - design and performance equations – Adsorption - principal adsorbents - Equipment descriptions – Design and performance equations - Condensation - design and performance equation -Incineration - Equipment description - design and performance equations - Biological Air Pollution Control Technologies – Bio-Scrubbers, Biofilters – Operational Considerations – Process Control and Monitoring – Case Studies.

#### **UNIT IV EMERGING TRENDS**

Process Modification - Automobile Air Pollution and its control - Fuel Modification -Mechanical Particulate Collectors - Entrainment Separation - Internal Combustion Engines - Membrane Process - Ultraviolet Photolysis - High Efficiency Particulate Air Filters – Technical & Economic Feasibility of selected emerging technologies for Air pollution control

#### UNIT V **INDOOR AIR QUALITY**

Sources and Causes of Indoor Air Quality Problems- Risk due to Indoor Air pollutantssources of indoor Air pollutants- Indoor Air Quality Regulations- Indoor Air Quality Models- Indoor Air Quality Control- Case Studies

L	Т	Р	Total
45	0	0	45

#### 9

9

9

Т

0

L 3 Р

0



- 1. Noel de Nevers, Air Pollution Control Engineering, Mc Graw Hill, New York, 2010.
- 2. Lawrence K. Wang, Norman C. Parelra, Yung Tse Hung, Air Pollution Control Engineering, Tokyo, 2004.
- 3. Anjaneyulu. Y, 'Air Pollution and Control Technologies', Allied Publishers (P) Ltd., India, 2002.

#### REFERENCES

- 1. David H.F. Liu, Bela G. Liptak 'Air Pollution', Lweis Publishers, 2000.
- 2. Arthur C.Stern, 'Air Pollution (Vol.I Vol.VIII)', Academic Press, 2006.
- 3. Wayne T.Davis, 'Air Pollution Engineering Manual', John Wiley & Sons, Inc., 2000

Semester	:	V
Subject Name	:	PROJECT WORK PHASE I
Subject Code	:	QEN501
Designed by	:	Department of Civil Engineering
Prerequisite	:	None

L	Т	Р	С
0	0	8	8

L	Т	Р
0	0	16

#### **COURSE CONTENT**

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

Sem	lester	•	:	VI
Sub	ject I	Name	:	PROJECT WORK PHASE II
Sub	ject (	Code	:	QEN601
Designed by :		:	Department of Civil Engineering	
Prerequisite		:	None	
	L	Т	Р	С

L	Т	Р
0	0	30

# **COURSE CONTENT**

The student should continue the phase I work on the selected topic as per the formulated methodology. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated based on the report and the viva-voce examination by a panel of examiners including one external.

Semester	<b>Course Code</b>	Course Name		L	Т	Р	С		
I	YEN101	Chemistry and Microbiolog Environmental Enginee		3	0	0	3		
COURSE CONTENT									
UNIT I	FUNDAMENTA	LS ON ANALYTICAL CHEM	ISTRY				12		
	Oxidation and reduction reactions, balancing equation by electron method -Colloids – Redox potentials – partition co-efficient – Beer – Lambert's Law – Limitations – Electrode potential – Applications of potentiometry – pH measurements, glass electrodes, ion selective electrodes – Instrumentations- Atomic spectroscopy – Flame photometry – Atomic Adsorption Spectrophotometry – principle- UV– visible spectrophotometer -Application in determination of mercury, lead and cadmium in water samples. Chromatography – Gas chromatography – simple instrumentation – Application in measuring SO ₂ , NO ₂ & H ₂ S by spectrophotometry.								
UNIT II	DEGRADATIO	N OF CHEMICALS					6		
	•	sformation of chemicals – DO, B odstuffs, detergents, pesticides and			noto cat	alysis -			
UNIT III	SOIL CHEMIST	TRY					9		
	Soil properties, c affected soil and i	lay minerals - acid-base and ion- ts remediation	-exchange re	eaction	s in so	il - salt			
UNIT IV	MICROORGAN	NISMS AND NUTRITIONAL R	EQUIREM	ENTS			9		
UNIT IVMICROORGANISMS AND NUTRITIONAL REQUIREMENTSBasic principles of microbiology- structure and function of microbial cell-pure and mixed cultures-metabolism-Aerobic and Anaerobic pathways- Microbial growth and growth kinetics-Classification and morphological aspects of Bacteria, Fungi, Protozoa and algae. Microbial Nutrition –Growth of micro-organism in different media, growth curve, methods of enumeration of micro-organisms, sterilization and disinfection.									

#### UNIT V MICROBIOLOGY IN WASTE WATER

Biological methods to treat waste water- Microbiology in air pollution control (biofilter and bio scrubber), biodegradation of toxic pollutant. Practical: culture, identify and explain microorganisms in environmental cultures

L	Т	Р	Total
45	0	0	45
			-

# **TEXT BOOKS**

- 1. Sawyer, C.N., MacCarty, P.L. and Parkin, G.F., Chemistry for Environmental Engineering and Science, Tata McGraw Hill, Fifth edition, New Delhi 2003.
- 2. Colin Baird 'Environmental Chemistry', Freeman and company, New York, 2011.
- 3. Pelczar, Jr, M.J., E.C.S., Krieg, R.Noel., and Pelczar Merna Foss. "Microbiology 5th edition.
- 4. Tata McGraw Hill Publishing Company Limited, New Delhi-2001
- 5. Maeir, R.M., I.L.Pepper and C.P. Gerba, " Environmental Microbiology", Academic Press, New York, 2008

# REFERENCES

- 1. Des W. Connell, "Basic Concepts of Environmental Chemistry", CRC Press, 2nd Edition, 2005
- Gary W VanLoon, Stephen J Duffy," Environmental Chemistry: A Global Perspective", Oxford University Press, 2010

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С		
Ι	YEN102	Unit Operation and Processes in Environmental systems	3	0	0	3		
		COURSE CONTENT			•			
UNIT I	PRIMARY TRE	ATMENT METHODS				9		
	Screening-Solid S Coagulation and f	Separation-Floatation – Equalization – meas locculation	sureme	ent – M	lixing -	-		
UNIT II	SEDIMENTATI	ON AND FILTRATION				9		
	Principles – Types of settling – Thickening – Dick's theory, Talmadge theory, principle of filtration – Carman – Kozeny equation – Types of filters							
UNIT III	AERATION 9							
	•	- Mass transfer – Fixed and floating aerators - backed columns and trays	- Desig	gning of	f aerato	r		
UNIT IV	ADSORPTION					9		
	•	tion – Isotherms – fixed and fluidized beds – Definition and types, ion exchange studies s		U				
UNIT V	MEMBRANE P	ROCESSES				9		
	Chemical Oxidat	<b>Reverse Osmosis and Electro dialysis - Species Transformation Processes -</b> Chemical Oxidation / Reduction Processes, Disinfection using Chlorine and UV, Advanced Oxidation Process.						
		Γ	L	Т	Р	Total		
			45	0	0	45		

- 1. Metcalf Eddy ,Inc. George Tchobanoglous, Franklin Burton H, David Stensel," Wastewater Engineering", Tata McGraw-Hill Education ,2002
- 2. Hendricks," Water Treatment Unit Processes: Physical and Chemical," CRC, 2006.
- 3. Pelczar Jr. Michael," Microbiology", Tata McGraw-Hill Education, 2001

#### REFERENCES

- 1. Tushar p,"Adsorption: Surface Chemistry," Rajat Publications, 2004.
- 2. Ajey Kumar Patel, Achanta Ramakrishna Rao," Aeration Systems for Wastewater Treatment", Lap Lambert Academic PublishinG,-2011
- 3. James Cappucciono, Natalic Sherman,"Microbiology: A Laboratory Manual," Pearson, 2007.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С
Ι	YEN105	Environmental Quality Measurements Laboratory-I (Water and Wastewater)	0	0	2	2

