Nanotechnology Division Department of ECE

think • innovate • transform

Periyar Nagar, Vallam Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email: <u>headnano@pmu.edu</u> Web: www.pmu.edu

CURRICULUM & SYLLABUS

(Based on Outcome Based Education)

For

M.Tech. NANOTECHNOLOGY (Integrated)

(REGULAR – 5 Years)

Semester I to X

Regulation 2015 - Revision 3

Head /Nanotech (Dr. D. Kumar) HOD/ECE (Dr. V. Violet Juli) Dean FET (Dr. R. Jayanthi) Dean Academics (Dr. P.K. Srividhya)

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE AND TECHNOLOGY

Vision		To be a University of global dynamism with excellence in knowledge and innovation ensuring social responsibility for creating an egalitarian society.
	UM1	Offering well balanced programmes with scholarly faculty and state-of-art facilities to impart high level of knowledge.
Mission	UM2	Providing student - centred education and foster their growth in critical thinking, creativity, entrepreneurship, problem solving and collaborative work.
WIISSION	UM3	Involving progressive and meaningful research with concern for sustainable development.
	UM4	Enabling the students to acquire the skills for global competencies.
	UM5	Inculcating Universal values, Self respect, Gender equality, Dignity and Ethics.

Core Values

- 1. Student centric vocation
- 2. Academic excellence
- 3. Social Justice, equity, equality, diversity, empowerment, sustainability
- 4. Skills and use of technology for global competency.
- 5. Continual improvement
- 6. Leadership qualities.
- 7. Societal needs
- 8. Learning, a life long process
- 9. Team work
- 10. Entrepreneurship for men and women
- 11. Rural development
- 12. Basic, Societal, and applied research on Energy, Environment, and Empowerment.

NANOTECHNOLOGY DIVISION

Vision		To be a pioneer division in offering Nanotechnology education and research with special emphasis on Energy, Environment and Health which would help to serve industry and society for developing cost effective and useful means
	DM1	To offer UG, PG and Research Programmes in Nano Technology
Mission	DM2	To incorporate innovative teaching learning methods and teaching aids
	DM3	To nurture requirements of the emerging industrial needs to the students
	DM4	To cultivate the spirit of Entrepreneurship
	DM5	To explore solutions via Nano for the needs of society

Table: 1 Mapping of University Mission (UM) and Department Mission (DM)

	DM1	DM2	DM3	DM4	DM5	Total
UM1	3	2	2	2	2	11
UM2	2	2	2	2	2	10
UM3	2	2	2	2	2	10
UM4	2	1	1	1	1	6
UM5	1	0	1	0	0	2

1-Low 2- Medium 3 – High

PROGRAMME EDUCATIONAL OBJECTIVES

Based on the mission of the department, the programme educational objectives is formulated as

PEO1	To strengthen the application of fundamental knowledge in Mathematics, Science,
	Engineering and Technology for the benefit of mankind (GA – 1, 2).
PEO2	To enhance the technical competence of identifying, analyzing and creating appropriate
	engineering solutions. So that the graduates find opportunities in industries, research
	institutions, etc. including entrepreneurship (GA – 3, 4, 5, 9).
PEO3	To cultivate the habit of lifelong learning and working as a member of the team for
	successful career and life (GA – 9,10,11,12)
PEO4	To impart awareness of social responsibilities for becoming a responsible citizen. (GA -
	6,7,8)

Mapping of Department Mission (DM) with Program Educational Objectives (PEOs)

	DM1	DM2	DM3	DM4	DM5
PEO1	3	0	1	1	
PEO2	3	1	2	2	2
PEO3	2	1	1	1	1
PEO4	-	-	1	2	2
	8	2	5	6	5
	3	1	2	2	2

1 - Low Relation

2 - Medium Relation

3 – High Relation

GRADUATE ATTRIBUTES

- 1. <u>Engineering knowledge:</u> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- 2. <u>Problem analysis:</u> Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. <u>Conduct investigations of complex problems:</u> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. <u>Modern tool usage:</u> Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. <u>The engineer and society:</u> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. <u>Environment and sustainability:</u> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. <u>Ethics:</u> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. <u>Individual and team work:</u> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. <u>Communication</u>: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. <u>Life-long learning</u>: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM OUTCOMES

PO 1	To provide knowledge and understanding of the key principles of nanotechnology including the relationship between Nano and various sciences, mathematics and Engineering sciences
PO 2	To expose analysis and design techniques and of details of new concepts and technologies relevant to the area of nano.
PO 3	To equip on methods and processes involved in the development and evaluation of different kinds of Nanomaterials and products
PO 4	To equip scientific and intellectual tools required to define and formulate research problems, and to detail the methodologies needed to address them
PO 5	To equip the scientific and intellectual tools required to design and analyze key physics/chemical/biological/engineering processes related to nanotechnology
PO 6	To provide a wide range of intellectual, practical and transferable skills that will allow students to develop careers in nanotechnology research, industry and other professional areas of the economy
PO 7	To develop deep knowledge of nanotechnology applications in society and especially in health/environment/energy
PO 8	To expose industrial designs and processes and to innovations in the nanotechnology industry
PO 9	To develop deep knowledge of standards and the nanotechnology commercial environments and standardisation processes and to be able to contribute to such processes through appreciation of their contexts, economic and regulatory drivers and limitations
PO 10	To provide knowledge and skills to allow for independent learning, individually and/or within a group.
PO 11	To equip on global understanding of the impacts and issues regarding nanotechnology and applications
PO 12	To become a responsible citizen of the society
	PROGRAM SPECIFIC OUTCOME
PSO 1	Knowledge and generation of intellectual capital (Paper, poster, presentation, patent etc) in the areas of Nano architecture, Nanomaterials, Nanosystems, and their encompassing applications
PSO 2	Ability to identify tailor made Nano applications for Local and Societal needs by (a) Improving efficiency of existing systems by developing innovative low cost solutions (b) New product development

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
PO1	3	1	0	0	1	0	0	0	0	0	0	0
PO2	1	3	1	1	1	0	0	0	0	0	0	0
PO3	1	1	3	1	1	0	0	0	0	0	0	0
PO4	1	1	1	3	1	0	0	0	0	0	0	0
PO5	1	1	1	1	3	0	0	0	0	0	0	0
PO6	1	1	1	1	1	3	0	0	0	0	0	0
PO7	1	1	1	1	1	1	3	1	0	0	0	0
PO8	0	0	0	0	0	1	1	3	1	0	0	0
PO9	0	0	0	0	0	0	0	0	3	1	0	0
PO10	0	0	0	0	0	0	0	0	1	3	1	0
PO11	1	1	1	0	1	0	0	0	0	0	3	0
PO12	1	1	1	1	1	0	0	0	0	0	0	3
PSO1	1	0	1	1	2	1	0	1	1	3	2	2
PSO2	0	0	3	0	0	3	3	0	0	0	2	1

Mapping of Program Outcomes (POs) with Graduate Attributes (GAs)

1- Low Relation

2 - Medium Relation 3 – High Relation

CURRICULUM

REGULATIONS 2015- REVISION 3

(Applicable to the students admitted from the Academic year 2015–2020)

SEMESTER I

Subject code	Subject Title		C	redits	5	Hours						
		L	Т	Р	Total	L	Т	Р	S.S	Total		
XMA101	Algebra, Differential Calculus and their applications	3	1	0	4	3	2	0	0	5		
XEM102	Engineering Mechanics	3	1	0	4	3	2	0	0	5		
XBE103	Electrical and Electronics Engineering Systems	3	1	1	5	3	2	2	0	7		
XAP104	Applied Physics	3	1	1	5	3	2	2	0	7		
XGS105	Study skills and Language Laboratory	1	0	0	1	1	0	2*	0	3		
XUM106	Human Ethics, Values, Rights and Gender Equality	1	0	0	1	1	0	0	2*	3		
	Total	14	4	2	20	14	8	6	2	30		

*Non – credit hours

Total Credits – 20

SEMESTER II

Subject code	Subject Title		C	Credit	ts	Hours				
		L	Т	Р	Total	L	Т	Р	Total	
XMA201	Calculus and Laplace Transforms	3	1	0	4	3	2	0	5	
XCP202	Computer Programming	3	0	1	4	3	0	2	5	
XBW203	Mechanical and Civil Engineering Systems	3	1	1	5	3	2	2	7	
XAC204	Applied Chemistry	3	1	1	5	3	2	2	7	
XEG205	Engineering Graphics	2	0	1	3	2	0	2	4	
XGS206	Speech Communication	1	0	0	1	1	0	2*	3	
	Total	15	3	4	22	15	6	10	31	
*Non – credit hours Total Credits – 22										

SEMESTER III

course code	Course Name		C	redi	ts	Hours					
		L	Т	Р	Total	L	Т	Р	S.S	Total	
XMA301	Transforms and Partial Differential Equations	3	1	0	4	3	2	0	0	5	
XNT302	Introduction to Nanotechnology	3	1	1	5	3	2	2	0	7	
XNT303	Biology for Engineers	3	1	1	5	3	2	2	0	7	
XNT304	Fluid Mechanics	3	1	0	4	3	2	0	0	5	
OE-1	Open Elective- I	3	0	0	3	3	0	0	0	3	
XEP306	Entrepreneurship Development and Management	2	0	0	2	2	0	0	0	2	
XGS307	Interpersonal Communication	0	1	0	1	0	1	0	2*	3	
XNT308	In Plant Training - I	0	0	0	1	0	0	0	0	0	
	Total	17	5	2	25	18	9	4	2	33	

*Non – credit hours

Total Credits – 25

SEMESTER IV

Course code	Course Name		C	redi	ts	Hours					
		L	Т	Р	Total	L	Т	Р	S.S	Total	
XRP401	Random Processes	2	1	0	3	2	2	0	0	4	
XUM402	Environmental Science and Engineering	3	0	0	3	3	0	0	0	3	
XNT403	Principles of Chemical Engineering	3	1	1	5	3	2	2	0	7	
XNT404	Nano Applications	3	0	0	3	3	0	0	0	3	
XMS405	Materials Science	3	1	0	4	3	1	0	0	4	
XNT406	Nanosystems and their Design	3	1	1	5	3	2	2	0	7	
XGS407	Technical Communication	0	1	0	1	0	1	0	2*	3	
	Total	17	5	2	24	17	8	4	2	31	

*Non – credit hours

Total Credits – 24

In-plant training during vocation for 30 days. Credits will be given only in Fifth semester.

SEMESTER V

Course	Course Name		(Credit	ts	Hours					
Code		L	Т	Р	Total	L	Т	Р	S.S	Total	
XNT501	Quantum Mechanics for Engineers	3	1	0	4	3	2	0	0	5	
XNT502	Nanomaterials Fabrication Techniques- I	3	0	1	4	3	0	2	0	5	
OE – II	Open Elective –II	3	0	0	3	3	0	0	0	3	
XNT504	Nanomaterials Characterization Techniques- I	3	0	1	4	3	0	2	0	5	
XNT505	Engineering Thermodynamics	3	1	0	4	3	2	0	0	5	
XNT506*	Elective (Core) –I	2	0	1	3	2	0	2	0	4	
XGS507	Business Communication	1	0	0	1	1	0	2	0	3	
XNT508	In Plant Training - II	0	0	0	1	0	0	0	0	0	
	Total	18	2	3	24	18	4	8	0	30	

Total Credits – 24

SEMESTER VI

Course code	Course Name	Credits				Hou	Hours						
		L	Т	Р	Total	L	Т	Р	S.S	Total			
XTQ601	Total Quality Management	3	0	0	3	3	0	0	0	3			
XNT602	Colloids and surfaces Engineering	3	0	1	4	3	0	2	0	5			
XNT603	Nanomaterials Fabrication Techniques- II	3	0	1	4	3	0	2	0	5			
XNT604	Nanomaterials Characterization Techniques- II	3	1	1	5	3	2	2	0	7			
XNT605*	Elective (Core) – II	2	0	1	3	2	0	2	0	4			
XNT606*	Elective (Core) – III	2	0	1	3	2	0	2	0	4			
XGS607	Academic Writing	0	0	0	0	0	0	0	2*	2*			
	Total	16	1	5	22	16	30						

Total Credits - 22

In-plant training during vocation for 45 days. Credits will be given only in Eighth semester.

SEMESTER VII

Course Code	Course Name	Credits Hours								
		L	Т	Р	Total	L	Т	Р	S.S	Total
XNT701*	Elective (Core) – IV	2	0	1	3	2	0	2	0	4
XNT702	Health and safety issues of Nanotechnology	3	0	0	3	3	0	0	0	3
XNT703	Nano composites	3	1	1	5	3	2	2	0	7
OE –III	Open Elective – III	3	0	0	3	3	0	0	0	3
XNT705*	Elective (Core) – IV	2	0	1	3	2	0	2	0	4
XUM706	Cyber security	0	0	0	0	3	0	0	0	3
XNT707	Project Theme – I	0	0	0	0	0	0	0	2	2
XNT708	In Plant Training - III	0	0	0	1	0	0	0	0	0
	Total	16	1	3	18	16	2	6	2	26

Total Credits- 18

SEMESTER VIII

Course	Course Name		C	redi	ts	Hours							
Code													
		L	Т	Р	Total	L	Т	P	S.S	Total			
OE-IV	Open Elective – IV	3	0	0	3	3	0	0	0	3			
XNT802*	Elective (Core) – VI	2	0	1	3	2	0	2	0	4			
XNT803	Career Development Skills	0	0	0	0	0	0	0	2*	2			
XNT804	MEMS and NEMS	3	1	0	4	3	2	0	0	5			
XNT805	Surface Plasmon Resonance	3	1	1	5	3	2	2	0	7			
XNT806	Mini Project	0	0	0	4	0	0	4	0	4			
XNT807	Project Theme – II	0	0	0	0	0	0	0	2	2			
OE-V	Open Elective – V	3	0	0	3	3	0	0	0	3			
	Total	14	2	2	22	14	4	8	2	30			

Total Credits - 22

SEMESTER IX

Course code	Course Name	Credits						Но	Hours P S.S Tot 0 0 0			
		L	Т	Р	Total	L	L T P S.S To					
XNT901	Project Work – Phase I	0	0	0	8	0	0	0				
	Total	0	0	0	8	0	0 0 0 0 0					

Total Credits - 8

SEMESTER X

Course code	Course Name		C	Credit	S			Hours				
		L T P Total L T P S.S							Total			
XNT1001	Project Work – Phase II	0	0	0	12	0	0	0 0 0 0				
	Total	0 0 0 12 0 0 0 0 0							0			

Total Credits – 12

*Denotes A,B,C and D from corresponding Groups from Electives

Grant Total Credits: 197

LIST OF ELECTIVES

SEMESTER	COURSE TITLE	L	Т	Р	С
	CORE ELECTIVES SET- I				1
XNT506A	Emerging tools for Biology and Medicine	2	0	1	3
XNT506B	Enzyme Technology	2	0	1	3
XNT506C	Electric and Electronic Circuits	2	0	1	3
XNT506D	Mechanical Systems Design	2	0	1	3
XNT 507E	Mechanics of Materials	2	0	1	3
	CORE ELECTIVES SET- II				
XNT605A	Nano-Physics	2	0	1	3
XNT605B	Molecular assembler – Molecular modelling	2	0	1	3
XNT605C	Nano-Sensors, Nano-actuators and Nano-probes	2	0	1	3
XNT605D	Nanorobotics	2	0	1	3
XNT605E	Nano-Optics and Nano-Photonics	2	0	1	3

	CORE ELECTIVES SET-III									
XNT606A	Nanostructured Molecular Architectures	2	0	1	3					
XNT606B	Nanophotonics for Biotechnology and Nanomedicine	2	0	1	3					
XNT606C	Nano-Spintronics	2	0	1	3					
XNT606D	Nanomaterials and photocatalytic nanoparticles for water/air detoxification	2	0	1	3					
	CORE ELECTIVES SET– IV									
XNT701A	MEMS and NEMS Fabrication	2	0	1	3					
XNT701B	Nanocoatings	2	0	1	3					
XNT701C	Thin Film	2	0	1	3					
XNT701D	Nanoscaffold and Characterization Techniques	2	0	1	3					
XNT701E	Nano & Shockwaves	2	0	1	3					
	CORE ELECTIVES SET- V									
XNT705A	Encapsulation Techniques	2	0	1	3					
XNT705B	Lithographic techniques	2	0	1	3					
XNT705C	Self Assembly Techniques	2	0	1	3					
XNT705D	Nano in Wireless Communications	2	0	1	3					
XNT705E	Optimization Techniques	2	0	1	3					
	CORE ELECTIVES SET- VI									
XNT802A	Graphene Nanotechnology	2	0	1	3					
XNT802B	Carbon Nanotube	2	0	1	3					
XNT802C	Fullerene	2	0	1	3					
XNT802D	Quantom Dot	2	0	1	3					
XNT802E	Polymeric Carrier	2	0	1	3					
XNT802F	Lignocelluloses Biomass	2	0	1	3					

OPEN ELECTIVES

Sub. Code	Name of the Course	L	Т	Р	С	Н
XNTOE 1	Introduction to Nanotechnology	3	0	0	3	3
XNTOE 2	Nano Applications	3	0	0	3	3
XNTOE3	Nanomaterials	3	0	0	3	3

SYLLABUS I SEMESTER

COURSE	CODE	XMA 101	L	Т	Р	С	
COURSE	NAME	ALGEBRA, DIFFERENTIAL CALCULUS AND THEIR APPLICATIONS	3	1	0	4	
PREREQ	UISITES	Basic concepts of Matrices, Numbers, Differentiation and Integration	L	T	Р	Н	
C:P:A		3:0:0	3 2 0				
COURSE	OUTCOMES	DOMAIN		LE	VEL	,	
CO1	<i>Explain</i> the Properties of eigen values and eigen vectors of the matrices, <i>Make Use of</i> orthogonal and similarity transformation and <i>Construct</i> the quadratic form to Canonical form	Cognitive	Une Apj		nding	7	
CO2	Define and Find the radius and circle of curvature in cartesian and polar coordinates and to Explain evolutes and envelopes.	Cognitive	Remembering Understanding				
CO3	<i>Explain</i> the convergence of series of positive terms, alternating series, and power series using tests of convergence.	Cognitive	Une	Understa	anding		
CO4	<i>Find</i> total and partial derivatives, Taylor series expansions of functions and the extremum of functions and their applications.	Cognitive	Remembering				
CO5	<i>Solve</i> the linear equations of second and higher order with constant and variable coefficients and simultaneous first order differential equations and to <i>Apply</i> Method of variation of parameters to <i>Solve</i> the differential equation.	Cognitive	Ap	ply			
UNIT I	MATRICES					1	
Hamilton Orthogona	tes and Eigenvectors of a real matrix – theorem (excluding proof) - Similarit al transformation of a symmetric matric form by Orthogonal transformation.	y transformation (Concept only) -	- Ort	hogor	nal m	atrix	

UNIT II	GEOMETRICAL APPLICATIONS O CALCULUS	F DIFFERENI	'IAL	15
Curvature – (Cartesian and polar co-ordinates – Centre	and radius of cu	irvature – C	Circle of curvature –
	evolutes - Envelopes - Properties of envel			
UNIT III	INFINITE SERIES	*		15
Sequences –	Convergence of series - General prop	erties – Series	of positive	e terms – Tests of
	(Comparison test, Integral test, Compar			
Statement of	theorems and problems only) – Alternating	g series – Series	of positive a	and negative terms –
	conditional convergence – Power Series			
	es (Simple problems only)	C	Ĩ	
UNIT IV	FUNCTIONS OF SEVERAL VARIAB	BLES		15
and Minima	two variables – Partial derivatives – Total – Constrained maxima and minima			
Determinants.				
UNIT V	ORDINARY DIFFERENTIAL EQUA APPLICATIONS	TIONS AND		15
Legendre's ec	ons of second and higher order with conjunctions) – Simultaneous first order linear earameters - Applications to electrical circuit	equations with co		
		IECTUDE	TUTODI	ΔΙ ΤΟΤΔΙ
			TUTORI 30	
TEXT		LECTURE 45	TUTORI 30	AL TOTAL 75
TEXT	1 B S Higher Engineering Mathematics 4	45	30	
1. Grewa	l, B.S. Higher Engineering Mathematics, 4	45	30	
1. Grewa Public	ation, Delhi, 2007.	45 40 th Edition, Kl	30 nanna	75
1. Grewa Public 2. Kreysz	ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics	45 40 th Edition, Kl	30 nanna	75
1. Grewa Public 2. Kreysz Son(As	ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001.	45 40 th Edition, Kl	30 nanna	75
1. Grewa Public 2. Kreysz Son(As REFERENC	ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES	45 ^{40th Edition, Kl s, Eighth Edition}	30 hanna , John Wiley	y and
1. Grewa Public 2. Kreysz Son(As REFERENC 1. Bali N	ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES I.P and Narayana lyengar, Engineering Mat	45 ^{40th Edition, Kl s, Eighth Edition}	30 hanna , John Wiley	y and
1. Grewa Public 2. Kreys: Son(As REFERENC 1. Bali N (P) Lto	ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES .P and Narayana lyengar, Engineering Mat I, New Delhi, 2003.	45 40 th Edition, Kl s, Eighth Edition thematics, Laxm	30 hanna , John Wiley i Publication	y and
1. Grewa Public 2. Kreysz Son(As REFERENC 1. Bali N (P) Lto 2. Veerau	ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES I.P and Narayana lyengar, Engineering Mat I, New Delhi, 2003. rajan T, Engineering Mathematics Fourth E	45 40 th Edition, Kl s, Eighth Edition thematics, Laxm	30 hanna , John Wiley i Publication	y and
1. Grewa Public 2. Kreysz Son(As REFERENC 1. Bali N (P) Lto 2. Veerau Publis	ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES I.P and Narayana lyengar, Engineering Mat I, New Delhi, 2003. rajan T, Engineering Mathematics Fourth E hing Company Ltd, New Delhi, 2005.	45 40 th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – N	30 hanna , John Wile i Publication lcGraw Hill	y and
1. Grewa Public 2. Kreys: Son(As REFERENC 1. Bali N (P) Lto 2. Veerau Publis 3. Kanda	ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES I.P and Narayana lyengar, Engineering Mat I, New Delhi, 2003. rajan T, Engineering Mathematics Fourth E hing Company Ltd, New Delhi, 2005. samy P., Thilagavathy K, and Gunavathy I	45 ^{40th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – M K, Engineering N}	30 hanna , John Wile i Publication lcGraw Hill	y and
1. Grewa Public 2. Kreys: Son(As REFERENC 1. Bali N (P) Ltc 2. Veerau Publis 3. Kanda Volun	ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES I.P and Narayana lyengar, Engineering Mat I, New Delhi, 2003. rajan T, Engineering Mathematics Fourth E hing Company Ltd, New Delhi, 2005. samy P., Thilagavathy K, and Gunavathy I ne I, II and III, S. Chand & Co, New Delhi,	45 ^{40th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – M K, Engineering N , 2005.}	30 hanna , John Wiley i Publication IcGraw Hill Iathematics	y and
1. Grewa Public 2. Kreysz Son(As REFERENC 1. Bali N (P) Ltc 2. Veerau Publis 3. Kanda Volun 4. Venka	ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES I.P and Narayana lyengar, Engineering Mat I, New Delhi, 2003. rajan T, Engineering Mathematics Fourth E hing Company Ltd, New Delhi, 2005. samy P., Thilagavathy K, and Gunavathy I	45 40 th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – M K, Engineering N , 2005. Volume I and II	30 hanna , John Wile i Publication lcGraw Hill lathematics Revised enl	y and
1. Grewa Public 2. Kreysz Son(As REFERENC 1. Bali N (P) Ltc 2. Veerau Publis 3. Kanda Volun 4. Venka	ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES I.P and Narayana lyengar, Engineering Mat I, New Delhi, 2003. rajan T, Engineering Mathematics Fourth E hing Company Ltd, New Delhi, 2005. Isamy P., Thilagavathy K, and Gunavathy I he I, II and III, S. Chand & Co, New Delhi, taraman M. K, Engineering Mathematics, a Edition, The National Publishing Compar	45 40 th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – M K, Engineering N , 2005. Volume I and II	30 hanna , John Wile i Publication lcGraw Hill lathematics Revised enl	y and
1. Grewa Public 2. Kreysz Son(As REFERENC 1. Bali N (P) Lto 2. Veerau Publis 3. Kanda Volun 4. Venka Fourth E REFEREN	ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES I.P and Narayana lyengar, Engineering Mat I, New Delhi, 2003. rajan T, Engineering Mathematics Fourth E hing Company Ltd, New Delhi, 2005. samy P., Thilagavathy K, and Gunavathy I he I, II and III, S. Chand & Co, New Delhi, taraman M. K, Engineering Mathematics, dedition, The National Publishing Compar- ICES	45 40 th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – M K, Engineering N , 2005. Volume I and II	30 hanna , John Wile i Publication lcGraw Hill lathematics Revised enl	y and
1. Grewa Public 2. Kreys: Son(As REFERENC 1. Bali N (P) Lto 2. Veeraa Publis 3. Kanda Volum 4. Venka Fourth E REFEREN	ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES I.P and Narayana lyengar, Engineering Mat I, New Delhi, 2003. rajan T, Engineering Mathematics Fourth E hing Company Ltd, New Delhi, 2005. samy P., Thilagavathy K, and Gunavathy I he I, II and III, S. Chand & Co, New Delhi, taraman M. K, Engineering Mathematics, dedition, The National Publishing Compar- ICES	45 ^{40th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – M K, Engineering M , 2005. Volume I and II ny, Chennai, 200}	30 hanna , John Wile i Publication lcGraw Hill lathematics Revised enl	y and

TABLE 1: CO VS PO Mapping

	PO1	PO2	PO3	PO4	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	2			2						1		2
CO 2	3	1									1		1
CO 3	3	1									1		1
CO 4	3	2									1		1
CO 5	3	2			1						1		2
	15	8	0	0	3	0	0	0	0	0	5	0	7

COURSE C	ODE	XEM102	L	Т	Р	C
COURSE N	AME	ENGINEERING MECHANICS	3	1	0	4
PREREQUI	ISITES	Nil	L	Т	Р	Н
C:P:A		2.6:0.2:0.2	3	2	0	5
COURSE O	UTCOMES	DOMAIN	LEV	'EL		
CO1	<i>Identify</i> and <i>choose</i> various types of loading and support conditions that act on structural and dynamic systems.	Cognitive	(Und			
CO2	<i>Apply</i> pertinent mathematical, physical and engineering mechanics principles to the system to predict the problem.	Cognitive	Rem	, Ap &	& Ev	
CO3	Apply knowledge on the concepts of centroid and moment of inertia of various sections and solids.	Cognitive& p	Rem	, Ap&	εEv	
CO4	<i>Model</i> the problem using free-body diagrams and accurate equilibrium equations and finding the solution.	Cognitive	Anal	yze		
CO5	Develop concepts of friction, rigid body kinematics and dynamics with an emphasis on the modeling and analysis and solving simple dynamic problems involving kinematics and momentum.	Cognitive& p	Rem	, Ap&	Ev	
UNIT I	BASICS AND STATICS OF PART	TICLES				15
Hamilton the Orthogonal t	and Eigenvectors of a real matrix –Pro eorem (excluding proof) - Similarity tra transformation of a symmetric matrix t rm by Orthogonal transformation.	ansformation (Concept only	$y) - O_1$	rthogo	nal ma	atrix -
UNIT II	EQUILIBRIUM OF RIGID BODI	ES				15
	Cartesian and polar co-ordinates – Cer d evolutes – Envelopes – Properties of e		e – Cir	cle of	curvat	ure –
UNIT III	PROPERTIES OF SURFACES AN	ND SOLIDS				15
	Cartesian and polar co-ordinates – Cer d evolutes – Envelopes – Properties of e		e – Cir	cle of	curvat	ure –
UNIT IV	DYNAMICS OF PARTICLES					15
	two variables – Partial derivatives – T a – Constrained maxima and minin s.	•	-			

UNIT V	ELEMENTS OF RIGID BODY D FRICTION	YNAMICS ANI)		15
Legendre's eq	ons of second and higher order wi uations) – Simultaneous first order lir rameters - Applications to electrical c	near equations with			
		LECTURE	TUTOR	IAL	TOTAL
		45	30		75
TEXT					
	P and Narayana lyengar, Engineering	Mathematics, La	axmi Publica	ations (P) Ltd, New
Delhi,	2003.				
	ajan T, Engineering Mathematics Fou my Ltd, New Delhi, 2005.	rth Edition, Tata	– McGraw 1	Hill Pu	blishing
	samy P., Thilagavathy K, and Gunava Chand & Co, New Delhi, 2005.	thy K, Engineerin	ng Mathema	tics Vo	olume I, II and
	taraman M. K, Engineering Mathemat ational Publishing Company, Chennai		d II Revised	enlarg	e Fourth Edition,
E-References	<u> </u>				
1.	Advanced Engineering Mathematics	Prof. Pratima Par	nigrahi Depa	artment	of

Mapping of CO's with PO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO2
CO1	3	3												
CO2	3	3												
CO3	3	3												
CO4	3	3												
CO5	3	3												

1 – Low relation, 2 – Medium relation, 3 – High relation 0- no relation

COURSE (CODE	XBE103	L	Т	Р	С			
COURSE N	NAME	ELECTRICAL AND ELECTRONICS ENGINEERING SYSTEMS (BEE LAB INCLUDED)	3	1	1	5			
PREREQU	ISITES		L	Т	Р	Н			
C:P:A		3:1:0	3 2 2						
COURSE (DUTCOMES	DOMAIN	LF	VEI					
CO1	Define, Relate, the fundamentals of electrical parameters and build and explain AC, DC circuits by Using measuring devices	Cognitive Psychomotor	Re Un Me	Remember Understand Mechanism set					
CO2	<i>Define and Explain</i> the of operation of DCand AC machines.	Cognitive	Re	set Remember Understand					
CO3	<i>Recall, Illustrate,</i> various semiconductor Devices and their applications and <i>displays</i> the input output characteristics of basic semiconductor devices.	Cognitive Psychomotor	Un	Remember Understand Mechanism					
CO4	<i>Relate, Explain,</i> the number systems and logic gates. <i>Construc</i> t the different digital circuit.	Cognitive Psychomotor	Un	mem derst iginat	and				
C05	<i>Label, Outline</i> different types of microprocessors and their applications.	Cognitive		mem derst					
UNIT I	FUNDAMENTAL OF DC AND A MEASUREMENTS	AC CIRCUITS,			9+	9+12			
Star/Delta 7 power and F Parallel Cir	als of DC– Ohm's Law – Kirchoff' Fransformation - Fundamentals of A Power Factor, Phasor Representation of recuit - Operating Principles of Mo and Dynamometer type meters (Watt	C – Average Value, RMS Value, of sinusoidal quantities - Simple S wing coil and Moving Iron Ins	Form eries, trume	Fac Paral nts (tor - lel, S Amm	AC Series neter			
UNIT II	ELECTRICAL MACHINES				9 +	- 6+(
motors - Ba	n, Principle of Operation, Basic Equat sics of Single Phase Induction Motor Operation of Single Phase Transform	and Three Phase Induction Motor-	Const	ructi	on,	2			
	SEMICONDUCTOR DEVICES on of Semiconductors, Construction, le, PNP, NPN Transistors, Field E s.				n Dio				

UNIT	IV DIGIT A	AL ELECTRONICS			9 + 6+10
Basic c	of Concepts of N	umber Systems, Logic Ga	ates, Boolean Alg	gebra, Adders, Subractor	rs, multiplexer,
demult	iplexer, encoder	, decoder, Flipflops, Up/I	Down counters, S	hift Registers.	· · ·
UNIT	Γ V MICRO	PROCESSORS		_	9+ 6+0
Archite	ecture, 8085, 808	36 - Interfacing Basics: D	ata transfer conc	epts – Simple Programm	ing concepts
LIST (OF EXPERIME	ENTS :			
1.	Study of Electr	ical Symbols, Tools and S	Safety Precaution	is, Power Supplies.	
2.	Study of Active	e and Passive elements - I	Resistors, Induct	ors and Capacitors, Brea	d Board.
3.	Verification of	AC Voltage, Current and	Power in Series	and Parallel connection.	
4.	Testing of DC	Voltage and Current in se	eries and parallel	resistors which are conr	nected in
	breadboard by	using Voltmeter, Ammete	er and Multimete	r.	
5.	Fluorescent lan	np connection with choke			
6.	Staircase Wirin	g.			
7.	Forward and Re	everse bias characteristics	s of PN junction	diode.	
8.	Forward and Re	everse bias characteristics	s of Zener diode	•	
9.		ut Characteristics of NPN			
10.	Construction ar	nd verification of simple I	Logic Gates		
11.	Construction ar	nd verification of adders			
12.	Construction ar	nd verification of and sub	otractions		
		LECTURE	TUTORIAL	PRACTICAL	TOTAL
		45	30	30	105
TEXT					
		Principles of Electronics.			
		6. Electronics Principles.			
		.,TherajaA Text book of			
		igital System-Principle &		Pearson education.	
		Digital Design. Prentice H			
		, 2000. Microprocessor A			plications
		. India: Penram Internation	onal Publications		
	RENCES				
		trical Technology. CBS F		ributors.	
-		8, Electrical Circuits. Sch			****
		Christos, C. Halkias, 1967			
		tias, C. C., 1972. Integrat		nalog and Digital Circui	its and
•		McGraw-Hill, Kogakusha		and Annlingtions. Intel	and Matanala
5.Mona	ammedKanquzza	aman, 1999. Microproce	ssors - Theory a	and Applications: Intel	and Motorola.
Prent	tice Hall Internat	ional.			
	ERENCES				1 1
		ical Technology (Web Co	ourse), Prof. N. K	L. De, Prot. T. K. Bhatta	charya and
	G. D. Roy, III	01	m/Course /0225/T	Dagia Electrical Taskers1	ogy# HSo
		ttp://freevideolectures.com	m/Course/2335/E	Sasic-Electrical-Technol	ogy#, IISc
	galore.	inacourses/Negardus/ D	n Nogondus Val-1	nonuro IIT Madree	
-	-	inecourses/Nagendra/, Dr	•	-	
4. Dr.I	LUmanand . http	://www.nptelvideos.in/20)12/11/basic-elec	trical-technology html I	ISC Bangalore

Table: 1 Mapping of COs with POs:

	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO 1	3	3		2	1				1			1		
CO 2	2	3		1	1							1		
CO 3	2	3		2	1				1			1		
CO 4	3	3		3	1				1			1		
CO 5	2	3		1	1							1		
Total	12	15		13	5				3			5		
Scale d value	3	3		3	1				1			1		

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No relation, 1-Low relation, 2-Medium relation, 3-High relation

COURSE NAMEAPPLIED PHYSICSPREREQUISITES2.8:0.8:0.4C:P:ABasic Physics in HSC levelCOURSE OUTCOMESDOMAINCO1Identify the basics of mechanics, explain the principles of elasticity, viscosity and determine its significance in engineering systems and technological advances.Cognitive: Psychomotor:CO2Describe the production, propagation, perception & analysis of acoustical wave and locate in optics by measurement and describe the working principle and application of various lasers and fibre optics.Cognitive: Psychomotor: Affective:CO4Analyse different crystal structures, discuss and use physics principles of latest technology by visualizing.Cognitive: Psychomotor: Affective:CO5DevelopKnowledge on engineering Cognitive:Cognitive:	L	Т	P	C							
COURSI	SE NAME APPLIED PHYSICS 2QUISITES 2.8:0.8:0.4 Basic Physics in HSC level Basic Physics in HSC level SE OUTCOMES DOMAIN Identify the basics of mechanics, explain the principles of elasticity, viscosity and determine its significance in engineering systems and technological advances. Psychomotor: preception & analysis of acoustical wave and locate basic acoustical problem encountered in constructed buildings. Cognitive: Understand the fundamental phenomena in optics by measurement and describe the working principle and application of various lasers and fibre optics. Affective: Analyse different crystal structures, discuss and use physics principles of latest technology by visualizing. Cognitive: Develop Knowledge on engineering materials, its properties and application. Cognitive: MECHANICS ANDPROPERTIES OF MATTER nics: Force - Newton's laws of motion - work and energy - impulse and momenturvation of energy and momentum - Friction. try:Stress - Strain - Hooke's law - Stress strain diagram - Classification of t, couple and torque - Torsion pendulum - Applications of torsion pendulum - imental determination of Young's modulus: Uniform bending and non-uniform tersonance and noise) and their remedies. II ACOUSTICS, ULTRASONICS AND SHOCK WAVES Es: Classification of sound - Characteristics of musical sound - Loudness - W - Absorption coefficient - Reverberation - Reverberation time, loudness, focus resonance and noise) and their remed	3	1	1	5						
PRERE(QUISITES	2.8:0.8:0.4	311LTP322LEVELRemember Understand MechanismRemember Mechanism ReceiveUnderstand Analyze, RespondUnderstand Apply Mechanism ReceiveUnderstand Apply Mechanism ReceiveUnderstand Analyze Mechanism ReceiveUnderstand Apply Mechanism ReceiveUnderstand Apply Mechanism ReceiveUnderstand Analyze Mechanism ReceiveUnderstand Analyze Mechanism ReceiveU, App9+6+12entum - torque -f elastic modul - Bending of be m bending - I sh ormula (growth ssing, echo, echo onic flaw detecto eristics - Method9+6+12ndex and disper	Р	E						
C:P:A		APPLIED PHYSICS3112.8:0.8:0.4LTPBasic Physics in HSC level322DOMAINLEVELplainCognitive:Remember,andPsychomotor:Mechanismtion,Cognitive:Remember,waveAffective:RespondblemAffective:Understand,ApplyAffective:Understand,atestPsychomotor:MechanismetheAffective:Understand,Affective:Understand,Affective:WechanismReceiveUnderstand,Affective:Understand,Affective:WechanismReceivePsychomotor:Affective:Understand,AnalyzeNechanismReceiveVechanismAffective:Understand,AnalyzeNechanismPsychomotor: Affective:MechanismReceiveUnderstand,AnalyzeNechanismReceiveImplicationPsychomotor: Affective:Understand,AnalyzeStormotor: Affective:norCognitive:Understand,atestStrain diagram - Classification of elastic moduluApplications of torsion pendulum - Bending of beas: Uniform bending and non-uniform bending - I sha// - streamline flow - turbulent flow - Reynold's numlND SHOCK WAVES9+6+12ics of musical sound - Loudness - Weber Fechner lawin - Reverberation time - Sabin's for			7						
COURSE NAME APPLIED PHYSICS PREREQUISITES 2.8:0.8:0.4 C:P:A Basic Physics in HSC level COURSE OUTCOMES DOMAIN CO1 Identify the basics of mechanics, explain the principles of elasticity, viscosity and determine its significance in engineering systems and technological advances. Cognitive: CO2 Describe the production, propagation, perception & analysis of acoustical problem encountered in constructed buildings. Cognitive: CO3 Understand the fundamental phenomena in optics by measurement and describe the working principle and application of various lasers and fibre optics. Cognitive: CO4 Analyse different crystal structures, discuss and use physics principles of latest technology by visualizing. Cognitive: CO5 Develop Knowledge on engineering materials, its properties and application. Cognitive: UNIT I MECHANICS ANDPROPERTIES OF MATTER Mechanics: Force - Newton's laws of motion - work and energy - impulse and momer of conservation of energy and momentum - Friction. Elasticity:Stress - Strain - Hooke's law - Stress strain diagram - Classification of Moment, couple and torque - Torsion pendulum - Applications of torsion pendulum - Poiscuille's method. NUNT II UNIT II ACOUSTICS, ULTRASONICS AND SHOCK WAVES Acoustics: Classification of sound - Characteristics of musical sound - Loudness - Wo Decibel - Absorpt					LEVEL						
	determine its significance in engineering	Psychomotor:	Me	cha	nism	L					
		-									
CO2		Cognitive:	Re	men	nber						
	-	Affective:	Re	spoi	nd						
CO3		Cognitive:			tand	,					
						l					
004	*										
CO4											
		Developmentor: Affective:		•							
	technology by visualizing.	Psycholiotor. Affective.				L					
CO5	Davelon Knowledge on engineering	Cognitive									
005		Cognitive.	0, <i>т</i> рр								
UNIT I		IATTER	9+	6+1	2						
				-		la					
				1							
		in diagram - Classification of el	astic	m	odulı	IS					
Moment,	couple and torque - Torsion pendulum - Appl	lications of torsion pendulum - Be	endii	ıg o	f bea	ın					
- Experin	nental determination of Young's modulus: Uni	iform bending and non-uniform b	endi	ng -	I sh	aŗ					
girders.											
Viscosity	:Coefficient of viscosity - Laminar flow - stre	eamline flow - turbulent flow - Re	eyno	ld's	num	b					
v											
- Poiseuil			1								
- Poiseuil UNIT II	ACOUSTICS, ULTRASONICS AND SH										
- Poiseuil UNIT II Acoustics	ACOUSTICS, ULTRASONICS AND SE s: Classification of sound - Characteristics of	musical sound - Loudness - Webe	er Fe	echn							
- Poiseuil UNIT II Acoustics Decibel -	ACOUSTICS, ULTRASONICS AND SH s: Classification of sound - Characteristics of Absorption coefficient - Reverberation - Re	musical sound - Loudness - Webe everberation time - Sabin's form	er Fe 11a (echn gro	wth	ar					
- Poiseuil UNIT II Acoustics Decibel - decay) - I	ACOUSTICS, ULTRASONICS AND SE s: Classification of sound - Characteristics of Absorption coefficient - Reverberation - Re Factors affecting acoustics of buildings (rever	musical sound - Loudness - Webe everberation time - Sabin's form	er Fe 11a (echn gro	wth	ar					
- Poiseuil UNIT II Acoustics Decibel - decay) - I effect - re	ACOUSTICS, ULTRASONICS AND SH s: Classification of sound - Characteristics of Absorption coefficient - Reverberation - Re Factors affecting acoustics of buildings (rever esonance and noise) and their remedies.	musical sound - Loudness - Webe everberation time - Sabin's forme beration time, loudness, focussing	er Fe 11a (g, ec	echn gro ho,	wth eche	an lo					
- Poiseuil UNIT II Acoustics Decibel - decay) - l effect - re Ultrason	ACOUSTICS, ULTRASONICS AND SE s: Classification of sound - Characteristics of Absorption coefficient - Reverberation - Re Factors affecting acoustics of buildings (rever esonance and noise) and their remedies. ics: Production: Magnetostriction and Piezoele	musical sound - Loudness - Webe everberation time - Sabin's form beration time, loudness, focussing ectric methods - NDT: Ultrasonic	er Fe 1la (g, ec flaw	echn gro ho,	wth eche ecto	an lo r.					
- Poiseuil UNIT II Acoustics Decibel - decay) - l effect - re Ultrason Shock wa	ACOUSTICS, ULTRASONICS AND SE S: Classification of sound - Characteristics of Absorption coefficient - Reverberation - Reverberation - Reverberation - Reverberation - Reverberation - Reverberation and Piezoele Expression and noise) and their remedies. ics: Production: Magnetostriction and Piezoele aves: Definition of Mach number - Description	musical sound - Loudness - Webe everberation time - Sabin's form beration time, loudness, focussing ectric methods - NDT: Ultrasonic	er Fe 1la (g, ec flaw	echn gro ho,	wth eche ecto	an lo r.					
- Poiseuil UNIT II Acoustics Decibel - decay) - l effect - re Ultrason Shock wa creating s	ACOUSTICS, ULTRASONICS AND SE S: Classification of sound - Characteristics of Absorption coefficient - Reverberation - Reverberation - Reverberation - Reverberation - Reverberation - Reverberations affecting acoustics of buildings (rever esonance and noise) and their remedies. ics: Production: Magnetostriction and Piezoele aves: Definition of Mach number - Description shock waves.	musical sound - Loudness - Webe everberation time - Sabin's form beration time, loudness, focussing ectric methods - NDT: Ultrasonic on of a shock wave - Characterist	er Fe 1la (g, ec flaw	echn grov ho, det Me	wth eche ecto thod	ar lo r.					
- Poiseuil UNIT II Acoustics Decibel - decay) - I effect - re Ultrason Shock wa creating s UNIT I	ACOUSTICS, ULTRASONICS AND SE S: Classification of sound - Characteristics of Absorption coefficient - Reverberation - Reverberation - Reverberation - Reverberation - Reverberation - Reverberation and Piezoele Exactors affecting acoustics of buildings (reverberations) and their remedies. ics: Production: Magnetostriction and Piezoele aves: Definition of Mach number - Description shock waves. II OPTICS, LASERS AND FIBRE OPTI	musical sound - Loudness - Webe everberation time - Sabin's form beration time, loudness, focussing ectric methods - NDT: Ultrasonic on of a shock wave - Characterist	er Fe ila (g, ec flaw ics - 9 +	echn grov ho, det Me 6+1	wth eche ecto thod	an lo r. s (
- Poiseuil UNIT II Acoustics Decibel - decay) - l effect - re Ultrason Shock wa creating s UNIT I Optics: I	ACOUSTICS, ULTRASONICS AND SHs: Classification of sound - Characteristics ofAbsorption coefficient - Reverberation - ReFactors affecting acoustics of buildings (reveresonance and noise) and their remedies.ics: Production: Magnetostriction and Piezoeleaves: Definition of Mach number - Descriptionshock waves.IIOPTICS, LASERS AND FIBRE OPTIONDispersion- Optical instrument: Spectrometer -	musical sound - Loudness - Webe everberation time - Sabin's form beration time, loudness, focussing ectric methods - NDT: Ultrasonic on of a shock wave - Characterist ICS - Determination of refractive inde	er Fe ila (g, ec flaw ics - 9 +	echn grov ho, det Me 6+1	wth eche ecto thod	an lo r. s (
- Poiseuil UNIT II Acoustics Decibel - decay) - I effect - re Ultrason Shock wa creating s UNIT I Optics: I power of	ACOUSTICS, ULTRASONICS AND SE S: Classification of sound - Characteristics of Absorption coefficient - Reverberation - Reverberation - Reverberation - Reverberation - Reverberation - Reverberation and Piezoele Exactors affecting acoustics of buildings (reverberations) and their remedies. ics: Production: Magnetostriction and Piezoele aves: Definition of Mach number - Description shock waves. II OPTICS, LASERS AND FIBRE OPTI	musical sound - Loudness - Webe everberation time - Sabin's form beration time, loudness, focussing ectric methods - NDT: Ultrasonic on of a shock wave - Characterist ICS - Determination of refractive index wedge - Diffraction: grating.	er Fe ila (g, ec flaw ics - 9 + x and	echn grov ho, \sqrt{det} Me <u>6+1</u> d dis	wth eche ecto thod 2 spers	an lo r. s o					

Semiconductor Laser (homojunction) - Applications

Fibre Optics: Principle and propagation of light in optical fibre - Numerical aperture and acceptance angle - Types of optical fibre - Fibre optic communication system

UNIT IV SOLID STATE PHYSICS

9+6+6

Crystal Physics: Lattice - Unit cell - Lattice planes - Bravais lattice - Miller indices - Sketching a plane in a cubic lattice - Calculation of number of atoms per unit cell - Atomic radius - Coordination number - Packing density for SC, BCC, FCC and HCP structures.

Semiconductors: Semiconductor properties - Types of semiconductor - Intrinsic - Extrinsic: P-type and N-type semiconductor - PN junction diode - Biasing - Junction diode characteristics.

UNIT VNOVEL ENGINEERING MATERIALS AND BIOMETRICS9+6+0

Novel Engineering Materials: Introduction - Metallic glasses: Melt spinning technique, properties, applications - Shape Memory Alloys: Transformation temperature, working of SMA, characteristics - Biomaterials: Properties, interaction of biomaterials with tissues, applications - Nano phase materials: Production, properties and applications.

Biometrics: Introduction - definition - instrumentation - devices - advantages

TEXT

- 1. Avadhanulu M. N. and Kshirsagar P. G., "A Text Book of Engineering Physics", 7th Enlarged Revised Edition. S. Chand & Company Ltd., New Delhi, 2005.
- 2. Senthil Kumar G., "Engineering Physics", 2nd Enlarged Revised Edition, VRB Publishers, Chennai, 2003.
- 3. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2005.

4. Prabu P. and Gayathri P., " Applied Physics", PMU Press, Thanjavur, 2013

REFERENCES

- 1. Gaur R.K. and Gupta S. L., "Engineering Physics", Dhanpat Rai Publishers, New Delhi, 2001.
- 2. Pillai S.O., "Solid State Physics", 5th Edition, New Age International Publication, New Delhi, 2003.

E RESOURCES

NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

	LABORATORY
1.	Torsional Pendulum - determination of moment of inertia and rigidity modulus of the given
	material of the wire.
2.	Uniform Bending - Determination of the Young's Modulus of the material of the beam.
3.	Non-Uniform Bending - Determination of the Young's Modulus of the material of the beam.
4.	Poiseuille's flow - Determination of coefficient of viscosity of the given liquid.
5.	Spectrometer - Determination of dispersive power of the give prism.
6.	Spectrometer - Determination of wavelength of various colours in Hg source using grating.
7.	Air wedge - Determination of thickness of a given thin wire.
8.	Laser - Determination of wavelength of given laser source and size of the given micro particle
	using Laser grating.
9.	Post office Box - Determination of band gap of a given semiconductor.
10.	PN Junction Diode - Determination of V-I characteristics of the given diode.

REFERENCE BOOKS

- 1. Srinivasan M. & others, "A text book of Practical Physics", Sultan Chand & Sons, 2001.
- 2. Shukla R.K., "Practical Physics", New Age International Publication, New Delhi, 2011.
- 3. Umayal Sundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012.

LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
45	30	30	105

Mapping of CO's with PO:

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS1	PS2
CO1	3	2	2	2	1	-	-	-	1	-	-	1		
CO2	3		1		1	-	-	-		-	-	1		
CO3	3	2	2	2	1	-	-	-	1	-	-	1		
CO4	3	2	2	2	1	-	-	-	1	-	-	1		
CO5	3		2			-	-	-		-	-	1		
Total	15	6	9	6	4				3			5		
Scaled to 0,1,2,3 scale	3	2	2	2	1				1			1		

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

COUDSE	CODE	XGS105	L	Т	P	SS	C	
COURSE	NAME	STUDY SKILLS	1	0 0 2 T P SS 1 0 0 2 1 0 0 2 1 0 0 2 1 LEVEL Remember Internalizing Values Apply Understanding Guided Response Internation of base 1 <th1< th=""> 1 1 1<</th1<>			1	
PREREQ	UISITES		L	0 0 T P 0 0 LEVEI Rem Intern Va Intern Va Underst Gu Underst Gu Underst Gu udy skills liarization iarization to s, and not s, and not iques etc s.2009 S.2009 Delhi 1979	SS	E		
C:P:A		1.8:0.6:0.6	1	0	002TPS002LEVELRememilInternaliz ValueApplyUnderstand Guider Respondy skills, L iarization ofdy skills, L iarization offamiliarizatfamiliarizatand note miques etc2009		3	
COURSE	OUTCOMES	DOMAIN	VEL	1				
CO1	<i>Identify</i> different strategies of reading and writing skills.	Cognitive		ŀ	Rem	embe	r	
CO2	<i>Revise</i> the library skills in their learning process.	Affective		In	-			
CO3	<i>Apply</i> different techniques to various types of material such as a novel, newspaper, poem, drama and other reading papers.	Cognitive		Ap	ply			
CO4	<i>Use</i> visual aids to support verbal matters into language discourse.	Cognitive		Und	lerst	andin	g	
CO5	CO5 <i>Prepare</i> to face the written exam with confidence and without any fear or tension.Cognitive Psychomotor							
UNIT I	INTRODUCTION TO STUDY SKILLS							
UNIT II	g techniques, how to ransack the library etc. REFERENCE SKILLS			Ι				
	e the library facilities for research and to write urnals and other e- learning materials - how to p				erenc	ce bo		
	urnals and other e- learning materials - how to				erend	ce bo		
articles, jou UNIT III Process of materials w writing by	arnals and other e- learning materials - how to theREADING RELATED STUDY SKILLSreading, various types of reading materials andwritten by various authors - features of scientrenowned authors - note making skills.	use a dictionary and thes d varied reading techniq	auru ues -	s. - fami	iliari	zatio	ok: n t	
articles, jou UNIT III Process of materials w writing by UNIT IV	arnals and other e- learning materials - how to the READING RELATED STUDY SKILLS reading, various types of reading materials andwritten by various authors - features of scientrenowned authors - note making skills.WRITING RELATED STUDY SKILLS	use a dictionary and thes d varied reading techniq ntific writing and fami	ues - liariz	s. - fami ation	iliari to	zatio	ok: n t tifi	
articles, jou UNIT III Process of materials w writing by UNIT IV Process of	Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure Image: Angle of the second structure	use a dictionary and thes d varied reading techniq ntific writing and fami	ues - liariz	s. - fami ation	iliari to	zatio	n t tifi	
articles, jou UNIT III Process of materials w writing by UNIT IV Process of and note ta UNIT V	Image: Second structure Image: Second structure Image: Second structure Image: Second structure <td>use a dictionary and thes d varied reading techniq ntific writing and fami</td> <td>auru ues - liariz aids</td> <td>s. - fami ation</td> <td>iliari to note</td> <td>zatio</td> <td>n t tifi</td>	use a dictionary and thes d varied reading techniq ntific writing and fami	auru ues - liariz aids	s. - fami ation	iliari to note	zatio	n t tifi	
articles, jou UNIT III Process of materials v writing by UNIT IV Process of and note ta UNIT V Anxiety ref	Image: Image of the image	use a dictionary and thes d varied reading techniq ntific writing and fami	auru ues - liariz aids	s. - fami ation	iliari to note	zatio	oks n t tifi	
articles, jou UNIT III Process of materials w writing by UNIT IV Process of and note ta UNIT V Anxiety rea	arnals and other e- learning materials - how to the second sec	use a dictionary and thes d varied reading techniq ntific writing and fami e analysis - use of visual es of exam / evaluation	auru ues - liariz aids	s. - fami ation	iliari to note	zatio	n t tifi	
articles, jou UNIT III Process of materials w writing by UNIT IV Process of and note ta UNIT V Anxiety rea TEXT Appropriat	urnals and other e- learning materials - how to the second secon	use a dictionary and thes d varied reading techniq ntific writing and fami e analysis - use of visual es of exam / evaluation	auru ues - liariz aids techr	s. - fami ation , and , and	iliari to note	zatio	n t tifi	
articles, jou UNIT III Process of materials v writing by UNIT IV Process of and note ta UNIT V Anxiety rea TEXT Appropriat 1. Nat	urnals and other e- learning materials - how to uriting READING RELATED STUDY SKILLS reading, various types of reading materials and written by various authors - features of scient renowned authors - note making skills. WRITING RELATED STUDY SKILLS writing - characteristics of writing - discourse king skills. EXAM PREPARATION SKILLS duction skills - familiarization with various type e Chapters/Units from the following textbooks rayanaswamy. Strengthen Your Writing. Orient	use a dictionary and thes d varied reading techniq ntific writing and fami e analysis - use of visual es of exam / evaluation t Longman. New Delhi,	auru ues - liariz aids techr 2006	s. - fami ation ., and 	noto	zatio	n t tifi	
articles, jou UNIT III Process of materials w writing by UNIT IV Process of and note ta UNIT V Anxiety rea TEXT Appropriat 1. Nau 2. Sau	Innals and other e- learning materials - how to the second sec	use a dictionary and thes d varied reading techniq ntific writing and fami e analysis - use of visual es of exam / evaluation t Longman. New Delhi, koo, Oxford University	auru ues - liariz aids techr 2006 Press	s. - fami ation 	iliari to noto	zatio scient e mał	n t tifi	
articles, jou UNIT III Process of materials w writing by UNIT IV Process of and note ta UNIT V Anxiety rea TEXT Appropriat 1. Nat 2. Sat 3. Fre	urnals and other e- learning materials - how to the second secon	use a dictionary and thes d varied reading techniq ntific writing and fami e analysis - use of visual es of exam / evaluation t Longman. New Delhi, koo, Oxford University ford University Press, N	auru ues - liariz aids techr 2006 Press ew D	s. - fami ation , and niques	iliari to noto	zatio scient e mał	n t tifi	
articles, jou UNIT III Process of materials w writing by UNIT IV Process of and note ta UNIT V Anxiety rea TEXT Appropriat 1. Nau 2. Sau 3. Fre 4. Pet	arnals and other e- learning materials - how to the second secon	use a dictionary and thes d varied reading techniq ntific writing and fami e analysis - use of visual es of exam / evaluation t Longman. New Delhi, koo, Oxford University ford University Press, N	auru ues - liariz aids techr 2006 Press ew D	s. - fami ation , and niques	iliari to noto	zatio scient e mał	n t tifi	
articles, jou UNIT III Process of materials w writing by UNIT IV Process of and note ta UNIT V Anxiety rea TEXT Appropriat 1. Nau 2. Sau 3. Fre 4. Pet	arnals and other e- learning materials - how to the second secon	use a dictionary and thes d varied reading techniq ntific writing and fami e analysis - use of visual es of exam / evaluation t Longman. New Delhi, koo, Oxford University ford University Press, N xford University Press,	auru ues - liariz aids techr 2006 Press ew D 1992	s. - fami ation	iliari to noto	zatio scient e mał	n t tifi	
articles, jou UNIT III Process of materials w writing by UNIT IV Process of and note ta UNIT V Anxiety rea TEXT Appropriat 1. Nar 2. Sar 3. Fre 4. Pet REFEREN 1. Sus 2. Ray	arnals and other e- learning materials - how to the second secon	use a dictionary and thes d varied reading techniq ntific writing and fami e analysis - use of visual es of exam / evaluation t Longman. New Delhi, koo, Oxford University ford University Press, N xford University Press, ith Readings Paperback	auru ues - liariz aids techr 2006 Press ew D 1992 – 20	s. - fami ation , and niques .2009 	iliari to noto s etc	zatio scient e mał	n t tifi	

- 3. Kiranmai Dutt and Geetha Rajeevan. A Course in Listening and Speaking I & II. New Delhi: Foundation Books, Cambridge House, 2006.
- 4. David Bolton, English Grammar in Steps, Richmond Publishing, New Delhi,2000

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO 2
CO1	0	0	0	0	0	3	0	0	0	0	0	0	0	0
CO2	0	0	0	0	0	0	3	0	0	3	0	0	0	0
CO3	0	0	0	0	0	0	0	0	0	1	0	1	0	0
CO4	0	2	0	0	0	3	0	0	2	1	0	0	0	0
CO5	0	0	0	0	0	0	0	0	0	3	2	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scaled Value	0	2	0	0	0	6	3	0	2	8	0	1	0	0
	0	1	0	0	0	2	1	0	1	2	0	1	0	0

Table 1: Mapping of Cos with POs:

1-5=1, 6-10=2, 11-15=3

0-No Relation, 1- Low Relation, 2 - Medium Relation, 3- High Relation

COURSE	CODE	XUM 106	L	Т	Р	SS	C	
COURSE	NAME	HUMAN ETHICS,VALUES,RIGHTS AND GENDER EQUALITY	1	0	0	0	1	
PREREQ	UISITES	Not Required	L	Т	Р	SS	H	
C:P:A		2.7:0:0.3	1	0	0	2	3	
COURSE	OUTCOMES	DOMAIN		LE	VE	Ĺ		
CO1	<i>Relate</i> and <i>Interpret</i> the human ethics and human relationships	Cognitive				ıber, tandin	g	
CO2	<i>Explain</i> and <i>Apply</i> gender issues, equality and violence against women	Cognitive	Understandi Applying					
CO3	<i>Classify</i> and <i>Develop</i> the identify	Cognitive &		An	alyz	ing		
	of women issues and challenges	Affective			ceiv	<u> </u>		
CO4	Classify and Dissecthuman rights	Cognitive				tandin	g,	
005	and report on violations.				alyz			
CO5	<i>List</i> and respond to family values, universal brotherhood, fight against corruption by	Cognitive & Affective		Remember, (Respond)				
	common man and good							
	governance.							
UNIT I	HUMAN ETHICS AND VALUES ETHICS AND VALUES						,	
Justice, Dig Caring and Commitmer	nics and values - Understanding of ones gnity and worth, Harmony in human rel I Sharing, Honesty and Courage, WH nt, Sympathy and Empathy, Self respect,	lationship: Family and Society, Int O's holistic development - Valuin	egrit 1g T	y and Time,	d Co Co	mpeter operat	nce tior	
UNIT II		definition Conden equity equalit					-	
Status of	quality - Gender Vs Sex, Concepts, c Women in India Social, Economical ons of Dr.B.R. Ambethkar, ThanthaiPe	l, Education, Health, Employme	nt, 1	HDI,	GI			
UNIT II								
Sexual Hara	ues and Challenges- Female Infanticide, F assment, Trafficking, Access to educatio ght, Property Rights, and Rights to Educ Act.	on, Marriage. Remedial Measures -	Acts	s rela	ted	o won	ner	
UNIT IV							9	
Duties, Cultural R	ghts Movement in India – The prea Universal Declaration of Human Rig Lights, Rights against torture, Discrim ad elderly. National Human Rights Co	ghts (UDHR), Civil, Political, Ed nination and forced Labour, Rig	cono ghts nmis	mica and ssion	al, S prot is, C	ocial ection reation	ano n o n o	

UNIT V	GOOD GOVERNA	NCE AND ADDR	ESSING	SOCIAL IS	SUES		11
Good Govern	nance - Democracy, Pec	ple's Participation	, Transpar	ency in gove	ernance and		
audit,Corrupt	ion, Impact of corruption	on on society, who	m to make	corruption c	complaints, f	ight agai	nst
corruption an	d related issues, Fairne	ss in criminal justic	e adminis	tration, Gov	ernment syst	em of	
Redressal. Cr	eation of People friend	ly environment and	l universal	brotherhood	1.		
		LEC	TURE	SELF S	STUDY	ТОТ	'AL
			15	3	0	45	5
REFERENC	ES			•			
1. Aftab	A, (Ed.), Human Rig	hts in India: Issue	s and Cha	allenges, (No	ew Delhi: R	ajPublica	ations,
2012)	· · · · ·			C / X		5	
2. Bajwa	a, G.S. and Bajwa, D.	K. Human Rights	in India:	Implementa	ation and Vi	iolations	(New
-	: D.K. Publications, 199	_		-			
3. Chatr	ath, K. J. S., (ed.), Edu	cation for Human	Rights and	1 Democracy	y (Shimala: 1	Indian In	stitute
of Ad	vanced Studies, 1998).						
4. Jagad	eesan. P. Marriage	and Social legisl	ations in	Tamil Na	du, Chenna	ai: Elacl	niapen
Public	cations, 1990).						
5. Kausł	nal, Rachna, Women an	d Human Rights in	India (Ne	w Delhi: Ka	veri Books,	2000)	
	V. S., Human Rights i	n India: An Overv	iew (New	Delhi: Instit	ute for the W	Vorld Co	ngress
	ıman Rights, 1998).						
-	, B. P. Sehgal, (ed) Hu	man Rights in Ind	ia: Problei	ms and Pers	pectives (Ne	w Delhi:	Deep
	eep, 1999).						
	mani, K. (ed) Periyar o	-					
	mani, K. (ed) Periyan	Feminism, (Peri	yarManiaı	mmai Unive	ersity, Valla	m, Thar	ijavur:
2010)							
10.Planni	U	report on	Occupa			and	Safety
	nningcommission.nic.in				• •		
	al Vigilance Commissio			-		<u>html</u> .	
	ink of Transparency Int	-					
13. Webli	ink Status report: https:	//www.hrw.org/wo	rld-report/	/2015/countr	y-chapters/in	ndia	

					1.	rappm	ig or C		11105					
	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1								2						
CO2								3	1					
CO3								2						
CO4								3		2				
CO5								3	2	2		2		
Total		2						13	3	4		2		
Scale d		1						3	1	1		1		
Scale		1							3	4		1		

Mapping of COs with Pos

 $1-5 \rightarrow 1, \quad 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No relation, 1-Low relation, 2-Medium relation, 3-High relation

SYLLABUS

II SEMESTER

COURSE	CODE	XMA201	L	Т	Р	С
COURSE	NAME	CALCULUS AND LAPLACE TRANSFORMS	3	1	0	4
PREREQ	UISITES	Basic concepts of Differentiation, Integration, Vectors and Complex numbers.	L	T	P	H
C:P:A		3:0:0	3	2	0	5
COURSE	OUTCOMES	DOMAIN	LE	VEL		
CO1	Make Use ofstandard results toFindtheLaplacetransforms ofderivativesand integralsand tosolvedifferential equations.	Cognitive	Rec	eivin	g, A _l	oply
CO2	<i>Apply multiple integral concepts to</i> <i>Find</i> the area, volume and to understand the order of integration.	Cognitive	Rec	eivin	g, Aţ	oply
CO3	Define the gradient, divergent curl of vectors. Find directional derivative, unit vector normal to the surface. Apply corresponding theorems to Find the line, surface and Volume integrals.	Cognitive	Rec	eivin	g, Aj	oply
CO4	<i>Construct</i> and examine the analytic functions, and their the complex Conjugate and to <i>Explain</i> the concept of conformal mapping and to <i>Construct</i> the bilinear transformation.	Cognitive	Un Apr		andin	g,
C05	<i>Explain</i> the poles , singularities and residues of functions and to <i>solve</i> the problems using contour integration	Cognitive		derst oly	andin	g,
UNIT I	LAPLACE TRANSFORMS					15
derivatives functions –	s of elementary functions – properties – and integrals - Transforms of unit step Convolution Theorem – Inverse transfo	function and impulse function -	Trans	form	of pe	riodic tions.
integral –	MULTIPLE INTEGRALS egration – Cartesian and polar coordina change of variables between Cartesian s (Finding area & volume of a certain re	n and polar coordinates - triple				

UNIT III VECTOR CALCULUS			15
Gradient, divergence and curl - directional derivative	- normal and tar	igent to a given	surface – angle
between two surfaces - irrotational and solenoidal ve	ctor fields - Line,	Surface and Vo	lume Integral –
Green's theorem in a plane, Gauss divergence theorem	and Stoke's theor	em (excluding pr	roof).
UNIT IV ANALYTIC FUNCTIONS			15
Function of a complex variable – analytic function – n			
proof) - Cauchy Riemann equations - properties of an			
construction of an analytic function – Conformal mapp	bing: $w = z + c$, cz ,	$\frac{1}{z}$, sinz, coshz,	$z + \frac{k^2}{z}$ -
Bilinear transformation.			
UNIT V COMPLEX INTEGRATION			15
Statement and application of Cauchy's integral theor	U	2	
expansion - Residues - Cauchy's Residue Theorem - C			
	LECTURE	TUTORIAL	TOTAL
TEXT	45	30	75
REFERENCES	~ Mothematica I	www. Dublication	(D) Ltd Name
 Bali N.P and Narayana lyengar, Engineerin Delhi, 2003. 	g Mathematics, La	axiiii Publications	s (P) Liu, New
 Veerarajan T, Engineering Mathematics Fo Company Ltd, New Delhi, 2005. 			-
 Kandasamy P., Thilagavathy K, and Gunav and III, S. Chand & Co, New Delhi, 2005. 		-	
4. Venkataraman M. K, Engineering Mathema Edition, The National Publishing Company		d II Revised enla	rge Fourth
E REFERENCES			
www.nptel.ac.in Advanced Engineering Mathematics Prof. Jitendra	Kumar		

Department of Mathematics Indian Institute of Technology, Kharagpur

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO 1	3											1	
CO 2	3											1	
CO 3	3	2								1	1	2	
CO 4	3	2			1					1	1	1	
CO 5	3	2			1					1	1	1	
	15	6	0	0	2	0	0	0	0	3	3	6	

Mapping of COs with Pos

1 - Low , 2 - Medium , 3- high

	CODE	XCP202	L	Т	Р	С
COURSE	NAME	COMPUTER PROGRAMMING	3	1	0	4
PREREQU	JISITES		L	Т	Р	Н
C:P:A		3:1:0	3	2	0	5
COURSE	OUTCOMES	DOMAIN	LE	VEL		
C01	Define programming fundamentals and Solve simple programs using I/O statements. Statements Statements Statements	Cognitive Psychomotor	Ren	nemb	er Lespo	nse
CO2	Definesyntaxandwritesimpleprogramsusingcontrol structures and arrays	Cognitive Psychomotor		nemb ded F	er Lespo	nse
CO3	<i>Explain</i> and <i>write simple</i> <i>programs</i> using functions and pointers	Cognitive Psychomotor		lersta ded F	nd lespo	nse
CO4	<i>Explain</i> and <i>write simple</i> <i>programs</i> using structures and unions	Cognitive Psychomotor		lersta ded F	nd Respo	nse
CO5	<i>Explain</i> and <i>write simple</i> <i>programs</i> using files and <i>Build</i> simple projects	Cognitive Psychomotor		lersta ded F	nd Lespo	nse
	Dutta simple projects					
UNIT I	PROGRAMMING FUNDAN /OUTPUT STATEMENTS	MENTALS AND INPUT				1
Theory Program – Tokens: 1 Data Types Practical Program to Program fo Program to	PROGRAMMING FUNDAN /OUTPUT STATEMENTS Flowchart – Pseudo code – S identifiers, Keywords, Constants, Output statements – Input state display a simple picture using do r addition of two numbers swap two numbers	oftware – Introduction to C languag and Operators – sample program struments. ts.				set
Theory Program – Tokens: 1 Data Types Practical Program to Program fo Program to	PROGRAMMING FUNDAN /OUTPUT STATEMENTS Flowchart – Pseudo code – S dentifiers, Keywords, Constants, - Output statements – Input state display a simple picture using do r addition of two numbers	oftware – Introduction to C languag and Operators – sample program stru ments. ts.				set

UNIT III FUNCTIONS AND POINTERS			15
Theory			
Functions: Built in functions – User Defined Functions	- Parameter pass	ing methods - Pa	ssing arrays to
functions – Recursion - Programs using arrays and funct	-	-	
operator - Pointer expressions & pointer arithmetic - Pointer			
Reference - Pointer to arrays - Pointers and structures -			,
Practical	I		
Program to find factorial of a given number using four f	unction types.		
Programs using Recursion	V 1		
Programs using Pointers			
UNIT IV STRUCTURES AND UNIONS			9+7
Theory			
Structures and Unions - Giving values to members - In	itializing structu	re - Functions and	l structures -
Passing structure to elements to functions - Passing entit	-		
Structure within a structure and Union.		•	
Practical			
Program to read and display student mark sheet Structur	res with variables	6	
Program to read and display student marks of a class usi	ng <u>Structures</u> wi	th arrays	
Program to create linked list using Structures with point	ers		
UNIT V FILES			15
Theory			
File management in C - File operation functions in C	- Defining and	opening a file -	Closing a file -
The getw and putw functions - The fprintf & fscanf func	tions - fseek fun	ction – Files and	Structures.
Practical			
Program for copying contents of one file to another file.			
Program using files using structure with pointer			
	LECTURE	PRACTICAL	TOTAL
	45	30	75
TEXT BOOKS			
1. Byron Gottfried, "Programming with C",	III Edition, (In	ndian Adapted H	Edition), TMH
publications, 2010			
2. Yeshwant Kanethker, "Let us C", BPB Public	ations, 2008		
REFERENCES			
1. Brian W. Kernighan and Dennis M. Ritch	e, "The C Prog	gramming Langua	age", Pearson
Education Inc. (2005).			
2. Behrouz A. Forouzan and Richard. F. Gilber	g, "A Structured	l Programming A	pproach Using
C", II Edition, Brooks-Cole Thomson Learning Publica	tions, 2001.		
3. Johnsonbaugh R. and Kalin M., "Application	s Programming	n ANSI C", III E	dition, Pearson
Education India, 2003. https://iitbombayx.in/courses/IITBombayX/BMV			

Mapping of COs with Pos

	PO 1	PO 2	РО 3	РО 4	PO 5	PO 6	РО 7	РО 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1								2						
CO2								3	1					
CO3								2						
CO4								3		2				
CO5								3	2	2		2		
Total		2						13	3	4		2		
Scaled Value		1						3	1	1		1		

 $1-5 \rightarrow 1, \quad 6-10 \rightarrow 2, \quad 11-15 \rightarrow 3$

0 - No relation, 1 - Low relation, 2 - Medium relation, 3 - High relation

COURSE	CODE	XBW203	L	Т	Р	С
COURSE	NAME	MECHANICAL AND CIVIL ENGINEERING SYSTEMS (WORKSHOP PRACTICE INCLUDED)	3	1	1	5
PREREQ	UISITES		L	Т	Р	Н
C:P:A		1.5:1.5:0	3	2	2	7
COURSE	OUTCOMES	DOMAIN	LE	VEL		
C01	Define and visualize the working			wled	ge	
	principles of the various boilers, turbines and engines	Cognitive Psychomotor				
CO2	<i>Differentiate and auscultate</i> the measurements by using various metrology instruments	Cognitive Psychomotor	Cor	npreh	ensio	n
CO3	Categorise and palpate the various metal forming, joining and cutting processes	Cognitive Psychomotor	Syn	thesis		
CO4	<i>Characterize and diagonose</i> the quality of the good Building materials; and measure linear and angular dimensions	Cognitive Psychomotor	Kno	owled	ge	
CO5	<i>Summarize and palpate</i> the components of a substructures and super structures.	Cognitive Psychomotor	Eva	luatio	n	
UNIT I	Basics of Thermal and Energy Sy	ystems				21
and non co Boilers and engines – I Practical: Petrol engi Diesel engi	on to Mechanical Engineering – Stream onventional sources of energy – Heat d Turbines – Classification of IC Eng Performance and heat balance – Work ne performance – BHP ine performance – BHP ition of refrigeration and air condition	energy – Modes of heat transfer – gines – 4 stroke and 2 stroke engir ing principles of hydel, steam and	Work les – I	ting pr Petrol	incip and	les o diese
UNIT II						1
UINII II				rivos	т.	
Engineerin Velocity ra Principle o Caliper – M Practical: Measureme	g materials – Machine elements – f atio and Length of belt – Gear drives – of measurements – Accuracy – Precis Micrometer – Slip gauges – Spirit leve ents using Vernier Caliper, Micrometer	- Types – Velocity ratio. ion – Errors – Measuring instrume el. er, Slip gauges and Spirit level.	ents –	Scale	•	•
Engineerin Velocity ra Principle o Caliper – M Practical: Measureme Demonstra	tio and Length of belt – Gear drives – of measurements – Accuracy – Precis Micrometer – Slip gauges – Spirit leve ents using Vernier Caliper, Micromete tion of transmission system in machir	- Types – Velocity ratio. ion – Errors – Measuring instrume el. er, Slip gauges and Spirit level.	ents –	Scale	•	ernie
Engineerin Velocity ra Principle o Caliper – M Practical: Measuremo Demonstra UNIT II	tio and Length of belt – Gear drives – of measurements – Accuracy – Precis Micrometer – Slip gauges – Spirit leve ents using Vernier Caliper, Micrometer tion of transmission system in machir	- Types – Velocity ratio. ion – Errors – Measuring instrume el. er, Slip gauges and Spirit level. nes and suspension system in autor	ents – nobile	Scale	e – V	ernie

Machining – turning, drilling, milling and grinding – Machining time and material removal rate. **Practical:**

Exposure to workshop tools

Fitting exercises: Square and triangle

Simple turning and drilling

Demonstration of welding and mould preparation

UNIT IV Surveying and Construction Materials

Surveying: Definition – Survey Instruments – Classification of Survey – Linear and Angular Measurements – Measurement of area – Illustrative Examples.

Construction Materials: Bricks – Stones – Timber – Steel – Cement – Sand – Aggregates – Concrete **Practical:** Surveying

UNIT V	Components and of Construction of Civil Structures	15
Substructure:	Bearing capacity - Types of Foundation – Application – Requirement	of good foundations.
Superstructure	e: Brick masonry – Types of bond – Flooring – Beams – Columns -	- Lintels – Roofing –
Doors and wir	dows fittings – Introduction to bridges and dams – Building drawing	
Practical: Bu	ilding drawing, Carpentry, Plumbing.	

45 30 75	LECTURE	PRACTICAL	TOTAL
	45	30	75

15

TEXT BOOKS

Dr. P.K. Srividhya, P. Pandiyaraj, S. Balamurugan, "Basic Civil and Mechanical Engineering", PMU Publications, Vallam, 2013.

Dr. B.C.Punmia, Ashok Kumar Jain, "Basic Civil Engineering", Laxmi Publications, New Delhi, 2003. Dr. B.C.Punmia, "Surveying – Volume I", Laxmi Publications, New Delhi, 2005

REFERENCES

Venugopal K., Basic Mechanical Engineering, Anuradha Publications, Kumbakonam, 2007.

Shanmugam G. and Palanichamy M. S., "Basic Civil and Mechanical Engineering", Tata Mc Graw Hill Publishing Co., New Delhi, 3rd Edition, 2009.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	2	-	-	-	-	-	-	-	-
CO2	2			2		1	-	-	-	-	-	_
CO3		2			2	-	-	-	-	-	_	-
CO4		3		1		-	-	-	-	-	_	-
CO5	1	1			3	-	-	-	-	-	-	-
Total	5	6	-	5	5	1	-	-	-	-	-	-

Mapping of CO's with PO's:

1 - Low, 2 – Medium, 3 – High

COURSE CODE		XAC204	L	Т	Р	C	
COURSE NAME		APPLIED CHEMISTRY	3	1	1	5	
PREREQUISITES C:P:A		Nil 2.8:0.8:0.4	L	Т	Р	Н	
			3	2	2	7	
COURSE OUTCOMES		DOMAIN	LEVI	LEVEL			
C01	<i>Identify</i> and describe the various water quality parameters and methods to purify water in contest with boilers and domestics usage.	Cognitive Psycomotor	Remember Perception				
CO2	<i>Explain</i> the fundamental principles of electrochemical reactions, its applications in redox reactions and calculate the different electrochemical processes.	Cognitive Psycomotor	Understand Set				
CO3	<i>Interpret</i> the types of corrosion, <i>use</i> <i>and measure</i> its control by various methods including protective techniques.	Cognitive Psycomotor Affective	Apply Mechanism Receive				
CO4	Describe , Illustrate and Discuss the generation of energy in batteries, nuclear reactors, solar cells, fuel cells and anaerobic digestion.	Cognitive Affective	Reme Analy Respo	se			
CO5	<i>Apply</i> and <i>measure</i> the different types of spectral techniques for quantitative chemical analysis and <i>list</i> nanomaterials for various engineering processes.	Cognitive Psycomotor	Reme Apply Mecha	7			
UNIT I	WATER TECHNOLOGY	I	7 + 8	+9			
estimation requireme demineral treatment	nd types of water – water quality parameter n of hardness (problems) – alkalinity: typ ents – disadvantages of using hard water ization process – desalination using rever processes in industries	es and estimation (problems) in boilers – internal treatmen	– boile t, extern er treatn	er feed nal tre nent –	wat atme	er - nt -	
UNIT IIELECTROCHEMISTRYBasic concepts of conductance – Kohlraush's law and conductometric titrations				8+5+15			
Nernst ed electroche and secor electroche	cepts of conductance – Kohlraush's law quation: derivation and problems – rev emical cells – emf and its measurements - ndary – glass electrode – determination emical series and its applications – Galv - redox titrations.	versible and irreversible cel - types of electrodes-reference of pH using quinhydrone a	ls – el e electro nd glas	lectrol odes – s elec	ytic prin trode	an nar es -	
UNIT II		E COATINGS	9+4	+3			
Corrosion in electro	- causes- types-chemical, electrochemical onic devices, corrosion control - materia – sacrificial anode method and impressed	corrosion (galvanic, different al selection and design aspe	ial aerat	tion), c			

Protective coatings: paints- constituents and functions - electroplating of copper and gold, Electro less plating - Distinction between electroplating and electro less plating,

Advantages of electroless plating, electro less plating of nickel and copper on PCB.

UNIT IVENERGY STORAGE DEVICES AND NUCLEAR ENERGY12 + 7+0

Energy storage devices – Batteries: Types – primary (dry cell, alkaline cells) and secondary (lead acid, Ni-Cd and Lithium ion batteries) - Super capacitors – Fuel cells-Hydrogen-Oxygen fuel cell- Solar cells .

Nuclear energy: nuclear fission and fusion –chain reaction and its characteristics – nuclear energy and calculations (problems) – atom bomb –Nuclear reactor- light water nuclear power plant – breeder reactor- Weapon of mass destruction- nuclear, radiological, chemical and biological weapons. Disarmament - National and International Cooperation- Chemical Weapon Convention (CWC), Peaceful Uses of Chemistry. Bio fuels: biomethanation- anaerobic digestion process, biomass: sources and harness of energy.

UNIT V SPECTROSCOPY AND NANOCHEMISTRY

9 +6 +3

Electromagnetic spectrum - Lambert law and Beer-Lambert's law (derivation and problems) – molecular spectroscopy -UV- visible spectroscopy: electronic transitions - chromophores and auxochromes – instrumentation (block diagram) - applications – IR spectroscopy: principle – fundamental modes of vibrations – calculations of vibrational frequency – IR spectrophotometer instrumentation (block diagram) – applications of IR spectroscopy.

Nanochemistry - Basics - distinction between molecules, nanoparticles and bulk materials; size-

dependent properties. Nanoparticles: Nanocluster, nanorod, nanotube and nanowire. Synthesis;

properties and applications of nano materials-Buckminister fullerenes, CNT"S(Single walled carbon nano tubes and Multi-walled carbon tubes)-Graphene- advantages and applications.

, , , , , , , , , , , , , , , , , , , ,		11						
	LECTURE	TUTORIAL	TOTAL					
	45	30	75					
TEXT BOOKS								
1. Jain and Jain, "A Text book of Engineering	Chemistry", Dhanapa	trai Publications, New I	Delhi,					
2011.								
2. Gadag and NityanandaShetty, "Engineering	Chemistry", I.K Inter	rnational publishing						
House Pvt. Ltd, 2010.								
3. P. Atkins, J.D. Paula, "Physical Chemistry"	, Oxford University I	Press, 2009.						
4. S. S. Dara, S. S. Umare, "A Text Book of En	gineering Chemistry'	', S. Chand Publishing,	2011					
5. C.P. Poole and F.J. Owens, "Introduction to 1	Nanotechnology", , V	Viley, New Delhi ,2007						
REFERENCES								
1. Puri B R Sharma L R and Madan S Pathania	a, " Principles of Phy	sical Chemistry", Visha	al					
publishing Co., Edition 2004								
2. Kuriocose, J C and Rajaram, J, "Engineering	g Chemistry", Volum	e I/II, Tata McGraw-						
Hill Publishing Co. Ltd. New Delhi, 2000	-							
E REFERENCES								

E Resources - MOOCs:

- 1. http://www.mooc-list.com/course/chemistry-minor-saylororg
- 2. https://www.canvas.net/courses/exploring-chemistry
- 3. <u>http://freevideolectures.com/Course/2263/Engineering-Chemistry-I</u>
- 4. <u>http://freevideolectures.com/Course/3001/Chemistry-I</u>
- 5. <u>http://freevideolectures.com/Course/3167/Chemistry-II</u>
- 6. http://ocw.mit.edu/courses/chemistry/

Laboratory Part

30 hrs

- 1. Determination of total hardness, temporary and permanent hardness of water by EDTA method.
- 2. Determination of alkalinity of water sample.
- 3. Determination of chloride content of water sample by Argentometric method.
- 4. Conductometric titration of a strong acid with a strong base.
- 5. Determination of strength of hydrochloric acid by pH metric method.
- 6. Conductometric precipitation titration using barium chloride and sodiumsulphate.
- 7. Determination of strength of iron by potentiometric method using dichromate.
- 8. Potentiometric acid-base titration using quinhydrone electrode.
- 9. Corrosion inhibition efficiency by weight loss method.
- 10. Estimation of iron by colorimetric method.

REFERENCE BOOKS

- 1. Mendham, Denney R.C., Barnes J.D and Thomas N.J.K., "Vogel's Textbook of Quantitative Chemical Analysis", 6th Edition, Pearson Education, 2004.
- 2. Garland, C. W.; Nibler, J. W.; Shoemaker, D. P. "Experiments in Physical Chemistry", 8th Ed.; McGraw-Hill: New York, 2003.
- 3. Sirajunnisa.A., Sundaranayagi.S.,Krishna.,Rajangam.R.,Gomathi.S., "Applied Chemistry Lab Manual", Department of Chemistry, PMU Press, Thanjavur, 2016.

E Resources - MOOCs:

1.http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques

2. <u>http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011</u>

3.http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques

	LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
HOURS	45	30	30	105

Mapping of CO's with PO's:

	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS O 1	PSO 2
CO1	3	3	3	3	3	1	2	3	1	3	1	1	2	1
CO2	3	2	3	3	3	2	3	3	1	3		1	2	1
CO3	3	3	3	3	3	1	3	3	1	2	1	1	2	2
CO4	3		3	3	3	3	3	3	1	1		1	3	2
CO5	1	3		2	2	1	2		1	1		1	2	2
Total	13	11	12	14	14	8	13	12	5	10	2	5	11	8
Scale d Value	3	3	3	3	3	2	3	3	1	2	1	1	1	2

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

COURSE C	ODE	XEG205	L	Т	Р	С
COURSE N.	AME	ENGINEERING GRAPHICS	2	1	0	3
PREREQUI	SITES	Nil	L	Т	Р	Н
C:P:A		1:1:1	2	2	0	4
COURSE O	UTCOMES	DOMAIN	LE	VEL		
C01	<i>Apply</i> the national and international standards, <i>construct</i> and <i>practice</i> various curves	C(Ap), P(GR) and A(Res)				
CO2	<i>Interpret, construct</i> and <i>practice</i> orthographic projections of points, st. lines and planes.	C(Under) ,P(Mech) and A(Res)				
CO3	Construct Sketch and Practice projection of solids in various positions and true shape of sectioned solids.	C(Apply),P(CoR) and A(Res)				
CO4	<i>Interpret, Sketch</i> and <i>Practice</i> the development of lateral surfaces of simple and truncated solids, intersection of solids.	C(Under),P(CoR) and A(Res)				
CO5	<i>Construct, sketch</i> and <i>practice</i> isometric and perspective views of simple and truncated solids.	C(Apply),P(CoR) and A(Res)				
UNIT I	INTRODUCTION, FREE HA	AND SKETCHING OF ENGG				6+6
and convention Pictorial repri- dimensional sketching of the Polygons &	of graphics in engineering applications as per SP 46-2003. resentation of engineering objects media – need for multiple view three dimensional objects. curves used in engineering practi	tions – use of drafting instruments s – representation of three dimens vs – developing visualization skill ice – methods of construction – co od – cycloidal and involute cur	sional ls thr onstru	obje ough	ects in free of el	n two hand llipse,
-	ngents to the above curves. PROJECTION OF POINTS, I					6+6
pints, straigh inclinations t	t lines located in the first quadr	- first angle projection – layout of v rant – determination of true length s – projection of polygonal surface	hs of	lines	s and	their
UNIT III	PROJECTION OF SOLIDS A	ND SECTIONS OF SOLIDS				6+6
		, cylinder and cone when the axis is	incli	ned to	o one	

of projection – change of position & auxiliary projection methods – sectioning of above solids in simple vertical positions by cutting plane inclined to one reference plane and perpendicular to the other and above solids in inclined position with cutting planes parallel to one reference plane – true shapes of sections.

UNIT IV	DEVELOPMENT OF SURFACES AND INTERSECTION	6+6
	OF SOLIDS	

Need for development of surfaces – development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders and cones – development of lateral surfaces of the above solids with square and circular cutouts perpendicular to their axes – intersection of solids and curves of intersection –prism with cylinder, cylinder & cylinder, cone & cylinder with normal intersection of axes and with no offset.

UNIT V	ISOMETRIC AND PERSPECTIVE PROJECTIONS	6+6
Principles of i	isometric projection - isometric scale - isometric projections of sin	ple solids, truncated
prisms, pyram	ids, cylinders and cones – principles of perspective projections –	projection of prisms,

pyramids and cylinders by visual ray and vanishing point methods.

LECTURE	TUTORIAL	TOTAL
30	30	60

TEXT

- 1. Natarajan,K.V, " A Textbook of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2006.
- 2. Dr. P.K. Srividhya, P. Pandiyaraj, "Engineering Graphics", PMU Publications, Vallam, 2013

REFERENCES

- 1. Luzadder and Duff, "Fundamentals of Engineering Drawing" Prentice Hall of India PvtLtd, XI Edition 2001.
- 2. Venugopal,K. and Prabhu Raja, V., "Engineering Graphics", New Age International(P) Ltd., 2008.
- 3. Gopalakrishnan.K.R,. "Engineering Drawing I & II", Subhas Publications, 1998.
- 4. Shah, M.B and Rana, B.C., "Engineering Drawing", Pearson Education, 2005.

E REFERENCES

- 1. <u>http://periyarnet/Econtent</u>
- 2. http://nptel.ac.in/courses/112103019/

Mapping of CO's with PO:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	1							1
CO2	3	2	1	1	1							1
CO3	3	2	1	1	1							1
CO4	3	2	1	1	1							1
CO5	3	2	1	1	1							1
Total	15	10	7	5	5							5
Scaled	3	2	2	1	1							1

1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE (CODE	XGS206		L	Т	Р	С			
COURSE N	JAME	SPEECH COMMUNICATION	[1	0	2	2			
PREREQU	ISITES			L	Т	Р	Н			
C:P:A		3:0:0		1	0	2	3			
COURSE (DUTCOMES	DOMAIN		LEVEL						
CO1	CO1 Identify different styles to various forms of public speaking skills and presentation skills Cognitive									
CO2	Understand and identify the proper tone of language required in writing and speaking	Cognitive		Unc	lersta	nding	5			
CO3	<i>Adapt</i> the speech structures and develop the speech outline according to the audience.	Cognitive Psychomotor		App	oly					
CO4	<i>Ability</i> to communicate and develop presentation skills	Cognitive Affective		Response						
CO5	<i>Equip</i> the speaker to face the audience without any anxiety.	Psychomotor Guided Respon								
UNIT I	INTRODUCTION TO PUBLIC	C SPEAKING					9			
importance	of oral communication; skills and of public speaking skills in everyday of group work.									
UNIT II	TYPES OF SPEECH						9			
1 ·	impromptu, rememorized and exten eveloping ideas; finding and using su	1 I '	alyzing the	audi	ence	and				
UNIT III	ORGANIZATION OF SPEECH	ł								
Introduction	ORGANIZATION OF SPEECH , development and conclusion; languistic stures to the Audience; paralinguistic	uage used in various type	es of speecl	hes; A	Adapt	ing th	ne			
Introduction	, development and conclusion; lang	uage used in various type	es of speecl	hes; A	Adapt	ing th	ne			
Introduction speech struc UNIT IV	a, development and conclusion; langutures to the Audience; paralinguistic USE OF VISUAL AIDS ent a paper/assignment etc; using vis	uage used in various type c features.					ne			
Introduction speech struc UNIT IV How to pres	a, development and conclusion; langutures to the Audience; paralinguistic USE OF VISUAL AIDS ent a paper/assignment etc; using vis	uage used in various type c features.								
Introduction speech struc UNIT IV How to pres communicat UNIT V	a, development and conclusion; langu etures to the Audience; paralinguistic USE OF VISUAL AIDS ent a paper/assignment etc; using visite SPEECH ANXIETY sting and speech anxiety, public spea	uage used in various type e features. sual aids to the speeches	; using bod	y lan	guage	e to	9			
Introduction speech struct UNIT IV How to press communicat UNIT V Public speal	a, development and conclusion; langu etures to the Audience; paralinguistic USE OF VISUAL AIDS ent a paper/assignment etc; using visite SPEECH ANXIETY sting and speech anxiety, public spea	uage used in various type e features. sual aids to the speeches	; using bod	y lan	guage	e to	9 veches			

TEXT BOOKS

- 1. **Principles and Types of Public Speaking 2002** by <u>Raymie E. McKerrow</u> (Author), <u>Bruce E.</u> <u>Gronbeck</u>, <u>Douglas Ehninger</u>, <u>Alan H. Monroe</u>
- 2. **Communication : Principles for a lifetime,** portable Edition- volume 2 Interpersonal Communication, Stevan A. Beebe, Texas State University- San Marcos, 2008.
- 3. Writing and Speaking Author: John Sealy, Oxford University Press, New Delhi Third Edition 2009. Communicating in Business (8th Edition) Paperback 2012 by <u>Williams K S</u>, Engage Learning India Pvt. Ltd.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1	0	0	0	0	3	0	0	2	0	2	0	0
CO2	0	1	0	0	0	1	0	2	0	1	0	0
CO3	0	0	0	0	0	0	0	0	0	2	0	0
CO4	0	0	0	2	0	2	0	0	0	1	0	0
CO5	0	0	0	0	0	3	0	0	0	3	0	0
Total	0	1	0	2	3	6	0	4	0	9	0	0
Scaled Value	0	1	0	1	1	2	0	1	0	2	0	0

Mapping of Cos with POs:

1-5=1, 6-10=2, 11-15=30-No Relation, 1- Low Relation, 2 – Medium Relation, 3- High Relation

SYLLABUS III SEMESTER

COURSE	E CODE	XMA301	L	Т	Р	С		
COURSE	ENAME	TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS	3	1	0	4		
PREREC	UISITES	XMA101, XMA201	L	Т	Р	Н		
C:P:A		3:0:0	3	2	0	5		
COURSE	E OUTCOMES	DOMAIN	LEVEL					
CO1	<i>Explain</i> and <i>Demonstrate</i> the basic concepts in partial differential equations and to solve linear, nonlinear, homogeneous and nonhomogeneous Partial Differential equations.	Cognitive		Remembering Understanding				
CO2	<i>Demonstrate</i> the basic concept and properties of Fourier series and to <i>State</i> Parseval's identity and Diritchlet's condition.	Cognitive		Remembering Understanding				
CO3	<i>Solve</i> the standard Partial Differential Equations, arising in Engineering Problems, like Wave equation and Heat flow equation by Fourier series method.	Cognitive	Apj	ply				
CO4	<i>Explain</i> and <i>Apply</i> the concept of Fourier transform and its properties.	Cognitive	Un Ap		inding	5		
CO5	CO5 <i>State</i> and <i>Apply</i> the properties of Z transform and to <i>Find</i> the Z transform and inverse Z transform.	Cognitive	_	emen	berin	g		
UNIT I	PARTIAL DIFFERENTIAL EQUA	TIONS				15		
Formation Solution of – Lagrang constant of	n of partial differential equations by elim of standard types of first order partial dif ge's linear equation – Linear partial d coefficients.	nination of arbitrary constants and ferential equations		-		ions –		
range cos	FOURIER SERIES s conditions – General Fourier series – General Fourier series – General Fourier series – General Fourier series – General Series for various line codes and comparis	nic Analysis. Fourier series of rect				15 Half		
UNIT I						15		
wave equ	tion of second order quasi linear partia ation – One dimensional heat equati (Insulated edges excluded) – Fourier ser	on – Steady state solution of t	wo c					

		Г	. 1
UNIT IV FOURIER TRANSFORM			15
+-Fourier integral theorem (without proof) - Four			
transforms - properties - Transforms of simple function			
Application to convolution of signals in frequency of	lomain. Fourier t	ransform as tool	for estimating
spectrum of the signals. Simple examples of Frequency	y domain equaliza	tion – Zero forcin	ng only.
UNIT V Z – TRANSFORM AND DIFFERENCI	E EQUATIONS		15
Z-transform – Elementary properties – Inverse Z – tra	nsform - Convolu	tion theorem – I	nitial and Final
value theorems - Formation of difference equation	s - Solution of	difference equa	tions using Z-
transform. Discrete system and their solutions and anal	ysis by Z – transf	orm.	-
	LECTURE	TUTORIAL	TOTAL
	45	30	75
TEXT		•	
1. Grewal, B.S., "Higher Engineering Mathemati	cs", 42 nd Edition,	Khanna Publish	ers, New Delhi
(2012).		6 A . 1 1	
2. Narayanan, S., ManicavachagomPillay, T.K. an			1
Mathematics for Engineering Students", Volun	hes II and III, S.V	iswanathan (Print	ers and
Publishers) Pvt. Ltd.,			
Chennai (2002).		G 1	
3. Veerarajan. T., "Transforms and Partial Differ	ential Equations"	, Second reprint,	Tata McGraw
Hill Education Pvt. Ltd.,			
New Delhi, 2012.			
REFERENCES			
1. Churchill, R.V. and Brown, J.W., "Fourier		dary Value Prol	olems", Fourth
Edition, McGraw Hill Book Co., Singapore (19			
2. Kandasamy, P., Thilagavathy, K., and Gunavat		ring Mathematics	
Volume III", S. Chand & Company Ltd., New			
3. Bali N.P. and Manish Goyal, "A Text Book of	f Engineering Ma	thematics" 7 th E	dition Lakshmi
Publications (P) Limited, New Delhi (2007).			2007
4. Erwin Kreyszig, "Advanced Engineering Math			
5. Ray Wylie. C and Barrett.L.C, "Advanced	0	hematics" Tata	Mc Graw Hill
Education Pvt Ltd, Sixth Edition, New Delhi, 2	012.		
E REFERENCES			
1. www.nptel.ac.in			
2. Advanced Engineering Mathematics, Prof.Jiten			
3. Department of Mathematics, Indian Institute of	Technology, Kha	ragpur, India.	
CO vs PO Mapping			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3									1	1	
CO 2	3									1	1	
CO 3	3			2					1	1	2	
CO 4	3	1		2					1	1	1	
CO 5	3	1		2					1	1	1	
	15	2		6					3	5	6	
0-	No rela	tion	1- Low	relation		2- Me	dium re	lation		3- High r	elation	

