

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.3	Average percentage of courses having focus on employability/ entrepreneurship/ skill development offered by Mathematics.

DEPARTMENT OF MATHEMATICS

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

 i. Bachelor of Science (Mathematics) ii. Master of Science (Mathematics) 	Programme Name	S. No.
ii Master of Science (Mathematics)	e (Mathematics)	i.
	Mathematics)	ii.

2. Syllabus of the courses as per the list.

Legend	Words highlighted with Blue Color	-	Entrepreneurship
:	Words highlighted with Red Color	-	Employability
	Words highlighted with Purple Color	-	Skill Development

1. List of Courses

Name of the Course	Course Code	Year of Introductio	Activities/Content with direct bearing on Employability/			
			Entrepreneurship/ Skill development			
	B.Sc. Mathe	ematics				
Communication Skills in English	XGL101	2018-19	Employability: Assignment & Seminar. To acquire basic Learning skills			
Fundamental Physics	XPG103	2018-19	Employability: Assignment, Seminar and Group discussions			
Foundation Course in Mathematics	XMT104	2018-19	Employability:Assignme nt, Seminar and Quiz			
Differential Calculus & Integral Calculus	XMT105	2018-19	Employability:Assignme nt, Seminar and Quiz			
Human Ethics, Values, Rights and Gender Equality	XUM106	2018-19	Employability:Assignme nt, Seminar and Quiz			
Fundamental Physics Lab	XPG107	2018-19	Employability: Assignment, Seminar and Group discussions			
English for Effective Communication	XGL201	2018-19	Employability: Assignment & Seminar. To acquire basic Learning skills			
Environmental Studies	XES202	2018-19	Employability: Assignment, Seminar and Group discussions			
Modern Physics	XPG 203	2018-19	Employability: Assignment, Seminar and Group discussions			
Differential Equations & Laplace Transforms	XMT204	2018-19	Employability:Assignme nt, Seminar and Quiz			
Sequences and Series	XMT205	2018-19	Employability: Assignment & Seminar. To acquire basic knowledge about Numbers.			
Modern Physics Lab	XPG206	2018-19	Employability: Assignment, Seminar and Group discussions			
Logic and Sets	XMT301	2018-19	Skill Enhancement: Seminar: To learn some application about logic			

			and sets
Programming in C	XMT302	2018-19	Employability: Miniproje
	11111202	2010 17	ct, Seminar and Group
			discussions
Real Analysis	XMT303	2018-19	Employability:Assignme
			nt, Seminar and Quiz
Analytical Geometry 3D	XMT304	2018-19	Employability:Assignme
			nt, Seminar and Quiz
Programming in C – Practical	XMT305	2018-19	Employability:Miniproje
			ct, Seminar and Group
			discussions
Disaster Management	XUM306	2018-19	Employability:Miniproje
			ct, Seminar and Group
Theory of Equations	VMT 401	2018 10	Skill Enhancement
Theory of Equations	AW11401	2018-19	Seminar: To learn how
			to find roots of algebraic
			equations
Introduction to Matlab	XMT402	2018-19	Employability:Miniproje
			ct, Seminar and Group
			discussions
Vector Calculus and Fourier	XMT403	2018-19	Employability:Assignme
Series			nt, Seminar and Quiz
Algebra	XMT404	2018-19	Employability:
			Assignment, Seminar
			and Group discussions
Introduction to Matlab –	XMT405	2018-19	Employability:Miniproje
Practical			ct, Seminar and Group
Probability and Statistics	VMT501	2018 10	Skill Enhancement:
Probability and Statistics	AWI1301	2018-19	Seminar: To learn how
			to apply hypothesis tests
Matrices	XMT502A	2018-19	Employability:Assignme
			nt, Seminar and Quiz
Discrete Mathematics	XMT502B	2018-19	Employability:Assignme
			nt, Seminar and Quiz
Numerical Methods	XMT503A	2018-19	Employability:Assignme
			nt, Seminar and Quiz
Mechanics	XMT503B	2018-19	Employability: Assignme
			nt, Seminar and Quiz
Linear Algebra	XMT504A	2018-19	Employability:Assignme
			nt, Seminar and Quiz
Astronomy	XMT504B	2018-19	Employability:Assignme
			nt, Seminar and Quiz

Graph Theory	XMT601	2018-19	Skill Enhancement Seminar: To learn how to apply different types of graphs in various fields
Complex Analysis	XMT602A	2018-19	Employability:Assignme nt, Seminar and Quiz
Number Theory	XMT602B	2018-19	Employability:Assignme nt, Seminar and Quiz
Linear Programming	XMT603A	2018-19	Skill Enhancement: To learn about formation of equation with some real world problems
Stochastic Processes	XMT603B	2018-19	Employability:Assignme nt, Seminar and Quiz
Project	XMT604	2018-19	Employability:Miniproje ct, Seminar and Group discussions
	M.Sc. Mathe	ematics	
Groups and Rings	YMA 101	2014-15	Employability:Assignme nt, test and case study.
Analysis-I	YMA 102	2014-15	Employability:Assignme nt, test and case study.
Differential Equations	YMA 103	2014-15	Employability:Assignme nt, test and case study.
Discrete Mathematics	YMA 104	2014-15	Employability:Assignme nt, test and case study.
Graph Theory	YMAIEI	2014-15	Skill Enhancement : Seminar: To learn types of Graphs and their properties/ To learn about application of coding theory/To learn about application of set theory in Logic
Coding Theory	YMA1E2	2014-15	Employability:Assignme nt, test and case study.
Mathematical Logic	YMA1E3	2014-15	Employability:Assignme nt, test and case study.
Linear Algebra	YMA 201	2014-15	Employability:Assignme nt, test and case study.
Analysis-II	YMA 202	2014-15	Employability: Assignme nt, test and case study.
Integral Equations, Calculus of Variations and Transforms	YMA 203	2019-20	Employability: Assignme nt, test and case study.

Operations Research	YMA 204	2014-15	Skill Enhancement
operations research	1001201	201115	Seminar: To learn how
			to apply optimization
			techniques in real world
			problems
Algebraic Number Theory	VMA2E1	2014-15	Skill Enhancement :
Algeorate Number Theory	I WIAZEI	2014-13	Sominar: To loarn
			algebraic number
			the survey (The last multiple)
			theorys/ To learn about
			algorithms in data
			structures/10 learn about
			application of Fuzzy sets
			and Fuzzy Logic
Data structures and Algorithms	YMA2E2	2014-15	Employability:Assignme
			nt, test and case study.
Fuzzy sets and fuzzy logic	YMA2E3	2014-15	Employability:Assignme
			nt, test and case study.
Field Theory	VMA 201	2014 15	Employability: Assignme
Field Theory	1 MA 501	2014-13	employability.Assignme
Terrelease	VIAA 202	2014 15	Int, test and case study.
Topology	YMA 302	2014-15	Employability:Assignme
		2020.21	nt, test and case study.
Automata Theory	YMA303	2020-21	Employability:Assignme
			nt, test and case study.
Mathematical Statistics	YMA 304	2014-15	Skill Enhancement:
			Seminar: To learn how
			to apply various methods
			of mathematical
			statistics
Data Analysis using SPSS	YMA3E1	2020-21	Employability Assignme
			I EIHDIOVADIHLV: ASSI911110
		2020-21	nt, test and case study.
		2020-21	nt, test and case study.
Numerical Methods	YMA3E2	2020-21	Employability:Assignme Employability:Assignme
Numerical Methods	YMA3E2	2014-15	Employability:Assignme nt, test and case study. Employability:Assignme nt, test and case study.
Numerical Methods	YMA3E2	2014-15	Employability:Assignme nt, test and case study. Employability:Assignme nt, test and case study.
Numerical Methods Commutative Algebra	YMA3E2 YMA3E3	2014-15 2014-15	Employability:Assignme nt, test and case study. Employability:Assignme nt, test and case study. Employability:Assignme
Numerical Methods Commutative Algebra	YMA3E2 YMA3E3	2014-15 2014-15	 Employability:Assignme nt, test and case study. Employability:Assignme nt, test and case study. Employability:Assignme nt, test and case study.
Numerical Methods Commutative Algebra Complex Analysis	YMA3E2 YMA3E3 YMA 401	2014-15 2014-15 2014-15	 Employability:Assignme nt, test and case study. Employability:Assignme nt, test and case study. Employability:Assignme nt, test and case study. Employability:Assignme
Numerical Methods Commutative Algebra Complex Analysis	YMA3E2 YMA3E3 YMA 401	2014-15 2014-15 2014-15	 Employability:Assignme nt, test and case study.
Numerical Methods Commutative Algebra Complex Analysis	YMA3E2 YMA3E3 YMA 401	2014-15 2014-15 2014-15	 Employability:Assignme nt, test and case study.
Numerical Methods Commutative Algebra Complex Analysis Functional Analysis	YMA3E2 YMA3E3 YMA 401 YMA 402	2014-15 2014-15 2014-15 2014-15	 Employability:Assignme nt, test and case study. Employability:Assignme
Numerical Methods Commutative Algebra Complex Analysis Functional Analysis	YMA3E2 YMA3E3 YMA 401 YMA 402	2014-15 2014-15 2014-15 2014-15	 Employability:Assignme nt, test and case study.
Numerical Methods Commutative Algebra Complex Analysis Functional Analysis Mathematical Modeling	YMA3E2 YMA3E3 YMA 401 YMA 402	2014-15 2014-15 2014-15 2014-15 2014-15	 Employability:Assignme nt, test and case study.
Numerical Methods Commutative Algebra Complex Analysis Functional Analysis Mathematical Modeling	YMA3E2 YMA3E3 YMA 401 YMA 402 YMA403	2014-15 2014-15 2014-15 2014-15 2014-15 2020-21	 Employability:Assignme nt, test and case study.
Numerical Methods Commutative Algebra Complex Analysis Functional Analysis Mathematical Modeling	YMA3E2 YMA3E3 YMA 401 YMA 402 YMA403	2014-15 2014-15 2014-15 2014-15 2014-15 2014-15	 Employability:Assignme nt, test and case study.
Numerical Methods Commutative Algebra Complex Analysis Functional Analysis Mathematical Modeling Project work	YMA3E2 YMA3E3 YMA 401 YMA 402 YMA403 YMA404	2014-15 2014-15 2014-15 2014-15 2020-21 2014-15	 Employability:Assignme nt, test and case study.
Numerical Methods Commutative Algebra Complex Analysis Functional Analysis Mathematical Modeling Project work	YMA3E2 YMA3E3 YMA 401 YMA 402 YMA403 YMA404	2014-15 2014-15 2014-15 2014-15 2020-21 2014-15	 Employability:Assignme nt, test and case study.
Numerical Methods Commutative Algebra Complex Analysis Functional Analysis Mathematical Modeling Project work	YMA3E2 YMA3E3 YMA 401 YMA 402 YMA403 YMA404	2014-15 2014-15 2014-15 2014-15 2014-15 2020-21 2014-15	 Employability:Assignme nt, test and case study.

Syllabus of the courses

B.Sc (MATHEMATICS)

COU	RSE CODE XGL101	XGL101 L T P						
COU	RSE NAME Basic English Communication Skills	2	0	0	0	2	2	
C:P:A	- 3:0:0							
COU	RSE OUTCOMES:	Do	omai	n	L	evel		
CO1	<i>Recall</i> the basic grammar and using it in proper context	Co	gniti	ve	Rem	embe g	erin	
CO2	<i>Explain</i> the process of listening and speaking	Co	gniti	ve	Unde	rstan g	ıdin	
CO3	Adapt important methods of reading	Co	gniti	ve	Creat	ing		
CO4	Demonstrate the basic writing skills	Co	gniti	ve	Understand g			

SYLLABUS	HOURS
UNIT I Grammar	
i. Major basic grammatical categories ii. Notion of correctness and attitude to error correction	9
UNIT II Listening and Speaking	
iii. Importance of listening skills iv. Problems of listening to unfamiliar dialects v. Aspects of pronunciation and fluency in speaking vi. Intelligibility in speaking	9
UNIT III Basics of Reading	
vii. Introduction to reading skills viii. Introducing different types of texts – narrative, descriptive, extrapolative	9
UNIT IV Basics of Writing	
ix. Introduction to writing skills x. Aspects of cohesion and coherence xi. Expanding a given sentence without affecting the structure xii. Reorganizing jumbled sentences into a coherent paragraph xiii. Drafting different types of letters (personal notes, notices, complaints, appreciation, conveying sympathies etc.)	9
Total Hours	36
 Text books 1. Acevedo and Gower M (1999) Reading and Writing Skills. London, Longman 2. Deuter, M et.al. (2015). Oxford Advanced Learner's Dictionary of English (Ninth Edition). New Delhi, OUP 2. Ender and Line (2009). On final Provide Content of Line (2009). 	
5. Eastwood, John (2008). Oxford Practice Grammar. Oxford, OUP	

- 4. Hadefield, Chris and J Hadefield (2008). Reading Games. London, Longman
- 5. Hedge, T (2005). Writing. Oxford, OUP
- 6. Jolly, David (1984). Writing Tasks: Stuidents' Book. Cambridge, CUP
- 7. Klippel and Swan (1984). Keep Talking. Oxford, OUP
- 8. Saraswati, V (2005). Organized Writing 1. Hyderabad, Orient Blackswan
- 9. Swan, Michael. (1980). Practical English Usage. Oxford, OUP

10. Walter and Swan (1997). How English Works. Oxford, OUP

Table 1: Mapping of Cos with POs:

	P	Р	PO	PO1	PO1	PO1	PSO	PSO						
	01	02	3	4	5	6	7	8	9	0	1	2	1	2
CO1	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO2	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO3	1	0	0	0	0	0	1	0	1	0	0	0	0	0
CO4	2	0	0	0	0	0	1	0	1	0	0	0	0	0
CO5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tota	7	0	0	0	0	0	6	0	4	0	0	0	0	0
1														
Scal	2	0	0	0	0	0	2	0	1	0	0	0	0	0
ed														
Valu														
e														
	1	0	0	0	0	0	1	0	1	0	0	0	0	0

1-5 → 1, 6-10 → 2, 11-15 → 3

0-No Relation, 1- Low Relation, 2 – Medium Relation, 3- High Relation

						P8 **	000					
	GA	GA	GA	GA	GA	GA	GA	GA	GA	GA1	GA1	GA1
	1	2	3	4	5	6	7	8	9	0	1	2
CO1	0	0	0	0	0	0	0	1	1	2	0	0
CO2	0	0	0	0	0	0	0	0	0	2	0	0
CO3	0	0	0	0	0	0	0	0	0	1	0	0
CO4	0	0	0	0	0	0	0	0	0	0	1	0
CO5	0	0	0	0	0	0	0	1	1	1	1	0
Tota l	0	0	0	0	0	0	0	2	2	6	2	0
Scal e	0	0	0	0	0	0	0	1	1	2	1	0

1-5→1, 6-10 →2, 11-15→3

0-No Relation, 1- Low Relation, 2 – Medium Relation, 3- High Relation **Performance Indicators**

PI 8: 1 High Ethical Standards

1.1.1 Practice ethical codes and standards endorsed by professional engineers.

PI 9: 1 Leadership and team work

1.1.1 Perform as an individual and as a leader in diverse teams and in multi-disciplinary scenarios.

PI 10: 1Communication Skills

1.1.1 Professional communication with the society to comprehend and formulate reports, documentation, effective delivery of presentation and responsible to clear instructions.

