DEPARTMENT OF COMPUTER SCIENCE AND **APPLICATIONS**

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Email: headmca@pmu.edu

Fax: +91- 4362 - 264660 Web: www. pmu.edu

FACULTY OF COMPUTING SCIENCES AND **ENGINEERING**

DEPARTMENT OF COMPUTER SCIENCE AND APPLICATIONS

Master of Computer Applications (M.C.A)

MCA CURRICULUM AND SYLLABUS (SEMESTER: I, II, III, IV)

REGULATION 2023

(Applicable to the students admitted from the academic year 2023-2024 onwards)

TABLE OF CONTENTS

S.No	Contents
1.	Institute Vision and Mission
2.	Department Vision and Mission
3.	Members of Board of studies
4.	Department Vision and Mission Definition Process
5.	Programme Educational Objectives (PEO)
6.	PEO Process Establishment
7.	Mapping of Institute Mission to PEO
8.	Mapping of Department Mission to PEO
9.	Programme Outcome (PO)
10.	PO Process Establishment
11	Correlation between the POs and the PEOs
12	Curriculum development process
13.	Faculty allotted for course development
14	Pre-requisite Course Chart
15	MCA – Curriculum
16	MCA– Syllabus
17	Overall course mapping with POS
18.	Annexure – I
	Department Advisory Committee - Members Approval
	Department Advisory Committee - Agenda & Minutes
	Department Advisory Committee - Members Feedback
19.	Annexure – II
	Board of Studies Meeting - Members Approval
	Board of Studies Meeting - Agenda & Minutes
	Board of Studies Meeting - Feedback from Stake holders

University Vision and Mission

Vision

To be a University of global dynamism with excellence in knowledge and innovation ensuring social responsibility for creating an egalitarian society.

Mission

- UM1: Offering well balanced programmes with scholarly faculty and state-of-art facilities to impart high level of knowledge.
 - UM2: Providing student centered education and foster their growth in critical thinking, creativity, entrepreneurship, problem solving and collaborative work.
 - UM3: Involving progressive and meaningful research with concern for sustainable development.
 - UM4: Enabling the students to acquire the skills for global competencies.

UM5: Inculcating Universal values, Self respect, Gender equality, Dignity and Ethics.

Department Vision and Mission

Vision:

To be a leading, contemporary, innovative Computer Science and Applications department in inculcating professional competencies in the field of Computing and related interdisciplinary technologies to achieve academic excellence and to facilitate research activities as a timely response to dynamic needs and challenges of industry and society.

Mission:

- DM1: Imparting quality education in the field of Computing Sciences and Applications and generate successful computing professional
- DM2: Encouraging students to collaborate with industry environment and analyse the real world problems culminating in efficient solutions.
- DM3: Transforming students into computing professionals and entrepreneurs by imparting quality training and hands on experience with latest tools and technologies.
- DM4: Promoting activities in creating applications in emerging areas of computing technologies and applications in order to serve the needs of research, industry, society and scientific community.
- DM5:Inculcating value based and ethical commitment for bringing out successful professionals.

S.No	Name of the Member	Designation and Address
1.	Dr.J.Jeyachidra	Professor and Dean FCSE,
		Faculty of Computing Sciences and Engineering,
		Periyar Maniammai Institute of Science & Technology,
		Vallam.
2.	Dr.D.Ruby	Associate Professor and Head,
	BoS Chairman	Department of Computer Science and Applications,
		Periyar Maniammai Institute of Science & Technology,
		Vallam.
3.	Dr.S.Nickolas	Professor,
	(Academic Expert)	Department of Computer Applications,
		NIT, Tiruchirappalli.
4.	Mr.J.Sengathir	Manager, Enterprise Resource Planning, BHEL
	(Industry Expert)	Trichy – 620 014
5.	Dr.V.Adithya Pothan Raj	Associate Operations Manager ,CTS,
	(Industry Expert)	Chennai.apr1991@rediffmail.com
	Online Mode	
6.	Dr.A.Muthamizh Selvan	Asso.Prof./CSA
	BoS Member Internal	Periyar Maniammai Institute of Science & Technology,
		Vallam.
7.	Dr.S.Arumugam	Asso.Prof./CSA
	BoS Member Internal	Periyar Maniammai Institute of Science & Technology,
		Vallam.
8.	Dr.V.Srithar	Asst.Prof./CSA
	BoS Member Internal	Periyar Maniammai Institute of Science & Technology,
		Vallam.
9.	Dr.S.Bhuvaneswari	Asso.Prof./ Head
	BoS Member Internal	Department of Mathematics
		Periyar Maniammai Institute of Science & Technology,
		Vallam.
10.	Dr. D. Thayalnayaki	Asso.Prof./ Head
	BoS Member Internal	Department of Civil Engineering
		Periyar Maniammai Institute of Science & Technology,
		Vallam.
11.	Dr. V. Saranya	Asso.Prof./ Head
		Department of Languages,
	BoS Member Internal	Periyar Maniammai Institute of Science & Technology,
		Vallam.

MEMBERS OF THE BOARD OF STUDIES

12.	Ms. K. Biruntha	II MCA, Periyar Maniammai Institute of Science & Technology, Vallam.
13.	Mr. R. Muruganandham	Alumni, MCA Batch: 2019-2021 Machine learning engineer Changepond Technologies, Sipcot IT park, Siruseri, Chennai-103

The current MCA Curriculum is undergone in the **Board of Studies Meeting on 15.6.2023** to tune the syllabus towards Outcome based Education and meet the UGC requirements and in turn the suggestions provided will be implemented in Regulations 2023.

It is thoroughly felt there is a need to change the present curriculum in order to graduate the students who possess skills that are employable. Hence, appropriate modification in the existing curriculum will augment the manpower and skill requirement of our country. The quality of an educational system can be judged from at least three perspectives: the inputs to the system, what happens within the system and the outputs from the system. In order to refine the input to the system, BoS members redefined the curriculum with the focus towards outcome based education.

In this connection, it is felt to frame the department vision and attain the vision through a well-structured mission framed in consultation with the faculty members and other administrators of Periyar Maniammai Institute of Science and Technology.

Department Vision and Mission Definition Process

The development of vision and mission of the department is carried out as per the following steps.

Step: I	Brainstorming/Feedback carried out at different levels
	First level - Department faculty by the HOD
	Second level – Current students by the faculty
	Third level - Employers, alumni and academia and industry experts
Step: II	Benchmarking with other Universities: Understanding the Vision and Mission
Step: III	Validation by the Board of studies and then Academic Council
Step: IV	Wide publicity in the department and institution
The University	Vision is split up into small elements and verifies its compliance with Department Vision

To be a University of global dynamism with excellence in knowledge and innovation ensuring social responsibility for creating an egalitarian society

To be a leading, contemporary, innovative Computer Science and Applications department in inculcating professional competencies in the field of Computing and related interdisciplinary technologies to achieve

academic excellence and to facilitate research activities as a timely response to dynamic needs and challenges of industry and society.

UNIVERSITY VISION	DEPARTMENT VISION
To be a University of global dynamism	To be a leading, contemporary, innovative Computer Science
with excellence in knowledge and	and Applications department in inculcating professional
innovation ensuring social	competencies in the field of Computing and related
responsibility for creating an	interdisciplinary technologies to achieve academic excellence
egalitarian society	and to facilitate research activities as a timely response to
	dynamic needs and challenges of industry and society.
Global Dynamism	Placement (Global Level)
Excellence in Knowledge	Teaching Learning (New Technologies)
Social Responsibility	Contribution(Needs and challenges of Industry and Society)

To accomplish the vision stated, well-structured mission is established with consultation with administrators, faculty members and other officials.

UNIVERSITY MISSION	DEPARTEMNT MISSION
Offering well balanced programmes with	Imparting quality education in the field of Computing
scholarly faculty and state-of-art facilities	Sciences and Applications and generate successful computing
to impart high level of knowledge.	professional
Providing student - centered education and	Encouraging students to collaborate with industry
foster their growth in critical thinking,	environment and analyze the real world problems culminating
creativity, entrepreneurship, problem	in efficient solutions.
solving and collaborative work.	
Involving progressive and meaningful	Transforming students into computing professionals and
research with concern for sustainable	entrepreneurs by imparting quality training and hands on
development.	experience with latest tools and technologies.
Enabling the students to acquire the skills	Promoting activities in creating applications in emerging
for global competencies.	areas of computing technologies and applications in order to
	serve the needs of research, industry, society and scientific
	community.
Inculcating Universal values, Self respect,	Inculcating value based and ethical commitment for bringing
Gender equality, Dignity and Ethics.	out successful professionals.

Mapping of University Vision and Department Mission

	DM1	DM2	DM3	DM4	DM5	Total
UM1	3	1	1	1	1	7
UM2	1	2	3	2	0	8
UM3	0	1	2	3	2	8
UM4	1	1	3	3	0	8
UM5	1	1	0	1	3	6
3- Highly related 2- Medium			1-Lo	W		

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

Based on the mission of the department, the programme educational objectives is formulated as

PEO1	The graduate will apply the fundamental concepts of computing technologies in the industry related emerging application areas.
PEO2	The graduate will be able to analyse requirement, design and implement solution for a computing Applications
PEO3	The graduate of the programme will serve as a successful computing professional and researcher by practicing modern tools and technologies.
PEO4	The graduate will be able to excel in leadership, management, communication and decision making skill to become a successful professional and entrepreneur
PEO5	The graduate will be able to practice professional ethics, pursue higher studies in computing and to work in the fields of teaching and research.

PEO PROCESS ESTABLISHMENT

The faculty of the CSA department at our institution met on different occasions for discussion and a final work session to complete the steps of the process in order to draft the set of PEOs for CSA Department to assess the graduates few years after graduation.

The framework for the review and revision of the PEOs at the departmental level involving all the faculty members comprised the following broad stages.

- 1. Using the key words and phrases extracted from the Mission Statement of the institution and department to identify attributes to gauge graduates.
- 2. Capturing the distinction between the educational objective and the student outcomes.
- 3. Formulating each objective to be measurable.

The program educational objectives for the MCA program describe accomplishments that graduates are expected to attain within three years after graduation. Graduates will have applied their expertise to contemporary problem solving, be engaged professionally, and have continued to learn and adapt, and have contributed to their organizations through leadership and teamwork.

Mapping of Pro	ogram Edu	cational	Objective	es (PEOs)	with De	epartmen	t Mission	(DM)
		DM1	DM2	DM3	DM4	DM5		

	DM1	DM2	DM3	DM4	DM5
PEO1	3	2	2	2	0
PEO2	2	3	2	2	0
PEO3	2	0	3	2	1
PEO4	1	0	1	1	2
PEO5	0	1	1	2	3
Total	8	6	9	9	6

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

The development of vision, mission and programme educational objectives is tuned in line with the global and national standards and it is assured that the department vision and mission will facilitate in meeting the vision and mission of the University.

The Program Educational Objectives shall cover both technical and professional aspects of the expected achieve-Achievement in terms of technical skills required in the profession for which the program prepares students

Achievements in terms of professional, ethical, and Communicational aspects required by the profession for which the program prepares students (team work, ethical behavior, effective communication, etc.)

- Achievements in terms of management and leadership skills (project managers, directors, CTOs, CEOs, etc.)
- Achievements in terms of life-long learning and continuous education (certifications, conferences and workshops attendance, etc.)
- Achievements in terms of advanced and graduate studies pursuing (graduate studies, research careers, etc.)
- Other aspects could be considered when defining educational objectives such as the ability to engage in entrepreneurship activities

SUMMARY OF THE FEED BACK OBTAINED

Total number of feedback collected: 35

In that the following important observations were made,

- 1. Python Programming, Python Programming Laboratory,Object Oriented Programming Language, Bigdata Analytics Laboratory, Data Visualisation Lab and Computer Graphics and Multimedia Laboratory were added.
- 2. The value added course are added.
 - DevOps
 - AWS
 - Google Cloud
 - Go Programming
 - Google Cloud

PROGRAMME OUTCOME (PO)

At the time of graduation, competency of the student is measured through the attainment of programme outcomes. The quantification of programme outcomes attainment is measured through the assessment of established course outcomes for each course.

PROGRAMME OUTCOME (PO) AND PROGRAMME SPECIFIC OUTCOMES(PSO) PROGRAMME OUTCOMES (POs)

PO1	To apply fundamental knowledge of Mathematics and Principles of Computing
	technologies in the field of computing sciences and application areas
PO2	To analyze and apply Programming principles, and computer science theory in design
	and development of solution.
PO3	To design algorithms, conduct experiments and interpret result to provide valid
	solutions for computing environment.

PO4	To investigate research related issues and apply modern application tool, and			
	appropriate paradigm for the construction of software system.			
PO5	Ability to Communicate effectively with the computing community about requirements			
	and able to present the result clearly.			
PO6	Ability to work with technical, management, leadership and entrepreneurial skillsso as			
	to deliver effective product within a time constraints			
PO7	Ability to apply knowledge of professional, ethical, and security issues involving in			
	creating software and maintaining it.			
PO8	Ability to express enthusiasm for self-improvement through continuous professional			
	development and life-long learning.			
	development and me-long learning.			

Programme Specific Outcome

PSO1	Web Application Development: Analyse the environment of web based application
	requirement and produce the interactive web site.
PSO2	Structured Software Development Methodologies: Apply structured methods and
	tools to develop effective software with necessary documents.

Graduates Attributes

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The GAs are examples of the attributes expected of a graduate from an accredited programme. The computing professional Graduate Attributes of the NBA are as following:

1. **Computational Knowledge:** Apply knowledge of computing fundamentals, computing specialization, mathematics, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.

2. **Problem Analysis:** Identify, formulate, research literature, and solve complex computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.

3. **Design /Development of Solutions:** Design and evaluate solutions for complex computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.

4. **Conduct Investigations of Complex Computing Problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern Tool Usage:** Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to complex computing activities, with an understanding of the limitations.

6. **Professional Ethics:** Understand and commit to professional ethics and cyber regulations, responsibilities, and norms of professional computing practice.

7. **Life-long Learning:** Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional.

8. **Project management and finance:** Demonstrate knowledge and understanding of the computing and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

9. **Communication Efficacy:** Communicate effectively with the computing community, and with society at large, about complex computing activities by being able to comprehend and write effective reports, design documentation, make effective presentations, and give and understand clear instructions.

10. **Societal and Environmental Concern:** Understand and assess societal, environmental, health, safety, legal, and cultural issues within local and global contexts, and the consequential responsibilities relevant to professional computing practice.

11. **Individual and Team Work:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary environments.

12. **Innovation and Entrepreneurship**: Identify a timely opportunity and using innovation to pursue that opportunity to create value and wealth for the betterment of the individual and society at large.

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA 12
PO1	3	1	0	1	0	0	0	0	0	0	0	1
PO2	2	2	0	0	0	0	0	0	0	0	0	1
PO3	1	0	2	0	0	0	0	0	0	0	0	0
PO4	0	2	2	2	2	0	0	2	0	0	0	0
PO5	0	0	0	0	0	0	0	0	2	1	2	0
PO6	0	0	0	0	0	0	0	0	0	0	0	2
PO7	0	0	0	0	0	3	0	0	0	0	0	0
PO8	0	0	0	0	0	0	2	0	0	0	0	0
PSO 1	2	2	1	2	2	1	2	2	2	1	1	2
PSO2	2	2	1	2	2	1	2	2	2	1	1	2

Mapping of Program Outcomes (POs) with Graduate Attr	ributes (GAs)
--	---------------

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	Total
PEO 1	3	3	0	0	2	0	0	0	1	1	10
PEO 2	1	3	3	2	2	1	1	0	2	3	18
PEO 3	1	0	2	3	0	0	0	0	2	3	11
PEO 4	2	1	1	2	2	3	0	0	2	2	15
PEO 5	0	0	0	0	1	1	3	1	1	1	08

Mapping of Program Educational Objectives (PEOs) with Program Outcomes (POs)

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

PO PROCESS ESTABILSHMENT

CURRICULUM DEVELOPMENT

The CSA curriculum is drawn to define the role of computer applications to meet the global challenges and equip them in implementing proven techniques and procedures to provide sustainable solutions for PRACTICAL problems of society. In addition to their technical competencies, students must possess engagement skills, sustained learning and adapting, leadership, teamwork with good command in the communication skills.

The faculty members have been allotted for developing the courses and its outcomes as given below. They in turn conducted frequent discussions with each other and with students in drafting the course content.

The curriculum development is ensured that students receive integrated, coherent learning experiences that contribute towards their personal, academic and professional learning and development.

Courses and topics were designed and developed within a framework which comprises a specified curriculum, specified assessment arrangements, and clearly identified educational aims and learning outcomes.

Course Code	Course Title	Staff Allotted
YCA101	Database Management Systems	Dr.S.Manimozhi
YCA102	Cryptography and Network Security	Dr.V.Srithar
YCA103	Python Programming	Ms.P.Ranjani
YCA104	Mathematical Foundation for Computer	Maths
	Applications	
YCA105	Software Engineering	Dr.S.Manimozhi
YCA106	Database Management Systems Laboratory	Dr.S.Manimozhi
YCA107	Python Programming Laboratory	Ms.P.Ranjani
YCA108	Soft Skill Development	Ms.K.Nandhini
YCA201	Big Data Analytics	Dr.A.Muthamilselvan
YCA203	Advanced Data Structures	Ms.G.Umamaheswari
YCA204	Object Oriented Programming Language	Ms.I.Epistle
YCA206	Advanced Data Structures Laboratory	Ms.G.Umamaheswari
YCA207	Object Oriented Programming Language	Ms.I.Epistle
	Laboratory	
YCA208	Data Visualisation Lab	Dr.G.Preethi
YCA301	Artificial Intelligence and Machine Learning	Ms.T.Logesh
YCA302	Computer Graphics and Multimedia	Ms.R.Manisha
YCA307	Artificial Intelligence and Machine Learning Lab	Ms.T.Logesh
	using Python	
YCA308	Computer Graphics and Multimedia Lab	Ms.R.Manisha
YCABE5A	Foundations of Decision Processes	Dr.S.Arumugam
YCABE5B	Corporate Planning	Dr.S.Arumugam
YCABE5C	Management of Software Projects	Dr.S.Arumugam
YCABE5D	Enterprise Resource Planning	Dr.S.Arumugam
YCACE3A	Cloud Computing	Dr.Manikandan
YCACE3B	Human-Computer Interface	Dr.G.Preethi
YCACE3C	Digital Image Processing	Ms.M.Lavanya
YCACE3D	Natural Language Processing	Ms.R.Ragini
YCACE4A	Deep Learning	Dr.D.Ruby
YCACE4B	Exploratory Learning	Ms.M.Swathi
YCACE4C	Business Intelligence	Ms.K.Nandhini
YCACE4D	Predictive Analytics	Ms.R.Sivaranjnai

Faculty Members Assigned for Course Development

COURSE DEVELOPMENT

The following elements were developed by the faculty involved after interaction and discussions.

In aligning programme outcome and graduate attributes, course offered to the degree programme are finalized based on the standard template finalized by the university.