# List of Experiments:

- 1. Determination of pH, Turbidity and Electrical conductivity
- 2. Determination of Alkalinity
- 3. Determination of Acidity
- 4. Determination of Hardness
- 5. Determination of Sulphates
- 6. Determination of Fluorides
- 7. Determination of Nitrates
- 8. Residual chlorine analysis
- 9. Test on Dissolved Oxygen and BOD
- 10. Test on COD

	L	Т	Р	Total	
	0	0	30	30	
TEXT BOOKS	-	•		•	[

- 1. Standard Methods for the Examination of Water and Wastewater, 20th Edition.
- 2. Manual on water supply and Treatment, CPHEEO, Ministry of Urban Development, GOI, New Delhi, 2000.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С
Ι	<b>YEN106</b>	Microbiology Laboratory	0	0	2	2

#### List of Experiments:

- 1. Preparation of culture media
- 2. Isolation, culturing and Identification of Microorganisms
- 3. Microorganisms from polluted habitats (soil, water and air)
- 4. Measurement of growth of microorganisms
- 5. Biodegradation of organic matter in waste water Analysis of air borne microorganisms
- 6. Staining of bacteria.
- 7. Effect of pH, temperature on microbial growth
- 8. Pollutant removal using microbes from industrial effluent.
- 9. Bacteriological analysis of wastewater (Coliforms, E.coli, Streptococcus) MPN
- 10. Bacteriological analysis of wastewater (Coliforms, Streptococcus) MF techniques

L	Т	Р	Total
0	0	30	30

# **TEXT BOOKS**

- 1. Benfield, L.D.; Weand, B.L.; Judkins, J.F. (1982) Process chemistry for water and wastewater. Prentice Hall Inc Englewood Cliffs New Jersey.
- 2. Weber Jr., W.J. (1972) Physico-chemical Process for Water Quality Control. Wiley Inc. Newyork.
- 3. Peavy, H.S., Rowe, D.R., Tchobanoglous, G. Environmental Engineering, McGraw Hills, New York, 1985.

Semester	<b>Course Code</b>	(	Course Name	L	Т	Р	С
Ι	YRM 107	Research 1	Methodology and IPR	2	0	0	2
		COUI	RSE CONTENT		•		
UNIT I							6
	of a good resear objectives of rese	ch problem, Er arch problem. A	urces of research problem, rors in selecting a research pproaches of investigation of interpretation, Necessary in	n proble f <mark>solutio</mark>	m, Sco ns for re	pe and	
UNIT II							6
	Effective technic	al writing, how	proaches, analysis Plagiar to write report, Paper D posal, a presentation and a	evelopin	g a Re	esearch	
UNIT III							6
		· ·	Patents, Designs, Trade and technological research,				

		30	0	0	30
		L	Т	Р	Total
	New Developments in IPR: Administration of Patent System IPR; IPR of Biological Systems, Computer Software etc. Case Studies, IPR and IITs.				
UNIT V					. 6
	Patent Rights: Scope of Patent Rights. Licensing and transfinformation and databases. Geographical Indications.	er of te	chnolog	y. Pate	nt
UNIT IV					6
	development. International Scenario: International coop Property. Procedure for grants of patents, Patenting under PC		on In	tellectu	al

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students""
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Semester	<b>Course Code</b>	Course Name		L	Т	Р	С
II	YEN202	<b>Biological Treatment of Wastew</b>	vater	3	0	0	3
		COURSE CONTENT					
UNIT I	INTRODUCTIO	)N					9
	anaerobic treatm attached and sus	Dbjectives of biological treatment – significance – Principles of aerobic and maerobic treatment - kinetics of biological growth – Factors affecting growth – attached and suspended growth - Determination of Kinetic coefficients for organics removal – Biodegradability assessment –selection of process- reactors-batch- continuous type					
UNIT II	AEROBIC TRE	ATMENT OF WASTEWATER					9
	Sequencing Bate Tower-RBC-Mo stabilization por constructed wet	Design of sewage treatment plant units –Activated Sludge process and variations, Sequencing Batch reactors, Membrane Biological Reactors-Trickling Filters-Bio Fower-RBC-Moving Bed Reactors-fluidized bed reactors, aerated lagoons, waste stabilization ponds – nutrient removal systems – natural treatment systems, constructed wet land – Disinfection – disposal options – reclamation and reuse – Flow charts, layout, PID, hydraulic profile, recent trends					
UNIT III	ANAEROBIC 7	REATMENT OF WASTEWATEF	Ł				9
	beds MBR, sept	pended growth, Design of units – UA ic tank and disposal – Nutrient ren aulic profile – Recent trends.	-				

#### UNIT IV SLUDGE TREATMENT AND DISPOSAL

Design of sludge management facilities, sludge thickening, sludge digestion, biogas generation, sludge dewatering(mechanical and gravity) Layout, PID, hydraulics profile – upgrading existing plants – ultimate residue disposal –

recent advances.

# UNIT V OPERATION AND MAINTENANCE

Construction and Operational Maintenance problems – Trouble shooting – Planning, Organizing and Controlling of plant operations – capacity building - Retrofitting Case studies – sewage treatment plants – sludge management facilities.

L	Т	Р	Total
45	0	0	45

# **TEXT BOOKS**

- 1. Arceivala, S.J., "Wastewater Treatment for Pollution Control", Tata Mcgraw Hill, New Delhi, III Edition, 2006.
- 2. David Hendricks, "Fundamentals of Water Treatment Unit Process", CRC Press, New York, 2010
- 3. F.R. Spellman, "Hand Book of Water and Wastewater Treatment Plant operations", CRC Press, New York, III, Edition, 2013.

# REFERENCES

- 1. Manual on "Sewerage and Sewage Treatment" CPHEEO, Ministry of Urban Development, Government of India,New Delhi, 1999.
- Metcalf & Eddy, INC, "Wastewater Engineering Treatment and Reuse", Fourth Edition, Tata Mc Graw-Hill Publishing Company Limited, New Delhi, 2003.
- 3. Qasim, S.R. "Wastewater Treatment Plant, Planning, Design & Operation", Technomic Publications, New York, II Edition, 1998.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С
II	<b>YEN206</b>	Unit Operation Laboratory	0	0	2	2

List of Experiments:

- 1. Coagulation and Flocculation
- 2. Studies on Filtration- Characteristics of Filter media
- 3. Disinfection for Drinking water (Chlorination
- 4. Water Softening Lime and Caustic Soda Process
- 5. Sludge volume Index
- 6. Sedimentation Settling Column Analysis of Flocculating Particles
- 7. Adsorption Colour Removal by Adsorption
- 8. Heavy Metal Precipitation
- 9. Kinetics of Activated Sludge Process

L	Т	Р	Total
0	0	30	30

9

- 1. Standard Methods for the Examination of Water and Wastewater, 20th Edition.
- 2. Manual on water supply and Treatment, CPHEEO, Ministry of Urban Development, GOI, New Delhi, 2000.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С
Ш	YEN 207	Mini Project	0	0	4	2
		COURSE CONTENT				

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted. The students will be evaluated through a viva-voce examination by a panel of examiners

Semester	<b>Course Code</b>	Course Name	L	Т	Р	C
III	YEN303	<b>Dissertation Phase - I</b>	0	0	20	10

# **COURSE CONTENT**

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

Semester Co	ourse Code	Course Name	L	Т	Р	С
IV	YEN401	Dissertation Phase - II	0	0	32	16

# **COURSE CONTENT**

The student should continue the phase I work on the selected topic as per the formulated methodology. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated based on the report and the viva-voce examination by a panel of examiners including one external.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С	
Ι	YEN103B	<b>Environmental Economics</b>	3	0	0	3	
		COURSE CONTENT		•		1	
UNIT I	THEORY AND CO	DNCEPT				9	
	environmental econ	ance of environmental economics – de omics – basic theory – market system a ment – the economics of externalities.					
UNIT II	ENVIRONMENT	AND ECONOMICS				9	
	population and envi	Environment – economy linkage – environment as a necessity and luxury – population and environment linkage – environmental use as an allocative problem – environment as a public good – valuation of environmental damages: land, water, air and forest.					
UNIT III	ENVIRONMENTA	ENVIRONMENTAL PROBLEMS					
	pollution – sound pollution – sound pollution – glob	nent and environmental problems – a ollution – energy use and environment probal warming and green house effect – logy – environmental degradation.	roblem	– pollu	tion an	d	
UNIT IV	POLLUTION CON	NTROL				9	
	developing countries	and abatement of pollution – choice of s – environmental law – sustainable devel nent – environmental planning – environm	lopment	– indi	cators of		
UNIT V	POLICY MEASUR	RES				9	
		sign of environmental policy – Indian en tion control boards and their function.	vironme	ent poli	cies an	d	
		Γ	L	Т	Р	Total	
		Ē	45	0	0	45	
TEXT BO	OVC	L	I				

- 1. M. Karpagam (1993), Environmental Economics, Sterling Publishers, New Delhi.
- 2. S. Sankaran(1994) Environmental Economics, Margham, Madras
- 3. N.Rajalakshmi and DhulasiBirundha (1994), Environomics, Economic analysis of Enviroment, Allied publishers, Ahmedabad.
- 4. S.Varadarajan and S. Elangovan(1992), Environmental economics, Speed, Chennai.

