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Abstract 

We study Hall current, heat source with radiation and chemical 

reaction of first order viscous fluid flow, incompressible fluid with 

heat and mass transfer past an accelerated isothermal vertical plate. 

The inverse Laplace transform technique is used to solve the 

ascendant mathematical statement. The numerical values are given 

after our study of the acceleration, thermal reading and adsorption      

for certain parameters, including thermal Grashof number, Prantdl 

number, Schmidt number, and mass Grashof number. Based on the 

study, we found out that the velocity of the fluid increases with 

increase in heat, Hall current as well as Grashof value and it decreases 

with increase in radiation. Concentration reduces when chemical 

reaction increases. 

1. Introduction 

The evaluation of fluid movement is an important part of the reactor heat 

transfer as it can be used to a wide range of systems, including biological 

systems, household appliances, homes and businesses, industrial operations, 

and food preparation like electronic equipment cooling, formation of heating 

and coolant systems, refrigeration of food among many others. Das et al. [1] 

studied how a first order homogeneous chemical reaction would alter an 

irregular fluid flow. Muthukumaraswamy [2] made a similar study regarding 

how the change in reaction affects the velocity. Sarki and Ahmed [3] also 

made similar study and found that the velocity of fluid increases with 

increase in Gr, K, t and Gc, while Thamizhsudar et al. [4] observed that axial 

velocity increases with increase in Hall parameter, mass as well as Grashof 

number. Dilip Jose and Selvaraj [5] found that the velocity increases with 

increase in Gr and Gc. Uwanta and Sani [6] analyzed how the parameters of 

the thermal Gr, Gc, t and the variable of thermal conductivity cause 

velocities to rise while the parameters of the Pr, Sc, R, k and magnetic field 

cause velocities to decrease. While temperature reduces with increasing 

Prandtl number, radiation, and suction factors, it rises with increase in 

thermal conductivity and heat source characteristics. With increase in Sc and 
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k, the concentration reduces. Maran et al. [7] presented graphical estimation 

of temperature, float speed which clearly conveys that an executed attractive 

region’s tendency edge increases with declining speed. Rachna [8] carried a 

fine theoretical work obtaining the velocity to rise with increase in Gr and 

Gc. The impacts of the non-uniform heat parameter on dynamics are 

depicted in chart by Abel and Mahesha [9]. The numerical technique on 

several parameters of heat radiation was obtained by Ferdows et al. [10]. The 

Hall current effect on unsteady hydromagnetic flow was studied by Acharya 

et al. [11]. Siddheshwar and Mahabaleshwar [12] talked about how heat 

transport over a stretched sheet and MHD flow of a viscoelastic liquid            

is affected by radiation and heat sources. Sharma and Singh [13] described            

how heat-generating system is subjected to a transverse magnetic field. 

Muthucumaraswamy and Geetha [14] investigated the parabolic motion 

effects on an isothermal vertical plate. The inverse Laplace transform is 

solved in Hetnarski’s Zastosowania Metamatikyki VII paper [15, 16]. 

2. Numerical Formulation 

Here, we assume viscous, incompressible fluid that conducts current 

flowing past an infinite plate that is located in the plane .0=z  The y-axis is 

normal to other axes, while x-axis is measured in the object’s drift order. 

This plate is parabolic accelerated along the x-axis with a velocity of .2
tq =  

The plate in this instance is not electrically conductive. In the flow field, the 

pressure is uniform as well. The continuity equation notes the elements of 

‘F’ velocity vector. 0=′w  is satisfied when 0=F  results in 0=′w  

everywhere in the flow. Here, just z and t determine the flow volumes. The 

following equations regulate the unsteady flow under these presumptions: 
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The consequent dimensionless aggregate is: 
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From the above, it is clear that we should determine the values of 

thermal layer transfer and proportionate heat transfer when measuring 

velocity since Pr is the ratio between momentum and thermal diffusivity. 

The heat transfer known as the Grashof number calculates the buoyancy to 

viscosity ratio. Since the buoyant force, as opposed to the viscous force, is 

mostly responsible for the convection, it is appropriate to measure the fluid 

to demonstrate this. 