Course	Sem I		Sem II		Sem III		Sen	n IV	Total	
/ Semester	Courses	Credits	Courses	Credits	Courses	Credits	Courses	Credits	Courses	Cred its
Core Courses	6	17	5	15	4	10	0	0	15	42
Elective Courses	0	0	2	6	2	6	0	0	4	12
Skill Enhancement Course	1	2	1	2	0	0	0	0	2	4
Mathematics	1	5	0	0	0	0	0	0	1	5

14 PMIST/QMS/1/003/2023 2023

Mini Project	0	0	0	0	1	3	0	0	1	3
Industrial Lectures	0	0	0	0	1	2	0	0	1	2
Review of Literature	0	0	0	0	0	0	1	3	1	3
Project	0	0	0	0	0	0	1	11	1	11
Total	8	24	8	23	8	21	2	14	26	82

REQUISITE MAPPING

MCA – MASTER OF COMPUTER APPLICATIONS

REGULATION 2023

SEMESTER-I

Course Code	Course Title	L	Τ	Р	Н	С
YCA101	Database Management Systems	3	0	0	3	3
YCA102	Cryptography and Network Security	3	0	0	3	3
YCA103	Python Programming	3	1	0	4	4
YCA104	Mathematical Foundation for Computer Applications	4	1	0	5	5
YCA105	Software Engineering	3	0	0	3	3
YCA106	Database Management Systems Laboratory	0	0	4	4	2
YCA107	Python Programming Laboratory	0	0	4	4	2
YCA108	Soft Skill Development	2	0	2	2	2
	Total	18	02	10	28	24

SEMESTER-II

Course Code	Course Title	L	Т	Р	Н	С
YCA201	Big Data Analytics	3	1	0	4	4
YCAME2*	Elective-I	3	0	0	3	3
YCA203	Advanced Data Structures	3	1	0	4	4
YCA204	Object Oriented Programming Language	3	0	0	3	3
YCABE5*	Elective -II	3	0	0	3	3
YCA206	Big Data Analytics Laboratory	0	0	4	4	2
YCA207	Object Oriented Programming Language Laboratory	0	0	4	4	2
YCA208	Data Visualisation Laboratory	0	0	2	2	2
	Total	15	02	10	27	23

SEMESTER- II	I
--------------	---

Course Code	Course Title	L	Т	Р	Η	C
YCA301	Artificial Intelligence and Machine	3	0	0	3	3
	Learning					
YCA302	Computer Graphics and Multimedia	3	0	0	3	3
YCACE3*	Elective-III	3	0	0	3	3
YCACE4*	Elective -IV	3	0	0	3	3
YCA305	Mini Projects	3	0	0	3	3
YCA306	Industrial Lecturers	0	0	2	2	2
YCA307	Artificial Intelligence and Machine	0	0	4	4	2
	Learning Laboratory using Python					
YCA308	Computer Graphics and Multimedia	0	0	4	4	2
	Laboratory					
	Total	20	2	8	30	26

SEMESTER-IV

Course Code	Course Title	L	Т	Р	Η	С
YCA401	Review of Literature	3*(SS)	0	-	3	3
YCA402	Main Project	0	0	24	24	11
	Total	3*(SS)	0	24	27	14

Elective I

Course Code	Course Title	L	Т	Р	Η	С
YCAME2A	Optimization Techniques	3	0	0	3	3
YCAME2B	Automata Theory	3	0	0	3	3
YCAME2C	Numerical Methods	3	0	0	3	3
YCAME2D	Combinatorics	3	0	0	3	3

Elective II

Course Code	Course Title	L	Т	Р	H	С
YCABE5A	Foundations of Decision	3	0	0	3	3
	Processes					
YCABE5B	Corporate Planning	3	0	0	3	3
YCABE5C	Management of Software	3	0	0	3	3
	Projects					
YCABE5D	Enterprise Resource	3	0	0	3	3
	Planning					

Elective III

Course Code	Course Title	L	Т	Р	Η	С
YCACE3A	Cloud Computing	3	0	0	3	3
YCACE3B	Block Chain	3	0	0	3	3
YCACE3C	Digital Image Processing	3	0	0	3	3
YCACE3D	Natural Language Processing	3	0	0	3	3

Elective IV

Course Code	Course Title	L	Т	Р	Η	С
YCACE4A	Deep Learning	3	0	0	3	3
YCACE4B	Exploratory Learning	3	0	0	3	3
YCACE4C	Business Intelligence	3	0	0	3	3
YCACE4D	Predictive Analytics	3	0	0	3	3

YCA101 DATABASE MANAGEMENT SYSTEMS

Course Outcomes:

CO1	С	Understand	Explain the basic concepts of Database and architecture
CO2	С	Understand	Outline the Data and ER model
CO3	С	Understand	Explain Relational data models, algebra and relational calculus
CO4	С	Understand	Illustrate relational data base and its design
CO5	С	Understand	Interpret the concepts of transactions and its properties
CO6	С	Understand	Interpret the various application fields of DBMS

COURSE CODE	COURSE NAME	L	Т	P	C
YCA101	DATABASE MANAGEMENT SYSTEMS	3	0	0	3
C:P: A = 3:0:0					
		L	Τ	Р	H
PREREQUISITE	Basic Computer Skill	3	0	0	3
UNIT I : BASIC CO	NCEPTS	I	l	l	9

Database & Database Users. Characteristics of the Database Approach advantages of using DBMS. Data Models, Schemas & Instances. DBMS Architecture & Data Independence. System Architecture for DBMS and Data Dictionary, Database Users Data Base languages & Interfaces. Data Modeling using the Entity-Relationship Model -Entity types, Entity Sets, Attributes and Keys, Relationship, Relationship Types, Week Entity Types, Structural Constraints, Enhanced ER Model- Specialization Generalization, Constraints on Specialization Generalization.

UNIT II : RELATIONAL MODEL, LANGUAGES & SYSTEMS

Relational Data Model Concepts and Constraints. Relational Algebra - select, project, set theoretic, join operations. Overview of Relational Calculas. SQL - A Relational Database Language. Data Definition commands, View and Queries, transaction commands, Specifying Constraints & Indexes in SQL.

UNIT III: RELATIONAL DATA BASE DESIGN

Function Dependencies & Normalization for Relational Databases. Informal design guidelines for relation schemas, Functional Dependencies. Normal forms based on primary keys (INF, 2NF, 3NF& BCNF). Lossless join & Dependency preserving decomposition. Multivalued dependencies, join dependencies (4NF & 5NF), Denormalization.

UNIT IV : TRANSACTIONS, CONCURRENCY CONTROL, RECOVERY TECHNIQUES

9

9

9

Basic concept; ACID properties; transaction state; implementation of atomicity and durability; concurrent executions; basic idea of serializability; view and conflict serializability Recovery Techniques Failure Classification, Storage Structure, Recovery and Atomicity Log Based Recovery, Shadow Paging ,stable storage implementation, data access; recovery and atomicity - log based recovery, deferred database modification, immediate database modification, checkpoints.

UNIT- V: EMERGING FIELDS IN DBMS

Distributed databases-Basic idea-distributed data storage- data replication-data fragmentation horizontal, vertical and mixed fragmentation- Concepts of Multimedia databases and Object oriented data base management systems. Data Warehousing & mining-.Intrusion Detection and Prevention Systems - Types of IDPS- IDPS Detection Methods- IDPS Response Behavior- Selecting IDPS Approaches and Products- Strengths and Limitations of IDPSs- Deployment and Implementation of an IDPS-Measuring the Effectiveness of IDPSs

	LECTURE	TUTORIAL	TOTAL
	45	0	45
MENZO -			

IE	A I									
1	Avi	Silberschatz	Henry F	Korth	S	Sudarshan	"Database	System (Concents"	Seve

1. Avı Sılberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", Seventh Edition, McGraw-Hill, ISBN 9780078022159, March 2019.

2. Muhammad Sharif, "Complete book Database management systems Handbook", 3rd Edition, August 2022

REFERENCES

1. S.K.Singh, , "Database Systems, Concepts, Design and Applications" , Pearson Education, 2020.

2. Raghu Ramakrishnan, Johannes Gehrke ,"Database Management Systems", McGraw Hill Publication,2018

3.Elmsari, Navathe, "Fundamentals of Database Systems" by, 5th Edition, Pearson Education, 2008.

E REFERENCES

 $1. \ Prof. \ Partha \ Pratim \ Das \ and \ Prof. \ Samiran \ Chattopadhyay \ , \ ``Data \ Base \ Management \ System``, \ IITKGP, https://onlinecourses.nptel.ac.in/noc22_cs51/preview$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation	3- Highly relation	2- Medium relation	1-Low relation
---------------	--------------------	--------------------	----------------

9

CRYPTOGRAPHY AND NETWORK SECURITY YCA102

Course Outcomes:

CO1	С	Understand	Understand the overview of the cryptography basics model.
CO2	С	Understand	Infer the idea of cryptography algorithm
CO3	С	Understand	Explain various security technology
CO4	С	Understand	Illustrate Firewalls and its model
CO5	С	Understand	Summarize Virtual Private Networks and its Model
CO6	С	Understand	Understand the implementation of security and change management

COURSE CODE	COURSE NAME	L	Т	P	С	
YCA102	CRYPTOGRAPHY AND NETWORK SECURITY	3	0	0	3	
C:P:A 3:0:0						
		L	Т	Р	H	
PREREQUISITE	Basic Computer Skill	3	0	0	3	
UNIT I OVERVIEW						

UNIT I OVERVIEW

Services, Mechanisms and Attacks, The OSI Security Architecture, A Model for Network Security. Classical Encryption Techniques: Symmetric Cipher Model, Substitution Techniques, Transportation Techniques, Steganography

UNIT II ALGORITHMS

Simplified DES- Key Management, Diffe-Hellman Key Exchange, Elliptic Curve Arithmetic, Elliptic Curve Cryptography.

UNIT III PLANNING FOR SECURITY

Information Security Planning and Governance-Information Security Policy, Standards, and Practices -The Information Security Blueprint -Security Education, Training, and Awareness Program -Continuity Strategies.

UNIT IV FIREWALLS AND VPNS

Access Control -Firewalls -Firewall Processing Modes -Firewalls Categorized by Generation -Firewalls Categorized by Structure-Firewall Architectures -Selecting the Right Firewall -Configuring and Managing Firewalls-Content Filters -Protecting Remote Connections -Remote Access -Virtual Private Networks.

UNIT V INTRUSION DETECTION AND PREVENTION SYSTEMS	

Introduction-Intrusion Detection and Prevention Systems - Types of IDPS- IDPS Detection Methods-IDPS Response Behavior- Selecting IDPS Approaches and Products- Strengths and Limitations of IDPSs- Deployment and Implementation of an IDPS-Measuring the Effectiveness of IDPSs

LECTURE	TUTORIAL	TOTAL
45	-	45

9

9

9

9

TEXT

- 1. Michael E.Whitman, and Herbert J.Mattord, Principles of Information Security 4th edition, Cengage Learning 2012.
- 2. Cryptography and Network Security Third Edition William Stallings, Prentice Hall, 2002 **REFERENCES**
- Nozaki, Micki Krause, Tipton, Harold F, Information Security Management Handbook 6th Edition CRC Press,2012
- Hossein Bidgoli, Handbook of Information Security-Information Warfare; Social,Legal, and International Issues; and Security Foundations,John Wiley& Sons Inc.2006

E REFERENCES

- 1. https://onlinecourses.nptel.ac.in/noc15_cs03
- 2. https://onlinecourses.nptel.ac.in/noc16_cs01

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	1 3	
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

	0-No relation	3- Highly relation	2- Medium relation	1-Low relation
--	---------------	--------------------	--------------------	----------------

YCA103 Python Programming

Course Outcomes:

CO1	С	Understand	Explain the programming skills in core Python.
CO2	С	Understand	Outline the functionalities of Strings and function
CO3	С	Understand	Illustrate object oriented skills in Python
CO4	С	Understand	Comprehend various Python Packages
CO5	С	Understand	Infer web applications using Django
CO6	С	Understand	Infer Query process using Django

COURSE CODE	COURSE NAME L T P								
YCA103	Python Programming	3	1	0	4				
C:P:A = 4:0:0									
		L T P							
PREREQUISITE	Basic Computer Skill	3	1	0	4				
UNIT I : INTRODUCT	ION	.1		l	12				
Introduction : Fundamental	ideas of Computer Science - Strings, Assignment, and	d Com	ments	- Nun	neric				
Data types and Character se	ets – Expressions – Loops and Selection Statements:	Defir	nite ite	ration	: the				
for Loop - selection: if and if-else statements - Conditional iteration: the while Loop									
UNIT II : STRINGS AN	ID FUNCTIONS				12				
Strings and Text Files: Acc	cessing Characters and substrings in strings - Data	encryp	tion-S	trings	and				
Number systems- String me	ethods - Text - Lists and Dictionaries: Lists - Dicti	ionarie	es – D	esign	with				
Functions: A Quick review -	- Problem Solving with top-Down Design - Design w	ith rec	ursive	Funct	ions				
- Managing a Program's name	mespace - Higher-Order Functions								
UNIT III: DESIGN W	ITH CLASSES				12				
Design with Classes: Gettin	g inside Objects and Classes – Data-Modeling Exam	ples –	Build	ing a	New				
Data Structure – The Two –	Dimensional Grid - Structuring Classes with Inherita	nce an	d Poly	morpl	nism				
- Graphical User Interfaces	- The Behavior of terminal-Based programs and G	GUI-B	ased p	orogra	ms -				
Coding Simple GUI-Based	programs - Windows and Window Components - G	Comm	and B	uttons	and				
responding to events									
UNIT IV : WORKING WITH PYTHON PACKAGES 12									
Working with Python Packages: NumPy Library-Ndarray – Basic Operations – Indexing, Slicing and									
Iteration – Array manipula	tion - Pandas – The Series – The DataFrame - The	Index	Obje	cts – I	Data				

Vizualization with Matplotlib – The Matplotlib Architecture – pyplot – The Plotting Window – Adding Elements to the Chart – Line Charts – Bar Charts – Pie charts

UNIT- V: DJANGO

12

Django: Installing Django – Building an Application – Project Creation – Designing the Data Schema - Creating an administration site for models - Working with QuerySets and Managers - Retrieving **Objects** – Building List and Detail Views

LECTURE	TUTORIAL	TOTAL
60	0	60

TEXT

- 1. 1. K.A. Lambert, "Fundamentals of Python: first programs", Second Edition, Cengage Learning, 2018
- 2. Fabio Nelli, "Python Data Analytics: With Pandas, NumPy, and Matplotlib", Second Edition, Kindle Edition, 2018
- 3. Antonio Mele, "Django 3 By Example", Third Edition, 2020

REFERENCES

1. John Paul Mueller & Luca Massaron, Python for Data Sciences for Dummies, Kindle Edition, 2015 2.Dr.Gabriele Lanaro & Quan Nguyen, Leaning Path Advanced Python Programming, Kindle Edition, 2019

E REFERENCES

1. https://onlinecourses.nptel.ac.in/noc18_cs35

2.https://nptel.ac.in/courses/106105166/26

3.https://nptel.ac.in/courses/117106113/34

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

Course Code	Course Name			L	Т	Р	С			
YCA104	Mathematical foundation for Applications	r Computer		4	1	0	5			
C:P:A = 5:0:0				L	Т	Р	Н			
				4	1	0	5			
	Course Outcomes:			Domain Typ						
CO1	Discuss the basic fundamental measures	ls of statistics an	nd	Cognit	ive	Remen	nbering			
CO2	Identify the concept of sample	ling technique		Cognit	ive	Unders	tanding			
CO3	Describe about the charts and analysis Cognitive Remembering									
CO4	Discuss about the statistics analysis Cognitive Understandi									
CO5	Describe the various implementation Cognitive Underst									
CO6	Explain the statistical models Programming languages.	Understanding								
UNIT-I: Introduction 12+3										
Basic Statistics: Moments - Corr	Measures of central tendencie relation coefficient - Regression	es - Measures of	f disper	sion - F	requent	cy distrib	utions -			
UNIT-II: Sar	npling statistical computing						12+3			
Sampling: Theo	bry of sampling - population and inference	nd sample - Sur	rvey me	ethods a	nd estir	nation Sta	atistical			
LINIT III. Stat	tistics For Business						12+3			
Computing free	uency charts - Regression analy	sis					1473			
UNIT- IV: Dat	a Analysis	515.					12+3			
Time series and	forecasting									
UNIT- V:Imple	ementation						12+3			
Implementation	: Using a programming languag	e - a database sy	stem -	Program	ming st	yles - reu	sability			
- extensibility -	robustness - Programming-in-th	e-large - case st	udy.							
		LECTURE	TUTO	ORIAL]	OTAL				
60 15 75										
TEXT			1 6	.1 1	1	6.0				
1. Tanner, M. A.," Tools for Statistical Inference: Methods for the Exploration of Posterior Distribution" Springer Verlag: New York., third Eition., 1996										
REFERENCES	REFERENCES									
1. Affi, A.A., 1979. Hogg York. 1980.	"Statistical Anal);sis: A Comp g. R. vEt. Al., "Introduction to	uter Oriented A o Mathematical	pproach Statisti	n". Acad cs", Am	emic P erican	ress, New Publishing	v York, g, New			

Table 1: COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	2	2	1	2	2	2	2	2	2
CO 2	3	2	2	2	2	2	2	2	2	2
CO 3	2	2	2	2	2	2	2	2	2	2
CO 4	2	2	2	1	2	2	2	2	2	2
CO 5	2	2	2	2	2	2	2	2	2	2
CO 6	2	2	2	2	2	2	2	2	2	2
Total	14	12	12	10	12	12	12	12	12	12
Scaled Value	3	2	2	2	2	2	2	2	2	2

YCA105 SOFTWARE ENGINEERING

Course			Domain Credit						/ Week		Max. Marks				
Co	de	Course Name	S	C : P :	A	L	Т	Р	Tot •	CIA	ES E	Tot.			
YCA	105	SOFTWARE ENGINEERING	3	3:0:	0	3	0		5	50	50	100			
Pro requi	Pre- requisiteFamiliar with the Foundations of computing, Program Coding and Basics of software.								mming languages,						
Course Outcomes Domain Level															
On successful completion of this course, the students will able to :															
CO1	01 <i>Understand</i> various software process models and modeling techniques to represent software systems accurately								Cognitive K1 - K						
CO2	Apply Evalu	various design concepts, <i>Analyze</i> user exact design choices for usability and acces	xperienc sibility	e and			Cognitive K2 - K4				ζ4				
CO3	<i>Imple</i> softw	<i>ement</i> the software quality assurance pract are reliability, and <i>Integrate</i> the security r	ices, <i>En</i> neasures	e hance S	the	;	Cognitive K2 -]				2 - K	ζ3			
CO4	CO4 <i>Understand</i> and <i>Apply</i> various software testing procedures and techniques								tive	K	K2 - K3				
CO5	O5 <i>Understand</i> and <i>Apply</i> the S/W reuse and analytics process and service oriented s/w engineering concepts								tive	K2 - K3					
CO6	<i>Unde</i> engin		Cognitive K2 - K3					ζ3							
* K1 -	Reme	mber; K2 - Understand; K3 - Apply; K4 -	Analyz	e; K5 -	Εv	alu	ate;	K6	- Cre	ate					

UNIT – I : Software Process and Modeling

7

Software Process - Generic Process Model - Prescriptive Process Models - Product and Process - Agile Process and its Frameworks - Prototype Construction, Evaluation and Evolution -Modelling Principles - Requirements Analysis - Scenario-based Modelling - Class-based Modelling - Functional Modelling - Behavioural Modelling.