- 1. Singh G.N (Ed.) (1991) Environmental Economics, Mittal Publications, New Delhi.
- 2. Garge, M.R. (Ed.) (1996), Environmental Pollution and Protection, Deep and Deep Publications, New Delhi.
- 3. Lodha, S.L (Ed.) (1991), Economics of Environment, Publishers, New Delhi. 8. The Hindu survey of Environment: Annual Reports.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С
Ι	<b>YEN103 C</b>	Air Pollution and Control	3	0	0	3
		COURSE CONTENT				
UNIT I	INTRODUCTION	TO AIR POLLUTANTS				9
	problem - Sources vegetation and prop - Atmospheric stab thermal turbulence theories - Steady-st	agement system - Air quality manageme s and classification of pollutants and the perty - Global implications of air pollution wility – Micrometeorology - Atmospheric - Wind profiles - Atmospheric Diffusi tate atmospheric diffusion equation – Plus and emission standards – Air pollution inc	eir eff - Mete turbule on - A me rise	ect on corology ence - r Atmosp e - Diff	human Funda nechani heric d usion n	health mentals ical and iffusion nodels -
UNIT II	CONTROL OF PA	ARTICULATE CONTAMINANTS				9
	of collection efficie	- Filters, gravitational, Centrifugal – multi ency, pressure drop, wet collectors, Electr erational Considerations – Process Cont	ostatic	Precipi	tation t	heory –
UNIT III	CONTROL OF G	ASEOUS CONTAMINANTS				9
	Design and perform Incineration - Equip Pollution Control T	ions – Adsorption - principal adsorbents nance equations – Condensation - design pment description - design and performant echnologies – Bio-Scrubbers, Biofilters – Monitoring – Case Studies.	and po ce equ	erforma ations -	nce equ Biolog	uation – ical Air
UNIT IV	EMERGING TRE	INDS				9
	Mechanical Particu Engines – Membra	on – Automobile Air Pollution and its co ulate Collectors – Entrainment Separat ane Process – Ultraviolet Photolysis – Hig & Economic Feasibility of selected em	ion – gh Effi	Interna iciency	ıl Corr Particu	bustion late Air
UNIT V	INDOOR AIR QU	JALITY				9
	sources of indoor	s of Indoor Air Quality Problems- Risk of Air pollutants- Indoor Air Quality Regu Quality Control- Case Studies			-	
			L	Т	Р	Total
			45	0	0	45
TEXT BO	OKS					
2. Lawr Toky	ence K. Wang, Norro, 2004.	ion Control Engineering, Mc Graw Hill, No nan C. Parelra, Yung Tse Hung, Air Po ion and Control Technologies', Allied Pub	llution	Contro	l Engi	-
REFEREN	•	ion and control recimologies , Amed I du	11511013		., muia,	2002
		ptak 'Air Pollution', Lewis Publishers, 200	)().			
		tion (Vol.I – Vol.VIII)', Academic Press, 2				

3. Wayne T.Davis, 'Air Pollution Engineering Manual', John Wiley & Sons, Inc., 2000

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С			
Ι	YEN104C	Environmental Policies and Legislation	3	0	0	3			
		COURSE CONTENT							
UNIT I	INTRODUCTI	ON				8			
	Criminal law –	prudence – Environmental law relation with Common Law – Relevant sections of the Co Jure Code – Indian Penal Code.							
UNIT II	INDIAN CONS	STITUTION AND ENVIRONMENT				10			
	48 (A) and 5 management ar	Introduction – Fundamental Rights – Directive Principles of State Policy – Article 48 (A) and 51-A(g) Judicial enforceability – Constitution and Resources management and pollution control – Indian Forest Policy (1990) – Indian Environmental Policy (1992).							
UNIT III	ADMINISTRA	DMINISTRATIVE REGIME & LEGAL REGIME							
	functions, Acco Lower of judici special reference	Administrative regulations – constitution of Pollution Control Boards Powers, functions, Accounts, Audit etc. – Formal Justice Delivery mechanism Higher and Lower of judiciary – Constitutional remedies writ jurisdiction Article 32, 226 136 special reference to Mandamus and Certiorari for pollution abatement – Equitable remedies for pollution control							
UNIT IV	POLLUTION	CONTROL LAWS				9			
	Administrative regulation under recent legislations in water pollution control. Water (prevention & control of pollution) Act 1974 as amended by Amendment Act 1988. Water (prevention and control of pollution) Rules 1975 Water (prevention & control or Pollution) cess Act. 1977 as amended by Amendment Act 1987 and relevant notifications.								
	ENVIRONMENTAL (PROTECTION) ACT 1986								
UNIT V	ENVIRONME	NIAL (PROTECTION) ACT 1980				9			
UNIT V	Relevant notific	cations in connection with Hazardous Was edical wastes (management and handling),		<u> </u>		nd			
UNIT V	Relevant notific handling) Biom	cations in connection with Hazardous Was edical wastes (management and handling),		<u> </u>		nd			
UNIT V	Relevant notific handling) Biom	cations in connection with Hazardous Was edical wastes (management and handling),	Noise	polluti	on, Ec	nd o-			

- 1. Constitution of India Eastern Book Company Lucknow 12th Edn. 1997.
- 2. Constitutional Law of India J.N. Pandey 1997 (31st Edn.) Central Law Agency Allahabad.
- 3. Administrative Law U.P.D. Kesari 1998. Universal Book Trade Delhi.
- 4. Environmental Law H.N. Tiwari, Allahabad Law. Agency 1997

- 1. Environmental, A., Divan and Noble M. Environmental Law and Policy in India (cases, Materials and Statutes) 1991 Tripathi Bombay.
- 2. Environmental Policy. Forest Policy. Bare Acts Government Gazette Notification

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С
II	YEN203C	Solid and Hazardous Waste Management	3	0	0	3
		COURSE CONTENT		1		1
U <b>NIT I</b>	SOURCES, CI	ASSIFICATION AND REGULATORY FR	AME	WORF	K	9
	management – Salient features wastes, hazardo	ces of solid and hazardous wastes - Need for so Elements of integrated waste management and of Indian legislations on management and han bus wastes, biomedical wastes, lead acid batte ash – Financing waste management.	d roles dling	s of stal <mark>of mun</mark>	keholde icipal s	ers - olid
J <b>NIT II</b>	WASTE CHA	RACTERIZATION AND SOURCE REDUC	TION	1		9
	properties of so characterization	on rates and variation - Composition, physic lid wastes – Hazardous Characteristics – TCL plan - Source reduction of wastes –Waste exc Recycling and reuse	P tests	– wast	e samp	ling and
UNIT III	STORAGE, C	OLLECTION AND TRANSPORT OF WAS	TES			9
	wastes – Analy stations Optimi	egregation of wastes at source – storage and o ysis of Collection systems - Need for transf zing waste allocation– compatibility, storage es – hazardous waste manifests and transport	er and	l transp	ort – '	Transfer
UNIT IV	WASTE PROC	CESSING TECHNOLOGIES				9
	biological &cho thermal conver	waste processing – material separation and emical conversion technologies – methods an sion technologies, energy recovery – incir hazardous wastes- treatment of biomedical was	d con neratio	trols of	Comp	osting -
UNIT V	WASTE DISP	OSAL				9
	<ul> <li>site selection</li> <li>bioreactors – let</li> </ul>	options – Disposal in landfills - Landfill Class - design and operation of sanitary landfills, eachate and landfill gas management – landfil ehabilitation of open dumps – landfill remediation	secure 1 closu	e landfi	lls and	landfill
		Γ	L	Т	Р	Total
			45	0	0	45
FEXT BO	OKS					
1. George	e Techobanoglous	s et al, "Integrated Solid Waste Management",	McG	raw - H	ill, 201	4.
Of. Inc	lia, New Delhi, 2				•	
Hill 19	97.	n Ellasen; Solid Waste Engineering Principles	and M	anagen	nent, M	cGraw -
REFEREN						
		ebers," Municipal Solid Wastes-Problems & S				
2. Blide 1993.	A.D.& Sundaresa	nn, B.B,"Solid Waste Management in Develo	ping	Countr	ies", IN	NSDOC,