To examine the diffusion coefficient, use Schmidt as the ratio between 

mass diffusivity and momentum. First order chemical reaction on flow past a 
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parabolic with rotation is shown using coupled partial differential equations. 

Complex velocity ivuq +=  was used to solve equations (1) and (2), which 

were then combined into one equation: 
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with conditions 

,0,allfor0,0,0 ≤==θ= tzCq  

,0,allfor1,1,2 ===θ= tzCtq  

.as0,0,0 ∞→→→θ→ zCq  (8) 

3. Elucidation of the Problem 

Solving equation (7) using (8) with the aid of Laplace transforms, we 

obtain 
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4. Results and Discussion 

The velocity for changing values of k, Sc, Pr, Gr, Gc, h, R and Q has 

been presented in the diagrams given in this section. 
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Figure 1. Concentration profile for many k values, including 5, 8, and 11. As 

chemical reaction k grows, concentration decreases. 

 

Figure 2. It shows the Sc concentration profile. Concentration decreases as 

the Schmidt number increases, for various values of =Sc  0.3, 0.6 and 2.01. 

Figures 1 and 2 show the concentration profiles. 
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Figure 3. Temperature profile for .0.7,71.0=Pr  Temperature shrinks 

when Prandtl number Pr hikes. 

 

Figure 4. Temperature profile for .17,5.9,5.5,0.4,5.2,5.0=R  Temperature 

shrinks when radiation R rises. 
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Figure 5. Temperature profile for .11,8,7,5,4,1=Q  Temperature rises 

when heat source Q rises. 

In Figures 3, 4 and 5, the temperature profiles are depicted. 

 

Figure 6. PV for .10,7,5=Gc  The velocity rises when mass Grashof 

number Gc hikes. 
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Figure 7. SV for .17,14,11=Gc  The velocity rises when mass Grashof 

number Gc hikes. 

 

Figure 8. PV for .10,7,5=Gr  The velocity increases when thermal 

Grashof values rise. 
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Figure 9. SV for .17,14,11=Gr  The velocity rises when thermal Grashof 

values rise. 

 

Figure 10. PV for .2,5.1,1=h  The velocity rises when heat source rises. 
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Figure 11. SV for .4,5.2,75.1=h  The velocity rises when heat source 

rises. 

 

Figure 12. PV for .5,3,1=k  The velocity reduces when k rises. 
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Figure 13. SV for .12,10,8=k  The velocity reduces when k rises. 

 

Figure 14. PV for .7,4,1=Q  The velocity reduces when heat source rises. 
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Figure 15. SV for .11,8,5=Q  The velocity reduces when heat source rises. 

 

Figure 16. PV for .7,6,5=M  The velocity reduces with increasing 

Hartmann number. 
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Figure 17. SV for .12,10,8=M  The velocity decreases with increasing 

Hartmann number. 

 

Figure 18. PV for different values of R. The velocity reduces when R rises. 
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Figure 19. SV for .17,5.9,5.5=R  The velocity reduces when R rises. 

 

Figure 20. Velocity for .0.7,71.0=Pr  The velocity reduces when Prantdl 

number Pr rises. 
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Figure 21. Velocity for .01.2,6.0,3.0=Sc  The velocity reduces when 

Schmidt (Sc) number rises. 

In Figures 6 to 21, the velocity profiles are depicted. 

5. Tabulation 

Table 1. The estimated concentration profile 

Non-dimensional parameter Figure 1 Figure 2 

 Concentration k Concentration Sc 

Gr 7 7 

Gc 7 7 

Pr 0.71 0.71 

R 5 5 

Q 1 1 

M 5.5 5.5 

h 2 2 

Sc 2.01 0.3, 0.6, 2.01 

k 5, 8, 11 1 

t 1 1 
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Table 2. Numerical estimated temperature profiles for several values of Pr, 