UNIT – II : Software Design Concepts

Design Process - Design Concepts - Design Model - Software Architecture - Architectural Styles - Architectural Design - Designing Class-Based Components - Conducting Component-Level Design - User Experience Design Elements - User Experience Analysis - User Experience Design - User Interface Design - Design Evaluation - Usability and Accessibility.

UNIT – III : Software Quality and Security

Software Quality : Achieving Software Quality - Review Metrics and Their Use - Formal and Informal Reviews - Review Guidelines - Software Quality Assurance (SQA) - Elements of SQA - Tasks, Goals and Metrics of SQA – Software Reliability - ISO 9000 Standards. Software Security : Security Life Cycle Models - Secure Development Life-Cycle Activities - Security Risk Analysis - Threat Modeling, Prioritization, and Mitigation - Attack Surface - Secure Coding.

UNIT – IV : Software Testing

Software Testing : Strategic Approach - Unit Testing - White-Box Testing - Black-Box Testing - Object-Oriented Testing - Integration Testing - Mobility Testing Strategies - Web Testing Strategies - Security Testing - Performance Testing - Real-Time Testing - Testing AI Systems -Testing Virtual Environments.

UNIT – V : Software Analytics and Reuse

Software Analytics : Product Metrics - Metrics for Testing - Metrics for Maintenance - Process and Project Metrics - Metrics for Software Quality. Software Reuse : Application Frameworks - Application system reuse. Service-Oriented Software Engineering : Service-oriented Architecture - RESTful Services - Service Engineering - Service Composition.

UNIT – VI : Systems and Real-Time Software Engineering	
--	--

Systems Engineering : Sociotechnical Systems - Conceptual Design - System Procurement -System Development - System Operation and Evolution. Real-time Software Engineering : Embedded System Design - Architectural Patterns for Real-time Software - Timing Analysis -Real-time Operating Systems.

Lecture	Tutorial	Practical	Total
45	0	0	45

Reference Books

7

8

8

8

1. Sommerville, Ian (2016). Software Engineering. 10 th Edition, Pearson Education Limited, Boston.

2. Roger S. Pressman, and Bruce R. Maxim (2020). Software Engineering : A Practitioner's Approach, 9 th Edition, McGraw-Hill Education, New York.

3. Sommerville, Ian (2021). Engineering Software Products : An Introduction to Modern Software

Engineering. Pearson Education Ltd.

4. Aggarwal, K. K., Singh, Y. (2008). Software Engineering. India : New Age International

Web References

1. NPTEL Course : Software Engineering by Prof. Rajib Mall | IIT Kharagpur,

https://onlinecourses.nptel.ac.in/noc23_cs122/preview

2. Alison Online Course : Software Engineering https://alison.com/tag/software-engineering

3. Coursera Online Course : Introduction to Software Engineering by IBM

https://www.coursera.org/learn/introduction-to-software-engineering

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation

elation 2- M

2- Medium relation 1- Low relation

YCA106 -DATABASE MANAGEMENT SYSTEMS LABORATORY

Course Outcomes:

			nuamer	itui				
CO2 C Applying	Build an application program using concepts							
CO3 C Applying	<i>Develop</i> an application program using a data	velop an application program using a data model						
CO4 C Applying	Develop the query technical processing in da	ta base n	nanager	nents				
CO5 C Applying	<i>Explain</i> and <i>Implement</i> the normalization co	oncept fo	r a table	e of da	ita			
CO6 C Applying	Apply the query for technical processing in a	latabase	manage	ement				
Course Code	Course Name	L	Т	P	С			
YCA106	DATABASE MANAGEMENT SYSTEMS	0	0	4	2			
	LABORATORY							
C:P:A = 2:0:0		L	Т	Р	Η			
PREREQUISITE	Basic Computer Skill	0	0	4	4			
Lab Exercises 3								
Lab Exercises					30`			
 Lab Exercises Create an Account Develop a Datable Implement the Create views for mortgage paym Implement Joint Create a progration Create a progration Create a datable Write PL/SQL Write PL/SQL Write PL/SQL 	nt database in SQL. ase design for magazine agency. Nested Queries for Ticket booking. or a particular table using Personal accounts so nents etc. a operations in SQL using Doctor's diary. In to implement JDBC connectivity for Person m to implement ODBC connectivity for stud se and develop interface for Personal library procedure for an application using Hostel accounts procedure for an application using Cable trans- LECTURE TUTORIAL PL	such as i onal ban lents' ma counting f cricket ismissio RACTIC	nsuran k accor ark stat scores n prog	ce, loa unt cemen ram. TOT	30` ans, t			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation

2- Medium relation

1- Low relation

YCA107 PYTHON PROGRAMMING LABORATORY

Course Outcomes:

CO1	С	Applying	Develop the program with the concept of python scripts
CO2	С	Applying	Build the programs using elementary data items
CO3	C	Applying	Create the program by using Python programs with conditionals and loops
CO4	С	Applying	Build the program by structuring Python program
CO5	С	Applying	Build the program by using Libraries in Python
CO6	С	Applying	Implement the concept of. web programming with Django

Course Code	Course Nai	me		L	Т	P	С
YCA107	PYTHON	P	ROGRAMMIN	G 0	0	4	2
	LABORAT	ORY					
C:P:A = 2:0:0				L	Т	Р	H
PREREQUISITE	Basic Comp	uter Skill		0	0	4	4
Lab Exercises	1				1		30
1. Program using elementary data items, lists, dictionaries and tuples							
2. Program using co	nditional bran	ches, loops					
3. Program using fu	nctions						
4. Program using cla	asses and object	ets					
5. Program using inl	heritance						
6. Program using po	olymorphism						
7. Program using Nu	umpy						
8. Program using Pa	indas						
9. Program using M	atplotlib						
10. Program for crea	ting dynamic a	and interactive	web pages using	g forms			
		LECTURE	TUTORIAL	PRACTIC	CALS	тот	'AL
		0	0	30		3	0

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation

2- Medium relation

1- Low relation

YCA108 SOFT SKILL DEVELOPMENT

Course Outcomes:

CO1	С	Remembering	Define basic communication skills in professional and social contexts effectively					
CO2	С	Remembering	Define verbs and apply it in situational context.					
CO3	С	Remembering	Define Technical Writing					
CO4	C	Remembering	Find out listening and reading skills through comprehension passages					
CO5	С	Remembering	List the leadership qualities and interpersonal communication					

CO6 C Remembering Relate leadership qualities and interpersonal communication

YCA108SOFT SKILL DEVELOPMENT200C:P: A : 2:0:0 </th <th>2 H 2</th>	2 H 2					
C:P: A : 2:0:0	H 2					
	H 2					
	2					
PREREQUISITEBasic English Skills20						
UNIT I TECHNICAL WRITING	6					
Characteristics of Technical Writing -2. Development of Employability Skills-3. Vocabulary Development- Sentence Completion- Error Spotting						
UNIT II INTERPRETION IN WRITING	6					
Interpretation of Verbal Analogy -Interpretation of Reading (Comprehension -Conception) Interpretation of Reading (Comprehension -Reasoning)- Practice for writing E-mails/Technical Blogs/Forums- PPT Preparation / Demonstration of Technical Presentation						
UNIT III INTERVIEW PREPARATION	6					
Preparation of Resume - Preparation for Job Interviews / Mock Interview Section- Group Discus Skills- Developing Listening Skill(Comprehension)	ion					
UNIT IV GENERAL CONVERSATION	6					
Practice for Short Speeches / Situational Conversation- English through Mass Media - Essential Communicating and collaborating with peer member	Frammar-					
UNIT V TEAM EMPOWERMENT	6					
Team Empowerment- Persuasive Communication- Merits and Demerits in Team Communication						
LECTURE TUTORIAL TOT	AL					
30 - 30						
TEXT 1. Uma Narula, "Development Communication: Theory and Practice", Revised Edition, Har-Aanad Publication, 2019.						

34 PMIST/QMS/1/003/2023 2023 MCA Curriculum and Syllabus

2. Annette Capel and Wendy Sharp, "Cambridge English: Objective First", Fourth Edition, Cambridge University Press, 2013.

3. Emma Sue-Prince, "The Advantage: The 7 Soft Skills You Need to Stay One Step Ahead", First Edition, FT Press, 2013.

4. Guy Brook-Hart, "Cambridge English: Business Benchmark", Second Edition, Cambridge University Press, 2014.

5. Norman Lewis, "How to Read Better & Faster", Binny Publishing House, New Delhi, 1978.

REFERENCES

- 1. Michael McCarthy and Felicity O'Dell, "English Vocabulary in Use:100 Units of Vocabulary Reference and Practice", Cambridge UniversityPress,1996.
- 2. Murphy, Raymond, "Intermediate English Grammar", Second Edition, Cambridge University Press, 1999.

E REFERENCES

- 1. <u>https://onlinecourses.nptel.ac.in/noc23_hs10/</u>
- 2. https://onlinecourses.nptel.ac.in/noc22_hs77/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

YCA201 BIGDATA ANALYTICS

Course Outcomes:

CO1	С	Remember	Find out the importance of big data tools & Information Standard format
CO2	С	Remember	Define the basic concepts of big data
CO3	С	Remember	List out importance of NoSQL
CO4	С	Remember	Define Hadoop, HDFS and MapReduce concepts
CO5	С	Remember	Describe the use of Hive Pig
CO6	С	Remember	Define the process of Pig.

COURSE CODE	COURSE NAME	L	Т	Р	С	
YCA201	BIGDATA ANALYTICS	3	1	0	4	
C:P:A 4:0:0					•	
		L	Т	Р	Η	
PREREQUISITE	Basic Computer Skills	3	1	0	4	
UNIT I : Big Data and Analytics					12	
Classification of Digital Data: Structured Data- Semi Structured Data and Unstructured Data.						
Introduction to Big Data: Characteristics – Evolution – Definition - Challenges -with Big Data - Other						
Characteristics of Data - Big Data - Traditional Business -Intelligence versus Big Data - Data						
Warehouse and Hadoop. Environment Big Data Analytics: Classification of Analytics - Challenges -						
Big Data Analytics important - Data Science - Data Scientist - Terminologies used in Big Data						
Environments – Basically Available Soft State Eventual Consistency - Top Analytics Tools						

UNIT II : Technology Landscape

NoSQL, Comparison of SQL and NoSQL, Hadoop - RDBMS Versus Hadoop - Distributed Computing Challenges – Hadoop Overview - Hadoop Distributed File System - Processing Data with Hadoop -Managing Resources and Applications with Hadoop YARN - Interacting with Hadoop Ecosystem

UNIT III : MONGODB and MAPREDUCE Programming	12
MongoDB: Mongo DB - Terms used in RDBMS and Mongo DB - Data Types - MongoDB Query	
Language. MapReduce: Mapper – Reducer – Combiner – Partitioner – Searching – Sorting–	
Compression	
UNIT IV: HIVE	12

12
-		~ *	~						
Int Pa	Introduction – Architecture - Data Types - File Formats - Hive Query Language Statements – Partitions – Bucketing – Views - Sub- Query – Joins – Aggregations - Group by and Having – RCFile								
- Implementation - Hive User Defined Function - Serialization and Deserialization									
TTN					10				
Ur	NII V: PIG				12				
Int	ntroduction - Anatomy – Features – Philosophy - Use Case	e for Pi	g - Pig Latin Ove	erview	-				
Pi	ig Primitive Data Types - Running Pig - Execution Modes	s of Pig	- HDFS Comma	ands -					
Pa	arameter Substitution – Diagnostic Operator - Word Cour	nt Exam	ple using Pig.						
	LECI	ΓURE	TUTORIAL	TOTA	۱L				
	6	50	-	60)				
Tł	EXT								
1.	<u>A.K. Sharma</u> , " <u>Data Structures using C</u> ", Pearson Educ	cation, 2	013						
2.	Robert L. Kruse"Data Structures and Program Design i	i <u>n C</u> , Pe	arson Education,	, 2013					
3.	T.H. Cormen, C.E. Leiserson, R.L. Rivest and C.Stein, "Intr	roduction	n to Algorithms",	3rd Edit	ion,				
	MIT Press, 2009.								
4.	S. Lipschutz and G.A.V. Pai, "Data Structures", Tata McGr	raw-Hill,	2010.						
RI	EFERENCES								
1.	Robert L Kruse: Data Structures and program designing usir	ng C, 20	13.						
2.	Kamthane: Introduction to Data Structures in C, Pearson Edu	lucation,	2005						
3.	M.A.Weiss, "Data Structures and Problem Solving using Jav	va", 4th	Edition, Addison	Wesley,					
	2009.								
4.	D. Samanta, "Classic Data Structures", 2nd Edition, PHI, 20	009.							
5.	5. P. Brass, "Advanced Data Structures", Cambridge University Press, 2008								
E	REFERENCES								
1.	NPTEL, Data structures and algorithm ,Prof. Hema A Murth	hy,IITM	adras,Prof. Shanka	ar					
	Balachandran,IITMadras,Dr. N S. Narayanaswamy,IIT Mad	lras							
2.	NPTEL, Data structures and algorithm ,Prof. Naveen Garg,I	IIT Delhi	i						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

YCA203 ADVANCED DATA STRUCTURES

Course Outcomes:

CO1	С	Remember	Find out the importance of Abstract Data Types
CO2	С	Remember	Define the structure of Algorithm Analysis
CO3	С	Remember	Define trees and its representation
CO4	С	Remember	List out various searching and sorting algorithms
CO5	С	Remember	Describe the concept of sorting.
CO6	С	Remember	Define the features and applications of Graphs.

COURSE CODE COURSE NAME L								
YCA203	ADVANCED DATA STRUCTURES	3	1	0	4			
C·P·A 4·0·0								
C.I.A 4.0.0								
		L	Т	P	H			
PREREQUISITE	Basic Computer Fundamentals31							
UNIT I : STACK & (UEUE		4		12			
Introduction-Contiguou	s implementation of stack-Various operation on stack-va	rious P	olish N	Votati	ons-			
prefix, postfix, infix, C	Conversion from one to another - using stack- Evalua	ation of	f post	& pr	efix			
expression. Contiguous	implementation of Queue- Linear queue, its drawback-	Circula	r queu	e-Var	ious			
operations on queue- Li	nked implementation of Stack and Queue operations							
UNIT II : GENERAL LIST								
List and its contiguous i	mplementation, its drawback; Singly linked list-operation	ons on i	it; dou	bly				
linked list- operations of	n it; Circular linked lists: Josephoes Problem; Linked lis	t using	arrays	з,				
polynomial Arithmetic:	addition, Subtraction and Evaluation, Linked Stack and	Queue	s.					
UNIT III : TREES A	AND ITS REPRESENTATION				12			
Definitions- Height, dep	oth, order, degree, parent & children relationship etc-Bin	ary Tre	ee-Var	ious				
theorems, complete bina	ary tree, almost complete binary tree; Tree Traversals-pr	eorder,	in orc	ler &				
post order traversals, the	eir recursive and non recursive implementations- Expres	ssion tre	ee-eva	luatio	n;			
Linked representations of	of binary tree operations. Threaded binary- trees; Forres	t, Conv	ersion	of th	e			
forest into tree Heap del	finition.							
UNIT IV: SEARCHIN	IG, HASHING & SORTING				12			
Requirements of a searc	h algorithm; sequential search, binary search, indexed s	equenti	al seai	ch,				
interpolation search, Ha	shing- Basics, methods, collision, resolution of collision	n, chain	ing; Ir	iterna	.1			
Sorting-bubble sort, sele	ection sort, insertion sort, quick sort, merge sort on linke	ed and c	contigu	ious l	ists,			
shell sort, heap sort, tree sort.								
UNIT V GRAPH					12			

39 PMIST/QMS/1/003/2023 2023 MCA Curriculum and Syllabus

Related definitions; Graph representations- adjacency matrix, adjacency list, adjacency multi-list-Traversal schemes depth-first search, breadth first search; Minimum spanning tree; Shortest path algorithm; Kruskal & Dijkstra algorithms. Miscellaneous features: Basic idea of AVL Tree-Definition, insertion & deletion operation; Basic idea of B-tree definition, order, degree, insertion & deletion operations- B+-tree-definition, comparison with B-tree; Basic idea of string processing.

	LECTURE	TUTORIAL	TOTAL			
	60	-	60			
TEXT						
1. A.K. Sharma, "Data Structures using C", Pear	rson Education	, 2013				
2. Robert L. Kruse" Data Structures and Program	<u>n Design in C</u> , l	Pearson Education	on, 2013			
3. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C.	Stein, "Introduc	tion to Algorithm	s", 3rd			
Edition, MIT Press, 2009.						
4.S. Lipschutz and G.A.V. Pai, "Data Structures", T	Tata McGraw-Hi	11, 2010.				
REFERENCES						
5.Robert L Kruse: Data Structures and program desi	igning using C, 2	2013.				
6.Kamthane: Introduction to Data Structures in C, P	earson Educatio	n, 2005				
7.M.A.Weiss, "Data Structures and Problem Solving	g using Java", 41	h Edition, Addisc	on Wesley,			
2009.	DIII 2 000					
8.D. Samanta, "Classic Data Structures", 2nd Editio	on, PHI, 2009.	2000				
9.P. Brass, "Advanced Data Structures", Cambridge	e University Pres	s, 2008				
E REFERENCES						
10.NPTEL, Data structures and algorithm ,Prof. Her	ma A Murthy,II	ГMadras,Prof. Sha	ankar			
Balachandran,IITMadras,Dr. N S. Narayanaswamy,IIT Madras						
11. NPTEL, Data structures and algorithm .Prof. Na	aveen Garg.IIT I	Delhi				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation	2- Medium relation	1-Low relation
----------------------------------	--------------------	----------------

YCA204 OBJECT ORIENTED PROGRAMMING LANGUAGE

Course Outcomes:

CO1	С	Remember	Find out the importance of Object Oriented Programming Concept.
CO2	С	Remember	Define the overview of JAVA.
CO3	С	Remember	Discuss about control statements of JAVA.
CO4	С	Remember	List out String functions in Java.
CO5	С	Remember	Describe the applet and swing.
CO6	С	Remember	Comprehend the connection between Relational Database and Java.