PI 11:1. Life-long learners:

1.1.1 Update the technical needs in a challenging world in equipping themselves to maintain their competence

COU	RSE CODE XGL102A	T.	Т	Р	С	
COU	SE NAME and alum subb	3	0	0	3	
PRER	EOUISITE		Ť	P	H	
	C:P:A 3:0:0	3	0	0	3	
	COURSE OUTCOMES	DON	ÍÂIN	Ī	LEVEL	
After	he completion of the course, students will be able to					
CO1	Recognize (milahsk; fhZjy;)பல்வேறுஅறிவியல்	Cogni	Cognitive Remember			
	துறைசார்ந்தநுட்பங்கள்,கலைச் சொல்லாக்கஉத்திகள்					
~~	போன்றவற்றைத் தமிழ்மொழி மூலம் அறிந்துகொள்ளல்.	~		-		
CO2	Choose	Cogni	tive	Re	member	
	(<i>தெரிவுசெய்தல)</i> வடலமாழுவேரச்சொற்கள்,புவயியல்,நில்வியல் பல்லிப் பலர் நடிக் இலர் ரியர்கள், மலக் அலிர் நடிகான்னல்					
CO3	பற்றப் பழந்தமிழ் இலக்கியிங்கள் மூலம் அறிந்துல்காள்ளல். Describe(tnsf·Fiv·)கொல்காப்பியும் மலம் வறிவியல்	Cogni	tive	Цı	nderstan	
005	செய்கிகளைஉணர்கல்.	Cogin		d	lacistan	
CO4	Apply	Cogni	tive	A	vlac	
	, <i>பயன்படுத்துதல்)</i> பல்வேறுகல்வித்துறைசார்ந்தபிரிவுகள்,பல்வே	- 0		1	T J	
	றுகல்வித்துறைசார்ந்தபிரிவுகள் குறித்துதெளிவுபெறல்.					
CO5	Analyze(gFj;jy;)அறிவியல் சிறுகதைகளின் தோற்றம் மற்றும்	Cogni	tive	Ar	ıalyze	
	வளர்ச்சிநிலைநாடகங்களின் பங்குகுறித்துதெளிவுபெறுதல்.					
அலகு	– 1 அறிவியல்தமிழ் அறிமுகம்	_	_	_	9	
அறிவி	யல்தமிழ் - பொறியியல்,தொழில்நுட்பம்,மருத்துவம்,உழவியல் · · ·). தமி 	ழில்	அறி	ചിധ്രം -	
தமிழி	ல் நுட்பம். படைப்புப் பணி– சொ – வேக்கால் டுக்கல்	ல்லாக்ச	5உத்த	திகள் `	-	
நுடபய ெந்திய	ானலைறுபாடுகளைஉணரந்துனொல்லாக்கம் செய்தல் - புமாழிகளுக்குப் பொதுவானகலைச் சொம்க <i>எ</i>	ക്ക പെറ്റെ സംഭ	06086 ഡെട്.க	சாறக கல்	- 10	
வடமெ	ாமிவேர்ச்சொர்களைமிக்கியாகக் கொண்டிருக்கலைப் பயன்படுக்	கா <u>உ</u> ரு காகல்.	ച്ചാത്ര	ഗ്രംഗ		
mvF	– 2. onwmwntnav: Jiwfs:	6-2			9	
niyi oo				0		
പ്പബ്ഡ നേതിപ്പി	பல,நிலவியல் பற்றபழந்தமழ் இலக்கியம் குறிப்படும் தக 10ம் உயிரியல் மண்ணியல் பற்றிய வகப்படைர் பொப்ரிரன்	5ഖலகள ചരിശ	- юлт п	ு கொ சா பலர்	லகாப்பியிட ர்வி	
குறப்ப அறிவி	ரும் உயரயல்,மண்ணயல் பற்றயஅடிப்படைச் செய்தாகள் - பல் கமிமுக்கு இதுமியல் உக்கிகள் - வளர் துமிம்	தயழ	மருத	ാല്പംപപ	00000	
ച്ചാശ്	പര് ഉലസ്ത്രം ക്ലാളത്ത് ചാല്ലാം. പ്ര 3 പരിശേഷക്തരുകണിരു ചന്ദിരിധരു				9	
மொமி	, <u>சிக்கையில் அந்துமை</u> பியல் கல்வி– கப்பக் கலைக்கல்வி– சமுக	ாயக்கல்	പി–പേ	சய்ளை	்க்கல்வி–	
மண்ண		நாலக் க	ல்விட்	பர	துநிலை–	
கலை,	அறிவியல் - என்பவற்றின் விளக்கங்கள்.				0,	
அலகு	– 4 அறிவியல் தமிழில் சிறுகதைகளின் பங்கு				9	
சிங்கள	தை -இலக்கணம் உருவாக்கும் உக்கிகள் - சிருந்கசியுககைக	ள் - சி	ദ്വക്ത	ക ഖര	கைகள் -	
நல்லச்	ிறுகதைஉருவாக்கம் - வரலாறு– சமூகம் - மொழிபெயர்ப்புமற்ற	ு. ப் அறி	ച∞ം ഖിലல்	சிறுக சிறுக	க்கைகள்.	
۲.		-		0	- م	
ക്കരം	– 5 அறுவயல் தமழல் நாடகங்களன் பங்கு		-	۹	9 	
நாடகா	∪ - நாடக இலக்கணாம, இருவைக்நாடகங்களா - தல்கரியாள தம் - தரித்திரதா தம்த∉மதநா தம் - நகைத்தன	படிப்ப வாரா க	தறகு ங்கள்	ப்பநாட	_கய - வமெச்சுர்	
நடிப்பத	தற்குராயநாடகம் - சர்த்தர்நாடகம்,சமுக்தாடகம் - நலைக்சளல வகள் - கொழில்மனைகாடகங்கள்	ച്ചാപ്പയ	ווססוני		அல்மசஞர்	
2.50		CTICA	L		TOTAL	
	45				45	
மேற்பா	ர்வைநூல்கள்:					
 1 ചന	் - விவியல் கமிம் - டாக்டர் வா.செ குமந்தைச்சாமி					
റ ചെ	ர் கமிம் _ கொம்கள்					
∠. 6∐61	யு தயழு - குதழகள் 					
3. இබ	க்கியவரலாறு– சிறுகதைபற்றியது					

4. இலக்கியவரலாறு– புதினம் பற்றியது

		PSO							
B.C.A. ,									
	1	2	3	4	5	6	7	1	2
CO1		1							
CO2		1							
CO3		1					1		
CO4	1	2	2	1		1	2		
CO5	2	2	2	2		1	2		
Total	3	7	4	3		2	5		
Scaled Value	1	1	1	1			1		

 $1-5 \rightarrow 1$ $6-10 \rightarrow 2$ $11-15 \rightarrow 3$

COUR	SE CODE XPG103	L	Т	Р	С	
COUR	SE NAME FUNDAMENTAL PHYSICS	3	1	0	4	
C:P:A	4:0:0	L	Т	Р	Н	
PRER	EQUISITE:	3	1	0	4	
CO1	<i>Recall</i> and <i>Explain</i> the basic principle simple harmonic motion and circular motion	Cogni	Remen Unders Anal	nber , stand, yze		
CO2	<i>Understand</i> the properties of sound, reverberation time and methods of production of ultrasonic waves.	Cogniti	ve	Remember , Analyze		
CO3	<i>Understand and determine</i> Young's modulus, rigidity modulus, viscosity and explain surface tension and excess pressure inside a drop.	Cogniti	ve	Analyze , Understand, Application		
CO4	<i>Recall</i> the basic concepts and basic laws of thermal physics and <i>determine</i> the thermal conductivity of a bad conductor and solar constant.	Cogniti	ve	Remember , Analyze, Application		
CO5	<i>Acquire knowledge</i> on interference, diffraction; be able to determine wavelength of mercury source; understand LASER action and production; propagation of fibre optics	Cogniti	ve	Unders evalua	stand, ation	

UNIT ISimple Harmonic Motion and Circular Motion

Time period - Amplitude - Phase - Spring mass system - Simple pendulum - Composition of two simple harmonic motions along a straight line and at right angles - Lissajous figures - Damping force - Damped harmonic oscillator - Uniform circular motion - Acceleration of a particle in a circle - Centripetal and centrifugal forces - Banking on curved tracks - Motion of a bicycle and a car around a circle.

UNIT IISound Uniform circular motion

Classification of sound - Characteristics of musical sound - Loudness - Weber Fechner law -Decibel - Absorption co-efficient - Reverberation - Reverberation time - Ultrasonic waves -Properties - Production : Magnetostriction and Piezo-electric method and uses.

UNIT IIIProperties of Matter

Elasticity - Elastic constants - Bending of beams - Young's modulus by non-uniform bending -Torsion in a wire - Determination of rigidity modulus of torsional pendulum - Viscosity -Coefficient of viscosity by Poiseuelle's method - Stoke's law - Terminal velocity - Surface Tension - Molecular theory of surface tension - Excess pressure inside a drop and bubble -Surface tension by drop weight method.

UNIT IVThermal Physics

Kinetic theory of gases - Basic postulates - Ideal gas equation - Vanderwaal's equation of states -Laws of thermodynamics - Entropy - Change of entropy in reversible and irreversible processes -Lee's disc method for conductivity of bad conductor - Stefan's law of radiation - Solar Constant temperature of the sun.

UNIT V Optics

9+3

9+3

9+3

9+3

Interference in thin films - Air wedge - Diffraction - Theory of plane transmission grating (normal incidence only) - LASER - Population inversion - Pumping - Laser action - Nd-YAG laser - CO_2 laser - Fibre optics - Principle and propagation of light in optic fibres - Numerical aperture and acceptance angle.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS

1. A Sundaravelusamy, "Allied Physics I", Priya Publications, 2009.

2. R. Murugesan, I B.Sc. "Ancillary Physics", S. Chand & Co., 2010.

REFERENCES

- 1. Saigal. S, "Sound", Chand & Co., Delhi,1990
- 2. Brijlal and Subramanian, "Elements of properties of matter", S. Chand Limited, 1974.
- 3. Brijlal and Subramanian, "Heat and Thermodynamics", S. Chand Limited, 2008
- 4. Brijlal and Subramanian, "Optics", S. Chand Limited, 2012.

Table 1: Mapping of Cos with POs

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO9
CO ₁	1	1	1		2	1	1	1	
CO ₂	2	3	2	1	2	2	1	2	
CO ₃	1	3	2		1	2	2	2	
CO ₄	1	1	2		1	2	1	1	
CO5	2	3	1		2	2	2	1	
Total	6	11	8	1	8	9	7	7	
Scaled	2	3	2	1	2	2	2	2	

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

COURSE CODE			COURSE NAME		L	Т	Р	С			
XMT	104		FOUNDATION COURSE IN MATHE	4	1	0	5				
С	Р	Α			L	Т	Р	Η			
5	0	0		4	1	0	5				
PRER	REQUI	ry									
COURSE OUTCOMES:											
Cours	se outc	omes:		Domain	Level						
CO1:Define and Apply fundamental theorem of algebra to Cognitive find the relation between roots and coefficients.							Remembering Applying				
CO2:	Expla the rec	in the ciproca	transformation of equation and to solve I equation using Newton's method.	Cognitive	Und App	ersta lying	nding	r >			
CO3:Expand the trigonometric functions and to find the Cognitive series of trigonometric functions by apply the related properties to Solve the problems.						ersta lying	nding	r >			
CO4: Explain hyperbolic and inverse hyperbolic functionsCognitiveRememberingand to find the logarithm of the complex numbers.Applying											
CO5: Explain Summations of trigonometric series and apply properties to find their related problems. Cognitive Remembering Applying											

UNIT I

Theory of Equations: Fundamental Theorem of Algebra - Relations between roots and coefficients - Symmetric functions of roots.

UNIT II

Transformation of Equations - Reciprocal Equations - Newton's Method of Divisors - Descartes' rule of signs – Horner's Method.

UNIT III

Trigonometry: Expansion of functions, sinnx, cosnx, tannx- Expansion of $sin^n x$ and $cos^n x$ interms of sinx and cosx - Properties and their -related problems.

UNIT IV

Hyperbolic functions - Inverse hyperbolic functions - Logarithm of Complex Numbers.

UNIT V

Summations of trigonometric series- Properties and their related problems.

TOTAL	TUTORIAL	LECTURE
75	15	60

1

1

1

1

1

TEXT BOOKS

 S. Narayanan & T. K. ManickavasagamPillai, "Algebra", Vol. 2, S. Viswanathan Pvt. Ltd., Chennai, 2004.

Unit 1: Chapter 6, Secs 6.1-6.14

Unit 2 : Chapter 6, Secs 6.15-6.30.