R, and Q 

Non-dimensional parameters Figure 3 Figure 4 Figure 5 

 Temperature Pr Temperature R Temperature Q 

Gr 7 7 7 

Gc 7 7 7 

Pr 0.71, 7.0 0.71 0.71 

R 5 5, 10, 15 5 

Q 1 1 2, 3, 4 

M 5.5 5.5 5.5 

h 2 2 2 

Sc 2.01 2.01 2.01 

k 1 1 1 

t 0.5 0.5 0.5 

Table 3. Numerical estimated concentration profiles for several values of Gc 

and Gr 

Non-dimensional parameters Figure 6 Figure 7 Figure 8 Figure 9 

 
Primary 

velocity Gc 

Secondary 

velocity Gc 

Primary 

velocity Gr 

Secondary 

velocity Gr 

Gr 7 7 5, 7, 10 11, 14, 17 

Gc 5, 7, 10 11, 14, 17 7 7 

Pr 0.71 0.71 0.71 0.71 

R 5 5 5 5 

Q 1 1 1 1 

M 5.5 5.5 5.5 5.5 

h 2 2 2 2 

Sc 2.01 2.01 2.01 2.01 

k 1 1 1 1 

t 1 1   
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Table 4. Numerical estimated concentration profiles for several values of h 

and k 

Non-dimensional parameters Figure 10 Figure 11 Figure 12 Figure 13 

 
Primary 

velocity h 

Secondary 

velocity h 

Primary 

velocity k 

Secondary 

velocity k 

Gr 7 7 7 7 

Gc 7 7 7 7 

Pr 0.71 0.71 0.71 0.71 

R 5 5 5 5 

Q 1 1 1 1 

M 5.5 5.5 5.5 5.5 

h 1, 1.5, 2 1.75, 2, 4 2 2 

Sc 2.01 2.01 2.01 2.01 

k 1 1 1, 3, 5 8, 10, 12 

t 0.2 0.2 0.2 0.2 

Table 5. Numerical estimated concentration profiles for several values of Q 

and R 

Non-dimensional parameters Figure 14 Figure 15 Figure 16 Figure 17 

 
Primary 

velocity Q 

Secondary 

velocity Q 

Primary 

velocity M 

Secondary 

velocity M 

Gr 7 7 7 7 

Gc 7 7 7 7 

Pr 0.71 0.71 0.71 0.71 

R 5 5 5.0 5.0 

Q 1, 4, 7 5, 8, 11 1 1 

M 5.5 5.5 5, 6, 7 8, 10, 12 

h 2 2 2 2 

Sc 2.01 2.01 2.01 2.01 

k 1 1 1 1 

t 0.2 0.2 0.2 0.2 
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Table 6. Numerical values for estimated velocity profiles for varying M, Sc 

and Pr values 

Non-dimensional parameters Figure 18 Figure 19 Figure 20 Figure 21 

 
Primary 

velocity R 

Secondary 

velocity R 

Primary 

velocity Pr 

Secondary 

velocity Sc 

Gr 7 7 7 7 

Gc 7 7 7 7 

Pr 0.71 0.71 0.71, 7.0 0.71 

R 0.5, 2.5, 6 5.5, 9.5, 17 5 5 

Q 1 1 1 1 

M 5.5 5.5 5.5 5.5 

h 2 2 2 2 

Sc 2.01 2.01 2.01 0.3, 0.6, 2.01 

k 1 1 1 1 

t 0.2 0.2 0.2 0.2 

6. Conclusion 

As this is a variational study from the literature involving accelerated 

isothermal vertical plate with the basic HMT aspects, this provides a simple 

and nice platform for computational work and based on the calculations, we 

could conclude that 

  (i) Velocity reduces when radiation ‘R’ rises, 

Velocity reduces when Hartmann number M rises and 

Velocity rises when Grashof ‘Gc’ and ‘Gr’ values rise, 

Velocity rises when heat source ‘Q’ rises, 

Velocity rises when Hall current ‘h’ rises. 

 (ii) Temperature falls when radiation ‘R’ rises and 

Temperature rises when heat source ‘Q’ rises. 

(iii) Concentration reduces when chemical reaction ‘k’ increases. 
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So, we are able to achieve an extended list of conclusions by the 

variation and we intend to enhance the study by including more parameters 

in our future study. 