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

COURSE OUTCOMES DOMAIN LEVEL COI Outline the role of nano in civilization and explain methods to Cognitive show various features Remember Set Set Set Set CO2 Identify and relate the forces and Cognitive states Remember OC3 List and describe various Cognitive Perception Remember CO3 List and describe various Cognitive Psychomotor Remember Nano materials Psychomotor Perception CO4 Explain nanomaterial fabrication and characterization methods Cognitive Psychomotor Understand Of Nano and build their design Cognitive Psychomotor Evaluate Origination Origination UNIT I NANO EVOLUTION I I Introduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology I UNIT II NANOSCALE PHENOMENA I Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrett ener	COURSE CO	DE	XNT302	L	Т	Р	С				
C:P:A 3:1:0 3 2 2 7 COURSE OUTCOMES DOMAIN LEVEL C01 Outline the role of nano in civilization and explain methods to show various features DOMAIN LEVEL C02 Identify and relate the forces and states Cognitive Psychomotor Remember Perception C03 List and describe various Nano materials Cognitive Psychomotor Remember Perception C04 Explain nanomaterial fabrication and characterization methods of Nano and build their Cognitive Psychomotor Remember Set C05 Appraise the real world applications of Nano and build their Cognitive Psychomotor Evaluate Definition of Nanostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology Manmade things Definition of Nanostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology Introductar & crystalline; structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals. Int UNIT II NANOMATERIALS Int Subreation anotube, graphene. Monomers & polymers, block copolymers, Composite materials; cearmics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantun dot, nanofossils, smart dust, porous & nonporous inor	COURSE NA	ME		3	1	1	5				
COURSE OUTCOMES DOMAIN LEVEL C01 Outline the role of nano in civilization and explain methods to show various features Cognitive Psychomotor Remember Set C02 Identify and relate the forces and states Cognitive Perception Remember Psychomotor C03 List and describe various Nano materials Cognitive Psychomotor Remember Perception C04 Explain nanomaterial fabrication and characterization methods Cognitive Psychomotor Remember Perception C05 Appraise the real world applications of Nano and build their Cognitive Psychomotor Evaluate Definition of Nano Structure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology Intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology Intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology Intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology Intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology Intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology UNIT II NANOMATERIALS Intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology	PREREQUIS	ITES	Physics and Chemistry	L	L T P H 3 2 2 7 LEVEL IEVEL IEVEL Remember Set IEVEL Remember Perception IEVEL Understand Set IEVEL Evaluate Origination IEVEL Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Image: Description Origination Image: Description Image: Description Image: Description Image: Description Image: Description						
CO1 Outline the role of nano in civilization and explain methods to show various features Cognitive Psychomotor Remember Set CO2 Identify and relate the forces and states Cognitive Psychomotor Remember Perception CO3 List and describe various Nano material fabrication and characterization methods Cognitive Psychomotor Remember Perception CO4 Explain nanomaterial fabrication and characterization methods Cognitive Psychomotor Understand Set CO5 Appraise the real world applications of Nano and build their design Cognitive Psychomotor Evaluate Origination UNIT I NANO EVOLUTION Introduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology I UNIT I NANOSCALE PHENOMENA I Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline, semi-crystalline; crystals, polycrystals. I UNIT II NANOMATERIALS I Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates, Quantum hetero-structu	C:P:A		3:1:0	3	2	2	7				
CO1 Outline the role of nano in civilization and explain methods to show various features Cognitive Psychomotor Remember Set CO2 Identify and relate the forces and states Cognitive Psychomotor Remember Perception CO3 List and describe various Nano material fabrication and characterization methods Cognitive Psychomotor Remember Perception CO4 Explain nanomaterial fabrication and characterization methods Cognitive Psychomotor Understand Set CO5 Appraise the real world applications of Nano and build their design Cognitive Psychomotor Evaluate Origination UNIT I NANO EVOLUTION Introduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology I UNIT I NANOSCALE PHENOMENA I Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline, semi-crystalline; crystals, polycrystals. I UNIT II NANOMATERIALS I Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates, Quantum hetero-structu	COURSE OU	TCOMES	DOMAIN	LE	VEL						
methods to show various features Cognitive Psychomotor Remember Set CO2 Identify and relate the forces and states Cognitive Psychomotor Remember Perception CO3 List and describe various Nano materials Cognitive Psychomotor Remember Perception CO4 Explain nanomaterial fabrication and characterization methods Cognitive Psychomotor Remember Perception CO5 Appraise the real world applications of Nano and build their design Cognitive Psychomotor Understand Set UNIT I NANO EVOLUTION Introduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology Introduction to the crystalline structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystal. Internet of states; Discrete energy levels, Molecular & crystalline, semi-crystalline; crystals, polycrystals. UNIT II NANOMATERIALS I Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures; quantum well, quantum wire, quantun dot, nanofossils, smart dust, porous & nonoporous inorganic materials, hydrogel & aerosols Bionanomateria		Outline the role of nano in									
show various features Psychomotor Set CO2 Identify and relate the forces and Cognitive Remember states Psychomotor Perception CO3 List and describe various Nano materials Cognitive Remember Psychomotor Perception Perception CO4 Explain nanomaterial fabrication Cognitive Understand and characterization methods Psychomotor Set CO5 Appraise the real world applications of Nano and build their design Cognitive Evaluate DFinition to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology J Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete merery levels, Molecular & crystalline, semi-crystalline; crystals, polycrystals. J UNIT II NANOMATERIALS J Fullerenes, carbon nanotube, graphene. Monomers & polymers, block coopolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures; quantum well, quantum wire, quantun dot, nanofossils, smart dust, porous & nonporous inorganic mate		-									
CO2 Identify and relate the forces and states Cognitive Psychomotor Remember Perception CO3 List and describe various Nano material fabrication and characterization methods Cognitive Psychomotor Remember Perception CO4 Explain nanomaterial fabrication and characterization methods Cognitive Psychomotor Remember Perception CO5 Appraise the real world applications of Nano and build their design Cognitive Psychomotor Understand Introduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks on nanotechnology. Scientific revolutions in Nanotechnology Introduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology. Scientific revolutions in Nanotechnology Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline, semi-crystalline; crystals, polycrystals. Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline, semi-crystalline; crystals, polycrystals. Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline, semi-crystalline; crystals, polycrystals. UNIT II NANOMATERIALS Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline, semi-crystaline; crystals, polycrystals. UNI						er					
and Cognitive Remember states Psychomotor Perception CO3 List and describe various Cognitive Remember Nano materials Psychomotor Perception CO4 Explain nanomaterial fabrication Cognitive Understand and characterization methods Psychomotor Set CO5 Appraise the real world applications of Nano and build their Cognitive Evaluate Drigination Cognitive Evaluate Origination UNIT I NANO EVOLUTION I I Introduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks on nanotechnology. Scientific revolutions in Nanotechnology I UNIT II NANOSCALE PHENOMENA I Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discretce mergy levels, Molecular & crystalline, semi-crystalline; crystals, polycrystals. I UNIT III NANOMATERIALS I Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures:			Psychomotor	Set							
states Psychomotor Perception CO3 List and describe various Nano materials Cognitive Psychomotor Remember Perception CO4 Explain nanomaterial fabrication and characterization methods Cognitive Psychomotor Understand CO5 Appraise the real world applications of Nano and build their design Cognitive Psychomotor Understand UNIT I NANO EVOLUTION Introduction to Marco Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology Intervention to the nanoworld; building blocks o nanotechnology. UNIT II NANOSCALE PHENOMENA I Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline, semi-crystalline; crystals, polycrystals. I UNIT II NANOMATERIALS I Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantun dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers. I	CO2			P							
CO3List and describe various Nano materialsCognitive PsychomotorRemember PerceptionCO4Explain nanomaterial fabrication and characterization methodsCognitive PsychomotorUnderstandCO5Appraise the real world applications of Nano and build their designCognitive PsychomotorUnderstandUNIT INANO EVOLUTIONIIntroduction to Macro Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in NanotechnologyIUNIT IINANOSCALE PHENOMENAIChemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline, semi-crystalline; crystals, polycrystals.IUNIT IIINANOMATERIALSIFullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers.IUNIT IVNANOMATERIAL FABRICATION AND CHARACTERIZATIONIFabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.I			0								
Nano materials Psychomotor Perception CO4 Explain nanomaterial fabrication and characterization methods Cognitive Psychomotor Perception CO5 Appraise the real world applications of Nano and build their design Cognitive Psychomotor Understand UNIT I NANO EVOLUTION It It Introduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology It UNIT II NANOSCALE PHENOMENA It Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals. It UNIT III NANOMATERIALS It Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantun dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers. It UNIT IV NANOMATERIAL FABRICA											
CO4Explain nanomaterial fabrication and characterization methodsCognitive PsychomotorUnderstand SetCO5Appraise the real world applications of Nano and build their designCognitive PsychomotorUnderstand SetUNIT INANO EVOLUTIONCognitive PsychomotorOriginationUNIT INANO EVOLUTIONIIntroduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in NanotechnologyIUNIT IINANOSCALE PHENOMENAIChemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline, semi-crystalline; crystals, polycrystals.IUNIT IINANOMATERIALSIFullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantun dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers.IUNIT IVNANOMATERIAL FABRICATION AND CHARACTERIZATIONIFabrication: TOp Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.I	CO3		-								
fabrication and characterization methodsCognitive PsychomotorUnderstand SetCO5Appraise the real world applications of Nano and build their designCognitive PsychomotorEvaluate OriginationUNIT INANO EVOLUTIONCognitive PsychomotorEvaluate OriginationUNIT INANO EVOLUTIONIntroduction to Marostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in NanotechnologyIntervention into the nanoworld; building blocks o nanotechnologyUNIT IINANOSCALE PHENOMENAIChemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline, semi-crystalline; crystals, polycrystals.IUNIT IINANOMATERIALSIFullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantun dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomateris: biocreamics, dendrimers, micelles, liposomes, block copolymers.IUNIT IVNANOMATERIAL FABRICATION AND CHARACTERIZATIONIFabrication: TOp Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.I			Psychomotor	Per	ceptio	n					
Initial Characterization methodsPsychomotorSetCO5Appraise the real world applications of Nano and build their designCognitive PsychomotorEvaluate OriginationUNIT INANO EVOLUTIONIIntroduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks or nanotechnology.UNIT IINANOSCALE PHENOMENAIChemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline, semi-crystalline; crystals, polycrystals.IUNIT IIINANOMATERIALSIFullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures; quantum well, quantum wire, quantun dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: bioimmetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers.IUNIT IVNANOMATERIAL FABRICATION AND CHARACTERIZATIONIFabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.I	CO4				1 .						
CO5 Appraise the real world applications of Nano and build their design Cognitive Psychomotor Evaluate Origination UNIT I NANO EVOLUTION I Introduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology I UNIT II NANOSCALE PHENOMENA I Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals. I UNIT III NANOMATERIALS I Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantun dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers. I UNIT IV NANOMATERIAL FABRICATION AND CHARACTERIZATION I Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods. Methods, Physical Methods and						nd					
applications of Nano and build their designCognitive PsychomotorEvaluate OriginationUNIT INANO EVOLUTION1Introduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology1UNIT IINANOSCALE PHENOMENA1Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals.1UNIT IIINANOMATERIALS1Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers.1UNIT IVNANOMATERIAL FABRICATION AND CHARACTERIZATION1Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.1			Psychomotor	Set							
of Nano and build their designCognitive PsychomotorEvaluate OriginationUNIT INANO EVOLUTIONIIntroduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks on nanotechnology. Scientific revolutions in NanotechnologyIUNIT IINANOSCALE PHENOMENAIChemical bonds(types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenmena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals.IUNIT IIINANOMATERIALSIFullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantun dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers.IUNIT IVNANOMATERIAL FABRICATION AND CHARACTERIZATIONIFabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.P	CO5										
designPsychomotorOriginationUNIT INANO EVOLUTIONIIntroduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks on nanotechnology. Scientific revolutions in NanotechnologyUNIT IINANOSCALE PHENOMENAIChemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline, structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals.IUNIT IIINANOMATERIALSIFullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers.IUNIT IVNANOMATERIAL FABRICATION AND CHARACTERIZATIONIFabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.I				-							
UNIT INAÑO EVOLUTIONIIntroduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks o nanotechnology. Scientific revolutions in Nanotechnology UNIT IINANOSCALE PHENOMENA1Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals.1UNIT IIINANOMATERIALS1Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantun dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers.1UNIT IVNANOMATERIAL FABRICATION AND CHARACTERIZATION1Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.1			0								
Introduction to Macro Micro and Nano Scale – Large to small, Scale, Natural and Manmade things Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks on nanotechnology. Scientific revolutions in Nanotechnology UNIT II NANOSCALE PHENOMENA Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals. 1 Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers. UNIT IV NANOMATERIAL FABRICATION AND CHARACTERIZATION 1 Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods. 1			Psychomotor	Ori	ginatio	on					
Nanotechnology in ancient history, Rise of Nanotechnology with special reference to Feynman Definition of Nanostructure; insight and intervention into the nanoworld; building blocks or nanotechnology. Scientific revolutions in Nanotechnology UNIT II NANOSCALE PHENOMENA I Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals. I UNIT III NANOMATERIALS I Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers. I UNIT IV NANOMATERIAL FABRICATION AND CHARACTERIZATION I Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods. I							15				
Definition of Nanostructure; insight and intervention into the nanoworld; building blocks of nanotechnology. Scientific revolutions in Nanotechnology UNIT II NANOSCALE PHENOMENA Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals. 1 UNIT III NANOMATERIALS 1 Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers. 1 UNIT IV NANOMATERIAL FABRICATION AND CHARACTERIZATION 1 Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.											
nanotechnology. Scientific revolutions in Nanotechnology 1 UNIT II NANOSCALE PHENOMENA 1 Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals. 1 UNIT III NANOMATERIALS 1 Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers. 1 UNIT IV NANOMATERIAL FABRICATION AND CHARACTERIZATION 1 Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods. 1											
UNIT IINANOSCALE PHENOMENA1Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals.1UNIT IIINANOMATERIALS1Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers.1UNIT IVNANOMATERIAL FABRICATION AND CHARACTERIZATION1Fabrication:Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.1				ld; bui	lding	block	ts of				
Chemical bonds (types & strength); Intermolecular & inter-particle forces; Density of states; Discrete energy levels, Molecular & crystalline structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals. UNIT III NANOMATERIALS Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers. UNIT IV NANOMATERIAL FABRICATION AND CHARACTERIZATION Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.											
energy levels, Molecular & crystalline structures; particles & grain boundaries; Super-Hydro-Phobicity Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals. UNIT III NANOMATERIALS 1 Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers. UNIT IV NANOMATERIAL FABRICATION AND CHARACTERIZATION Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.	UNIT II	NANOSCALE PHENOMEN	[A				1				
Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals. I UNIT III NANOMATERIALS 1 Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers. I UNIT IV NANOMATERIAL FABRICATION AND CHARACTERIZATION 1 Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.	Chemical bond	ds (types & strength); Intermolec	cular & inter-particle forces; De	ensity o	f state	es; Dis	crete				
Mesosopic phenomena; Amorphous, crystalline, semi-crystalline; crystals, polycrystals. I UNIT III NANOMATERIALS 1 Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers. I UNIT IV NANOMATERIAL FABRICATION AND CHARACTERIZATION 1 Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.	energy levels,	Molecular & crystalline structure	s; particles & grain boundaries;	Super-	Hydro	-Phob	icity,				
UNIT IIINANOMATERIALS1Fullerenes, carbon nanotube, graphene. Monomers & polymers, block copolymers, Composite materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers.1UNIT IVNANOMATERIAL FABRICATION AND CHARACTERIZATION1Fabrication:Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.1	Mesosopic phe	enomena; Amorphous, crystalline	, semi-crystalline; crystals, poly	crystals	5.		-				
materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers.UNIT IVNANOMATERIAL FABRICATION AND CHARACTERIZATION1Fabrication:Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.	UNIT III	NANOMATERIALS					1				
materials; ceramics, alloys, silicates. Quantum hetero-structures: quantum well, quantum wire, quantum dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers.UNIT IVNANOMATERIAL FABRICATION AND CHARACTERIZATION1Fabrication:Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.	Fullerenes, ca	arbon nanotube, graphene. Mo	nomers & polymers, block	copolyn	ners,	Comp	osite				
dot, nanofossils, smart dust, porous & nonporous inorganic materials, hydrogel & aerosols Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers. Image: Copolymers and copolymers and copolymers and copolymers. Image: UNIT IV NANOMATERIAL FABRICATION AND CHARACTERIZATION Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.											
Bionanomaterials: biomimetic systems, bioceramics, dendrimers, micelles, liposomes, block copolymers. UNIT IV NANOMATERIAL FABRICATION AND CHARACTERIZATION Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.		•	-	-		-					
copolymers. UNIT IV NANOMATERIAL FABRICATION AND CHARACTERIZATION 1 Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.		—		-	-						
UNIT IV NANOMATERIAL FABRICATION AND CHARACTERIZATION 1 Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods. 1				, n	r						
CHARACTERIZATION Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.	<u> </u>	NANOMATERIAI FARRIC	TATION AND				15				
Fabrication: Top Down and Bottom up Approaches, Chemical Methods, Physical Methods and biological methods.							1.				
biological methods.	Fabrication		proaches Chemical Methods	Physic	al M	thode	and				
		1 1	proaches, chemical methods,	i nysic		linous	and				
Characterization. SETVI, ATTVI, SETVI, SETVI, TOA, DSC, Optical Characterization $-$ UV VIS	0		GA DSC Optical Characterizat	ion II	V Vie						
Spectroscopy, X-ray diffraction, Raman Spectroscopy, FTIR, and Fluorescent Spectroscopy											
			scopy, 1 Th, and Thorescent S		scopy		1				

	cts	LECTURE	TUTORIAL	PRACTICAL	TOTAL
		45	30	30	105
TEXT	Г	_			
1.	"Principles of Nanoscience	& Nanotechnology	," M. A. Shah & T	. Ahmad, Narosa P	ublishing
	House, New Delhi, 2010				
	ERENCES				
	Vanotechnology: Basic Scien			Wilson, Kamali Ka	annangara &
	eoff Smith, Overseas Press I		,	1 4 1	
2. "A	Amorphous and Nanocrystal			s and Applications,"	′ A.
२ भा	Inoue & K. Hashimoto (E			Womar	
з. с	Jnderstanding Nanotechnol Books, 2002.	ogy, scientific A	linerican (Eus.),	warner	
4 "Iı	ntroduction to Nanotechnol	logy" Charles P F	Poole & Frank I	Owens Wilev-	
т. П	Interscience, 2003.	logy, charles I. I	oole & Haink J.	owens, whey	
5. Na	anotechnology: A Crash Con	urse. Raúl J. Martín	-Palma: Akhlesh I	Lakhtakia. SPIE Pre	ss 2010
	resources		,	,	
httn•/	/nupex.eu/index.php?g=text	content/materialuni	verse/sizeofthings	⟨_en	
	/www.slideshare.net/niralial			celuing-en	
-	/www.nanoscienceworks.or		1 1	56/instructors/ITNS	-
-	ire-1.pdf	5, publications, book			
	/ipn2.epfl.ch/lns/lectures/na	noscience/lectureno	tes/cour_1 ndf		
	.uniroma2.it/didattica/NAN				
	nisis.ru/docs/courses/17/Mat		.o/ 11.ppt		
	/uw.physics.wisc.edu/~himp		ıtm		
	/ipn2.epfl.ch/lns/lectures/na				
-	/uw.physics.wisc.edu/~himp		ication.pdf omicso	online.org/editor-	
-	ungsoo_Na.pptx http://uw.p		_	_	
WWW	.nano.gov/nanotech-101/spe	cial http://www.ifb	.ethz.ch/woodmate	erialsscience/people	e/emilt
http://	/ec.europa.eu/consumers/arc	chive/safety/int_coo	p/docs/pres_Freer	nan.pdf	
	/ocw.mit.edu/courses/mecha	<u> </u>		1	
spring	g-2012/video-lectures/lectur	e-1-intro-to-nanote	chnology-nanosca	le-transport-phenon	<u>nena</u>
		LABORA	ATORY		
	Calculate the band struct	ure of a crystal			
2.	Transport calculations w				
2. 3.	Phonon Band structure, I	Electrical and Heat '	-	-	
2. 3. 4.	Phonon Band structure, I Electron-phonon couplin	Electrical and Heat ' g properties of a Gr	-	-	
2. 3. 4. 5.	Phonon Band structure, I Electron-phonon couplin Optical Properties of Sili	Electrical and Heat ' g properties of a Gr con	-	-	
2. 3. 4. 5. 6.	Phonon Band structure, IElectron-phonon couplinOptical Properties of SiliStudy of NiSi2–Si interfa	Electrical and Heat ' g properties of a Gr con ce	-	-	
2. 3. 4. 5. 6. 7.	Phonon Band structure, I Electron-phonon couplin Optical Properties of Sili Study of NiSi2–Si interfa Study of Bi2Se3 topologie	Electrical and Heat ' g properties of a Gr con ce cal insulator	aphene Nanoribbo	-	
1. 2. 3. 4. 5. 6. 7. 8.	 Phonon Band structure, I Electron-phonon couplin Optical Properties of Sili Study of NiSi₂–Si interfa Study of Bi₂Se₃ topologia Study of Effective band structure 	Electrical and Heat ' g properties of a Gr con ce cal insulator structure of random	aphene Nanoribbo	-	
2. 3. 4. 5. 6. 7.	Phonon Band structure, I Electron-phonon couplin Optical Properties of Sili Study of NiSi2–Si interfa Study of Bi2Se3 topologie	Electrical and Heat ' g properties of a Gr con ce cal insulator structure of random terface	aphene Nanoribbo alloy InGaAs	-	

Mapping of CO's with PO's

CO /PO	1	2	3	4	5	6	7	8	9	10	11	12
1	3											
2	3	2										
3	3			2			1					
4	3			2								
5	3						1			2		
Total	15	2		4			2			2		
Scaled	3	2		2			1			2		

1- No relation 1- Low relation 2- Medium relation $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

3- High relation

COURSE CO	DE	XNT303	L	Т	Р	С
COURSE NA	ME	Biology for Engineers	3	1	1	5
PREREQUIS	ITES	Chemistry and Biology	L	Т	Р	H
C:P:A		3:1:0	3	2	2	7
COURSE OU	TCOMES	DOMAIN	LE	VEL		
CO1	<i>Identify</i> different structural components of cells and its functions and describe and relates the functions of different types of bio-molecules	Cognitive: Psychomotor:			embe eptioi	
CO2	Remember and apply the mechanisms underlying molecular biological processes on signal transduction and various tissues.	Cognitive: Psychomotor:		Unde and	erstan apply	
CO3	<i>Understand the immune</i> system and construct the experiment on Agglutination	Cognitive: Psychomotor:	U	nders	embe tand a oply	
CO4	<i>Understand</i> Molecular structure and function of genes and <i>adapts</i> the DNA for the selected sample	Cognitive: Psychomotor:		Unde and	erstan apply	
CO5	<i>Understand</i> the principles of bioinformatics tools and simulate the moleculaFr structure	Cognitive: Psychomotor:		Unde	embe erstan apply	d
cycle genesN –Sodium and J Symport and a	Cell & Cell Function ryotic and prokaryotic cells –Cell Molecular organization of cell – End potassium pumps – Ca2+ATPase pu ntiport.	locytosis and exocytosis – Passiv umps – ATP dependent proton p	e and	l activ	e tra	nsport port–
UNIT II	Cell – Cell interaction and Tiss		11	Deri	tor-	$\frac{12}{Call}$
Surface Recept Identity-Interce Tissues - class Extracellular n	eins and Signaling between Cells - T tors Initiating the Intracellular Sig ellular Adhesion - Tight Junctions-A sification, general structure and fu natrix - its synthesis and composition	nal Amplifying the Signal - Ex Anchoring Junctions-Communica nction. Connective tissue – gen	apress ting J Ieral	ion of	f Cell ons.	ation.
UNIT III	Immunology	histo come stabilitar a surel		<u>- (r</u>	4	7
	unology, antigen, antibody, major nsplantation immunity, Tumor in					
UNIT IV	Molecular structure and funct	ion of genes				6

Structure of nucleic acids - Gene, genomes, and chromosomes - DNA replication - Transcription of protein-coding genes - Formation of functional mRNA - The decoding of mRNA by tRNA - Viruses: parasites of the cellular genetic system ,HIV life cycle

UNIT V	Computational	Biology			8
Bioinformatics	Examples of re	elated tools (FASTA,	, BLAST, BLAT	Г, RASMOL), I	Databases: DNA
Databases - Pr	rotein Databases	- DNA Sequencing	and Assembly (GENBANK, Pu	omed, PDB) –
Protein folding	- Population biol	ogy – Ethics in biolog	y and bioenginee	ring	
		LECTURE	TUTORIAL	PRACTICAL	TOTAL
		45	15	30	90
TEXT					
S. ThyagaRaja	n, N. Selvamuruga	an, M. P. Rajesh, R. A	. Nazeer, Richard	l W. Thilagaraj, S	S. Barathi, and
M. K. Jaganath	an, "Biology for I	Engineers," Tata McG	raw-Hill, New D	elhi, 2012.	
		-			
REFERENCE	S				
1 Jeremy M B	era John I Tym	oczko and Lubert Stru	er "Biochemistr	WH Freema	n and Co. I td

1. Jeremy M. Berg, John L. Tymoczko and Lubert Stryer, "Biochemistry," W.H. Freeman and Co. Ltd., 6th Ed., 2006.

2. Robert Weaver, "Molecular Biology," MCGraw-Hill, 5th Edition, 2012.

3. Jon Cooper, "Biosensors A Practical Approach" Bellwether Books, 2004

5.001	Biosensons III Interneur improvent Benneurit Books, 2001
	LABORATORY
1.	Microscopic Measurements
2.	Cellular Carbohydrates
3.	Mitosis And Cytokinesis
4.	Preparation Of Epithelial Cells And Microscopy Analysis
5.	Staining and Histochemistry
6.	Agglutination Reaction
7.	Extraction Of DNA
8.	Genbank.
9.	Protein Data Bank
10.	Use of BLAST, FASTA (Nucleic Acids & Protiens)

Mapping of CO's with PO:

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS1	PS2
CO1	1	1	1	1	1	-	1	-	-	-	-	-	-	-
CO2	1	1	1	2	1	-	1	-	-	-	-	-	-	-
CO3	2	3	1	1	2	-	1	-	-	I	-	-	-	-
CO4		3	1	2			3	-	-	I	-	-	-	-
CO5	3	3	1	2	1		2	-	-	-	-	-	-	-
Total	7	11	5	8	5		8		-	-	-	-	-	-
Scaled to 0,1,2,3 scale	2	3	1	2	1		2							

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

	DE	XNT304	L	Т	Р	С			
COURSE NAI	ME	FLUID MECHANICS	3	1	0	4			
PREREQUIS	ITES	XBW103	L	LTPJ32043204LEVELRemembering, UnderstandingApplying, Remembering, UnderstandingApplying, Remembering, UnderstandingApplying, Remembering, UnderstandingApplying, Remembering, Remembering, UnderstandingApplying, Remembering, UnderstandingApplying, Remembering, Understanding	Н				
C:P:A		3:0:0	3	3 1 0 L T P 3 2 0 3 2 0 J 2 0 LEVEL Remembering, Understanding Applying, Remembering, Understanding B cosity, Rheolog to describe the fl B al field; Concep nple and differer 6		5			
COURSE OU'	TCOMES	DOMAIN		LE	VEL				
C01	An <i>understanding</i> of fluid Mechanics fundamentals, including concepts of mass and momentum conservation.	Cognitive							
CO2	An <i>ability</i> to apply the Bernoulli equation to solve problems in fluid mechanics.	Cognitive	Rer	nemb	ering				
CO3	An <i>ability</i> to apply control volume analysis to problems in fluid mechanics	Cognitive	Rer	Remembering, Understanding					
CO4	An <i>ability</i> to use potential flow theory to solve problems in fluid mechanics	Cognitive	Rer	Remembering, Understanding Applying,					
CO5	An <i>ability</i> to perform Dimensional analysis for problems in fluid mechanics.	Cognitive	Rer						
UNIT I	INTRODUCTION					,			
classification o Application of UNIT II Hydrostatic eq atmospheric, ga	rties of fluids, Classification of of fluids, Pressure and temperature de fluid flow in Chemical Engineering. FLUID STATISTICS AND ITS A uilibrium, Parametric equation, Hyd auge and absolute pressure, manomet	APPLICATIONS	es to d	escrit	e the 8	flov ept o			
manometer. UNIT III	BASIC EQUATIONS OF FLUID MEASURING DEVICES	FLOW AND FLOW			6				
	ns of fluid flow: Continuity equati Orificemeter, Rotameter & Pitot Tube		w mea	asure	ment	usin			
ventur meter, (1						

nano fluidics -Active control of flow patterns, Carbon nano pipette and Cellular probe, <u>Electrokinetics</u> and <u>Dielectrophoresis</u>, Liquid Cell Electron Microscopy (the Nanoaquarium), Magneto-Hydrodynamics (MHD), Microfluidic Pumps, Stirrers, Microswimmers (C. elegans), Nanowalkers (Molecular Motors), Point of Care Diagnostics (Lab on Chip), Energy Storage and Desalination

UNIT V BOUNDARY LAYER , DIMENSIONAL ANALYSIS, FLOW PAST IMMERSED BODIES AND TRANSPORTATION OF FLUIDS

15

Concept of hydrodynamic boundary layer, Growth over a flat plate, Different thickness of boundary layer, Fundamental dimensions of quantities, Dimensional homogeneity, Dimensional analysis by Rayleigh's method and Buckingham's method, Dimensionless numbers. Drag and drag coefficient, Flow through beds of solids, Motion of particles through fluids, fluidization, pipes and tubings, Joints and fittings, Major and minor losses, Different types of valves, Pumps: Centrifugal pump, Performance of centrifugal pumps

	LECTURE	TUTORIAL	TOTAL
	45	15	60
TEXT			

- 1. Noel. D. Nevers, "Fluid Mechanics for Chemical Engineers", McGraw Hill, 3rd International Edition, 2005
- 2. McCabe and Smith. Unit operations in Chemical Engineering, McGraw Hill, Co.2005.
- 3. R K Bansal, "A Textbook of Fluid Mechanics and Hydraulic Machines", 9th ed. Laxmi Publications, New Delhi, 2004

4. R.W. Fox, A.T. MacDonald and P.J. Pritchard, Introduction to Fluid Mechanics Wiley, 2008

REFERENCES

1. M. Coulson, J.F. Richardson, with J.R. Backhurst and J.H. Harker, Coulson "Richardson, *Chemical Engineering*, Volume-1", 6th ed., Butterworth-Heinemann, 1999

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁	PO ₁₂	PSO ₁	PSO ₂
CO ₁	2	2	3	3	1	1	-	2	-	3	1	3	2	2
CO ₂	3	3	1	1	1	-	-	1	-	2	3	2	3	1
CO ₃	3	2	1	1	1	-	-	1	-	3	1	3	3	1
CO ₄	2	3	1	3	1	-	-	1	-	2	3	2	3	2
CO ₅	3	2	3	3	1	1	-	1	-	3	2	1	2	2
Total	13	12	9	11	5	2	-	6	-	13	10	11	13	8
Scaled	3	3	2	3	1	1	-	2	-	3	2	3	3	2

TABLE 1: Mapping of CO's with PO'S:

2- No relation 1- Low relation 1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3 2- Medium relation

3- High relation

52

	CODE		L	Т	Р	С			
COURSE N	AME	MASS TRANSFER FUNDAMEN	ITALS	3	0	0	3		
PREREQU	ISITE			L	Т	Р	H		
C:P:A				3	0	0	3		
Course Out At the e		, the students should be able to	DOMAIN		LEV	VEL			
C01	transfer and <i>ca</i>	asic principles in diffusional mass <i>lculate</i> the rate of the mass transfer ensional steady state diffusion	Cognitive	Comprehension and apply					
CO2	absorption an	Describe the operations of Distillation and bsorption and <i>calculate</i> number trays for Cognitive istillation tower							
CO3		salient features of Separation by hromatographic separation and ching	Cognitive	Comprehensi					
CO4		salient features and mechanism ying and crystallization	Cognitive	Co	ompre	hens	on		
COURSE C	CONTENT								
						9			
UNIT I	Mass Transfe	r and Diffusion							
Steady state state molect diffusivity n	molecular diffu ular diffusion t neasurements –	r and Diffusion sion in fluids and solids. One dime hrough stationary media – molecu mass transfer analogies – inter pha- face – two film theory and overall r	lar diffusion in lass transfer, r	amin node	ar flo ls of	ow – mass			
Steady state state molect diffusivity n transfer at fl	molecular diffu ular diffusion t neasurements –	sion in fluids and solids. One dime hrough stationary media – molecu mass transfer analogies – inter pha- face – two film theory and overall m	lar diffusion in lass transfer, r	amin node	ar flo ls of	ow – mass			
Steady state state molect diffusivity n transfer at fl problem. UNIT II Vapour liqu Extractive an Simple prob	molecular diffu ular diffusion t neasurements – luid – fluid inter Distillation an id equilibrium nd molecular dis olems. Gas abso	sion in fluids and solids. One dime hrough stationary media – molecu mass transfer analogies – inter pha- face – two film theory and overall m	llar diffusion in l se mass transfer, r nass transfer coeffi steam, flash disti McCabe - Thiele m	amin node icient illatio	ar flo ls of ss – si on, az d. Pri	ow – mass imple 9 ceotro ncipl	pic,		
Steady state state molect diffusivity n transfer at fl problem. UNIT II Vapour liqu Extractive an Simple prob	molecular diffu ular diffusion t neasurements – luid – fluid inter Distillation an id equilibrium nd molecular dis olems. Gas abso	sion in fluids and solids. One dime hrough stationary media – molecu mass transfer analogies – inter phas face – two film theory and overall r and Absorption – methods of distillation – simple, tillation – Continuous distillation – l rption: single and multi-component absorbers – simple problems.	llar diffusion in l se mass transfer, r nass transfer coeffi steam, flash disti McCabe - Thiele m	amin node icient illatio	ar flo ls of ss – si on, az d. Pri	ow – mass imple 9 ceotro ncipl	pic,		
Steady state state molecu diffusivity n transfer at fl problem. UNIT II Vapour liqu Extractive an Simple prob reaction: des UNIT III L-L equilibr design cons	molecular diffu ular diffusion t neasurements – luid – fluid inter Distillation an id equilibrium nd molecular dis olems. Gas absor- sign principles of Extraction an rium – staged a iderations. Solic	sion in fluids and solids. One dime hrough stationary media – molecu mass transfer analogies – inter phas face – two film theory and overall r and Absorption – methods of distillation – simple, tillation – Continuous distillation – l rption: single and multi-component absorbers – simple problems.	lar diffusion in lase mass transfer, r nass transfer coeffi steam, flash disti McCabe - Thiele m absorption, absorp Equipments for exciples – Equipment	amin node icient illation ition	ar flo ls of s – si on, az d. Pri with	9 9 eeotro ncipl chem 9 - gen	pic, es – ical eral		

1	and its types -sorbents – equilibrium consideration- kinetic and transport considerations ems. Ion Exchange cycle – Chromatographic separations.
UNIT V	Drying And Crystallization 9
drying equip formation an	mechanism of drying – drying characteristics of materials -batch and continuous drying ment – design and performance of various drying equipments – simple problem. Nucle d crystal growth – theory of crystallization – Growth co efficient and factors affecting thes tion – batch and continuous industrial crystallizers.
	L=45 hrs
Text books	
1. Seader	and Henley, "Separation Process Principles", John Wiley and Sons Inc.2006.
2. Treyba	l R.E., "Mass Transfer Operations", Third Edition, McGraw Hill, 1980.
References	
	koplis C.J., "Transport Processes and unit Operations" 3 rd Edition, Prentice Hall 2003. son and Richardson, "Chemical Engineering" Vol. I & II, Asian Books Pvt.ltd., 1998.

Г

3. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering" 5th Edition, McGraw Hill, 1993.

Mapping of Course Outcomes with Program Outcomes (Course Articulation Matrix)

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	1	2	3	3	0	0	0	0	0	0	_	-
CO2	-	2	2	2	1	0	0	0	0	0	0	0
CO3	0	1	2	2	1				1	0	0	0
CO4	_	2	2	1	1	0	0	0	0	0	0	0
0 - No relation	0 – No relation 1 - Low, 2 – Medium, 3 – High											

COURSE C	ODE	XEP 306		L	Т	Р	С	
COURSE N	AME	ENTREPRENEURSH DEVELOPMENT	IP	2	0	0	2	
PREREQUI	SITES	NIL	L	Т	Р	SS	Н	
C:P:A		2.7:0:0.3	2	0	0	1	3	
COURSE O	UTCOMES	DOMAIN		LE	VEL			
CO1	<i>Recognise</i> and <i>describe</i> the personal traits of an entrepreneur.	Affective Cognitive		Receiving Understanding				
CO2	<i>Determine</i> the new venture ideas and <i>analyse</i> the feasibility report.	Cognitive		Ana	alysin	<u> </u>		
CO3	<i>Develop</i> the business plan and <i>analyse</i> the plan as an individual or in team.	Affective Cognitive		An	ceivin alysin	ıg		
CO4	<i>Describe</i> various parameters to be taken into consideration for launching and managing small business.	Cognitive		Understanding				
CO5	<i>Explain the</i> technological management and Intellectual Property Rights	Cognitive		Une	dersta	nding		
UNIT I	ENTREPRENEURIAL TRAIT	IS AND FUNCTIONS					9	
Entrepreneur	of Entrepreneurship; competend ship Development; Role of ship as a career and national deve	Family and Society	-				-	
UNIT II	NEW PRODUCT DEVELOPN CREATION		E				9	
	oncept development; Sources and eport ;Project Profile; processes in						•	
UNIT III	ENTREPRENEURIAL FINAN	NCE					9	
	ecasting for a new venture; Finan ngel Investors and Venture Capita			-		Sourc	ces of	
UNIT IV	LAUNCHING OF SMALL BU MANGEMENT	USINESS AND ITS					9	
-	Planning - Market and Channel Monitoring and Evaluation of Busi		-				-	
UNIT V	TECHNOLOGY MANAGEM	ENT, IPR PORTFOLIO) FOR				9	

NEW PRODUCT VENTURE Technology management; Impact of technology on a	againty and bug	inage: Dolo of (Tovornment in
supporting Technology Development and IPR protection	•		
Other Support Services.	n, Entrepreneur	sinp Developmen	n Training and
other support services.	LECTURE	TUTORIAL	TOTAL
	45	0	45
TEXT BOOKS	-	-	-
1. Hisrich, 2016, Entrepreneurship, Tata McGraw Hill, 1	New Delhi.		
2. S.S.Khanka, 2013, Entrepreneurial Development, S.C.	Chand and Compa	any Limited, New	v Delhi.
REFERENCES			
1. Mathew Manimala, 2005, Entrepreneurship Theory a	t the Crossroads	, Paradigms & Pi	raxis,
Biztrantra ,2nd Edition.			
2. Prasanna Chandra, 2009, Projects - Planning, Analys	is, Selection, Imp	plementation and	
Reviews, Tata McGraw-Hill.			
3. P.Saravanavel, 1997, Entrepreneurial Development, H	Ess Pee kay Publ	ishing House, Ch	ennai.
4. Arya Kumar, 2012, Entrepreneurship: Creating and I	Leading an Entre	preneurial	
Organisation, Pearson Education India.			
5. Donald F Kuratko, T.V Rao, 2012, Entrepreneurship	: A South Asian	perspective, Ceng	gage
Learning India.			
6. Dinesh Awasthi, Raman Jaggi, V.Padmanand, Sugges	ted Reading / Re	eference Material	
for Entrepreneurship Development Programmes (ED			l,
Entrepreneurship Development Institute of India, Ahm	nedabad. Availab	le from:	
http://www.ediindia.org/doc/EDP-TEDP.pdf			
E REFERENCES			
1. Jeff Hawkins, "Characteristics of a successful entrepr			
entrepreneurship courses "https://alison.com/learn/en	trenreneurial-ski	116	

entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills 2. Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education,

https://www.udemy.com/entrepreneurship-from-idea-to-laur	ich/
--	------

											·			
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS 0 1	PS O 2
1	-	-	1	1	1	0	2	1	1	1	2	1	0	0
2	-	-	1	1	-	1	1	1	0	1	1	1	0	0
3	-	-	2	2	3	3	2	3	3	3	3	3	0	1
4	-	1	1	3	0	0	0	0	0	1	2	0	0	0
5	1	1	1	3	0	2	0	0	1	2	2	1	0	0
Total	1	2	6	10	4	6	5	4	5	8	10	6	0	0
Scale d to 0,1,2,	1	1	1	2	1	1	1	1	1	2	2	2	0	1

Mapping of COs with POs

3								
4 5 14	< 10	\mathbf{X}	0					

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2- Medium Relation, 3- High Relation

COURSE CO	DDE	XGS307	L	Т	Р	SS	С		
COURSE NA	ME	INTERPERSONAL COMMUNICATION	0	0	0	2	0		
PREREQUIS	SITES	Nil	L	Т	Р	SS	Н		
C:P:A		2:0:0	0	0	0	2	2		
COURSE OU	UTCOMES	DOMAIN		LEV	VEL				
CO1	<i>Recognize</i> culture and a need for interpersonal communication.	Cognitive		Ren	Remember				
CO2	<i>Demonstrate</i> the need for effective communication between two people.	Cognitive		Understand					
CO3	<i>Explain</i> family and social relationships and need for socialization.	Cognitive		Und					
CO4	<i>Justify</i> the IP principles as to how to reduce and repair conflict in interpersonal relationships.	Cognitive	Evaluate						
CO5	<i>Make use</i> of effective and appropriate language at various interpersonal situations to avoid conflict.	Cognitive		App	Apply				
UNIT I	UNIVERSALS OF INTERPERSO	DNAL					5		
	-	re in interpersonal comm	nunica	ation	and t	the se	elf in		
UNIT II	APPREHENSION AND ASSERT	IVENESS					5		
		terpersonal communication	n - lis	tening	g in				
UNIT III	VERBAL AND NON VERBAL M	IESSAGES							
Relationship a	and involvement - relationship mainte	nance and repair.							
UNIT IV	POWER IN INTERPERSONAL	RELATIONSHIP							
Conflict in int	C01Recognize culture and a need for interpersonal communication.CognitiveRememberC02Demonstrate the need for effective communication between two people.CognitiveUnderstandC03Explain family and social relationships and need for socialization.CognitiveUnderstandC04Justify the IP principles as to how to reduce and repair conflict in interpersonal relationships.CognitiveEvaluateC05Make use of effective and appropriate language at various interpersonal situations to avoid conflict.CognitiveApplyUNIT IUNIVERSALS OF INTERPERSONAL COMMUNICATIONS5Axioms of interpersonal Communication - culture in interpersonal communication.5UNIT IIAPPREHENSION AND ASSERTIVENESS5Aggressiveness and assertiveness - perception in interpersonal communication - listening in interpersonal on unication.5UNIT IIVERBAL AND NON VERBAL MESSAGES5Relationship and involvement - relationship maintenance and repair.5UNIT IVPOWER IN INTERPERSONAL RELATIONSHIP5Conflict in interpersonal relationship - friends and relatives - primary and family relationships.10								
UNIT V	SOCIALIZATION						10		
Need for socia	alization and benefits of socialization	among students.							

	Self-Study	TOTAL
	30	30
TEXT BOOKS		
1. DeVito, Joseph, The Interpersonal Communication Book, 13th E	dition -, Publishe	d
by Longman Pub Group, Updated in its 13th edition,2000		
2. Kathleen S. Verderber, Inter-Act: Interpersonal Communication (Concepts, Skills a	nd
Contexts, Rudolph F. Verderber, 2000	_	
REFERENCES		
1. Clifford Whitcomb, Effective Interpersonal and Task Communica	ation Skills for Er	ngineers,

Atlantic Publishers. 2010

CO vs PO mapping

		РО									PS	50
	1	2	3	4	5	6	7	8	9	10	1	2
CO1	0	0	0	0	2	0	0	0	0	0	0	0
CO2	1	0	0	0	0	0	0	0	0	0	0	0
CO3	0	0	0	0	0	0	0	0	0	0	0	0
CO4	0	0	0	0	0	0	0	0	0	2	0	0
CO5	0	0	0	0	0	0	0	0	1	0	0	0
Total	1	0	0	0	2	0	0	0	1	2	0	0
Scaled Value	1	0	0	0	1	0	0	0	1	1	0	0

0- No relation 1- Low relation 1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3

2- Medium relation

3- High relation

SYLLABUS

SEMESTER - IV

COURSE	CODE		XRP401		L	Т	Р	С
COURSE	NAME		RANDOM PROCESSES		2	1	0	3
С	Р	Α	2.5 : 0.25 : 0.25		L	Т	Р	Н
					2	2	0	4
PREREQ	UISITE:	Basic co	oncepts of Probability theory, I	Differentiation and	Integration	n		
COURSE	OUTCO	MES		Domain	Leve	l		
CO1	Defin	e basic c	concepts of probability	Cognitive	Rem	ember	ing	
	theory	y and to	Find their Statistics of one					
	Dime	nsional c	listribution functions.					
CO2			inal and conditional	Cognitive	Rem	ember	ing	
	distril	oution ar	nd to Find correlation					
			nd regression equation.					
			n the class discussion		Resp			to
			sional random variable.	Affective		omena		
CO3			the concepts and properties of	Cognitive	Unde	erstand	ling	
			arkov, Poisson and					
		-	raph process. Reproduce the					
		ov mode		Psychomotor		ed Re		•
CO4			lain the concepts of auto	Cognitive		ember	-	
			d cross correlation and		Unde	erstand	ling	
			r and cross spectral density.		_			
CO5			ciples of continuous and	Cognitive	Rem	ember	ing	
			signals and to <i>Find</i>					
		-	f linear & time-invariant					
	Syste							
UNIT I			ARIABLES		- C		D'	12
			ndom variables – Moments –	U	0	ons –	Binoi	mal,
			n, Exponential, Gamma, Weibu		ibutions.	-		
UNIT II			NSIONAL RANDOM VARIA					12
		0	nal and Conditional distribution					near
0			prem (for independent and iden	tically distributed r	andom va	riables	s).	
UNIT III			ROCESSES					12
			rocess – Markov process - Pois		lom telegr	aph pi	ocess	
UNIT IV			ION AND SPECTRAL DENS					12
			- Cross-correlation functions –	1	r spectral	densit	$y - C_1$	ross-
-		-	- Wiener-Khinchine relation, t			-1		
UNIT V			STEMS WITH RANDOM IN					12
		•	n – System transfer function –	•	ith randor	n inpu	ts - A	uto-
correlation	and Cros	ss-correl	ation functions of input and out	put – White noise.				

	LECTURE	TUTORIAL	TOTAL
	30	30	60
ТЕХТ			•
1. Veerarajan .T, Probability, "Statistics and Random Pr	ocesses", Tata N	AcGraw Hill,	
3rd edition, (2008).			
REFERENCES			
1. Yates, R.D. and Goodman, D.J., "Probability and	Stochastic Proce	esses", John Wiley	and Sons,
2nd edition, (2005).			
2. Stark, H. and Woods, J.W., "Probability and Ran	ndom Processes	with Applicatio	ns to Signal
Processing", Pearson Education, Asia, 3rd edition,	(2002).		
3. Miller, S.L. and Childers, D.G., "Probability and Ra	andom Processe	s with Application	ons to Signal
Processing and Communications", Academic Press	, (2004).		
4. Hwei Hsu, "Schaum's Outline of Theory and Probl	ems of Probabil	ity, Random	
Variables and Random Processes", Tata McGraw H	Hill edition, New	v Delhi, (2004).	
5. Peebles, P.Z., "Probability, Random Variables and F	andom Signal P	rinciples",	
Tata McGraw Hill, 4th edition, New Delhi, (2002).	-	-	
6. Kandasamy.P, Thilagavathy.K,Gunavathy.K, "Prob	ability, Random	Variables and	
Random Processes", S.Chand & Company Ltd, (200	8).		
E REFERENCES			
www.nptel.ac.in			
1. Advanced Engineering Mathematics, Prof. Somesl	n Kumar		

Department of Mathematics, Indian Institute of Technology, Kharagpur.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3									1		1
CO 2	3									1		1
CO 3	3			2	2					1		2
CO 4	3			2						1		1
CO 5	3			2						1		2
Total	15	1	0	6	0	0	0	0	0	5	0	7
Scaled	3	1	0	2	2	0	0	0	0	1	0	2
Value												

TABLE 1: CO VS PO Mapping

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, 11 and above $\rightarrow 3$.

0 - No relation, 2 - medium relation, 3 - high relation

COURSE (CODE	XUM402		L	Т	Р	С
COURSE N	NAME	ENVIRONMENTAL SCIENC	CE AND	3	0	0	3
PRE REQU	J ISITE	Basic concepts of engineering, of and ethics	quality management	L	Т	Р	H
C:P:A		2:0.5:0.5		3	0	0	3
COURSE (DUTCOM	ES	DOMAIN	LEV	EL		
CO1		und the natural environment and onships with human activities.	Cognitive	Reme	emberin	g	
CO2		<i>prize</i> and <i>analyze</i> human impacts vironment.	Cognitive Affective	Unde	rstandii	ng	
CO3	from mu	<i>facts</i> , concepts, and methods tiple disciplines and <i>apply</i> to mental problems.	Cognitive Psychomotor	Unde	rstandii	ng	
CO4	Acquire problem- with labo computer	practical skills for scientific solving, including familiarity pratory and field instrumentation, r applications, statistical and g techniques.	Cognitive	Unde Apply	rstandiı y	ng	
CO5	research collection interpreta <i>Design</i> a technolog managen and for th	and and <i>implement</i> scientific strategies, including n, management, evaluation, and ation of environmental data. nd evaluate strategies, gies, and methods for sustainable nent of environmental systems ne remediation or restoration of environments.	Cognitive	Unde	rstandii	ng, ap	ply
UNIT I		DUCTION TO ENVIRONMEN	TAL STUDIES AND		12		
exploitation tribal people conflicts ove environment food problem pesticide pro- renewable a resources: L	, deforestat e – Water re er water, da tal effects o ms, changes oblems, was nd non rene and as a res individual	mportance – Need for public awar ion, case studies. Timber extractio esources: Use and over-utilization ims-benefits and problems – Mine of extracting and using mineral res is caused by agriculture and overgr ter logging, salinity, case studies – ewable energy sources, use of alter source, land degradation, man indu- in conservation of natural resource STEMS AND BIODIVERSITY	n, mining, dams and the of surface and ground v ral resources: Use and e ources, case studies – F azing, effects of modern - Energy resources: Gro rnate energy sources. ca uced landslides, soil ero	eir effec vater, fle xploitat ood rese a agricu wing en se studi sion and	ts on fo bods, dr ion, burces: lture, fe ergy ne es – La l desert	rests rough Worl ertilize eds, nd ificat	t, d er- ion

Concept of an ecosystem - Structure and function of an ecosystem - Producers, consumers and decomposers - Energy flow in the ecosystem - Ecological succession - Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

ENVIRONMENTAL POLLUTION UNIT III

8

7

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards - Soil waste Management: Causes, effects and control measures of urban and industrial wastes - Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

SOCIAL ISSUES AND THE ENVIRONMENT UNIT IV

Urban problems related to energy - Water conservation, rain water harvesting, watershed management -Resettlement and rehabilitation of people; its problems and concerns, Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wasteland reclamation -Consumerism and waste products - Environment Production Act - Air (Prevention and Control of Pollution) Act - Water (Prevention and control of Pollution) Act - Wildlife Protection Act - Forest

Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness. 6

HUMAN POPULATION AND THE ENVIRONMENT UNIT V

Population growth, variation among nations - Population explosion - Family Welfare Programme -Environment and human health - Human Rights - Value Education - HIV / AIDS - Women and Child Welfare - Role of Information Technology in Environment and human health - Case studies.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	00	00	45

TEXT

- Gilbert M.Masters, Introduction to Environmental Engineering and Science, Pearson 1. Education Pvt., Ltd., Second Edition, ISBN 81-297-0277-0, 2004.
- Miller T.G. Jr., Environmental Science, Wadsworth Publishing Co. 2.
- 3. Townsend C., HarperJ and Michael Begon, Essentials of Ecology, Blackwell Science.

Trivedi R.K. and P.K. Goel, Introduction to Air Pollution, Techno-Science Publications. 4.

REFERENCES

- Trivedi R.K., Handbook of Environmental Laws, Rules, Guidelines, Compliances and 1. Standards, Vol. I and II, Enviro Media.
- Cunningham, W.P.Cooper, T.H.Gorhani, Environmental Encyclopedia, Jaico Publ., 2. House, Mumbai, 2001.
- 3. Wager K.D., Environmental Management, W.B. Saunders Co., Philadelphia, USA, 1998.
- S.K.Dhameja, Environmental Engineering and Management, S. K. Kataria and Sons, 4. New Delhi, 1999.

E REFERENCES

www.nptel.ac.in

TABLE 1: CO VS PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3									1		1
CO 2	3									1		1
CO 3	3	1	1				1	0	1	2		2
CO 4	1	1	1	1	1		2	0	1	2	1	1
CO 5	2									1		2
Total	12	2	2	1	1	0	3	0	2	7	0	7
Scaled Value	3	1	1	1	1	0	1	0	1	2	1	2

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, 11 and above $\rightarrow 3$.