COURSE CODE	COURSE NAME	L	Т	P	С
YCA204	3	0	0	3	
	LANGUAGE				
C:P:A 3:0:0					
		L	Т	Р	H
PREREQUISITE	3	0	0	3	
UNIT I : OBJECT OF	RIENTED PROGRAMMING PARADIGM		.L		9
Basic OOP concepts -	Benefits - C++ Class definition - Member function	s – St	atic m	embe	rs –
Constructor and destruc	tors: various types. Operator overloading: Unary, binar	y – Ru	les for	Oper	rator
overloading – Type con	versions - Function overloading – Friend and Virtual	- Functio	ons. In	herita	nce:
Various Types, Applica	tions – Abstract classes – Virtual base classes.				
· · · ·					
UNIT II : INTRODUC	TION TO JAVA PROGRAMMING				9
An Overview of Java: O	bject Oriented Programming- Data Types, Variables, ar	nd Arra	ys: Pri	mitiv	'e
Types-Literals Variables	s - Type Conversion and Casting-Arrays-Operators: Con	ntrol St	ateme	nts-	
Classes and Methods – I	Inheritance-Exception Handling.				
UNIT III: STRING	HANDLING				9
String Handling: The St	ring Constructors - String Length - Special String - Oper	ations	- Char	acter	

String Handling: The String Constructors - String Length - Special String -Operations - Character Extraction - String Comparison - Searching Strings -Modifying a String - Input/Output: The I/O Classes and Interfaces – File - Byte Streams - Character Streams

UNIT IV: APPLET CLASS

The Applet Class: Basic Architecture - Applet Skeleton - Display methods - Status Window – Passing Parameters. Introducing GUI Programming with Swing– Introducing Swing - Swing Is Built on the WT- Two Key Swing Features - The MVC Connection - Components and Containers - The Swing Packages - A Simple Swing Application - Exploring Swing.

9

UNIT V: NETWORK PROGRAMMING						
Working with URLs- Working with Sockets - Remote M Management Systems - Tables, Rows, and Columns - In Inserting Rows - Updating and Deleting Existing Rows New Database with JDBC - Scrollable Result Sets	Method Invocation troduction to the - Creating and E	on. Introduction to e SQL SELECT S Deleting Tables -C	Database tatement - reating a			
	LECTURE	TUTORIAL	TOTAL			
	45	-	45			
TEXT						
1. Herbert Schildt, "Java the Complete Reference",	10th edition, Mc	Graw Hill Publis	ning			
Company Ltd, New Delhi, 2017.						
2. Tony Goddis, "Starting out with Java from Cont	rol Structures Th	rough Objects" 6	th Edition,			
Pearson Education Limited, 2016						
REFERENCES						
1. Herbert Schildt, Dale Skrien, "Java Fundamental	s – A Comprehe	nsive Introductio	n", TMGH			
Publishing Company Ltd, New Delhi, 2013						
2. John Dean, Raymond Dean, "Introduction to Pro	gramming with .	JAVA –A Probler	n Solving			
Approach", TMGH Publishing Company Ltd, New Del	hi,2012.					
E REFERENCES						
1.https://nptel.ac.in/courses/106/105/10610519	1/					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation	3- Highly relation	2- Medium relation	1-Low relation
---------------	--------------------	--------------------	----------------

YCA206 BIG DATA ANALYTICS LABORATORY

Course Outcomes:

CO1	C	Applying	<i>Develop</i> the program by using the concept of fundamental techniques for handling the big data tools
CO2	С	Applying	<i>Create</i> the programs using tools required to manage big data.
CO3	С	Applying	<i>Create</i> the programs using Map reduce algorithm
CO4	C	Applying	<i>Create</i> the program by using Hadoop, MapReduce, Hive, and Pig
CO5	С	Applying	<i>Build</i> the program for fundamental principles in achieving big data analytics with scalability and streaming capability
CO6	C	Applying	Implement the concept of Mongo DB

COURSE CODE	COURSE NAME	L	Τ	Р	С
YCA206	BIG DATA ANALYTICS LABORATORY	0	0	4	2
C:P:A 2:0:0					
		L	Т	P	H
		0	0	4	4
PREREQUISITE	Basic Computer Fundamentals				
LAB EXERCIS	ES		.[30

- 1. Implement File System Shell Commands for HDFS in Hadoop Environment
- 2. Write a Mapreduce program using single reduce function for finding Maximum and Minimum Number
- 3. Write a Mapreduce program using multiple reduce function for Word Count in an given Text document
- 4. Implement the following using Pig Latin Input and Output Operations Relational Operations
- 5. Implement the following using Pig Latin User Defined Functions Advanced Relational Operations
- 6. Write a Word Count program using Pig Latin Script
- 7. Write a program to find a maximum temperature using Pig Latin Script
- 8. Implement the following using Hive commands Handling the Database
- 9. Creating and Manipulating table

10.	Implement	Simple	Queries	for	database	using Mong	0
-----	-----------	--------	---------	-----	----------	------------	---

11. Implement Simple Queries for collections using Mongo

LECTURE	TUTORIAL	PRACTICAL	TOTAL
-	-	30	30

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Hig

3- Highly relation 2- Medium relation 1– Low relation

YCA207 OBJECT ORIENTED PROGRAMMING LANGUAGE LABORATORY

Course Outcomes:

CO1	C	Applying	<i>Develop</i> the program by using the concept of object-oriented concepts in JAVA
CO2	C	Applying	<i>Create</i> the programs using concepts Exception handling.
CO3	C	Applying	<i>Create</i> the program by using Applet
CO4	C	Applying	Build the program for Network communication
CO5	C	Applying	<i>Implement</i> the concept of JDBC
CO6	C	Applying	Implement Java beans

COURSE CODE	COURSE NAME	L	Т	Р	C
YCA207	OBJECT ORIENTED PROGRAMMING LANGUAGE LABORATORY	0	0	4	2
C:P:A 2:0:0					
		L	Т	Р	H
PREREQUISITE	Basic Computer Fundamentals	0	0	4	4
LAB EXERCIS	ES	i	1	.i	30

LAB EXERCISES

- 1. Implementation of Exception handling concepts in C++
- 2. Build a Swing application to implement metric conversion.
- 3. Use Grid Layout to design a calculator and simulate the functions of a simple calculator.
- 4. Create a Color palette with a matrix of buttons using Applet.
 - To invoke a servlet from HTML forms. •
 - To invoke servlet from Applets. •
 - To invoke servlet from JSP. ٠
- 5. Implement message communication using Network Programming.
- 6. Write a program to connect databases using JDBC.
- 7. Simple program using Sockets

LECTURE	TUTORIAL	PRACTICAL	TOTAL
-	-	30	30

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation	3- Highly relation	2- Medium relation	1– Low relation
---------------	--------------------	--------------------	-----------------

YCA208 DATA VISUALISATION LABORATORY

Course Outcomes:

CO1	C	Applying	<i>Develop</i> the program by using the concept of basic functions of Excel and tableau
CO2	С	Applying	<i>Develop</i> the program by using the concept of basic operations of Excel and tableau
CO3	C	Applying	<i>Explore</i> to design, build, and deploy various charts for applications
CO4	С	Applying	<i>Create</i> the program by using comprehend, design and deploy the label
CO5	C	Applying	<i>Create</i> the program by using heat map
CO6	C	Applying	Build the program for understand and deploy dashboard

COURSE CODE	COURSE NAME	L	Τ	Р	С
YCA208	DATA VISUALISATION LABORATORY	0	0	4	2
C:P:A 2:0:0					
		L	Т	Р	H
PREREQUISITE	Basic Computer Skills	0	0	4	4
LAB EXERCIS	ES	<u></u>	<u> </u>		30

LAB EXERCISES

1. Implement the following using Excel

1. Create Pie chart for Sales and Sales % by Country (sorted in descending order)

2. Create Bar chart for Sales by Country by Year (rounded to nearest thousand and sorted by Grand Total)

3. Create Line char for Sales by Ship Mode (First Class, Same Day, Second Class and Standard Class)

4. Create Scatter chart for Sales by Ship Mode by Country (rounded to the nearest dollar and sorted by First Class)

5. Create heat map for Sales by Category by Sub-Category (in thousands

and sorted by sales value in descending order)

6. Design and create the label for vendor list

7. Design and create the dash board

2. Implement the following using Tableau

1. Sales by Ship Mode (First Class, Same Day, Second Class and Standard Class)

2.Sales by Ship Mode by Country (rounded to the nearest dollar and sorted by First Class)

3. Sales by Category by Sub-Category (in thousands and sorted by sales value in descending order

LECTURE	TUTORIAL	PRACTICAL	TOTAL
-	-	30	30

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation	3- Highly relation	2- Medium relation	1-Low relation
---------------	--------------------	--------------------	----------------

YCA301 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Course Outcomes:

CO1	С	Understand	List out various methods to define AI techniques
CO2	С	Understand	Explain set theory and Relations
CO3	С	Understand	List out various counting and Predicate Logic
CO4	С	Understand	Interpret the problems in Probabilistic reasoning
CO5	С	Understand	Discuss Concept of learning the expert systems
CO6	С	Understand	Interpret various case studies of expert systems

COURSE CODE	COURSE NAME		L	Т	Р	С				
YCA301	Artificial Intelligence and	l Machine Lear	rning 3	0	0	3				
C:P:A = 3:0:0										
			L	T	P	H				
			3	0	0	3				
UNIT –I: AI Techniqu	2S					9				
AI techniques-search kn processing- Games-theore	owledge, abstraction- natura n proving- robotics - expert sy	l language pro stems.	ocessing- visi	on ai	nd sp	eech				
UNIT -II : State Space Search 9										
State space search: Product search - Hill climbing - be	State space search: Production systems- Search space control: Depth first, breadth first search, heuristic search - Hill climbing - best first search - branch and bound.									
UNIT- III: Predicate I	ogic					9				
Minimax search: Alpha-Bo - Resolution - dependency	eta cut offs- Predicate Logic : S directed backtracking	Skolemizing que	ries - Unificat	ion. M	lodus j	pone				
UNIT- IV: Backtracking						9				
Rule Based Systems-Forw Structured Knowledge I Probabilistic reasoning-Us	ard reasoning-Conflict resolution Representations- Semantic Network Section Se	on-Backward re let-slots, excep gic.	easoning- Use ptions and d	of no efaults	backtr Frai	ack- mes-				
UNIT- V: Expert System	S					9				
Concept of learning-learn propagation-Need and just RI.	ing automation-genetic algor ification for expert systems- l	ithm- learning Knowledge acqu	by induction isition-Case s	neura tudies	l netsl : MY(back CIN,				
		LECTURE	TUTORIA	L	ΓΟΤΑ	L				
		45	0	4	15					
			.i	i						
49 PMIST/OMS/1/003/20	23	MCA	Curriculum a	nd Sv	llabus	3				

TEXT

1. Stuart J.Russell and Peter Norvig., "Artificial Intelligence- A Modern Approach", Pearson- 3^{rd} edition, 2010.

REFERENCES

- 1. Nilsson, N.J., "Principles of AP', Narosa Publishing House, 1990.
- 2. Patterson, D. W., "Introduction to AI and Expert Systems", Prentice Hall of India, 1992.
- 3. Peter Jackson, "Introduction to Expert Systems", Addison Wesley Publishing Company, M.A., 1992
- 4. Rich, E., and Knight, K., "Artificial Intelligence", Tata McGraw Hill (2nd Edition), 1992.
- 5. Schalk off, R.J., "Artificial Intelligence An Engineering Approach", McGraw Hill International Edition, Singapore, 1992.
- 6. Sasikumar, M., Ramani, S., "Rule Based Expert System", Narosa Publishing House, 1994.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	3	2	2	2	1	2	2	3	3
CO 2	3	3	2	2	2	1	2	2	3	3
CO 3	3	2	2	2	2	1	2	2	3	3
CO 4	2	3	2	2	2	1	2	2	2	2
CO 5	3	2	2	2	2	1	2	2	2	2
CO 6	3	2	2	2	2	1	2	2	2	2
Total	17	15	12	12	12	6	12	12	15	15
Course	3	3	2	2	2	1	2	2	3	3

0-No relation 3- Highly relation

2- Medium relation

1- Low relation

YCA302 COMPUTER GRAPHICS AND MULTIMEDIA

Course Outcomes:

CO1	C	Remember	Describe two dimensional graphics.
CO2	C	Understand	<i>Illustrate</i> two dimensional transformations
CO3	C	Remember	<i>Explain</i> three-dimensional graphics
CO4	C	Understand	Discuss Illumination and colour models.
CO5	C	Understand	Summarize the interface using Multimedia authoring.
CO6	C	Understand	Define Basic 3d Scenes using Blender

COURSE CODE	COURSE NAME	L	Т	P	Η	C		
YCA302	COMPUTER GRAPHICS AND MULTIMEDIA	3	0	0	3	3		
C:P:A 3:0:0					-			
		L	Т	Р	H	С		
PREREQUISITE	Basic Computer Skills	3	0	0	3	3		
UNIT -I : ILLUMINATION AND COLOR MODELS								

Light sources — basic illumination models — halftone patterns and dithering techniques; Properties of light — Standard primaries and chromaticity diagram; Intuitive colour concepts — RGB colour model — YIQ colour model — CMY colour model — HSV colour model — HLS colour model; Colour selection. Output primitives — points and lines, line drawing algorithms, loading the frame buffer, line function; circle and ellipse generating algorithms; Pixel addressing and object geometry, filled area primitives.

UNIT- II: TWO-DIMENSIONAL GRAPHICS

Two dimensional geometric transformations — Matrix representations and homogeneous coordinates, composite transformations; Two dimensional viewing — viewing pipeline, viewing coordinate reference frame; window-to-viewport coordinate transformation, Two dimensional viewing functions; clipping operations — point, line, and polygon clipping algorithms. 9

UNIT- III: THREE-DIMENSIONAL GRAPHICS

Three dimensional concepts; Three dimensional object representations — Polygon surfaces-Polygon tables- Plane equations — Polygon meshes; Curved Lines and surfaces, Quadratic surfaces; Blobby objects; Spline representations — Bezier curves and surfaces -B-Spline curves and surfaces. TRANSFORMATION AND VIEWING: Three dimensional geometric and modeling transformations — Translation, Rotation, Scaling, composite transformations; Three dimensional

51 PMIST/QMS/1/003/2023 2023

MCA Curriculum and Syllabus

9

viewing — viewing pipeline, viewing coordinates, Projections, Clipping; Visible surface detection methods.

UNIT-IV: MULTIMEDIA SYSTEM DESIGN & MULTIMEDIA FILE HANDLING

Multimedia basics - Multimedia applications - Multimedia system architecture - Evolving technologies for multimedia – Defining objects for multimedia systems – Multimedia data interface standards – Multimedia databases. Compression and decompression – Data and file format standards – Multimedia I/O technologies – Digital voice and audio – Video image and animation – Full motion video - Storage and retrieval technologies. 9

UNIT V: HYPERMEDIA

Multimedia authoring and user interface - Hypermedia messaging - Mobile messaging -Hypermedia message component – Creating hypermedia message – Integrated multimedia message standards – Integrated document management – Distributed multimedia systems. Case Study: Blender Graphics. Blender Fundamentals — Drawing Basic Shapes — Modelling — Shading & Textures

LECTURE	TUTORIAL	PRACTICAL	TOTAL
 45	0	0	45

9

TEXT BOOKS

1. Computer Graphics and Multimedia-Atul P. Godse, Dr. Deepali A. Godse-Technical Publications, 2021

2. Donald Hearn and Pauline Baker M, —Computer Graphics", Prentice Hall, New Delhi, 2007

REFERENCES

1.Foley, Vandam, Feiner and Hughes, -Computer Graphics: Principles and Practicel, 2nd Edition, Pearson Education, 2003.

2.Jeffrey McConnell, -Computer Graphics: Theory into Practicel, Jones and Bartlett Publishers,2006.

3.Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen R Marschner, Erik Reinhard, KelvinSung, and AK Peters, -Fundamentals of Computer Graphics, CRC Press, 2010.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation

2- Medium relation

1-Low relation

YCA305 MINI PROJECT

COURSECODE	COURSE NAME	L	Т	P	С
YCA305	Mini Project	0	0	3	3
C:P:A = 3:0:0					
		L	Τ	Р	Η
PREREQUISITE	Basic Computer Skills	0	0	3	3

- CO1 C Apply Identify the Requirements Analysis
- CO2 C Apply Plan the Design for their project
- CO3 C Apply Model for data preprocessing
- CO4 C Apply Develop the Coding
- CO5 C Apply Plan for Testing
- CO6 C Apply

Solve the Conclusion

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation

2- Medium relation 1- Low relation

YCA306 INDUSTRIAL LECTURERS

COURSECODE	COURSE NAME	L	Т	P	C
YCA306	INDUSTRIAL LECTURES	0	0	2	2
C:P:A = 2:0:0					
		L	Т	Р	H
PREREQUISITE	Basic Computer Skills	0	0	2	2

CO1 C Apply Examine the domain-based company and its environment CO2 С Apply Associate with team members CO3 С Apply Prepare the Technical Concepts C Apply CO4 Solve the small problems C Apply CO5 Create real time applications CO6 C Apply Solve the Conclusion

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA307 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING LABORATORY

Course Outcomes:

CO1	С	Apply		Manipulate various methods to define AI	techni	ques							
CO2	С	Apply		Starts and apply set theory and Relations									
CO3	С	Apply		<i>Develop</i> and <i>implement</i> various counting	and Pr	edica	te Log	gic					
CO4	С	Apply		Develop and solve problems in Probabilist	tic reas	soning	5						
CO5	С	Apply		Build Concept of learning the expert systems									
CO6	C	Apply		Develop case study of DCNN									
COUR	SE (CODE	COU	RSE NAME	L	Т	Р	С					
YCA3	YCA307 Artif			cial Intelligence and Machine Learning	0	0	4	2					
Labo				ratory									
C:P:A	C:P:A = 2:0:0												
					L	Т	Р	Н					
PRERE	EQU	ISITE	Basic	Computer Skills	0	0	4	4					
La	b Ex	ercises	1			1		30					
1.	Wri	te a progra	m to in	plement simple Chatbot using NLP concep	t of Al	[.							
2.	2. Write a program to implement Breadth first search traversal Algorithm with AI techniques.												
3. Write a program to implement Depth first search traversal Algorithm using AI techniques.													
4. Write a program to implement Tower of Hanoi Problem using AI techniques													

- 5. Write a program to implement Hung man game with AI techniques.
- 6. Write a program to implement Tic-Tac-Toe game with AI techniques.
- 7. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets in machine learning.
- 8. Write a program to implement K nearest Neighbour algorithm to classify the iris data set, print both correct and wrong predictions using Machine Learning Techniques.
- 9. Case Study in NLP Text classification, parts of speech tagging and stemming from sentences.
- 10. Case Study in DCNN GoogLeNet and AlexNet

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCA308 COMPUTER GRAPHICS AND MULTIMEDIA LABORATORY

Course Ou	tcomes:
------------------	---------

CO1	С	Applying	Implement Graphics functions
CO2	С	Applying	Build an application program using Line Drawing algorithms
CO3	С	Applying	Develop an application using Circle Drawing algorithms
CO4	С	Applying	Implement the 2D and 3D transformations
CO5	С	Applying	<i>Apply</i> the Key frame animation
CO6	С	Applying	Apply the path animation

COURSE CODE	COURSE NAME	L	Т	Р	С		
YCA308	COMPUTER GRAPHICS AND	0	0	4	2		
	MULTIMEDIA LABORATORY						
C:P:A = 2:0:0							
		L	Т	Р	Η		
PREREQUISITE	Basic Computer Skills	0	0	4	4		
Lab Exercises							