2. S. Narayanan & T. K. ManickavasagamPillai, "Trigonometry", S. Viswanathan Pvt. Ltd., Chennai, 2001.

Unit 3: Chapter 3

Unit 4: Chapter 4, 5

Unit 5: Chapter 6.

Reference

1. Arumugam & Issac, "Theory of Equations, Theory of Numbers and Trigonometry", New gamma Publishing house, Tirunelveli, 2011.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1	1	1		1
CO 2	3	2	1	1	1	1	1		1
CO 3	3	2	1	1	1	1	1		1
CO 4	3	2	1	1	1	1	1		1
CO 5	3	2	1	1	1	1	1		1
Total	15	10	5	5	5	5	5		5
Scaled Value	3	2	1	1	1	1	1		1

Table 1: Mapping of COs with POs

1 - Low , 2 – Medium , 3- high

COURSE CODE		L	Т	Р	С			
XMT 105	DIFFERENTIAL CALCULUS & INTE CALCULUS	CGRAL	4	1	0	5		
C P A			L	Т	Р	H		
5 0 0			4	1	0	5		
PREREQUISITE:	Differentiation and Integration							
COURSE OUTCO								
Course outcomes:		Domain	Level					
CO1:Applythe bas	sics of differentiation.	Cognitive	Remembering Applying					
CO2: Find Evolu	tes in Cartesian Coordinates.	Cognitive	Understanding Applying					
CO3:State Rolle's theorem w remainder, Minima.	Understanding Applying							
CO4: Find the de and reduction	Remembering Applying							
CO5: Find integration double integration	ation by changing order of integrationusing grals.	Cognitive	Remembering Applying					
UNIT I						15		
Limit and Continuit functions, Successiv theorem on homoge	y (ε and δ definition), Types of discontinuit we differentiation, Leibnitz's theorem, Partia eneous functions.	ies, Differentia Il differentiation	<mark>bility</mark> n, Eul	of er's				
UNIT II						15		
Tangents and norma Parametric represen	als, Curvature, Asymptotes, Singular points, tation of curves and tracing of parametric curves and	Tracing of cur urves, Polar co	ves. ordina	ites.				
UNIT III					-	15		
Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and Cauchy's forms of remainder, Taylor's series(Statement only) Maclaurin's series of sin x, $\cos x$, e^x , $\log(l+x)$, $(l+x)^m$, Maxima and Minima, Indeterminate forms.								
UNIT IV				15				
Definite integrals -	Integration by parts & reduction formula							
UNIT V				15				
Double integrals – c	changing the order of Integration – Triple In	tegrals.						
	LECTURE	TUTORIA	L		TO	ΓAL		
			75	5				

TEXT BOOKS

- 1. S.Narayanan and T.K.Manicavachagom Pillai, "Calculus Volume I", S.Viswanathan (Printers&Publishers) Pvt Limited, Chennai -2011.
- 2. S.Narayanan and T.K.Manicavachagom Pillai, "Calculus Volume II", S.Viswanathan (Printers & Publishers) Pvt Limited, Chennai 2011.

UNIT IV: Chapter 1 section 11, 12 & 13

UNIT V: Chapter 5 section 2.1, 2.2 & 4

REFERENCES

1.S.Arumugam and Isaac, "Calculus, Volume1", New Gamma Publishing House, 1991.

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1	1	1		1
CO 2	3	2	1	1	1	1	1		1
CO 3	3	2	1	1	1	1	1		1
CO 4	3	2	1	1	1	1	1		1
CO 5	3	2	1	1	1	1	1		1
	15	10	5	5	5	5	5	5	5

1 - Low , 2 – Medium , 3- high

COURSE	CODE XUM 106	L	Т	Р		C			
COURSE	NAME Human Ethics, Values, Rights and Gender Equality	3	0	0		0			
PREREQU S	JISITE Not Required	L	Т	Р	SS	Н			
C:P:A	3:0:0.0	3	0	0	0	3			
	COURSE OUTCOMES Do	mai	n	Leve	el				
CO1	<i>Relate</i> and <i>Interpret</i> the human ethics and C human relationships	ogni	tive	Rem nd	ember,U	ndersta			
CO2	<i>Explain</i> and <i>Apply</i> gender issues, equality C and violence against women	ogni	tive	Unde Appl	erstand, y				
CO3	<i>Classify</i> and <i>Develop</i> the identify of Co women issues and challenges	gniti	ive& tive	Anal Rece	yze vive				
CO4	<i>Classify</i> and <i>Dissect</i> human rights and C report on violations.	ogni	tive	Unde	erstand,A	nalyze			
CO5	<i>List</i> and respond to family values, universal brotherhood, fight against corruption by common man and good governance.								
UNIT I	HUMAN ETHICS AND VALUES			7					
	Human Ethics and values - Understanding of needs- Social service, Social Justice, Dignity relationship: Family and Society, Integrity and C Honesty and Courage, WHO's holistic deve operation, Commitment, Sympathy and Empath character building and Personality	ones and Comp lopn lopn ly, Se	elf an worth petenc nent - elf res	d othe , Harr e, Car Valu pect, S	ers- moti- mony in ing and S ung Tim Self-Cont	ves and human Sharing, ne, Co- fidence,			
UNIT II	GENDER EQUALITY			9					
	Gender Equality - Gender Vs Sex, Concepts, de and empowerment. Status of Women in India Health, Employment, HDI, GDI, GEM. Contr Thanthai Periyar and Phule to Women Empower	finiti Soc ibuti rmen	ion, G ial, Eo ons of it.	ender conom f Dr.E	equity, e lical, Edu B.R. Amb	quality, acation, bethkar,			
UNIT III	WOMEN ISSUES AND CHALLENGES			9					
	Women Issues and Challenges- Female Infanticide, Female feticide, Violence against women, Domestic violence, Sexual Harassment, Trafficking, Access to education, Marriage. Remedial Measures – Acts related to women: Political Right, Property Rights, and Rights to Education, Medical Termination of Pregnancy Act, and Dowry Prohibition Act.								
UNIT IV	HUMAN RIGHTS			9					
	Human Rights Movement in India – The preamble to the Constitution of India, Human Rights and Duties, Universal Declaration of Human Rights (UDHR), Civil, Political, Economical, Social and Cultural Rights, Rights against torture,								

Discrimination and forced Labour, Rights and protection of children and elderly. National Human Rights Commission and other statutory Commissions, Creation of Human Rights Literacy and Awareness. - Intellectual Property Rights (IPR). National Policy on occupational safety, occupational health and working environment.

UNIT V GOOD GOVERNANCE AND ADDRESSING SOCIAL 11 ISSUES

Good Governance - Democracy, People's Participation, Transparency in governance and audit, Corruption, Impact of corruption on society, whom to make corruption complaints, fight against corruption and related issues, Fairness in criminal justice administration, Government system of Redressal. Creation of People friendly environment and universal brotherhood.

LECTURE	SELF STUDY	TOTAL
15	30	45

REFERENCES

- 1. Aftab A, (Ed.), "Human Rights in India: Issues and Challenges", (New Delhi: Raj Publications, 2012).
- 2. Bajwa, G.S. and Bajwa, D.K. "Human Rights in India: Implementation and Violations" (New Delhi: D.K. Publications, 1996).
- 3. Chatrath, K. J. S., (ed.), "Education for Human Rights and Democracy" (Shimala: Indian Institute of Advanced Studies, 1998).
- 4. Jagadeesan. P., "Marriage and Social legislations in Tamil Nadu", Chennai: Elachiapen Publications, 1990).
- 5. Kaushal, Rachna, "Women and Human Rights in India" (New Delhi: Kaveri Books, 2000)
- 6. Mani. V. S., "Human Rights in India: An Overview" (New Delhi: Institute for the World Congress on Human Rights, 1998).
- 7. Singh, B. P. Sehgal, (ed) "Human Rights in India: Problems and Perspectives" (New Delhi: Deep and Deep, 1999).
- 8. Veeramani, K. (ed) Periyar on Women Right, (Chennai: Emerald Publishers, 1996)
- 9. Veeramani, K. (ed) Periyar Feminism, (Periyar Maniammai University, Vallam, Thanjavur: 2010).
- 11.Planning Commission report on Occupational Health and Safety http://planningcommission.nic.in/aboutus/committee/wrkgrp12/wg_occup_safety.p
- 11. Central Vigilance Commission (Gov. of India) website: <u>http://cvc.nic.in/welcome.html</u>.
- 12. Weblink of Transparency International: <u>https://www.transparency.org/</u>
- 13. Weblink Status report: https://www.hrw.org/world-report/2015/country-chapters/india

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O	PO 10	PO 11	PO 12	PS01	PSO2
CO 1								2						
CO 2								3	1					
CO 3								2						
CO 4								3		2				
CO 5								3	2	2		2		
Total		2						13	3	4		2		
Scaled		1						3	1	1		1		
Value														

COUF	RSE CODE	XPG107		L	Т	Р	С	
COUR	RSE NAME	FUNDAMENTAL PHYSICS LAR		0	0	4	2	
C:P:A		0.4:1:0.6		Ľ	T	P	H	
PRER	EOUISITE: N	vil		0	0	4	4	
COU	RSE OUTCON	AES	Don	nain		Leve	 	
CO1:	Recall the use	age of laboratory instruments and measure	Cogni	tive	Und	ıd		
	the Young's 1	nodulus of Non – uniform pending	Psych	omotor	Mechanism			
CO2:	Explain and	<i>demonstrate</i> the behavior of rigidity	Psych	omotor	Set			
	modulus of a	wire	Affect	ive	Valu	iing		
CO3:	Manipulate a	tive	App	ly				
	omotor	Mec	hanis	m				
CO4:	<i>Compare</i> and	Affect	ive	Orga	anizat	ion		
		Psyche	omotor	Set				
CO5	CO5 <i>Describe</i> the Band gap of the semiconductor Psych						n	
Affective Organiz								
LIST OF EXPERIMENTS HOURS								
1	Non-uniform	Bending - Pin and Microscope Method				4		
2	Torsional per	dulum - Determination of rigidity modulus	of a wire	e		4		
3	Co-efficient of	of viscosity of Liquid using graduated burette	e			4		
4	Spectrometer	- Refractive index of solid prism (A, D and	μ)			4		
5	Post Office I	Box - Determination of Band gap of a semi-c	onducto	or		4		
6	Air wedge - d	letermination of thickness of thin wire				4		
7	Potentiomete	r - Calibration of voltmeter				4		
8	LASER grati	ng - Determination of wavelength of LASEF	R and siz	ze of		4		
	the micro-par	ticle						
TEXT	BOOKS:			-				
1. C. L. Arora, "BSc Practical Physics", S. Chand and Company Ltd, 2007.								
2. D. Chattopadhyay and P. C. Rakshit, "An Advanced Course in Practical Physics", (New								
Cen	tral Book Agei	ncy), 2011.	C (1 D 1		. 7		
5. S. C	nosh. A, "lex"	t BOOK OI Advanced Practical Physics", (New	w Centra	ai Book	Agen	cy) /		
A Slar	lester I - Physi	us (nonours) Theory Paper, 2008.	1 an T-+	omotio	1 (ח)	1+1		
т. Silu	4. Shukia K. K. and Anchai Shivastava, Practical Physics, New Age International (P) Etd, Publishers 2006							

REFERENCESbooks :

- 1. Squires G. L., Practical Physics, 4 th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., Fundamentals of Physics, 6th Edition, John Wiley and Sons, 2001.
- 3. Jenkins F.A. and White H.E., Fundamentals of Optics, 4th Edition, Mc Graw Hill Book Company, 2007.

4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.

5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO9
CO ₁	1	1	1		2	1	1	1	
CO ₂	2	3	2	1	2	2	1	2	
CO ₃	1	3	2		1	2	2	2	
CO ₄	1	1	2		1	2	1	1	
CO5	2	3	1		2	2	2	1	
Total	6	11	8	1	8	9	7	7	
Scaled	2	3	2	1	2	2	2	2	

Table 1: Mapping of Cos with POs

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

II SEMESTER

COUI	RSE CODE	XGL201	L	Т	Р	SS	H	С	
COUI	RSE NAME	ADVANCED ENGLISH COMMUNICATION SKILLS	2	0	0	0	2	2	
C:P:A COUI	- 3:0:0 RSE OUTCOMI	ES:	De	omai	n	I	.evel	l	
CO1	CO1Recall the basic grammar and using it in proper contextCognitiveRer								
CO2	Explain the pro-	cess of listening and speaking	Co	gniti	ve	Unde	nderstandir g		
CO3	Adapt importan	nt methods of reading	Co	gniti	ve	Cr	eatin	ıg	
CO4	<i>Demonstrate</i> th	e basic writing skills	Co	gniti	ve	Unde	erstai g	ndin	
SYLL	SYLLABUS						HÕU	JRS	
UNIT	I Advanced	Reading							
i. Read compr unders UNIT	ling texts of diffe ehension iii. Rea standing incompl II Advanced	erent genres and of varying length ii. Different stra ding and interpreting non-linguistic texts iv. Read ete texts (Cloze of varying lengths and gaps; disto Writing	itegie ing a rted 1	es of nd texts.	.)		9		
v. Ana the fin exercis punctu	lysing a topic for al draft vii. Re-d se) viii. Summari ation appropriate	an essay or a report vi. Editing the drafts arrived raft a piece of text with a different perspective (M se a piece of prose or poetry ix. Using phrases, idi by	at an anipu ioms	d pre ilatio and	epar on	ing	9)	
UNIT	III Principles	of communication and communicative compet	ence	:					
x. Introduction to communication – principles and process xi. Types of communication – verbal and non-verbal xii. Identifying and overcoming problems of communication xiii. Communicative competence)	
UNIT	IV Cross Cul	tural Communication							
xiv. C	ross-cultural com	munication	ſ	ſotal	Но	urs	9 3() 6	
Text b	books		1						

1) Bailey, Stephen (2003). Academic Writing. London and New York, Routledge.