- 3. Georges E. Ekosse, Rogers W'O Okut-Uma, Pollution control & Waste management in Developing Countries, Commonwealth Publishers, New Delhi, 2000.
- 4. B. B. Sundaresan, A. D. Bhide Solid Waste Management, Collection, Processing and Disposal, Mudrashilpa Offset Printers, 2001.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С				
П	YEN204B	Environmental Geotechnology	3	0	0	3				
-	1111/2040	COURSE CONTENT		U	v	5				
UNIT I	SOIL PROFILE	COURSE CONTENT				0				
UNITI			P			9				
		se system; Soil – environment interactions; media; Water cycle with special reference to	-		water	n				
UNIT II	SOIL MINERAL	OGY				9				
	Soil mineralogy; Mineralogical char	significance of mineralogy in determ	ining	soil b	ehavio	r;				
UNIT III	MECHANISMS	OF SOIL-WATER INTERACTIONS				9				
	Diffuse double layer models; Force of attraction and repulsion; Soil- Water contaminant interaction; Theories of Ion exchange; Influence of organic and inorganic chemical interaction.									
UNIT IV	WASTE & ITS T	RANSPORT IN SOIL				9				
		e containment facilities; desirable properties tion; contaminated site remediation	s of soi	il; cont	amina	nt				
UNIT V	REMEDIAL TEC	CHNIQUES				9				
Introduction to advanced soil characterization techniques; volumetric water content; gas permeation in soil; electrical and thermal properties; pore –size distribution; contaminant analysis										
		Γ	L	Т	Р	Total				
			L 45	T 0	P 0	Total 45				
TEXT BO	OKS									
1. Geotec		ironmental Engineering Handbook, Rowe	45	0	0	45				
1. Geotec Publisł	chnical and Geoenvi hers 2001	ironmental Engineering Handbook, Rowe	<b>45</b>	0	0 ver A	45				
<ol> <li>Geotec Publish</li> <li>Fundar</li> </ol>	chnical and Geoenvi hers 2001 mentals of Soil Behav		45 e R. K and Son	0	0 ver A	45				

- 1. Clay Barrier Systems for Waste Disposal Facilities, Rowe J.R., Quigley R.K., R.M. and Booker, Chapman and Hall 1995
- 2. Geoenvironmental Engineering: Principles and Applications, Reddi L.N. And Inyang H.F, Marcel Dekker Inc 2000
- 3. Waste Containment Systems, Waste Stabilization And Landfills: Design and Evaluation, Sharma H. D. And Lewis S.P, John Wiley & Sons Inc 1994

Semester	<b>Course Code</b>	C	ourse Name		L	Т	Р	С
Π	YEN301A		er Contamination sport Modeling	and	3	0	0	3
		COUR	SE CONTENT					
UNIT I	INTRODUCTIO	N TO TRANSP	ORT PHENOME	NA				9
			dispersion, advec purces and sinks- po				ervativ	re
UNIT II	FLOW AND TR	ANSPORT EQU	JATIONS					9
	Governing Equations for flow and transport in surface and subsurface waters, chemical and biological process models, simplified models for lakes, streams, and estuaries.							
UNIT III	MODEL COMP	LEXITY						9
	Selection and development, model resolution, coupled and uncoupled models, Linear and nonlinear models, solution techniques, data requirements for calibration, application and evaluation of environmental control.							
UNIT IV	NUMERICAL M	IODELS						9
	FDM, FEM and lerrors, and stability		hniques, explicit v n techniques.	s. implici	t meth	ods, nu	imerica	al
UNIT V	SOFTWARE M	DDELLING						9
	Stream quality mo	deling and Grou	ndwater transport m	nodeling u	using s	oftware	<i>.</i>	
					L	Т	Р	Total

1. Alexander H.-d Cheng, Jacob Bear, "Modeling Groundwater Flow and Contaminant Transport", springer 02, 2011.

45

0

0

45

- 2. PascualHoracio Benito," Approaches to Modeling Contaminant Transport in Porous Media: Pore-Scale to Regional Scale Investigations,"Proquest, Umi Dissertation Publishing, 09-2011.
- 3. Mark Goltz, Junqi Huang," Analytical Modeling of Solute Transport in Groundwater: Using Models to Understand the Effect of Natural Processes on Contaminant Fate and Transport I", John Wiley & Sons, Aug 2010.

- 1. Rafael Antonio PrietoPiedrahita," Treatment of Contaminated Sediments Using Reactive Cap Technology: Characterization and Modeling of Geotechnical, Hydraulic and Contaminant Transport", Proquest, Umi Dissertation Publishing, Sep 2011.
- 2. ChunmiaoZheng, Gordon D. Bennett," Applied Contaminant Transport Modeling", Wiley-Interscience, February 2002.
- 3. Shahar Shlomi,"Combining Geostatistical Analysis and Flow-And-Transport Models to Improve Groundwater Contaminant Plume Estimation, "Proquest, Umi Dissertation Publishing,2011

Semester	<b>Course Code</b>	Course Name	L	Т	Р	C
	YMEOE1	INDUSTRIAL SAFETY	3	0	0	3
COURSE	CONTENT					
UNIT I						9
	hazards, types, cau factories act 1948 f cleanliness, fire, gu	ccident, causes, types, results and control uses and preventive steps/procedure, for health and safety, wash rooms, dr arding, pressure vessels, etc, Safety c hipment and methods.	<mark>describe</mark> inking w	salient ater layo	<mark>point</mark> outs, li	<mark>s of</mark> ight,
UNIT II						9
	engineering, Primat department, Types	naintenance engineering: Definition ry and secondary functions and resp of maintenance, Types and applic enance cost & its relation with replacer	onsibility ations o	7 of ma f tools	intena used	nce for
UNIT III						9
	methods, lubricants working and applic Splash lubrication, lubrication, vii. Ri	and their prevention: Wear- types, cau s-types and applications, Lubrication eations, i. Screw down grease cup, ii iv. Gravity lubrication, v. Wick feed ng lubrication, Definition, principle corrosion, corrosion prevention method	methods Pressur lubricat and fact	, genera e grease ion vi.	al sket gun, Side f	tch, iii. eed
UNIT IV						9
	applications, sequen tree for problems in electrical equipment	tracing-concept and importance, decis ace of fault finding activities, show as d n machine tools, hydraulic, pneumatic t's like, I. Any one machine tool, ii. Pu engine, v. Boiler,vi. Electrical motors, ral causes.	ecision t , automo mp iii. A	ree, drav otive, the ir comp	v decis ermal a ressor,	ion and iv.
UNIT V						9
	degreasing, cleaning overhauling of elect repair complexities maintenance. Steps/ tools, ii. Pumps, iii schedule of preve	ventive maintenance: Periodic inspe- g and repairing schemes, overhauling of trical motor, common troubles and re- and its use, definition, need, steps and procedure for periodic and preventive r . Air compressors, iv. Diesel generation ntive maintenance of mechanical a ntive maintenance. Repair cycle concep	of mechan emedies l advanta naintenan g (DG) s and elec	nical con of electranges of p nice of: I. sets, Pro trical en	npone ic mo revent Mach gram	nts, tor, ive ine and
	- ^		L	Т	Р	Total
			45	0	0	45
REFEREN	ICES		L			1
1. Maintena	ance Engineering Hand	lbook, Higgins & Morrow, Da Informa	tion Serv	ices.		
		P. Garg, S. Chand and Company.				

- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С			
Ι	QEN101	Chemistry and Microbiology for Environmental Engineers	3	0	0	3			
		COURSE CONTENT							
UNIT I	FUNDAMENTA	LS ON ANALYTICAL CHEMISTRY				12			
	<ul> <li>Redox potential</li> <li>Electrode potenti</li> <li>electrodes, ion s</li> <li>Flame photometric</li> <li>visible spectrophicadmium in wate</li> </ul>	Oxidation and reduction reactions, balancing equation by electron method -Colloids – Redox potentials – partition co-efficient – Beer – Lambert's Law – Limitations – Electrode potential – Applications of potentiometry – pH measurements, glass electrodes, ion selective electrodes – Instrumentations- Atomic spectroscopy – Flame photometry – Atomic Adsorption Spectrophotometry – principle- UV– visible spectrophotometer -Application in determination of mercury, lead and cadmium in water samples. Chromatography – Gas chromatography – simple instrumentation – Application in measuring SO ₂ , NO ₂ & H ₂ S by spectrophotometry <b>DEGRADATION OF CHEMICALS</b>							
UNIT II	DEGRADATION	N OF CHEMICALS				6			
	Transport and transformation of chemicals – DO, BOD and COD – Photo catalysis - Degradation of foodstuffs, detergents, pesticides and hydrocarbons								
UNIT III	SOIL CHEMIST	'RY				9			
	Soil properties, cl affected soil and i	ay minerals - acid-base and ion-exchange ts remediation	reaction	ns in sc	oil - sa	alt			
UNIT IV	MICROORGAN	NISMS AND NUTRITIONAL REQUIREM	MENT	S		9			
	Basic principles of microbiology- structure and function of microbial cell-pure and mixed cultures-metabolism-Aerobic and Anaerobic pathways- Microbial growth and growth kinetics-Classification and morphological aspects of Bacteria, Fungi, Protozoa and algae. Microbial Nutrition –Growth of micro-organism in different media, growth curve, methods of enumeration of micro-organisms, sterilization and disinfection.								
UNIT V	MICROBIOLOG	GY IN WASTE WATER				9			
	(biofilter and bio	ds to treat waste water- Microbiology in scrubber), biodegradation of toxic pollutation in microorganisms in environmental cultures	nt. Pra						
		Γ	L	Т	Р	Total			
			45	0	0	45			

- 1. Sawyer, C.N., MacCarty, P.L. and Parkin, G.F., Chemistry for Environmental Engineering and Science, Tata McGraw Hill, Fifth edition, New Delhi 2003.
- 2. Colin Baird 'Environmental Chemistry', Freeman and company, New York, 2011.
- 3. Pelczar, Jr, M.J., E.C.S., Krieg, R.Noel., and Pelczar Merna Foss. "Microbiology 5th edition.
- 4. Tata McGraw Hill Publishing Company Limited, New Delhi-2001
- 5. Maeir, R.M., I.L.Pepper and C.P. Gerba, " Environmental Microbiology", Academic Press, New York, 2008

- 1. Des W. Connell, "Basic Concepts of Environmental Chemistry", CRC Press, 2nd Edition, 2005
- Gary W VanLoon, Stephen J Duffy," Environmental Chemistry: A Global Perspective", Oxford University Press, 2010

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С
Ι	QEN103	Microbiology Laboratory	0	0	2	2
list of Exp	eriments:					
Pr	eparation of culture m	edia				
Isc	plation, culturing and	Identification of Microorganisms				
M	icroorganisms from po	olluted habitats (soil, water and air)				
M	easurement of growth	of microorganisms				
Bi	odegradation of organ	ic matter in waste water Analysis of air b	orne mi	croorg	anisms	
Sta	aining of bacteria.					
Ef Ef	fect of pH, temperatur	re on microbial growth				
Po	llutant removal using	microbes from industrial effluent.				
Ba	cteriological analysis	of wastewater (Coliforms, E.coli, Strepto	coccus)	- MPI	N	
10. Ba	cteriological analysis	of wastewater (Coliforms, Streptococcus	) - MF t	echniq	ues	
			L	Т	Р	Total

- 1. Benfield, L.D.; Weand, B.L.; Judkins, J.F. (1982) Process chemistry for water and wastewater. Prentice Hall Inc Englewood Cliffs New Jersey.
- 2. Weber Jr., W.J. (1972) Physico-chemical Process for Water Quality Control. Wiley Inc. Newyork.
- 3. Peavy, H.S., Rowe, D.R., Tchobanoglous, G. Environmental Engineering, McGraw Hills, New York, 1985.

Semester	<b>Course Code</b>	Course	Name	L	Т	Р	С			
Ι	QRM 104	<b>Research Metho</b>	dology and IPR	2	0	0	2			
COURSE	CONTENT									
UNIT I							6			
UNIT II							6			
	Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.									
UNIT III							6			
	Patenting and development. Int	Development: techno ernational Scenario:	, Designs, Trade and C ological research, int International coopera , Patenting under PCT.	novatio tion o	n, pat	enting,				
UNIT IV							6			
		ope of Patent Rights. I atabases. Geographical	Licensing and transfer of Indications.	of tech	nology.	Patent				

U	JN	I	Т	V

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

L	Т	Р	Total
30	0	0	30

#### REFERENCES

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students""
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Semester	<b>Course Code</b>	Course Name		L	Т	Р	С		
Π	QEN201	Unit Operation and Proc Environmental syste		3	0	0	3		
		COURSE CONTEN	Γ				<u> </u>		
UNIT I	PRIMARY TRE	ATMENT METHODS					9		
	Screening-Solid Coagulation and	Separation-Floatation – Equaliz locculation	zation – meas	ureme	nt – M	ixing –	-		
UNIT II	SEDIMENTAT	ON AND FILTRATION					9		
		rinciples – Types of settling – Thickening – Dick's theory, Talmadge theory, inciple of filtration – Carman – Kozeny equation – Types of filters							
UNIT III	AERATION	<b>CRATION</b> 9							
		Two film theory – Mass transfer – Fixed and floating aerators – Designing of aerator – Air stripping – packed columns and trays							
UNIT IV	ADSORPTION						9		
	•	ion – Isotherms – fixed and flu befinition and types, ion excl s			•				
UNIT V	MEMBRANE P	ROCESSES					9		
		and Electro dialysis - Specon / Reduction Processes, Diston Process.							
				L	Т	Р	Total		
			4	45	0	0	45		

- 1. Metcalf Eddy ,Inc. George Tchobanoglous, Franklin Burton H, David Stensel," Wastewater Engineering", Tata McGraw-Hill Education ,2002
- 2. Hendricks," Water Treatment Unit Processes: Physical and Chemical," CRC, 2006.
- 3. Pelczar Jr. Michael," Microbiology", Tata McGraw-Hill Education, 2001

#### REFERENCES

- 1. Tushar p,"Adsorption: Surface Chemistry," Rajat Publications, 2004.
- 2. Ajey Kumar Patel, Achanta Ramakrishna Rao," Aeration Systems for Wastewater Treatment", Lap Lambert Academic PublishinG,-2011
- 3. James Cappucciono, Natalic Sherman,"Microbiology: A Laboratory Manual," Pearson, 2007.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С
II	QEN203	Environmental Quality Measurements Laboratory-I (Water and Wastewater)	0	0	2	2