0 - No relation, 2 - medium relation, 3 - high relation

COURSE C	ODE	XNT403		L	Т	Р	С
COURSE N	AME	PRINCIPLES OF CHEMICAL EN	GINEERING	3	1	1	5
PREREQUI	ISITES	XAC204		L	Т	Р	Н
C:P:A		3:1:1	-	3	2	3	7
COURSE O	UTCOME	S	DOMAIN	LEV	/EL		
CO1	in basic c the comp	<i>e the</i> different units of measurements hemical calculations and <i>Calculate</i> osition of solutions and gas mixtures nt system of units and	Affective Cognitive		eivinį lyzin	-	
CO2	extraction	material balances for distillation, a, mixing, absorption and evaporation s and <i>develop</i> block diagrams	Cognitive Affective		ersta eiving	nding g	
CO3		he basic principles of chemical and reactors. <i>Operate</i> batch and Plug tors	Cognitive Psychomotor			nding espons	se
CO4	of fluids a	the characteristics of different types and filtration systems. <i>Calibrates</i> the ers, <i>handle</i> pumps and filtration	Cognitive Psychomotor	Perc	ersta eptio hanis		
CO5	heat trans	the mechanism of different modes of fer and <i>measure</i> rate of heat transfer schange equipments	Cognitive Psychomotor		ersta hanis	nding, sm	
UNIT-I	INTR	ODUCTION TO ENGINEERING (CALCULATIONS, U	UNITS	5	12 +	5
Unit conver	sions, stoi	d dimensions, Fundamental and derive chiometric principles; Basic chemica and its application, Dalton law, Raoult	al calculations – so				
UNIT –II		IAL BALANCES	s law, field y s law.			12 +	6
solving mate	rial balance	at chemical reactions: Process flow she e problems, Material balance of unit op orators and mixing; Material Balances	erations like distillation	on col	umns	5,	
UNIT-III	-	CAL REACTION ENGINEERING		<u> </u>		12 +	6
-	irst order a	Endothermic and Exothermic reaction and second order reaction kinetics –			•		
UNIT-IV		LE TECHNOLOGY				12 +	6
Particle char Liquid Filtra		n – Classification of solid particles- I ters.	Particle size reduction	n and	enla	rgeme	nt –
UNIT-V		RANSFER				12 +	
	wall – forc	ion, Convection and Radiation – resisted and free convection mechanism - H					

						PRAC	TICA						
S. NO				NAM	E OF 1	THE E	XPER	IMEN'	Г			0	CO
1.	Batch r	reactors										3	
2.		ow reac										3	
3.	0	uous sti		nk reac	tors							3	
4.		of Fluid										4	
5.		ation of										4	
6.		nination				charge	of Ver	nturime	ter			4	
7.		e size re				-						4	
8.		on Plate		-								4	
9.	-	e size ai			1							4	
10.		ments o	•	ier's La	aw							5	
11.		ansfer s				d conve	ection					5	
12.		ansfer s		-				gers				5	
LECTU				TORI				PRACT	FICAL		TOTAL		
45			30					30			105		
TEXT B	OOKS :												
	abe W. on,Tata	L., Sn McGrav	nith J.	C. and	d Hari								ring"7 ^t
REFER								<u> </u>		- 1	<u> </u>	xx 11 0	
2. C 3 1. R P	coulson J rd Editio K Bar ublicatio	J.M. and on,Butte nsal, "2 ons, Nev	d Richa er woth A <i>Textl</i>	rdson (– Hein book (J.F., " (lemann of <i>Flui</i>	Coulsor Publis	n and R hers,20	ichards 04.	son's C	hemica	, Prentice l Enginee <i>chines</i> ",	ering"	/ol-I
E-REFE													
http://ww		bu.in/s	<u>p/pc/</u>										
<u>www.vla</u>	b.co.in												
	-				1			Mapp	1	1		1	1
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO 1	3				1								
CO 2	3		1		2								
CO 3	3		1		2								
		1	1	1	1	1	1	1	1	1	1	1	1

Value1-5 = 1, 6-10 = 2, 11-15 = 30 - No relation, 1 - Low relation, 2-Medium relation, 3- High relation

CO 4

CO 5

Total

Scaled

COU	JRSE (CODE	XNT404		L	Т	Р	С
COU	JRSE N	NAME	NANOAPPLICATIONS		3	0	0	3
PRE	REQU	ISITE	Applied Physics, Applied Chemistry, B Engineers ,Introduction to Nanotechno					
С	Р	Α			L	Т	Р	Н
2.5	0	0.5			3	0	0	3
COU	JRSE (OUTCOM	ES	DOMAIN	LEV	EL		
	CO1	Know a	and Understand the Current status of nnology applications on various fields	Cognitive Affective	Unde	erstand ember		
C	CO2		<i>nd Understand</i> the properties of diferent erials and its relavant applications	Cognitive Affective	Unde	erstand ember		
C	203	<i>Identify</i> techniqu	the drawbacks of conventional es/products used in selected fields	Cognitive Affective		erstand ember y		
C	CO4	concepts	<i>the Evolution</i> of nanotechnology to overcome the drawbacks of onal techniques	Cognitive Affective		erstand ember y		
C	CO5	Describe	the Societal impact of nanotechnology.	Cognitive Affective		erstand ember y		
UNI			Agriculture					15
Micr Food	obiolog I Indus	gy, Nanoteo	Agriculture, Nanotechnology In Food Echnology For Controlled Release, Nanotec chnology And Risk Assessment, Regulator	hnology Rese	arch -	Agricu	ılture	An
UNI		Nano in						15
Nanc finish asser	o partic ning :U nbled r	les, Metal (Jpgrade of ano layer	nufacturing composite fibers :Carbon nano Oxide Nano particles, Carbon nano tubes, I chemical finishes and resultant function	Nano cellular	foam st	ructur	es, Te	extil Self
	<u> </u>		Energy and Environment	logy for Colo	n Enana		ootio	15
Conv Rene	version, wable	, Energy S Energy Tec	in and Sustainable Technology, Nanotechno torage and Novel Generation, Nanotech f hnologies, Green Chemistry and Materials,	for Oil and G	as, Fue	ls Ap	plicat	ion
	ocardio	logy, N	Medicine anopulmonology, Nanoneurology, hematology, Nanodentistry, Nanoradiology	Nanosurgery,	Na	noopt	homol	15 logy
UNI		Nanome						15
Nanc heter	o-beam ostruct	s for mo	lecular detection, Carbon Nanotubes , cular motors ,Nanostructured Materials for		•			ucto

45	0	45
LECTURE	TUTORIAL	TOTAL

TEXT

- 1. Nanotechnology Applications by K.P.Mathula, Neha Publishers & Distributors, 2012
- 2. Nanoscience and Nanotechnology in Engineering, Dr. A.S. Pillai, Vijay K. Varadan, Dr LinFeng Chen, Mayank Dwivedi and Debashish Mukherji, Wiley ,2013.

REFERENCES

1. Encyclopedia of Nnaoscience and Nanotechnology by hari singh nalwa, American Scientific Bublisher ,2012

E REFERENCES

<u>www.nptel.ac.in</u>

1. Advanced Engineering Mathematics Prof. PratimaPanigrahi Department of Mathematics Indian Institute of Technology, Kharagpur.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	1					1	2				3	
CO 2	1					1	1				3	
CO 3	1					1	2				3	
CO 4	1					1	2				3	
CO 5	1					1	0				3	
	5					5	7				15	

TABLE 1: CO VS PO Mapping

1-5 = 1, 6-10 = 2, 11-15 = 3

0 - No relation, 1 - Low relation, 2-Medium relation, 3- High relation

COURSE CO	DDE	XMS405		L	Т	Р	С
COURSE NA	ME	Materials Science		3	1	0	4
C:P:A		2.5:0:0.5		L	Т	Р	H
PREREQUIS	SITE	Engineering Physics and Engineering Chem	nistry	3	1	0	4
COURSE OU	UTCOM	IES	Domain	Lev	el		
CO1	Recall	and <i>distinguish</i> various crystal structures.	Cognitive Affective		erstan nember ly		
CO2	micros	<i>be</i> and <i>discuss</i> the defects at the atomic and tructure scales and their impact.	Cognitive Affective	Und Ren App	erstan nember ly	[
CO3	Electro	<i>be</i> the various Ceramic, Electrical & onic Materials.	Cognitive Affective	Ren App		•	
CO4		<i>be</i> the basics of mechanical properties of al and <i>identify</i> how they can be tested.	Cognitive Affective		erstan nember ly		
CO5	0	nize and Describe various Magnetic Materials no Materials.	Cognitive Affective		erstan nember ly		
	number	es; Indexing of directions and planes, notation, packing factors.	ons, Inter-planar	spaci	ings ar	nd ang	les,
		tions, Types of dislocations, Burgers vector a grain boundaries.	and its represent	ation;	Plana	r defec	cts,
UNIT - III	Ceram	ic, Electrical & Electronic Materials		9			
Properties, gla ceramic –mat Properties of	asses; Co rix comp Materi a	ntroduction, ceramic structures, silicate struct omposite Materials- Introduction, classification posites. Impact of ceramic materials in environals: Electrical Conductivity, Electronic and In- ctivity, Semiconductor Devices Dielectric Pro-	on, concrete, me nment. Electric onic Conductivi	etal-m al& E ity, In	atrix a C lectro trinsic	nd nic	
UNIT – IV	Mecha	nical, Magnetic Properties of Materials		9			
deformation, 1 of materials.	Plastic d Iagnetic of magn	strain, Stress-Strain diagrams; Properties ob eformation. Impact Properties, Strain rate effe Materials: Introduction, Magnetic fields or etic materials, soft magnetic materials, Hard terials.	ects and Impact quantities, type	beha beha	vior. H nagnet	Iardne ism,	SS
UNIT – V	Nano 1	Materials		9			
Introduction -	- Nano n	naterial preparation, purification, sintering na	no particles of A	Alumi	na anc	l Zirco	onia,

Silicon carbide nanoparticle, nano-magnetic, nano-electronic, and other important nanomaterials.Impact of Nano materials in environment

TOTAL HOURS : 45 Hours

TextBooks

1. Askeland D.R., & P. P. Fullay (2007), The Science and Engineering of Materials – 7thCengage Learning Publishers.

2. William D. Callister, Jr (2008), Callister"s Materials Science and Engineering, (Adopted by R. Balasubramaniam) Wiley-Eastern

Reference books

1. A.S. Edelstein and R.C. Cammarata Ed.(1998), Nano Materials: Synthesis, Properties and Applications, Inst. Of Physics Publishing, UK.

2. Raghavan V (2007), Materials Science and Engineering - A First Course, Prentice Hall, India

3. James F. Shackelford (1996), Introduction to Materials Science for Engineers, Prentice Hall, India

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	1	1	0			1	2	0		1	1	
CO 2	0	0	0			1	0	0		1	1	
CO 3	1	1	0			1	2	1		1	1	
CO 4	1	1	0			1	2	1		1	1	
CO 5	1	1	3			1	2	1		1	1	
	4	4	3			5	8	3		5	5	

TABLE 1: CO VS PO Mapping

COURSECO	DE	XNT406	L	Т	Р	С
COURSE NA	ME	NANOSYSTEMS AND THEIR DESIGN	3	1	1	5
PREREQUIS	ITES	PHYSICS AND CHEMISTRY	L	Т	Р	Н
C: P: A		3:1:1	3	2	2	7
COURSE OU	TCOMES	5	DOMA	IN	LEV	EL
CO1	micromae Biochem scaling la <i>Build</i> con	e characteristics of conventional machining, chining, solution-phase chemistry, istry, and molecular manufacturing <i>Write</i> was and <i>explain</i> potential energy surface. mplex molecular structures by combining d molecular fragments and <i>simulate</i> their	Cogniti [*] Psychor		Reme Unde Set	ember rstand
CO2	uncertain <i>Study</i> the	he Molecular dynamics and positional ty e vibrational properties of nanoscale systems e elastic constants based on classical	Cogniti [*] Psychor		Reme Unde Perce	rstand
CO3	-	Transitions, Errors, Damage and Energy on. <i>Calculate</i> the phonon bandstructure and f states	Cogniti Psychor		Reme Unde Perce	rstand
CO4		Mechanosynthesis and Nanoscale Structural ents. <i>Construct</i> a sensor by molecular ng	Cogniti Psychor		Reme Unde Set	ember rstand
CO5		Mobile Interfaces and Moving Parts <i>t</i> and <i>evaluate</i> molecular gear and bearing	Cogniti Psychor		Evalu Perce	
Unit I – Classi		itudes, Scaling Laws And Potential Energy	• •			-3+3

Overview, Molecular manufacturing, comparison, Approximation and classical continuum models, Scaling of classical mechanical systems, Scaling of electromagnetic systems, Scaling of classical thermal systems, Beyond classical continuum models ,PES: Overview Quantum theory and approximations, Molecular Mechanics, Potentials for chemical reactions, Continuum representations of surfaces

Unit II- Molecular Dynamics And Positional Uncertainty

9+3+3

Overview, Nonstatistical mechanics, Statistical mechanics, PES revisited: accuracy requirements, Conclusions, PU: Overview, Positional uncertainty in engineering, Thermally excited harmonic oscillators, Elastic extension of thermally excited rods, Elastic bending of thermally excited rods, Piston displacement in a gas-filled cylinder, Longitudinal variance from transverse deformation, Elasticity, entropy, and vibrational modes, Conclusions

Unit Iii- Transitions, Errors, Damage And Energy Dissipation									
Photochemical dama Radiation from force	age, Radiation dam ced oscillations, Ph	age, Component onons and phone	and system lifetimes, C	ermo mechanical dan conclusions LED: Overv lastic damping and ph ells, Conclusions	view,				
Unit Iv- Mechanosynthesis And Nanoscale Structural Components									
mechanosynthesis, diamondoid structur	res, Conclusions , nts, Surface effect	, Forcible mec NSC: Overview, s on component	hanochemical process Components in contex properties, Shape con	ion-phase synthesis ses, Mechanosynthesis t, Materials and model atrol in irregular struct	s for				
Unit V- Mobile Interfaces And Moving Parts									
surfaces, Symmetric Gears, rollers, belts	cal sleeve bearings , and cams, Barric achines and macron	s, applications of ers in extended s	sliding-interface bear	regular objects over reg ings, Atomic-axle bear ents, clutches, and ratc visited, Conclusions	ings,				
	Molecular builder								
	Molecular dynamics: Basics								
	Green's function surface calculations								
4 Elastic consta	Elastic constants based on classical potential								
5 Molecule-surface systems: Benzene on Au(111)									
6 Phonons, Band structure and Thermo electrics									
7 Thermoelectric effects in a CNT with isotope doping									
8 Oxide dot on silicon surface									
9 Spin transport	5								
10 Spin-orbit tran	Spin-orbit transport calculations: Bi2Se3 topological insulator thin-film device								
11 Spin Transfer Torque									
12 Atomic-axle b	Atomic-axle bearings, Gears								
	LECTURE	TUTORIAL	PRACTICAL	TOTAL					
HOURS	45	30	30	105	105				
TEXT BOOKS									
1. Eric Drexler India, 2010.	K, Nanosystems: N	Molecular Machi	nery, Manufacturing, a	and Computation, Wile	У				
REFERENCES									

1. Ben Rogers, Jesse Adams, Sumita Pennathur, Nanotechnology: Understanding Small Systems, Third Edition, CRC Press, 2014

2. H. S. Nalwa, Ed., **Encyclopedia of Nanoscience and Nanotechnology**, 10-Volume **Set**, American Scientific Publishers, Los Angeles, 2004.

3. DeMicheli G., Leblebici Y., Gijs M., Vörös J., Nanosystems Design and Technology, Springer, 2009

E-REFERENCES

- 1. http://www.imm.org/research/parts/molvis/#MIMEtypes
- 2. http://ipn2.epfl.ch/lns/lectures/nanoscience/lecturenotes/cour-1.pdf
- 3. www.uniroma2.it/didattica/NANOSCIENZE/deposito/L1.ppt
- http://www.nanoscienceworks.org/publications/books/4/9781420048056/instructors/ITNSLecture-1.pdf
- 5. http://uw.physics.wisc.edu/~himpsel/Nano/lectures.htm

CO/PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
1	1	1		0	1	1	0		0	1	0	0	2	0
2	2	1		0	2	2	0	1	0	1	0	0	2	0
3	1	2	1	0	2	2	0		0	1	0	0	2	0
4	1	1	1	0	2	2	0	1	0	1	0	0	2	0
5	1	1	1	0	2	2	0	1	0	2	0	0	2	0
Total	6	6	3	0	9	9	0	3	0	6	0	0	10	0
Scaled	2	2	1	0	3	3	0	1	0	2	0	0	2	0

Table 1: Mapping of COs with POs

1-5 = 1, 6-10 = 2, 11-15 = 3

0 – No relation, 1 – Low relation, 2-Medium relation, 3- High relation

COURSE O	CODE	XGS 407				L	Т	Р	SS	С
COURSE N	NAME	TECHNIC	AL COMMUNICATIO	DN		1	0	0	2	1
						L	Т	Р	SS	Н
C:P:A		1.8:0.8:0.4				1	0	0	2	3
COURSE (DUTCOMF	ES .			DOMA	IN		LE	VEL	<u>. </u>
CO 1			a technical project report	rt and	2 01121					
	••	ge on the ling	guistic competence to w		Co	gnitiv	ve	R	emem	ber
CO 2	-	both technic ite a project.	al subject skill and lang	guage	Co	gnitiv	ve		Creat	e
CO 3	Confidenc	e to <i>present</i>	a project in 10 to 15 min	utes	Af	fectiv	ve	I	Respor	ise
CO 4	of sounds	in English	and absorbs the pronunc Language and learns he rd and in a sentence prop	ow to	Co	gnitiv	ve	R	emem	ber
CO 5		e and it train	eaks clearly and fluently s the learner to listen ac		Psyc	homo	otor	P	ercept	ion
SYLLABU	S							HO	URS	
UNIT I	BASIC P	RINCIPLES	OF GOOD TECHNIC	CAL W	RITIN	G			9	
Style in tech	hnical writi	ng, out lines	and abstracts, language	used i	n techni	cal w	riting:	techr	nical w	ords,
jargons etc										
UNIT II		L TECHNIQ				1 .0	• ,•		<u> </u>	1
Definition, interpretatio	-	of mecha	nism, Description of	a pro	cess, C	lassif	ication	IS, d1	vision	and
UNIT III		/ PROJECT	٦						9	
			lusion, bibliography, a	mexure	e and g	lossat	v Gr	nhics		etc -
) - 15 minutes	mentary	e una g	10000	<i>,</i> 01	.pme	ulub	010
UNIT IV			SH LANGUAGE						9	
Vowels, cor	isonants - V	ocabulary bu	ilding – synonyms and a	antonyı	ms, wor	d root	s, one	word	substi	tutes,
prefixes and	suffixes, id	lioms and ph	rases.							
UNIT V		G COMPRE							9	
_		_	context, scanning, skin	nming,	inferrin	g me	aning,	critic	cal rea	ding,
active listen		g for compre								
HOUDG		TURE	SELF STUDY	PR	ACTIC	AL		TC	DTAL	
HOURS		15	30		0				45	
TEXT BOO		ahu: 1 337 '	ing April 1070 O. C		D					
			ing – April, 1978, Oxfor				. J D		1	
			cal Communication: A C	unde fo	or scient	ists ai	ia Eng	ineers	s. Auth	lor,
REFEREN		University pi	ESS. 2007							
		mh Effective	e Interpersonal and Task	Comm	unicatio	n Ski	lls for	Engir	neers	
	ntic Publish		- interpersonal and Task	Comm	ancan		10 101	Lingii	10013,	
1 1010										

TABLE 1: CO VS PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	0	0	0	0	0	1	3	0	0	0	0	0
CO 2	0	0	0	0	0	1	1	0	0	0	0	0
CO 3	0	0	0	0	0	1	2	0	0	0	0	0
CO 4	0	0	0	0	0	1	1	0	0	0	0	0
CO 5	0	0	0	0	0	1	1	0	0	0	0	0
	0	0	0	0	0	5	8	0	0	0	0	0

1-5 = 1, 6-10 = 2, 11-15 = 3

0-No relation, 1-Low relation, 2-Medium relation, 3- High relation

SYLLABUS

SEMESTER - V

COURSE O	CODE	XNT501		L	Т	Р	C
COURSE N	NAME	QUANTUM MECHANICS		3	1	0	4
		FOR ENGINEERS					
PREREQU	ISITES	XAP104 - Applied Physics,		L	Т	Р	H
		XMA 101 Partial differentiation					
		and their applications					
C:P:A		2:1:0		3	2	0	5
COURSE (DUTCOM	ES	DOMA	IN	Ι	LEVE	L
CO1	demonstra	ad the basic ideas of QM through tions of quantum system and formulation	Cognitive		Und Ana	erstan lyze	d
CO2		bnian eigen value problem he basis for description of elements &	Cognitive		Und	erstan	d
002		<i>ply</i> in Hydrogen atom and <i>discuss</i> eigen	Psychomotor		Арр		а,
CO3	- /	the basis for description to multiple ad <i>discuss</i> eigen functions	Cognitive Psychomotor	•		erstan prehe lyze	
CO4		the basis for description to heavier	-			erstan	d,
COF		& their bonds	Psychomotor	•	Ana	•	1
CO5		and Discuss time evolution and the ent with advanced concept of angular m	Cognitive Psychomotor		Ana	erstan lyze	d,
UNIT I	BASIC II	DEAS OF QM	l			9+6	=12
Confined Ir	nside a Pip	sites,Basic Ideas of Quantum Mechanics, e: The physical system, The Hamiltonia sional solution, Quantum confinement, The	in eigenvalue	probler			
UNIT II	SINGLE-	PARTICLE SYSTEMS				9+6	=12
The Hydrog together, Sta	gen Molecu ates that sha	The Hydrogen Atom, Expectation Value a lar Ion: The Hamiltonian: Energy when f are the electron, Comparative energies of the arison with the exact ground state.	fully dissociate	ed, Ener	gy w	hen c	loser
UNIT III		LE-PARTICLE SYSTEMS				9+6	=12
Spin: Wave multiple par	function for ticles with ize the Wav	tiple Particles, The Hydrogen Molecule, or a single particle with spin, Inner produ spin, the hydrogen molecule, Triplet and s e Function, Matrix Formulation, Global S LE-PARTICLE SYSTEMS – HEAVI	cts including s inglet states, I ymmetrization	spin, W dentical 1 [Backg	ave fu Partic ground	inction cles, V I].	n for Vays
	oms: The	Hamiltonian eigenvalue problem, Appro and helium Lithium to neon, Chemica					

Hamiltonian eigenvalu	e problem, Solution by separation of	variables, The density	of states and
confinement, Band Stru	acture, Quantum Statistical Mechanics.		
UNIT V TIME EV	VOLUTION		9+6=12
The Schr odinger Equa	tion, The Position and Linear Momentum	Eigenfunctions, Wave Pa	ackets in Free
Space: Solution of th	ne Schrödinger equation, The fundamen	ital commutation relation	ons, Ladders,
Possible values of angu	lar momentum, Triplet and singlet states, C	Clebsch-Gordan coefficie	nts, Pauli spin
matrices, The Relativi equations, Electrons in	stic Dirac Equation, The Electromagnetic magnetic fields.	Field, The Hamiltonia	n, Maxwell's
TOTAL HOURS			
LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	30	0	75
TEXT BOOK			
1. Leon von Domm	elen, "Fundamental Quantum Mechanics for	or Engineers", Version 3.	1, beta 3,
2007.			
REFERENCES			
1. David J. Griffit	hs, Introduction to Quantum Mechanics (Ca	ambridge University Pres	s India; 2/ed
edition, 2016).			
	tum Mechanics (Tata McGraw Hill, New D	elhi, 1968).	
3. V. K. Thankapp	oan, Quantum Mechanics (Wiley-Eastern, N	lew Delhi, 1985).	
4. P. M. Mathews	and K. Venkatesan, A Text Book of Quant	um Mechanics (Tata Mc	Graw Hill,
New Delhi, 198	77).		
E-REFERENCE			
1. http://nptel.ac.in	a/aauraaa/115106066/		
$\mathbf{I}_{\bullet} = \frac{\mathbf{I}_{\bullet}(\mathbf{p}, \mathbf{p}, \mathbf{p}, \mathbf{p}, \mathbf{q}, $	<u>1/courses/11510000/</u>		

Table 1 : COs versus POs mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7/PO8/PO9	PO10	PO11/PO12	PSO1	PSO2	Total	Scaled
CO1	3	2				1		2				8	2
CO2	2	2				2		2				8	2
CO3	1	2		1	2	2		1		1		10	2
CO4	1	1		1	2	2		1		1		9	2
CO5	2	1				1		1		1		6	1
Total	9	8		2	4	8		7		3		41	9
	2	2			1	2		1		1		9	1

1-5 = 1, 6-10 = 2, 11-15 = 3

COURSE C	ODE	XN	Г502			L	Т	Р	С
COURSE N.	AME	NAN -I	NOMATERIALS FABR	ICATION 7	FECHNIQUE	5 3	0	1	4
C:P:A		1.5:	1.5:1			L	Т	Р	Η
PREREQUI	SITE					3	0	2	5
COURSE O	UTCOM	IES			DOMAIN	LEV	/EL		
CO1	<i>Describ</i> nanoma		Demonstrate the Fabrica	ation	Cognitive Psychomotor Affective	Und App	erstan ly	d	
CO2			basics of Theorem of elec <i>dentify</i> how they can be te		Cognitive Psychomotor Affective		erstan hanis ly		
CO3			Physical techniques and R types of processing	Recognize	Cognitive Psychomotor Affective		erstan Iembe ly		
CO4	and how	v they	different types of chemical y can be tested. <i>Describe</i> the methods for fabrication		Cognitive Psychomotor Affective	Rem	erstan embe hanis ly	r	
CO5			<i>basic Self Assembly and a</i> <i>ze</i> the different types of pro-		Cognitive Psychomotor Affective	Und Rem	erstan embe hanisi	r	
UNIT - I	Basic C	Conce	pts of Nano Fabrication				J	9+0	6=15
	ctured m	nateria	ealistic projections; outline als; nucleation: surface n nsity media.						
UNIT – II	Physica	al Teo	chniques I					9+0	6=15
fundamentals	of film o	depos	conductor nano structures. sition; thermal evaporation				ethod		
UNIT - III	v		echniques II						6=15
			alsed laser deposition; sput plasma processes; physica						sses;
UNIT – IV	Chemi	ical N	Aethods I					9+0	6=15
•	-		(CVD); plasma-enhanced hanced CVD; electron enh	· · ·	pressure plasma	CVD; n	netal-o	organ	ic
UNIT – V	Chemio	cal M	lethods II					9+0	6=15
T ' 1			ospheric pressure CVD; re taxy (CBE); chemical bath		etching (RIE)	molecula	ir-bea	m epi	itaxy
	nical beau	m epi	taxy (CDE), chemical bath	1					
(MBE); chem TOTAL HO	URS		•	•					
(MBE); chem	URS		Tutorial 0		actical 30		Tota 75	ıl	

TEXTBOOK 1. "Introduction to Nanotechnology," Frank J. Owens & Charles P. Poole, Wiley-IEEE, 2003. 2. "Encyclopedia of Nanoscience & Nanotechnology," H. S. Nalwa, American Scientific Publishers, 2004. 3. ."The Powder Method," L.V. Azaroff & M. J. Buerger, McGraw-Hill, 1958. REFERENCE 1. "Encyclopedia of Nanoscience & Nanotechnology," H. S. Nalwa, American Scientific Publishers, 2004.

2. "X-ray Diffraction Procedures," H. P. Klung & L. E. Alexander

Table 1 : COs versus POs mapping	

CO/PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PSO1
CO1	1	2	3	1	2	1	1	1	2
CO2	1	2	3	1	2	1	1	1	2
CO3	1	2	3	1	2	1	1	1	2
CO4	1	2	3	1	2	1	1	1	2
CO5	1	2	3	1	2	1	1	1	2
Total	5	10	15	5	10	5	5	5	10
	1	2	3	1	2	1	1	1	2

1-5 = 1, 6-10 = 2, 11-15 = 3

COURSE (CODE	XNT504	L	Т	Р	С
COURSE N		NANOMATERIALS CHARACTERIZATION	3	0	1	4
		TECHNIQUES – I				
PREREQU	ISITES	PHYSICS AND MATERIALS	L	Т	Р	Н
		SCIENCES	_			
C:P:A		2:0.5:0.5	3	0	2	5
COURSE (DITCOM		DOMA		LEV	EL
CO1		trate the understand the Metrology	Cognit			rstanding
001		relevant to the nanomaterials	Psycho		Apply	0
CO2	-	and <i>Understand and Realize</i> the Standards	Cognit			rstanding,
001		netrology and its calibration techniques	CoBin			ifying
			Psycho	motor	Guide	
					Respo	onse
CO3	Understa	and and Apply the principles of Optical	Cognit	ive	Unde	rstanding,
		l its applications to characterize the	Psycho	motor	Apply	ying
	nanomat	erials and nanostructures				
CO4		and <i>Evaluate</i> the different spectroscopic	Cognit			rstanding,
		es and its application for nanomaterials	Psycho	motor	Apply	ying
	charecter					
CO5		and and Apply the principles and	Cognit			rstand,
		ons of surface charectization techniques for	Psycho	motor	Guide	
	nanomat				Respo	
UNIT I	Metrolo				-	9+6=15
linear meas Secondary, Systematic l	urements (Tertiary S Errors and 1	y- Accuracy, precision and reliability; Stand (Line Standard & Wavelength Standard); Standards, Working standards); Calibration Random Errors); Statistical analysis of errors	Subdivis - Types	ion of s of Err	tandards ors (Sta ept.	s (Primary, atic Errors,
		tion Standards for Nanometrology	1.0. 1	1 0		9+6=15
		for Nanometrology: Flatness standards; Later				t standards;
		rds; Film thickness standards; Accuracy of op	otical inte	erterome	-	$\rightarrow 15$
UNIT III Ellipheomot		Characterization Techniques resonance; Photoluminescence (PL); micro-	nhotohur	ninoscor		0+6=15
-	• •	photo-conductance decay and photoluminesc	-			
balance (QC		noto-conductance decay and photonummesc	ence de	Lay, Qui	utz CIY	star millio-
UNIT IV		scopic Techniques				9+6=15
	-	ppy; Infrared (IR) & Fourier Transform infr	ared (F	FIR) spe		
	-	(NMR) spectroscopy; Dynamic nuclear mag		· 1	1	•
U		echniques; micro-Raman and Laser Raman; S	0		` •	
UNIT V		Characterization Techniques	X CID II			9+6=15
		eir applications of Scanning Probe Technique	es (SPM)	: Atomic		
		neling Microscope (STM), Electric Force M				
	I ull			, <u> </u>	,,	

Microscopy (MFM); ECAFM, ECSTM, Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscopy (FE-SEM); Reflection High Energy Electron Diffraction (RHEED); Low Energy Electron Diffraction (LEED); gas adsorption spectroscopy for porosity measurement.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
HOURS	45	0	30	75
TEXT BOOK				
1. Skoog, Holler	, Nieman " Princip	les of Instrumental Analysis	"	
2. Rainer Waser	"Nanoscale Calibi	atin Standards"Wiley-VCH		
3. Rainer Waser	"Nanometrology"	Wiley-VCH		
REFERENCES				
1. Sabu Thomas R	aju Thomas Ajesh	Zachariah Raghvendra Mish	nra, "Microscopy Me	ethods in
Nanomaterials (Characterization"	Volume 1,2017, Elsevier		
2. Ratna Tantra "N	anomaterial Chare	cterization: An Introduction	s" Wiley-VCH	
3. R. K. Jai "Engir	eering Metrology,	" n, Khanna Publishers, Dell	hi, 2003.	
4. Ted Busch "Fur	damentals of Dime	ensional Metrology " Delma	r Publishers Inc., US	SA, 1989.
E-REFERENCE				
www.nptel.ac.in				
www.mit.co.in				

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1		1	2	3	1	2	1	1	1			2	
CO2		1	2	3	1	2	1	1	1			2	
CO3		1	2	3	1	2	1	1	1			2	
CO4		1	2	3	1	2	1	1	1			2	
CO5		1	2	3	1	2	1	1	1			2	
Total		5	10	15	5	10	5	5	5			10	
		1	2	3	1	2	1	1	1			2	
1-5 = 1,	6-10 =	2, 11-1	5 = 3					•	•	•	•	•	•

Table 1 : COs versus POs mapping

COURSE C	CODE	XNT505		L	Т	Р	С
COURSE N	IAME	ENGINEERING THERMODYNAM	MICS	3	1	0	4
PREREQU	ISITES	PHYSICS AND CALCULUS		L	Т	Р	H
C:P:A		2.75:0:0.25		3	2	0	5
COURSE O	DUTCOME	S (COs)	Domain	Lev	el		
CO1		the basic laws of thermodynamics and	Cognitive	Ren	nembe	r	
	Apply then			App	-		
CO2		arize the concepts in statistical	Cognitive	Unc	lerstan	ding	
	thermodyr						
CO3		uct models of statistical	Cognitive	App	olying		
	thermodyr						
CO4		<i>e</i> and <i>Use</i> thermodynamic principles	Cognitive		lyzing		
		al and metallurgical processes.	Affective		eiving		
CO5		arize phase transitions.	Cognitive	Unc	lerstan		
UNIT-I		ONCEPTS AND LAWS OF THERM nermodynamics systems – Boundary				9+6	
to a control v Heat engines	volume – SF s – Refriger	- First law of thermodynamics for ope TEE equations [steady flow energy equa ators and heat pumps - Carnot cycle -	tion] – Second la Carnot theorem	w of th – Clau	nermo	lynam	ics –
to a control v Heat engines Concept of e UNIT –II Statistical the probability –	volume – SF s – Refriger entropy – Pri FUNDAM ermodynami - B.E, F.D au	EE equations [steady flow energy equa ators and heat pumps – Carnot cycle – nciple of increase of entropy – Basic th IENTALS OF STATISTICAL THER ics- energy states and energy level – mind M B statistics – entropy - B.E, F.D	tion] – Second la Carnot theorem ermodynamic rela RMODYNAMIC cro and macro sta and classical distr	w of th – Clau ations. S te – th ribution	ermod n func	lynam nequal 9+6= lynami tion an	ics – ity – = 15 c
to a control v Heat engines Concept of e UNIT –II Statistical the probability – their compar	volume – SF s – Refriger entropy – Pri FUNDAM ermodynam - B.E, F.D an ison – M.B	EE equations [steady flow energy equa ators and heat pumps – Carnot cycle – nciple of increase of entropy – Basic th IENTALS OF STATISTICAL THER ics- energy states and energy level – mic nd M B statistics – entropy - B.E, F.D distribution function – partition function	tion] – Second la Carnot theorem ermodynamic rela RMODYNAMIC cro and macro sta and classical distr n and thermodyna	w of th – Clau ations. S te – th ribution	ermod n func	lynam nequal 9+6= lynami tion an es.	ics – ity – = 15 c id
to a control v Heat engines Concept of e UNIT –II Statistical the probability – their compar UNIT-III	volume – SF s – Refriger entropy – Pri FUNDAM ermodynami - B.E, F.D ar ison – M.B STATIST	EE equations [steady flow energy equa ators and heat pumps – Carnot cycle – nciple of increase of entropy – Basic th IENTALS OF STATISTICAL THER ics- energy states and energy level – mid nd M B statistics – entropy - B.E, F.D distribution function – partition function ICAL THERMODYNAMICS MOD	tion] – Second la Carnot theorem ermodynamic rela RMODYNAMIC cro and macro sta and classical distr n and thermodyna ELS	w of th – Clau ations. S te – th ibution unic pr	ermoo ermoo n func operti	lynam nequal 9+6= lynami tion an es. 9+6=	ics – ity – = 15 c id = 15
to a control v Heat engines Concept of e UNIT –II Statistical the probability – their compar UNIT-III Boltzmann expansions-F	volume – SF s – Refriger entropy – Pri FUNDAN ermodynami - B.E, F.D an rison – M.B STATIST statistics- Brownian dy in different	EE equations [steady flow energy equa ators and heat pumps – Carnot cycle – nciple of increase of entropy – Basic th IENTALS OF STATISTICAL THER ics- energy states and energy level – mic nd M B statistics – entropy - B.E, F.D distribution function – partition function	tion] – Second la Carnot theorem ermodynamic rela RMODYNAMIC cro and macro sta and classical distr n and thermodyna ELS rmodynamics-Par functions-Extende	w of th – Clau ations. S te – th ibution mic pu tition d Lag	ermod n funct funct rangia	lynam nequal ynami tion an es. 9+6= ions-V n meth	ics – ity – = 15 c d = 15 /irial ods-
to a control v Heat engines Concept of e UNIT –II Statistical the probability – their compar UNIT-III Boltzmann expansions-I Simulations polarisation	volume – SF s – Refriger entropy – Pri FUNDAM ermodynam - B.E, F.D an ison – M.B STATIST statistics- Brownian dy in different models. SOLUTIC	EE equations [steady flow energy equa ators and heat pumps – Carnot cycle – nciple of increase of entropy – Basic th IENTALS OF STATISTICAL THER ics- energy states and energy level – mid nd M B statistics – entropy - B.E, F.D distribution function – partition function ICAL THERMODYNAMICS MOD Ensembles- Classical statistical the mamics- Lagrangian and Hamiltonian f t ensembles-Force fields for molecule DN THERMODYNAMICS AND ELI	tion] – Second la Carnot theorem ermodynamic rela RMODYNAMIC cro and macro sta and classical distr n and thermodyna ELS rmodynamics-Par functions-Extende es, liquids and s	w of th – Clau ations. S te – th ibution mic pr tition d Lag olids-	ermod n func roperti funct rangia Many	ynami ynami ynami tion an es. 9+6= ions-V n meth y-body 9+6=	ics – ity – = 15 c d = 15 /irial iods- and = 15
to a control v Heat engines Concept of e UNIT –II Statistical the probability – their compar UNIT-III Boltzmann expansions-I Simulations polarisation UNIT-IV Ideal and ne	volume – SF s – Refriger entropy – Pri FUNDAN ermodynam - B.E, F.D ar ison – M.B STATIST statistics- Brownian dy in different models. SOLUTIC on-ideal sol	EE equations [steady flow energy equa ators and heat pumps – Carnot cycle – nciple of increase of entropy – Basic th IENTALS OF STATISTICAL THER ics- energy states and energy level – min and M B statistics – entropy - B.E, F.D distribution function – partition function ICAL THERMODYNAMICS MOD Ensembles- Classical statistical the mamics- Lagrangian and Hamiltonian f t ensembles-Force fields for molecular DN THERMODYNAMICS AND ELI utions, Partial and integral molar qua	tion] – Second la Carnot theorem ermodynamic rela RMODYNAMIC cro and macro sta and classical distr n and thermodyna ELS rmodynamics-Par functions-Extende es, liquids and s ECTROMETAL antities, Gibbs-Du	w of th – Clau ations. S te – th ibution ibution d Lagn olids- LURC uhem	ermod n func funct rangia Many FY equati	ynami 9+6 ynami tion an es. 9+6 ions-V n meth z-body 9+6 on, Q	ics – ity – = 15 c ad = 15 /irial ods- and = 15 uasi-
to a control v Heat engines Concept of e UNIT –II Statistical the probability – their compar UNIT-III Boltzmann expansions-H Simulations polarisation UNIT-IV Ideal and no Chemical ap	volume – SF s – Refriger entropy – Pri FUNDAM ermodynam - B.E, F.D an ison – M.B STATIST statistics- Brownian dy in different models. SOLUTIC on-ideal sol	The Ferrice The Provide Action and the second states and the second states and the second states and the statistics of the statistical three states and the statistical statistical the second states and the statistical statistical the second states. Force fields for molecular the second states and the statistical and the second states are second sta	tion] – Second la Carnot theorem ermodynamic rela RMODYNAMIC cro and macro sta and classical distr n and thermodyna ELS rmodynamics-Par functions-Extende es, liquids and s ECTROMETAL antities, Gibbs-Da tial, Fugacity and	w of th – Clau ations. S te – th ibution tition d Lagn olids- LURG uhem d Activ	ermod n func operti funct rangia Many EY equati vity, F	ynam nequal 9+6= ynami tion an es. 9+6= ions-V n meth y-body 9+6= on, Qi ree en	ics – ity – = 15 c d = 15 /irial oods- and = 15 uasi- ergy
to a control v Heat engines Concept of e UNIT –II Statistical the probability – their compar UNIT-III Boltzmann expansions-I Simulations polarisation UNIT-IV Ideal and no Chemical ap diagram for	volume – SF s – Refriger entropy – Pri FUNDAM ermodynami - B.E, F.D ar ison – M.B STATIST statistics- Brownian dy in different models. SOLUTIC on-ideal sol	EE equations [steady flow energy equa ators and heat pumps – Carnot cycle – nciple of increase of entropy – Basic th IENTALS OF STATISTICAL THER ics- energy states and energy level – mid nd M B statistics – entropy - B.E, F.D distribution function – partition function ICAL THERMODYNAMICS MOD Ensembles- Classical statistical the mamics- Lagrangian and Hamiltonian f t ensembles-Force fields for molecule ON THERMODYNAMICS AND ELI utions, Partial and integral molar qua plutions, Sievert's law, Chemical poter oy systems, Phase diagrams, Clapey	tion] – Second la Carnot theorem ermodynamic rela MODYNAMIC cro and macro sta and classical distr n and thermodyna ELS rmodynamics-Par functions-Extende es, liquids and s ECTROMETAL antities, Gibbs-Duntial, Fugacity and yron equation. E	w of th – Clau ations. S te – th ibution d Lagnolids- LURC uhem d Actir Electrop	ermod n funct operti funct rangia Many EY equati vity, F metall	ynam nequal 9+6= ynami tion an es. 9+6= ions-V n meth y-body 9+6= on, Qi ree en	ics – ity – = 15 c d = 15 /irial oods- and = 15 uasi- ergy
to a control v Heat engines Concept of e UNIT –II Statistical the probability – their compar UNIT-III Boltzmann expansions-I Simulations polarisation : UNIT-IV Ideal and no Chemical ap diagram for Reversible C	volume – SF s – Refriger entropy – Pri FUNDAN ermodynam - B.E, F.D ar ison – M.B STATIST statistics- Brownian dy in different models. SOLUTIC on-ideal sol proach to so binary all Galvanic cell	EE equations [steady flow energy equa ators and heat pumps – Carnot cycle – nciple of increase of entropy – Basic the IENTALS OF STATISTICAL THER ics- energy states and energy level – min and M B statistics – entropy - B.E, F.D distribution function – partition function ICAL THERMODYNAMICS MOD Ensembles- Classical statistical the mamics- Lagrangian and Hamiltonian f t ensembles-Force fields for molecular DN THERMODYNAMICS AND ELI utions, Partial and integral molar qua oblutions, Sievert's law, Chemical poter oy systems, Phase diagrams, Clapey s, Relationship between cell EMF and f	tion] – Second la Carnot theorem ermodynamic rela RMODYNAMIC cro and macro sta and classical distr n and thermodyna ELS rmodynamics-Par unctions-Extende es, liquids and s ECTROMETAL antities, Gibbs-Duntial, Fugacity and yron equation. E ree energy of cell	w of th – Clau ations. S te – th ibution d Lagnolids- LURC uhem d Actir Electrop	ermod n funct operti funct rangia Many EY equati vity, F metall	ynami equal ynami tion an es. 9+6= ions-V n meth z-body on, Qi ree en urgy c	ics – ity – = 15 c id = 15 /irial iods- and = 15 uasi- ergy cells,
to a control v Heat engines Concept of e UNIT –II Statistical the probability – their compar UNIT-III Boltzmann expansions-I Simulations polarisation UNIT-IV Ideal and ne Chemical ap diagram for Reversible C UNIT-V	volume – SF s – Refriger entropy – Pri FUNDAM ermodynam - B.E, F.D an ison – M.B STATIST statistics- Brownian dy in different models. SOLUTIO on-ideal sol proach to se binary all Galvanic cell	EE equations [steady flow energy equa ators and heat pumps – Carnot cycle – nciple of increase of entropy – Basic th IENTALS OF STATISTICAL THER ics- energy states and energy level – mic and M B statistics – entropy - B.E, F.D distribution function – partition function ICAL THERMODYNAMICS MOD Ensembles- Classical statistical the mamics- Lagrangian and Hamiltonian f t ensembles-Force fields for molecule DN THERMODYNAMICS AND ELI utions, Partial and integral molar qua plutions, Sievert's law, Chemical poter oy systems, Phase diagrams, Clapey s, Relationship between cell EMF and f QUILIBRIA AND PHASE TRANSF	tion] – Second la Carnot theorem ermodynamic rela RMODYNAMIC cro and macro sta and classical distr n and thermodyna ELS rmodynamics-Par unctions-Extende es, liquids and s ECTROMETAL antities, Gibbs-Du tial, Fugacity and yron equation. E ree energy of cell ORMATIONS	w of th – Clau ations. S te – th ibution tition d Lagn olids- LURG uhem d Actir lectron reaction	ermod n func operti funct rangia Many EY equati vity, F metall on.	ynami 9+6 ynami tion an es. 9+6 ions-V n meth -body 9+6 on, Qi ree en argy c	ics – ity – = 15 c d = 15 d d d = 15 d d d - ital and = 15 and = 15 d d - - - - - - - - - - - - - - - - -
to a control v Heat engines Concept of e UNIT –II Statistical the probability – their compar UNIT-III Boltzmann expansions-I Simulations polarisation UNIT-IV Ideal and no Chemical ap diagram for Reversible C UNIT-V Unary, binar	volume – SF s – Refriger entropy – Pri FUNDAN ermodynam - B.E, F.D ar ison – M.B STATIST statistics- Brownian dy in different models. SOLUTIC on-ideal sol proach to se binary all Salvanic cell PHASE E ry and multi	EE equations [steady flow energy equa ators and heat pumps – Carnot cycle – nciple of increase of entropy – Basic the IENTALS OF STATISTICAL THER ics- energy states and energy level – min and M B statistics – entropy - B.E, F.D distribution function – partition function ICAL THERMODYNAMICS MOD Ensembles- Classical statistical the mamics- Lagrangian and Hamiltonian f t ensembles-Force fields for molecule DN THERMODYNAMICS AND ELI utions, Partial and integral molar qua plutions, Sievert's law, Chemical poter oy systems, Phase diagrams, Clapey s, Relationship between cell EMF and f QUILIBRIA AND PHASE TRANSF component systems, Phase equilibria, I	tion] – Second la Carnot theorem ermodynamic rela RMODYNAMIC cro and macro sta and classical distr n and thermodyna ELS rmodynamics-Par unctions-Extende es, liquids and s ECTROMETAL antities, Gibbs-Du tial, Fugacity and yron equation. E ree energy of cell ORMATIONS	w of th – Clau ations. S te – th ibution tition d Lagn olids- LURG uhem d Actir lectron reaction	ermod n func operti funct rangia Many EY equati vity, F metall on.	ynami 9+6 ynami tion an es. 9+6 ions-V n meth -body 9+6 on, Qi ree en argy c	ics – ity – = 15 c d = 15 d d d = 15 d d d - ital and = 15 and = 15 d d = 15 and = 15 and = 15
to a control v Heat engines Concept of e UNIT –II Statistical the probability – their compar UNIT-III Boltzmann expansions-I Simulations polarisation for UNIT-IV Ideal and no Chemical ap diagram for Reversible C UNIT-V Unary, binar metastable p	volume – SF s – Refriger entropy – Pri FUNDAN ermodynam - B.E, F.D an ison – M.B STATIST statistics- Brownian dy in different models. SOLUTIC on-ideal sol proach to so binary all Salvanic cell PHASE E ry and multi	EE equations [steady flow energy equa ators and heat pumps – Carnot cycle – nciple of increase of entropy – Basic the IENTALS OF STATISTICAL THER ics- energy states and energy level – mich and M B statistics – entropy - B.E, F.D distribution function – partition function ICAL THERMODYNAMICS MOD Ensembles- Classical statistical the mamics- Lagrangian and Hamiltonian f t ensembles-Force fields for molecular DN THERMODYNAMICS AND ELI utions, Partial and integral molar qua oblutions, Sievert's law, Chemical poter oy systems, Phase diagrams, Clapey s, Relationship between cell EMF and f COUILIBRIA AND PHASE TRANSF component systems, Phase diagrams.	tion] – Second la Carnot theorem ermodynamic rela RMODYNAMIC cro and macro sta and classical distr n and thermodyna ELS rmodynamics-Par unctions-Extende es, liquids and s ECTROMETAL antities, Gibbs-Duntial, Fugacity and yron equation. Extender ree energy of cell ORMATIONS Phase rule, evolut	w of th – Clau ations. S te – th ribution tition d Lagn olids- LURC uhem d Actir Electron reaction	ermod n func operti funct rangia Many Y equati vity, F metallo on.	lynam nequal 9+6= ynami tion an es. 9+6= ions-V n meth z-body 9+6= on, Qi ree en urgy c 9+6= diagr	ics – ity – = 15 c id = 15 ods- and = 15 uasi- ergy cells, = 15 ams,
to a control v Heat engines Concept of e UNIT –II Statistical the probability – their compar UNIT-III Boltzmann expansions-I Simulations polarisation UNIT-IV Ideal and ne Chemical ap diagram for Reversible C UNIT-V Unary, binar metastable p Thermodyna	volume – SF s – Refriger entropy – Pri FUNDAM ermodynam - B.E, F.D an ison – M.B STATIST statistics- Brownian dy in different models. SOLUTIO on-ideal sol proach to se binary all Galvanic cell PHASE E ry and multi hase diagram	EE equations [steady flow energy equa ators and heat pumps – Carnot cycle – nciple of increase of entropy – Basic th IENTALS OF STATISTICAL THER ics- energy states and energy level – mic and M B statistics – entropy - B.E, F.D distribution function – partition function ICAL THERMODYNAMICS MOD Ensembles- Classical statistical the mamics- Lagrangian and Hamiltonian f t ensembles-Force fields for molecule DN THERMODYNAMICS AND ELI utions, Partial and integral molar qua plutions, Sievert's law, Chemical poter oy systems, Phase diagrams, Clapey s, Relationship between cell EMF and f QUILIBRIA AND PHASE TRANSF component systems, Phase equilibria, I ns, calculation of phase diagrams. se transformations: Melting and solidifi	tion] – Second la Carnot theorem ermodynamic rela MODYNAMIC cro and macro sta and classical distr n and thermodyna ELS rmodynamics-Par unctions-Extende es, liquids and s ECTROMETAL antities, Gibbs-Da tial, Fugacity and yron equation. E ree energy of cell ORMATIONS Phase rule, evolution	w of th – Clau ations. S te – th ibution tition d Lagn olids- LURC uhem d Activ lectron reaction tion of ion, eu	ermod n funct operti funct coperti funct rangia Many EY equati vity, F metallo on.	lynam nequal 9+6= ynami tion an es. 9+6= ions-V n meth z-body 9+6= on, Qi ree en urgy c 9+6= diagr	ics – ity – = 15 c id = 15 ods- and = 15 uasi- ergy cells, = 15 ams,
to a control v Heat engines Concept of e UNIT –II Statistical the probability – their compar UNIT-III Boltzmann expansions-I Simulations polarisation : UNIT-IV Ideal and ne Chemical ap diagram for Reversible C UNIT-V Unary, binar metastable p Thermodyna spinodal, ma	volume – SF s – Refriger entropy – Pri FUNDAN ermodynam - B.E, F.D ar ison – M.B STATIST statistics- Brownian dy in different models. SOLUTIC on-ideal sol proach to se binary all Galvanic cell PHASE E ry and multi hase diagram	EE equations [steady flow energy equa ators and heat pumps – Carnot cycle – nciple of increase of entropy – Basic the IENTALS OF STATISTICAL THER ics- energy states and energy level – min and M B statistics – entropy - B.E, F.D distribution function – partition function ICAL THERMODYNAMICS MOD Ensembles- Classical statistical the mamics- Lagrangian and Hamiltonian f t ensembles-Force fields for molecule DN THERMODYNAMICS AND ELI utions, Partial and integral molar qua plutions, Sievert's law, Chemical poter oy systems, Phase diagrams, Clapey s, Relationship between cell EMF and f QUILIBRIA AND PHASE TRANSF component systems, Phase equilibria, I ns, calculation of phase diagrams. se transformations: Melting and solidifi- l order disorder transformations. First an	tion] – Second lat Carnot theorem ermodynamic rela RMODYNAMIC cro and macro sta and classical distr n and thermodyna ELS rmodynamics-Par unctions-Extende es, liquids and s ECTROMETAL antities, Gibbs-Du- tial, Fugacity and ron equation. E ree energy of cell ORMATIONS Phase rule, evolution ication, precipitation	w of th – Clau ations. S te – th ibution tition d Lagno olids- LURC uhem d Activ reaction tion of ion, eu cansitic	ermod sius in ermod n func coperti funct rangia Many FY equati vity, F metallo on.	lynam nequal 9+6= ynami tion an es. 9+6= ions-V n meth z-body 9+6= on, Qi ree en urgy c 9+6= diagr	ics – ity – = 15 c id = 15 ods- and = 15 uasi- ergy cells, = 15 ams,
to a control v Heat engines Concept of e UNIT –II Statistical the probability – their compar UNIT-III Boltzmann expansions-I Simulations polarisation UNIT-IV Ideal and ne Chemical ap diagram for Reversible C UNIT-V Unary, binar metastable p Thermodyna	volume – SF s – Refriger entropy – Pri FUNDAN ermodynam - B.E, F.D ar ison – M.B STATIST statistics- Brownian dy in different models. SOLUTIC on-ideal sol proach to se binary all Galvanic cell PHASE E ry and multi hase diagram	EE equations [steady flow energy equa ators and heat pumps – Carnot cycle – nciple of increase of entropy – Basic the IENTALS OF STATISTICAL THER ics- energy states and energy level – min and M B statistics – entropy - B.E, F.D distribution function – partition function ICAL THERMODYNAMICS MOD Ensembles- Classical statistical the mamics- Lagrangian and Hamiltonian f t ensembles-Force fields for molecule DN THERMODYNAMICS AND ELI utions, Partial and integral molar qua plutions, Sievert's law, Chemical poter oy systems, Phase diagrams, Clapey s, Relationship between cell EMF and f QUILIBRIA AND PHASE TRANSF component systems, Phase equilibria, I ns, calculation of phase diagrams. se transformations: Melting and solidifi- l order disorder transformations. First an	tion] – Second lat Carnot theorem ermodynamic rela RMODYNAMIC cro and macro sta and classical distr n and thermodyna ELS rmodynamics-Par unctions-Extende es, liquids and s ECTROMETAL antities, Gibbs-Du- tial, Fugacity and ron equation. E ree energy of cell ORMATIONS Phase rule, evolution ication, precipitat	w of th – Clau ations. S te – th ibution tition d Lagn olids- LURC uhem d Activ clectron reaction tion of ion, eu cansitic OTAL	ermod sius in ermod n func coperti funct rangia Many FY equati vity, F metallo on.	lynam nequal 9+6= ynami tion an es. 9+6= ions-V n meth z-body 9+6= on, Qi ree en urgy c 9+6= diagr	ics – ity – = 15 c id = 15 ods- and = 15 uasi- ergy cells, = 15 ams,

- 1. P.K.Nag, "Basic and Applied Engineering Thermodynamics". Tata McGraw Hill, New Delhi, 2012.
- 2. Herbert Goldstein "Classical Mechanics" II edition, Narosa Publishing House.