2) Department of English, Delhi University (2006). Fluency in English Part II. New Delhi, OUP

3) Grellet, F (1981). Developing Reading Skills: A Practical Guide to Reading Skills. New York, CUP

4) Hedge, T. (2005). Writing. London, OUP

5) Kumar, S and Pushp Lata (2015). Communication Skills. New Delhi, OUP

6) Lazar, G. (2010). Literature and Language Teaching. Cambridge, CUP

7) Nuttall, C (1996). Teaching Reading Skills in a Foreign Language. London, Macmillan

8) Raman, Meenakshi and Sangeeta Sharma (2011). Technical Communication: Principles and Practice. New Delhi, OUP

	Р	Р	PO	PO1	PO1	PO1	PSO	PSO						
	01	02	3	4	5	6	7	8	9	0	1	2	1	2
CO1	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO2	2	0	0	0	0	0	2	0	1	0	0	0	0	0
CO3	1	0	0	0	0	0	1	0	1	0	0	0	0	0
CO4	2	0	0	0	0	0	1	0	1	0	0	0	0	0
CO5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tota	7	0	0	0	0	0	6	0	4	0	0	0	0	0
1														
Scal	2	0	0	0	0	0	2	0	1	0	0	0	0	0
ed														
Valu														
e														
	1	0	0	0	0	0	1	0	1	0	0	0	0	0

Table 1: Mapping of Cos with POs:

1-5=1, 6-10 = 2, 11-15=3

0-No Relation, 1- Low Relation, 2 - Medium Relation, 3- High Relation

Table 2: Mapping of COs with GAs:

	GA	GA1	GA1	GA1								
	1	2	3	4	5	6	7	8	9	0	1	2
CO1	0	0	0	0	0	0	0	1	1	2	0	0
CO2	0	0	0	0	0	0	0	0	0	2	0	0
CO3	0	0	0	0	0	0	0	0	0	1	0	0
CO4	0	0	0	0	0	0	0	0	0	0	1	0
CO5	0	0	0	0	0	0	0	1	1	1	1	0
Tota l	0	0	0	0	0	0	0	2	2	6	2	0
Scal e	0	0	0	0	0	0	0	1	1	2	1	0

1-5=1, 6-10 = 2, 11-15=3

0-No Relation, 1- Low Relation, 2 – Medium Relation, 3- High Relation

Performance Indicators

PI 8: 1 High Ethical Standards

1.1.1 Practice ethical codes and standards endorsed by professional engineers.

PI 9: 1 Leadership and team work

1.1.1 Perform as an individual and as a leader in diverse teams and in multi-disciplinary scenarios.

PI 10: 1Communication Skills

1.1.1 Professional communication with the society to comprehend and formulate reports, documentation, effective delivery of presentation and responsible to clear instructions.

PI 11:1. Life-long learners:

1.1.1 Update the technical needs in a challenging world in equipping themselves to maintain their competence

COUF	RSE CODE	XES202	L	Т	SS	Р	C	
COUR	RSE NAME	ENVIRONMENTAL STUDIES	2	0	1	0	2	
C:P:A		1.4: 0.3 : 0.3	L	Т	SS	Р	Η	
			2	0	1	0	3	
COUF	RSE OUTCO	MES	DOM	IAIN	LE	LEVEL		
CO1	Describe the	Cogn	itive	Rer	nembe	r		
	<i>explain</i> anth	ropogenic impacts.			Unc	d		
CO2	<i>Illustrate</i> the natural geo b ecological ba	e significance of ecosystem, biodiversity and io chemical cycles for maintaining lance.	Cogn	itive	Unc	ıd		
CO3	Identify the f	facts, consequences, preventive measures of	Cogn	itive	Remember			
	major polluti phenomenon	ons and <i>recognize</i> the disaster	Affec	tive	Receive			
CO4	Explain the	socio-economic, policy dynamics	Cogn	nitive Unde		lerstand		
	and <i>practice</i> (sustainable d			Арр	ply			
CO5	Recognize th	e impact of population and the concept of	Cogn	itive	Unc	lerstan	d	
	various welfare programs, and <i>apply</i> themodern technology towards environmental protection.				Ana			

UNIT - IINTRODUCTION TO ENVIRONMENTAL STUDIES AND ENERGY 12

Definition, scope and importance – Need for public awareness – Forest resources: Use and overexploitation, deforestation, case studies – Water resources: Use and over-utilization of surface and ground water, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: renewable and non-renewable energy sources – Land resources: Land as a resource, land degradation, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

UNIT – II ECOSYSTEMS AND BIODIVERSITY

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystem – Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT – III ENVIRONMENTAL POLLUTION

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management – Role of an individual in prevention of pollution – Pollution case

10

7

studies – Disaster management: flood, earthquake, cyclone and landslide.

UNIT -IV SOCIAL ISSUES AND THE ENVIRONMENT

Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wasteland reclamation – Consumerism and waste products – Environment Protection Act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT -V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – Population explosion– Environment and human health – HIV / AIDS– Role of Information Technology in Environment and human health. Population growth, variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education - HIV / AIDS – Women and Child welfare programme– Role of Information Technology in Environment and human health – Case studies.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	30	0	0	15	45

TEXT BOOKS

- 1. Miller T.G. Jr., "Environmental Science", Wadsworth Publishing Co, USA, 2000.
- 1. Townsend C., Harper J and Michael Begon, "Essentials of Ecology", Blackwell Science, UK, 2003
- 2. Trivedi R.K and P.K.Goel, "Introduction to Air pollution", Techno Science Publications, India, 2003.
- 3. Disaster mitigation, Preparedness, Recovery and Response, SBS Publishers & Distributors Pvt. Ltd, New Delhi, 2006.
- 4. Butterworth Heinemann, "Introduction to International disaster management", 2006.
- 5. Gilbert M.Masters, "Introduction to Environmental Engineering and Science", Pearson Education Pvt., Ltd., Second Edition, New Delhi, 2004.

REFERENCESBOOKS

- 1. Trivedi R.K., "Handbook of Environmental Laws, Rules", Guidelines, Compliances and Standards, Vol. I and II, Enviro Media, India, 2009.
- 2. Cunningham, W.P.Cooper, T.H.Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.
- 3. S.K.Dhameja, "Environmental Engineering and Management", S.K.Kataria and Sons, New Delhi, 2012.

10

6

- 4. Sahni, "Disaster Risk Reduction in South Asia", PHI Learning, New Delhi, 2003.
- 5. Sundar, "Disaster Management", Sarup & Sons, New Delhi, 2007.
- 6. G.K.Ghosh, "Disaster Management", A.P.H.Publishers, New Delhi, 2006.

E RESOURCES

- 1. http://www.e-booksdirectory.com/details.php?ebook=10526
- 2. https://www.free-ebooks.net/ebook/Introduction-to-Environmental-Science
- 3. https://www.free-ebooks.net/ebook/What-is-Biodiversity
- 4. https://www.learner.org/courses/envsci/unit/unit_vis.php?unit=4
- 5. http://bookboon.com/en/pollution-prevention-and-control-ebook
- 6. http://www.e-booksdirectory.com/details.php?ebook=8557
- 7. http://www.e-booksdirectory.com/details.php?ebook=6804
- 8. http://bookboon.com/en/atmospheric-pollution-ebook
- 9. http://www.e-booksdirectory.com/details.php?ebook=3749
- 10. http://www.e-booksdirectory.com/details.php?ebook=2604
- 11. http://www.e-booksdirectory.com/details.php?ebook=2116
- 12. http://www.e-booksdirectory.com/details.php?ebook=1026
- 13. http://www.faadooengineers.com/threads/7894-Environmental-Science

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1							2	3	3
CO2							1	2	2
CO3							2	3	3
CO4							3	3	3
CO5							2	2	3
Total							10	13	14
Scaled Value							2	3	3

Table 1 : Mapping of CO's with PO's

COURSE	E CODE XPG203	L	Т	Р	С			
COURSE	E NAME MODERN PHYSICS	3	1	0	4			
C:P:A	2.8:0.4:0.8	L	Т	Р	Н			
PREREC	UISITE: Basic Physics at School level	3	1	0	4			
COURSE	COURSE OUTCOMES							
On the su able to	ccessful completion of the course, students will be	D	OMAI	N]	LEVEL			
CO1	<i>Define, explain and demonstrate</i> and <i>Relate</i> knowledge of the basics of digital computer.		Cogniti	ve: R U	emember, nderstand			
		Psy	chomot	or: M	Mechanism			
CO2	Acquire the knowledge of INTEL 8085; Analyz Immediate and implicit addressing and Instructio set	e n	Cogniti	ve: A	nalyze, pply			
CO3	Understand Fundamentals of assembly languag	e	Cogniti	ve: U	nderstand			
	programming		Affecti	ve: R	eceive			
CO4	<i>Identify</i> Structure of 'C', <i>explain</i> I/O function.		Cogniti	ve: R	emember			
CO5	ve: U ve: R	nderstand eceive						
UNIT - I				,	7+3			

Planck's quantum, Planck's constant and light as a collection of photons; Photoelectric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. Problems with Rutherford model- instability of atoms and observation of discrete atomic spectra; Bohr's quantization rule and atomic stability.

UNIT –II

Position measurement- gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle- impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle.

$\mathbf{UNIT} - \mathbf{III}$

One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; Quantum dot as an example; Quantum mechanical scattering and tunneling in one dimension - across a step potential and across a rectangular potential barrier.

UNIT -IV

Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, semi-empirical mass formula and binding energy

8+3

10 + 3

10 + 3

UNIT –V

TEXT BOOKS

1. J.R.Taylor, C.D.Zafiratos, M.A.Dubson,"Concepts of Modern Physics", Arthur Beiser, 2009, McGraw-Hill Modern Physics, 2009, PHI Learning

REFERENCESBOOKS

- 1. Thomas A. Moore, Six," Ideas that Shaped Physics: Particle Behave like Waves", 2003,
- 2. E.H. Wichman, "Quantum Physics, Berkeley Physics", Vol.4. 2008, Tata McGraw-Hill Co.
- 3. R.A. Serway, C.J. Moses, and C.A.Moyer,"Modern Physics", 2005, Cengage Learning

E RESOURCES

NPTEL, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

	LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
Hours	45	15	-	60

Table 1: Mapping of Cos with POs

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉
CO 1	1	1	1		2	1	1	1	
CO ₂	2	3	2	1	2	2	1	2	
CO ₃	1	3	2		1	2	2	2	
CO ₄	1	1	2		1	2	1	1	
CO5	2	3	1		2	2	2	1	
Total	6	11	8	1	8	9	7	7	
Scaled	2	3	2	1	2	2	2	2	

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

CO	UR	SE CODE	COURSE NAME	L	Т	P	С			
XN	1T2()4	Differential Equations & Laplace Transforms	4	1	0	5			
С	P	Α		L	Т	Р	Н			
5	0	0		4	1	0	5			
PR	PREREQUISITE:Differential Calculus and Integral Calculus									
CC	OUR	SE OUTCO	MES:							
Co	urse	outcomes:	Domai	n	Level					
CO	01: 5 6 8 1	Solvesimple lifferential colvable for ntegrability	Cognitive Applying							
CO	02: \$	Solve second constant coe equation usin	l order linear differential equations with fficients, variable coefficients, and solving the ng method of Variation of Parameters.	Cognitive Applying			ying			
CC	93:Fo t	ormation of 1 he standard 1 nethod and a	Partial Differential Equation, Solve PDE of forms using Lagrange's method ,Charpit's few standard forms.	Cognitive App		Appl	plying			
CO	94: \$ 0	Solve PDE o constant coe c ^{ax+by} , sin(ax-	f second order homogeneous equation with efficients, particular integrals of the forms +by), $\cos(ax+by)$, $x^r y^s$ and e^{ax+by} . f(x,y).	Cognit	ive	Appl	ying			
CO	95:	Find Laplac of function & simple ap solving	ce Transforms and inverse Laplace transform using standard formulae, Basic theorems oplications Use of Laplace Transforms in ODE with constant coefficients.	Cognit	ive	Remo Appl	embering ying			

UNIT I

First order, higher degree differential equations solvable for x, solvable for y, solvable for dy/dx, Clairauts form – Conditions of integrability of M dx + N dy = 0 – simple problems.

UNIT II

Particular integrals of second order differential equations with constant coefficients - Linear equations with variable coefficients – Method of Variation of Parameters (Second Order only)

UNIT III

Formation of Partial Differential Equation – General, Particular & Complete integrals – Solution of PDE of the standard forms - Lagrange's method - Solving of Charpit's method and a few standard forms.

UNIT IV

15

15

15

15

PDE of second order homogeneous equation with Constant coefficients – Particular integrals of the forms e^{ax+by} , Sin(ax+by), Cos(ax+by), $x^r y^s$ and e^{ax+by} . f(x,y).