#### List of Experiments:

- 1. Determination of pH, Turbidity and Electrical conductivity
- 2. Determination of Alkalinity
- 3. Determination of Acidity
- 4. Determination of Hardness
- 5. Determination of Sulphates
- 6. Determination of Fluorides
- 7. Determination of Nitrates
- 8. Residual chlorine analysis
- 9. Test on Dissolved Oxygen and BOD
- 10. Test on COD

	L	Т	Р	Total	
	0	0	30	30	
20088					

# TEXT BOOKS

- 1. Standard Methods for the Examination of Water and Wastewater, 20th Edition.
- 2. Manual on water supply and Treatment, CPHEEO, Ministry of Urban Development, GOI, New Delhi, 2000.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С
III	QEN303	Environmental Quality Measurements Laboratory-II (Air,Noise and Solidwaste)	0	0	2	2

# List of Experiments:

- 1. Determination of Ambient Air Quality Parameters- SPM, CO, NOx and SOx
- 2. Soil Analysis pH and Conductivity,
- 3. Cation Exchange Capacity
- 4. Determination of Noise
- 5. Composition of Municipal Solidwaste
- 6. Proximate and Ultimate Analysis
- 7. Total Solids, Suspended Solids, Volatile Solids, Non Volatile Solids

L	Т	Р	Total
0	0	30	30

# TEXT BOOKS

1. Standard Methods for the Examination of Water and Wastewater, 20th Edition.

2. Manual on water supply and Treatment, CPHEEO, Ministry of Urban Development, GOI, New Delhi, 2000.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С				
IV	<b>QEN401</b>	<b>Biological Treatment of Wastewater</b>	3	0	0	3				
	COURSE CONTENT									
UNIT I	INTRODUCTIO	INTRODUCTION								
	Objectives of biological treatment – significance – Principles of aerobic and anaerobic treatment - kinetics of biological growth – Factors affecting growth – attached and suspended growth - Determination of Kinetic coefficients for organics removal – Biodegradability assessment –selection of process- reactors-batch- continuous type									
UNIT II	AEROBIC TRE	CATMENT OF WASTEWATER				9				
	Design of sewage treatment plant units –Activated Sludge process and variations, Sequencing Batch reactors, Membrane Biological Reactors-Trickling Filters-Bio Tower-RBC-Moving Bed Reactors-fluidized bed reactors, aerated lagoons, waste stabilization ponds – nutrient removal systems – natural treatment systems, constructed wet land – Disinfection – disposal options – reclamation and reuse – Flow charts, layout, PID, hydraulic profile, recent trends									
UNIT III	ANAEROBIC 7	TREATMENT OF WASTEWATER				9				
	Attached and suspended growth, Design of units – UASB, up flow filters, Fluidized beds MBR, septic tank and disposal – Nutrient removal systems – Flow chart, Layout and Hydraulic profile – Recent trends.									
UNIT IV	SLUDGE TREA	ATMENT AND DISPOSAL				9				
	Design of sludge management facilities, sludge thickening, sludge digestion, biogas generation, sludge dewatering(mechanical and gravity) Layout, PID, hydraulics profile – upgrading existing plants – ultimate residue disposal – recent advances.									

#### UNIT V OPERATION AND MAINTENANCE

Construction and Operational Maintenance problems – Trouble shooting – Planning, Organizing and Controlling of plant operations – capacity building - Retrofitting Case studies – sewage treatment plants – sludge management facilities.

L	Т	Р	Total
45	0	0	45

#### **TEXT BOOKS**

- 1. Arceivala, S.J., "Wastewater Treatment for Pollution Control", Tata Mcgraw Hill, New Delhi, III Edition, 2006.
- 2. David Hendricks, "Fundamentals of Water Treatment Unit Process", CRC Press, New York, 2010
- 3. F.R. Spellman, "Hand Book of Water and Wastewater Treatment Plant operations", CRC Press, New York, III, Edition, 2013.

# REFERENCES

- 1. Manual on "Sewerage and Sewage Treatment" CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1999.
- Metcalf & Eddy, INC, "Wastewater Engineering Treatment and Reuse", Fourth Edition, Tata Mc Graw-Hill Publishing Company Limited, New Delhi, 2003.
- 3. Qasim, S.R. "Wastewater Treatment Plant, Planning, Design & Operation", Technomic Publications, New York, II Edition, 1998.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С
II	QEN403	Unit Operation Laboratory	0	0	2	2

# List of Experiments:

- 1. Coagulation and Flocculation
- 2. Studies on Filtration- Characteristics of Filter media
- 3. Disinfection for Drinking water (Chlorination
- 4. Water Softening Lime and Caustic Soda Process
- 5. Sludge volume Index
- 6. Sedimentation Settling Column Analysis of Flocculating Particles
- 7. Adsorption Colour Removal by Adsorption
- 8. Heavy Metal Precipitation
- 9. Kinetics of Activated Sludge Process

L	Т	Р	Total
0	0	30	30

# **TEXT BOOKS**

- 1. Standard Methods for the Examination of Water and Wastewater, 20th Edition.
- 2. Manual on water supply and Treatment, CPHEEO, Ministry of Urban Development, GOI, New Delhi, 2000.

Semester	Course Code	Course Name	L	Т	Р	С
IV	QEN404	Mini Project	0	0	4	2

#### **COURSE CONTENT**

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted. The students will be evaluated through a viva-voce examination by a panel of examiners

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С
III	QEN503	<b>Dissertation Phase - I</b>	0	0	20	10

#### **COURSE CONTENT**

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	C
IV	<b>QEN601</b>	<b>Dissertation Phase - II</b>	0	0	32	16

#### **COURSE CONTENT**

The student should continue the phase I work on the selected topic as per the formulated methodology. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated based on the report and the viva-voce examination by a panel of examiners including one external.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С				
Ι	QEN102B	<b>Environmental Economics</b>	3	0	0	3				
		COURSE CONTENT								
UNIT I	THEORY AND C	ONCEPT				9				
	environmental ecor	Nature and significance of environmental economics – definition and scope of environmental economics – basic theory – market system and the environment – welfare and environment – the economics of externalities.								
UNIT II	ENVIRONMENT	ENVIRONMENT AND ECONOMICS								
	population and env	Environment – economy linkage – environment as a necessity and luxury – population and environment linkage – environmental use as an allocative problem – environment as a public good – valuation of environmental damages: land, water, air and forest.								
UNIT III	ENVIRONMENT	AL PROBLEMS				9				
	pollution – sound p urbanization – glo	ment and environmental problems – a ollution – energy use and environment problem bal warming and green house effect – blogy – environmental degradation.	oblem	– pollut	tion an	d				
UNIT IV	POLLUTION CO	NTROL				9				
	developing countrie	and abatement of pollution – choice of s – environmental law – sustainable develo ment – environmental planning – environm	opment	t – indic	ators c					
UNIT V	POLICY MEASU	RES				9				
		esign of environmental policy – Indian envition control boards and their function.	rironme	ent poli	cies an	d				
		Γ	L	Т	Р	Total				
	45 0 0 45									
TEXT BO	OKS									
1 M Ka	magam (1002) Envir	onmental Economics Sterling Publishers N	Jow D	alhi						

- 1. M. Karpagam (1993), Environmental Economics, Sterling Publishers, New Delhi.
- 2. S. Sankaran(1994) Environmental Economics, Margham, Madras
- 3. N.Rajalakshmi and DhulasiBirundha (1994), Environomics, Economic analysis of Enviroment, Allied publishers, Ahmedabad.

4. S.Varadarajan and S. Elangovan(1992), Environmental economics, Speed, Chennai.

- 1. Singh G.N (Ed.) (1991) Environmental Economics, Mittal Publications, New Delhi.
- 2. Garge, M.R. (Ed.) (1996), Environmental Pollution and Protection, Deep and Deep Publications, New Delhi.
- 3. Lodha, S.L (Ed.) (1991), Economics of Environment, Publishers, New Delhi. 8. The Hindu survey of Environment: Annual Reports.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С
Ι	QEN102 C	Air Pollution and Control	3	0	0	3

**COURSE CONTENT** 

# UNIT I INTRODUCTION TO AIR POLLUTANTS

Air resource management system - Air quality management - Scales of air pollution problem - Sources and classification of pollutants and their effect on human health vegetation and property - Global implications of air pollution - Meteorology Fundamentals - Atmospheric stability – Micrometeorology - Atmospheric turbulence - mechanical and thermal turbulence - Wind profiles - Atmospheric Diffusion - Atmospheric diffusion theories - Steady-state atmospheric diffusion equation – Plume rise - Diffusion models - Ambient air quality and emission standards – Air pollution indices – Air Quality Sampling and Monitoring.