REFERENCES:

1. Rogers and Mayhew, "Engineering Thermodynamics – Work and Heat Transfer", Addision Wesley, New Delhi, 1999.

- 2. Eastop and McConkey, "Applied Thermodynamics", Addision Wesley, New Delhi, 1999.
- 3. K.C. Gupta, "Classical Mechanics" New Age Publishers.
- 4. B.K.Sankar, "Thermal Engineering", Tata McGraw Hill, New Delhi, 1998.

E-REFERENCES:

www.nptel.ac.in

www.mit.edu

COURSE CODE	XNT506A	L	Т	Р	С	
COURSE NAME	EMERGING TOOLS FOR BIOLOGY AND MEDICINE:	2	0	1	3	
PREREQUISITE	BIOLOGY FOR ENGINEERS	L	Т	Р	Н	
C:P:A	1.5:0.5:1	2	0	2	4	
	COURSE OUTCOME	DOM	AIN	LEV	EL	
CO1	<i>Explain</i> and <i>Discuss</i> the nanoscale paradigm	Cogni		Und	erstanding	
	in terms of properties at the nanoscale dimension	Affect		Rece	eiving	
CO2	<i>Identify</i> and <i>Build</i> the current	Cogni	tive	Und	erstanding	
	nanotechnology solutions for selected biological issue		omotor	Man	ipulation	
CO3	<i>Read</i> and <i>Present</i> current nanotechnology	Cogni	tive	Rece	eiving	
	literature applied to a particular problem	Affect	tive		lying	
	domain				onding	
CO4	Apply key concepts in materials science,	Cogni			embering	
	chemistry, physics, biology and engineering to	Affect	live		nalizing	
	the field of nanotechnology	Carri	4	Value Understanding		
CO5	<i>Identify</i> career paths and <i>Acquire</i> knowledge on advanced biomedical stream	Cogni Affect		and applying		
UNIT I Nanote	echnology in Biology and Medicine:The New Fi		live	anu	6+6	
	r Nanomachines and the Building Blocks of Life		v Genera	tion o		
	naterials for a New Generation of Medicin					
1	ard a Synthetic Cell - Peptoids - Peptide Nuc	-				
Biomaterials: Mussel	-Adhesive Proteins					
	protein-Based Nanodevices in Drug Design and				6+6	
	for Molecular Targeting – Assembly of Three					
	ligodeoxynucleotide Preparation: Cloning- Expre					
	Device Assembly - Applications of Ordered	Arrays	in Smai	t Dru	g Design -	
Molecular Payloads.	D-4-			1	(.(
	um Dots			. 1'	6+6	
Specificity, and Toxi mph Node and Vaso	ber ties-Synthesis - Solubilization, and Biococity, Applications in Biology and Medicine : Cecular Mapping - Tumor Targeting and Imaging ingle Virus Detection.	llular Iı	naging a	nd Tra	acking - Ly	
UNIT IV Single-	Molecule Detection Techniques for Monitoring	g Cellul	ar		6+6	
	y at the Nanoscale Level					
1	for Single-Molecule Detection :Signal-to-Noise		and Sign	al-to-l	Background	
	he Signal Actually Originates from a Single Mole		27	T . 1	1.0.	
	For Single-Molecule Detection: Laser-Induced Fl			ar-Fiel	d Scanning	
	Surface-Enhanced RamanSpectroscopy - Optical			n Com	formationa	
	ed and Living Cells - Molecular Motors- Cell Signels Monitoring Reactions and Chemical Consti				iormationa.	
Dynamics- Ion Cham	icis -, monitoring reactions and Chemical Collsti		n Living	CEIIS		

UNIT-V	Nanotube-Based Membra	ane Systems			6+6
Materials	and Methods of Nanotube- E	Based Membrane Sy	stems -Templa	te Synthesis	- Biochemical
	s with Nanotube Membranes				
	parations Using Molecular F	0			
	: Ligand-Gated Membrane		ed Conical	Nanotube I	Membranes –
Electrome	chanically Gated Conical Nand		-	11	
	LECTURE	TUTORIAL	LAB	TOTA	L
	30	0	30	60	
TEXT					
1. Na	notechnology In Biology And	Medicine, Methods	, Devices, and	Applications,	by Tuan Vo-
Dir					
REFERE					
	andbook of Nanostructured Ma	aterials & Nanotechn	ology," Hari S	Singh Nalwa	(Ed.),
	ademic Press, 2000.				
	anotechnology: Basic Science	& Engineering Tech	nologies," Mic	hael Wilson,	CRC Press,
	ndon, 2004.				
	rug Delivery: Engineering Prin	nciples for Drug Ther	aphy," M. Sal	zman, Oxford	l University
	ss, 2001.				
	rug Delivery & Targeting," A.				
	andbook of Nano and Molecul		• •		~~~
	anotechnology: Information Te				
	neraputic Micro and Nanotech	nology," Tejal Desai	& Sangeeta Br	iatia, Springe	r.
E-REFER					
	<u>w.nptel.ac.in</u>				
	<u>w.mit.edu</u>				
	ab Experiments		Domain	Level	CO
	harecterization of Polymeroso		Affective	Applying	1
	ell array Farication on Silicon	Surface – Video	Affective	Applying	2
	ecture	. 1.		A 1 '	
	urface Functionalization of qua		Affective	Applying	3
	Iolecular detection using Rama		Affective	Applying	4
5. B	iocompatability of Carbon Nat	notube	Affective	Applying	5

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	
CO1	3	3	0	1	0	1	2	0	2	0	0	1	1	0	1 4
CO2	3	3	2	1	0	1	2	0	2	0	0	1	1	0	1 6
CO3	3	3	1	1	0	1	2	0	2	0	0	1	1	0	1 5
CO4	3	3	0	1	0	1	2	0	2	0	0	1	1	0	1 4

1-5 = 1, 6-10 = 2, 11-15 = 3

0 - No relation, 1 - Low relation, 2-Medium relation, 3- High relation

COURSE	CODE	XNT506B		L	Т	Р	С
COURSE NAME ENZYME TECHNOLOGY					0	1	3
PREREQU	JISITES	CHEMISTRY		L	Т	Р	H
C:P:A		2	0	2	4		
COURSE	OUTCOME	S (COs)	Domain	Lev	el		
CO1	To Classif Detection	Cognitive Affective		erstan eiving	0		
	2		Psychomotor	Perception			
CO2	To <i>Summ</i> enzyme ki	<i>arize</i> and <i>Measure</i> the parameters of netics.	Cognitive Psychomotor	Understanding Mechanism			
CO3	To <i>Identif</i> procedure	<i>y</i> and <i>Discuss</i> enzyme extraction s.	Cognitive Affective Psychomotor	Resp	lying ondir eptior	0	
CO4	To <i>Classi</i> immobiliz	<i>fy</i> and <i>Describe</i> enzyme ation.	Cognitive Affective Psychomotor	Understanding Receiving Perception			
CO5	To <i>Explai</i> various ap	Cognitive Affective Psychomotor	Und Resp	erstan oondir eptior	ding 1g		
UNIT-I	INTROD	UCTION TO ENZYMES				6 + 6	5

Classification of enzymes - Mechanisms of enzyme action, concept of active site and energetic of enzyme substrate complex formation - Specificity of enzyme action - Principles of catalysis - Collision theory, transition state theory - Role of entropy in catalysis - Types of enzymes - constitutive enzyme, induced enzymes, intracellular and extracellular enzymes - Application of enzymes in food, pharmaceutical and other industries - Enzymes for analytical and diagnostic applications.

UNIT –II	KINETICS OF ENZYME ACTION

6 + 6

Kinetics of single substrate reactions - Estimation of Michaelis -Menten parameters, Turnover number, Multi-substrate reactions, Mechanisms and kinetics - Types of inhibition, Kinetic models, Substrate and product inhibition - Allosteric regulation of enzymes, The Monod-Changeux-Wyman model and the Koshland-Nemethy-Filmer model - pH and temperature effect on enzyme and deactivation kinetics.

PURIFICATION AND CHARACTERIZATION OF ENZYMES FROM **UNIT-III** 6+6 NATURAL SOURCES

Methods of production of enzymes, Extraction of enzymes from various sources like plant, animal and

UNIT-I	V ENZYME	IMMOBILIZATION			6 + 6
encapsu	lation, cross-linkii	ng, covalent binding wit	e immobilization - adso th example - Advantages a tions of immobilized enzy	nd disadvantages	-
UNIT-V	BIOSENSO	DRS			6 + 6
in indus	tion to biosensors try, healthcare and TICALS:		design of enzyme electro	des , Biosensors a	pplicatior
S.NO		NAME OF 1	THE EXPERIMENT		CC
1 2 3 4 5 6 7 8 9 10 LECTU	Determination o Enzyme kinetics Effect of pH, ter Determination o Production of m Downstream pro Comparison of e Immobilization o Biosensors for d	nperature and substrate f stability of enzyme act crobial enzymes. cessing (Purification) o nzyme activity on imme	concentration on enzyme a tivity.		1 1 2 2 2 3 3 4 4 5
<u>11010</u> 30		0	30	60	
1. Chap London 2. Palm New De REFER 1. Jame Edition, 2. Blanc 3. Zuba	, 1st Edition, 1990 er, T., Enzymes: H elhi, 5th Edition, 2 EENCES: s Lee, M. (1992). 1992. ch, H. W. and Clar	Biochemistry Biotechno 201. Biochemical Engineerin k, D.S., Biochemical En	Technology, 1st Edition, O ology and Clinical Chemist ng, 1st Edition, Prentice-H ngineering, CRC Press, US V Hill Publishers, New Dell	try, East West Pre all Inc Publishers	ss Pvt Lte

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	0	0	1	2	2	2	0	0	1	1	0	1	0
CO2	1	1	0	1	2	1	1	1	0	1	1	0	2	0
CO3	0	0	1	1	1	1	1	1	0	1	1	0	1	0
CO4	1	1	2	1	2	1	2	1	0	1	1	0	2	0
CO5	1	1	2	1	1	1	2	1	0	1	1	0	2	0
Total	4	3	5	5	8	8	8	4	0	5	5	0	8	0
Scale	1	1	1	1	2	2	2	1	0	1	1	0	2	0

Table:1 Mapping of CO's with PO:

1-5 = 1, 6-10 = 2, 11-15 = 3

0-No relation, 1-Low relation, 2-Medium relation, 3- High relation

		COURSE CODE XNT506C					
COURSE N	AME	ELECTRIC AND ELECTRONI	C CIRCUITS	2	0	1	3
C:P:A		1.5:1.5:1		L	Т	Р	Н
PREREQUI	ISITE	BASIC ENGINEERING		2	0	2	4
COURSE O	LEVI	EL					
CO1		pasics of Theorem of electric	DOMAIN Cognitive	Under			
	circuits and in	<i>denify</i> how they can be tested.	Psycomotor	Reme			
			Affective	Mechanism set			
				Apply			
CO2		explain AC and DC Machines and	Cognitive	Under			
		t output characteristics of	Psycomotor	Reme			
	Machines		Affective	Mech		set	
CO3	D agagniza on	d Describe various Power plants	Cognitive	Apply Under			
0.05		tection switch gears	Affective	Reme			
		teetion switch gears	Allective	Apply			
CO4	Describe the l	basics of Semiconductor devices	Cognitive	Under			
		hey can be tested.	Psycomotor	Reme			
			Affective	Mech		set	
				Apply			
CO5	Describe the l	basic of digital electronics and	Cognitive	Understand			
	identify upto	electronics devices.	Psycomotor	Remember			
			Affective	Mechanism set			
				Apply			
UNIT I		ls of Electric Circuits		1	6+	-	
		rcuits, Single Phase A.C. Circuits: F	R.M.S. and Average	values	and fo	rm fa	actor,
		k Theorems (With A.C. & D.C)					
UNIT II	Electrical ma	chines and drives			6+6		
	-	nd construction AC machine and DC	-				
	e Characteristic	s of AC machine and DC Machine	e and Application-F	undame	ental o	of Ele	ectric
drives		eneration and Utilization:					
UNIT III		6+6					
-	•• •	er plants- Schematic arrangement,	-		-	-	
-	-	r-Relay, circuit breakers-Introductio	on of Transmission a	and Dis	stribut	ion, 1	l'aritt
UNIT IV	^	wer Generation evices and Circuits;			6.6		
		,			6+6		
		acteristics of Power diode, Zener di	ode, Transistor, Con	struction	on and	oper	ation
UNIT V		nd Current control device onics and Opto Electronic Devices	2		6+6		
	3	•		· -		1.	
with MSI Cin Elements of	rcuits: Flip Flop light and so	Circuits: Boolean Algebra and Map os, Counters and Registers: Logic Fa lid state physics, Display device Optoelectronic integrated circuit.	milies: Programmab	le Logi	ic Dev	ices:	

LAB EXPERIMENTS

Electrical :

1.Load characteristics of DC Machines.

2. Speed control of Dc Machines.

3.Load test on single phase Transformer

4. Study on Protection and switchgear devices.

5.Study on Renewable power plants(Bio Methanization ,Solar plant and wind mill)

6.Study and prove the Network theorems.

Electronics:

7.Study of Basic gates.

8.Half wave and full wave rectifiers

9.IV Characteristics of Silicon Controlled Rectifiers

10. Numerical Aperture

11.Loss measurement using optical fibre.

12. Differential Amplifiers.

TOTAL HOURS : 45 Hours

THEORY	TUTORIAL	PRACTICAL	TOTAL
30	0	30	60

TEXTBOOKS

- 1. Electric Circuits A.Chakrabarhty, Dhanipat Rai & Sons.
- 2. Network analysis N.C Jagan and C. Lakhminarayana, BS publications.
- 3. Electrical Machinery by Dr.P.S.Bimbhra
- 4. Elecric Drives N. K. DW, P. K. SEN
- 5. PHI Learning Pvt. Ltd., 01-Jan-1999 Technology & Engineering
- 6. Electronics Device and circuits by Jacob Milman and Christos C. Halkias, Tata Macgraw Hill Publication [Second Edition].
- 7. Utilization of Electric Energy by E. Openshaw Taylor, Orient Longman.

1.Digital Electronics: An Introduction to Theory and Practice- William Gothmann H2.PallabBhattcharya "semiconductor opto electronic devices" Prentice Hall of india Pvt Ltd, New Delhi, 2006

REFERENCE

1	Basic Electronics devices and Circuits by Mahesh B Patil, PHI Learning PVT. Ltd.
2.	Utilization of Electrical Power including Electric drives and Electric traction – by N. V. Suryanarayana, New Age International (P) Limited, Publishers, 1996

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	1	0	0	2	1	1	0	0	1	0	0	1	1
CO2	1	1	0	0	2	1	1	0	0	1	0	0	1	1
CO3	1	1	0	0	2	1	1	0	0	1	0	0	1	1
CO4	1	1	0	0	2	1	1	0	0	1	0	0	1	1
CO5	1	1	0	0	2	1	1	0	0	1	0	0	1	1
Total	5	5	0	0	10	5	5	0	0	5	0	0	5	5
1-5 = 1	1-5 = 1, 6-10 = 2, 11-15 = 3													
0 – No	0 - No relation, $1 - Low$ relation, 2-Medium relation, 3- High relation													

Table:1 Mapping of CO's with PO:

COURSE	CODE	XNT506D	L	Т	Р	С
COURSE	NAME	MECHANICAL SYSTEM DESIGN	2	0	1	3
PREREQU	JISITES	Nil	L	Т	Р	Н
C:P:A		2.75:1:0.25	2	0	2	4
COURSE	OUTCOME	S	DOM	[AIN	LE	VEL
C01	mechanica	nechanical systems and <i>solve</i> various l system elements in mathematical form.	Cogn Psycho	omotor	Apply: Guided respon	d se
CO2	their config	-	Cogn Psycho	omotor	Apply: Guided respon	1 se
CO3	cylinders a dimension	about cylinders, Design different type of and pressure vessels and <i>Solve</i> for different s of cylinders and pressure vessels.	Psycho	motor	, Appl Origin	ation
CO4	Find and Tell different configurations of belt conveyor system, Measure design parameters of belt conveyor system, solve for different conditions of material transportation system.Cognitive, PsychomotorUnders Cognitive, Psychomotor					
CO5	<i>Explain</i> a Mohr's cir	bout high energy ball mill <i>Identify sketch</i> cle for different complex loading conditions <i>e</i> stress value for different failure condition.	Cogn Psycho		Under , Appl Compl	standing ying,
UNIT I	MECHAN	NICAL SYSTEMS			6 +	-
Systems-Re	otational Sys	Basic elements of mechanical system – Sp tems–Energy storage elements	pring-Dar	nper-Ma		
UNIT II	/	DAMPER AND MASS –Inductance behavior of mechanical system	n elemer	nts_mode	6+	
elements-s		ries -springs in parallel-frequency response of			-	-
UNIT III		OF CYLINDERS AND PRESSURE VESSE			6+	
•	•	Thin and thick cylinders–design of hydraulic cylinders– Gasketed joints in cylindrical vessel	-	umatic	cynnaer	s– auto-
UNIT IV		OF BELT CONVEYER SYSTEM FOR MA		ı	6+	6
containeriza covered and	ation. Belt co d fabric ply b	sic principles – objectives of material has onveyors – Flat belt and troughed belt conveyor belts – belt tensions – conveyor pulleys – belt orizontal belt conveyors for frictional resistance	rs – capac idlers – te	city of co ension ta	onveyor ike-up s	– rubber
UNIT V Design of 1 physical va	NANOTE	CHNOLOGY AND MECHANICAL SYSTI synthesizing systems-High Energy Ball mills ition system –spin coating units-Design of I and DFMA.	EM DES	IGN Il Vapou	r deposi	tion and

LIST OF	EXPERIMENT	S		0	C O			
1	Observation of	mechanical system elements like spring	g, mass,		1			
	Damper and Sh	nock absorber.						
2	Design of sprir	ng and damper			2			
3	Exercise on Pre	essure Vessels Designing as per IS code			3			
4	Observation of	Hydraulic and Pneumatic system and it	ts components		3			
5	Observation of	Observation of specification of different type of material handling system						
6	Design of belt conveyor system							
7	Design of Ball	mill (nano particle synthesizer)			5			
8	Design of mole	ecular mechanical system components			5			
	LECTURE	TUTORIAL	PRACTICAL	TOTAL				
HOURS	30	0	30	60				
TEXT BO	OKS							
1. Bha	andari V.B. —D	esign of Machine Elementsl, Tata McG	raw Hill Pub. Co. L	.td.				
2. Juv	inal R.C, Funda	mentals of Machine Components Design	n, Wiley, India					
REFEREN	NCES							
1. Shig	ley J. E. and Mis	schke C.R., —Mechanical Engineering	Design ^I , McGraw I	Hill Pub. Co.				
2. M. F	F. Spotts, —Mecl	nanical Design Analysis ^I , Prentice Hall	-					
	± ·	hanical Design Analysis ^{II} , Prentice Hall G. College of Technology, Coimbatore	-					
3. Desi	± ·	G. College of Technology, Coimbatore	-					
3. Desi 4. Mula	gn Data—, P.S.C ani, I. G., —Belt	G. College of Technology, Coimbatore	Inc					
3. Desi 4. Mula	gn Data—, P.S.C ani, I. G., —Belt enko,∥Material H	G. College of Technology, Coimbatore Conveyors	Inc					

6. http://nptel.ac.in/courses/112106064/1#

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	3	1	3	1	1	1	2	3	3	-
CO2	3	3	2	3	3	1	3	1	1	1	3	3	3	-
CO3	3	3	2	3	3	1	3	1	1	1	2	3	3	-
CO4	3	3	2	3	3	1	3	1	1	1	2	3	3	-
CO5	3	3	2	3	3	1	3	1	1	1	3	3	3	-
CO6	3	3	1	3	3	2	3	2	3	3	2	3	3	-

 Table 1: COs versus POs mapping

1-5 = 1, 6-10 = 2, 11-15 = 3

		XNT506E			L	Τ	Р	С
COUSE NA	ME	MECHANICS	OF MATERIALS		2	0	1	3
PREREQU	ISITES	ENGINEERIN	G MECHANICS,	APPLIED	L	Т	Р	Η
		PHYSICS						
C:P:A		3:0:0			2	0	2	4
	DUTCOMES			DOMAIN			VEL	
CO1			Stress and Strain	Cognitive		Und	lerstan	d
CO2		formation in shaf		Cognitive			lyse	
CO3			and thick cylinders	Cognitive		App		
CO4		s for transverse le		Cognitive			luate	
CO5	<i>Calculate</i> t	he deflection of S	ymmetric beams	Cognitive		Eva	luate	
UNIT – I	STRESS	S AND STRAIN					(5+7
			Compression and She		ormat	ion of	simp	le and
compound b	ars – Therma	al Stress – Volum	netric strain – Elastic C	onstants.				
UNIT – II	TORSI	ON					(5+8
Torsion For	mulation Stre	ess – Deformation	n in hollow shaft and st	tepped shaft –de	flectio	n in sł	naft	
			gs – deflection of helic	* *				
UNIT – III			D THICK CYLINDE		- 1	0)
Stresses in	cylindrical s	hell – Longitudir	nal stress and circumfe	rential stress – I	Deforr	nation	in thi	in and
			mation in Spherical Sh					
UNIT – IV	BENDI	NG OF BEAMS	*					6+6
Beams – Tv			Simply supported and o	overhanging bear	ns – S	hear f		
			of Simple bending	88				
UNIT – V			METRIC BEAMS					6+6
			ope and deflection - D	ouble Integratio	n metł	nod –		
	d – Macaulay	_	ope and deneetion D		ii iiicti	iou .		110
LIST OF E								
			ength of a brick specim	nen				
		tensile strength of						
			given timber specimer	n				
			ength and tensile streng		ng			
			en mild steel specimen.		0			
	1 miniation of	torsion for a give	II IIIIu sittei specificii.					
5. Dete		0	1					
 5. Dete 6. Dete 	rmination of	modulus of ruptu	are through static bendi					
 5. Dete 6. Dete 7. Veri 	rmination of fication of M	modulus of ruptu axwell's reciprod	ure through static bendi cal theorem	ing test.	lectior	n test.		
 5. Dete 6. Dete 7. Veri 	rmination of fication of M	modulus of ruptu axwell's reciprod	ure through static bendi cal theorem is of given specimen by	ing test.			OTAL	
 5. Dete 6. Dete 7. Veri 	rmination of fication of M	modulus of ruptu axwell's reciproc Young's modulu	ure through static bendi cal theorem is of given specimen by	ing test. y conducting def			DTAL 60	4
 5. Dete 6. Dete 7. Veri 8. Dete 	rmination of fication of M	modulus of ruptu axwell's reciproc Young's modulu LECTU	ure through static bendi cal theorem as of given specimen by JRE TUTORIAL	ing test. y conducting def				
5. Dete 6. Dete 7. Veri 8. Dete HOURS TEXT	rmination of fication of M rmination of	modulus of ruptu axwell's reciproc Young's modulu LECTU 30	ure through static bendi cal theorem as of given specimen by JRE TUTORIAL	ing test. y conducting def PRACTICAI 30		T		
5. Dete 6. Dete 7. Veri 8. Dete HOURS TEXT 1.	rmination of fication of M rmination of K Bansal ,2	modulus of ruptu axwell's reciproc Young's modulu LECTU 30	ure through static bendi cal theorem is of given specimen by URE TUTORIAL 0	ing test. y conducting def PRACTICAI 30 Laxmi Publicatio		T		
5. Dete 6. Dete 7. Veri 8. Dete HOURS TEXT 1.	rmination of fication of M rmination of K Bansal , <i>1</i> Rajput , Stre	modulus of ruptu axwell's reciproc Young's modulu LECTU 30	ure through static bendi cal theorem us of given specimen by URE TUTORIAL 0 Strength of Materials, L	ing test. y conducting def PRACTICAI 30 Laxmi Publicatio		T		
5. Dete 6. Dete 7. Veri 8. Dete HOURS TEXT 1. Dr.R 2. R.K REFEREN	rmination of fication of M rmination of K Bansal ,4 Rajput , Stre CES · P Popov , "	modulus of ruptu axwell's reciproc Young's modulu LECTU 30 A Text Book of S ngth of Materials	ure through static bendi cal theorem us of given specimen by URE TUTORIAL 0 Strength of Materials, L	ing test. y conducting def PRACTICAL 30 Laxmi Publicatio Delhi, 2008.	n, 200	T (7.	60	<u>,</u>

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	3	1	3	1	1	1	2	3	3	-
CO2	3	3	2	3	3	1	3	1	1	1	3	3	3	-
CO3	3	3	2	3	3	1	3	1	1	1	2	3	3	-
CO4	3	3	2	3	3	1	3	1	1	1	2	3	3	-
CO5	3	3	2	3	3	1	3	1	1	1	3	3	3	-
CO6	3	3	1	3	3	2	3	2	3	3	2	3	3	-

Table 1: COs versus POs mapping

1-5 = 1, 6-10 = 2, 11-15 = 3

COURSE	E CODE	XGS507			L	Т	Р	С
COURSE	E NAME	BUSINESS COMMUNICA	ATION		1	0	0	1
PREREQ	QUISITE:	Communication Skill and E Knowledge	Basic Grammaı	•	L	Τ	Р	H
C:P:A		3:0:0			1	0	2*	3
COURSE	E OUTCON	AES		Domain	L	evel		
CO1	•	nd <i>Identify</i> different styles to ess communication.	various forms	Cognitive	R	eme	mber	
CO2		the proper tone of language re nd speaking in business comm	Cognitive	R	eme	mber		
CO3		knowledge on grammar and of in writing various forms of bu ication.	Cognitive	U	nder	stand		
CO4		<i>tinguish</i> between letters and memos and various ms of Business Communication.				naly	se	
CO5	-	pare business reports, minutes, proposals. Cognitive						
UNIT I	INTROI	DUCTION TO BUSINESS (COMMUNICAT	ΓΙΟΝ				10
Modern d	evelopment	s in the style of writing letter	s memos and rep	orts: block	lette	rs, se	mi bl	ock
letters, ful	ll block lette	ers, simplified letters etc.,						
UNIT II	USE OF	F LANGUAGE						10
		whone memos/ letters/ assignment	ents, art of writi	ng E-mail e	tc. fe	ature	es of	
UNIT III	GRAM	MAR						10
		l passive voice; the use of gra anguage used in these writing		, accuracy, e	exact	ness,	, the t	one
UNIT IV		OF REPORTS						5
The formation	at of various	s types of Reports/ projects etc	с.					
UNIT V		CSS WRITING						10
Writing B	usiness rep	orts, proposals and minutes.						
-	TURE	TUTORIAL	PRACT	TICAL		T	OTAI	L
	45	0	0				45	
TEXT BO	OOKS	· · · ·						
	Third Edit	K S, Communicating in Busin		•				vt.
1. https://i 2.http://co	ERENCES is.muni.cz/e	el/1456/jaro2014/MPV_COM.				nicat	ion.pc	lf

SYLLABUS

SEMESTER - VI

COUR	SE CODE	XTQ601			L	Т	Р	С		
COUR	SE NAME	TOTAL QUALITY MANAG	EMENT		3	0	0	3		
PRERI	EQUISITE	Nil			L	Т	Р	Н		
C:P:A		3:0:0			3	0	0	3		
COUR	SE OUTCON	MES		Dom	ain	Leve	el			
CO1	<i>List</i> and <i>Exp</i> and its limita	<i>lain</i> the basic concepts of total quations.	ality concepts	Cogn	itive		ember erstand	-		
CO2		<i>Explain</i> the Customer satisfaction supplier selection and appraise th ciple.		Cogn	itive		yzing, ıating			
CO3	Explain and	Apply the Statistical Process Com	trol Tools.	Cogn	itive	Unde Appl	erstandi ing	ng,		
CO4		cplain the different TQM tools an	d their	Cogn	itive	Reme	emberi			
CO5	significance. <i>Explain</i> the i	mportance aspects of different qu	ality systems	Cogn	itive		erstandi erstand	<u> </u>		
UNIT I	INTRODU	• • •	unty systems.	Cogn		Und	-istain	9		
planning UNIT I Customa – Perfor – Kaize Relation UNIT I The sev Populati Concept UNIT I Benchm	g – Deming phi TQM PRIN er satisfaction er retention – H mance appraisa on – Supplier ship developm II STATISTI en tools of qu on and sample of six sigma – V TQM TO arking – Reaso	 Customer perception of qua Employee involvement – Motivat al – Benefits – Continuous proces partnership – Partnering – Sor ent – Performance measures – Ba CAL PROCESS CONTROL (S ality – Statistical fundamentals – Normal curve – Control charts New seven management tools. DLS ons to benchmark – Benchmarking 	ementation lity – Customer ion, empowerme is improvement – urcing – Supplia isic concepts – St spec) – Measures of c for variables and g process – Quali	comp nt, tea - Juran er sele trategy eentral d attrib	laints ms, rec trilogy cction - - Perfe tenden putes -	 Serv ognitic PDS Supportance Cy and Process Deployn 	ice qu on and SA cyc olier ra ce meas l dispens s capa	9 ality – reward le – 5S atting – sure. 9 rsion – bility – 9 QFD) –		
Mainten	ance (TPM) –	QFD process – Benefits – Ta Concept – Improvement needs – SYSTEMS				– Tota	al Proo	ductive		
Need for Implement requirement	UNIT VQUALITY SYSTEMS9Need for ISO 9000 and other quality systems – ISO 9000:2000 quality system – Elements – Implementation of quality system – Documentation – Quality auditing – TS 16949 – ISO 14000 –Concept, requirements and benefits.9									
LE	CTURE	TUTORIAL	PRACT		L		TOT			
TEXT I	45 300KS	0	0)			45	•		
 1.Dale H. Besterfiled, et. Al. "Total Quality Management", New Delhi, Pearson Education, Inc 2007. 2.James R. Evans and William M. Lidsay, "The Management and Control of Quality", 5th Edition, South-Western, 2002. 										

REFERENCES

1. Feigenbaum, A.V., "Total Quality Management", McGraw Hill, 1991.

2. Oakland, J.S., "Total Quality Management", Butterworth Heineman, 1989.

3. Narayana V. and Sreenivasan, N.S., "Quality Management – Concepts and Tasks", New Age International, 1996.

4. Zeiri, "Total Quality Management for Engineers", Wood Head Publishers, 1991.

Table 1: Mapping of COs with POs

Mapping COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1										2
CO2							2			
CO3				2						
CO4			2	2				2		
CO5								2		2
Total										
Scaled										

0 - No relation

1- Low relation

2- Medium relation

3 – High relation

COURSE CO	ODE	XNT602		L	Т	Р	C
COURSE NA	AME	COLLOIDS AND SURFACES EN	GINEERING	3	0	1	4
C:P:A		2:1:0		L	Т	Р	H
PREREQUI	SITE	PHYSICS, CHEMISTRY AND MA SCIENCE	TERIAL	3	0	2	5
COURSE O	UTCON	IES	DOMAIN	LEV	'EL		
CO1	1	e and explain colloids and its	Cognitive Psychomotor	Rem App	lying	er	
CO2	<i>Under</i> interfa	estand and describe the properties of aces	Cognitive Psychomotor	Und Rem	erstai embe	er	se
					lying led re	espon	se
CO3 Unde interf		rstand and describe the properties of	Cognitive		erstai	nd	
			Psychomotor	App Guic	se		
-		<i>in</i> radiation and light scattering	Cognitive	Understand Remember			
	colloids and surfaces		Psychomotor	App	lying		se
CO5		<i>stand</i> and <i>explain</i> the Vander walls and its significance on colloids and es	Cognitive Psychomotor	Understand Remember Applying			
UNIT - I	The	olloidal state		Guic	led re	espon	<u>se</u> 9+
purification of	of colloi otion an tion.	ication of colloidal systems- Struct dal systems. Kinetic properties-The n nd translational diffusion- The ultra al properties	notion of particle	es in	liqui	d me e-Ro	dia
Surface and i	interfacia	n microscopy- Light scattering. Liqu al tensions- Adsorption and orientation preading- Monomolecular films.					
UNIT - III					9+		
•	. The so	e- Adsorption of gases and vapours on lid-liquid interface- Contact angles and tion.	1				
UNIT – IV	Static	and Dynamic Light Scattering and (tion Scattering	Other				9+
		ion of Radiation with Matter Scatter Experimental Aspects of Light Scatteri				-	

to Intra particle- Interference Effects and Structure of Particles Scattering by Large, Absorbing Particles - Dynamic Light Scattering.

UNIT – V	Vander Waals Forces	9+6

Introduction- Vander Waals Forces and Their Importance in Colloid and Surface Chemistry-Molecular Interactions and Power Laws- Molecular Origins and the Macroscopic Implications of Vander Waals Forces- Vander Waals Forces Between Large Particles and Over Large Distances.

Calculating Vander Waals Forces Between Macroscopic Bodies Theories of Vander Waals Forces Based on Bulk Properties Effect of the Medium on the Vander Waals Attraction.

List of Experiments

10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility.

TOTAL HOURS

Lecture	Tutorial	Practical	Total
45	0	30	75

TEXTBOOK

 "Principles of Colloids and Surface Chemistry, 1997 Third Edition by Paul. C. Hiemenz and Raj Rajagopalan, Marcel Dekker Publishers, Inc. 270 Madison Avenue, New York-10016."

REFERENCE and E-REFERENCE

1. NPTEL

Table 1 : COs versus POs mapping

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2	1	1	1	-	-	-	-	1			2	
CO2	2	1	1	1	-	-	-	-	1			2	
CO3	2	1	1	1	-	-	-	-	1			2	
CO4	2	1	1	1	-	-	-	-	1			2	
CO5	2	1	1	1	-	-	-	-	1			2	
Total	10	5	5	5	-	-	-	-	5			10	
	2	1	1	1	-	-	-	-	1			2	

1-5 →1, 6-10 → 2, 11-15 → 3

0 - No relation

1- Low relation

2- Medium relation

3- High relation

COURSE C	CODE	XNT603		L	Т	Р	C	
COURSE N	IAME	NANOMATERIALS FABRICATIO TECHNIQUES –II	ON	3	0	1	4	
C:P:A		2:0.75:0.25		L	Т	Р	Н	
PREREQU	ISITE	MATERIAL SCIENCE, APPLIED AND CHEMISTRY	PHYSICS	3	0	2	5	
COURSE C	OUTCON	MES	DOMAIN	LEVEL				
CO1	techni	<i>e</i> and <i>explain</i> different Self assembly ques and its principles for	Cognitive	Understand Remember				
	nanon	naterial fabrication	Psychomotor	Guio	lying led re	espon	ise	
~~~			Affective		anizir			
CO2		nd <i>Describe</i> self-assembly techniques nomaterial fabrication	Cognitive	Rem	erstan nembe	er		
			Psychomotor Affective	Guided respo				
CO3	Ein J	and <i>illustrate</i> the Nano fabrication						
COS		ques using photon beam	Cognitive Psychomotor					
			Affective	Guided response Organizing				
CO4	Label	and <i>explain</i> the Nanofabrication by	Cognitive	Understand Remember				
	Charg	ed Beams	Psychomotor				ise	
			Affective		anizir	-	150	
CO5		, <i>Outline</i> different types of naterial fabrication using Scanning	Cognitive	Und	erstan nembe	nd		
	probe	S	Psychomotor					
			Affective	Org	anizir	ng		
UNIT - I		Assembly -I	11 * 1 1 0		1	1	<u>9+</u>	
assembly in	solution	self-assembly - intermolecular and i: micelles - molecular self-assembly ir anochemistry: grinding and milling dev	n solution ii: bila					
UNIT – II		Assembly –II					9+.	
Self-assemb fabrication b	ly at inter by self as	rfaces - bio-mimetic self-assembly - me sembly – Nanostructured thin film fabre nodevices and nanomachines						
UNIT - III		fabrication by Photons					9+3	
Introduction	- Princ	iple of Optical Projection Lithography o UV - Extreme UV-X-ray - Optical	-		•		orte	

Lithography at Lowk1F	Factor - Off-Axis Illumi	nation (OAI) - Phase-Sh	ifting Mask (PSM) -
		ts - Design for Manufactu	e v
1 0		Interferometric Optical L	
Optical Lithography.		1	
	rication by Charged Be	ams	9+3
		Charged Particle Optics -	
		ering - Proximity Effect a	
		thography - Ion Scattering	
Processes-Sensitivity of	f Resist Materials -	Contrast of Resist Ma	terials - Resolution
Enhancement Processes	- Ion Sputtering and	Redeposition - Charged	Particles Projection
Lithography.			
UNIT – V Nanofabi	rication by Scanning Pr	robes	9+3
Introduction - Principles	of SPMs - Exposure of	Resists - Field Electron I	Emission - Exposure
of Resist by STM - E	Exposure of Resist by	NSOM- Oxidation Lithe	ography Additive
Nanofabrication -Field	-Induced Deposition	- Dip-Pen Nanolitho	graphy- Subtractive
Nanofabrication - Electr	ochemical Etching - Fiel	d-induced Decomposition	Thermomechanical
Indentation - Mechanical	Scratching - High-Throp	ughput SPL.	
List of Experiments			
1. Nano micelle fabri	rication by self assembly	,	
2. Nanocrytal synthe	esis by self assembly		
	ching of Copper on prede	efined pattern	
	• • •	erate resolution lithograph	V
	k transfer using screen p		•
	der synthesis by Ball Mi		
7. Nanowire fabrica	tion by self-assembly	C	
	cle synthesis by Electroc	hemical deposition	
	building with DNA Bric		
10. Oxide dot fabrica	tion using AFM		
11. SAM Fabrication	5		
12. Synthesis of lipos	sosmes/Niosomes		
13. Fullerene/Graphe	ene synthesis		
TOTAL HOURS	-		
Lecture	Tutorial	Practical	Total
45	0	15	60
45 TEXTBOOK	0	15	60
ТЕХТВООК			
<b>TEXTBOOK</b> 1. "Nanofabrication	– Principles, Capabilitie	s and Limits" Zheing Cui,	
TEXTBOOK         1. "Nanofabrication         2. "Self-assembly a		s and Limits" Zheing Cui,	
<b>TEXTBOOK</b> 1. "Nanofabrication	– Principles, Capabilitie	s and Limits" Zheing Cui,	
TEXTBOOK         1. "Nanofabrication         2. "Self-assembly a         REFERENCE	– Principles, Capabilitie and nanotechnology" Yo	s and Limits" Zheing Cui,	Springer ,2008
TEXTBOOK1. "Nanofabrication 2. "Self-assembly aREFERENCE3. "Introduction to Nan 4. "Encyclopedia of Na	– Principles, Capabilitie and nanotechnology" Yo notechnology," Frank J. C	s and Limits" Zheing Cui, on S. Lee ,Wiley,2008	Springer ,2008 , Wiley-IEEE, 2003.
TEXTBOOK1. "Nanofabrication 2. "Self-assembly aREFERENCE3. "Introduction to Nan 4. "Encyclopedia of Na Publishers, 2004.	– Principles, Capabilitie and nanotechnology" Yo notechnology," Frank J. C	s and Limits" Zheing Cui, on S. Lee ,Wiley,2008 Dwens & Charles P. Poole ology," H. S. Nalwa, Ame	Springer ,2008 , Wiley-IEEE, 2003.

# Table 1 : COs versus POs mapping

CO/PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PSO1	PSO2
CO1	3	3	1	1	2	1	1	1	1	1
CO2	3	3	1	1	2	1	1	1	1	1
CO3	3	3	1	1	2	1	1	1	1	1
CO4	3	3	1	1	2	1	1	1	1	1
CO5	3	3	1	1	2	1	1	1	1	1
Total	15	15	5	5	10	5	5	5	5	5
	3	3	1	1	2	1	1	1	1	1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

COURSE C	ODE	XNT604		L	Т	P	С
COURSE N	AME	NANOMATERIA CHARACTERIZA II	LS ATION TECHNIQUES –	3	1	1	5
PREREQUI	ISITES	NANOMATERIA CHARACTERIZA	LS ATION TECHNIQUES – I	L	Т	Р	Н
C:P:A		1.5:1.2:0.3		3	2	2	7
COURSE O	UTCOMES		DOMAIN LEVE				
CO1	Explain the conc	cepts Basic Micro	Cognitive		ders		
	scopes		Psychomotor		mer		
CO2		derstand Types of	Cognitive		ders		d,
		aracterise the nano	Psychomotor		ideo		
~~~	materials		a		spoi		
CO3	Determine an		Cognitive		ders		a,
Magnetic Resonance Spectroscop & Thermal analysis techniques			Psychomotor	Gu Se	ideo	1	
CO4		trate the Electrical	Cognitive		et ders	ton	4
C04	characterization		Psychomotor		echa		
	Magnetic character	-	rsycholiotor	1010	LIId	.11151	11
CO5	-	<i>cribe the</i> Optical	Cognitive	Understa			d.
000	characterization teo	1	Psychomotor				,
UNIT I	Microscopy techn	*		Mechanism 15+6+6			
modes, Anal UNIT II	ysis of micrographs //icroscopy techniq	, ues-II	ution, TEM instruments, Vario	15	+ 6 + nic	6	rce
Microscopy,	Scanning Probe Mi	icroscopy					
UNIT III	8	nce Spectroscopy	& Thermal analysis	15	+6+	6	
	techniques						
-	. •	-	scopy- Chemical shifts and J-of f X-nuclei (13C, 15N, 31P and	-	<u> </u>		ne-
	1		(DTA), Differential Scannin		· ·		trv
	mo-gravimetric ana	-	(DTT), Differential Seamin	5 C	uioi	mie	, cr y
UNIT IV	-	•	hniques & Magnetic	15	+6+	6	
	characterization t		1		-	-	
Magnetism,	sistivity in bulk ar	nd thin films, Hall Iethods, Measuring	effect, Magneto resistance- l g Magnetization by Force				
		ization techniques		15	+6+	6	
			spectroscopy, Raman spectr				ray
±	n spectroscopy						
TEXT							
McG	raw-Hill Pub. Co. L	.td., 2000.	ndamentals of molecular spec				
2 Ewer	n Smith & Geoffre	man Spectroscopy – A Pract	ical	Anr	oroa	ch,	