UNIT V								
Laplace Transforms – Standard formulae – Basic theorems & simple applications – Inverse Laplace Transforms – Use of Laplace Transforms in solving ODE with constant coefficients.								
	LECTURE	TUTORIAL	TOTAL					
	60	15	75					
TEXT BOOKS								
1. T.K.Manicavachagom Pillay & S.Narayanan	, "Differential Eq	uations", S.Viswar	nathan					
Publishers Pvt. Ltd., 1996.								
2. Arumugam & Isaac, "Differential Equations	", New Gamma I	Publishing House,						
Palayamkottai, 2003.								
Unit : 1 Chapter IV – Sections 1,2 & 3,	Chapter II – Sect	ion 6 [1]						

Unit : 2 Chapter V – Sections 1,2,3,4 & 5, Chapter VIII – Section 4 [1]

Unit : 3 Chapter XII – Sections 1 – 6 [1]

Unit : 4 Chapter V [2]

Unit : 5 Chapter IX – Sections 1 – 8 [1]

REFERENCES

1. M.D.Raisinghania, "Ordinary and Partial Differential Equations", S.Chand & Co, 2016.

2. M.K. Venkatraman, "Engineering Mathematics", S.V. Publications, Revised Edition. 1985.

COUR	SE COE	ЭE	COURSE NAME		L	Т	Р	C		
XMT2	05		SEQUENCES AND SERIES	5	4	1	0	5		
С	Р	Α			L	Т	P	H		
4	0.5	0.5			4	1	0	5		
PRERI	EQUISI	FE: Nil								
COUR	SE OUT	COMES	5:		_	_				
Course	outcom	es:		Domain	Leve	Level				
CO1	Explain: Sequenc Sequenc	Understanding								
CO2:	Explain	Behavior	r of Monotonic functions.	Cognitive	Und	Understanding				
				Psychomotor	Guio	Guided Response				
CO3:I s	E xplain s equences	Understanding								
CO4: Apply comparison test to infinite series to test Cognitive Unc the convergence and to Explain Cauchy's general principal of convergence.							nderstanding oplying			
CO5:	Cognitive	App	lying							
2	series an	a Absol	ute Convergence of the series	Affective	Rece	Receiving				
UNIT I	I SEQ	UENCE	S			1	5			
Bounde – Oscill	ed Sequer lating sec	nces – M quences	onotonic Sequences – Converge	nt Sequence – D	iverge	nt Sec	quenc	es		
UNIT I	IALGE	BRA OF	LIMITS			1	5			
Behavio	or of Mo	notonic f	unctions.							
UNIT	IIISOM	E THEC	DREMS ON LIMITS			1	5			
subsequ	iences –	limit poi	nts : Cauchy sequences							
UNIT I	IV SER	IES				1	5			
infinite series – Cauchy's general principal of convergence – Comparison – test theorem and test of convergence using comparison test (comparison test statement only, no proof).										
UNIT TEST	VTEST	OF CON	VERGENCE USING D ALEN	IBERT'S RAT	10	1	5			
Cauchy	's root te	est – <mark>Alte</mark>	rnating Series – Absolute Conve	ergence (Stateme	nt onl	y for a	all tes	sts).		
			LEC	TURE TUT	'ORIA	L	тот	AL		
			60		15		75			

TEXT BOOKS:

1.Dr. S.Arumugam & Mr.A.Thangapandi Isaac, "Sequences and Series", New Gamma Publishing House – 2002 Edition.

Unit I : Chapter 3 : Sec. 3.0 – 3.5 Page No : 39-55

Unit II : Chapter 3 : Sec. 3.6, 3.7 Page No:56 – 82

Unit III : Chapter 3 : Sec. 3.8-3.11, Page No:82-102

Unit IV : Chapter 4 : Sec. (4.1 & 4.2) Page No : 112-128.

Unit V : Relevant part of Chapter 4 and Chapter 5: Sec. 5.1 & 5.2

Page No:157-167.

REFERENCES:

1. Prof. S.Surya Narayan Iyer, "Algebra", Margham publications, Chennai, 2002.

2. Prof. M.I.Francis Raj, "Algebra", Margham publications, Chennai, 2004.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
Total	15	10	0	5	3	0	5	5	5
Scaled value	3	2		1	1		1	1	1

Table 1: Mapping of COs with POs

1- Low 2- Medium 3- High

COU	COURSE CODE XPG206					Р	C	
COU	RSE NAME MOI	DERN PHYSICS LAB		0	1	2	2	
C:P:A	P:A 0.4:1:0.6		L	Т	Р	H		
PRER	EQUISITE: Nil		0	1	2	2		
COU	RSE OUTCOMES	Don	nain]	Level			
CO1	<i>Recall</i> the <i>usage</i> of the Young's modul	Cognit Psycho	tive omotor	nd m				
CO2	<i>Explain</i> and <i>demon</i> conductivity of bad	<i>astrate</i> the behavior of thermal conductor	Psycho Affect	omotor ive	Set Valu	iing		
CO3	<i>Manipulate</i> and <i>m</i>	easure the normal incidence of	Cognit Psycho	tive omotor	Apply Mechanism			

CO4	<i>Compare</i> and <i>explain</i> the Calibration of ammeter	Affective Psychomotor	Organization Set
CO5	<i>Describe</i> the resistance and specific resistance of a wire	Psychomotor Affective	Perception Organization
List of	^e Experiments		Hours
1	Uniform Bending - Pin and Microscope Method.		3
2	Lee's Disc - Thermal Conductivity of Bad Conductor.		3
3	Spectrometer - Grating- Normal incidence method.		3
4	Spectrometer - id curve.		3
5	AND, OR and NOT logic gates - verification of truth table	е.	3
6	Potentiometer - Calibration of ammeter.		3
7	Semiconductor Diode - Forward and Reverse bias charact	eristics.	3
8	Metre Bridge - Determination of resistance and specific rewire.	esistance of a	3

TEXTBOOKS:

- 1. C. L. Arora, "BSc Practical Physics", B.Sc Practical Physics, S. Chand and Company Ltd, 2007.
- 2. D. Chattopadhyay and P. C. Rakshit, "An Advanced Course in Practical Physics", New Central Book Agency, 2011.
- 3. S. Ghosh, "A Text Book of Advanced Practical Physics", New Central Book Agency, 7 Semester 1 - Physics (Honours) Theory Paper.
- 4. Shukla R. K. and Anchal Srivastava, "Practical Physics", New Age International (P) Ltd, Publishers, 2006.

REFERENCESBOOKS :

- 1. Squires G. L., "Practical Physics", 4th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., "Fundamentals of Physics", 6th Edition, John Wiley and Sons, 2001.
- 3. Jenkins F.A. and White H.E., "Fundamentals of Optics", 4th Edition, Mc Graw Hill Book Company,2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

COURSE CODE			COURSE NAME	L	Т		P	C		
XMT3	301		LOGIC AND SETS	2	0		0	2		
С	Р	Α								
2	0	0		L	Т	Р	SS	Η		
				2	0	0	2	4		
PRER	EQUIS	SITE: Fo	oundation course in Mathematics							
COUF	RSE OU	TCOM	ES:							
Cours	e outco	mes:		Doma	in	Leve	l			
CO1:I	Define a	nd Exp	lain	Cogni	tive	Reme	emberi	ng		
Statem truth ta Equiva	ables-Co alence of			Unde	rstandi	ing				
CO2:	Define	and Ex	Cogni	tive	Reme	emberi	ng			
Theory related	Theory of inference for a statement calculus, rules of inference, related problems and Indirect method of proof.						rstandi	ing		
CO3:I	Define a	Cogni	emberi	ng						
Predica quantit univer	ate Cal fiers pre se of dis	Understanding								
CO4:I	Define a	nd Exp	lain	Cognitive Remember			emberi	ng		
The ru binom	le of sur ial theor	m and pr rem – M	oduct – permutation – combination of ultinomial theorem.	Understanding				ing		
CO5:	Define	and Ex	plain	Cognitive Rememberin				ng		
Mathe: princip	matical ple of in	Induction clusive a	n, The pigeon hole principle and The and exclusive Derangements.			Unde	rstand	ing		
UNIT	Ι						6			
Statem bicond	nents and litional -	d Notati - Well f	ons- Connectives- Statements formula and true ormed formulae- Equivalence of formulae- No	<mark>th table</mark> ormal fo	<mark>s-Con</mark> orms.	dition	al and			
UNIT	II						6			
Theory Indirec	y of infe et metho	rence fo d of pro	r a statement calculus – rules of inference – re of.	elated p	robler	ns –				
UNIT	III						6			
Predication free an	Predicate Calculus – The statement functions – variables and quantifiers – predicate formulae – free and bounded variables – the universe of discourse.									
UNIT	IV						6			
The ru theore	le of sui <mark>m</mark> .	m and p	roduct – permutation – combination of binomi	ial theor	rem –	Multi	nomia	1		
UNIT	V						6			
Mathe	matical	Inductio	n – The pigeon hole principle – The principle	of inclu	usive	and ey	clusiv	e		

Derangements.

LECTURE	TOTAL
30	30

TEXTBOOK

1 R.P. Grimaldi, "Discrete Mathematics and Combinatorial Mathematics", Pearson Education, 1998.

REFERENCES

- 1. P.R. Halmos, Naive "Set Theory", Springer, 1974.
- 2. E. Kamke, "Theory of Sets", Dover Publishers, 1950.
- 3. G. Ramesh and Dr.C. Ganesamoorthy, "Discrete Mathematics", Research gate, Feb, 2018.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1	1	1		1
CO 2	3	2	1	1	1	1	1		1
CO 3	3	2	1	1	1	1	1		1
CO 4	3	2	1	1	1	1	1		1
CO 5	3	2	1	1	1	1	1		1
	15	10	5	5	5	5	5	5	5

TABLE 1: COs VS POs Mapping

1 - Low , 2 – Medium , 3- high

COURSE CODE COURSE NAME L Т Р С **XMT302** 3 0 **PROGRAMMING IN C** 1 4 С Р Α 3 0.5 0.5 Р Т Η L 3 1 0 4 **PREREQUISITE:** Nil **COURSE OUTCOMES:** Domain Level **Course Outcomes:** CO1: Explain Constants, Variables, Data types, Operator and Cognitive Understanding Expressions. **CO2:Explain** Input and Output operations, Decision Cognitive Understanding Making and Branching, Decision making and Looping. Psychomotor Guided Response CO3: Explain Character Arrays and Strings and User defined Cognitive Understanding Functions. CO4:Explain and Apply Structures and unions, Pointers and Cognitive Understanding File management in C. Applying **CO5:Apply** Dynamic memory allocation, Linked lists, Cognitive Applying Pre-processors and Programming Guide lines. Affective Receiving **UNIT I** 12 Introduction to C – Constants, Variables, Data types – Operator and Expressions. **UNIT II** 12 Managing Input and Output operations - Decision Making and Branching - Decision making and Looping. **UNIT III** 12 Arrays – Character Arrays and Strings – User defined Functions. **UNIT IV** 12 Structures and unions – Pointers – File management in C. UNIT V 12 Dynamic memory allocation - Linked lists- Preprocessors - Programming Guide lines. **LECTURE TUTORIAL** TOTAL 45 15 60 **TEXT BOOK** 1. Balagurusamy E.,"Programming in ANSI C", Sixth Edition, McGraw-Hill, 2012. REFERENCE

1. Bichkar, R.S., "Programming with C", University Press, 2012.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
	15	10	0	5	3	0	5	5	5

1 - Low , 2 – Medium , 3- high
COL			COUD				T	-	D			
COU	RSE CC	DDE		SE NAME	L IC			T	P	C 5		
	303		KEAL	ANALYS	15		4	1	U	5		
С	Р	Α]				L	Т	Р	н		
5	0	0	-				4	1	0	5		
PREF	REQUIS	SITE:	Nil				_		-			
Cours	se Outco	omes:										
						Domain	Le	vel				
CO1:	Explain	1				Cognitive	Une	dersta	ndin	g		
The fi Absol numb Uncou	ield axio lute valu ers on a untable s	ms, Fiel e, Comj straight sets.	ld propertie pleteness, F line, Interv									
CO2:	Define	and Ex	plain			Cognitive	Rer	nemł	bering	5		
Open Closu	sets, Clo re of a se	osed sets et.	s, Limit poi	nts of a set	and		Une	dersta	andin	g		
CO3:	Define	and Ex	plain			Cognitive	Rer	nemł	pering	g		
Limits Algeb contin	s, Contir ora of Co nuous fui	nuous fu ontinuou nctions.	inctions, Ty is functions	continuities, dedness of	s, Understandin							
CO4 :	Define	and Ex	plain			Cognitive	Rer	nemł	pering	5		
Deriva Invers Darbo	ability and se function oux's the	nd conti on theor orem.	inuity, Alge rem for deri	bra of deri vatives and	vatives, d		Understanding					
CO5:	State an	nd Exp	lain			Cognitive Remembering						
condit functi functi theore	tions for ons, con ons, Mea em of Ca	integra tinuity a an value llculus a	bility, prope and derivab e theorems, and the first	erties of inte ility of inte the fundar mean valu	tegrable egral nental e theorem.		Uno	dersta	andin	g		
UNIT	I Re	al num	bers:				15					
The fi Repressets.	ield axio esentation	ms- Fie nof <mark>Rea</mark>	ld propertie l numbers o	es-Order ir n a straigh	R- Absolute t line – Inter	<mark>e value- Compl</mark> vals – Countab	eteness – le and U	ncou	ntable	e		
UNIT	II Nei	ighbour	rhoods and	limit poin	its:		15					
Open	sets – C	losed se	ets –Limit p	oints of a s	et – Closure	of a set.						
UNIT	TII I	limits a	nd Continu	iity:			15					
Limit: Bound	s – Cont dedness	inuous f of conti	functions – nuous funct	Types of d ions.	iscontinuitie	s- Algebra of C	Continuou	ıs fur	nctior	18 –		
UNIT	TIV De	erivativ	es:				15					
Introd for de	luction – rivatives	- <mark>Deriva</mark> 5 – Darb	bility and co ooux's theor	ontinuity- em.	Algebra of d	erivatives – Inv	verse fun	ction	theor	rem		
UNIT	C V						15					
Riema	Riemann Integration- Definition – Daurboux's theorem – conditions for integrability –											

properties of integrable functions – continuity and derivability of integral functions – Mean value theorems – the fundamental theorem of Calculus and the first mean value theorem.

LECTURE	TUTORIAL	TOTAL
60	15	75

TEXT BOOKS

1. 1. M.K.Singhal and Asha Rani Singhal , "A first course in Real Analysis"., R. Chand & Co.,

June,1997 (Units I to IV).