- 1. Implement Fundamental Graphics Functions.
- 2. Implementation of Line drawing algorithms: DDA Algorithm, Bresenham's Algorithm
- 3. Implementation of Circle drawing algorithms: Bresenham's Algorithm, Mid-Point Algorithm.
- 4. Programs on 2D and 3D transformations
- 5. Write a program to implement Cohen Sutherland line clipping algorithm
- 6. Write a program to draw Bezier curve.
- 7. Using Flash/Maya perform different operations (rotation, scaling move etc..) on objects
- 8. Create a Bouncing Ball using Key frame animation and Path animation.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation

2- Medium relation 1- Low relation

YCA401 REVIEW OF LITERATURE

COURSECODE	COURSE NAME	L	Т	Р	С
YCA401	REVIEW OF LITERATURE	0	0	3	3
C:P:A = 3:0:0					
		L	Т	Р	Η
PREREQUISITE	Basic Computer Skills	0	0	3	3

CO1	С	Guided Response	Experiment with domain
CO2	С	Guided Response	Identifying the Topic
CO3	С	Guided Response	Preparing the content/Arranging the Seminar
CO4	С	Guided Response	Presenting the content
CO5	С	Guided Response	Addressing the Audience
CO6	С	Guided Response	Answer the Question

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	2	2	2	2	2	2	2	2	3	3
CO 2	2	2	2	2	2	2	2	2	3	3
CO 3	2	2	2	2	2	2	2	2	3	3
CO 4	2	2	2	2	2	2	2	2	3	3
CO 5	2	2	2	2	2	2	2	2	3	3
Total	10	10	10	10	10	10	10	10	15	15
Course	3	2	2	2	2	2	2	2	3	3

0-No relation 3- Highly relation

2- Medium relation 1- Low relation

YCA402 MAIN PROJECT

COURSECODE	COURSE NAME	L	T	P	С
YCA402	Main Project	0	0	24	11
C:P:A = 11:0:0					
		L	T	Р	Η
PREREQUISITE	Basic Computer Skills	0	0	24	24

- CO1 C Apply Identify the Requirements Analysis
- CO2 C Apply Plan the Design for their project
- CO3 C Apply Model for data preprocessing
- CO4 C Apply Develop the Coding
- CO5 C Apply Plan for Testing
- CO6 C Apply Solve the Conclusion

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

COURS	E CODE		COURSE NAME		L	Т	Т Р С				
YCAME	2A		OPTIMIZATION TECHN	NIQUES	3	0	0	3			
С	Р	Α			L	Т	Р	Н			
3	0	0			3	0	0	3			
PRER	EQUISI	TE:NIL									
COURS		OMES:									
Course	outcom	nes:			Doma	in	Level				
CO1: Solve linear programming problems using Gomary CuttingCognitiveApplying– Plane Method and Branch and Bound Techniques								ng			
CO2: charac	Analyzi teristic	ing queu features	ing models by applying the basic of a queuing system.		Cognit	ive	Analys	ing			
CO3: item/e	Decide quipme	an optin nt/machi	nal replacement period/policy for ine.	a given	Cognit	ive	Evalua	ting			
CO4:	Explain	the need	d of inventory management.		Cognit	ive	Under	standing			
CO5: proper	Solve tv ty	wo perso	on zero sum game by applying Do	minance	Cognit	ive	Applyi	ng			
CO6: metho	Solve tv d.	wo persc	on zero sum game by applying gra	phical	Cognit	ive	Applyi	ng			
UNIT	- I: Inte	eger Pro	gramming					9			
Pure a and M	nd Mix ixed Al	ed Integ gorithms	er Programming Problems – Gon s – Branch and Bound Techniques	nary Cuttir	ıg – Pla	ne Me	thod –	Fractional			
UNIT	- II: Qu	euing T	heory					9			
Queui M/M/	ng Syst C queui	em – Ch ng Mode	haracteristics of Queuing System	– Classifi	cation o	f Quei	ues – N	1/M/1 and			
UNIT	- III: R	eplacem	ent Model					9			
Replace that Fa	cement] ail Com	Problem pletely.	- Replacement of Items that Det	eriorate wi	th time	– Repl	acemer	nt of Items			
UNIT	- IV: In	ventory	Theory					9			
ABC Analysis – Economic Lot Size Problems – EOQ with Shortage – Multi–Item Deterministic Problem – Uncertain Demand – Inventory Control with Price Breaks.											
UNIT	- V: Ga	me Theo	ory					9			
Introduction – Maximin and minimax criteria of optimality –Dominance property – Arithmetic method for 2 x 2 games – Solution of 2 x n or m x 2 games											
LECTURE TUTORIA L L							TAL				

		45	0	45
TF	CXT BOOKS			
1.	HamdyA.TAHA.,"Operations research- A	n Introduc	tion", 8 th edi	tion, Pearson
	Education, Inc, 2007.			
2.	KantiSwarup, Gupta, P.K., and Man Mohan, "O	perations Rese	arch", Sultan C	hand & Sons-
	New Delhi. 1990.			
RI	CFERENCES			
1.	Karnbo, N.S., "Mathematical Programming Tech	hniques", McC	Graw Hill, New	York. 1985.
2.	Mital K. V., "Optimization Methods In Operation	ons Research a	nd System Ana	lysis", New Age
	International (P) Ltd., New Delhi, 1992.			
3.	Saffer, L.R., Fitter J.B., and MeyerW.L., "The Cr	itical Path Me	thod". McGraw	Hill. New York.
	1990.			
4.	Gillet, B.E., "Introduction to Operations Re	esearch: A Co	omputer Orient	ted Algorithmic
	Approach". Tata McGraw Hill, New York, 1990			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	2	0	1	1	1	1	1	0	0
CO 2	3	3	1	2	1	1	1	1	0	0
CO 3	3	3	2	3	1	1	1	1	0	0
CO 4	2	1	0	0	1	1	1	1	0	0
CO 5	3	2	0	1	1	1	1	1	0	0
CO 6	3	2	0	1	1	1	1	1	0	0
Total	17	13	3	8	6	6	6	6	0	0
Scaled Value	3	3	1	2	2	2	2	2	0	0

 $5-9 \rightarrow 1$, $10-14 \rightarrow 2$, $15-18 \rightarrow 3$ 0-No relation 3- Highly relation2- Medium relation1- Low relation

CC	DURSE	CODE	COURSE	NAME		L	Т	Р	C
	YCA	ME2B	AUTOMATA	THEORY		3	0	0	3
С	Р	Α							
3	0	1				L	Т	Р	Η
						3	0	0	3
PRF	REQU	ISITE: A	Analysis						
COI	JRSE C	DUTCO	MES:						
Cou	rse out	comes:				Domai	in I	Level	
CO	1: Defi	ne and E	Explain Strings, Alphabets an	nd Languages		Cognit	ive (Understa	nding
CO	2: Defi Reg	ne and E ular sets.	Explain Regular expressions	and Properties	of	Cognit	ive I	Understa	nding
CO3: Define and Explain Context Free grammarsCognitiveUnderstanding									nding
CO4: Define and Explain Pushdown Automata & properties of Cognitive Understanding Context free languages									nding
CO	5: Defi	ne and F	Explain Turning Machine an	rarchy.	Cognit	ive I	Understa	nding	
CO	6: Exp	l ain Cho	omski hierarchy.			Cognit	ive I	Understa	nding
UNI	ΤI								9
Strin	igs, Alpl	habets ar	d Languages (Section 1.1 of	f the Text)					
Finit	e Autor	nata (Cha	apters 2, Sections 2.1 to 2.4)						
UNI	TII								9
Regi	ılar exp	ressions	and Properties of Regular se	ts.(Sections 2.5	5 to 2.8 a	nd 3.1	to 3.4)		
UNI	T III								9
Cont	text Free	e gramm	ars (Section 4.1 to 4.5)						
UNI	T IV								9
Push	down A	utomata	& properties of Context free	e languages					
Theo	brem 5.3	8, 5.4 (wi	thout proof), (Section is 5.1	to 5.3 and 6.1	to 6.3)				1-
UNI	$\frac{\mathbf{T} \mathbf{V}}{\mathbf{V}}$	1.			10.0	0.4			9
Turn	ing Ma	chine and	l Chomski hierarchy, (Sectio	ons 7.1 to 7.3 at	nd 9.2 to	9.4)			
				LECTURE	Τυτο	RIAL			AL
TEXTROOK 45									
1127	. J.E. Com	Hopocro putation	ft and J.D. Ulman, Introduct Narosa, 1999.	ion to Automat	a Theory	Langu	ages ar	nd	
REF	EREN	CES							
1. 2. 3.	G.ERev P.Linz, G.Lallr	vesz,Intro Introduct nent, Ser	oduction to Formal Languag ion to Forma Languages and nigroups and Applications.	es 1 Automata,Na	rosa2000				

COs VS POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	2	1	0	0	1	1	1	1	0	0
CO 2	2	1	0	0	1	1	1	1	0	0
CO 3	2	1	0	0	1	1	1	1	0	0
CO 4	2	1	0	0	1	1	1	1	0	0
CO 5	2	1	0	0	1	1	1	1	0	0
CO6	2	1	0	0	1	1	1	1	0	0
TOTAL	12	6	0	0	6	6	6	6	0	0
SCALED VALUE	2	1	0	0	1	1	1	1	0	0
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation										
$5-9 \rightarrow 1,$ 1	$0-14 \rightarrow$	2,	15 -	$18 \rightarrow 3$						

COURS	E CODE		COURSE NAME		L	Т	Р	С		
YCAME	2C		NUMERICAL METHODS		3	0	0	3		
С	Р	Α			L	Т	Р	н		
3	0	0			3	0	0	3		
PRER	EQUIS	SITE: N	IL					<u> </u>		
COURS	E OUTC	OMES:								
Course	outcom	nes:		Do	main		Level			
CO1:	Solve t	he algeb	raic equations and transcendental equations	Co	gnitiv	e	Applyi	ng		
using	teration	n method	l and Newton Raphson method and to find							
the sol	ution o	f linear s	system of equations using direct method							
and in	direct n	nethod.								
<u>CO2</u> .	Internre	et the val	us of the curve $y = f(y)$ using interpolation	6	onitiv	Δ	Analys	ing		
and an	proxim	ation me	the of the curve y (x) using interpolation	0	SIIIIIV		Anarys	115		
und up	proxim									
CO3:	Evaluat	te numer	ical integration using Trapezoidal,	Co	gnitiv	e	Evalua	ting		
Simps	on's 1/3	^{3rd} and 3/	/8 th rules.							
COA	Calva f			6	anitiv		Annhui			
CO4:	Solve I	irst orde	r initial value problems using single step	CO	gnitiv	e	Арріуі	ng		
metho	us.									
CO5:	Solve f	irst orde	r initial value problems using single step	Co	gnitiv	e	Applyi	ng		
metho	ds.									
COL	<u>c 1 c</u>	· / 1	* *** 1 1 11 * 12* 2	6-			A			
CO6:	Solve f	irst orde	r initial value problems using multistep	Co	gnitiv	e	Арріуі	ng		
metho	as.									
UNIT	- I: Sol	ution of	algebraic and transcendental equations	1		1		9		
Soluti	on of al	gebraic g	and transcendental equations - Fixed point its	ərəti	on m	ethor	1 Nev	vton_		
Ranhs	on meth	georaie a	ition of linear system of equations - Gauss Fli	imin	ation	metl	d = 100	21155-		
Jordan	metho	ds – Iter	ative methods of Gauss-Jacobi and Gauss-Se	eidel		meti		4455		
UNIT	- II: Int	terpolati	ion and Approximation					9		
Internet	1.4.0.4	••••••••••••••••••••••••••••••••••••••	val interrula Nerratan'a farmuand and haalu		1:66		- f			
Interpo	olation	with upo	all intervals - Newton's forward and backw	vara	aiiie	renc	d diffor	ulae-		
interpo	lation	with une	equal intervals - Lagrange interpolation – Ne	wio	n s u	vide	a annei	ence		
UNIT	. III · N	umorica	I Differentiation and Integration					0		
Approximation of derivatives using interpolation polynomials - Numerical integration using										
Trapez	<u>xoidal, S</u>	Simpson	's 1/3 and Simpson's 3/8 rules.							
UNIT	• IV: In	itial Val	ue Problems for Ordinary Differential E	lqua	ations	3				
Single	step-m	ethods -	Taylor's series method - Euler's method - M	/lodi	ified	Euler	r's metl	nod -		
Fourth	Fourth order Runge-Kutta method for solving first and second order equations									

UNIT- V: Initial Value Problems for Ordinary	Differential E	quations		9
Multi-step methods - Milne's and Adams-Bash for first order equations.	rth predictor-cor	rrector methods	s for sol	ving
· · · · · · · · · · · · · · · · · · ·	LECTURE	TUTORIA	TOT	AL
		L		
	45	0	45	5
TEXT BOOKS				
1. Grewal, B.S. and Grewal, J.S., "Numerical met	hods in Enginee	ering and Scien	ce", 6 th	

Edition, Khanna Publishers, New Delhi, (2013).

2. Jain M.K., Iyengar S.R.K, Jain R.K, "Numerical Methods problems and solutions", Revised Second Edition (2019).

REFERENCES

1.V. Rajaraman, Computer oriented numerical methods, PHI Pub(2013).

2. E. Balagurusamy, Numerical methods ,copyright 1999 by Tata MC Graw Hill,25th (2008)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
CO 1	3	2	0	1	1	1	1	1	0	0
CO 2	3	3	1	2	1	1	1	1	0	0
CO 3	3	3	2	3	1	1	1	1	0	0
CO 4	3	2	0	1	1	1	1	1	0	0
CO 5	3	2	0	1	1	1	1	1	0	0
CO6	3	2	0	1	1	1	1	1	0	0
Total	18	14	3	9	6	6	6	6	0	0
Scaled Value	3	3	1	2	1	1	1	1	0	0
$\overline{5-9} \rightarrow 1,$	10	$-14 \rightarrow 2$	2,	15 -	$-18 \rightarrow 3$					

- 1ð → 3

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

COL	J RSE N .	AME	COMBINATORICS	L	L T P					
COU	JRSE C	ODE	YCAME2D	3	0	0	3			
С	Р	Α		L	Т	Р	Н			
3	0	0		3	0	0	3			
PRER	EQUIS	ITE	Basics of sets				<u> </u>			
On su	ccessful	comple	tion of this course, the students will be able to:							
			COURSE OUTCOMES	DOMA	IN	LEV	VEL			
CO 1	Exp obje	lain the cts	Cognit	ive	Unders	tanding				
CO 2	App invo	oly diven	rse counting strategies to solve varied problems rings, combinations, distributions, and partitions	Cognit	ive	App	lying			
CO 3	Solv hom char	ve line logeneit racteristi	ear recurrence relations by recognizing y, linearity, constant coefficients, degree, and c equation	Cognit	ive	Applying				
CO 4	Ider usin	ntify the g rook p	number of permutations with forbidden positions olynomials	Cognit	ive	App	lying			
CO 5	App of g	ly Poly iven obj	a's theorem for finding number of permutations ects	Cognit	ive	App	Applying			
CO6	Ana	lyse We	ights and inventories of functions	Cognit	ive	Analyse				
UNIT	1 Per	mutatio	ns and combinations			9)			
Distrib	outions c	of distine	et objects – Distributions of non-distinct objects –	Stirling's	s formu	la.				
UNIT	2 Gen	erating	functions			9)			
Generation of the Generation o	ating fur on distin	nction fo ct cells -	r combinations – Enumerators for permutations di - partitions of integers – Ferrer's graphs – Elemen	stributio tary relat	ns of di ions.	stinct o	bjects			
UNIT 3Recurrence relation9										
Linear recurrence relations with constant coefficients- solutions by the technique of generating functions – A special class of nonlinear difference equations – Recurrence relations with two indices.										
UNIT	4 The	princip	le of inclusion and exclusion			9)			
Generation	General formula – Permutations with restriction on relative positions – Derangements – Rook polynomials – permutations with forbidden positions.									

UNIT 5 Po	ya's theory of	counting					9			
Equivalence of	lasses under a	permutation group	up – Buri	nside theorem – Eq	uivalence	classes of fu	unctions –			
Weights and inventories of functions – Polya's fundamental theorem – Generalization of Polya's theorem										
LECTURE	45	TUTORIAL	0	PRACTICAL	0	TOTAL	45			
TEXT BOOKS										
1. Cameron,	P.J. (1998)	Combinatorics:	Topics,	Techniques, Algo	rithms. C	ambridge: (Cambridge			
University	Press.									
2. Liu, C.L.,	Eddberg, M. (1968), Solutions	to proble	ems in Introduction	n to Comb	inatorial Ma	thematics.			
New York	: McGraw-Hil	l Book & Co.								
REFERENC	ES									
1. Liu, C.L. (1968). Introduction of Combinatorial Mathematics. New York: McGraw Hill Book Co.										
2. Stanley, R.P. (1997). Enumerative Combinatorics, Volume I, Cambridge Studies in Advanced										
Mathemat	ics, Volume 49	9. Cambridge Un	iversity I	Press.						

COs VS POs

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	2	1	0	0	1	1	1	1	0	0
CO 2	3	2	0	1	1	1	1	1	0	0
CO 3	3	2	0	1	1	1	1	1	0	0
CO 4	3	2	0	1	1	1	1	1	0	0
CO 5	3	2	0	1	1	1	1	1	0	0
CO6	3	3	1	2	1	1	1	1	0	0
TOTAL	17	12	1	6	6	6	6	6	0	0
SCALED	3	2	1	1	1	1	1	1	0	0
VALUE										
0 - No Relation, 1 – Low Relation, 2- Medium Relation, 3- High Relation										
$5-9 \rightarrow 1$, $10-14 \rightarrow 2$, $15-18 \rightarrow 3$										

YCABE5A - FOUNDATIONS OF DECISION PROCESSES

Course Outcomes:

CO1	С	Remember	Define various methods to define role of decision making
CO2	С	Understand	Summarize game theory and competitive strategies
CO3	С	Remember	Describe various queuing and inventory models
CO4	С	Understand	Describe problems in Finance.
CO5	С	Understand	Understand Systematic problem analysis
CO6	С	Understand	Interpret various case studies using decision making

Course Code	L	Т	Р	С						
YCABE5A	Foundations of Decision Process	3	0	0	3					
C:P:A = 3:0:0										
	L T P									
PREREQUISITE	Business Skill		3	0	0	3				
UNIT- I:-Decision	n Making		i.			9				
Role of decision m	aking in management-Framework-	Criteria under c	onditions of c	ertai	nty-1	risk				
and uncertainty-Ba	aytes theorem-Sequential decision n	naking decisior	n tree analysis							
UNIT –II: Compo	etitive Strategies					9				
Theory of utility-	Utility function curve- Competitive	strategies, gan	ne theory- Qu	euing	g moo	del-				
Single channel, sir	ngle phase waiting line model with I	Poisson.								
UNIT- III: Simu	lation					9				
Distributed arrival	rates and exponentially distributed s	ervice times-M	larkov model	s-Sin	nulati	on:				
Monte Carlo- App	lication to queuing and inventory m	odels-Applicat	tions in funct	onal	area	s of				
marketing, produc	tion.									
UNIT- IV: Finan	ce					9				
Finance- Behavior	al aspects in decision making-open	and closed mo	dels of decisi	ons.						
UNIT –V: Systematic Problem Analysis 9										
Systematic problem analysis and decision making- Decision making in functional areas - case										
studies.										
LECTURE TUTORIAL TOTAL										
45 0 45										

MCA Curriculum and Syllabus

TEXT

- 1. Gregory, G. "Decision analysis", Pitman, London, .1988.
- Johnson. R.D.. et. al. "Quantitative Techniques filr Business Decisions". Prentice Hall. N.J ..1977.