Acknowledgement 

The authors thank the anonymous referees for their valuable suggestions 

and comments which improved the paper. 

References 

 [1] U. N. Das, R. K. Deka and V. M. Soundalgekar, Effects of mass transfer on flow 

past an impulsively started infinite vertical plate with constant heat flux and 

chemical reaction, Forschung im Ingenieurwesen 60(10) (1994), 284-287. 

 [2] R. Muthucumaraswamy, Effects of a chemical reaction on a moving isothermal 

vertical surface with Suction, Acta Mechanica 155 (2022), 65-70. 

 [3] M. N. Sarki and A. Ahmed, Heat and mass transfer with chemical reaction and 

exponential mass diffusion, International Journal of Engineering Research and 

Technology (IJERT) 1(8) (2012), 1-12. 

 [4] M. Thamizhsudar, R. Muthucumaraswamy and A. K. Bhuvaneswari, Heat and 

mass transfer effects on MHD flow past an exponentially accelerated vertical plate 

in the presence of rotation and Hall current, Journal of Advance Research in 

Dynamical and Control Systems 9 (2017), 73-82. 

 [5] S. Dilip Jose and A. Selvaraj, Convective, heat and mass transfer effects of 

rotation on parabolic flow past an accelerated isothermal vertical plate in the 

presence of chemical reaction of first order, JP Journal of Heat and Mass Transfer 

24(1) (2021), 191-206. 

 [6] J. Uwanta and Murtala Sani, Heat mass transfer flow past an infinite vertical plate 

with variable thermal conductivity, Heat Source and Chemical Reaction, The 

International Journal of Engineering and Science (IJES) 3 (2014), 77-89. 

 [7] D. Maran, A. Selvaraj, M. Usha and S. Dilip Jose, First order chemical response 

impact of MHD flow past an infinite vertical plate within sight of exponentially 

with variable mass diffusion and thermal radiation, Materials Today : Proceedings 

46 (2021), 3302-3307. 



D. Lakshmikaanth, A. Selvaraj, P. Selvaraju and S. Dilip Jose 126 

 [8] K. Rachna, Unsteady MHD flow, heat and mass transfer along an accelerated 

vertical porous plate in the influence of viscous dissipation, heat source               

and variable suction, International Journal of Mathematics and Computer 

Applications Research 3(1) (2013), 229-236. 

 [9] M. S. Abel and N. Mahesha, Effects of thermal buoyancy and variable thermal 

conductivity in a power law fluid past a vertical stretching sheet in the presence of 

non uniform heat source, Internat. J. Non-Linear Mech. 44 (2009), 1-12. 

 [10] M. Ferdows, M. A. Sattar and M. N. A. Siddiki, Numerical approach on 

parameters of the thermal radiation interaction with convection in boundary layer 

flow at a vertical plate with variable suction, Thammasat International Journal of 

Science and Technology 9 (2004), 19-28. 

 [11] M. Acharya, G. C. Dash and L. P. Singh, Effect of chemical and thermal diffusion 

with Hall current on unsteady hydromagnetic flow near an infinite vertical porous 

plate, Journal of Applied Physics 28 (1995), 2455-2464. 

 [12] P. G. Siddheshwar and U. S. Mahabaleshwar, Effect of radiation and heat source 

on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet, 

Internat. J. Non-Linear Mech. 40 (2005), 807-820. 

 [13] P. R. Sharma and G. Singh, Unsteady MHD free convective flow and heat transfer 

along a vertical porous plate with variable suction and internal heat generation, 

International Journal of Applied Mathematics and Mechanics 4 (2008), 1-8. 

 [14] R. Muthucumaraswamy and E. Geetha, Effects of parabolic motion of an 

isothermal vertical plate with constant mass flux, Ain Shams Engineering Journal 

5 (2014), 1317-1323. 

 [15] R. Hetnarski, On inverting the Laplace transforms connected with the error 

function, Appl. Math. 7(4) (1964), 399-405. 

 [16] R. B. Hetnarski, An algorithm for generating some inverse Laplace transform of 

exponential form, ZAMP 26 (1975), 249-253. 