2. Shanthi Narayan, "A Course of Mathematical Analysis", S.Chand & Co. 1995 (Unit-V).

Unit-I Chapter 1, Sec. 1.1 – 1.10

Unit-II Chapter 2 Sec 2.1 - 2.6

Unit-III Chapter 5 Sec 5.1 - 5.5

Unit – IV Chapter 6 Sec 6.1 – 6.5

Unit - V Chapter 6 Sec 6.2 , 6.3 & 6.5 6.7 6.8, 6.9 of [2]

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
	15	10	0	5	3	0	5	5	5

COUR	SE COD	E	COURSE NAME			L	Т	P	С	
XMT3)4		ANALYTICAL G	EOMETRY 3D		4	1	0	5	
С	Р	A								
5	0	0				L	Т	P	Н	
	1	1	J			4	1	0	5	
PRERE	EQUISIT	E: Nil				L				
COUR	SE OUT	COMES	:							
Course	outcome	es:			D	omai	n L	Level		
CO1:Find coordinates in space, direction cosines of a line, angle Cognitive Remembering										
between line and to explain angle between planes and Understandin										
distance of a plane from a point.										
CO2: Find line of intersection of planes, coplanar lines, skew lines, Cognitive Remember Shortest distance between skew lines.									bering	
CO3:E	xplain se	ction of s	ent planes, condition	on C	ognit	ive U	Jndersta	anding		
C	of tangen	cy and sy	stem of spheres gene	erated by two spher	res.					
CO4: 1	E xplain a	C	ognit	ive R	Rememb	pering				
intersection of straight line and quadric cone, tangent plane Understanding and normal.										
CO5: 1	Explain t	he condit	tion for plane to touc	h the quadric cone,	C	logniti	ive U	Jndersta	anding	
	condition	that the	cone has three mutua	lly perpendicular						
1	generator	s and cor	dition for the plane t	o touch the conico	id.					
UNIT I									15	
Coordin of a plan	ates in sp ne in nori	pace- <mark>Dire</mark> mal form	ction consines of a li Angle between plan	ne in space-angle l es – Distance of a	<mark>between</mark> plane f	i <mark>lines</mark> rom a	in spa point.	ce – eq	uation	
UNIT I	I								15	
Straight	lines in s	space – <mark>li</mark>	ne of intersection of	planes – plane con	taining	a line.	Copl	anar lir	nes –	
skew lir UNIT	nes and sh III	nortest di	stance between skew	lines- length of the	e perper	ndicul	ar fror	n point	to line.	
General system	equation of sphere	of a sphore of a sphore of a sphore of a sphore of a sphere of a s	ere-Section of sphere ed by two spheres - S	by plane-tangent j system of spheres g	<mark>planes</mark> – generate	- <mark>condi</mark> ed by a	tion of a spher	f tanger re and p	ncy- plane.	
UNIT I	V								15	
The equ normal	ation of s	surface –	cone – intersection o	f straight line and	quadric	cone	– tang	gent pla	ne and	
UNIT V	Z								15	
Condition cone. Contract of the contract of th	on for pla condition tion of a coid.	ane to tou that the line and	cone has three mut quadric – tangents a	- angle between the tually perpendicul nd tangent planes	e lines ar gene – condi	in wh crators ition f	ich the - Cen for the	e plane tral qu plane	cuts the adrics – to touch	
				LECTURE	TU	TUTORIAL				
				60		15			75	

TEXT BOOK

- 1. Shanthi Narayanan and Mittal P.K,"Analytical Solid Geometry" 16th Edition S.Chand & Co., New Delhi,2005.
- Narayanan and Manickavasagam Pillay, T.K.," Treatment as Analytical Geometry" S.Viswanathan (Printers & Publishers) Pvt. Ltd., 2008

Unit I : Chapter I, Sec 1.5 to 1.9, Chapter II Sec 2.1 to 2.3, Pages : 10-31

Chapter II Sec 2.4 to 2.8 pages : 32-47 of [1]

Unit II : Chapter III section 3.1-3.7, pages 55-89 of [1]

Unit III : Chapter VI Sec. 6.1 to 6.6 pages : 121-143 of [1]

Unit IV : Chapter V Sec.43 to 47 pages : 103-113 of [2]

Unit V : Chapter V Sec.49 to 53, Pages:115-125 of [2]

REFERENCE

1. P.Duraipandian & others, "Analytical Geometry 3 Dimensional", Edition, 1998.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
	15	10	0	5	3	0	5	5	5

COURSE CODE	COURSE NAME		LT	Р	C	
XMT 305	PROGRAMMING IN C (PRACTICAL	L)	0 0	2	2	
C P A						
2 0 0]	LT	Р	Н	
			0 0	2	4	
PREREQUISITE	: Nil					
COURSE OUTCO	OMES:					
Course Outcomes	:	Domain	Lev	el		
CO1: Apply Cons	tants, Variables, Data types, Operator and	Cognitive	Unc	erstan	ding	
Expressions	to write simple programmes	-			-	
CO2:Apply Input	and Output operations, Decision	Cognitive	Unc	lerstan	ding	
to write sim	ple programmes	Psychomotor	Gui	ded		
			Res	ponse		
CO3: ApplyChara	acter Arrays and Strings and User defined	Cognitive	Unc	erstan	ding	
Functions to	write simple programmes					
CO4:Apply Struct	ures and unions, Pointers and	Cognitive	Unc	Understanding		
File manage	ment in C to write simple programmes		App	lying		
CO5:Apply Dynamics	nic memory allocation, Linked lists,	Cognitive	App	Applying		
Preprocesso	rs and Programming Guide lines to write					
simple prog	rammes	Affective	eiving			
	List of Programmes					
1. Write a Program	to convert temperature from degree Centigr	ade to Fahrenheit.				
2. Write a Program	to find whether given number is Even or O	dd.				
3. Write a Program	to find greatest of three numbers.					
4. Sorting given lis	t of names in alphabetical order					
5. Sorting given lis	t of numbers in ascending order					
6. Write a Program	to using switch statement to display Monda	y to Sunday.				
7. Write a Program	to display first Ten Natural Numbers and th	eir sum.				
8. Write a Program	to find Sum and Multiplication of Two Mat	rices.				
9. Write a Program	to find the maximum number in Array using	g pointer.				
10. Write a Program	m to reverse a number using pointer.					
11. Write a Program	m to solve Quadratic Equation using function	ns.				
12. Write a Program	n to find factorial of a number using Recursi	ion.				
13. Write a program	n to calculate Mean, Variance and SD of N I	numbers				
14. Write a Program	n to create a file containing Student Details.					

Course N	ame DISASTER MANAGEMENT								
Course C	Code XUM306								
Prerequi	site NIL	L –T –P –C							
G D		3 - 0 - 0 - 0							
C: P:	A 4 0.12	L -T - P- H							
2.64:0.2	4 :0.12	$3 \cdot 0 - 0 \cdot 3$							
Course	Jutcome	Domain C or P or A							
CO1	Understanding the concepts of application of types of								
001	disaster preparedness	C(Application)							
CO2	Infer the end conditions& Discuss the failures due to disaster.	C(Analyze)							
CO3	Understanding of importance of seismic waves occurring globally	C(Analyze)							
CO4	Estimate Disaster and mitigation problems.	C(Application)							
CO5	Keen knowledge on essentials of risk reduction	C(Application)							
COURSI	E CONTENT								
UNIT I	INTRODUCTION	9 hrs							
	Introduction – Disaster preparedness – Goals and object Programme- Risk identification – Risk sharing – Disaster and Development plans and disaster management–Alternative approach – disaster – development linkages - Principle of risk	ctives of ISDR ad development: e to dominant k partnership							
UNIT II	APPLICATION OF TECHNOLOGY IN DISASTER RIS	K							
	REDUCTION	9 hrs							
	Application of various technologies: Data bases – RDBMS Information systems – Decision support system and of Geographic information systems – Intranets and extr teleconferencing. Trigger mechanism – Remote sensing contribution of remote sensing and GIS - Case study.	– Management ther systems – anets – video g-an insight –							
UNIT III	AWARENESS OF RISK REDUCTION	9 hrs							
	Trigger mechanism – constitution of trigger mechanism – ri education – disaster information network – risk reduc awareness	sk reduction by tion by public							
UNIT IV	DEVELOPMENT PLANNING ON DISASTER	9 hrs							
	Implication of development planning – Financial arrangement improvement – Disaster preparedness – Community management – Emergency response.	ents – Areas of based disaster							
UNIT V	SEISMICITY	9 hrs							
	Seismic waves – Earthquakes and faults – measures of magnitude and intensity – ground damage – Tsunamis and ear	an earthquake, rthquakes							
	L - 45 hrs	Total-45 hrs							
TEXT B	OOKS								
1 Si Po	ddhartha Gautam and K Leelakrisha Rao, "Disaster Manageme olicies", Vista International Pub House, 2012	ent Programmes and							
2 A	2 Arun Kumar, "Global Disaster Management", SBS Publishers, 2008								

Course Name DISASTER MANAGEMENT

- 1. Encyclopaedia Of Disaster Management, Neha Publishers & Distributors, 2008
- 2. Pardeep Sahni, Madhavi malalgoda and ariyabandu, "Disaster risk reduction in south asia", PHI, 2002
- 3. Amita sinvhal, "Understanding earthquake disasters" TMH, 2010.
- 4. Pardeep Sahni, Alka Dhameja and Uma medury, "Disaster mitigation: Experiences and reflections", PHI, 2000

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO 1	1					5	2							
CO 2	2					1	2					1		
CO 3	1					2	2	1				2		
CO 4	1					2	2	1				1		
CO 5						5	2	3				1		
	5					15	10	5				5		

Table 1: Mapping of COs with Pos

1 - Low, 2 – Medium, 3 – High

IV SEMESTER

COU COD	RSE E	COURSE NAME	L	LT		Р	
XMT	401	THEORY OF EQUATIONS	2	0	0		2
С	Р	Α					
2	0	0	L	Т	Р	SS	Η
			2	0	0	2	4

PREREQUISITE: Foundation Course in Mathematics

COURSE OUTCOMES:

Course outcomes:	Domain	Level
CO1:Explain Graphical representation of a polynomials, maximum and minimum values of a polynomials.	Cognitive	Remembering Applying
CO2: Apply General properties of equations, Descarte's rule of signs positive and negative rule to find the Relation between the roots and the coefficients of equations.	Cognitive	Remembering Applying
CO3:Define and Explain Sets, subsets, Set operations, the laws of set theory and Venn diagrams. Examples of finite and infinite sets.	Cognitive	Remembering Applying
CO4: Define and Explain with Examples	Cognitive	Understanding
Finite sets and counting principle. Empty set, properties of empty set. Standard set operations. Classes of sets. Power set of a set.		Applying
CO5: Solve reciprocal and binomial equations, and to find algebraic solutions of the cubic and biquadratic with Properties of the derived functions.	Cognitive	Understanding
UNIT I		6
General properties of polynomials, Graphical representation of a p minimum values of a polynomials.	olynomials,	maximum and
UNIT II		6
General properties of equations, Descarte's rule of signs positive a Relation between the roots and the coefficients of equations.	nd negative	rule,
UNIT III		6
Sets, subsets, Set operations, the laws of set theory and Venn diagnand infinite sets.	ams. Examp	oles of finite
UNIT IV		6
Finite sets and counting principle. Empty set, properties of empty soperations. Classes of sets. Power set of a set.	set. Standard	l set
UNIT V		6

Solutions of reciprocal and binomial equations. Algebraic solutions of the cubic and biquadratic. Properties of the derived functions.

TOTAL	LECTURE
30	30

TEXTBOOKS

1 W.S. Burnside and A.W. Panton, "The Theory of Equations", Dublin University Press, 1954.

2. C. C. MacDuffee, "Theory of Equations", John Wiley & Sons Inc., 1954.

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1	1	1		1
CO 2	3	2	1	1	1	1	1		1
CO 3	3	2	1	1	1	1	1		1
CO 4	3	2	1	1	1	1	1		1
CO 5	3	2	1	1	1	1	1		1
	15	10	5	5	5	5	5	5	5

COURSE	COURSE NAME		L	Т	Р	C			
CODE									
XMT402	INTRODUCTION TO MATL	AB	3	1	0	4			
СРА			T	Т	D	н			
			3	1	1	4			
PREREOUISITE	: Nil		•	•	v	-			
COURSE OUTCO	OMES:								
Course Outcomes	Domain	L	evel						
CO1: Apply Vari expressions, chara matrices.	ables, assignment, statements, acters, encoding, vectors and	Cognitive	A	pplyin	g				
CO2: Explain aboutcreating row vectors and Cognitive Understanding <i>A</i> column vectors, dimensions in using functions with vectors and matrices.									
CO3:Apply Matla scripts with input in simple applicat	A	pplyin	g						
CO4: Apply Select expressions,SWITC looping, FOR loop	A	pplyin	g						
CO5: Apply Strin variable, operation arrays, structure an applications.	ng manipulations, creating string s on strings, fundamentals of ad file operations with simple	Cognitive	A	pplyin	g				
UNIT I					12				
Introduction to MA	ATLAB – Variables and assignmen	t statements	-exp	ression	s –				
characters and enc	oding – vectors and matrices.								
UNIT II					12				
Creating row vector with vectors and	ors and column vectors – matrix var matrices.	iables – dim	ensic	ons in u	sing fu	nctions			
UNIT III					12				
MATLAB Program	nmes – Matlab Scripts, Input and C	utput, script	s wit	h input	and our	tput,			
Introduction to file	input and output – user defined fur	nctions – sin	ple a	pplicat	ions.				
UNIT IV					12				
Selection Statemen - FOR loop, neste	nt – relational expressions, SWITCI d FOR loop, WHILE loop.	H statement,	ment	a functi	on, loo	ping			
UNIT V					12				
String manipulations, creating string variable, operations on strings, fundamentals of arrays, structure and file operations- simple applications on the above.									
	LECTURE	ε τυτοι	RIAI	J	1	TOTAL			

45	15	60
10	10	00

TEXT BOOK

1. Stormy Attaway, "MATLAB - A Practical Approach", Butterworth-Heinemann Publications, 2009.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
	15	10	0	5	3	0	5	5	5