thin films and b Measuring Mag	opy Ex NMR sp Spectro g of the s roscopy mangan of Food tudies of etup fo bulk ma gnetizat he com cal Mea S LEO	splained: pectrosco oscopy: b e metallu y and Spe nate Solu d Quality on Therr or the me aterials tion by I nposition nal Prope Calorim asuremer CTURE 45	by Nei opy: by oy Pavia LABC rigical r ectroph tions y by UV mal and easurem Induction of a pr erties of hetry (D nts On I	il Jacobse James K a et al. DRATO microsco otometry V Spectro l Electric ent of th on metho iece of ti f Ammor SC)	en Keele Pe, a 7: Sp osco al pr e ele d re tr nium L L	er and o pectro pic M copert ectrica read u read u n Nitra terial	bserve and photomet lethods ies of NiC al resistive using ther ate and Po s using Co ACTICA 30	ric Analy D2 thin f ity and th mo grave Dlystyren	ysis of ilm using SEM hermo power of imetric analysis e by
Basic One and T MR Spectrosco Inderstanding N ntroduction to S The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental st Experimental st Measuring Mag To determine th (TGA). Analysis of the Differential Sca Nano mechanic	opy Ex NMR sp Spectro g of the s roscopy mangan of Food tudies of etup fo bulk ma gnetizat he com cal Mea S LEO	splained: pectrosco oscopy: b e metallu y and Spe nate Solu d Quality on Therr or the me aterials tion by I nposition nal Prope Calorim asuremer CTURE 45	by Nei opy: by oy Pavia LABC rigical r ectroph tions y by UV mal and easurem Induction of a pr erties of hetry (D nts On I	il Jacobse James K a et al. DRATO microsco otometry V Spectro l Electric tent of th on metho iece of ti f Ammor Different JTORIA 30	en Keele Pe, a 7: Sp osco al pr e ele d re tr nium L L	er and o pectro pic M copert ectrica read u read u n Nitra terial	bserve and photomet lethods ies of NiC al resistive using ther ate and Po s using Co ACTICA 30	ric Analy D2 thin f ity and th mo grave Dlystyren	ysis of ilm using SEM hermo power of imetric analysis e by ode AFM TAL HOURS
Basic One and T MR Spectrosco Inderstanding N ntroduction to S The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental st Experimental st Measuring Mag To determine th (TGA). Analysis of the Differential Sca Nano mechanic	opy Ex NMR sp Spectro g of the s roscopy nangan of Food tudies of etup fo bulk ma gnetizat he com anning cal Mea S	splained: pectrosco oscopy: b e metallu y and Spe nate Solu d Quality on Therr or the me aterials tion by I nposition nal Prope Calorim asuremer	by Nei opy: by y Pavia <u>LABC</u> urgical n ectroph titions y by UV mal and casurem Induction n of a pi erties of netry (D nts On l	il Jacobse James K a et al. DRATO microsco otometry V Spectro l Electric ent of th iece of ti f Ammor SC) Different	en Keele Pe, a v: Sp osco al pr e ele d re tr nium	er and o pectro pic M copert ectrica	bserve and photomet lethods ies of NiC al resistivit using ther ate and Po s using Co CTICA	ric Analy D2 thin f ity and th mo grave Dlystyren	ysis of ilm using SEM hermo power of imetric analysis e by ode AFM TAL HOURS
Basic One and T MR Spectrosco Inderstanding N ntroduction to S The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental st Experimental st Measuring Mag To determine th (TGA). Analysis of the Differential Sca Nano mechanic	opy Ex NMR sp Spectro g of the s roscopy nangan of Food tudies of etup fo bulk ma gnetizat he com anning cal Mea S	splained: pectrosco oscopy: b e metallu y and Spe nate Solu d Quality on Therr or the me aterials tion by I position nal Prope Calorim asuremer	by Nei opy: by y Pavia <u>LABC</u> urgical n ectroph titions y by UV mal and casurem Induction n of a pi erties of netry (D nts On l	il Jacobse James K a et al. DRATO microsco otometry V Spectro Electric ent of th on metho iece of ti f Ammor SC) Different	en Keele Pe, a v: Sp osco al pr e ele d re tr nium	er and o pectro pic M copert ectrica	bserve and photomet lethods ies of NiC il resistive using ther ate and Po s using Co	ric Analy D2 thin f ity and th mo grave Dlystyren	ysis of ilm using SEM nermo power of imetric analysis e by fode AFM
Basic One and T MR Spectrosco Inderstanding N ntroduction to S The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental st Experimental st Measuring Mag To determine th (TGA). Analysis of the Differential Sca Nano mechanic	opy Ex NMR sp Spectro g of the s roscopy nangan of Food tudies of etup fo bulk ma gnetizat he com	splained: pectrosco oscopy: b e metallu y and Spe nate Solu d Quality on Therr or the me aterials tion by I nposition nal Prope Calorim	by Nei opy: by <u>op Pavia</u> <u>LAB(</u> urgical n ectroph tions <u>y by UV</u> mal and asurem <u>Inductic</u> n of a pi erties of hetry (D	il Jacobse James K a et al. DRATO microsco otometry V Spectro l Electric ent of th on metho iece of ti f Ammor SC)	en Keele RY pe, a 7: Sp <u>osco</u> al pr e ele d d re tr	er and o pectro pic M copert corica	bserve and photomet lethods ies of NiC al resistivit	ric Analy D2 thin f ity and th mo grav	ysis of ilm using SEM hermo power of imetric analysis e by
Basic One and T MR Spectrosco Inderstanding N ntroduction to S The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental st thin films and b Measuring Mag To determine th (TGA). Analysis of the Differential Sca	opy Ex NMR sp Spectro g of the s roscopy nangan of Food tudies of etup fo bulk ma gnetizat he com	splained: pectrosco oscopy: b e metallu y and Spe nate Solu d Quality on Therr or the me aterials tion by I nposition nal Prope Calorim	by Nei opy: by <u>op Pavia</u> <u>LAB(</u> urgical n ectroph tions <u>y by UV</u> mal and asurem <u>Inductic</u> n of a pi erties of hetry (D	il Jacobse James K a et al. DRATO microsco otometry V Spectro l Electric ent of th on metho iece of ti f Ammor SC)	en Keele RY pe, a 7: Sp <u>osco</u> al pr e ele d d re tr	er and o pectro pic M copert corica	bserve and photomet lethods ies of NiC al resistivit	ric Analy D2 thin f ity and th mo grav	ysis of ilm using SEM hermo power of imetric analysis e by
Basic One and T MR Spectrosco Inderstanding N ntroduction to S The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental st thin films and b Measuring Mag To determine th (TGA).	opy Ex NMR sp Spectro g of the s roscopy nangan of Food tudies of etup fo bulk ma gnetizat he com	aplained: pectrosco pscopy: b e metallu y and Spe nate Solu d Quality on Therr or the me aterials tion by I pposition	by Nei opy: by oy Pavia LABC argical f ectroph ttions y by UV mal and casurem	il Jacobse y James K a et al. DRATO microsco otometry V Spectre l Electric ent of th on metho iece of ti	en Keele RY pe, a 7: Sp <u>osco</u> al pr e ele d re tr	er and o pectro pic M copert ectrica	bserve and photomet lethods ies of Ni(il resistivi	ric Analy D2 thin f ity and the mo grave	ysis of ilm using SEM hermo power of imetric analysis
Basic One and T MR Spectrosco Inderstanding N ntroduction to S The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental st thin films and b Measuring Mag To determine th	opy Ex NMR sp Spectro g of the s roscopy nangan of Food tudies of etup fo bulk ma gnetizat	e metallu y and Spe on Therr or the me aterials tion by I	by Nei opy: by oy Pavia <u>LABC</u> urgical n ectroph ttions y by UV mal and easurem	il Jacobse 7 James K a et al. DRATO DRATO DRATO Notometry V Spectro Electric ent of th	en Keele RY pe, a r: Sp osco al pr e ele d	and o pectro pic M opert ectrica	bserve and photomet lethods ies of NiC il resistivi	ric Analy	ysis of ilm using SEM hermo power of
Basic One and T IMR Spectrosco Inderstanding N ntroduction to S The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental st thin films and b Measuring Mag	opy Ex NMR sp Spectro g of the s roscopy nangan of Food tudies of etup fo bulk ma gnetizat	e metallu y and Spe on Therr or the me aterials tion by I	by Nei opy: by oy Pavia <u>LABC</u> urgical n ectroph ttions y by UV mal and easurem	il Jacobse 7 James K a et al. DRATO DRATO DRATO Notometry V Spectro Electric ent of th	en Keele RY pe, a r: Sp osco al pr e ele d	and o pectro pic M opert ectrica	bserve and photomet lethods ies of NiC il resistivi	ric Analy	ysis of ilm using SEM hermo power of
Basic One and T MR Spectrosco Inderstanding N ntroduction to S The functioning microstructures UV/VIS Spectro Potassium Pern Determination of Experimental st Experimental so thin films and b	opy Ex NMR sp Spectro g of the s roscopy nangan of Food tudies of etup fo bulk ma	e metallu y and Spe ate Solu d Quality on Therr or the me aterials	by Nei opy: by oy Pavia LABC urgical f ectroph ttions y by UV mal and casurem	il Jacobse y James K a et al. DRATO microsco otometry V Spectro l Electric ent of th	en Keele RY pe, a 7: Sp osco al pr e ele	and o pectro pic M	bserve and photomet lethods ies of Ni(ric Analy	ysis of ilm using SEM
Basic One and T VMR Spectrosco Jnderstanding N ntroduction to S The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental st	opy Ex NMR sp Spectro g of the s roscopy nangan of Food tudies o etup fo	splained: pectrosco oscopy: b e metallu y and Spo nate Solu d Quality on Therr or the me	by Nei opy: by oy Pavia LABC urgical r ectroph ttions y by UV mal and	il Jacobse y James K a et al. DRATO microsco otometry V Spectre l Electric	en Keele Pe, a 7: Sp Dsco al pr	and o pectro pic M	bserve and photomet lethods ies of Ni(ric Analy	ysis of ilm using SEM
Basic One and T MR Spectrosco Inderstanding N ntroduction to S The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st	opy Ex NMR sp Spectro g of the s roscopy nangan of Food tudies of	e metallu y and Spe ate Solu d Quality on Therr	by Nei opy: by oy Pavia LABC urgical r ectroph ttions y by UV mal and	il Jacobse y James K a et al. DRATO microsco otometry V Spectre l Electric	en Keele Pe, a 7: Sp Dsco al pr	and o pectro pic M	bserve and photomet lethods ies of Ni(ric Analy	ysis of ilm using SEM
Basic One and T VMR Spectrosco Inderstanding N ntroduction to S The functioning microstructures UV/VIS Spectro Potassium Pern Determination of	opy Ex NMR sp Spectro g of the s roscopy mangan of Food	e metallu y and Spe d Quality	by Nei opy: by oy Pavia <u>LAB(</u> urgical n ectroph tions y by UV	il Jacobse y James K a et al. DRATO microsco otometry V Spectro	en Keele <u>RY</u> pe, a /: Sp	and o pectro pic M	bserve and photomet lethods	ric Analy	ysis of
Basic One and T IMR Spectrosco Inderstanding N ntroduction to S The functioning microstructures UV/VIS Spectro Potassium Pern	opy Ex NMR sp Spectro g of the s roscopy nangan	splained: pectrosco oscopy: b e metallu y and Spe nate Solu	by Nei opy: by oy Pavia LABC urgical r ectroph ttions	il Jacobse 7 James K a et al. DRATO microsco otometry	en Keele RY pe, a 7: Sp	er and o pectro	bserve and	×	
Basic One and T JMR Spectrosco Jnderstanding N ntroduction to S The functioning microstructures UV/VIS Spectro	opy Ex NMR sp Spectro g of the s roscopy	splained: pectrosco oscopy: b e metallu y and Spo	by Nei opy: by oy Pavia <u>LAB(</u> urgical 1 ectroph	il Jacobse James k a et al. DRATO microsco	en Keele <u>RY</u> pe, a	er and o	bserve and	×	
Basic One and T JMR Spectrosco Jnderstanding N ntroduction to S The functioning	opy Ex NMR sp Spectro g of the	xplained: pectrosco oscopy: b	by Nei opy: by by Pavia LAB (il Jacobse James K a et al. DRATO	en Keele <u>RY</u>	er		d interpr	et the
Basic One and T NMR Spectrosco Jnderstanding N ntroduction to S	opy Ex NMR sp Spectro	xplained: pectrosco oscopy: b	by Nei opy: by by Pavia LAB (il Jacobse James K a et al. DRATO	en Keele <u>RY</u>	er		d interpr	et the
Basic One and T MR Spectrosco Jnderstanding N	opy Ex NMR s _l	xplained: pectrosco	by Nei opy: by by Pavia	il Jacobso James K a et al.	en Keele		lin		
Basic One and T MR Spectrosco Jnderstanding N	opy Ex NMR s _l	xplained: pectrosco	by Nei opy: by	il Jacobso James k	en		lin		
Basic One and T	opy Ex	xplained:	by Nei	il Jacobse	en		lin		
Basic One and T						liebro	lın		
	<u> </u>	· ·	1 3 13 /1		· •				
HNCHN									
					, 110	W 10	лк, 1900.		
. I. Steinfeld, M	Iolecul	es and R	adiatio	n Dover	Ne	w Vo	rk 1986		
. M. Hollas, M 2004.	lodern	Spectro	scopy ((Fourth I	Editi	on), .	John Wile	ey & So	ons, New York,
,		9						0 G	
,	ie. Mol	ecular S ¹	pectros	copy. W	liev-	Inter	science. N	lew Yorl	k. 1975.
	Spectra	1 01 Ato	ms and	I Moleci	ules	(Sec	ona Ean	on), Ox	lord University
	•			d Malaa	100	(500	and Editi	om) Om	fond University
						, 10			
	nethods, John V P. F. Bernath, Press, 2005. I. N. Levin E. B. Wilson Jr. New York, 1980 . M. Hollas, M.	 hethods, John Wiley & P. F. Bernath, Spectra Press, 2005. I. N. Levine, Mol E. B. Wilson Jr., J. C. J. New York, 1980 M. Hollas, Modern 	 nethods, John Wiley & Sons, 2 P. F. Bernath, Spectra of Ato Press, 2005. I. N. Levine, Molecular S E. B. Wilson Jr., J. C. Decius a New York, 1980 M. Hollas, Modern Spectro 	 nethods, John Wiley & Sons, 2008 P. F. Bernath, Spectra of Atoms and Press, 2005. I. N. Levine, Molecular Spectros E. B. Wilson Jr., J. C. Decius and P. C. New York, 1980 M. Hollas, Modern Spectroscopy (1990) 	 nethods, John Wiley & Sons, 2008 P. F. Bernath, Spectra of Atoms and Molecular Spectroscopy, Wile I. N. Levine, Molecular Spectroscopy, Wile E. B. Wilson Jr., J. C. Decius and P. C. Cross, New York, 1980 M. Hollas, Modern Spectroscopy (Fourth International Spectroscopy) 	 P. F. Bernath, Spectra of Atoms and Molecules Press, 2005. I. N. Levine, Molecular Spectroscopy, Wliey- E. B. Wilson Jr., J. C. Decius and P. C. Cross, Mol New York, 1980 M. Hollas, Modern Spectroscopy (Fourth Edition) 	 nethods, John Wiley & Sons, 2008 P. F. Bernath, Spectra of Atoms and Molecules (Seconses, 2005. I. N. Levine, Molecular Spectroscopy, Wliey-Interse. E. B. Wilson Jr., J. C. Decius and P. C. Cross, Molecula New York, 1980 M. Hollas, Modern Spectroscopy (Fourth Edition), J. 	 P. F. Bernath, Spectra of Atoms and Molecules (Second Editioness, 2005. I. N. Levine, Molecular Spectroscopy, Wliey-Interscience, N. E. B. Wilson Jr., J. C. Decius and P. C. Cross, Molecular Vibrationes New York, 1980 M. Hollas, Modern Spectroscopy (Fourth Edition), John Wilson 	 nethods, John Wiley & Sons, 2008 P. F. Bernath, Spectra of Atoms and Molecules (Second Edition), Oxpress, 2005. I. N. Levine, Molecular Spectroscopy, Wliey-Interscience, New Yorl E. B. Wilson Jr., J. C. Decius and P. C. Cross, Molecular Vibrations, Dov New York, 1980 M. Hollas, Modern Spectroscopy (Fourth Edition), John Wiley & So

CO/PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PSO1
CO1	1	2	2	1	1	1	1	1	2
CO2	1	2	2	1	1	1	1	1	2
CO3	1	2	2	1	1	1	1	1	2
CO4	1	2	2	1	1	1	1	1	2
CO5	1	2	2	1	1	1	1	1	2
Total	5	10	10	5	5	5	5	5	10
	1	2	2	1	1	1	1	1	2

1-5 = 1, 6-10 = 2, 11-15 = 3

COURSE	CODE	XNT605A		L	Т	Р	С		
COURSE	NAME	NANOPHYSICS		2	0	1	3		
C:P:A		2:0.5:0.5		L	Т	Р	Н		
PREREQ	UISITE	Applied Physics		2	0	2	4		
COURSE	OUTCON	IES	Domain		Lev	vel			
C01		d <i>explain</i> modern electronics	Cognitive Psychomotor	Unde Reme Appl Guide	embe ying	r	se		
CO2	Understar physics	nd and describe the solid state	Cognitive Psychomotor	Unde Reme Appl Guide	erstar embe ying	nd er			
CO3		<i>ad</i> and <i>describe</i> about two nal electron systems	Cognitive Psychomotor	Unde Reme Appl Guide	rstar embe ying	nd er			
CO4	<i>Explain</i> s	ingle electron tunnelling	Cognitive Psychomotor	Understand Remember Applying Guided respon			se		
CO5		<i>nd</i> and <i>explain</i> the principle and of sample growth and fabrication	Cognitive Psychomotor	Unde Reme Appl Guide	se				
UNIT - I	Mod	ern Electronics					6+6		
Road map nanophoto	of modern onics, and	electronics: From CMOS technolo quantum computations. Mesoscop and devices.		lectronics, spintroni					
UNIT – I	I Solid	State Physics		6+6					
and their scattering	ystal structures. Elec tive mass, doping.I and Layered Device heterostructures. Fie	Diffusi s Elect	ve t ronio	ransp c surf	oort, face				
UNIT - II	I Two-	dimensional electron systems		6+6					
Two-dimensional electron systems: general properties, magneto-conductan effect.Quantum Wires and Quantum Point Contacts: Diffusive quantum (conductance quantization), carbon nanotubes, quantum point conta Coherence: The Aharonov-Bohm effect, weak localization, resonant tunneli						wires, ballistic wires actsElectronic Phase			
UNIT – IV Single Electron tunnelling					6+6				

Single-Electron Tunneling: Coulomb blockade, single-electron tunneling devices, electron pumping, etc.Quantum Dots: Role of electron-electron interaction, conductance resonances, etc.Mesoscopic superconductivity: Josephson effect and its applications, hybrid systems, etc.New Directions in Electronics. Spintronics, Molecular Electronics, Nanomechanics, Nanophotonics, Devices for Quantum Computation. Experimental Aspects (will be presented by students and taken into account for the exam grade).

UNIT – V	Sample growth and fabrication	6+6
----------	-------------------------------	-----

Sample growth and fabrication: Single crystal growth; growth of layered structures, epitaxy liquid phase epitaxy (LPE), molecular chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), magnetron sputtering, etc. Lateral patterning (electron beam patterning) and characterization: bonding.Sample Electron microscopy SEM): (TEM, Tunneling microscopy (STM); Secondary ion mass spectroscopy (SIMS); X-ray spectroscopy; Elements of cryogenics.

List of Experiments

10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility.

TOTAL HOURS

IOINLIIOUKS			
Lecture	Tutorial	Practical	Total
30	0	30	60

TEXTBOOK

1. Handbook of Nanophysics: Principles and Methods: Volume 7 Hardcover – Import, 28 Sep 2010 by Klaus D. Sattler (Editor).

REFERENCE and E-REFERENCE

1. Nanophysics And Nanotechnology: An Introduction To Modern Concepts In Nanoscience Paperback, Wolf L. E.

2. nptel

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2	1	1	1	-	-	-	-	1			2	
CO2	2	1	1	1	-	-	-	-	1			2	
CO3	2	1	1	1	-	-	-	-	1			2	
CO4	2	1	1	1	-	-	-	-	1			2	
CO5	2	1	1	1	-	-	-	-	1			2	
Total	10	5	5	5	-	-	-	-	5			10	
	2	1	1	1	-	-	-	-	1			2	
1-5 →	1, 6-1	0 →	2, 1	1-15 -	→3		•		•	•	•	•	

Table 1 : COs versus POs mapping

0 - No relation 1- Low relation

2- Medium relation

3- High relation

COUR	SE CODE	XNT605B		L	Т	Р	С	
COUR	SE NAME	Molecular Assembler and molec Modelling	ular	2	0	1	3	
C:P:A		2:0.5:0.5		L	Т	Р	Н	
PRER	EQUISITE	Physics, Chemistry and Material Scie	nce	2	0	2	4	
COUR	SE OUTCO	MES	Domain	Level				
CO1	•	<i>explain the various</i> molecular theory and its principles	Cognitive Psychomotor	Unde Reme Appl Guid	embe ying	r		
			Affective	Orga		-	50	
CO2	Understand and describe the properties of Cognitive Cognitive				erstan embe	d		
			Psychomotor	Appl Guid	ed re	-	se	
001	T 7 1		Affective	Orga		<u> </u>		
CO3		<i>I</i> and <i>describe</i> the property analysis sical statistical mechanics	Cognitive Psychomotor Affective	Understand Remember Applying Guided response Organizing				
CO4	Investigate	and interpret the property optimization	Cognitive	Unde				
	0	es using molecular dyanamics	Psychomotor	Remember Applying Guided response				
			Affective	Orga		-		
CO5		and <i>explain</i> the Monte Carlo and its applications	Cognitive	Understand Remember				
			Psychomotor	Appl Guid	ed re	-	se	
UNIT ·	I Ma	lecular Simulation	Affective	Orga	mzm	·	9+6	
Fundan	nentals of m	olecular simulations -Ab-initio Methods Theory, Geometry Optimization, Vibratio		artree-1	Fock			
UNIT -		ssical statistical mechanics	2				9+6	
	Classical statistical mechanics, elementary concepts of temperature, ensen partition function, ensemble averaging, ergodicity.						ons,	
UNIT ·	- III Mo	lecular Dynamic Methodology					9+6	
	•	s Methodology - Force Field, Integrating onvention, Long Range Forces, Non Bond	-	iodic F	Box a	nd		
UNIT – IV Property optimization using molecular dynamics							9+6	

Temperature Control, Pressure Control, Estimation of Pure Component Properties, Radial Distribution Function; Molecular Dynamics Packages.

UNIT – V	Monte Carlo simulation	9+6
----------	------------------------	-----

Monte Carlo simulation - Monte Carlo integration, simple biasing methods, importance sampling, Markov chain, transition-probability matrix, detailed balance., Metropolis algorithm. Monte Carlo simulation in different ensembles, Monte Carlo simulation for polymer; Advanced applications.

List of Experiments

10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility.

TOTAL HOURS

Lecture	Tutorial	Practical	Total		
30	0	30	75		

TEXTBOOK

- 1. DaanFrenkel and BerendSmit, Understanding Molecular Simulation: From Algorithms to Applications, 2e, Academic Press, New York, 2002.
- 2. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

REFERENCE and E-REFERENCE

- 1. K. Binder, The Monte-Carlo Method in Condensed Matter Physics, Berlin : Springer-verlag, 1992.
- 2. D. A. McQuarrie, Statistical Mechanics, Harper and Row, New York, 1976.
- 3. Andrew R. Leach, Molecular modelling: principles and applications, 2e, Pearson, New Delhi, 2001
- 4. NPTEL

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2	2	2	2	-	-	-	-	1			1	1
CO2	2	2	2	2	-	-	_	-	1			1	1
CO3	2	2	2	2	-	-	-	-	1			1	1
CO4	2	2	2	2	-	-	-	-	1			1	1
CO5	2	2	2	2	-	-	-	-	1			1	1
Total	10	10	10	10	_	_	_	_	5			5	5
	2	2	2	2	-	-	-	-	1			1	1
$1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$													

Table 1 : COs versus POs mapping

0 - No relation

1- Low relation

2- Medium relation

3- High relation

COURSE (RSE CODE XNT605C						
COURSE N	NAME	NANO SENSORS AND NANO PRO	, NANO ACTUATORS BES	2	0	1	3
PREREQU	UISITES		d electronics engineering, and nano characterization	L	Т	Р	H
C:P:A		2:1:1	-	2 0 2 4			
COURSE (DUTCOMES		DOMAIN	LF	EVE	L	
CO1	characteristics,	sensor principles, functional classify the sensors sured.	Cognitive	Ur	nders	stan	Ł
CO2	<i>Explain</i> the types conditioning the si and their application	gnal and actuators	Cognitive	Ar	nders nalyz oply		l,
CO3	<i>Explain</i> , the micro for nano systems		Cognitive		nders nalyz		b
CO4	<i>Describe</i> and <i>Disc</i> their measurement		Cognitive	Ar	nders nalyz oply		1,
UNIT I	Transducer Basic	S		6+6=12 ers-sensor error			
systems UNIT II Sensors: Re conditioning carrier-elect	Sensors & Actuat sistive, capacitive, in g: Wheatstone bridge trostatic shields-phas Nano sensors and ty	ors nductive types – reac e-AC bridges. Ampli se sensitive detectors	and dynamic characteristics of etance type-electromagnetic ty ifiers: AC – instrumentation-in -induction type and reduction ition, components, design goa	6+ pe. Solati shie	6=1 Sign ion- ld	<mark>2</mark> al	ent
<u> </u>		tools for nano syste	ms	6+	6=1	2	
UNIT IIIMicromachining tools for nano systems6+6=12Nano probes: Combining top-down and bottom-up approaches, Micro- and nano machinin micro machined nano devices, Micro systems for single-molecule handling and modificatio manipulation of single DNA molecule, AFM: Imaging from DNA to cell motion, Nar tribology, control, fabrication, characterization6+6=12							on,
UNIT IV Sensors and Measurement					6=1	2	
Colorimetric sensors. Smart chemical sensing, Dendrimers: Synthesis, Chemical sensor, biosensor. Organic electronics. SAMS: Preparation, patterning, composition and applications TEXT							
Micromachines as tools for Nanotechnology, H. Fujita (Ed.), Springer International Edition, 2003 Nanomaterials Chemistry, Edited by C.N.R. Rao, A. Muller and A.K. Cheetham, Wiley-VCH,							
2008							

REFE	RENCES								
1. Davi	David J. Griffiths, Introduction to Quantum Mechanics (Cambridge University Press India;								
	/ed edition, 2016).								
				VCH Publications	, Nanotechnology				
	Life Sciences Ser								
				onal Edition, 2004					
				K. Vardan, A. Si	ivathanu Pillai, D.				
	rji, M.Dwivedi, L								
	o: The Essentials-	Understanding N	lanoscience and I	Nanotechnology, 7	Г. Pradeep, ТМН,				
2010									
e-refer									
	nptel.ac.in/cours								
-	as.ee.ic.ac.uk/peo	-	-						
	www.slideshare.n	-							
<u>http://v</u>	www.egr.msu.edu			sors.pdf					
	~ 1		ABORATORY						
1.		, actuator and pro		• ``					
2.		ristics (Photo dio	de/Thermistor/pl	nototransistor)					
3.	Actuator – Step								
4.	Amplifier chara								
5.	Signal Condition	ning							
6.	Bridge circuit								
7.	Gas sensing (Us	-							
8.	Colorimetry (Us	se sensor)							
9.	Probe for AFM								
10.		anoprobe (Simul	lation)						
REFE	RENCE BOOKS								
		LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS				
		30	0	30	60				

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9/10	PSO11/12	PSO1	PSO2	Total
CO1	1	2			2	1							6
CO2	1	2		2	1	2							8
CO3						2		2			1	1	6
CO4						2		2			1	1	6
Total													

1-5 = 1, 6-10 = 2, 11-15 = 3

 $0-\mbox{No}$ relation, $1-\mbox{Low}$ relation, 2-Medium relation, 3- High relation

COURSE	CODE	XNT605D		L	Т	Р	С		
COURSE	NAME	NANOROBOTICS		2	0	1	4		
C:P:A		2:0.5:0.5		L	Т	Р	Н		
PREREQ	UISITE	Basic Engineering ,		2	0	2	4		
COURSE	OUTCO	MES	Domain		Lev	el			
CO1		nd <i>explain</i> the manipulation and	Cognitive	Unde					
	assembly		Reme		r				
			Psychomotor	Appl Guide	-	snon	60		
			Affective	Orga		-	50		
CO2	Understa	and and <i>describe</i> types of	Cognitive	Unde		-			
		ipulation	U U	Reme	embe	r			
			Psychomotor	Appl	-				
				Guide		-	se		
000			Affective	Orga					
CO3		and and <i>describe</i> the sensing and fast systems and its principles	Cognitive	Unde Reme					
	maging	systems and its principles	Psychomotor	Appl		1			
				Guided response					
			Affective	Organizing					
CO4	-	nanorobotic assembly by CAD and	Cognitive	Understand					
	others			Remember					
			Psychomotor	Applying Guided response					
			Affective	Orga		-	se		
CO5	Understa	and and <i>explain</i> applications of	Cognitive	Unde					
000	nanorobo		e o ganti ve	Reme					
			Psychomotor						
				Guide			se		
			Affective	Orga	nizin	g			
UNIT - I		TUATION METHODS FOR NA	NOROBOTIC	9+6					
Interaction forces in nanomanipulation-electro kinetic based actuation- electro kinetic manipulation of Carbon nanotubes, Graphene, Nanoparticles & Biological entities-Laser based actuation-Optical tweezers manipulation of Biological entities & Chemical entities – Piezoelectric enabled actuators									
UNIT – I		9+6							
effects of	f fluid m ion by Sca	ased Nano manipulation-theory- Mode edium nanoparticles by Dielectropho anning probe-Reducing Atomic scale st	retic-Manipulatio	on of	CN	Γ- N	ano		
				9+6					

Art of compressive sensing-compressive sensing based fast imaging system- AFM based imaging – AFM based nanorobotic system enhanced by augmented reality, Hardware & software setup –Experiments on nano manipulation of nanoparticles UNIT – IV 9+6 **CAD & REAL- TIME NANOROBOTIC MANIPULATION & ASSEMBLY** CAD models of nanostructures - Automated manipulation of nanoparticles, nanorods and nanowires -Limitation of Augmented reality system- Real time faultdetection& correction- Real time random drift compensation with local scan-Onlinefault detection & correctionimplementation & experimental results . $\mathbf{UNIT} - \mathbf{V}$ NANOROBOTIC APPLICATIONS 9+6 Wireless capsules endoscopy images & video - Vibration energy harvesting nanoroboticcapsules robot in gastro-intestinal tract - Cooperative control design fornanorobots in drug delivery - cancer targeted therapy using nanorobots. **List of Experiments** 10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility. **TOTAL HOURS** Practical Total Lecture Tutorial 0 30 30 60 TEXTBOOK 1. Klaus D. Sattler, "Hand Book of Nanophysics: Nano medicine & Nanorobotics", CRC Press, 2010. **REFERENCE and E-REFERENCE** 1. . Mustapha Hamdi, Antoine Ferreira, "Design, Modeling and Characterization of Bio-Nanorobotic Systems", Springer, 2011.

Table 1	:	COs	versus	POs	mapping
---------	---	-----	--------	-----	---------

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	-	-	-	-	1			2	PO2
CO2	2	1	1	1	-	-	-	-	1			2	1
CO3	2	1	1	1	-	-	-	-	1			2	1
CO4	2	1	1	1	-	-	-	-	1			2	1
CO5	2	1	1	1	-	-	-	-	1			2	1
Total	10	5	5	5	_	_	_	_	5			10	1
	2	1	1	1	-	-	-	-	1			2	5
1-5 →	1, 6-1	0 →	2, 1	1-15 -	→3							•	

1- Low relation

2- Medium relation

COURSE CODE	XNT605E		L	Т	Р	С			
COURSE NAME	NANO OPTICS AND NANOPHOTO	NICS	2	0	1	3			
C:P:A	2:0.5:0.5		L	Т	Р	Н			
PREREQUISITE	Physics, Chemistry and Material Scien	nce	2	4					
COURSE OUTCO	COURSE OUTCOMES Domai								
CO1 <i>Know</i> and <i>u</i> optics	Cognitive Psychomotor	Unde Reme Appl Guide	embe ying ed re	id r spons	se				
	· · ·	Affective	Orga						
CO2 Understand various mate	and <i>describe</i> the optical properties of erials	Cognitive Psychomotor	Unde Reme Appl Guide	embe ying	r	se			
		Affective	Orga		-				
CO3 <i>Know</i> and nanpohotoni	1	Cognitive Psychomotor	Unde Reme Appl	embe ying	r				
		Affective	Guided response Organizing						
CO4 Understand	and <i>Explain</i> the nanophotonic devices	Cognitive	Understand Remember						
		Psychomotor	Applying Guided response						
	and <i>explain</i> nanobiophotonics and its	Affective Cognitive	Organizing Understand						
biomedical a	applications	Psychomotor	Reme Appl Guide	ying		se			
		Affective	Orga	nizin	-				
	o Optics I		1 0	11		<u>9+6</u>			
resolution and posit	retical foundations - Propagation and fo ion accuracy - Nanoscale optical micros ce control - Light emission and interaction	scopy - Near-fie	eld opt	ical	prob				
UNIT – II Nan	o Optics II					9+6			
Optical properties- Optical and electron microscopy- Light scattering. Liquid-gas and liquid- liquid interfaces-Surface and interfacial tensions- Adsorption and orientation at interfaces- Association colloids-micelle formation- Spreading- Monomolecular films.									
UNIT - III Basis of Nano photonics 9									
Optical near fields and effective interactions as a base for Nano photonics – Principles o operations of Nano photonic devices using optical near fields – Principles of nanofabrication									
operations of Nano using optical near fie		ds = 1 metples	of ha	nora	unca	tion			

Excitation energy transfer – Device operation: Nano photonic AND gate & Nano photonic OR gate – Interconnection with photonic devices – Room temperature operation. Adiabatic nanofabrication – Nondiabetic nanofabrication: near field optical CVD and near field photolithography – Self assembling method via optical near field interactions – Regulating the size and position of nanoparticles using size dependent resonance – Size controlled, position controlled and separation controlled alignment of nanoparticles.

UNIT – V Fundamentals of Nano-Bio photonics

9+6

Introduction – The cell: scale and constituents – Origin and optical contrast mechanisms – Classical contrast mechanisms: bright field, dark field, phase contrast and interferometric contrast – Fluorescence contrast mechanism – Nonlinear microscopy based on second harmonic generation and coherent anti-Stokes Raman scattering – Reduction of the observation volume – Far field methods: 4Pi microscopy, microscopy on a mirror and stimulated emission depletion – Near field methods.

List of Experiments

TOTAL HOURS			
Lecture	Tutorial	Practical	Total
30	0	30	75
	•	•	•

TEXTBOOK

1. Motoi chi Oht su, Ki yoshi Kobayashi, Tadashi Kawazoe, Takashi Yatsui and Makotoaruse, Principles of Nano photonics. New York, USA: CRC Press-Taylor & Francis Group, 2008

REFERENCE and E-REFERENCE

1. NPTEL

2. https://www.photonics.ethz.ch/en/our-range/education/courses/nanooptics.html

Table 1 : COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	PO2	PO3	PO4	PO2	1			2	
CO2	2	1	1	1	1	1	1	1	1			2	
CO3	2	1	1	1	1	1	1	1	1			2	
CO4	2	1	1	1	1	1	1	1	1			2	
CO5	2	1	1	1	1	1	1	1	1			2	
Total	10	5	5	5	1	1	1	1	5			10	
	2	1	1	1	5	5	5	5	1			2	

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No relation 1- Lo	ow relation 2- N	Aedium relation	3- High relation
-----------------------	------------------	-----------------	------------------

COUR	SE CODE	C	XNT606A		L	Т	Р	С
	SE NAMI		MOLECULAR ARCHITECTURE		2	0	1	3
C:P:A		_	2:0.5:0.5		L	Ť	P	Н
	EQUISITI	E	Physics, Chemistry and Material Scien	nce	2	0	2	4
	SE OUTC			Domain		Lev	zel	1
CO1	<i>Explain</i> t using Rar	Cognitive Psychomotor	Unde Reme Appl Guid	rstar embe ying	nd er	se		
CO2	<i>Understa</i> resonance	Cognitive Psychomotor	Unde Reme Appl Guid	embe ying	r	se		
CO3	CO3 Understand and explain the molecular structure using non linear spectroscopy Cognitive Psychomotor							se
CO4	<i>Explain</i> measuren		molecular dynamics using photon force t	Cognitive Psychomotor	Understand Remember Applying Guided response			
CO5			and <i>explain construction of micro</i> <i>c systems for molecular dynamics</i>	Cognitive Psychomotor Affective	Unde Reme Appl Guid	embe ying	r	se
UNIT ·			an and Fluorescence Spectroscopy Country Tunneling Microscopy	upled with				6+6
Fluores Combin Prospec	Introduction-Outline of STM Combined with Optical Spectroscopy - Raman Spectroscopy - Fluorescence Spectroscopy - Theoretical Approaches - Experimental Approaches - STM Combined with Raman Spectroscopy -STM Combined With Fluorescence Spectroscopy - Futur Prospects							ture
UNIT – II Near-Field Optical Imaging of Localized Plasmon Resonances in Metal Nanoparticles								6+6
Gold N Transm Field T Nanopa	ction- Nea anoparticle ission Met wo-Photon article Asse	r-F es - tho 1 E eml	ield Spectroscopic Method - Fundamenta Wavefunction Images of Plasmon Mode d - Ultrafast Time-Resolved Near-Field In scitation Images of Gold Nanorods - Enha blies and Surface Enhanced Raman Scatte	s of Gold Nanor maging of Gold anced Optical F ering	rod - N Nanoi	lear- ods-	Field Near nerica	al
UNIT - III Real Time Monitoring of Molecular Structure at Solid/Liquid Interfaces by Non-Linear Spectroscopy								6+6

Introduction -Sum Frequency Generation Spectroscopy-Brief Description of SFG-Origin of SFG Process-SFG Spectroscopy-Experimental Arrangement for SFG Measurements-Laser and Detection Systems-Spectroscopic Cells-Dependent Structure of Water at a Pt Electrode/Electrolyte Solution Interface- Photoinduced Surface Dynamics of CO Adsorbed on a Platinum - Interfacial Water Structure at Polyvinyl Alcohol (PVA) Gel/Quartz Interfaces Investigated by SFG Spectroscopy-Introduction-Results and Discussions- Hyper-Raman Spectroscopy-Selection Rules for Hyper-Raman Scattering-Enhancement of Hyper-Raman Scattering Intensity

UNIT – IV	Dynamic Analysis Using Photon Force Measurement6+					
Weak Force Me	asurements-Potential Analysis Method Using Photon Force M	leasurement-				
Measurement of	f the Hydrodynamic Interaction Force Acting between. Two T	rapped Particles				
Using the Poten	tial Analysis Method-Two-Beam Photon Force Measurement	System-Potential				
Analysis Metho	d for Hydrodynamic Force					
Measurement-T	rapping Potential Analysis-Kinetic Potential Analysis					
UNIT – V	Construction of Micro-Spectroscopic Systems and their	6+6				
	Application to the Detection of Molecular Dynamics in					
	a Small Domain					

Development of a Near-Infrared 35 fs Laser Microscope -Excitation Source-Detection of Higher Order Multiphoton Fluorescence from Organic-Crystals-Multiphoton Fluorescence Imaging with the Near-Infrared 35 fs Laser Microscope-Application of Fluorescence Correlation Spectroscopy to the Measurement of Local Temperature at a Small Area in Solution-Experimental System of FCS-The Principle of the Method of Measurement of Local Temperature Using FCS-Relaxation Dynamics of Non-Emissive State for Water-Soluble CdTe .Quantum Dots Measured by Using FCS-Samples and Analysis of Experimental Data Obtained with FCS - Non-Emissive Relaxation Dynamics in CdTe Quantum dots

List of Experiments

10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility.

Lecture	Tutorial	Practical	Total									
<u> </u>												
ТЕХТВООК												
1. Molecular Nano Dynamics by Hiroshi Fukumura, Masahiro Irie												
DEFEDENCE and E D	FFFDFNCF											

REFERENCE and E-REFERENCE

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	-	-	-	-	1			2	
CO2	2	1	1	1	-	-	-	-	1			2	
CO3	2	1	1	1	-	-	-	-	1			2	
CO4	2	1	1	1	-	-	-	-	1			2	
CO5	2	1	1	1	-	-	-	-	1			2	
Total	10	5	5	5	-	-	-	-	5			10	
	2	1	1	1	-	-	-	-	1			2	
1-5 →	1, 6-1	0 →	2, 1	1-15 -	→3	•	•	•					

0 - No relation 1- Low relation 2- Medium relation

COUR	SE CODE	XNT606B		L	Т	Р	C		
COUR	SE NAME	NANOBIOPHOTONICS FOR BIOTECHNOLOGY AND NANOM	EDICINE	2	0	1	3		
C:P:A		2:0.5:0.5		L	Т	Р	Н		
PRER	EQUISITE	Physics, Chemistry and Material Sci	ence	2	0	2	4		
COUR	SE OUTCON	AES		Level					
CO1		xplain basic concepts of nano	DomainCognitive	Unde					
		th biological molecules	Psychomotor	Remember Applying Guided response					
			Affective	Organizing					
CO2		and <i>describe</i> Second-Harmonic	Cognitive	Unde					
	Generation w	vith nano bio photonics	Psychomotor	Reme Apply Guide	ying ed re	spon	se		
			Affective	Orga					
CO3		and <i>describe</i> the infrared spectroscopic biological applications	Cognitive	Understand Remember					
			Psychomotor	Applying Guided response					
			Affective	Orga	nizin	g			
CO4		basic concepts of plasmonics and n biomedical field	Cognitive	Understand Remember					
			Psychomotor	Apply Guide	spon	se			
			Affective	Orga	-				
CO5		and <i>explain</i> the interferometric nd its applications in nanomedicine	Cognitive	Unde Reme					
			Psychomotor	Remember Applying Guided response			se		
			Affective	Orga		-	30		
UNIT ·	- I Nano	photonics vs bio molecules	· ·····	84		-	9+6		
		r Cell, Review of Electromagnetic Fields	s, Introduction to	o Nano	pho				
Tissue	Pathology: A	Clinical Perspective, Light Scattering in	Inhomogeneous	Media	ι.				
UNIT -	– II The	eory of Second-Harmonic Generation					9+6		
Optical		Harmonic Generation, Vision Restorati ence Interferometric Techniques for materials		-					
UNIT ·		ared Spectroscopic Imaging					9+6		
and Mo		ic Imaging: An Integrative Approach to I o probes for Coherence Imaging,. Second ems							

UNIT – IV	Plasmonic		9+6
Plasmonics: To	ward a New Paradigm for Light N	Ianipulation at the Nanoscal	e, Plasmon
Resonance Ener	gy Transfer Nano spectroscopy, l	Erythrocyte Nanoscale Flick	ering: A Marker for
Disease			
UNIT – V	Interferometric techniques		9+6
Super resolution	Far-Field Fluorescence Microsc	opy, Optical Low-Coherence	e Interferometric
Techniques for	Applications in Nanomedicine: In	troduction, Basic Theoretica	al Aspects of Low-
Coherence Inter	ferometry Functional Extensions	of OCT and Other LCI-Base	ed Techniques for
Applications in	Nanomedicine		
List of Experin	ients		
-	riments will be provided relev	ant to the five course out	come based on the
	aught and also feasibility.		
TOTAL HOUL		Dreatical	Total
Lecture	Tutorial	Practical	Total
30	0	30	75
TEXTBOOK			
REFERENCE	and E-REFERENCE		
1. <u>https://w</u>	ww.accessengineeringlibrary.com/l	browse/nanobiophotonics	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	-	-	-	-	1			2	
CO2	2	1	1	1	-	-	-	-	1			2	
CO3	2	1	1	1	-	-	-	-	1			2	
CO4	2	1	1	1	-	-	-	-	1			2	
CO5	2	1	1	1	-	-	-	-	1			2	
Total	10	5	5	5	-	-	-	-	5			10	
	2	1	1	1	-	-	-	-	1			2	