# UNIT II CONTROL OF PARTICULATE CONTAMINANTS

Settling chambers - Filters, gravitational, Centrifugal – multiple type cyclones, prediction of collection efficiency, pressure drop, wet collectors, Electrostatic Precipitation theory – ESP design – Operational Considerations – Process Control and Monitoring – Case Studies.

# UNIT III CONTROL OF GASEOUS CONTAMINANTS

Absorption – principles - description of equipment-packed and plate columns - design and performance equations – Adsorption - principal adsorbents - Equipment descriptions – Design and performance equations – Condensation - design and performance equation – Incineration - Equipment description - design and performance equations - Biological Air Pollution Control Technologies – Bio-Scrubbers, Biofilters – Operational Considerations – Process Control and Monitoring – Case Studies.

#### UNIT IV EMERGING TRENDS

Process Modification – Automobile Air Pollution and its control – Fuel Modification -Mechanical Particulate Collectors – Entrainment Separation – Internal Combustion Engines – Membrane Process – Ultraviolet Photolysis – High Efficiency Particulate Air Filters – Technical & Economic Feasibility of selected emerging technologies for Air pollution control

# UNIT V INDOOR AIR QUALITY

Sources and Causes of Indoor Air Quality Problems- Risk due to Indoor Air pollutantssources of indoor Air pollutants- Indoor Air Quality Regulations- Indoor Air Quality Models- Indoor Air Quality Control- Case Studies

L	Т	Р	Total
45	0	0	45

9

9

9

# TEXT BOOKS

- 1. Noel de Nevers, Air Pollution Control Engineering, Mc Graw Hill, New York, 2010.
- 2. Lawrence K. Wang, Norman C. Parelra, Yung Tse Hung, Air Pollution Control Engineering, Tokyo, 2004.
- 3. Anjaneyulu. Y, 'Air Pollution and Control Technologies', Allied Publishers (P) Ltd., India, 2002

- 1. David H.F. Liu, Bela G. Liptak 'Air Pollution', Lewis Publishers, 2000.
- 2. Arthur C.Stern, 'Air Pollution (Vol.I Vol.VIII)', Academic Press, 2006.
- 3. Wayne T.Davis, 'Air Pollution Engineering Manual', John Wiley & Sons, Inc., 2000

	<b>Course Code</b>		Cours	se Name		L	Т	P	С
II	QEN202C	Environ	nental Po	licies and Leg	islation	3	0	0	3
		(	COURSE	CONTENT				1	
UNIT I	INTRODUCTI	ON							8
	Basics of juris Criminal law – Criminal Proced	Common La	aw – Relev	vant sections of					
UNIT II	INDIAN CONS	STITUTION	NAND EN	VIRONMEN	T				10
	Introduction – Fundamental Rights – Directive Principles of State Policy – Article 48 (A) and 51-A(g) Judicial enforceability – Constitution and Resources management and pollution control – Indian Forest Policy (1990) – Indian Environmental Policy (1992).						es		
UNIT III	ADMINISTRA	TIVE REG	IME & L	EGAL REGI	ME				9
	Administrative functions, Acco Lower of judici special reference remedies for pol	unts, Audit ary – Const e to Mandar	etc. – For itutional re nus and C	mal Justice D emedies writ j	elivery me urisdiction	echanis Artic	sm Hig le 32, 2	ther and 226 13	nd 36
UNIT IV	POLLUTION CONTROL LAWS								
		CONTROL	LAWS						9
	Administrative r (prevention & c Water (prevention) ce notifications.	regulation un ontrol of pol on and contr	nder recent llution) Ac ol of pollu	t 1974 as ame tion) Rules 19	nded by A 75 Water	mendr prevei	ment Antion &	ct 198 contr	er 8. ol
UNIT V	(prevention & co Water (prevention or Pollution) ce	regulation un ontrol of pol on and contr ess Act. 197	nder recent llution) Ac ol of pollu 7 as amer	t 1974 as ame tion) Rules 19 nded by Ame	nded by A 75 Water ndment A	mendr prevei	ment Antion &	ct 198 contr	er 8. ol
UNIT V	(prevention & co Water (prevention or Pollution) ce notifications.	regulation un ontrol of pol on and contr ess Act. 197 <b>NTAL (PRC</b> cations in co redical waste	nder recent llution) Ac ol of pollu 7 as amer <b>DTECTIO</b> onnection	t 1974 as ame tion) Rules 19 nded by Amer <b>N) ACT 1986</b> with Hazardo	nded by A 75 Water ndment A bus Wast	mendr (preven ct 198 es (ma	ment Antion & 7 and	ct 198 contr releva ent an	er 8. ol nt 9
UNIT V	<ul> <li>(prevention &amp; cd Water (prevention) ce notifications.</li> <li>ENVIRONME Relevant notifications</li> </ul>	regulation un ontrol of pol on and contr ess Act. 197 <b>NTAL (PRC</b> cations in co redical waste	nder recent llution) Ac ol of pollu 7 as amer <b>DTECTIO</b> onnection	t 1974 as ame tion) Rules 19 nded by Amer <b>N) ACT 1986</b> with Hazardo	nded by A 75 Water ( ndment A bus Wast (ndling), N	mendr (preven ct 198 es (ma	ment Antion & 7 and	ct 198 contr releva ent an	er 8. ol nt 9
UNIT V	<ul> <li>(prevention &amp; cd Water (prevention) ce notifications.</li> <li>ENVIRONME Relevant notifications</li> </ul>	regulation un ontrol of pol on and contr ess Act. 197 <b>NTAL (PRC</b> cations in co redical waste	nder recent llution) Ac ol of pollu 7 as amer <b>DTECTIO</b> onnection	t 1974 as ame tion) Rules 19 nded by Amer <b>N) ACT 1986</b> with Hazardo	nded by A 75 Water ( ndment A bus Wast (ndling), N	mendr (prever ct 198 es (ma loise p	nent A ntion & 7 and nagem	ct 198 contr releva ent an on, Ec	er 8. ol nt 9 nd 0-

- 1. Constitution of India Eastern Book Company Lucknow 12th Edn. 1997.
- 2. Constitutional Law of India J.N. Pandey 1997 (31st Edn.) Central Law Agency Allahabad.
- 3. Administrative Law U.P.D. Kesari 1998. Universal Book Trade Delhi.
- 4. Environmental Law H.N. Tiwari, Allahabad Law. Agency 1997

- 1. Environmental, A., Divan and Noble M. Environmental Law and Policy in India (cases, Materials and Statutes) 1991 Tripathi Bombay.
- 2. Environmental Policy. Forest Policy. Bare Acts Government Gazette Notification