COURSE CODE COURSE NAME							P	С		
XMT4	03		VECTOR CALCULUS & F	OURIER SERIES	4	1	0	5		
C 1	Р	Α			L	Т	Р	Η		
5 (0	0			4	1	0	5		
PRER	EQUI	SITE:	Differential Calculus and Inte	gral Calculus		•		•		
Course	e									
Outcon	mes:									
				Domain	Le	vel				
CO1:F	FindGr	adient o	f a vector, Directional derivative	Cognitive	Ren	nemt	ering	5		
	diverg	ence &	curl of a vector, solenoidal &		App	olying	5			
irrigational vector functions, Laplacian double Psychomotor						ided				
operator and to solve simple problems.						pons	e			
CO2:	Find y	vector in	tegration, tangential line integral	Cognitive	Ren	nemt	ering	5		
conserv	vative	force fi	ld, scalar potential, work		App	olying	3			
done by a force, Normal surface integral,										
	Volum	ie integ	al and to solve simple problems.							
CO3:Use Gauss Divergence Theorem, Stoke's Cognitive					Ren	nemt	ering	5		
	nroble	em, ree	Verification of the theorems for	r	App	olying	5			
	simple	e proble	ms.							
CO4:	Expla	in Four	er Series expansion of periodic	Cognitive	Understanding					
	functio	ons with	Period 2π Make Use of odd		Applying					
&	even	func	ions in Fourier Series.		1.1991.9.118					
CO5:	Expla	in Half	range Fourier cosine Series &	Cognitive	Unc	lersta	ndin	g		
	sine s	eries, C	nange of interval & Combination	Affective	Rec	eivin	g			
	of sei	ries.								
UNIT	I	<u> </u>			15					
Vector	differ	entiatio	-velocity & acceleration-Vector	r & scalar fields –Gi	radie	it of	a vec	ctor-		
Laplaci	ian do	uble op	rator –simple problems.		otatic	mai	vecto	18 -		
UNIT	II	<u> </u>			15					
Vector	integr	ation –	angential line integral –Conserva	tive force field -scal	lar po	tenti	al-			
Work d	done by	y a forc	e - Normal surface integral- Volu	me integral – simple	prob	lems.				
UNIT	III				15					
Gauss	Diverg	ence T	eorem – Stoke's Theorem- Gree	n's Theorem – Simpl	e pro	blem	s &			
Verification of the theorems for simple problems.										
UNIT IV										
Fourier	r series	- defini	ion - Fourier Series expansion of	periodic functions w	vith p	eriod	Ι 2π	_		
Use of odd & even functions in Fourier Series.						1.5				
Half-ra	inge Fo	ourier S erval –	eries – definition- Development 1 Combination of series.	n Cosine series & in	Sine	serie	S -			

LECTURE	TUTORIAL	TOTAL
60	15	75

TEXT BOOKS

1.M.L. Khanna, "Vector Calculus", Jai Prakash Nath and Co., 8th Edition, 1986.

2. S. Narayanan, T.K. Manicavachagam Pillai, "Calculus", Vol. III, S. Viswanathan Pvt Limited,

and Vijay Nicole Imprints Pvt Ltd, 2004.

UNIT - I - Chapter 1 Section 1 & Chapter 2 Sections 2.3 to 2.6, 3, 4, 5, 7 of [1]

UNIT – II - Chapter 3 Sections 1, 2, 4 of [1]

UNIT – III - Chapter 3 Sections 5 & 6 of [2]

UNIT – IV - Chapter 6 Section 1, 2, 3 of [2]

UNIT – V - Chapter 6 Section 4, 5.1, 5.2, 6, 7 of [2]

REFERENCES

1. P.Duraipandiyan and Lakshmi Duraipandian, "Vector Analysis", Emarald publishers 1986.

2. Dr. S.Arumugam and prof. A.Thangapandi Issac, "Fourier series", New Gamma publishing House 2012.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
	15	10	0	5	3	0	5	5	5

Table 1: COs VS POs Mapping

COURSE CODE)E	COURSE NAME	L	Т	Р	С
XMT40)4		ALGEBRA	4	1	0	5
С	Р	Α		L	Т	Р	Н
5	0	0		4	1	0	5

PREREQUISITE: Nil

COURSE OUTCOMES:

Course outcomes:	Domain	Level
CO1:Define groups, abelian and non-abelian groups with examples and to explain integer under addition and multiplication modulo n.	Cognitive Psychomotor	Remembering Guided Response
CO2: Explain Cyclic groups from number systems, complex roots of unity, circle group, the general linear group GLn (n,R) , groups of symmetries of (i) an isosceles triangle, (ii) an equilateral triangle, (iii) a rectangle, and (iv) a square, the permutation group Sym (n) , Group of quaternions.	Cognitive	Understanding
CO3:Explain Subgroups, cyclic subgroups, the concept of a subgroup generated by a subset and the commutator subgroup of group, examples of subgroups including the center of a group.	Cognitive	Understanding
CO4: State and Explain Cosets, Index of subgroup, Lagrange's theorem, order of an element, Normal subgroups, Quotient groups.	Cognitive	Remembering Understanding
CO5: Define and Explain rings, commutative and non- commutative rings with rings from number systems, Zn the ring of integers modulo n, rings of matrices, polynomial rings, and rings of continuous functions.	Cognitive Affective	Remembering Understanding Receiving

UNIT I

Definition and examples of groups, examples of abelian and non-abelian groups, the group Zn of integers under addition modulo n and the group U(n) of units under multiplication modulo n.

UNIT II

Cyclic groups from number systems, complex roots of unity, circle group, the general linear group GLn(n,R), groups of symmetries of (i) an isosceles triangle, (ii) an equilateral triangle, (iii) a rectangle, and (iv) a square, the permutation group Sym (n), Group of quaternions.

UNIT III

Subgroups, cyclic subgroups, the concept of a subgroup generated by a subset and the commutator subgroup of group, examples of subgroups including the center of a group.

UNIT IV

15

15

15

Cosets, Index of subgroup, Lagrange's theorem, order of an element, Normal subgroups: their definition, examples, and characterizations, Quotient groups.

UNIT V			15
Definition and examples of rings, examples of rings from number systems, Zn the ring of inte of matrices, polynomial rings, and rings of con domains and fields, examples of fields: Zp, Q,	f <mark>commutative</mark> egers modulo i ntinuous functi , R, and C. Fie	and non-commutativ n, ring of real quatern ions. Subrings and ide ld of rational function	e rings: ions, rings eals, Integral 18.
I	LECTURE	TUTORIAL	TOTAL
	60	15	75

TEXT BOOKS

1. S. Narayanan& T. K. ManickavasagamPillai, "Algebra", Vol. 1, S. Viswanathan Pvt. Ltd.,

Chennai, 2004.

2. S. Narayanan& T. K. ManickavasagamPillai, "Algebra", Vol. 2, S. Viswanathan Pvt. Ltd.

Chennai, 2004.

- 3. Joseph A Gallian, "Contemporary Abstract Algebra", 4th Ed., Narosa, 1999.
 - 4. George E Andrews, "Number Theory", Hindustan Publishing Corporation, 1984.

REFERENCES

1. John B. Fraleigh, "A First Course in Abstract Algebra", 7th Ed., Pearson, 2002.

2. M. Artin, "Abstract Algebra", 2nd Ed., Pearson, 2011.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
	15	10	0	5	3	0	5	5	5

Table 1: COs VS POs Mapping

COURSE CODE		ODE	COURSE NAME	L T		Р	С			
XMT 405			INTRODUCTION TO MATLAB PRACTICAL	0	0	2 2				
С	Р	Α		L T		Р	Н			
2	0	0		0	0	2	4			
PREREQUISITE: Nil										
COU	COURSE OUTCOMES:									
Course Outcome				Domai	n	Level				
CO1: expre matric	Apply essions, ces.	Variab chara	les, assignment, statements, cters, encoding, vectors and	Cognit	ive	Applying				
CO2: Explain aboutcreating row vectors and column vectors, dimensions in using functions with vectors and matrices.			Cognit	ive	Understanding Applying					
and matrices. CO3:Apply Matlab Scripts, Input and Output, scripts Cognitive Applying with input and output, user defined functions in simple applications.										

Applying

CO4: Apply Selection Statement, relationalCognitiveexpressions,SWITCH statement, menu function, looping, FOR loop,
nested FOR loop, WHILE loop.

CO5: Apply String manipulations, creating string Cognitive Applying variable, operations on strings, fundamentals of arrays, structure and file operations with simple applications.

Assessment Plan for Formative Assessment:

(CIA -1) Lab Experiment: No. of Experiments: 15 (30 marks)

- 1: Aim & Apparatus Required (understanding) (10 marks)
- 2. Procedure / Programme (applying) (30 marks)
- 3. Output (Applying) (10 marks)

(CIA Lab 2) (30 marks)

1. Aim & Apparatus Required (10%) Cog (U) CO1, CO2 & CO3 (10 marks)

2. Procedure & programme(30%) Cog (Ap) CO1, CO2 & CO3 (30 marks)

3. Output (10%) Cog (Ap) (10 marks)

(CIA -3) Project FA-(10marks)

1. Aim & Apparatus Required (10%) Cog (U) Psy(3) Aff(1)CO4 (10 marks)

2. . Procedure & programme(30%) Cog (Ap) Psy(4) Aff(2)CO4 (30 marks)

3. Output (10%) Cog (Ap) (10 marks)

COURS	SE (CODE	COURSE NAME	L	Т		P	C		
XMT50)1		Probability and Statistics	2	0		0	2		
C]	Р	Α		L	Т	Р	SS	H		
2	0	0		2	0	0	2	4		
PRERE	QU	ISITE:Al	gebra							
COURS	SE C	OUTCOM	ES:							
Course	outo	comes:		Doma	in	Leve	l			
CO1:De	efine	e and Exp	lain Sample space, probability axioms, real	Cogni	tive	Remembering				
ra	ando	m variabl	es (discrete and continuous), cumulative			Unde	rstandi	ing		
di	distribution function, and probability mass/density functions.									
CO2:De	efine	e and Exp	lain Mathematical expectation, moments,	Cogni	tive	Reme	emberi	ng		
m	ome	nt generat	ing function, characteristic function.			Understanding				
CO3:De	efine	e and Exp	lain Discrete distributions: uniform, binomial,	Cogni	tive	Reme	emberi	ng		
Po	oisso	on, continu	ous distributions: uniform, normal, exponential.			Unde	rstandi	ing		
CO4: I	Defir	e and Ex	plain Joint cumulative distribution function and	Cogni	tive	Reme	emberi	ng		
its	s pro	perties, jo	int probability density functions, marginal and			Unde	rstandi	ing		
сс	ondit	ional dist	ributions.							
CO5: I	Defir	e and Ex	plain Expectation of function of two random	Cogni	tive	Reme	emberi	ng		
va	ariab	les, condi	tional expectations, and independent random			Unde	rstandi	ing		
va	ariab	les.								
UNIT I							6			
Sample distribut	spac ion	e, probabi function, a	lity axioms, real random variables (discrete and co and probability mass/density functions.	ntinuou	s), <mark>cu</mark>	ımulat	ive			
UNIT I	I						6			
Mathem	atica	al expecta	tion, moments, moment generating function, charac	cteristic	func	tion.				
UNIT I	II						6			
Discrete	e dist	ributions:	binomial, Poisson, continuous distributions: unifor	rm, nori	nal, e	expone	ential.			
UNIT I	V						6			
Joint cur and cond	mula ditio	ative distri nal distrib	bution function and its properties, joint probability putions.	density	func	tions,	margii	nal		
UNIT V	7						6			
Expectativariables	tion s.	of functio	n of two random variables, conditional expectation	s, indep	ende	nt ran	dom			
				LEC'	TUR	E	тот	'AL		
					3	0		30		
TEXTB	800	K								
1. S	S.C.0 Sulta	Gupta and in Chand a	Kapoor, "Fundamentals of Mathematical Statistics and Sons, New Delhi, 2002.	s", tenth	revis	sed ed	ition			
REFER	EN	CES								

- 1. Irwin Miller and Marylees Miller, John E. Freund, "Mathematical Statistics with Application", 7th Ed., Pearson Education, Asia, 2006.
- 2. Sheldon Ross, "Introduction to Probability Model", 9th Ed., Academic Press, Indian Reprint, 2007.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2	1	1	1	1	1		1
CO 2	3	2	1	1	1	1	1		1
CO 3	3	2	1	1	1	1	1		1
CO 4	3	2	1	1	1	1	1		1
CO 5	3	2	1	1	1	1	1		1
	15	10	5	5	5	5	5	0	5

TABLE 1: COs VS POs Mapping

COURSE CODE COURSE NAME	L T P C
XMT502B Discrete Mathematics	4 2 0 6
C P A	
<u>6</u> 0 0	L T P H
	4 2 0 6
COURSE OUTCOMES.	
Course Outcomes:	Domain Level
CO1:Define and Apply truth tables and the rules of propositional and predicate calculus.	Cognitive Rememberin g Applying
CO2: Apply the following methods direct proof, indirect proof, and proof by contradiction, and case analysis to formulate short proofs.	Cognitive Applying
CO3:Solve linear recurrence relation with constant coefficients, non homogeneous recurrence relations and non homogeneous recurrence relations using methods of generating functions.	Cognitive Applying
CO4: Explain Basic theorems on Boolean Algebra, Duality Principle, Boolean functions.	Cognitive Understandin g
CO5: Apply Boolean algebra, Logic gates and circuits combinatorial circuits, Boolean expression and karnaugh map.	Cognitive Applying
UNIT I	18
Mathematical Logic- Propositional calculus- Basic Logical operators- c conditional statement- tautologies- contradictions- equivalence implicat	onditional statements- Bi tions.
UNIT II	18
Norms forms- Theory of inference for the statement calculus- The predicte theory and predicate calculus.	icate calculus inference
UNIT III	18
Recurrence relations and generating functions- recurrence relation- solur relation with constant coefficients- Non homogeneous recurrence relation homogeneous recurrence relations- Methods of generating functions.	ition of linear recurrence ons solution of Non –
UNIT IV	18
Basic theorems on Boolean Algebra- Duality principle Boolean function	ns.
UNIT V	18
Boolean functions- Applications of Boolean algebra- Logic gates and ci circuits- Boolean expression – karnaugh map.	ircuits -combinatorial
LECTURE	FUTORIAL TOTAL
60	30 90
TEXT BOOK	
 J.B.Tremblay, R. Manohar, "Discrete Mathematical structures w Computer Science", Tata McGraw Hill, International edition Ne 2007. 	vith applications to w Delhi, 1997, Reprint

REFERENCE

1.M.K. Venkatraman, N.Sridharan & N.Chandrasekaran, "Discrete Mathematics", The National Publishing company India, 2000.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
	15	10	0	5	3	0	5	5	5

COURSE CODE		DE	COURSE NAME	L	Т	Р	C
XMT503A			Numerical Methods	4	2	0	6
С	Р	Α		L	Т	Р	Н
6	0	0		4	2	0	6

PREREQUISITE: Differential Calculus and Integral Calculus

Course Outcomes:

	Domain	Level
CO1:Explain and Solve Algorithms, Convergence,	Cognitive	Remembering
Bisection method, False position method, Fixed point iteration method, Newton's method.		Applying
CO2: Solve system of linear equations using iterative methods Gauss-Jacobi, Gauss-Seidel and SOR iterative methods.	Cognitive	Remembering Applying
CO3:Explain Lagrange and Newton interpolation: linear and higher order, finite difference operators.	Cognitive	Remembering Applying
CO4: Apply forward difference, backward difference and central Difference to find Numerical differentiation:	Cognitive	Understanding Applying
CO5: Solve Integration using trapezoidal rule, Simpson's rule, and Euler's method.	Cognitive	Understanding

UNIT I

18

90

Algorithms, Convergence, Bisection method, False position method, Fixed point iteration method, Newton's method.