1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3

0 - No relation 1- Low relation

2- Medium relation

COURSE	CODE	XNT6)6C		L	Т	Р	С						
COURSE	NAME	Nano S	Spintronics		2	0	1	3						
PREREO	UISITES		d Physics		L	Т	Р	Н						
C:P:A		1.5:1.2			3	0	2	5						
	OUTCON				DOM	-	_	EVEL						
C01			cept of Introdu	ction to	Cognitive		-	derstand						
	Spintronic				Psychomo	tor	Re	member						
CO2	Explain a	and <i>und</i>	lerstand Transp	port in magnetic	Cognitive		Un	nderstand,						
	materials				Psychomo	tor	Guided							
~~~	-						_	sponse derstand,						
CO3														
	Psychomotor Gu se													
CO4Describe and Illustrate the Spin transfer torqueCognitiveUn														
Describe and Illustrate the Spin transfer torque Cognitive Of Psychomotor Mo														
CO5	Classify a	nd <i>Desc</i>	ribe the Spintro	onic Devices	Cognitive			derstand,						
	CO5Classify and Describe the Spintronic DevicesCognitivePsychomotorPsychomotor													
UNIT I	Introduc	ction to S	Spintronics					15						
				ins, Bloch Sphe	re, Spin-orbit	interact	ion,	exchange						
interaction.	Spin relaxa	tion; spir	relaxations in n	ano dots.										
UNIT II	Transpo	ort in ma	gnetic materials	1				15						
Magneto-tr				gneto resistance,	Giant magnet	o resista	ance,	Colossal						
Magneto re	esistance, Sp	intronic	materials.											
UNIT III								15						
				tates in low dimens omain walls in low		netic for	mulat	tion:						
UNIT IV	Spin tra		•	omani wans in iov	w unitensions			15						
	-		<b>A</b>	spin transfer dri	ven magnetizat	ion dyn	amics	-						
driven swit	ching of ma	agnetizati	on, domain wall	scattering. Spin i	njection: Spin	current,	Spin	injection,						
•		•	•	ct, Hetero structure	es for spintronic	devices	•							
UNIT V	Spintron							15						
<b>.</b>		<b>.</b>	·	ing devices (TMF es in proposal. In										
				ods of computing										
	U		LECTURE	TUTORIAL				DTAL						
Η	OURS		45		30			75						
	periments													
	•		•	int to the five cou	irse outcome b	ased on	the f	faculty						
	ght and als	o feasib	llity.											
TEXT BO Book refer														
REFERE														
		lanomagr	etism. Alberto P	. Guimaraes, Sprir	nger. 2009.									
	<b>A</b>	Ŭ		Edited by Etienne	<b>v</b>	T de								
LA	CHEISSER	IE, Dam	ien GIGNOUX, 1	Michel SCHLENK	KER, Springer, 2	2008.								
3. Ma	agnetism and	d Magnet	ic Materials, J. N	I. D. Coey, Cambr	idge University	Press. 2	009.							
	1 .	- U		dyopadhyay and N	· ·									

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

1-5  $\rightarrow$  1, 6-10  $\rightarrow$  2, 11-15  $\rightarrow$  3

0 - No relation 1- Low relation 2- Medium relation

COURSE	CODE	XNT606D				L	Т	Р	С	
COURSE	NAME	Nanomaterials nanoparticles for v	and water/ a	photo air detoxifi	catalytic ication	2	0	1	3	
PREREQU	JISITES	Nil				L	Т	Р	Н	
C:P:A		2.8:0.8:0.4				2	0	2	4	
COURSE	OUTCOMES		DOM	AIN		LF	EVE	L		
C01		ribe the aspects of	Cogni			Remember				
		bry and its features,		omotor		Perception				
	band gap and c	lifference between					-			
	conductors, sen	niconductors and								
	Insulators.									
CO2	<i>Explain</i> the fundation		Cogni			Ur	ders	stan	t	
	and different route		Psych	omotor		Se	t			
	various nanopartic									
CO3	-	us characterization	Cogni				ply			
	techniques, use an		Psych	omotor Aff	ective		echa		n	
	nanomaterials synt					Re	ceiv	e		
<u> </u>	help of these techn	1	Com	tivo		D.c	mer	nhai		
CO4	<i>Describe, Illustrat</i> Photo catalytic me		Cogni	uve		_	mer alys			
	pathways & kineti	-	Affect	tive			spoi			
CO5	<b>1 7</b>	sure the different	Cogni				-		•	
005		anomaterials for	Cogin			Remember Apply				
	detoxification of a		Psych	omotor			echa	nisr	n	
UNIT I		N TO NANOMATH	~			6+6				
Introduction		and nature, Nano th			oductory A				ree	
		Density of state in								
		lators and Semicond						ysic	al,	
		of nanoparticles – El			_					
		ROUTES FOR	S S	YNTHESI	S OF	6+	6			
	NANOMATERIAI									
		powders, Sol-Gel pr		1						
-		ng of Nano crystalli	-							
	-	stals by reduction, nolysis routes, Mic			synthesis;			icell		
	-	hesis; Photochemical		-	• ·					
		ATION TECHNIQ		sis, bynne	sis in supere	<b>6</b> +		ulu	,	
		erization Techniques		Vis- NIR -	absorption a			ectar	nce	
		ion studies – Bragg'								
Photoluminescence (PL) studies Fourier Transform Infrared Spectroscopy (FTIR) studies –Surface Enhanced Infrared spectroscopy, Resonance Raman Spectroscopy										
	o nanotechnology				- 1	-				
UNIT IV		TO HETEROGEN	OUS P	HOTOCA	TALYSIS	6+	6			
Introduction	n to heterogeneous p	hotocatalysis, Photo	catalyti	ic mechanis	sm, general j	oath	way	s &		
		cesses, Intrinsic, Phot			Reaction v	arial	oles,			
		pecific Water-borne				1				
UNIT V		<b>RIFICATION USI</b>				6+				
Introduction	n to nature and cause	e of toxicity in air an	nd water	r, Mechanis	sm of detoxi	fica	tion	of a	air/	
		122								

water by nanostructured catalysts;  $TiO_2$  as a semiconductor photocatalyst;  $TiO_2$  nanoparticles as benchmark catalyst for water purification:, Detoxification of air using nanocrystalline  $TiO_2$ , Treatment of wastewater/ air using nanoparticles such as CeO₂, ZnO, Nb₂O₅, Ta₂O₅ and other metal oxides

#### TEXT

1. V. Pokropivny, R. Lohmus, I. Hussainova A. Pokropivny and S. Vlassov "Introduction to nanomaterials and nanotechnology" Tartu University, Tallinn University, Frantsevich Institute for Problems of Materials Science of NASU.

2.Marcel Lahmani, Catherine Br'echignac and Philippe Houdy "Nanomaterials and Nanochemistry", Springer.

3.U. Heiz and U. Landman, "Nanocatalysis" Springer, 2006

4.Y. Gogotsi "Nanomaterials" Taylor and Francis, 2006

#### REFERENCES

1. K.W. Kolasinski, "Surface Science: Foundations of Catalysis and Nanoscience", Wiley, 2002.

2. G. Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, 2004.

3. Joel I. Gersten, "The Physics and Chemistry of Materials", Wiley, 2001.

4. A. S. Edelstein and R. C. Cammarata, "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Pub., 1998.

5. S.Yang and P.Shen: "Physics and Chemistry of Nanostructured Materials", Taylor & Francis, 2000.

6. G.A. Ozin and A.C. Arsenault, "Nanochemistry: Achemical approach to nanomaterials", Royal Society of Chemistry, 2005.

7. Physical Chemistry – Atkins Peter, Paula Julio

8. Simon Parsons, Advanced oxidation processes for water and wastewater treatment, IWA Publishing, 2004.

9. Thomas Oppenländer, Photochemical Purification of Water and Air: Advanced Oxidation Processes (AOPs): Principles, Reaction Mechanisms, Reactor Concepts, Wiley-VCH Publishing, Published by, 2003.

10. Vincenzo Belgiorno, Vincenzo Naddeo and Luigi Rizzo, Water, wastewater and soil treatment by Advanced Oxidation Processes (AOP), Lulu Enterprises, 2011.

#### 11. Harold J.Ratson, Odor and VOC control handbook, Newyork, Mcgraw-hill, 1998.

#### **E Resources** - MOOCs:

- 1. <u>http://www.mooc-list.com/course/nanochemistry-minor-saylororg</u>
- 2. <u>https://www.canvas.net/courses/exploring-nanochemistry</u>
- 3. http://freevideolectures.com/Course/2263/Nanotechnology-I
- 4. <u>http://freevideolectures.com/Course/3001/Nanotechnolgy-I</u>
- 5. http://freevideolectures.com/Course/3167/Advanced catalysis-II
- 6. <u>http://ocw.mit.edu/courses/nanochemistry</u>

	<b>LABORATORY</b>
1.	Synthesis of zirconium oxide nanomaterials
2.	Synthesis of cerium oxide nanomaterials
3.	Synthesis of niobium pentaoxide nanomaterials
4.	Synthesis of vanadium oxide nanomaterials

5.	Characterization of zirconium oxide nanomaterials using XRD, SEM, XPS, UV-Vis NIR
6.	Characterization of cerium oxide nanomaterials using XRD, SEM, XPS, UV-Vis NIR.
7.	Characterization of niobium pentaoxide nanomaterials using XRD, SEM, XPS, UV- Vis NIR
8.	Characterization of vanadium oxide nanomaterials using XRD, SEM, XPS, UV-Vis NIR
9.	Determination of photocatalytic efficiency of cerium oxide nanoparticles demonstrated by degradation of Methylene blue/ Rhodamine B dye
10.	Determination of photocatalytic efficiency of niobium pentaoxide nanoparticles demonstrated by degradation of Methylene blue/ Rhodamine B dye
11.	Determination of photocatalytic efficiency of vanadium oxide nanoparticles demonstrated by degradation of Methylene blue/ Rhodamine B dye
REFE	RENCE BOOKS
	Gaponenko, Optical Properties of semiconductor nanocrystals, Cambridge University 5, 1980.
2. W.G	addand, D.Brenner, S.Lysherski and G.J.Infrate(Eds.), Handbook of NanoScience, Engg. Fechnology, CRC Press, 2002.
3. K. B	arriham, D.D. Vvedensky, Low dimensional semiconductor structures: fundamental and ce applications, Cambridge University Press, 2001.
4. G. C	ao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial ege Press, 2004.
J.Georg	ge, Preparation of Thin Films, Marcel Dekker, Inc., New York. 2005
E Reso	urces - MOOCs:
1	/freevideolectures.com/Course/2380/NanoChemistry-LaboratoryTechniques
-	//freevideolectures.com/Course/2941/Chemistry-1A-General-Nanotechnology-Fall-2011
3.http://	/ocw.mit.edu/courses/chemistry/5-30/Nanotechnology-laboratory-techniques
	LECTURE   TUTORIAL   PRACTICAL   TOTAL HOURS

# Table 1: Mapping of CO's with PO's

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS 0 1	PSO 2
CO1	3	3	3	3	3	1	2	3	1	3	1	1	2	1
CO2	3	2	3	3	3	2	3	3	1	3		1	2	1
CO3	3	3	3	3	3	1	3	3	1	2	1	1	2	2
<b>CO4</b>	3		3	3	3	3	3	3	1	1		1	3	2
CO5	1	3		2	2	1	2		1	1		1	2	2
Total	13	11	12	14	14	8	13	12	5	10	2	5	11	8
Scale d Valu e	3	3	3	3	3	2	3	3	1	2	1	1	1	2

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

COURSE	CODE	XGS6		L	Т	Р	С		
COURSE	NAME	ACAD	EMIC WRITI	NG SKILLS		0	0	2	0
PREREQU	J <b>ISITE:</b>	Nil				L	Т	Р	Н
C:P:A		1.5:1.5	5:0			0	0	2*	2
COURSE	OUTCON	MES			Domain	Level			
CO1	<i>Identify</i> writing.		tures and types of	of paragraph	Cognitive		Re	memt	ber
CO2	<i>Compre</i> discours		he meaning and	principles of	Cognitive		Un	dersta	ınd
CO3	Adapts types of		ces of language	used in various	Psychomo	tor	Set	ţ	
CO4	<i>Constru</i> in writin		el ideas creative	ly and competence	Psychomo	tor	Or	iginat	ion
UNIT I	Introdu					6			
UNIT II	Discour	rse featu ce (conn	ectives) – précis	s writing – summari	zing				6
	– argume	ntative -		z – chronological – l	anguage usec	l in e	essay	s acco	
UNIT IV	Writing	5							12
Component	s of Good	l Essay -	- Essay writing j	practice <b>TUTORIAL</b>	PRACTIO	TAT		тот	' A T
			<u>LECTURE</u> 0	0	<b>PRACIN</b> 30	AL		<u>101</u> 3(	
Skills.Ca Bailey S.A STUDY	Yusa Koʻ mbridge U CADEMIC GUIDES	Universi C WRITI ) 01 Edi	ty Press 2012	an Wray, Yoko Yan ICAL GUIDE FOR					
• <u>http</u>	://www.w	<u>vorc.ac.u</u> academi		ademic%20writing riting.org/academic-	-	irces	goo/goo	<u>d-</u>	

### **SYLLABUS**

#### **SEMESTER – VII**

COURSE	CODE	XNT701A	L	Т	Р	С		
COURSE	NAME	MEMS AND NEMS fabrication	2	0	1	3		
PREREQU	JISITES	Nano materials Fabrication Techniques I and II	L	Т	Р	Н		
C:P:A		1.5:1.2:0.3	2	0	2	4		
COURSE	OUTCON	ЛЕS	DOM	AIN	L	EVEL		
CO1	Explain	Basic concept of MEMS and NEMS	Cognitive Psychome		Understand Remember			
CO2	Explain	and <i>understand</i> Fabrication Process	U	Cognitive Psychomotor				
CO3	<b>Determ</b> Therma	Cognitive Psychomo			derstand, ided t			
CO4	otor		derstand, chanism					
CO5	Classify fluidic S	and <i>Describe the</i> MOEMS and Micro ystems	Cognitive Psychomo		Understand, Mechanism			
UNIT I	Introdu	ction to MEMS and NEMS				6+6		
	EMS, RF N	ors and micro actuators- Mechanical MEMS, MEMS- Micro fluidic systems, Bio-Chemo de						
UNIT II		CATION PROCESS				6+6		
Bulk and sur Modelling e	face micro lements in	etural and sacrificial materials- Thin film dep machining- Wafer bonding and LIGA MEI mechanical, electrical systems- Basic Model lational and rotational pure mechanical syste	MS Assemblin ling elements i	g and Pa	ckagi	ng- Basic		
UNIT III	Mechar	nical and Thermal MEMS				6+6		
Principles of capacitive ef - MEMS Gy	f sensing an fects, pieze roscopes: §	nd actuation- Components: beam, cantilever, o element Measurements: strain pressure, fl gripping piezo actuators- Thermal sensors and tors, Bistable MEMS relays	low- MEMS G	yroscope	es: she			
UNIT IV	_	c and RF MEMS				6+6		
magnetic se	nsors and	roperties- Magnetic materials for MEMS actuators Review of RF based communic -II RF MEMS, varactors, tuner/filter- Reso	cation system-l	- Revie	w of	RF based		
UNIT V	MOEM					6+6		
	f MOEM	S and Micro fluidic Systems				010		
-		S and Micro fluidic Systems S technology- Applications Light modul micro mirror device- Optical switch, wa		-		cro lens,		

	LECTURE	TUTORIAL	PRACTICAL	TOTAL					
HOURS	30	0	30	60					
<b>TEXT BOOK</b>									
Book reference	Book reference								
1. MEMS and NEMS: Systems, Devices, and Structures-Sergey Edward Lyshevski									
2. Modeling MEMS and NEMS-John A. Pelesko, David H. Bernstein									

REFERENCES

 Table 1 : COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5
<u>1-5</u> →1	, 6-10	2, 11	-15	3→	•		•		•		

0 - No relation

- 1- Low relation
- 2- Medium relation

COURSE (	CODE	XNT701B		L	Т	Р	С		
COURSE N	NAME	Nano Coatin	ngs	2	0	1	3		
PREREQU	ISITES	Nanomateri I and II	al Fabrication Techniques	L	Т	Р	Н		
C:P:A		1.5:1.2:0.3		2	0	2	4		
COURSE (	DUTCON	MES		DOM	DOMAIN				
CO1	Explain	the basic con	cepts of coating	Cognitive		-	derstand member		
CO2	<i>Explain</i> Techniqu		stand The Special Coating	Cognitive Psychomo	otor	Gu	derstand, ided sponse		
CO3	Determ	ine And Desc	<i>ribe</i> Hard And Soft Coatings	Cognitive Psychomo			derstand, ided t		
CO4	otor		derstand, chanism						
CO5Classify And Describe The CharacterizationCognitiveUTechnique And Application Of Nano coatingPsychomotorM									
UNIT I	Concept	t Of Coating					6+6		
wettability UNIT II	Special	Coating Techn	-				6+6		
		ectroplating ,M tional verses na	letallic and non metallic coat mocoatings	tings, Galva	nizing,	advant	ages and		
		nd Soft Coating					6+6		
			ctron beam hardening, ion b s, antifriction and anti scratch co		tation,	electr	ophoretic		
UNIT IV	Surface	0	s, Radiation-Cured Coatings, M	letal Coating			6+6		
UNIT V							6.6		
Professiona	l Method		nique And Application Of Nat hing – Spraying-DIP Nanoo Irugs-		cess-N	anoco	6+6 ating for		
tribbiogleur	rippiicati	LECTURE	TUTORIAL	PRACTI	CAL	TC	DTAL		
HOUI	RS	30	0	30	-		60		
List of Lab	Experim	nents							
10 to 12 Fv	-	s will be prov o feasibility.	ided relevant to the five cour	rse outcome	based	on th	e faculty		
will be taug									
will be taug	OK	Abdol-Karin	n and A F Wahood						
will be taug <b>TEXT BOO</b> 1. Nanocoat	<b>DK</b> tings <i>By F</i>		n and A. F. Waheed s Makhlouf Tiginyanu (Wood	(head 2011)					

- 1. Coatings technology handbook marcel dekker, inc., by d. Satash, arthur a. Tracton
- 2. Surface engineering of metals, principles, equipments and technologies tadeusz burakowski, padeusg and weirzxhon, crc press, 1998 kwaadsteniet, marelize botes and j.manuel lopezromero.
- 3. Surface coatings for protection against wear edited by bg miller, woodhead publishing,-2006,caister academic press by t.eugene,michele de
- 4. Nanocoatings: principles and practice destech publications, inc., by steven abbott, nigel holmes
- 5. Nanocoatings and ultra-thin film a.s.h. makhlouf and i. Tiginyanu a volume in woodhead publishing series in metals and surface engineering

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

Table 1 : COs versus POs mapping

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE CODE	XNT701C			L	Т	Р	C	
COURSE NAME	Thin Film			2	0	1	3	
PREREQUISITES	Nanomateria	l Fabrication-	[	L	Т	Р	Н	
C:P:A	1.5:1.2:0.3			2	0	2	4	
COURSE OUTCOM	AES			DOM	<b>IAIN</b>	LE	VEL	
		HIN FILM DEP	OSITION	Cogniti		Under		
7	UES Introduction	1 CHARACTERIZ	ATION	Psychor Cogniti		Reme	mber rstand,	
-	UES Surface anal		ATION	Psycho		Guide	,	
						Respo		
		DSORPTION A	ND	Cogniti			rstand,	
DIFFUSIO	N IN THIN FILM	415		Psychon	motor	Guide Set	ea	
CO4 Describe an								
Psychomoto							anism rstand,	
	5 <i>Classify</i> and <i>Describe the</i> MODIFICATION OF Cognitive SURFACES AND FILMS Psychomotor							
	Inft [ THIN FILM DEPOSITION TECHNIQUES Introduction Cinetic theory of gases - Physical vapour deposition techniques – Physics and Chemistry							
RF, Magnetron, Ion beaenhanced CVD – Sprayless plating – DepositionUNIT IICHARACTAuger Electron spectronEnergy Dispersive Ana	y Pyrolysis – Sol on mechanisms FERIZATION 7 scopy – Photoele	Gel method – Sp FECHNIQUES ectron Spectrosco	bin and Dip coatin Surface analysis ppy – Secondary I	ng – Elect techniqu	tro platin ues Spectros	g and E 6+6 copy –	X-ray	
Scanning Electron Micr Ellipsometry – Fourier	1.4		1 V 1		•		-	
UNIT III ADSORP	<b>FION AND DIF</b>	FUSION IN TH	HIN FILMS			6+6		
Physisorption – Chemis phase transititions in ad diffusion –Grain Bound in thin films – Diffusion	lsorbate layers – dary Diffusion –	Adsorption kine Thin Film Diffus	tics – Desorption	techniqu	es. Funda	mental	s of	
UNIT IV STRESS I	IN THIN FILMS	S				6+6		
Origin of Thin film stre polycrystalline films – ( evolution – film stress a Scanning laser method.	Correlation betw and substrate cur	een film stress a	nd grain structure	- Mecha	anisms of	stress	ent –	
UNIT V MODIFIC	CATION OF SU	RFACES AND	FILMS			6+6		
Introduction – Laser ar Laser sources and Lase - Ion implantation ef modification - Ion beam	nd their Interaction frects in solids	ons with Surface ods - Thermal an – Energy loss	es – Laser modific alysis of Laser ar and structural	nnealing	- Laser si	urface a	lloying	
		LECTURE	TUTORIAL	PRAC	CTICAL	TC	DTAL	
IIOUDO								
HOURS	5	30	0		30		60	
TEXT BOOK	5	30	0		30			

1. Amy E. Wendt, Thin Films - High density Plasmas, Volume 27, Springer Publishers. (2006).
2Rointan F. Bunshah, Hand Book of Deposition technologies for Thin Films and coatings by Science, Technology and Applications ,Second Edition , Noyes Publications, (1993).
3. Milton Ohring, Materials Science of Thin films Published by Academic Press Limited(1991)
4. L.B. Freund and S.Suresh, Thin Film Materials, (2003).
5. Hans Luth, Solid surfaces, Interfaces and Thin Films' 4 th edition, Springer Publishers (2010).
6. Harald Ibach, Physics of Surfaces and Interfaces, Springer Publishers (2006).AM

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5
	, 6-10	2, 11-	15 3	,→	1		1	1	1		

1, 6-10 1-5 2, 11-15

0 - No relation

1- Low relation

2- Medium relation

COURSE CO	DDE	XNT701D		L	Т	P	С		
COURSE NA	ME	Nano Scaffo Techniques	lds and Characterization	2	0	1	3		
PREREQUIS	SITES			L	Т	Р	Н		
C:P:A		1.5:1.2:0.3		3	0	2	5		
COURSE OU	UTCON	<b>IES</b>		DOMA	IN	L	EVEL		
CO1	Explai	n Basic Concep	ot of nanoscaffolds	Cognitive Psychomo	tor		derstand nember		
CO2	Explai	n and unders	stand Methods and	Cognitive		Uno	derstand,		
	technic	jues Nano scat	ffolds	Psychomo	tor	Guided Response			
CO3									
	Techniques of Nanoscaffolds     Psychomotor								
CO4			ate the Application of	Cognitive			derstand,		
	NanoSc			Psychomo	tor	Mechanism			
CO5		-	e the future trends on	Cognitive		Understand			
	scaffol	ds		Psychomo	tor	Me	chanism		
UNIT I	INTRO	DUCTION					15		
conditions, pr strength and e	operties fficienc	-physical, measy.	evelopments, types of nano se chanical, chemical, biologica				folds-		
UNIT II			ORMATION	·			15		
drying, Self-a	ssembly	, Top-down a	and techniques- electro spinn pproach for tissue engineerir olithography, tissue fabricatio	ng, Bottom-u	ip appro	bach f	for tissue		
UNIT III			<b>FION TECHNIQUES</b>	on and asser	nory pro		15		
			ign,3D printed scaffolds, bio	printing tec	hnique	<u> </u>			
		-	rvation, SEM analysis.	printing too		11102	-		
UNIT IV		ICATIONS					15		
0			engineering, bone re growth- gnostic, therapeutic, and cos			•			
UNIT V			ON SCAFFOLDS	11			15		
		, nerve, skin, l ug delivery sy	bone, cartilage, recent resear stem.	ch on bone r	epair te	chno	logy-		
	-	LECTURE	TUTORIAL	PRACTIC	CAL	TC	DTAL		
HOURS		45		30			75		
TEXT BOOI									
		-	ering: The Scaffold Based A	pproach Lal	shmi S	. Nai	r,		
Subhabrata B		aryya, and Cat	o T. Laurencin.						
REFERENC									

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

1-5 →1, 6-10 →, 11-15 3→

0 - No relation 1- Low relation

2- Medium relation

COURSE (	CODE	XNT702		L	Р	C		
COURSE N	NAME	HEALTH AND SAFETY ISSUES O NANOTECHNOLOGY	F	3	0	0	3	
C:P:A		2:0:1		L	Т	Р	H	
PREREQU	ISITE	Physics, Chemistry and Material Sci	ence	3	0	0	3	
COURSE (	DUTCON	AES	DOMAIN	LEV	EL			
CO1	Relate the human h	he toxic effects of nanotechnology on health.	Cognitive	Understand Remember				
			Affective	Appl	У			
CO2	Analyse effects.	the various issues on environmental	Cognitive	Unde Reme				
			Affective	Appl	у			
CO3	Identify	suitable remedial measures	Cognitive	Unde Reme				
			Affective	Appl				
CO4		start-of-the pipe solution for mental issues based on nanomaterials	Cognitive	Understand				
			Affective	Remember Apply				
CO5	toxicity.	at problems on nanomaterials related to To frame a model policy on	Cognitive	Understand Remember				
	preventi	ng health hazards.	Affective	Apply				
UNIT - I	Risks of	f Nanomaterials					9	
		rials: Identification of Nano, Specific R d, Risk reduction, Standards, Safety,	-	-			-	
	ment: Ri	sessment sk assessment –Environmental Impact sk Assessment related to nanotechnol	-					
UNIT - III	Ecotox	icity of nanomaterials					9	
Ecotoxicity Insoluble Se	of nanor olids – Bi	naterials: Ecotoxicity - Inhalation depo o –persistence of Inhaled solid material. effects of SWCNT		-			e of	
UNIT – IV		icological tests					9	
Ecotoxicolo	Cotoxicological tests: Terms and parameters frequently used in eco ndpoint classifications - ecotoxicological approaches in the evaluation						s –	

ecotoxicity measurement for polychlorinated biphenyls - measurement of genotoxicity by Ames	
test	

****											
UNIT – V Legal aspe	cts and regulations on t	oxicity of nanomaterials	9								
Legal aspects and regul	ations on toxicity of na	nomaterials: The approace	ches to assessment of								
exposure to the nano	technology. Bioethics	and legal aspects of	potential health and								
environmental risks in na	anotechnology, FDA regi	ulation, cytotoxicity of na	noparticles								
List of Experiments											
10 to 12 Experiments wi	ll be provided relevant to	the five course outcome	based on the faculty								
will be taught and also fe	1		2								
TOTAL HOURS											
Lecture	Tutorial	Practical	Total								
45	0	0	45								
TEXT BOOK											
1. P.P. Simeonova,	N. Opopol and M.I. Lust	ter, "Nanotechnology - To	xicological Issues and								
Environmental Sa	afety", Springer 2006.		-								
2. Vinod Labhase	twar and Diandra	L. Leslie, "Biomedic	al Applications of								
nanotechnology"	, A John Willy & son Inc	2,NJ, USA, 2007 .									
3. Miyawaki, J.; et.	al Toxicity of Single-W.	Valled Carbon Nanohorns	. ACS Nano 2 (213–								
226) 2008.			`								
4. Hutchison, J. E.	Green Nanoscience: A J	Proactive Approach to Ac	lvancing Applications								
		ology. ACS Nano 2, (395–									
5. Mo-Tao Zhu et.a	al Comparative study of	pulmonary responses to	nano- and submicron-								
	in rats Toxicology, 21 (										
	•••	ent: Boon or Bane? Envir	onmental Science and								
2											

6.	Dracy J. Gentleman, Nano and Environment: Boon or Bane? Environmental Science	e an
	technology, 43 (5),P 1239,2009.	

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 1	PO1 2	PSO 1	PSO 2
CO1	-	-	-	-	-	-	2	-	1	1	1	1	1
CO2	-	-	-	-	-	-	2	-	1	1	1	1	1
CO3	-	-	-	-	-	-	2	-	1	1	1	1	1
CO4	-	-	-	-	-	-	2	-	1	1	1	1	1
CO5	-	-	-	-	-	-	2	-	1	1	1	1	1
Total							10		5	5	5	5	5
							2		1	1	1	1	1

1-5  $\rightarrow$  1, 6-10  $\rightarrow$  2, 11-15  $\rightarrow$  3

0 - No relation 1- Low relation

2- Medium relation

COURSE C	ODE	XNT703		L	Т	Р	С		
COURSE N	AME	NANOCOMPOSITES		3	1	1	5		
C:P:A		2:0.5:0.5		L	Т	Р	H		
PREREQUI	ISITE	Physics, Chemistry and Material Sci	ence	3	2	2	7		
COURSE O	UTCON	1ES	Domain	Level					
CO1	Define	and <i>explain</i> nano ceramics	Cognitive	Unde					
				Reme		r			
			Psychomotor	Appl	-				
				Guid		-	se		
			Affective	Orga					
CO2		tand and describe the fabrication,	Cognitive	Unde					
		ies and applications of metal based	<b>D</b>	Reme		r			
	nano co	omposites	Psychomotor	Appl					
		A 66 4	Guid		-	se			
CO3	List an	Affective Cognitive	Orga Unde		<u> </u>				
005	materia	<i>d understand</i> the design of super hard	Cognitive	Reme					
	materia	115	Psychomotor	Appl		1			
			r sycholiotor			snon	se		
			Affective	Guided response Organizing					
CO4	Unders	tand and explain the novel nano	Cognitive	Understand					
001	compos	—	cognicite	Remember					
	compos		Psychomotor						
				Guid	-	spon	se		
			Affective	Orga		-			
CO5	Unders	tand and describe the fabrication,	Cognitive	Unde					
	propert	ies and applications of polymer based		Reme	embe	r			
	nano co	omposites	Psychomotor	Appl	ying				
				Guid	ed re	spon	se		
			Affective	Orga	nizin	g			
UNIT - I	Nano (	Ceramics				9+	6+6		
		I-Ceramic composites, Different aspects and functionality	of their preparat	tion teo	chnic	luesa	nd		
UNIT – II	Metal	Based Nanocomposites				9+	6+6		
Metal-metal		posites, some simple preparation technic	ques and their ne	ew elee	ctrica	aland			
magnetic pro	perties			1					
UNIT - III		Of Super Hard Materials				9+	6+6		
Super hard n	ano com	posites, its designing and improvements	of mechanical p	ropert	ies.				
UNIT – IV		ind Of Nanocomposites				9+	6+6		
		etal nano composites, its designing and				• ,			
*	- ·	fractal based nano composites. Core-Sh	ell structured na	no cor	npos				
UNIT – V		er Based Nanocomposites	••				6+6		
Preparation a	and chara	cterization of diblock Copolymer based	nanocomposites	s; Poly	merc	arbo	n		

nanotubes based composites, their mechanical properties, and industrial possibilities.

#### List of Experiments

10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility.

#### **TOTAL HOURS**

I O III II II O O IIO			
Lecture	Tutorial	Practical	Total
45	30	30	105
TEVTDOOK			

#### TEXTBOOK

1. Nanocomposites Science and Technology - P. M. Ajayan, L.S. Schadler, P. V. Braun 2006.

#### **REFERENCE and E-REFERENCE**

- 1. Physical Properties of Carbon Nanotubes- R. Saito 1998.
- 2. Carbon Nanotubes (Carbon , Vol 33) M. Endo, S. Iijima, M.S. Dresselhaus 1997.
- 3. The search for novel, superhard materials- Stan Veprjek (Review Article) JVST A, 1999
- 4. Electromagnetic and magnetic properties of multi component metal oxides, hetero
- 5. Nanometer versus micrometer-sized particles-Christian Brosseau, Jamal Ben, Youssef,

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	-	-	-	-	1			2	1
CO2	2	1	1	1	-	-	-	-	1			2	1
CO3	2	1	1	1	-	_	_	_	1			2	1
CO4	2	1	1	1	_	-	-	-	1			2	1
CO5	2	1	1	1	-	-	-	-	1			2	1
Total	10	5	5	5	-	-	-	-	5			10	5
	2	1	1	1	_	-	-	_	1			2	1

Table 1 : COs versus POs mapping

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE C	ODE	XNT705A	L	Т	Р	С				
COURSE N	AME	Encapsulation Techniques	2	0	1	3				
PREREQUI	SITES		L	Т	Р	Н				
C:P:A		1.5:1.2:0.3	2	0	2	4				
COURSE O	UTCON	1ES	DOMA	AIN	L	EVEL				
CO1	Techni		Cognitive Psychomo	otor		derstand member				
CO2	<i>Explai</i> Technie	n and <i>understand</i> Nanoencapsulation ques	Cognitive Psychomo	tor	Gu	nderstand, nided esponse				
CO3	Techniques based on specialized equipments Psychomotor Gui									
CO4		be and Illustrate the Preparation Methods	Cognitive			derstand,				
	And Mechanisms Psychomotor Mec									
CO5	CO5Classify and Describe the Application Of Encapsulation TechniqueCognitive PsychomotorUnit Med									
UNIT I	-	uction Of Encapsulation Techniques	1 Sycholio		IVIC	chanism 6+6				
encapsulation	n technic Five nat	npounds-Objectives of encapsulation te ue-Classification of nano encapsulation te no encapsulation techniques	chniques: T	`op dow	n and	1 bottom				
Lipid formula by nanolipose Nano encapa caseins- Nat	ation nar omes-Er sulation nocapsul	ncapsulation Techniques-1 noencapsulation techniques-Encapsulation is capsulation by nanostructured lipid carriers techniques based on natural nanocarrie e formation by nanocrystals-nanocapsu y amylase nanostructures	s ers- Nanoca	apsule 1	forma	ation by				
UNIT III		ncapsulation Techniques-2				6+6				
electro spin nanospray dr Nano encaps	ning- N yer ulation t biopoly	technique based on specialized equipmer anocapsule formation by electro spray echniques based on biopolymer nanoparti	ving-nanoca	psule f capsule	orma form	tion by				
Other nan	oencapsi	on by complexation of biopolymer	on by j	protein	na	notubes-				
Nanocapsule Other nan nanoencapsu UNIT IV Lipid formul techniques b technique ba	oencapsulation by Preparation naroased on ased on	on by complexation of biopolymer alation techniques- Nanoencapsulation	nechanisms chanisms- echanisms-	- Nano Nano	encar	notubes- 6+6 osulation				

Media	cal application	n-food and n	utraceuticals application-co	smetics application	on-agricultural							
	applications-pharmaceutical application-electronic applications											
LECTURE TUTORIAL PRACTICAL TOTAL												
]	HOURS 30 0 30 60											
TEX	Т ВООК											
1.	Nanoencaps	ulation Techn	ologies for the Food and N	utraceutical Indus	tries edited							
	by Seid Mah	ndi Jafari										
2.	Encapsulatio	n Nanotechnolo	ogies-edited by Vikas Mittal									
3.	Encapsulatio	n technologies	for electronic applications- I	Haleh Ardebili and	Michael G.							
	Pecht											
REFI	ERENCES											

Table 1 : COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE C	ODE	XNT705B		L	Т	Р	С			
COURSE N	AME	Lithograph	y techniques	2	0	1	3			
PREREQUI	SITES			L	Т	Р	Н			
C:P:A		1.5:1.2:0.3		2	0	2	4			
COURSE O	UTCON	IES		DOM	IAIN	LE	VEL			
CO1	Explain	Basic Concept	Of Micro fabrication	Cognit Psycho		Under Reme				
	-	And <i>Unders</i> g Of Thin Film	stand Photolithography And	Cognit Psycho		Under Guide Respo				
		ne And Desc Optical Lithog	Cognit Psycho		Under Guide Set	rstand, ed				
	Describe And Illustrate The Electron BeamCognitiveUnderLithography (Ebl), X-Ray And Ion Beam LithographyPsychomotorMech									
CO5	Classify And Describe The Nanoimprint LithographyCognitiveUnderstandAnd Soft LithographyPsychomotorMechand									
UNIT I	Introduc	ction And Mic	ro fabrication			6+6				
UNIT II Lithography - – resolution at mask- Phase	<b>Photolit</b> Optical li nd limits shift mas	thography - dif of photolithog sk - Attenuate	<b>Patterning Of Thin Films</b> ferent modes - Optical projection raphy – Resolution enhancement d phase shift masks - alternation	techniques	s – Phot shift ma	tistage sc o mask- isks - O	Binary ff axis			
illumination- ( lithography	Optical pi	oximity correc	tion - Sub resolution assist feature	e enhancen	nent-Op	tical imm	nersion			
Mask less opti	ical proje	ction lithograph	ods - Maskless Optical Lithog ny – types, Advantages and Limita e ultraviolet lithography – Light so	tions – rec		omponen				
UNIT IV	Electron	Beam Lithog	raphy (Ebl), X-Ray And Ion Bea	am Lithog	raphy	6	+6			
parallel direct	t-write e- jection e-	beam systems beam lithograp	Electron sources and electron electron beam projection lithog hy (SCALPEL) - Projection redu m lithography-Focusing ion bea	raphy - S ction expo	Scatterin Disure wi	g with a th variab	angular			
	lists. AN	11 - 1011 Uca	in hulography rocusing for bee	U	upity	1011 pro	jection			
immersion lei lithography.			phy And Soft Lithography		upity		jection +6			
immersion ler lithography. UNIT V Nanoimprint Lithography lithography -	Nanoimj lithog Moulding DipPen	p <b>rint Lithogra</b> graphy (NI g/Replica mo	phy And Soft Lithography	ossing iting with	- UV h soft	6/-NIL- stamps-	+6 Soft Edge			
immersion ler lithography. UNIT V Nanoimprint Lithography	Nanoimj lithog Moulding DipPen yping.	p <b>rint Lithogra</b> graphy (NI g/Replica mo	<b>phy And Soft Lithography</b> L)- NIL - hot emboulding: PDMS stamps - Prin- set up and working principle	ossing iting with	- UV h soft sembly	6/-NIL- stamps-	+ <b>6</b> Soft Edge ilms –			

#### **TEXT BOOK**

1."Lithographic and Micromachining Techniques for Optical Component Fabrication: II: 2 (Proceedings of SPIE)" by Ernst-Bernhard Kley and Hans Peter Herzig

2."Nanoscale CMOS VLSI Circuits: Design for Manufacturability" by Sandip Kundu and Aswin Sreedhar

3."Organic Nanomaterials: Synthesis, Characterization, and Device Applications" by Tomas Torres and Giovanni Bottari

4. "Fabrication Techniques for Micro-Optical Device Arrays" by Ryan D Conk

5."Aligned Carbon Nanotubes: Physics, Concepts, Fabrication and Devices (NanoScience and Technology)" by Yucheng Lan and Zhifeng Ren

6. "Nanomaterials: A Guide to Fabrication and Applications (Devices, Circuits, and Systems)" by Sivashankar Krishnamoorthy

#### REFERENCES

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2	1	1	1	-	-	_	_	1			2	1
CO2	2	1	1	1	-	-	_	_	1			2	1
CO3	2	1	1	1	-	-	-	-	1			2	1
CO4	2	1	1	1	-	-	-	-	1			2	1
CO5	2	1	1	1	-	-	-	-	1			2	1
Total	10	5	5	5	-	-	-	-	5			10	5
	2	1	1	1	-	-	_	-	1			2	1

#### Table 1 : COs versus POs mapping

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE (	CODE	XNT705C	L	Т	P	С	
COURSE NAME		Self Assembly Techniques	2	0	1	3	
PREREQUISITES		Introduction to Nanotechnology	L	Т	Р	Н	
C:P:A		1.5:1.2:0.3	2	0	2	4	
COURSE OUTCOMES			DOMA	LEVEL			
CO1 Expla		Basic Concept of Introduction	Cognitive	Un	Understand		
			Psychomo	Psychomotor			
CO2		and understand Self Assembled	Cognitive	Un	Understand,		
	monolay	vers techniques	Psychomo	Guided Response			
CO3	Determi	ne and Describe Bottom up method	Cognitive	Understand,			
			Psychomotor		Guided		
<b>CO4</b>		e and Illustrate Self assembly technique	Cognitive		Understand,		
	in printi	ng	Psychomo	Mechanism			
CO5	Classify	and <i>Describe the</i> Biological Application	Cognitive	Understand,			
		Mechanism					
UNIT I	Introduc					6+6	
Nanostructu	res: Chen off organiz	anostructured materials, Growth Mechanis nical, physical and biological self assembly ation of different Nano-morphologies (Qu subes)	y, Assemblir	ng and p	atter	ning of	
UNIT II Self Assembled monolayers techniques							
	- Surface	players (SAM), Guided Self Assembly - N Wetting - Electrostatic force; Nanomanip 7.	01	2			
UNIT III	Bottom up method						
Photovoltai	c related c from mol	aring: bottom-up approach, Self-assembly of levices, Langmuir Bladgett films (LB): pri- lecules to nanoparticles, compression of mo-	nciple of for	mation	of me	onolayer	
UNIT IV Self assembly technique in printing							
monolayers	-applicat	cro contact printing- creating the stamp, s ions, Macroscopic expressions of Natu Janoscale Materials					
UNIT V							
		th for Complex Superstructures and Biolog	cical World,	Self As	semb		

function in Biological Nanoscale Materials: Proteins, Lipids, DNA and RNA and Shell as a Composite Materials.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
HOURS	30	0	30	60
TEXT BOOK				

TEXT BOOK

1. Self-Assembly and Nanotechnology Systems: Design, Characterization, and Applications 1st Edition by Yoon S. Lee.

2. Self-Assembled Nanostructures by Jin Zhang, Zhong-lin Wang, Jun Liu, Shaowei Chen, and Gang-yu Liu.

## REFERENCES

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

#### Table 1 : COs versus POs mapping

### 1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE C	ODE	XNT705D				С	
COURSE N	AME	NANO IN WIRELESS COMMUNIC	CATION	2	0	1	3
C:P:A				L	Т	Р	Н
PREREQUI	ISITE		1	2	0	2	4
COURSE O	UTCON	1ES	Domain		Lev	vel	
CO1		$\boldsymbol{n}$ the nanotechnology applications on	Cognitive	Unde	rstan	d	
	wireless	communication	Psychomotor	Reme	embe	r	
CO2	-	n and understand applications of	Cognitive	Understand,			
		chnology on fiber optics and vave communications	Psychomotor	Guided Respo			nse
CO3	Determ	tine and Describe applications of CNT	Cognitive	Understand,			
	in telec	ommunications	Psychomotor	Guid	ed		
				Set			
<b>CO4</b>	Describ	be and Illustrate MEMS based	Cognitive	Unde	rstan	d,	
	applica	tion on wireless communications	Psychomotor	Mech	nanis	m	
CO5	List, e.	xplain and practice the feasible	Cognitive	Unde	rstan	d,	
	experin	nents on nano wireless communication	Psychomotor	Mech	nanis	m	
UNIT - I		t of Nanotechnology on Telecommunic					5
		hot- Global Standards-Impact and Promo ons- Transparent Transaction: A Scenario					
		ne Samples - The Promise and Future of				s abo	ut
Nanotechnol	ogy - Pre	eparing Students for Nanotechnology					
UNIT – II	Nanote Microv	echnology in Fiber-Optic Telecommu wave	nications and				10
Nanostructur Market Need Fuse: State o Market Requ Limiter Para	res and T re Constr ls-Optica f the Art irements meters-A istor- Gra	heir Interaction with Light- Single Nano uction-Nanostructures as Optical Power- l-Fuse Specifications - for Optical Comr - How to Design and Produce a Fuse- Fus- Optical Limiters - The Need -Optical F applications of Graphene at Microwave F aphene Antenna - Graphene Microstrip A	Control Device nunication Netv use Design and Power Limiter A Frequencies - RF	s- Opti vorks- Compl ddition F Grapl	ical F Opti- iance nal -I hene	cal e to Powe Fielc	r I
UNIT - III	Carbo	n Nanotubes in Telecommunications					5
Microwave I and Satellites Wireless Con	Diodes in s - Carbo mmunica	bes - Carbon Nanotubes as Neural Comr Spacecrafts n Nanotubes in Fiber-Optics-Telecomm tions and Radio Transmission- CNT as S SIW (MSIW)	unications - Car	bon Na	anotu		òr

UNIT – IV   MEMS-Ba	ased Wireless Commun	ications	10
RF MEMS - MEMS-Bas			ype Inductor-Toroidal-
Meander-Type Inductor	-Tunable Inductors - M	IEMS Variable Capacito	or - Tuning of MEMS
Variable Capacitor- Elec	trostatic Actuation- Cor	mb Drive Actuators- RF	MEMS Switch -Series
Switch - Shunt Capacitiv			
Solutions- Low Actuation			
Switches - Packaging of I Micromachining - Bulk M		l Packaging- Fabrication	of RF MEMS- Surface
UNIT – V Lab exerci	ises		20
1. Substrate Integrated W	vaveguide (SIW) and Mc	odified SIW (MSIW) in C	CST
2. RF MEMS - Basic Sw	itch design		
3. RF MEMS - Capacitor	Ũ		
4. Nano Antenna design i	in CST		
List of Experiments			
10 to 12 Experiments wi	Il be provided relevant t	o the five course outcor	na basad on the faculty
10 to 12 Experiments wi will be taught and also fe TOTAL HOURS	1	to the five course outcom	ne based on the faculty
1	1	to the five course outcom Practical	ne based on the faculty Total
will be taught and also fe TOTAL HOURS	asibility.		
will be taught and also fe TOTAL HOURS Lecture	asibility. Tutorial	Practical	Total
will be taught and also fe TOTAL HOURS Lecture 30	asibility. Tutorial 0 Nanotechnology for teleo	Practical 20 communications", CRC I	Total 50 Press, Taylor & Francis
will be taught and also fe TOTAL HOURS Lecture 30 TEXT BOOK 1. Sohail Anwar, et al., "I Group, 6000 Broken Sou 2. Maurizio BOZZI, Luca	asibility. Tutorial 0 Nanotechnology for teleo nd Parkway NW, Suite 3 a PIERANTONI, Stefano	Practical 20 communications", CRC H 300 Boca Raton, FL 3348 o BELLUCCI, "Applicat	Total 50 Press, Taylor & Francis 37-2742 ions of Graphene at
will be taught and also fe TOTAL HOURS Lecture 30 TEXT BOOK 1. Sohail Anwar, et al., "I	asibility. Tutorial 0 Nanotechnology for teleo nd Parkway NW, Suite 3 a PIERANTONI, Stefano , RADIOENGINEERIN	Practical 20 communications", CRC H 300 Boca Raton, FL 3348 o BELLUCCI, "Applicat G, VOL. 24, NO. 3, SEP	Total 50 Press, Taylor & Francis 37-2742 ions of Graphene at TEMBER 2015
will be taught and also fe TOTAL HOURS Lecture 30 TEXT BOOK 1. Sohail Anwar, et al., "I Group, 6000 Broken Sou 2. Maurizio BOZZI, Luca Microwave Frequencies",	asibility. Tutorial 0 Nanotechnology for teleo nd Parkway NW, Suite 3 a PIERANTONI, Stefano , RADIOENGINEERIN	Practical 20 communications", CRC H 300 Boca Raton, FL 3348 o BELLUCCI, "Applicat G, VOL. 24, NO. 3, SEP	Total 50 Press, Taylor & Francis 37-2742 ions of Graphene at TEMBER 2015
will be taught and also fe TOTAL HOURS Lecture 30 TEXT BOOK 1. Sohail Anwar, et al., "I Group, 6000 Broken Sou 2. Maurizio BOZZI, Luca Microwave Frequencies", 3. Parisa Moslemi1, Gola	asibility. Tutorial 0 Nanotechnology for teleo nd Parkway NW, Suite 3 a PIERANTONI, Stefano , RADIOENGINEERIN	Practical 20 communications", CRC H 300 Boca Raton, FL 3348 o BELLUCCI, "Applicat G, VOL. 24, NO. 3, SEP	Total 50 Press, Taylor & Francis 37-2742 ions of Graphene at TEMBER 2015
will be taught and also fe TOTAL HOURS Lecture 30 TEXT BOOK 1. Sohail Anwar, et al., "I Group, 6000 Broken Sou 2. Maurizio BOZZI, Luca Microwave Frequencies". 3. Parisa Moslemi1, Gola Microwave Devices	asibility. Tutorial 0 Nanotechnology for teleo nd Parkway NW, Suite 3 a PIERANTONI, Stefano , RADIOENGINEERIN amreza Askari, "Applicat	Practical 20 communications", CRC H 300 Boca Raton, FL 3348 o BELLUCCI, "Applicat G, VOL. 24, NO. 3, SEP tion of Nanotechnology i	Total         50         Press, Taylor & Francis         87-2742         ions of Graphene at         TEMBER 2015         n High Frequency and

Boca Raton, FL 33487-2742

2.Maurizio BOZZI, Luca PIERANTONI, Stefano BELLUCCI, "Applications of Graphene at Microwave Frequencies", RADIOENGINEERING, VOL. 24, NO. 3, SEPTEMBER 2015

3. Parisa Moslemi1, Golamreza Askari, "Application of Nanotechnology in High Frequency and Microwave Devices

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5
1-5 →	1, 6-10	<u>-</u> 2, 1	11-15	3→							•

Table 1 : COs versus POs mapping

0 - No relation 1- Low relation 2- Medium relation

COURSE	CODE	XNT705E	L	Т	Р	С	
COURSE N	NAME	<b>OPTIMIZATION TECHNIQUES</b>	2	0	1	3	
PREREQU	JISITES		L	Т	Р	н	
C:P:A		1.5:1.2:0.3	2	0	2	4	
COURSE	OUTCOM	ES	DOM	IAIN	LE	VEL	
CO1	Explain	Formulate optimization problems	Cognit Psycho		Understand Remember		
CO2	<i>Explain</i> functions	and <i>understand</i> the various types of	Cognit Psycho		Understand Guided Response		
CO3		<i>the and Describe</i> the concept of optimality rvarious type of optimization problems	Cognit Psycho		Under Guide set	rstand, ed	
CO4	unconstra multivaria		Cognit Psycho	motor	Mech	rstand, anism	
CO5	Classify a real life si	and <i>Describe the</i> methods of optimization in tuation	Cognit Psycho			rstand, anism	
UNIT I	Introduc	tion and Basic Concepts			<b>15</b>		
techniques - UNIT II Stationary p concavity o multiple van Variables s multiple van	- classical Optimize points; Fun f functions riables; Gra subject to riables su	and advanced techniques. ation Using Calculus ation Using Calculus ation of single and two variables; Global Op of one and two variables Optimization of fun- adient vectors; Examples Optimization of fun- equality constraints; Lagrangian Function bject to equality constraints; Hessian mat	ptimum C Inction of Notion of Optimiz	Convexit one var multiple ation of	<b>15</b> y and iable and	nd ion of	
UNIT IIISingle Variable Optimization Problems15Optimality criterion, Bracketing methods, Region Elimination Methods, Interval Halving MeFibonacci Search Method, Golden Section Method, Gradient Based Methods: Newton-Raphson meBisection Method: Secant Method, Application to Root finding							
Fibonacci Se		ons; Examples. ariable Optimization Problems racketing methods, Region Elimination Meth d, Golden Section Method, Gradient Based Me			ving N	lethod,	
Fibonacci Se Bisection Me	ethod: Secar	ons; Examples. ariable Optimization Problems racketing methods, Region Elimination Meth d, Golden Section Method, Gradient Based Me			ving N	lethod,	
Fibonacci Se Bisection Mo UNIT IV Optimality methods; Po	ethod: Secar Multivar criteria; Ur owell's cor	ariable Optimization Problems racketing methods, Region Elimination Meth d, Golden Section Method, Gradient Based Me at Method, Application to Root finding	thods: Ne	wton-Ra	ving M phson n 15 attern s	fethod, nethod: earch	
Fibonacci Se Bisection Mo UNIT IV Optimality methods; Po	ethod: Secan Multivan criteria; Ur owell's cor thod; New	ariable Optimization Problems racketing methods, Region Elimination Meth d, Golden Section Method, Gradient Based Me at Method, Application to Root finding riable Optimization Algorithms iddirectional Search; Direct Search Methods; jugate Direction Method; Gradient Based M	thods: Ne	wton-Ra	ving M phson n 15 attern s	fethod, nethod: earch	

methods; Evolutiona	ry algorithms	for optimization; Application	is in Nano dimensi	on.
	LECTURE	TUTORIAL	PRACTICAL	TOTAL
HOURS	45		30	75
TEXT BOOK				
1. S.S. Rao, "En P)Ltd., New	0 0 1	imization: Theory and Practi	ce", New Age Inte	rnational
2. G. Hadley, "I	Linear program	nming", Narosa Publishing H	ouse, New Delhi,	1990.
3. H.A. Taha, " 1992.	Operations Res	search: An Introduction", 5th	Edition, Macmilla	an, New York,
· · ·	imization for I Pvt. Ltd., New	Engineering Design- Algorith / Delhi, 1995	nms and Examples	", Prentice-
	", PHI Learnin	agesh Kumar, "Multicriterion g Pvt. Ltd., New Delhi, India		U
REFERENCES				
1. S. S. Rao: Engineer	ing Optimization	n, New Age International.		
2. E. J. Haug and J.S.	Arora, Applied	Optimal Design, Wiley, New Y	ork.	
3. Kalyanmoy Deb, Op	otimization for I	Engineering Design, Prentice H	all of India.	
4. A. Ravindran and K	.M. Rogsdeth, (	Optimization G.V. Reklaites, W	ïley, New York.	

Table 1: COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

1-5 →1, 6-10 →, 11-15 3→

0 - No relation 1- Low relation

2- Medium relation

COURSE	CODE	XUM706		L			С
COURSE	NAME	CYBER SECURITY		0	0	0	0
C:P:A		2:0.5:0.5		L	Т	Р	H
PREREQU	JISITE	Physics, Chemistry and Material Sc	ience	0	0	0	3
COURSE	OUTCON	<b>AES</b>	Domain		Lev	vel	
CO1		and the Cyber Security Policy, Laws	Cognitive	Unde	rstan	d	
		ulations		Reme			
CO2		the Cyber Security Management	Cognitive	Understand Remember			
	Concept						
CO3		and the Cyber Crime and Cyber	Cognitive	Unde			
<b>CO</b> 4	welfare			Reme			
<b>CO4</b>		on issues related to Information	Cognitive	Unde			
<u> </u>	•	⁷ Concepts	Carriting	Reme			
CO5	unaerst	and various security threats	Cognitive	Unde Reme			
				Kenik	ennoe	1	
UNIT - I	INTRO	DUCTION					9
Regulations	s – Enterp cy – Cybe Challeng	er Security policy – Domain of Cyber S rise Policy – Technology Operations – T er Security Evolution – Productivity – In es <b>R SECURITY OBJECTIVES AND G</b>	Technology Cont nternet – E comn	figurati	ion -		egy 9
Regulations Versus Poli Measures – UNIT – II Cyber Secu Framework	s – Enterp cy – Cybe Challeng CYBE rity Metri s – E Con	rise Policy – Technology Operations – Technology Operations – Technology Operations – Technology Operations – Technology Evolution – Productivity – Intes <b>R SECURITY OBJECTIVES AND Operation State</b> res – Security Management Goals – Counter Systems – Industrial Control Systems	Technology Cont nternet – E comm GUIDANCE unting Vulnerabil stems – Personal	figurati herce – ities – I Mobil	ion - Cou Secu	nter rity vices	9
Regulations Versus Poli Measures – UNIT – II Cyber Secu Framework Security Po Project– Cy	s – Enterp cy – Cybe Challeng CYBE rity Metri s – E Con licy Objec	rise Policy – Technology Operations – 7 er Security Evolution – Productivity – In es <b>R SECURITY OBJECTIVES AND O</b> cs – Security Management Goals – Counter merce Systems – Industrial Control Sy ctives – Guidance for Decision Makers ity Management – Arriving at Goals – O	Technology Cont nternet – E comm GUIDANCE unting Vulnerabil stems – Personal – Tone at the Top Cyber Security D	figurati herce – ities – l Mobil p – Pol Occume	ion - Cou Secu le De icy a	nter rity vices s a	9
Regulations Versus Poli Measures – UNIT – II Cyber Secu Framework Security Po Project– Cy The Catalog	s – Enterp cy – Cybe Challeng CYBE rity Metri s – E Con licy Objec ber Secur g Approac	rise Policy – Technology Operations – 7 er Security Evolution – Productivity – In es <b>R SECURITY OBJECTIVES AND G</b> cs – Security Management Goals – Counter merce Systems – Industrial Control Sy etives – Guidance for Decision Makers ity Management – Arriving at Goals – G ch – Catalog Format – Cyber Security Po	Technology Cont nternet – E comm GUIDANCE unting Vulnerabil stems – Personal – Tone at the Top Cyber Security D	figurati herce – ities – l Mobil p – Pol Occume	ion - Cou Secu le De icy a	nter rity vices s a	9
Regulations Versus Poli Measures – UNIT – II Cyber Secu Framework Security Po Project– Cy The Catalog UNIT - III Cyber Gove Trademarks Appropriate		rise Policy – Technology Operations – 7 er Security Evolution – Productivity – In es <b>R SECURITY OBJECTIVES AND O</b> cs – Security Management Goals – Counter merce Systems – Industrial Control Sy ctives – Guidance for Decision Makers ity Management – Arriving at Goals – O	Technology Cont nternet – E comm GUIDANCE unting Vulnerabil stems – Personal – Tone at the To Cyber Security D olicy Taxonomy. and Numbers – C alvertising - Imp Cyber Conflict Iss	figurationerce – ities – ities – l Mobil p – Pol Docume Copyria	Secu Secu e De icy a entati ght a ution	nter rity vices s a on – nd –	<u>9</u> 9
Regulations Versus Poli Measures – UNIT – II Cyber Secu Framework Security Po Project– Cy The Catalog UNIT - III Cyber Gove Trademarks Appropriate		rise Policy – Technology Operations – Technology Operations – Technology Operations – Technology Operations – Technology Eventse – Industrial Control Systems – Industrial Control Systems – Industrial Control Systems – Guidance for Decision Makers ity Management – Arriving at Goals – Och – Catalog Format – Cyber Security Periode Security Periode Security Policy CATALOG sues – Net Neutrality – Internet Names and Messaging - Cyber User Issues - Mayber Crime – Geo location – Privacy - Och	Technology Cont nternet – E comm GUIDANCE unting Vulnerabil stems – Personal – Tone at the Top Cyber Security D olicy Taxonomy. and Numbers – C alvertising - Imp Cyber Conflict Iss r Welfare	figurationerce – ities – ities – l Mobil p – Pol Docume Copyria	Secu Secu e De icy a entati ght a ution	nter rity vices s a on – nd –	<u>9</u> 9
Regulations Versus Poli Measures – UNIT – II Cyber Secu Framework Security Po Project– Cy The Catalog UNIT - III Cyber Gove Trademarks Appropriate property Th UNIT – IV Information		rise Policy – Technology Operations – Technology Operations – Technology Operations – Technology Operations – Technology Evolution – Productivity – Integering and Security Management Goals – Counterce Systems – Industrial Control Systems – Guidance for Decision Makers – ity Management – Arriving at Goals – Counterce Security Policy Catalog Format – Cyber Security Policy Catalog Format – Cyber Security Policy Catalog Sues – Net Neutrality – Internet Names and Messaging - Cyber User Issues - Mayber Crime – Geo location – Privacy - Cer Espionage – Cyber Sabotage –	Fechnology Cont Internet – E comm GUIDANCE Inting Vulnerabil stems – Personal – Tone at the Top Cyber Security D olicy Taxonomy. and Numbers – C alvertising - Imp Cyber Conflict Ise r Welfare	figurationerce – ities – ities – l Mobil p – Pol Docume Copyrig persona sues –	Secu Secu e De icy a entati ght a ution Intell	nter rity vices s a on – nd – ectua	9 