REFERENCES

- 1. Ronald A. Howard, Ali E. Abbas, "Foundations of Decision Analysis". Pearson, 2016.
- David C.skinner.,"Introduction to decision analysis", 3rd edition, Apractitioner's guide to improving decision quality, 1999.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2
	_	_		_						
CO 1	2	1	1	1	2	1	1	1	2	2
CO 2	2	1	1	1	2	1	1	1	2	2
CO 3	2	2	1	1	2	1	1	1	2	2
CO 4	2	2	1	1	2	1	1	1	2	2
CO 5	2	2	1	1	2	1	1	1	2	2
CO 5	2	2	1	1	2	1	1	1	2	2
Total	12	10	6	6	12	6	6	6	12	12
Course	2	2	1	1	2	1	1	1	2	2

0-No relation 3- Highly relation

2- Medium relation 1- Low relation

YCABE5B - CORPORATE PLANNING

Course Outcomes:

CO1	С	Knowledge	Describe various methods to define Corporate Planning and
			Budgeting
CO2	С	Understand	Understand Social Responsibilities
CO3	С	Knowledge	Describe various Professionalism
CO4	С	Understand	Describe problems in Mission and Purpose
CO5	С	Understand	Understand Concept of learning the Organisation Appraisal
CO6	С	Understand	Describe the gaps in planning of an organisation.

COURSE CODE	COURSE NAME		L	Τ	Р	С				
YCABE5B	3	0	0	3						
C:P:A = 3:0:0										
			L	Т	Р	H				
PREREQUISITEBusiness Skill300										
UNIT- I: Corporat	e Planning and Budgeting		£	.i		9				
Significance of Plan	ning: Types-Needs-Requisite	s-Corporate pl	anning: syste	em ap	proac	h-Role				
of the planner-Corpo	brate planning and budgeting.					_				
UNIT- II: Social R	esponsibilities					9				
Social responsibilities: Scope, contents, cooperation and society, consumers, corporation and democracy, community-government.										
UNIT- III: Profess	ionalism					9				
Social responsibility social bahaviour.	y-versus profitability-producti	vity-growth-P	rofessionalis	m as	a me	eans of				
UNIT-IV: Mission	and Purpose					9				
Mission and purpose	e: Business definitions - object	tives and goals	-Environmer	it app	raisal	:				
Concepts, componer	nts-Scanning and appraising th	e environment	t .							
UNIT- V: Organisa	ation Appraisal					9				
Organization apprais	sal: Dynamics-capability facto	ors- Considerat	ions- Method	ls and						
techniques- Structuring- Planning gaps: Gap analysis- Manager audit: Significance of gaps.										
LECTURE TUTORIAL TOTAL										
		45	0		45					
L										

MCA Curriculum and Syllabus

TEXT

1.Kazni. A .. "Business Policy". Tata McGraw Hill. New Delhi, 1992.

2.Johnson. G .. etal. 3rd edition. "Exploring corporate Strategy", Prentice Hall of India, New Delhi. 1994.

REFERENCES

1.CA.(Dr.)K.M. Bansal "Corporate Accounting". Taxmann.S. University of Delhi.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PSO 2
									1	
CO 1	2	2	1	1	2	1	1	1	2	2
CO 2	2	1	1	1	2	1	1	1	2	2
CO 3	2	2	1	1	2	1	1	1	2	2
CO 4	2	2	1	1	2	1	1	1	2	2
CO 5	2	1	1	1	2	1	1	1	2	2
CO 6	2	1	1	1	2	1	1	1	2	2
Total	12	9	6	6	12	6	6	6	12	12
Course	2	1	1	1	2	1	1	1	2	2

0-No relation 3- Highly relation

2- Medium relation 1- Low relation
YCABE5C MANAGEMENT OF SOFTWARE PROJECTS

Course Outcomes:

CO1	С	Knowledge	Describe various methods to define Software projects
CO2	С	Understand	Understand the project scheduling and project management.
CO3	С	Knowledge	Describe system life cycle
CO4	С	Understand	Describe the problems related to the project
CO5	С	Understand	Understand and determine skill requirements
CO6	С	Understand	Explain reporting and presentation techniques

Course Code	Course Name	L	Т	P	C				
YCABE5C	CABE5C Management of Software Projects								
C:P:A = 3:0:0		•							
		L	Т	Р	H				
PREREQUISITE	Business Skill	3	0	0	3				
UNIT- I:-Introdu	UNIT- I:-Introduction								
Managerial Issues in Software Projects-Introduction to software markets-Planning of software									
projects-Size and Cost Estimations.									
UNIT –II: Project Scheduling and Management 9									
Project Scheduling-Measurement of software quality and productivity-ISO and Capability									
Maturity Models f	or organizational growth-Project management and Practic	ce.							
UNIT- III: System	n life cycle and Design				9				
Managing the syst	tems life cycle- requirements determination-logical desi	gn-ph	ysical	desi	ign-				
testing-implement	ation.								
UNIT- IV: Integr	ation issues and Project Management				9				
System and databa	se integration issues-metrics for project management and	l syste	ms						
performance evalu	ation-managing expectations- superiors-users-team mem	bers a	nd otł	ner					
related to the proje	ect.								
UNIT- V: Cost Effectiveness Analysis									
Determining skill	requirements and staffing the project-cost-effectiveness a	nalysi	s-repo	orting	g				
and presentation te	echniques-and effective management of both behavioural	and te	chnic	al					
aspects of the proje	ect.								

		LECTURE	TUTORIAL	TOTAL						
		45	0	45						
TF	TEXT									
1.	1. Gilb, T., "Principles of Software Engineering Management", Addison Weskey. Reading.									
	M.A. 1988.									
2.	2. Putnam. L.H. Myers. W., "Industrial Sire"" Software - Effective Management using									
	Measurement". IEEE C.S. Press. 1997.									
RI	EFERENCES									
1.	Dr.Jeroen Arnoldus, Dr.Sieuwert Van Otterloo, D	r.Joost Schalk	en-Pinkster, "So	ftware						
	Project Management", ICT Institute									
2.	Lean Agile and Kanban , " Software Engineering	Management",	on Pawel Brod	zinski						
3.	"Principles of Software Development Leadership	Applying Pro	ject Managemer	nt						
	Principles to Agile Software Development" by Ken Whitaker.									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PSO 2
									1	
CO 1	2	2	1	1	2	1	1	1	2	2
CO 2	2	1	1	1	2	1	1	1	2	2
CO 3	2	2	1	1	2	1	1	1	2	2
CO 4	2	2	1	1	2	1	1	1	2	2
CO 5	2	1	1	1	2	1	1	1	2	2
CO 6	2	1	1	1	2	1	1	1	2	2
Total	12	9	6	6	12	6	6	6	12	12
Course	2	1	1	1	2	1	1	1	2	2

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCABE5D ENTERPRISE RESOURCE PLANNING

Course Outcomes:

CO1	С	Understand	Explain the functionalities of Enterprise resource planning
CO2	С	Understand	Characterize the ERP implementation procedures
CO3	C	Remember	Describes the elements of ERP
CO4	С	Understand	Differentiate the available ERP packages
CO5	С	Understand	Interpret integration process of ERP
CO6	С	Understand	Summarize the models of ERP with other related technologies

COURSE CODE	L	Т	Р	С				
YCABE5D	CABE5D ENTERPRISE RESOURCE PLANNING				3			
C:P:A = 3:0:0								
		L	Т	Р	Η			
PREREQUISITE	Business Skill	3	0	0	3			
UNIT -I: INTRODU	UCTION	<u>I</u>	1		9			
Overview - ERP essentials, Benefits, ERP evolution, ERP market, ERP tiers - information								
systems – Business Pro	cess Re-Engineering(BPR), Presentation tier – ap	plication	on tier	·				
database tier.								
UNIT- II: ENTERPR	ISE SYSTEMS				9			
ERP Implementation L	ifecycle, Implementation Methodology - Enterp	rise sy	stems	– sta	and-			
alone mainframe system	ns - client server architecture - service-oriented a	archited	cture -	- type	es of			
enterprise systems – typ	bes of data – SAP overview.							
UNIT- III: PROCESS	S IN ERP				9			
Basic Procurement proc	cess – physical flow – document flow – information	on flow	∕ – fin	ancia	1			
impact- role of enterpri	se systems in the procurement process – fulfilmer	nt proce	ess –					
production process.								
UNIT- IV: INTEGRA	TION				9			
Integrated processes -	Integrated processes execution – additional intra	compa	ny pro	ocess	es –			
extended (intracompany	y) processes.							
UNIT- V: CASE STU	DY AND FUTURE DIRECTIONS				9			

ERP for software industry – ERP for a hardware manufacturing company – ERP for Laptop
manufacturing – ERP for furniture manufacturing company – ERP for toys manufacturing
company - Mc Donald's story – ERP and e-Commerce, ERP and Internet, Future Directions.

	LECTURE	TUTORIAL	TOTAL
	45	0	45
TEXTBOOK			

1. Alexis Leon, "ERP Demystified", Tata McGraw Hill, New Delhi, 2014 **REFERENCES**

1. Simha R Magal, Jeff Word, —Essentials of Business Processes and Information Systems^I, Wiley Publications, 2009.

2. Marianne Bradford, —Modern ERP: Select, Implement and use Today's advanced business systems^{II}, Lulu Publishers, Second Edition, 2010.

3. Jyotindra Zaveri, —Enterprise Resource Planning^I, Second edition, Himalaya Publishing house, 2012.

E REFERENCES

1. ERP, Prof. P. K. Biswas, Dept. of Electronics and Elecrical Communication Engg., IIT, Kharagpur

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO	PSO 2
									1	
CO 1	2	2	1	1	2	1	1	1	2	2
CO 2	2	1	1	1	2	1	1	1	2	2
CO 3	2	2	1	1	2	1	1	1	2	2
CO 4	2	2	1	1	2	1	1	1	2	2
CO 5	2	1	1	1	2	1	1	1	2	2
CO 6	2	1	1	1	2	1	1	1	2	2
Total	12	9	6	6	12	6	6	6	12	12
Course	2	1	1	1	2	1	1	1	2	2

0-No relation 3- Highly relation

2- Medium relation 1- Low relation

YCACE3A - CLOUD COMPUTING

Course Outcomes:

CO1	С	Remember	Characterize the concept of Cloud Computing
CO2	C	Understand	<i>Identify</i> the architecture, infrastructure and delivery models of cloud computing
CO3	С	Remember	Classify various Cloud services
CO4	С	Understand	Choose the appropriate Programming Models and approach
CO5	С	Remember	Identifies the purposes of map reduce paradigms
CO6	С	Remember	Classify about different applications in Cloud

COURSE CODE	COURSE NAME				Т	Р	С	
YCACE3A	CLOUD COM	IPUTING		3	0	0	3	
C:P:A = 3:0:0								
				L	Т	Р	H	
PREREQUISITE	Basic Computer Skills				0	0	3	
UNIT I CLOUD COMPUTING FOUNDATION 9								
Introduction to Cloud Com	puting- Move to	o Cloud Com	puting-Types of Clo	ud-wo	rking	of Cl	oud	
computing- Cloud Computir	ng Technology.							
UNIT II DATA STORA	GE AND VIR	TUALIZAT	ION				9	
Data Storage-Cloud Sto	orage- Cloud	Computing	frameworks-Google	,EMC	,Amaz	on	and	
Salesforce.com. Virtualization - Basics of Virtualization - Types of Virtualization - Implementation								
Levels of Virtualization - Virtualization Structures - Tools and Mechanisms - Virtualization of CPU,								
Memory, I/O Devices - Virtual Clusters and Resource Management - Virtualization for Data-canter								

UNIT III CLOUD SERVICES AND PROGRAMMING MODELS

Software as a Service (SaaS), Platform as a Service (PaaS), Infrastructure as a Service(IaaS) Parallel and Distributed Programming Paradigms – MapReduce, Twister and Iterative MapReduce – Hadoop Library from Apache

UNIT IV CLOUD COMPUTING TOOLS AND TECHNOLOGIES

9

9

Grid, Cloud and Virtualization-Cloud Computing Application Platform – Tools for building cloud- Map Reduce Paradigms: Introduction, GFS Architecture, HDFS Architecture, Hbase, Google big Table, Amazon's (key value) pair storage and Microsoft's Azure infrastructure, Map reduce programming examples

Automation.

UNIT V CLOUD APPLICATIONS			9)			
Google Cloud Applications-Google App Engine-Case	Study: Cloud as	Infrastructure for	an interne	et-			
Case Study-An Enterprise with Multiple Data Centers.							
	LECTURE	TUTORIAL	TOTAL	4			
	45	0	45				
TEXT	•						
1. Kris Jamsa, "Cloud Computing", Jones & I	Bartlett Learnir	g, 2nd Edition,2	022				
REFERENCES							
1. Syed A.Ahson, Mohammad Ilyas, Cloud Compu	uting and Softw	are Services-Th	eory and				
Techniques, CRC, 2011.	-		-				
2. Anthony T. Velte Toby J. Velte, Ph.D. Robert E	lsenpeter, Clou	d Computing-A	Practical				
Approach, The McGraw-Hill, 2010	-	1 0					
3. George Reese, "Cloud Application Architecture	s: Building App	olications and In	frastructur	re			
in the Cloud" O'Reilly	0 11						
E REFERENCES							
1. http://track.justcloud.com/?hash=7397.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCACE3B BLOCK CHAIN

Course Outcomes:

CO1	С	Remember	Describe the concept of block chain
CO2	С	Understand	<i>Explain</i> block chain network
CO3	С	Understand	Classify crypto currency and bit coin
CO4	С	Understand	Summarize the regulation of crypto currency
CO5	С	Understand	Define block chain applications
CO6	С	Understand	Explain about innovation in next generation industry

COURSE CODE	COURSE NAME	L	Т	Р	С			
YCACE3B	BLOCKCHAIN TECHNOLOGY	3	0	0	3			
C:P:A = 3:0:0								
		L	Т	Р	H			
PREREQUISITE	Basic Computer Skills	3	0	0	3			
UNIT-I: INTRODUCTION TO BLOCK CHAIN 9								
Introduction, Advantage ove	r conventional distributed database, Block chain	Network,	Minin	g Mec	hanism,			
Distributed Consensus, Mer	kle Patricia Tree, Gas Limit, Transactions and F	ee, Anonyi	nity, R	lewar	d, Chain			
Policy, Life of Blockchain a	pplication, Soft & Hard Fork, Private and Publi	e block cha	ain.					
UNIT-II: DISTRIBUTE	ED CONENSUS				9			
Distributed Consensus: Nak	amoto consensus, Proof of Work, Proof of St	ake, Proof	of Bu	rn, D	ifficulty			
Level, Sybil Attack, Energy	utilization and alternate.							
UNIT – III: CRYPTOC	URRENCY				9			
Cryptocurrency: History, Di	stributed Ledger, Bitcoin protocols - Mining str	ategy and	reward	ls, Eth	nereum -			
Construction, DAO, Smart C	Contract, GHOST, Vulnerability, Attacks, Sidec	hain, Nam	ecoin					
UNIT- IV: CRYPTOCU	JRRENCY REGULATION AND APPLI	CATION	S		9			
Cryptocurrency Regulation:	Stakeholders, Roots of Bitcoin, Legal Aspect	s - Crypto	curren	су Ех	kchange,			
Black Market and Global Economy- Blockchain Applications: Internet of Things, Medical Record								
Management System, Domain Name Service and future of Blockchain								
UNIT-V: NEXT GENERATION INDUSTRY 9								

Industry 4.0: The Fourth Revolution- - Sustainability Assessment of Manufacturing Industry - Lean Production System - Smart and Connected Business Perspective - Smart Factories – Industry 5.0

MCA Curriculum and Syllabus

		LECTURE	TUTORIAL	TOTAL				
		45	-	45				
TF	CXT	i	i					
1.	Arvind Narayanan, Joseph Bonneau, Edw	vard Felten,	Andrew Miller	and Steven				
	Goldfeder,Bitcoin and Cryptocurrency Tech	nnologies: A	Comprehensive	Introduction,				
	Princeton University Press (July 19, 2016).							
2.	Blockchain for Beginners: The Complete Step	by Step Guide	e to Understandi	ng Blockchain				
	Technology by Mark Watney							
Re	ference							
1.	Cryptocurrencies and Blockchains by Quinn Du	Pont						
2.	Blockchain Applications: A Hands-On Approac	h Paperback b	y Arshdeep Bahg	ga				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1– Low relation

YCACE3C DIGITAL IMAGE PROCESSING

Course Outcomes:

CO1	С	Understand	Describe	e the b	asics	s of d	igital ima	ge fu	ndame	entals	•	
CO2	С	Remember	Underst	and	the	class	sification	s of	Ima	.ge l	Proce	essing
			techniqu	ies.								
CO3	С	Understand	Describe	e vari	ous	types	s of feat	ure e	xtract	tion	techr	iques
			applicab	le for	imag	ge vis	ion.					
CO4	С	Understand	Explain	Image	e enc	oding	5					
CO5	С	Understand	Describe	e enco	oding	imag	ges based	on th	ne cor	ncept	of Fe	ourier
			transforr	ms.								
CO6	С	Understand	Define t	he con	ncept	of fil	ltering an	d Res	toratio	ons.		
Course	e Code		Course N	ame					L	Т	P	С
YCAC	CE3C		DIGITAI	L IMA	GE	PRO	CESSIN	G	3	0	0	3
C:P:A	= 3:0:0								L	Т	Р	Η
									3	0	0	3
UNIT	UNIT –I: Digital Image Fundamentals 9											
Image Image Hadam	digital Repr processing s ard transfor	esentation. El system elemer ms.	ements of v nts. Fourier	visual transf	perce forms	eptioı s. Ext	n -Sampli tension to	ng an 2∙ D	d qua , OCR	ntizat ., Wa	ion. lsh,	
UNIT-	II: Image	Transformat	tion and se	egmen	tatio	n						9
Enhand	cement and	segmentation:	Histogram	n modi	ficat	ion. S	Smoothin	g, sha	rpenir	ıg.		
UNIT	-III: Feat	ure Extractio	n									9
Thresh	olding - Edg	ge Detection.	Segmentati	on. Po	oint a	nd re	gion depo	enden	t tech	nique	s.	
UNIT	-IV : Image	e Encoding										9
Image	encoding:	Fidelity crit	eria. Trans	sform	con	npres	sion. KI	., Fo	urier,	DC	Г. S	patial
compre	ession, Run	length coding	. Huffman	and co	ontou	ır cod	ling.					
UNIT-	V: Image	Restoration										9
Restor	Restoration: Models. Inverse filtering. Least squares filtering. Recursive filtering.											
							AL 5					
145 U 45												
1 Mark Nixon at a 1 "Easture Extraction & Image processing for Computer vision" 2 rd												
Edition, 2012.												
	,	-										

REFERENCES

 Gonslaez, Richard E. Woodset.a1, "Digital Image Processing", Addison Wesley, Reading, M.A., 1990.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation

2- Medium relation 1- Low relation

YCACE3D NATURAL LANGUAGE PROCESSING

Course Outcomes:

CO1	С	Understand	Define the Linear Text Classification of NLP
CO2	С	Remember	Demonstrate the Nonlinear classification
CO3	С	Understand	Identify the various Language Models of NLP
CO4	С	Understand	Analyze and Apply the Formal Language Theory
CO5	С	Understand	Explain Logical Semantics
CO6	С	Understand	<i>Explain</i> and formulate the Predicate argument Semantics

Course Code	Course Name	L	Т	Р	С		
YCACE3C	NATURAL LANGUAGE	3	0	0	3		
	PROCESSING						
C:P:A = 3:0:0		L	Т	Р	Η		
		3	0	0	3		
UNIT-I: NLP Introduction					9		
NLP Introduction: Natural Lang	uage Processing and Its Neighbours - Thi	ee Th	emes	in N	ILP -		
Linear Text Classification: The	bag of words – Naïve Bayes – Discrimina	tive L	earni	ng –	Loss		
Functions and Large-margin Classification – Logistic Regression – Optimization							
UNIT- II : Nonlinear Classification9							
Nonlinear Classification: Feedforward Neural Network – Designing Neural Network – Learning							

Neural Network – Conventional Neural Network - Linguistic Applications of Classification: Sentiment and Opinion Analysis – Word Sense Disambiguation – Design Decisions for Text Classification – Evaluating Classifier – Building Datasets. 9

UNIT-III: Language Models

Nonlinear Classification: Feedforward Neural Network – Designing Neural Network – Learning Neural Network - Conventional Neural Network - Linguistic Applications of Classification: Sentiment and Opinion Analysis – Word Sense Disambiguation – Design Decisions for Text Classification – Evaluating Classifier – Building Datasets.