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С			
III	QEN302C Solid and Hazardous Waste Management 3 0 0								
		COURSE CONTENT							
J <b>NIT I</b>	SOURCES, CI	ASSIFICATION AND REGULATORY FR	AME	WORI	K	9			
	management – Salient features wastes, hazardo	rces of solid and hazardous wastes - Need for Elements of integrated waste management a of Indian legislations on management and h bus wastes, biomedical wastes, lead acid ba ash – Financing waste management.	and ro nandlin	oles of ng of n	stakeho nunicip	olders - al <mark>solid</mark>			
J <b>NIT II</b>	WASTE CHAI	RACTERIZATION AND SOURCE REDUC	TION	N		9			
	properties of so characterization	on rates and variation - Composition, physic lid wastes – Hazardous Characteristics – TCL plan - Source reduction of wastes –Waste exe Recycling and reuse	P tests	s – wast	e samp	ling and			
UNIT III	STORAGE, CO	OLLECTION AND TRANSPORT OF WAS	TES			9			
	wastes – Analy stations Optimi	egregation of wastes at source – storage and o vsis of Collection systems - Need for transf zing waste allocation– compatibility, storage es – hazardous waste manifests and transport	er and	d transp	ort – ⁷	Transfer			
UNIT IV	WASTE PROC	CESSING TECHNOLOGIES				9			
	biological &che thermal conver	waste processing – material separation and emical conversion technologies – methods an sion technologies, energy recovery – incin hazardous wastes- treatment of biomedical was	nd con	trols of	Comp	osting -			
UNIT V	WASTE DISP	OSAL				9			
	<ul> <li>site selection</li> <li>bioreactors – le</li> </ul>	options – Disposal in landfills - Landfill Class - design and operation of sanitary landfills, eachate and landfill gas management – landfil ehabilitation of open dumps – landfill remediation	secure 1 clos	e landfi	lls and	landfill			
		Γ	L	Т	Р	Total			
			45	0	0	45			
TEXT BO	OKS								
1. Georg	ge Techobanoglou	is et al, "Integrated Solid Waste Management"	, Mc	Graw - I	Hill, 20	14.			
Of. Inc	dia, New Delhi, 20	olid waste Management, CPHEEO, Ministry o 000. n Ellasen; Solid Waste Engineering Principles			•				
J. 10010	-	a Enusen, sond waste Engineering i metples		unagen	10111, 111				
Hill 19	197.								
REFEREN	ICES	Rebers," Municipal Solid Wastes-Problems & S	Solutio	ons" ,Le	ewis, 19	997.			

- 3. Georges E. Ekosse, Rogers W'O Okut-Uma, Pollution control & Waste management in Developing Countries, Commonwealth Publishers, New Delhi, 2000.
- 4. B. B. Sundaresan, A. D. Bhide Solid Waste Management, Collection, Processing and Disposal, Mudrashilpa Offset Printers, 2001.

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С
IV	QEN402B	Environmental Geotechnology	3	0	0	3
		COURSE CONTENT				
UNIT I	SOIL PROFILE					9
		se system; Soil – environment interactions nedia; Water cycle with special reference	· •		water in	n
UNIT II	SOIL MINERAL	OGY				9
	Soil mineralogy; Mineralogical char	significance of mineralogy in deter- acterization	nining	soil be	ehavior	,
UNIT III	MECHANISMS (	<b>DF SOIL-WATER INTERACTIONS</b>				9
		yer models; Force of attraction and maction; Theories of Ion exchange; Infl interaction.				
UNIT IV	WASTE & ITS T	RANSPORT IN SOIL				9
	-	containment facilities; desirable propertition; contaminated site remediation	es of so	oil; cont	aminan	t
UNIT V	REMEDIAL TEC	CHNIQUES				9
	Introduction to advanced soil characterization techniques; volumetric water content; gas permeation in soil; electrical and thermal properties; pore –size distribution; contaminant analysis					
			L	Т	Р	Total
			45	0	0	45

- 1. Geotechnical and Geoenvironmental Engineering Handbook, Rowe R. K, Kluwer Academic Publishers 2001
- 2. Fundamentals of Soil Behavior, Mitchell J.K and Soga K., John Wiley and Sons Inc. 2012
- 3. Introduction to Environmental Geotechnology, Fang, H.Y., CRC press 1997
- 4. Geotechnical Practice for Waste Disposal, Daniel D.E, Chapman and Hall 1993

- 1. Clay Barrier Systems for Waste Disposal Facilities, Rowe J.R., Quigley R.K., R.M. and Booker, Chapman and Hall 1995
- 2. Geoenvironmental Engineering: Principles and Applications, Reddi L.N. And Inyang H.F, Marcel Dekker Inc 2000
- 3. Waste Containment Systems, Waste Stabilization And Landfills: Design and Evaluation, Sharma H. D. And Lewis S.P, John Wiley & Sons Inc 1994

Semester	<b>Course Code</b>	Course Name	L	Т	Р	С
V	QEN501A	Ground Water Contamination and Transport Modeling	3	0	0	3
COURSE	CONTENT					
UNIT I	INTRODUCTIO	N TO TRANSPORT PHENOMENA				9
		nenon, diffusion, dispersion, advection, a tive pollutants, sources and sinks- point and			servativ	/e
UNIT II	FLOW AND TR	ANSPORT EQUATIONS				9
		ions for flow and transport in surface logical process models, simplified models				
UNIT III	MODEL COMP	LEXITY				9
	Linear and nonlin	evelopment, model resolution, coupled a lear models, solution techniques, data requivaluation of environmental control.		-		
UNIT IV	NUMERICAL M	IODELS				9
		Finite volume techniques, explicit vs. impl ty, High resolution techniques.	icit me	thods, n	umeric	al
UNIT V	SOFTWARE M	ODELLING				9
	Stream quality mo	odeling and Groundwater transport modelin	g using	softwa	e.	
			L	Т	Р	Total
			45	0	0	45

- 1. Alexander H.-d Cheng, Jacob Bear, "Modeling Groundwater Flow and Contaminant Transport", springer 02, 2011.
- 2. PascualHoracio Benito," Approaches to Modeling Contaminant Transport in Porous Media: Pore-Scale to Regional Scale Investigations,"Proquest, Umi Dissertation Publishing, 09-2011.
- 3. Mark Goltz, Junqi Huang," Analytical Modeling of Solute Transport in Groundwater: Using Models to Understand the Effect of Natural Processes on Contaminant Fate and Transport I", John Wiley & Sons, Aug 2010.

- 1. Rafael Antonio PrietoPiedrahita," Treatment of Contaminated Sediments Using Reactive Cap Technology: Characterization and Modeling of Geotechnical, Hydraulic and Contaminant Transport", Proquest, Umi Dissertation Publishing, Sep 2011.
- 2. ChunmiaoZheng, Gordon D. Bennett," Applied Contaminant Transport Modeling", Wiley-Interscience, February 2002.
- 3. Shahar Shlomi,"Combining Geostatistical Analysis and Flow-And-Transport Models to Improve Groundwater Contaminant Plume Estimation, "Proquest, Umi Dissertation Publishing,2011

UNIT I	QMEOE1	INDUSTRIA	AL SAFETY	3	0	0	3
UNIT I				-	v	U	3
UNIT I		COURSE C	CONTENT				1
	*	types, causes and et 1948 for health ar ire, guarding, pres	preventive steps/pro nd safety, wash room ssure vessels, etc, S	ocedure, s, drinki	descril ing wate	<mark>be sal</mark> i er layo	i <mark>ent</mark> uts,
UNIT II							
	Fundamentals of m engineering, Primar department, Types maintenance, Mainte of equipment.	y and secondary of maintenance,	functions and respo Types and applicat	nsibility ions of	of ma tools	intena used	nce for
UNIT III							
	methods, lubricants working and application, splash lubrication,	-types and applica ations, i. Screw do iv. Gravity lubrica 1g lubrication, De	own grease cup, ii. tion, v. Wick feed finition, principle a	nethods Pressure lubricati nd facto	, genera e grease on vi.	al sket gun, Side f	tch, iii. eed
UNIT IV			-				
	electrical equipment	ce of fault finding a machine tools, hy 's like, I. Any one engine, v. Boiler,vi		cision tr automo np iii. A	ee, drav tive, the ir comp	/ decis ermal a ressor,	ion and iv.
UNIT V							
	overhauling of elect repair complexities a maintenance. Steps/p tools, ii. Pumps, iii. schedule of preven	and repairing sche trical motor, comm and its use, definition procedure for period Air compressors, ntive maintenance	emes, overhauling of non troubles and rer ion, need, steps and	mechar nedies o advanta aintenar (DG) s d elect	nical con of electringes of price of: I. ets, Pro rical en	npone ic mo prevent Mach gram a quipme	nts, tor, ive iine and
				L	Т	Р	Tota
				45	0	0	45
REFEREN	CES						

- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.