Regulations Versus Poli Measures – UNIT – II Cyber Secu Framework Security Po Project– Cy The Catalog UNIT - III Cyber Gove Trademarks Appropriate property Th UNIT – IV Information		rise Policy – Technology Operations – 7 er Security Evolution – Productivity – In es <b>R SECURITY OBJECTIVES AND G</b> cs – Security Management Goals – Counter merce Systems – Industrial Control Systetives – Guidance for Decision Makers ity Management – Arriving at Goals – G th – Catalog Format – Cyber Security Pol <b>R SECURITY POLICY CATALOG</b> sues – Net Neutrality – Internet Names and Messaging - Cyber User Issues - M yber Crime – Geo location – Privacy - C er Espionage – Cyber Sabotage – Cyber <b>RMATION SECURITY CONCEPTS</b> Overview: Background and Current Score Security - Computer Forensics – Steg	Technology Cont Internet – E comm GUIDANCE Inting Vulnerabil stems – Personal – Tone at the Top Cyber Security D olicy Taxonomy. and Numbers – G alvertising - Imp Cyber Conflict Ise r Welfare enario - Types of ganography	figurationerce – ities – ities – l Mobil p – Pol Docume Copyrig persona sues –	Secu Secu e De icy a entati ght a ution Intell	nter rity vices s a on – nd – ectua	9  9 11 9
Regulations Versus Poli Measures – UNIT – II Cyber Secu Framework Security Po Project– Cy The Catalog UNIT - III Cyber Gove Trademarks Appropriate property Th UNIT – IV Information Security - E UNIT – V Overview of Network co - Informatio		rise Policy – Technology Operations – 7 er Security Evolution – Productivity – In es <b>R SECURITY OBJECTIVES AND O</b> cs – Security Management Goals – Counter merce Systems – Industrial Control Synthese et ives – Guidance for Decision Makers ity Management – Arriving at Goals – O th – Catalog Format – Cyber Security Policy CATALOG sues – Net Neutrality – Internet Names and Messaging - Cyber User Issues - Mayber Crime – Geo location – Privacy - O er Espionage – Cyber Sabotage – Cyber <b>RMATION SECURITY CONCEPTS</b> Overview: Background and Current Sco	Technology Cont Internet – E comm <b>GUIDANCE</b> Inting Vulnerabil stems – Personal – Tone at the Top Cyber Security D olicy Taxonomy. and Numbers – C alvertising - Imp Cyber Conflict Ise r Welfare enario - Types of ganography <b>ILITIES</b> and Password C	figurationerce – ities – ities – I Mobil p – Pol Docume Copyria Docume Copyria Docume f Attacl	ion - Cou Secu le De icy a entati ght a ation Intell ks - (	nter rity vices s a on – nd – ectua Goals	9 9 11 9 for 9 cure
Regulations Versus Poli Measures – UNIT – II Cyber Secu Framework Security Po Project– Cy The Catalog UNIT - III Cyber Gove Trademarks Appropriate property Th UNIT – IV Information Security - E UNIT – V Overview of Network co - Information		rise Policy – Technology Operations – 7 er Security Evolution – Productivity – In es <b>R SECURITY OBJECTIVES AND O</b> cs – Security Management Goals – Count merce Systems – Industrial Control Synthese ctives – Guidance for Decision Makers ity Management – Arriving at Goals – O th – Catalog Format – Cyber Security Policy CATALOG sues – Net Neutrality – Internet Names and Messaging - Cyber User Issues - Mayber Crime – Geo location – Privacy - O er Espionage – Cyber Sabotage – Cyber <b>RMATION SECURITY CONCEPTS</b> Overview: Background and Current Score Security - Computer Forensics – Steg <b>RITY THREATS AND VULNERAB</b> y threats -Weak / Strong Passwords - Malicious Code - Programming Bug	Technology Cont Internet – E comm <b>GUIDANCE</b> Inting Vulnerabil stems – Personal – Tone at the Top Cyber Security D olicy Taxonomy. and Numbers – C alvertising - Imp Cyber Conflict Iss r Welfare enario - Types of ganography <b>ILITIES</b> and Password C s - Cyber crime a	figurationerce – ities – ities – I Mobil p – Pol Docume Copyria Dersona sues – f Attacl Crackir and Cy	ion - Cou Secu le De icy a entati ght a ation Intell ks - ( ng - /ber t	nter rity vices s a on – nd – ectua Goals Insec	9 9 1 9 for 9 sure ism

	Lecture	Tutorial	Practical	Total
	45	0	0	45
TEXT BOOK				
1.Jennifer L. Bayuk, J. Healey, P. Ro	ohmeyer, Marcus	Sachs, Jeffrey	Schmidt, Joseph	n Weiss
"Cyber Security Policy Guidebook	" John Wiley & S	Sons 2012.		
2. Rick Howard "Cyber Security Ess	entials" Auerbac	h Publications	2011.	
3. Richard A. Clarke, Robert Knake	"Cyberwar: The	Next Threat to	National Securit	y & What
to Do About It" Ecco 2010				-
4. Dan Shoemaker Cyber security Th	ne Essential Body	Of Knowledge	e, 1st ed. Cengag	ge
Learning 2011				
5. Rhodes-Ousley, Mark, "Information	on Security: The	Complete Refe	rence", Second I	Edition,
McGraw-Hill, 2013.	-	-		
E RESOURCES				
1. <u>https://www.coursera.org/s</u>	pecializations/cy	ber-security		
2. www.nptel.ac.in				
_				
3. <u>http://professional.mit.edu/p</u>	rograms/short-pro	grams/applied-	<u>cybersecurity</u>	

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1		1	1	1	1	1	1	1	1			2	
CO2		1	1	1	1	1	1	1	1			2	
CO3		1	1	1	1	1	1	1	1			2	
CO4		1	1	1	1	1	1	1	1			2	
CO5		1	1	1	1	1	1	1	1			2	
Total		5	5	5	5	5	5	5	5			10	
		1	1	1	1	1	1	1	1			2	

Table 1 : COs versus POs mapping

## **SYLLABUS**

# SEMESTER – VIII

COURSE C	ODE	XNT802A			L	Т	Р	C	
COURSE N	AME	Graphene N	Nanotechnology		2	0	1	3	
PREREQU	ISITES	Introduction	n to Nanotechnol	ogy	L	Т	Р	Н	
-		Materials S							
C:P:A		1.5:1.2:0.3			2	0	2	4	
COURSE O	UTCON	AES			DOM	IAIN	LEVEL		
CO1	Explain	Basic Concept	t of Graphene		Cognit Psycho			erstand ember	
CO2	Explain	and <i>unders</i>	tand Properties of	graphene	Cognit Psycho	Unde Guide Respo			
CO3	Determi	ine and Desc	<i>ribe</i> Synthesis of C	Graphene	Cognit Psycho		erstand,		
CO4	<b>Describ</b> Grapher		te the Characteriza	ation of	Cognit Psycho		Understand Mechanism		
CO5	Classify	and <i>Describe</i>	e the Application o	f Graphene	Cognit Psycho			erstand, nanism	
UNIT I	Introdu	ction of Graj	phene				6	ó+6	
			phite, Definition and yer, Bi-layer, few layer		hene, Typ	es of gra	phene:	stacking	
UNIT II	Propert	ties of graphe	ene				6	<b>ó+6</b>	
plasmons and states and d	polaritons, oping (el	carrier multipli ectrostatic and	ss dependency, optic cation. Electrical: Bol chemical), quantun al conductivity. Mech	ltzmann equation, m hall effect,	, ambipola Klein tu	ar conduc inneling,	ction, de	ensity of	
UNIT III	Synthes	sis of Graphe	ne					<b>6+6</b>	
graphene film Hummer's me	s, Chemic ethod, Rec	cally derived g duction of grap	h of graphene on Sili raphene, Synthesis o phene oxide: Chemi state carbon sources.	of graphene oxid	le: Humn	ner's me	thod, N	Modified	
UNIT IV Characterization of Graphene 6+6									
			ion electron microsco nents: electric field eff						
UNIT V	Applica	tion of Grap	hene	•	•		6	ó+6	
Applications of graphene: Graphene in the energy application: Li-ion batteries, Supercapacitors, Photovoltaid Radio-frequency transistor, Photodetector, Modulator, Mode locked lasers, Other applications of graphene: Ant corroison coating, Anti- bacterial coating, catalyst, Sensors, Transparent Conductors									
Radio-frequence	y transisto	or, Photodetector	r, Modulator, Mode l	ocked lasers, Oth	er applica				

HOU	U <b>RS</b>	30	0	3	0	60
List of Ex	periments	5				
10 to 12 E	Experiments	s will be provid	ed relevant to the five c	ourse outcom	e based on th	e faculty
will be tau	ight and als	so feasibility.				
TEXT BO	OOK					
Book refe	rence					
1. Gra	aphene: Fund	lamentals, Devices	s, and Applications-by Serh	ii Shafraniuk		
2. An	Introductio	on to Graphene	and Carbon Nanotubes-	by John E. l	Proctor (Autl	hor), Daniel
M	elendrez A	rmada (Author)	), Aravind Vijayaraghav	an (Author)		
REFERE	NCES					

Table 1 : COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

1-5 →1, 6-10 -2, 11-15 3→

0 - No relation 1- Low relation

2- Medium relation

	CODE	XNT802B		L	Т	Р	С						
COURSE N	NAME	CARBON N	NANOTUBES	2	0	1	3						
PREREQU	ISITE	Introduction	n to Nanotechnology	L	Т	Р	Н						
S		Materials S	cience, Nano Applications										
C:P:A		1.5:1.2:0.3		2	0	2	4						
COURSE (	DUTCON	MES		DOM	IAIN	LE	VEL						
C01	Explai	n Basic Concep	pt Of Carbon Nanotube	Cognit Psycho			erstand ember						
CO2	-		rstand Properties Of Carbon	Cognit			erstand,						
	Nanotu	otubes Psychomotor Guided Response											
CO3	Detern	nine And Des	cribe Application Of Carbon	Cognit		Unde	erstand,						
	Nanotu	bes		Psycho	motor	Guide Set	ed						
CO4	Descri	be And Illustr	ate The Metal Nanoparticles	Cognit		Unde	erstand,						
	Classi			Psycho			nanism						
CO5	v	Classify And Describe The Synthesis Process OfCognitiveUnderstand,Metal NanoparticlesPsychomotorMechanism											
	_	-											
UNIT I		DUCTION O											
Basic Conce	pt of Car otube, Sy	bon Nanotube, mmetry of Dou	F CNT the structure of Carbon Nanotu uble walled- Carbon Nanotube,				walled-						
Basic Conce Carbon Nane	pt of Car otube, Syn 1m Numbe	bon Nanotube, mmetry of Dou ers.	the structure of Carbon Nanotu				walled- nmetry-						
Basic Conce Carbon Nan- based Quantu UNIT II Mechanical Optical Prop	pt of Car otube, Sys am Numbe PROPI Properties perties, 12	bon Nanotube, mmetry of Dou ers. E <b>RTIES OF C</b> . , Thermal Stat 2 14% Suggest	the structure of Carbon Nanotu uble walled- Carbon Nanotube,	Symmetry Nanotubes arks (Theo	Operatio	on, Syn	walled- nmetry- <b>6+6</b> operties,						
Basic Conce Carbon Nan- based Quantu UNIT II Mechanical Optical Prop	pt of Car otube, Sys am Numbe PROPI Properties perties, 12 Properties,	bon Nanotube, mmetry of Dou ers. ERTIES OF C. , Thermal Stat 2 14% Suggest Intrinsic Prope	the structure of Carbon Nanotu uble walled- Carbon Nanotube, ARBON NANOTUBES bility, Heat transport in Carbon ted Specification table with Ma	Symmetry Nanotubes arks (Theo	Operatio	on, Syn	walled- nmetry- <b>6+6</b> operties,						
Basic Conce Carbon Nandbased Quantu UNIT II Mechanical Optical Prop Vibrational F UNIT III Carbon Nandbased	pt of Car otube, Sys im Numbe Properties perties, 12 Properties, APPLI otubes in Applicatio	bon Nanotube, mmetry of Dou ers. ERTIES OF C. , Thermal State 2 14% Suggest Intrinsic Prope CATION OF Electronics, Cans, Carbon Nat	the structure of Carbon Nanotu uble walled- Carbon Nanotube, ARBON NANOTUBES bility, Heat transport in Carbon ted Specification table with Ma rties of individual Carbon Nano T CARBON NANOTUBES arbon Nanotubes in Energy App notube Sensors, Carbon Nanotub	Symmetry Nanotubes arks (Theo Tube.	Operation , Electro ry): Elas Carbon	on, Syn nic Pro stic Pro	walled- nmetry- <b>6+6</b> operties, operties, <b>6+6</b> bes For						
Basic Conce Carbon Nandbased Quantu UNIT II Mechanical Optical Prop Vibrational F UNIT III Carbon Nandbased	pt of Car otube, Syr im Numbe Properties, 12 Properties, 12 Proper	bon Nanotube, mmetry of Dou ers. ERTIES OF C. , Thermal State 2 14% Suggest Intrinsic Prope CATION OF Electronics, Cans, Carbon Nat	the structure of Carbon Nanotu able walled- Carbon Nanotube, ARBON NANOTUBES bility, Heat transport in Carbon and Specification table with Ma rties of individual Carbon Nano T CARBON NANOTUBES arbon Nanotubes in Energy App notube Sensors, Carbon Nanotube biological Applications	Symmetry Nanotubes arks (Theo Tube.	Operation , Electro ry): Elas Carbon	on, Syn nic Pro stic Pro	walled- nmetry- <b>6+6</b> operties, operties, <b>6+6</b> bes For <i>i</i> ghting						
Basic Conce Carbon Nany based Quantu UNIT II Mechanical Optical Prop Vibrational F UNIT III Carbon Nany Mechanical A Applications UNIT IV Introduction,	pt of Car otube, Syr m Numbe Properties, 12 Properties, 12 Propert	bon Nanotube, mmetry of Dou ers. ERTIES OF C. , Thermal State 2 14% Suggest Intrinsic Prope CATION OF C Electronics, Cans, Carbon Nan Vanotubes for B L NANOPAR pendent Propert	the structure of Carbon Nanotu able walled- Carbon Nanotube, ARBON NANOTUBES bility, Heat transport in Carbon and Specification table with Ma rties of individual Carbon Nano T CARBON NANOTUBES arbon Nanotubes in Energy App notube Sensors, Carbon Nanotube biological Applications	Symmetry Nanotubes urks (Theo Yube. Dications, es in Field	Operation, Electro ry): Elas Carbon Emissio	on, Syn nic Pro stic Pro Nanotul n and L	walled- nmetry- <b>6+6</b> operties, operties, <b>6+6</b> bes For Lighting <b>6+6</b>						
Basic Conce Carbon Nany based Quantu UNIT II Mechanical Optical Prop Vibrational F UNIT III Carbon Nany Mechanical A Applications UNIT IV Introduction,	pt of Car otube, Syr m Numbe PROPI Properties, 12 Properties, 12 P	bon Nanotube, mmetry of Dou ers. ERTIES OF C. Thermal State 14% Suggest Intrinsic Prope CATION OF C Electronics, Cans, Carbon Nan Nanotubes for B L NANOPAR Dendent Propert etal Nanoparticl	the structure of Carbon Nanotu uble walled- Carbon Nanotube, ARBON NANOTUBES bility, Heat transport in Carbon red Specification table with Ma rties of individual Carbon Nano T CARBON NANOTUBES arbon Nanotubes in Energy App notube Sensors, Carbon Nanotub biological Applications FICLES ies of Metal nanoparticles, Band	Symmetry Nanotubes urks (Theo Yube. Dications, es in Field	Operation, Electro ry): Elas Carbon Emissio	on, Syn nic Pro stic Pro Nanotul n and L	walled- nmetry- 6+6 operties, operties, 6+6 bes For Lighting 6+6 c Metal						
Basic Conce Carbon Nany based Quantu UNIT II Mechanical Optical Prop Vibrational F UNIT III Carbon Nany Mechanical Applications UNIT IV Introduction, nanoparticle,	pt of Car otube, Syr m Number Properties, 12 Properties, 12 Proper	bon Nanotube, mmetry of Dou ers. ERTIES OF C. , Thermal Stat 2 14% Suggest Intrinsic Prope CATION OF C Electronics, Cans, Carbon Nan Nanotubes for B L NANOPAR Dendent Propert etal Nanoparticl HESIS PROCE nthesis Rout	the structure of Carbon Nanotu uble walled- Carbon Nanotube, ARBON NANOTUBES bility, Heat transport in Carbon red Specification table with Ma rties of individual Carbon Nano T CARBON NANOTUBES arbon Nanotubes in Energy App notube Sensors, Carbon Nanotub biological Applications FICLES ies of Metal nanoparticles, Band les, Geometric configuration.	Symmetry Nanotubes arks (Theo Tube. Dications, es in Field d gap mea CLES	Operation , Electro ry): Elas Carbon Emissio	on, Syn nic Pro stic Pro Nanotul n and L	6+6 operties, operties, 6+6 bes For Lighting 6+6						

H	HOURS 30 0 30										
List of	List of Experiments										
	2 Experiments taught and als	1	d relevant to the five co	ourse outcome based	on the faculty						
ТЕХТ	BOOK										
1.	Carbon Nano	tubes: Basic Con	cepts and Physical Pro	perties, Stephanie Ro	eich, Christian						
	Thomsen, Jan	nina Maultzsch									
2.	Understandin	g Carbon Nanoti	ubes: From Basics to A	pplications -English	, Paperback,						
	Annick Loise	au, Pascale Laun	ois-bernede, Jean-paul	Salvetat, Pierre Peti	t, Stephan						
	Roche)		-		-						
3.	Carbon Nano	tubes and Their A	Applications (English,	Hardcover, Qing Zh	ang)						
	RENCES				-						

Table 1 : COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

1-5 →1, 6-10 -2, 11-15 3→

0 - No relation 1- Low relation 2- Medium relation 3- High relation

COURSE	CODE	XNT802C	L	Т	Р	С					
COURSE N	NAME	Fullerenes	2	0	1	3					
PREREQU	UISITES	Introduction to nanotechnology Materials science	L	Т	Р	Н					
C:P:A		1.5:1.2:0.3	2	0	2	4					
<b>COURSE</b> (	OUTCON	<b>IES</b>	DOMA	AIN	L	EVEL					
CO1		the Structure of Fullerenes	Cognitive Psychomo		Un	Understand Remember					
CO2	Explain	and <i>understand</i> the Symmetry	Cognitive		Un	derstand,					
	Conside	rations of Fullerene Molecules	Psychomo	otor		Guided Response					
CO3	Determi	ine and Describe the Synthesis,	Cognitive			Understand,					
	Extracti	on, and Purification of Fullerenes	Psychomo	otor	Gu Se	ided t					
<b>CO4</b>		e and Illustrate the Fullerene Growth,	Cognitive			Understand,					
005		ion, and Fragmentation	Psychomo	otor	-	chanism					
CO5		and <i>Describe the</i> Crystalline Structure of	Cognitive	tor		derstand,					
Fullerene Solids     Psychomotor     Mechanism											
UNIT I Structure of		re of Fullerenes Euler's Theorem; Structure of C70 and Higher	Fullerones	the Proj	actio	6+6					
for Specifyin			i uncrenes,	the 110j		ii wiethoù					
UNIT II	Symmet	ry Considerations of Fullerene Molecules				6+6					
Going from	Higher to	Operations; Symmetry of Vibrational Modes Lower Symmetry: Symmetry Considerations enes; Symmetry Considerations for Isotopic Ef	for C70, Sy								
UNIT III		s, Extraction, and Purification of Fullerenes				6+6					
Sublimation Sublimation	Methods, in a Temp	: Historical Perspective, Synthesis Details; Ful Solubility of Fullerenes in Solvents; Fullere erature Gradient, Gas-Phase Separation and P rene Synthesis; Health and Safety Issues	ene Purificat	ion: Sol	vent	Methods,					
UNIT IV	Fulleren	e Growth, Contraction, and Fragmentation				6+6					
Fullerene Gr Growth from Stability Issu	cowth Moon a Corann aes; Fuller es, Collis	dels: Stone-Wales Model ,Model for C 2 Ab ulene Cluster , Transition from C60 to C70; N ene Contraction and Fragmentation: Photo fra ion of Fullerene Ions with Surfaces , Fragme	lass Spectron agmentation,	metry Cl Collisio	naract	Fullerene erization; Fullerene					
UNIT V	Crystall	ine Structure of Fullerene Solids				6+6					
Crystalline ( ,Merohedral	C60: Ambi Disorder ,	ent Structure , Group Theory for Crystalline Model for Phase Transitions in C60; Crystallir Crystal Structure; Effect of Temperature	ne C70 and H	ligher-M	lass F	re Phases ullerenes;					

Fullerenes: Photo polymerization of C60, Electron Beam-Induced Polymerization of C60, Pressure-Induced Polymerization of C60, Plasma-Induced Polymerization of C60, Photo polymerization of C70 Films

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
HOURS	30	0	30	60

### List of Experiments

10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility.

#### **TEXT BOOK**

- 1. The Fullerenes- Author(s):H.W. Kroto, J.E. Fischer and D.E. Cox ISBN: 978-0-08-042152-0
- 2. Science of Fullerenes and Carbon Nanotubes- M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

### Table 1: COs versus POs mapping

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE C	ODE	XN	Г802D		L	Т	P	С		
COURSE N	AME	QU	ANTUM DOT		2	0	1	3		
PREREQUI	SITES				L	Т	Р	Н		
C:P:A		1.5:	1.2:0.3		2	0	2	4		
COURSE O	UTCON	<b>IES</b>			DOMA	AIN	L	EVEL		
CO1	Explain	<b>n</b> Bas	ic Concept of Quant	um dots	Cognitive Psychomo	otor		derstand nember		
CO2	<i>Explain</i> Tunnel		d <i>understand</i> Qua ces	antum Mechanical	Cognitive Psychomo		Gu	Understand, Guided Response		
CO3	<i>Determ</i> Device	ine	<i>and Describe</i> Sem	iconductor and	Cognitive Psychomo			derstand, ided t		
CO4	Descril	be an	d Illustrate the Qu	antum computing	Cognitive Psychomo			derstand, chanism		
CO5	Classify and Describe the Quantum DOT       Cognitive       Under         cellular Automata       Psychomotor       Mech									
UNIT I	Introdu	iction	L					6+6		
Introduction: basic Nano el			ne present scenario	of Computing and it	s challenges	s, Future	, Ove	rview of		
UNIT II	Quantu	ım M	echanical Tunnel D	evices				6+6		
Overview of o	current re	esearc	h in nano-scale ele	ctronics and devices						
UNIT III			tor and Device					6+6		
Photonic De Quantum Dot				vice, Limit of CM	IOS techno	ology-Sc	aling	Theory		
UNIT IV			mputing					6+6		
-				roduction, axioms, q sical reversible circu				on,		
UNIT V	Quantu	ım D	OT cellular Automa	ata (QCA)				6+6		
Quantum DO Defect analys Reliability m	T cellula is and Re easureme	r Aut eliabi ent i	lity: purpose of defe	ecular circuits, Nano ect analysis in nano puting. Different so	computing a	nd Chal	lenge	s.		
			LECTURE	TUTORIAL	PRACTIO	CAL	TC	DTAL		
HOU	JRS		30	0	30			60		
List of Ermo	rimonte									
List of Expe	Imenus									

will be taught and also feasibility.

## **TEXT BOOK**

1. Quantum Dots - Theory and Applications *by Vasilios N. Stavrou*, CBS Publishers & Distributors Pvt. Ltd

2. Quantum Dots: Optics, Electron Transport and Future Applications 1st Edition by Alexander Tartakovskii.

3. Quantum Dots – A Variety of New Applications Edited by Ameenah Al-Ahmadi Published by InTech

#### REFERENCES

- 1. "Quantum -dot Devices and Quantum-dot Cellular automata" by Wolfgang Prodog, Elsevier Science.
- 2. "Electronic Transport in Quantum dot Cellular Automata", Leo P. Kouwenhoven
- 3. "Quantum-dot Cellular Automata, Theory, Experimentation and Prospects" M. Macucci
- 4. "Probabilistic Modeling of Quantum-dot Cellular Automata", Saket Rivastava, PhD dissertation
- 5. "Quantum Computation: Theory and Implementation", Edward Stuart Boyden

## .Table 1 : COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

CO2       Explain and understand Microstructure of polymer chains         CO3       Determine and Describe Mechanical properties         CO4       Describe and Illustrate the Flow properties of polymer         CO5       Classify and Describe the Polymer Fabrication Techniques         UNIT I       Introduction         Polymers and chemical bonding. Polymerization mechanism. Addition a Chain transfer reaction. Co-polymerization. Polymerization by coordina polymerization. Molecular weights and their distribution.         UNIT II       Microstructure of polymer chains         Configuration and conformation. Simple and hindered rotation. Ra distances. Crystallinity and melting. Glass transition. Physical states of polymer chain. Measurement of viscosity. Cohesive energy densi parameters. Polymer additives, blends and composites.         UNIT III       Mechanical properties         Rheology of polymers. Rubber elasticity. Viscoelasticity. Creep and strophaviour. Strength and fracture of rubber and glassy polymers         UNIT IV       Flow properties of polymer         Bulk deformation, elongational and shear flow. Hagen Poiselli equati flow. Extrusion. Injection moulding. Blow moulding. Compression an fibers.	tion catalys dius of gyr polymers ar	tor tor tor tor sation p t. Ring o	Und Rer Und Gui Res Und Gui Set Und Med Und Med	derstand, chanism derstand, chanism <b>6+6</b> erization.
C:P:A       1.5:1.2:0.3         COURSE OUTCOMES       Explain Basic Concept of Polymers         CO1       Explain and understand Microstructure of polymer chains         CO2       Explain and understand Microstructure of polymer chains         CO3       Determine and Describe Mechanical properties         CO4       Describe and Illustrate the Flow properties of polymer         CO5       Classify and Describe the Polymer Fabrication Techniques         UNIT I       Introduction         Polymers and chemical bonding. Polymerization mechanism. Addition a Chain transfer reaction. Co-polymerization. Polymerization by coordina polymerization. Molecular weights and their distribution.         UNIT II       Microstructure of polymer chains         Configuration and conformation. Simple and hindered rotation. Ra distances. Crystallinity and melting. Glass transition. Physical states of polymer chain. Measurement of viscosity. Cohesive energy densi parameters. Polymer additives, blends and composites.         UNIT III       Mechanical properties         Rheology of polymers. Rubber elasticity. Viscoelasticity. Creep and stre behaviour. Strength and fracture of rubber and glassy polymers         UNIT IV       Flow properties of polymer         Bulk deformation, elongational and shear flow. Hagen Poiselli equati flow. Extrusion. Injection moulding. Blow moulding. Compression ar fibers.	2 DOMA Cognitive Psychomot Cognitive Psychomot Cognitive Psychomot Cognitive Psychomot Cognitive Psychomot dius of gyp polymers an	0 IN tor tor tor tor sation per t. Ring of ration a	2 Uno Rer Uno Gui Res Uno Gui Set Uno Meo Uno Meo	4 EVEL derstand derstand, ded ponse derstand, ded derstand, chanism derstand, chanism derstand, chanism
COURSE OUTCOMES         CO1       Explain Basic Concept of Polymers         CO2       Explain and understand Microstructure of polymer chains         CO3       Determine and Describe Mechanical properties         CO4       Describe and Illustrate the Flow properties of polymer         CO5       Classify and Describe the Polymer Fabrication Techniques         UNIT I       Introduction         Polymerization. Molecular weights and their distribution.       Microstructure of polymer chains         Configuration and conformation. Simple and hindered rotation. Ra distances. Crystallinity and melting. Glass transition. Physical states of polymer chain. Measurement of viscosity. Cohesive energy densi parameters. Polymers. Rubber elasticity. Viscoelasticity. Creep and strobehaviour. Strength and fracture of rubber and glassy polymers         UNIT IV       Flow properties of polymer         Bulk deformation, elongational and shear flow. Hagen Poiselli equati flow. Extrusion. Injection moulding. Blow moulding. Compression an fibers.	DOMA Cognitive Psychomot Cognitive Psychomot Cognitive Psychomot Cognitive Psychomot Cognitive Psychomot and Conden ation catalys	tor tor tor tor tor tor tor t. Ring of ration a	L Und Gui Gui Res Und Gui Set Und Med Und Med	EVEL derstand nember derstand, ded ponse derstand, ded derstand, chanism derstand, chanism derstand, chanism
CO1Explain Basic Concept of PolymersCO2Explain and understand Microstructure of polymer chainsCO3Determine and Describe Mechanical propertiesCO4Describe and Illustrate the Flow properties of polymerCO5Classify and Describe the Polymer Fabrication TechniquesUNIT IIntroductionPolymers and chemical bonding. Polymerization mechanism. Addition a Chain transfer reaction. Co-polymerization. Polymerization by coordina polymerization. Molecular weights and their distribution.UNIT IIMicrostructure of polymer chainsConfiguration and conformation. Simple and hindered rotation. Ra distances. Crystallinity and melting. Glass transition. Physical states of polymer chain. Measurement of viscosity. Cohesive energy densi parameters. Polymer additives, blends and composites.UNIT IIMechanical propertiesRheology of polymers. Rubber elasticity. Viscoelasticity. Creep and stro behaviour. Strength and fracture of rubber and glassy polymersUNIT IVFlow properties of polymerBulk deformation, elongational and shear flow. Hagen Poiselli equati flow. Extrusion. Injection moulding. Blow moulding. Compression ar fibers.	Cognitive Psychomot Cognitive Psychomot Cognitive Psychomot Cognitive Psychomot Cognitive Psychomot and Conden ation catalys dius of gyp polymers at	tor tor tor tor sation p t. Ring o	Und Rer Und Gui Res Und Gui Set Und Med Und Med	derstand nember derstand, ded ponse derstand, ded derstand, chanism derstand, chanism <b>6+6</b> erization. ng
CO2       Explain and understand Microstructure of polymer chains         CO3       Determine and Describe Mechanical properties         CO4       Describe and Illustrate the Flow properties of polymer         CO5       Classify and Describe the Polymer Fabrication Techniques         UNIT I       Introduction         Polymers and chemical bonding. Polymerization mechanism. Addition a Chain transfer reaction. Co-polymerization. Polymerization by coordina polymerization. Molecular weights and their distribution.         UNIT II       Microstructure of polymer chains         Configuration and conformation. Simple and hindered rotation. Ra distances. Crystallinity and melting. Glass transition. Physical states of polymer chain. Measurement of viscosity. Cohesive energy densi parameters. Polymer additives, blends and composites.         UNIT III       Mechanical properties         Rheology of polymers. Rubber elasticity. Viscoelasticity. Creep and strophaviour. Strength and fracture of rubber and glassy polymers         UNIT IV       Flow properties of polymer         Bulk deformation, elongational and shear flow. Hagen Poiselli equati flow. Extrusion. Injection moulding. Blow moulding. Compression an fibers.	Psychomot Cognitive Psychomot Cognitive Psychomot Cognitive Psychomot Cognitive Psychomot and Conden and Conden ation catalys	tor tor tor sation po t. Ring o	Rer Und Gui Res Und Gui Set Und Med Olymo	nember lerstand, ded ponse lerstand, ded chanism lerstand, chanism <b>6+6</b> erization. ng
cO3       Determine and Describe Mechanical properties         CO4       Describe and Illustrate the Flow properties of polymer         CO5       Classify and Describe the Polymer Fabrication Techniques         UNIT I       Introduction         Polymerization. Molecular weights and their distribution.       Output         UNIT II       Microstructure of polymer chains         Configuration       and conformation. Simple and hindered rotation. Ra distances. Crystallinity and melting. Glass transition. Physical states of polymer chain. Measurement of viscosity. Cohesive energy densi parameters. Polymer additives, blends and composites.         UNIT III       Mechanical properties         Rheology of polymers. Rubber elasticity. Viscoelasticity. Creep and strophaviour. Strength and fracture of rubber and glassy polymers         UNIT IV       Flow properties of polymer         Bulk deformation, elongational and shear flow. Hagen Poiselli equati flow. Extrusion. Injection moulding. Blow moulding. Compression ar fibers.	Psychomot Cognitive Psychomot Cognitive Psychomot Cognitive Psychomot and Conden ation catalys dius of gyp polymers at	tor tor sation p t. Ring o ration a	Gui Res Und Gui Set Und Med Und Med	ded ponse lerstand, ded lerstand, chanism derstand, chanism <b>6+6</b> erization. ng
CO4       Describe and Illustrate the Flow properties of polymer         CO5       Classify and Describe the Polymer Fabrication Techniques         UNIT I       Introduction         Polymers and chemical bonding. Polymerization mechanism. Addition a Chain transfer reaction. Co-polymerization. Polymerization by coordina polymerization. Molecular weights and their distribution.         UNIT II       Microstructure of polymer chains         Configuration and conformation. Simple and hindered rotation. Ra distances. Crystallinity and melting. Glass transition. Physical states of polymer chain. Measurement of viscosity. Cohesive energy densi parameters. Polymer additives, blends and composites.         UNIT III       Mechanical properties         Rheology of polymers. Rubber elasticity. Viscoelasticity. Creep and stress behaviour. Strength and fracture of rubber and glassy polymers         UNIT IV       Flow properties of polymer         Bulk deformation, elongational and shear flow. Hagen Poiselli equatiflow. Extrusion. Injection moulding. Blow moulding. Compression an fibers.	Psychomot Cognitive Psychomot Cognitive Psychomot and Conden- ation catalys dius of gyr polymers an	tor tor sation p t. Ring o ration a	Gui Set Und Und Med Olymo openin	ded lerstand, chanism lerstand, chanism <b>6+6</b> erization. ng
cO5Classify and Describe the Polymer Fabrication TechniquesUNIT IIntroductionPolymers and chemical bonding. Polymerization mechanism. Addition a Chain transfer reaction. Co-polymerization. Polymerization by coordina polymerization. Molecular weights and their distribution.UNIT IIMicrostructure of polymer chainsConfiguration and conformation. Simple and hindered rotation. Ra distances. Crystallinity and melting. Glass transition. Physical states of polymer chain. Measurement of viscosity. Cohesive energy densi parameters. Polymers. Rubber elasticity. Viscoelasticity. Creep and stree behaviour. Strength and fracture of rubber and glassy polymersUNIT IVFlow properties of polymerBulk deformation, elongational and shear flow. Hagen Poiselli equati flow. Extrusion. Injection moulding. Blow moulding. Compression an fibers.	Psychomot Cognitive Psychomot and Conden- and conden- conden- conden- conden- conden- conden- conden- conden- cond	tor sation po t. Ring o ration a	Mee Und Mee olyma openin	chanism derstand, chanism 6+6 erization. ng
TechniquesUNIT IIntroductionPolymers and chemical bonding. Polymerization mechanism. Addition a Chain transfer reaction. Co-polymerization. Polymerization by coordina polymerization. Molecular weights and their distribution.UNIT IIMicrostructure of polymer chainsConfigurationand conformation. Simple and hindered rotation. Ra distances. Crystallinity and melting. Glass transition. Physical states of polymer chain. Measurement of viscosity. Cohesive energy densi parameters. Polymer additives, blends and composites.UNIT IIIMechanical propertiesRheology of polymers. Rubber elasticity. Viscoelasticity. Creep and stre behaviour. Strength and fracture of rubber and glassy polymersUNIT IVFlow properties of polymerBulk deformation, elongational and shear flow. Hagen Poiselli equati flow. Extrusion. Injection moulding. Blow moulding. Compression an fibers.	Psychomot and Conden- ation catalys dius of gyr polymers ar	sation potential station potential station a	olymo	6+6 erization.
Polymers and chemical bonding. Polymerization mechanism. Addition a Chain transfer reaction. Co-polymerization. Polymerization by coordina polymerization. Molecular weights and their distribution.         UNIT II       Microstructure of polymer chains         Configuration and conformation. Simple and hindered rotation. Ra distances. Crystallinity and melting. Glass transition. Physical states of polymer chain. Measurement of viscosity. Cohesive energy densi parameters. Polymer additives, blends and composites.         UNIT III       Mechanical properties         Rheology of polymers. Rubber elasticity. Viscoelasticity. Creep and streage behaviour. Strength and fracture of rubber and glassy polymers         UNIT IV       Flow properties of polymer         Bulk deformation, elongational and shear flow. Hagen Poiselli equation flow. Extrusion. Injection moulding. Blow moulding. Compression and fibers.	tion catalys dius of gyr polymers ar	t. Ring of	openi	erization. ng
Chain transfer reaction. Co-polymerization. Polymerization by coordinat polymerization. Molecular weights and their distribution.UNIT IIMicrostructure of polymer chainsConfiguration and conformation. Simple and hindered rotation. Ra distances. Crystallinity and melting. Glass transition. Physical states of polymer chain. Measurement of viscosity. Cohesive energy densi parameters. Polymer additives, blends and composites.UNIT IIIMechanical propertiesRheology of polymers. Rubber elasticity. Viscoelasticity. Creep and stra behaviour. Strength and fracture of rubber and glassy polymersUNIT IVFlow properties of polymerBulk deformation, elongational and shear flow. Hagen Poiselli equati flow. Extrusion. Injection moulding. Blow moulding. Compression an fibers.	tion catalys dius of gyr polymers ar	t. Ring of	openi	ng
UNIT III         Mechanical properties           Rheology of polymers. Rubber elasticity. Viscoelasticity. Creep and stree behaviour. Strength and fracture of rubber and glassy polymers           UNIT IV         Flow properties of polymer           Bulk deformation, elongational and shear flow. Hagen Poiselli equatiflow. Extrusion. Injection moulding. Blow moulding. Compression an fibers.	ty. Compa		of m	nd-to-end otions of
Rheology of polymers. Rubber elasticity. Viscoelasticity. Creep and strephene behaviour. Strength and fracture of rubber and glassy polymers         UNIT IV       Flow properties of polymer         Bulk deformation, elongational and shear flow. Hagen Poiselli equatiflow. Extrusion. Injection moulding. Blow moulding. Compression an fibers.				6+6
Bulk deformation, elongational and shear flow. Hagen Poiselli equati flow. Extrusion. Injection moulding. Blow moulding. Compression an fibers.	ess relaxatio	on. Dyna	mic	
flow. Extrusion. Injection moulding. Blow moulding. Compression an fibers.				6+6
LINUT X Delement Febrication Techniques	· ·			
UNIT V         Polymer Fabrication Techniques				6+6
Vulcanization of rubber. Flat film and sheet formations. Lamination				
LECTURETUTORIALHOURS30	PRACTIC 30		10	TAL
List of Experiments	50	1		60
10 to 12 Experiments will be provided relevant to the five course will be taught and also feasibility. <b>TEXT BOOK</b> 1. Nano-Carrier Systems Theories, Methods & Applications Auth		1		60

Rath, PharmaMed Press / BSP Books 2018.

2. Polymer Nanoparticles for Smart Drug Delivery By Devasier Bennet and Sanghyo Kim

Table 1 : COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

	E CODE XNT803F L T P										
COURSE N	AME	LIGNOCEL	LULOSES BIOMASS	2	0	1	3				
PREREQUI	SITES			L	Т	Р	Н				
C:P:A				2	0	2	4				
COURSE O	UTCON	1ES		DOMA	IN	L	EVEL				
CO1	-	n Basic structur ellulose	e and properties of	Cognitive Psychomo	tor		lerstand nember				
CO2	-	n and unders gnocellulose	<i>tand</i> biodiesel production	Cognitive Psychomo	tor	Gui	derstand, ded ponse				
CO3		<i>ine and Desc</i> nocellulose	<i>ribe</i> Bioethanol production	Cognitive Psychomo	tor		lerstand, ded				
CO4		be and Illustrations of lignocel	<i>te the</i> Bio refinery lulose	Cognitive Psychomo	tor		derstand, chanism				
CO5			emical and polymer ns of lignocellulose	Cognitive Psychomo	tor		lerstand, chanism				
UNIT I     Properties of Lignocellulose     6+6											
UNIT II	oduction	Biodiesel Production from Ligno cellulosic Biomass Using Oleaginous Microbes. Bio pulping of									
UNIT III	Bioeth										
Second Generation Bioethanol Production from Residual Biomass of the Rice Processing											
		Bioethanol Pr			the Ric	-	ulping of <b>6+6</b>				
		Bioethanol Pr nzymes and L	oduction from Residual B igno cellulosic Fuel Product		the Ric	-	ulping of <b>6+6</b>				
Industry. Mic UNIT IV A Potential A	crobial E <b>Biorefi</b> Agricultu	Bioethanol Pr nzymes and L <b>nery</b> ral Crop for B		ion inery. A GIS	Based	e Pro	alping of       6+6       ocessing       6+6				
Industry. Mic UNIT IV A Potential A	crobial E <b>Biorefi</b> Agricultu	Bioethanol Pr nzymes and L nery ral Crop for B Statistics of L	igno cellulosic Fuel Product io economy through Bio refi	ion inery. A GIS	Based	e Pro	alping of       6+6       ocessing       6+6				
Industry. Mic UNIT IV A Potential A Assessing Pro UNIT V Ligno cellulo Utilization of	Biorefi Biorefi Agricultu oduction Others Sic Bion f Ligno c	Bioethanol Pr nzymes and L nery ral Crop for B Statistics of L nass Utilizatio cellulosic Bion	igno cellulosic Fuel Product io economy through Bio refi igno cellulosic and its Appli n for the Production of Susta nass for Bio butanol Product	ion inery. A GIS ication in Bi ainable Cher	Based o refine	e Pro	alping of       6+6       ocessing       6+6       roach for       6+6				
Industry. Mic UNIT IV A Potential A Assessing Pro UNIT V Ligno cellulo Utilization of Application of	Agricultu oduction Others Sic Bion f Ligno conf Ligno	Bioethanol Pr nzymes and L nery ral Crop for B Statistics of L nass Utilizatio cellulosic Bion	igno cellulosic Fuel Product io economy through Bio refi igno cellulosic and its Appli n for the Production of Susta	ion inery. A GIS ication in Bi ainable Cher	Based o refine	e Pro	alping of       6+6       ocessing       6+6       roach for       6+6				
Industry. Mic UNIT IV A Potential A Assessing Pro UNIT V Ligno cellulo Utilization of Application of HOURS	Crobial E Biorefi Agricultu oduction Others Sic Bion of Ligno C of Ligno	Bioethanol Pr nzymes and L nery ral Crop for B Statistics of I nass Utilizatio cellulosic Bion cellulosic Bion	igno cellulosic Fuel Product io economy through Bio refi igno cellulosic and its Appli n for the Production of Susta hass for Bio butanol Product mass in the Paper Industry	ion inery. A GIS ication in Bi ainable Cher ion	Based o refine	e Pro Appr ry nd Po	alping of       6+6       ocessing       6+6       roach for       6+6       olymers				
Industry. Mic UNIT IV A Potential A Assessing Pro UNIT V Ligno cellulo Utilization of Application of HOURS List of Exper	Agricultu oduction Others osic Bion f Ligno S riments eriments	Bioethanol Pr nzymes and L nery ral Crop for B Statistics of L mass Utilizatio cellulosic Bion cellulosic Bio LECTURE 30 will be provid	igno cellulosic Fuel Product io economy through Bio refi igno cellulosic and its Appli n for the Production of Susta hass for Bio butanol Product mass in the Paper Industry <b>TUTORIAL</b>	ion inery. A GIS ication in Bi ainable Cher ion PRACTIC 30	Based o refine nicals an	e Pro	alping of         6+6         occessing         6+6         coach for         6+6         olymers         0TAL         60				
Industry. Mic UNIT IV A Potential A Assessing Pro UNIT V Ligno cellulo Utilization of Application of HOURS List of Expendent 10 to 12 Expendent	Biorefi         Agricultu         oduction         Others         sic Bion         f Ligno         of Ligno         S         riments         t and als	Bioethanol Pr nzymes and L nery ral Crop for B Statistics of L mass Utilizatio cellulosic Bion cellulosic Bio LECTURE 30 will be provid	igno cellulosic Fuel Product io economy through Bio refi igno cellulosic and its Appli n for the Production of Susta hass for Bio butanol Product mass in the Paper Industry TUTORIAL 0	ion inery. A GIS ication in Bi ainable Cher ion PRACTIC 30	Based o refine nicals an	e Pro	alping of         6+6         occessing         6+6         coach for         6+6         olymers         0TAL         60				

## & Sons, 2017

2. Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery *Edited by:Solange Inês Mussatto*.

3. Lignocellulosic Biomass Production and Industrial Applications Hardcover – 1 Aug 2017 by Arindam Kuila (Editor), Vinay Sharma (Editor).

REFERENCES

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

 Table 1 : COs versus POs mapping

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE C	CODE	XNT803		L	Т	P	C			
COURSE N	IAME	CAREER DEVELOPMENT SKILL	8	0	0	1	0			
C:P:A		1:1:1	L	Т	Р	Н				
PREREQU	ISITE			0	0 0 1					
COURSE C	URSE OUTCOMES Domain									
CO1		career related communication, and the different formats of CV / Resume	-	Ren	nemb	er				
CO2		for an interview and to learn how an interview	to Psychomo	tor Set						
CO3	•	/communicate effectively with a people in a group discussion	Affective	Res	pond					
UNIT - I	OVERV	<b>TEW AND INTRODUCTION</b>					1(			
		e between resume and CV; characteri sume, use of graphics in resume and								
UNIT – II	MEMS	FABRICATION TECHNOLOGIE	S				1(			
etiquette and	l dress cod	or various types of interviews. Types e in interview, interview mistakes, te asked questions. Planning for the in	lephonic interv			guage	,			
UNIT - III		SENSORS					1(			
		kshop on CV writing – Group Discus	ssion							
List of Expe 10 to 12 Exp will be taugh	periments when the seriment of the series of	will be provided relevant to the five c feasibility.	ourse outcome	based on	the f	acult	у			
Lect		Tutorial Pr	actical		Tota	1				
0			<u>30</u>		<u>10ta</u> 30	.1				
Com 2. Mary Lear REFEREN 1. Mich	McGee H prehensive / Ellen G ning, 2012 CES	Achette, How To Write a CV That e Guide to Writing an Effective CV U uffey, Dana Loewy, Essentials of poulos, Interview Skills that win the	IK, 2014 Business Con	nmunicat	ion,	Ceng	gage			

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	1	1	1	1	2	2		1	1	1		1	1
CO2		1			2	2		1	1	1		1	1
СОЗ	1					2	2	1			1	1	1
CO4			1				2	1			1		
CO5	1	1	1	1	2				1	1	1	1	1
Total													

Table 1 : COs versus POs mapping

1-5  $\rightarrow$  1, 6-10  $\rightarrow$  2, 11-15  $\rightarrow$  3

0 - No relation 1- Low relation 2- Medium relation

COURSE C	COURSE CODE XNT804 L								
COURSE N	IAME	MEMS/NEMS		3	1	0	4		
C:P:A		2:0.5:0.5		L	Т	Р	Н		
PREREQU	ISITE	Physics, Chemistry and Material Scie	ence	3	5				
COURSE C	OUTCON	1ES	Domain		vel				
CO1	CO1 Ability to understand the operation of micro devices, micro systems and their applications Psychomoton Affective								
CO2	•	to design the micro devices, micro using the MEMS fabrication process.	Cognitive Psychomotor Affective	Orga Unde Remo Appl Guid Orga	erstar embe ying ed re	nd er espon:	se		
CO3		knowledge of basic approaches for sensor design	Cognitive Psychomotor Affective	Unde Reme Appl Guid	Organizing Understand Remember Applying Guided response Organizing				
CO4		knowledge of basic approaches for actuator design	Cognitive Psychomotor Affective	Understand Remember Applying Guided response Organizing			se		
CO5	photonic Gain th compute and c	experience on micro/nano systems for es. le technical knowledge required for er-aided design, fabrication, analysis haracterization of nano-structured s, micro- and nano-scale devices.	Cognitive Psychomotor Affective	Understand Remember Applying Guided response Organizing					
UNIT - I	OVERV	/IEW AND INTRODUCTION					9+6		
New trends MEMS and Micro and N	in Engine NEMS, C Iano elect	ering and Science: Micro and Nano scale Overview of Nano and Micro electromech ro mechanical systems, Micro electrome , Materials for MEMS: Silicon, silicon c	nanical Systems chanical system	, Appl ns, dev	icatio	Design ons of and	n of		
UNIT – IIMEMS FABRICATION TECHNOLOGIES9-Microsystem fabrication processes: Photolithography, Ion Implantation, Diffusion, Oxidation. Thin film depositions: LPCVD, Sputtering, Evaporation, Electroplating; Etching techniques: Dry and wet etching, electrochemical etching; Micromachining: Bulk Micromachining, Surface Micromachining, High Aspect-Ratio (LIGA and LIGA-like) Technology; Packaging: Microsystems packaging, Essential packaging technologies, Selection of packaging materials									
UNIT - III	MICR	O SENSORS					9+6		

MEMS Song	ora Dagian	of Acoustic wave sonson	a reconant concor Vibrator	aurogoono							
MEMS Sensors: Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezo Resistive Pressure sensors- engineering mechanics behind these											
-			6	nu mese							
Microsensors	s. Case study	y: Piezo-resistive pressur	re sensor								
UNIT – IV		CTUATORS		9+6							
Design of Ac	ctuators: Act	uation using thermal for	ces, Actuation using shape n	nemory Alloys,							
Actuation us	ing piezoele	ctric crystals, Actuation	using Electrostatic forces (Pa	arallel plate,							
Torsion bar,	Comb drive	actuators), Micromecha	nical Motors and pumps. Cas	se study: Comb							
drive actuato	rs										
UNIT – V	NANOSY	STEMS AND QUANT	UM MECHANICS	9+6							
Atomic Strue	ctures and Q	uantum Mechanics, Mol	ecular and Nanostructure Dy	mamics:							
Shrodinger E	quation and	Wavefunction Theory, I	Density Functional Theory, I	Nanostructures and							
Molecular D	ynamics, Ele	ectromagnetic Fields and	l their quantization, Molecul	ar Wires and							
Molecular C		-	-								
TOTAL HO	URS										
Lectu	ıre	Tutorial	Practical	Total							
45		0	30	75							
TEXT BOO	K		· · · · ·								
1. Marc M	ladou, "Fun	damentals of Micro fabri	ication", CRC press 1997.Sto	ephen D. Senturia,"							
Micro system	n Design", K	Cluwer Academic Publis	hers,2001	-							
REFERENC	CES:										
1. Tai Ra	n Hsu ,"ME	MS and Microsystems D	Design and Manufacture", Ta	ta Mcraw							
Hill, 2002.		·	-								
2. Chang	Liu, "Found	ations of MEMS", Pears	son education India limited, 2	2006							
3. www.t	utorials poin	t.com									

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2	1	1	1	-	-	-	-	1			2	
CO2	2	1	1	1	-	-	-	-	1			2	
CO3	2	1	1	1	-	-	-	-	1			2	
CO4	2	1	1	1	-	-	-	-	1			2	
CO5	2	1	1	1	-	-	-	-	1			2	
Total	10	5	5	5	-	-	-	-	5			10	
	2	1	1	1	-	-	-	-	1			2	

# Table 1 : COs versus POs mapping

1-5  $\rightarrow$  1, 6-10  $\rightarrow$  2, 11-15  $\rightarrow$  3

0 - No relation 1- Low relation 2- Medium relation

COURSE C	ODE	XNT805		L	Т	Р	С
COURSE N	AME	SURFACE PLASMON RESONANC	E	3	0	1	4
C:P:A		2:0.5:0.5		L	Т	Р	Н
PREREQUI	SITE	Physics, Chemistry and Material Scie	ence	3	5		
COURSE O	UTCON	IES	Domain		Lev	vel	
CO1	CO1 Ability to understand the operation of micro devices, micro systems and their applications Psychomotor						
CO2	-	to design the micro devices, micro s using the MEMS fabrication process.	Affective Cognitive Psychomotor Affective	Orga Unde Reme Appl Guide Orga	erstan embe ying ed re	nd er spons	se
CO3		knowledge of basic approaches for sensor design	Cognitive Psychomotor Affective	Organizing Understand Remember Applying Guided response Organizing			se
CO4		knowledge of basic approaches for actuator design	Cognitive Psychomotor Affective	Understand Remember Applying Guided response Organizing			se
CO5	for pho Gain t comput and c	p experience on micro/nano systems tonics. he technical knowledge required for ter-aided design, fabrication, analysis characterization of nano-structured ils, micro- and nano-scale devices.	Cognitive Psychomotor	Understand Remember Applying Guided response Organizing			
Free Electron	quations	<b>TROMAGNETICS OF METALS</b> and Electromagnetic Wave Propagatic he Dispersion of the Free Electron Gas ions, The Energy of the Electromagnetic	and Volume Pla	asmon,		n of	
UNIT – II		ACEPLASMONPOLARITONSATME INTERFACES	ETAL/INSUL				9+6
	-	, Surface Plasmon Polaritons at a Sing and the Effective Mode Length	gle Interface, N	Aultila	yer S	Syste	ms,
UNIT - III		TATION OF SURFACE RITONS AT PLANAR INTERFACES	PLASMON				9+6
Highly Focu	used Op	rged Particle Impact, Prism Coupling, Control Beams, Near-Field Excitation, ventional Photonic Elements	0 1				0

	ING SURFACE PL AGATION	ASMON POLARI	TON 9+6										
Near-Field Microscopy , Fluorescence Imaging , Leakage Radiation , Scattered Light Imaging													
UNIT – V LOCALIZED SURFACE PLASMONS 9+6													
Normal Modes of S	Normal Modes of Sub-Wavelength Metal Particles, Mie Theory, Beyond the Quasi-Static												
Approximation and	Approximation and Plasmon Lifetime, Real Particles: Observations of Particle Plasmon,												
Coupling Between I	localized Plasmon, Void	Plasmon and Metall	ic Nanoshells, Localized										
Plasmon and Gain Me	di												
List of Experiments													
10 to 12 Experiments	will be provided relevant t	the five course outco	me based on the faculty										
will be taught and also	1												
TOTAL HOURS													
Lecture	Tutorial	Practical	Total										
45	0	30	75										
TEXT BOOK													
2. Marc Madou,	"Fundamentals of Micro fa	abrication", CRC press	1997.										
<b>*</b>	n D. Senturia," Micro syst	em Design", Kluwer A	cademic Publishers,2001										
<b>REFERENCES:</b>													
4. Tai Ran Hsu ,"MEMS and Microsystems Design and Manufacture" ,Tata Mcraw Hill, 2002.													
<ol> <li>Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006</li> <li>www.tutorials point.com</li> </ol>													

Table 1: COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	-	-	-	-	1			2	
CO2	2	1	1	1	-	-	-	-	1			2	
CO3	2	1	1	1	_	-	-	_	1			2	
CO4	2	1	1	1	-	_	-	-	1			2	
CO5	2	1	1	1	-	-	-	-	1			2	
Total	10	5	5	5	-	-	-	-	5			10	
	2	1	1	1	-	-	-	-	1			2	

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 - No relation 1- Low relation

2- Medium relation