UNIT -IV : Formal Language Theory

Formal Language Theory: Regular Languages – Context Free Languages - Context Free Parsing: Deterministic Bottom up Parsing - Ambiguity - Weighted Context Free Grammars - Learning Weighted Context Free Grammars – Grammar Refinement 9

UNIT-V: Logical Semantics

Logical Semantics: Meaning and Denotation – Logical Representation of Meaning – Semantic Parsing and the Lambda Calculus – Learning Semantic Parsers - PredicateArgument Semantics: Semantic Roles – Semantic Role Labeling – Abstract Meaning Representation

LECTURE	TUTORIAL	TOTAL
45	0	45

9

TEXT

1. Jacob Eisenstein, "Introduction to Natural Language Processing", MIT Press, 2019.

REFERENCES

- Lawrence Rabiner, Biing-Hwang Juang, B. Yegnanarayana, "Fundamentals of Speech Recognition" 1st Edition, Pearson, 2009.
- 2. Steven Bird, Ewan Klein, and Edward Loper, "Natural language processing with Python", O'REILLY

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation

2- Medium relation 1- Low relation

YCACE4A DEEP LEARNING

Course Outcomes:

С	Understand	Describe the basics of neural networks.
С	Understand	Understand Deep Learning
С	Understand	Describe various types of feature extraction techniques
		applicable for image vision.
С	Understand	Describe various deep learning architectures.
С	Understand	Define the concept of image segmentation
С	Understand	Explain the case study with deep learning
	C C C C C C	C Understand C Understand C Understand C Understand C Understand C Understand

Course Code	Т	Р	С						
YCACE4A	DEEP LEARNING	3	0	0	3				
C:P:A = 3:0:0		L	Т	Р	Н				
		3	0	0	3				
UNIT –I: Fundamentals of	Neural Networks		1		9				
General Concepts of Neurons – Perceptron Algorithm – Feed Forward and Back Propagation									
Network.									
UNIT- II: Introduction to Deep Learning									
Feed Forward Neural Networks Vanishing Gradient problem – Heuristics for Faster Training – Dropout.	s – Gradient Descent – Back Propagation A Mitigation – RelU Heuristics for Avoiding - Nesterov's Accelerated Gradient Descent	Igorit Bad I – Reg	hm – Local gulari	Mir zatio	iima –)n –				
UNIT – III: Convolutional N	eural Networks				9				
CNN Architectures – Convolut	ion – Pooling Layers – Transfer Learning -	– Imag	ge						
Classification using Transfer L	earning.								
UNIT -IV : Deep Learning Architectures									
LSTM, GRU, Encoder/Decoder Architectures – Autoencoders – Standard- Sparse – Denoising									
– Contractive- Variational Auto	- Contractive- Variational Autoencoders - Adversarial Generative Networks - Autoencoder and								

DBM.

UNIT- V: Applications of Deep Learning

Image Segmentation – Object Detection – Automatic Image Captioning – Image generation with Generative Adversarial Networks – Video to Text with LSTM Models – Attention Models for Computer Vision – Case Study: Named Entity Recognition – Opinion Mining using Recurrent Neural Networks –

9

Parsing and	Sentiment	Analysis	using	Recursive	Neural	Networks	_	Sentence	Classification	using
Convolution	al Neural N	etworks –	Dialog	gue Genera	tion with	h LSTMs				

	LECTURE	TUTORIAL	TOTAL					
	45	0	45					
TEXT								
1. Ian Good Fellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2017.								
REFERENCES								

1. Francois Chollet, "Deep Learning with Python", Manning Publications, 2018.

2.Phil Kim, "Matlab Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence", Apress , 2017.

3.Ragav Venkatesan, Baoxin Li, "Convolutional Neural Networks in Visual Computing",

CRC Press, 2018.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation

2- Medium relation 1- Low relation

YCACE4B EXPLORATORY DATA ANALYSIS

Course Outcomes:

CO1	С	Understand	Illustrate the basic concepts of Exploratory Data Analysis.
CO2	С	Understand	Outline the EDA assumptions.
CO3	С	Understand	Utilize EDA techniques
CO4	С	Understand	Summarize Graphical techniques for EDA
CO5	С	Understand	Classify the probability distribution in EDA
CO6	С	Understand	Explain on EDA case studies

COURSE CODE	COURSE NAME		L	Т	Р	C			
YCACE4B	EXPLORATORY DATA	ANALYSIS	3	0	0	3			
C:P:A = 3:0:0									
			L	Τ	P	H			
PREREQUISITE	Basic Concepts of Programm	ning, Design	3	0	0	3			
UNIT-I: INTROL	DUCTION					9			
Introduction to Explo	ratory Data Analysis, Differen	nce between cla	ssic data anal	ysis					
and exploratory data analysis, difference between summary analysis and data									
exploratory analysis.									
UNIT- II: EDA						9			
Basic EDA assumptions, importance of underlying assumptions, techniques for									
testing assumptions, i	nterpretation of 4-Plot, conse	quences of non-	randomness,						
non-fixed parameters	like location and variation pa	rameters, conse	quences related	ed					
to distributional assumptions.									
UNIT- III: EDA TECHNIQUES 9									
EDA techniques, ana	lysis questions, graphical tech	niques, auto co	rrelation plot	for					
random data, moderat	te correlation, strong and auto	regressive corre	elation, sinusc	oidal					
correlation, Various I	Plot.								
UNIT- IV: ANOVA						9			
Graphical techniques	for EDA, Quantitative techni	ques, ANOVA,	Bartlett's test	t, pro	babil	ity			
distributions, family of	of probability distribution, loc	ation and scale	parameters, e	stima	ation	of			
parameters, various d	istributions.					•			
UNIT- V: CASE ST	UDIES	11 1 1	• • • •	~		9			
EDA case studies – R	andom distribution, Random	walk, standard	resistor, Heat	flow	mete	r.			
						L.			
		45	U		45)			
1 Evenlanatary Data	a alaraia har John W. Tultor (1	(0.77) (0.16) D	maint 2 Erral		Do	4.5			
1. Exploratory Data Analysis by John W. Tukey (1977) – 2016 Reprint. 2. Exploratory Data									
Analysis with K by Koger Peng (2016).									
KEFEKENCES									
1. Inink Stats: Exploratory Data Analysis (2nd edition) by Allen B. Downey (2014)									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

YCACE4C BUSINESS INTELLIGENCE

CO1	CO1 C Understand <i>Define</i> Structure of Business Intelligence system								
CO2	С	Understand	Describe OLAP Concept						
CO3	С	Understand	<i>Explain</i> Data view						
CO4	С	Understand	Summarize Advanced Dimensional Des	sign					
CO5	С	Understand	<i>Explain</i> Creating Data from Analysis Sector	ervice	s				
CO6	С	Understand	<i>Explain</i> Retrieving Data from Analysis	Serv	ices				
Cour	se Code		Course Name	L	Т	Р	С		
YCACE4C			BUSINESS INTELLIGENCE	3	0	0	3		
C:P:A = 3:0:0				L	Т	Р	Н		
				3	0	0	3		
UNIT –I: Introduction 9									
Meaning- Purpose and Structure of Business Intelligence Systems. Understanding									
Multidimensional Analysis Concepts: Attributes- Hierarchies and Dimensions in data Analysis									
Under	rstanding Di	imensional Da	ta Warehouse: Fact Table, Dimension Tab	oles -	Surro	gate	Kevs		
and al	and alternative Table Structure.								
Unit	II :Underst	anding OLAI					9		
Basic	Concepts of	f OLAP-Adva	ntages -Fast response- Meta-data-based qu	eries	Wor	king	with		
Sprea	d sheet- Uno	derstanding A	nalysis Services speed and meta-data. Ana	lysis	Servi	ces T	'ools.		
UNIT	Extraction, I	ating Busines	n and Load. Meaning and 1001s for the sar is Intelligence Project	ne.			9		
Creati	ing Data so	urce Creating	Data view Modifying the Data view (reati	ng Di	men	sions		
Time.	and Modify	ving dimensio	ns. Parent-Child Dimension. Creating Cu	be: V	Vizaro	l to (Create		
Cube	- Preview of	f Cub e- Addi	ng measure and measure groups to a cube-	Calcu	lated	men	nbers-		
Deplo	ying and Bi	owsing a Cub	e.						
UNIT	-IV : Adva	anced Measur	res and Calculations				9		
Aggre	egate Function	ons. Using MI	DX to retrieve values from cube - Calculation	on Scr	ipting	g. Cr	eation		
of Kl	PI's - Adva	anced Dimen	sional Design: Creating reference- fact	and	many	to	many		
dimer	nsions-					<u> </u>			
Unit V : - Data Mining							9		
Using Financial Analysis Cubes -Interacting with a cube -Creating Standard and Drill Dow							Down		
Actions- Retrieving Data from Analysis Services: Creating Perspectives- MDX Queries,									
Excel	Excel with Analysis Services								

Course Outcomes:

	LECTURE	TUTORIAL	TOTAL
	45	0	45
TEXT			
1. Carlo Vercellis (2011). "Business Intelligence: D	ata Mining and	d Optimization	for Decision
Making". John Wiley & Sons			
REFERENCES			
1. Carlo Vercellis (2011). "Business Intelligence: D	ata Mining and	d Optimization	for Decision
Making". John Wiley & Sons.			
2.David Loshin (2012). "Business Intelligence: 7	The Savvy M	lanager's Guide	e". Newnes.
Elizabeth Vitt, Michael Luckevich,			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation

2- Medium relation 1- Low relation

YCACE4D PREDICTIVE ANALYTICS

Course Outcomes.

Course Out	comes:						
CO1	С	Understand	Describe the basics of data mining				
CO2	С	Understand	Illustrate the concepts of data visua	lizatio	on		
CO3	С	Understand	Describe model development and its	s techi	niques	5	
CO4	С	Understand	Describes various algorithms in ana	lytics			
CO5	С	Understand	Infer various model deployment.				
CO6	С	Understand	Describes various analytic types.				
Course Cod	le	Co	ourse Name	L	Т	Р	C
YCACE4D		PF	REDICTIVE ANALYTICS	3	0	0	3
C:P:A = 3:0):0			L	Т	Р	Η
				3 0		0	3
UNIT –I: Introduction 9							9
Introduction	to Data	Mining Introdu	ction, what is Data Mining? Concept	s of	Data	mir	ning,
Technologie	es Used, I	Data Mining Proc	ess, KDD Process Model, CRISP – DM	, Mini	ng or	ı vai	rious
kinds of data	a, Applica	tions of Data Min	ing, Challenges of Data Mining.				
Unit II : Data Understanding and Preparation						9	
Introduction	, Reading	data from various	s sources, Data visualization, Distribution	s and	summ	nary	
statistics, Re	elationship	os among variable	s, Extent of Missing Data. Segmentation,	Outlie	er dete	ectio	n,
Automated]	Data Prepa	aration, Combinin	g data files, Aggregate Data, Duplicate R	emova	al, Sai	mpli	ng
DATA, Data	a Caching	, Partitioning data	, Missing Values.				
UNIT – III:	: Model d	levelopment & te	echniques				9
Data Partitio	oning, Mo	del selection, Mod	lel Development Techniques, Neural netw	orks, l	Decisi	ion t	rees,
Logistic reg	gression, 1	Discriminant anal	lysis, Support vector machine, Bayesian	n Net	works	s, Li	inear
Regression,	Cox Regr	ession, Associatio	on rules.				
UNIT -IV :	Model E	valuation and De	eployment				9
Introduction	, Model V	Validation, Rule In	nduction Using CHAID, Automating Mo	dels f	or Ca	tego	rical
and Contin	uous targ	gets, Comparing	and Combining Models, Evaluation	Chart	ts for	r M	lodel
Comparison	, MetaLe	vel Modeling, De	eploying Model, Assessing Model Perform	rmanc	e, Up	odati	ng a
Model.							
Unit V : An	alytics						9
Software Ar	nalytics –	Embedded Analyt	ics – Learning Analytics – Predictive Ana	lytics	– Pre	escrip	ptive

Analytics - Social Media Analytics - Behavioral Analytics. Analyse and predict results based on historical patterns.

	LECTURE	TUTORIAL	TOTAL						
	45	0	45						
TEXT									
1. Predictive & Advanced Analytics (IBM ICE Publication)									

2. Jiaweu Gab, Micgekube Janver, Jian Pei, "Data Mining Concepts", Third Edition, Morgan Kaufmann Publications, 2012.

REFERENCES

- 1. Drew Bentley, "Business Intelligence and Analytics", Library Press, 2017.
- 2. Arun K Pujari "Data Mining Techniques", 3rd Edition, University Press, 2013.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO 1	3	2	2	2	2	2	2	1	3	2
CO 2	3	2	2	2	1	2	1	1	3	1
CO 3	3	2	2	2	2	1	2	1	3	1
CO 4	3	2	2	2	1	2	1	1	3	2
CO 5	3	2	2	2	1	2	2	1	3	1
CO6	3	2	2	2	2	2	2	1	3	1
Total	18	12	12	12	9	11	10	6	18	8
Course	3	2	2	2	1	2	2	1	3	1

0-No relation 3- Highly relation 2- Medium relation 1- Low relation

Value Added Courses offered for MCA Programme from 2023-2024 (Somostor J. H. III)

(Semester-I, II, III)

- a. Advanced Java Programming
- b. Python Programming
- c. R Programming
- d. IoT
- e. Natural Language Processing
- f. Data Science
- g. Robotics Technology
- h. DevOps
- i. AWS
- j. Google Cloud
- k. Go Programming

COU	COURSECODE VA-YCA-01						
COU	COURSE NAME ADVANCED JAVA PROGRAMMING						
PREF	REQUISITE	JISITE Basic Concept of Java Programming					
Total	Total HoursLecture $(L) - 20$, Tutorial $(T) - 0$, Practical $(P) - 20$, Set $(SS) - 0$. Total = 40						
COU	COURSE OBJECTIVES						
1.	The student will ga	in knowledge in basics of ja	ava programm	ing			
2.	The student will un	der stand about the applet,	servlet, RMI				
3.	The student will be	able to do JDBC,CORBA,	swing				
4.	The students will be	e able to work with networl	king and J2EE				
Unit	Content				LTPSS		
1.	Environment Setup				L-2 P-2		
2.	Fundamentals of JA	VA			L-2 P-2		
3.	Applets				L-2 P-2		
4.	Servlet				L-2 P-2		
5.	RMI				L-2 P-2		
6.	JDBC				L-2 P-2		
7.	CORBA				L-2 P-2		
8.	Swing				L-2 P-2		
9.	Networking				L-2 P-2		
10.	J2EE				L-2 P-2		
	HOU	J RS	LECTURE	PRACTICAL	TOTAL		
			20	20	40		

93 PMIST/QMS/1/003/2023 2023 MCA Curriculum and Syllabus

TEXT

1. Patrick Naughton , Herbert Schildt, JAVA2- The Complete Reference, Tata McGraw Hill, Fifth Edition, New Delhi, 2002.

2. Jeffrey C.Jackson, "Web Technologies A Computer Science Perspective" Pearson Education, 2007.

Perspective" Pearson Education, 2007.3. Stephen Asbury, Scott R. Weiner, Wiley, Developing Java Enterprise Applications, 1998

- 4. D.Norton and H.Schildt, Java2: The Complete Reference, TMH 2000.
- E.Balagurusamy, Programming with Java, A primer second edition, Tata McGraw Hill, New Delhi.

REFERENCES

- 1. Deitel H M and Deitel P J, "JAVA-How to Program", Prentice Hall of India Private Limited, New Delhi, 2008.
- 2. D.Jana, Java and Object oriented Programming Paradigm, PHI, New Delhi, 2005.
- 3. Cay S.Horstman, Gary Cornell, "Core Java ", Volume I, II, Eigth Edition, Pearson Education, 2008.
- 4. Tom Valesky, "Enterprise Java Beans", Pearson Education, 2002.
- 5. Jeremy Rosenberger,"Teach Yourself CORBA in 14 days", Tech media, 2000.

E REFERENCES

http://www.nptelvideos.com/java/java_video_lectures_tutorials.php

http://www.nptelvideos.com/java/java_video_lectures_tutorials.php

http://freevideolectures.com/Course/2513/Java-Programming.

COU	RSECODE	VA-YCA-02					
COU	COURSE NAME Python Programming						
PREI	PREREQUISITE Basics of Programming						
Total	Fotal HoursLecture $(L) - 20$, Tutorial $(T) - 0$, Practical $(P) - 20$, Self Study $(SS) - 0$. Total = 40						
COU	RSE OBJECTIVES						
5.	The student will ga	in knowledge in basics of p	ython program	nming			
6.	The student will un	der stand about the control	structure and I	Modules			
7.	The student will be	able to do File handling Pr	ocess.				
8.	The students will be	e able to operate the Databa	ase, Networkin	ig process.			
Unit	Content				LTPSS		
1.	Environment Setup				L-2 P-2		
2.	Fundamentals of Py	thon			L-2 P-2		
3.	Control Structures				L-2 P-2		
4.	Dictionary, Modules						
5.	File I/O, Exceptions						
6.	Classes/Objects						
7.	Multithreading						
8.	Database Access				L-2 P-2		
9.	Networking				L-2 P-2		
10.	XMP Processing				L-2 P-2		
	HOU	JRS	LECTURE	PRACTICAL	TOTAL		
			20	20	40		
TEX	Γ						
1. Jas	on Cannon, Python P	rogramming for Beginners,	Kindle Editio	n, 2015.			
2.Ran	nsey Hamilton, Pytho	n Programming: A Beginn	er's Guide to I	Learn Python in 7	Days,		
Kindl	e Edition, 2016						
REFI	ERENCES						
1.John	Paul Mueller & Luca	Massaron, Python for Data Sc	eiences for Dum	mies, Kindle Editi	on, 2015		
2.Dr.0	babriele Lanaro & Qua	n Nguyen, Leaning Path Adv	anced Python P	rogramming, Kind	le Edition,		
2019 F DF	2019 E DEFEDENCES						
1 http	ELEINCES	ac in/noc18 cs35					
2 https	://nptel ac in/courses/10	6105166/26					
3.https	://nptel.ac.in/courses/11	7106113/34					

dy						
<u>5S</u>						
<u>'-2</u>						
<u>'-2</u>						
<u>'-2</u>						
<u>'-2</u>						
<u>'-2</u>						
<u>'-2</u>						
<u>'-2</u>						
' -2						
<u>'-2</u>						
'-2						
۱L						
REFERENCES						
1.Seema Acharya, Data Analytics using R, Tata Mc Graw Hill Publications, 2018.						
2.Michael J.Grawley, The R Book, Wiley Publications, 2017.						
E REFERENCES						
1. https://nptel.ac.in/courses/111104100/						

COU	COURSECODE VA-YCA-04					
COU	COURSE NAME IoT					
PREI	PREREQUISITE Basics of Programming					
Total	Hours	Lecture (L) – 20, Tutoria	al (T) – 0, Pra	ctical (P) – 20, S	elf Study	
~~~~	(SS) - 0. Total = 40					
COU	RSE OBJECTIVES					
	1. The student wil	l gain knowledge in basics	of IoT	. 1		
	2. The student wil	I understand about the Tech	nnology & Pro	tocols		
	3. The student wil	I be able to do lo l applicat	ions.			
T I4	4. The students wi	ill be able to work with vari	ous editors.		LTDCC	
	LoT Overview					
1.	Ior Overview				L-2 P-2	
2.	Software				L-2 P-2	
<i>3</i> .	Tachnology & Prot				$\frac{L-2P-2}{I2P2}$	
4. 5	Common Uses				$\frac{L-2F-2}{I2D2}$	
5.	Common Uses     L-2       Madia Markating & Advartising     L-2					
7	IoT-Environment Monitoring					
8	IoT-Energy Applica	ations			L-2 P-2	
9.	IoT-Virtualization				L-2 P-2	
10.	IoT-Eclipse & Secu	ritv			L-2 P-2	
	<u>-</u>					
	HOU	JRS	LECTURE	PRACTICAL	TOTAL	
			20	20	40	
TEX	Γ					
1.Oliv	vier Hersent, David B	Boswarthick, The Internet of	f Things: Key	applications and	protocols,	
Wiley Publications, 2015						
REFERENCES						
1.Kai Hwang, Min Chen, Big Data Analytics for Cloud, IoT and Cognitive Computing, Wiley						
Publications, 2017. 2 Adrian Meewen, Hakin Cassimally, Designing the Internet of Things, Wiley Publications, 2015						
E RE	FERENCES	somany, Designing the mitch	or of Things, W	ncy i uoneauons, z	2013.	
1. http	s://nptel.ac.in/courses/	108108098/4				
2. http	s://nptel.ac.in/courses/	106105166/				

COU	RSECODE	VA-YCA-05				
COU	RSE NAME	Natural Language Proce	essing			
PREI	REQUISITE	<b>Basics of Programming</b>				
Total HoursLecture $(L) - 20$ , Tutorial $(T) - 0$ , Practical $(P) - 20$ , Self S $(SS) - 0$ . Total = 40					elf Study	
COU	<b>RSE OBJECTIVES</b>					
	1. The student wil	l gain knowledge in basics	of NLP			
	2. The student wil	l understand about the spee	ch tagging and	l sequence labelir	ıg	
	3. The student wil	l be able to know the neura	l networks			
	<b>4.</b> The students wi	Il be able to work with patt	ern recognitio	n and translation		
Unit	Content				LTPSS	
1.	Introduction				L-2 P-2	
2.	N-gram Language N	Aodels			L-2 P-2	
3.	Part Of Speech Tagging and Sequence Labeling					
4.	Basic Neural Networks					
5.	LSTM Recurrent N	eural Networks			L-2 P-2	
6.	Syntactic parsing				L-2 P-2	
7.	Semantic Analysis				L-2 P-2	
8.	Information Extract	ion (IE)			L-2 P-2	
9.	Machine Translation	n (MT)			L-2 P-2	
10.	Pattern Recognition				L-2 P-2	
	HOU	JRS	LECTURE	PRACTICAL	TOTAL	
	20 20			40		
ТЕХТ						
1.An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition,						
by Daniel Jurafsky and James H. Martin.						
REFERENCES						
1. urafsky, David, and James H. Martin. Speech and Language Processing: An Introduction to Natural						
Langu	age Processing, Comp	putational Linguistics and Sp	eech Recognitie	on. Upper Saddle	River, NJ:	
Prenti	Prentice-Hall, 2000. ISBN: 0130950696					

E REFERENCES
1. https://nptel.ac.in/courses/106/105/106105158/

COU	RSECODE	VA-YCA-06						
COU	COURSE NAME     Data Science							
PREI	PREREQUISITE Basics of Programming							
Total HoursLecture $(L) - 20$ , Tutorial $(T) - 0$ , Practical $(P (SS) - 0, Total = 40)$				ctical (P) – 20, S	elf Study			
COU	<b>RSE OBJECTIVES</b>							
	1. The student wil	l gain knowledge in basics	of R					
	2. The student wil	l understand about the Line	ear Algebra and	d Statistical Mode	eling			
	3. The student wil	l be able know the Regress	ion					
	4. The students wi	ll be able to work with Dat	a set Analysis					
Unit	Content				LTPSS			
1.	Introduction to R				L-2 P-2			
2.	Linear Algebra				L-2 P-2			
3.	5. Statistical Modeling							
4.	4. Optimization							
5.	Introduction to data	science			L-2 P-2			
6.	Predictive Modeling				L-2 P-2			
7.	Regression				L-2 P-2			
8.	Multiple Linear Reg	gression			L-2 P-2			
9.	K-Means clustering				L-2 P-2			
10.	Data Set Analysis				L-2 P-2			
	HOU	JRS	LECTURE	PRACTICAL	TOTAL			
			20	20	40			
TEX	Γ							
1. Ha	dley Wickham, Garre	ett Grolemund, "R for Data	Science", O'R	eilly Publications	5,			
REFERENCES								
1.Andrew Bruce, Peter C. Bruce, and Peter Gedeck, "Practical Statistics for Data Scientists",								
O'Reilly Publications.								
E RE	FERENCES							
1.https	s://nptel.ac.in/courses/1	06/106/106106179/						

COU	RSECODE	VA-YCA-07				
COU	RSE NAME	<b>Robotics Technology</b>				
PREI	PREREQUISITE         Basics of Programming					
Total	Hours	Lecture (L) $-20$ , Tutori (SS) $-0$ . Total $=40$	al (T) – 0, Pra	ctical (P) – 20, S	elf Study	
COU	<b>RSE OBJECTIVES</b>					
	1. The student wil	l gain knowledge in basics	of Machine an	d Deep Learning		
	2. The student wil	l understand about Python	and R			
	3. The student wil	l be able to know the Robo	tics and its Mo	otion		
	<b>4.</b> The students wi	Ill be able to work with var	ious applicatio	ns		
Unit	Content				LTPSS	
1.	Introduction					
2.	Machine Learning					
3.	Deep Learning L					
4.	Fundamentals of Python					
5.	Fundamentals of R				L-2 P-2	
6.	Aerial Robotics				L-2 P-2	
7.	Computational Mot	ion Planning			L-2 P-2	
8.	Mobility				L-2 P-2	
9.	Perception				L-2 P-2	
10.	Applications				L-2 P-2	
	HOU	J <b>RS</b>	LECTURE	PRACTICAL	TOTAL	
			20	20	40	
ТЕХТ						
1.Kathy Ceceri, "Making Simple Robots: Exploring Cutting-Edge Robotics with Everyday						
Stuff", ISBN-13: 978-1457183638, ISBN-10: 9781457183638						
REFERENCES						

1. Robin R. Murphy," Introduction to AI Robotics", MIT Press.

COURSECODE VA-YCA-08						
COURSE NAME DevOps						
PREREQUISITE Basics of Programming						
Total HoursLecture (L) - 20, Tutorial (T) - 0, Practical (P) - 20, Set						
(SS) - 0. Total = 40						
COURSE OBJECTIVES						
1. The student will Learn AWS Cloud infrastructure tool						
2. The student will understand about Chef DevOps tool						
3. The student will Learn Docker and Deploy application anywhere any	time without					
VM or Cloud The students will be able to work with various editors.	LTDCC					
Unit Content						
1. AWS Cloud Formation Documentation	L-2 P-2					
2. Understanding Devops Mindsets	L-2 P-2					
3. Devops Principles	L-2 P-2					
. Cl and CD Principles						
5. Version Control and Version control 1001s	L-2 P-2					
Understanding Application Life Cycle Management						
7. Understanding Application Life Cycle Management	L-2 F-2					
8. Implementing Test Case Using Jenkin Pipeline	L-2 P-2					
9. Aws cloud Formation	L-2 P-2					
10. Single instance with rempLates	L-2 P-2					
HOURS LECTURE PRACTIC	CAL TOTAL					
20 20	40					
TEXT						
1. Learn Azure DevOps CI/CD pipelines Create CI/CD pipelines for Java,	.NET, NodeJs,					
Docker, Terraform, Nuget, Xamarin, SQL Server and ARM templates						
REFERENCES						
1. DevOps - The Complete Guide,Docker, Git and Github						
E REFERENCES						
1. https://nptel.ac.in/courses/128106012						
2. https://elearn.nptel.ac.in/shop/iit-workshops/completed/cicd-devops-automation-and	-devsecops-					

COURSECODE	VA-YCA-09					
COURSE NAME	COURSE NAME AWS					
PREREQUISITE	<b>Basics of Programming</b>					
Total Hours	Lecture (L) – 20, Tutori	al (T) – 0, Pra	ctical (P) – 20, S	elf Study		
	(SS) - 0. Total = 40					
COURSE OBJECTIVES						
1. The student wil	l Learn overview Comman	ds				
2. The student wil	l understand about Grep					
<b>3.</b> The student will	Learn Filter Commands					
Unit Content				LTPSS		
1. Linux Fundamental	<u>s</u>			L-2 P-2		
2. AWS Overview				L-2 P-2		
3. EC2 Instance				L-2 P-2		
4. Auto Scaling				L-2 P-2		
5. Load Balancing				L-2 P-2		
6. EBS				L-2 P-2		
7. Object Storage in C	loud			L-2 P-2		
8. Cloud Front				L-2 P-2		
9. Amazon Virtual Pri	vate Cloud			L-2 P-2		
10. AWS Troubleshoot	ing			L-2 P-2		
НО	JRS	LECTURE	PRACTICAL	TOTAL		
		20	20	40		
TEXT						
1. Saurabh Shrivastava, Neelanjali Srivastav, Alberto Artasanchez, "AWS for Solutions						
Architects Build and migrate your workload to Amazon Web Services using the cloud-native						
approach", 2nd Edition (Kindle Edition)						
REFERENCES			<b></b>	<u> </u>		
1. JAMES HORN, "AMA	AZON WEB SERVICES FO	R NEWBIES A	A Beginner's Guide	e to Cloud		

# E REFERENCES

1. https://elearn.nptel.ac.in/shop/iit-workshops/completed/amazon-web-services-aws/

COU	COURSECODE VA-YCA-10					
COU	RSE NAME	Google Cloud				
PREI	REQUISITE	<b>Basics of Programming</b>				
Total	Hours	Lecture (L) – 20, Tutoria (SS) – 0 . Total = 40	al (T) – 0, Pra	ctical (P) – 20, S	elf Study	
COU	<b>RSE OBJECTIVES</b>					
	1. The student wil	l Learn overview Comman	ds			
	2. The student wil	l understand about Grep				
	3. The student wil	Learn Filter Commands				
Unit	Content				LTPSS	
1.	A unified approach	to the cloud			L-2 P-2	
2.	Connect Google Clo	oud SQL with			L-2 P-2	
	Apps and Tools					
3.	Google App Engine				L-2 P-2	
4.	New Project with C	loud Resource			L-2 P-2	
	Manager API Clien	t for .NET				
5.	New Project with C	loud Resource			L-2 P-2	
	Manager API Clien	t for Python				
6.	Technical deep-dive	8			L-2 P-2	
7.	The cloud maturity	phases			L-2 P-2	
8.	The cloud maturity	scale			L-2 P-2	
9.	The epics				L-2 P-2	
10.	Technical deep-dive	2			L-2 P-2	
	НО	JRS	LECTURE	PRACTICAL	TOTAL	
TEXT						
1. Sparx Systems, "GoogleCloudPlatform(GCP)",2022						
REFERENCES						
1. Valliappa Lakshmanan, "Data Science on the Google Cloud Platform", "O'Reilly Media, Inc.", 2022						
E RE	FERENCES					
1. https://nptel.ac.in/courses/106105223						

COU	RSECODE	VA-YCA-11				
COU	RSE NAME	Go Programming				
PREI	PREREQUISITE Basics of Programming					
Total	Total HoursLecture (L) - 20, Tutorial (T) - 0, Practical (P) - 20, Sel					
	(SS) - 0. Total = 40					
COU	RSE OBJECTIVES					
	1. The student wil	l understand Go programm	ing language			
	2. The student wil	l Learn about Identifiers a	nd variables			
	<b>3.</b> The student wil	l Learn Maps			<u></u>	
Unit	Content				LTPSS	
1.	Go programming la	nguage			L-2 P-2	
2.	Identifiers in Go La	nguage			L-2 P-2	
3.	Control Statements				L-2 P-2	
4.	String Variables				L-2 P-2	
5.	Integer Variables				L-2 P-2	
6.	Arrays				L-2 P-2	
7.	Slices				L-2 P-2	
8.	Maps				L-2 P-2	
9.	Variadic Functions				L-2 P-2	
10.	Channels				L-2 P-2	
	HOU	J <b>RS</b>	LECTURE	PRACTICAL	TOTAL	
			20	20	40	
TEX	Γ					
1. Jeremy Cook, "Go Programming", 2022						
REFERENCES						
1. CALEB DOXSEY, "An Introduction to Programming in Go",2012						
E REFERENCES						
1. <u>http</u>	s://github.com/cloudac	ademy/learn-go				
2.https	s://github.com/cloudaca	ademy/godemo				

### **Articulation Matrix**

Course	С	Р	A	PO	PSO	PSO	L	Т	Р	С							
Code	•	_		1	2	3	4	5	6	7	8	1	2	-	-	-	•
YCA101	3	0	0	18	12	12	12	9	11	10	6	18	8	3	0	0	3
YCA102	3	0	0	18	12	12	12	9	11	10	6	18	8	3	0	0	3
YCA103	4	0	0	18	12	12	12	9	11	10	6	18	8	3	0	0	3
YCA104	5	0	0	14	12	12	10	12	12	12	12	12	12	3	0	0	3
YCA105	3	0	0	18	12	12	12	9	11	10	6	18	8	3	0	0	3
YCA106	2	0	0	18	12	12	12	9	11	10	6	18	8	0	0	2	2
YCA107	2	0	0	18	12	12	12	9	11	10	6	18	8	0	0	4	2
YCA108	2	0	0	18	12	12	12	9	11	10	6	18	8	0	0	4	2
YCA201	4	0	0	18	12	12	12	9	11	10	6	18	8	3	1	0	4
YCA203	4	0	0	18	12	12	12	9	11	10	6	18	8	3	1	0	4
YCA204	3	0	0	18	12	12	12	9	11	10	6	18	8	3	0	0	3
YCA206	2	0	0	18	12	12	12	9	11	10	6	18	8	0	0	4	2
YCA207	2	0	0	18	12	12	12	9	11	10	6	18	8	0	0	4	2
YCA208	2	0	0	18	12	12	12	9	11	10	6	18	8	0	0	2	2
YCA301	3	0	0	17	15	12	12	12	6	12	12	15	15	3	0	0	3
YCA302	3	0	0	18	12	12	12	9	11	10	6	18	8	3	0	0	3
YCA305	3	0	0	18	12	12	12	9	11	10	6	18	8	0	0	3	3
YCA306	2	0	0	18	12	12	12	9	11	10	6	18	8	0	0	2	2
YCA307	2	0	0	18	12	12	12	9	11	10	6	18	8	0	0	4	4
YCA308	2	0	0	18	12	12	12	9	11	10	6	18	8	0	0	4	4
YCA401	3	0	0	10	10	10	10	10	10	10	10	15	15	3	0	0	3
YCA402	1 1	0	0	18	12	12	12	9	11	10	6	18	8	0	0	2 4	1 1
YCAME2 A	3	0	0	17	13	3	8	6	6	6	6	0	0	3	0	0	3
YCAME2 B	3	0	0	12	6	0	0	6	6	6	6	0	0	3	0	0	3
YCAME2 C	3	0	0	18	14	3	9	6	6	6	6	0	0	3	0	0	3
YCAME2 D	3	0	0	17	12	1	6	6	6	6	6	0	0	3	0	0	3
YCABE5 A	3	0	0	12	10	6	6	12	6	6	6	12	12	3	0	0	3
YCABE5 B	3	0	0	12	9	6	6	12	6	6	6	12	12	3	0	0	3
YCABE5 C	3	0	0	12	9	6	6	12	6	6	6	12	12	3	0	0	3
YCABE5 D	3	0	0	12	9	6	6	12	6	6	6	12	12	3	0	0	3

105 PMIST/QMS/1/003/2023 MCA Curriculum and Syllabus

2023

YCACE3 A	3	0	0	18	12	12	12	9	11	10	6	18	8	3	0	0	3
YCACE3 B	3	0	0	18	12	12	12	9	11	10	6	18	8	3	0	0	3
YCACE3 C	3	0	0	18	12	12	12	9	11	10	6	18	8	3	0	0	3
YCACE3 D	3	0	0	18	12	12	12	9	11	10	6	18	8	3	0	0	3
YCACE4 A	3	0	0	18	12	12	12	9	11	10	6	18	8	3	0	0	3
YCACE4 B	3	0	0	18	12	12	12	9	11	10	6	18	8	3	0	0	3
YCACE4 C	3	0	0	18	12	12	12	9	11	10	6	18	8	3	0	0	3
YCACE4 D	3	0	0	18	12	12	12	9	11	10	6	18	8	3	0	0	3