UNIT II	18
Secant method, LU decomposition, Gauss-Jacobi, Gauss-Seidel and SOR iterative methods	•
UNIT III	18
Lagrange and Newton interpolation: linear and higher order, finite difference operators.	
UNIT IV	18
Numerical differentiation: forward difference, backward difference and central Difference.	
UNIT V	18
Integration: trapezoidal rule, Simpson's rule, Euler's method.	
LECTURE TUTORIAL TOTA	٩L

60

30

TEXT BOOKS

- 1.B. Bradie, "A Friendly Introduction to Numerical Analysis", Pearson Education, India, 2007.
- 2. M.K. Jain, S.R.K. Iyengar and R.K. Jain, "Numerical Methods for Scientific and Engineering Computation", 5th Ed., New age International Publisher, India, 2007.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
	15	10	0	5	3	0	5	5	5

COUP	SE COI	JE	COURSE NAME		T	т	D	С		
VMTE		JE				1	1 0	<u> </u>		
XM15	04A	1	Linear Algebra		4	2	U	0		
С	P	Α			L	Τ	Р	Η		
6	0	0			4	2	0	6		
PRERI	PREREQUISITE:Matrices									
COUR	COURSE OUTCOMES:									
				D	omai	n	Level			
CO1:D	efine and	d Explain	vector spaces, subspaces, linear	С	ogniti	ive	Remem	bering		
	transform	nation, a	nd span of a set with examples.				Underst	anding		
CO2: 1	Define L to find R	inear Inde ank and N	ependence, Basis and Dimension and Jullity.	C	ogniti	ive	Remem	bering		
CO3:Explain matrix of a linear transformation ,Inner product space and to Define with examples orthogonality, Gram Schmidt orthogonalisation process and orthogonal complement.						ive	Remem ¹ Underst	bering anding		
CO4: I	Define A find the	lgebra of inverse o	Matrices, Types of Matrices and to f a matrix and Rank of a matrix.	С	ogniti	ive	Remem	bering		
CO5: 1	E xplain heorem a	Character and to fin	istic equation and Cayley -Hamilton d Eigen values and Eigen vectors.	C	ogniti	ive	Remem ¹ Underst	bering anding		
UNIT I	[Vecto	or Spaces						18		
Vector	spaces –	Definitio	n and examples – <mark>Subspaces-linear tra</mark>	nsfo	ormati	on –	Span of	a set.		
UNIT I	I Basis a	and Dime	ension					18		
Linear	Independ	lence – Ba	asis and Dimension –Rank and Nullity.							
UNIT	III: M	atrix and	Inner Product Space				18			
Matrix Orthogo	of a linea o <mark>nality</mark> –	ar transfor Gram Sci	mation -Inner product space – Definiti hmidt orthogonalisation process – Orth	on logo	and ex onal C	xamp Comp	oles — lement.			
UNIT I	V : Th	eory of N	Iatrices					18		

Algebra of Matrices - Types of Matrices - The Inverse of a Matrix - Elementary Transformations – Rank of a matrix.

UNIT V: Characteristic equation and Bilinear forms

Characteristic equation and Cayley -Hamilton theorem – Eigen values and Eigen vectors

LECTURE	TUTORIAL	TOTAL
60	30	90

18

TEXT BOOK

1. Arumugam S and Thangapandi Isaac A, "Modern Algebra", SciTech Publications (India) Ltd., Chennai, Edition 2012.

Unit1: Chapter 5, Sec 5.1 to 5.4 Unit2: Chapter 5, Sec 5.5 to 5.7 Unit3: Chapter 5,Sec 5.8, Chapter 6, Sec 6.1 to 6.3 Unit4: Chapter 7 Sec 7.1 to 7.5 Unit5: Chapter 7, Sec 7.7, 7.8

REFERENCE

1. I. N. Herstein, "Topics in Algebra", Second Edition, John Wiley & Sons (Asia), 1975.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
	15	10	0	5	3	0	5	5	5

COURSE CODE		ODE	COURSE NAME	L	Т	Р	C
XMTe	501		Graph Theory	2	0	0	2
С	Р	Α					

L	Т	Р	SS	Η
2	0	0	2	4

PREREQUISITE: Matrices

0

COURSE OUTCOMES:

0

2

Course outcomes:	Domain	Level
CO1:Define andExplain The Konigsberg Bridge Problem, Graphs and subgraphs, Degrees, Subgraphs, Isomorphism., independent sets and coverings.	Cognitive	Remembering Applying
CO2: Define and Explain Matrices , Operations on Graphs , Walks, Trails and Paths ,Connectedness and Components and Eulerian Graphs.	Cognitive	Remembering Applying
CO3:Define and Explain Hamiltonian Graphs, Characterization of Trees and Centre of a Tree.	Cognitive	Remembering Applying
CO4: Define and Explain Planarity, Properties and Characterization of Planar Graphs.	Cognitive	Understanding Applying
CO5: Define and Explain Directed Graphs, Basic Properties ,Some Applications, Connector Problem , Kruskal's algorithm , Shortest Path Problem and Dijkstra's algorithm.	Cognitive	Understanding
UNIT I		6
Introduction - The Konigsberg Bridge Problem - Graphs and subg Examples - Degrees - Subgraphs – Isomorphism. –independent se	raphs: Defin ts and cover	ition and ings.
UNIT II		6
Matrices - Operations on Graphs - Walks, Trails and Paths – Con Components - Eulerian Graphs.	nectedness a	nd
UNIT III		6
Hamiltonian Graphs (Omit Chavatal Theorem) - Characterization	of Trees - C	entre of a Tree.
UNIT IV		6
Planarity: Introduction - Definition and Properties - Characterization	ion of Planar	Graphs.
UNIT V:		6
Directed Graphs: Introduction - Definitions and Basic Properties - Connector Problem - Kruskal's algorithm - Shortest Path Problem	– Some Appl – Dijkstra's	ications: algorithm.

LECTURE

30

TEXT BOOK

1. S. Arumugam and S. Ramachandran, "Invitation to Graph Theory", SciTech **Publications**

(India) Pvt. Ltd., Chennai, 2006.

Unit-I Chapter-1 Sec 1.0, 1.1 and Chapter -2 Sec 2.0, 2.1, 2.2, 2.3, 2.4.2.6

Unit-II Chapter-2 Sec 2.8,2.9 ,Chapter-4 Sec 4.1,4.2 and Chapter-5 Sec 5.0,,5.1

Unit-III Chapter-5 Sec 5.2, Chapter-6 Sec 6.0, 6.1, 6.2.

Unit-IV Chapter-8 Sec 8.0, 8.1, 8.2.

Unit-V Chapter-10 Sec 10.0, 10.1 Chapter-11 Sec 11.0, 11.1, 11.2

REFERENCES

- 1. Narsingh Deo, "Graph Theory with applications to Engineering and Computer Science", Prentice Hall of India, 2004.
- 2. Gary Chartrand and Ping Zhang, "Introduction to Graph Theory", Tata McGraw-Hill Edition,

2004.

Table 1: CO Vs PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
	15	10	0	5	3	0	5	5	5
$1-5 \rightarrow 1$,		6 - 10 -	$\rightarrow 2$,	$11 - 15 \rightarrow 3$					

 $1-5 \rightarrow 1$,

 $11 - 15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURSE CODE

Α

0

XMT602A

С

6

Р

0

COURSE NAME

Complex Analysis

L Т С Р 4 2 0 6 L Т Р Η 4 2 6 0

PREREQUISITE: Differential Calculus and Integral Calculus

COURSE OUTCOMES:

CO1: Use CR Equations in cartesian and polar co-ordinates to Cognit	ive Understanding				
find analytic function and to Explain Harmonic function Properties and applications.	Applying				
CO2: Explain Conformal mappings - Linear and Non-linear Cognit transformations and to Apply cross ratio to constructBilinear transformations.	ive Understanding Applying				
CO3:Solve the integral using cauchy's integral theorem, Cognit cauchy's integral formula and to Explain Liouville's theorem, Maximum modulus theorem and to apply them in simple problems.	ive Understanding Applying				
CO4: Using Taylors series and laurent's seriesExpansion of functions in Power series and to explain types of singularities.	ive Applying				
CO5: Apply Cauchy residue theorem to Solve Integration of Cognit functions of the type involving cosx, sinx.	ive Applying				
UNIT I : Analytic Functions	18				
Analytic function - Cauchy Riemann Equation in Cartesian and polar co function Properties and applications.	-ordinates - Harmonic				
UNIT II : Conformal Mappings and Transformations	18				
Conformal mappings - Linear and Non-linear transformations – Bilinear transformations - Properties and applications					
UNIT III : Complex Integration	18				
Integration in the Complex plane - Cauchy's Integral theorem - Cauchy's Integral formula - Liouville's theorem - Maximum modulus theorem - Applications and simple problems.					
UNIT IV : Complex Differentiation	18				
Taylor's and Laurent's series - Expansion of functions in power series - Singular points - Types of singularities - Properties of singularities - Identification of singularities.					
UNIT V: Calculus of Residues	18				
Calculus of Residues: Residue theorem - Integration of functions of the sinx- Applications and problems relating to residues.	type involving cosx ,				

TUTORIAL TOTAL LECTURE

60	30	90

TEXT BOOK

1. S. Narayanan & T.K. ManickavasagamPillai, "Complex Analysis", S. Viswanathan Publishers,

Chennai, 1997. Unit 1: Chapter 1 Unit 2: Chapter 2 Unit 3: Chapter 3 Unit 4: Chapter 4 Unit 5: Chapter 5

REFERENCES

- 1. S. Arumugam, A. Thangapandi Isaac& A. Somasundaram, "Complex Analysis", SciTech Publications, India, Pvt. Ltd., 2004.
- 2. S. Ponnusamy, "Foundations of Complex Analysis", 2ndEdition, Narosa Publication, New Delhi, 2005.
- 3. R. V. Churchill & J.W.Brown, "Complex variables and applications", 5thEdition, McGraw Hill, Singapore, 1990.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
	15	10	0	5	3	0	5	5	5

Table 1: CO Vs PO Mapping

 $1-5 \to 1,$ $6-10 \to 2,$ $11-15 \to 3$

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

COURSE CODE COURSE NAME		L	Т	Р	С			
XMT603A LINEAR PROGRAMMING		4	2	0	6			
C P A		L	Т	Р	Н			
5 0.5 0.5		4	2	0	6			
PREREQUISITE: NIL								
COURSE OUTCOMES:								
Course outcomes: D	Domai	in	L	evel				
CO1: Find Graphical Solution, Solve LPP using Simplex Method, C Big Method and Two Phase Method.	Cognit	ıve	Re Aj	emembe pplying	ering			
CO2: Solve Linear Programming problem Formulation of PrimalCDual Pairs , Duality and Simplex Method.P	ive motor	Aj Gi Re	pplying uided esponse					
CO3:Solve Transportation Problems, finding initial basic feasible C solution using North West Corner Rule and Vogel's approximation method, Solve unbalanced Transportation Problems, Assignment Problems and Routing Problems.	ive	Aj	pplying					
CO4: Solve sequencing Problems, Problems with 'n' jobs and 'k'	Cognit	ive	A	pplying				
machines, Problems with 'n' jobs and 2 machines, Problems with A 2 jobs and k machines and Problems with 2 jobs and 3 machines.	ve	Receiving						
CO 5: Solve Game Theory problems Two persons Zero sum games , maximin and minimax principle, Games without saddle points , Mixed strategies, using Graphical method and Dominance property.	A	pplying						
UNIT I			18					
Introduction to convex sets - Mathematical Formulation of LPP - Grap Method – Big M Method - Two Phase Method.	phical	Solutio	on - S	Simplex				
UNIT II			18					
Duality in Linear Programming: Formulation of Primal - Dual Pairs - Simplex Method - Dual Simplex Method	Dualit	y and						
UNIT III			18					
Transportation Problems: Mathematical formulation of the problem - finding initial basic feasible solution using North West Corner Rule and Vogel's approximation method - Moving towards Optimality - Unbalanced Transportation Problems. Assignment Problems: Mathematical formulation of Assignment Problems - Assignment algorithm – Routing Problems.								
UNIT IV			18					
Sequencing Problems: Problems with 'n' jobs and 'k' machines - Problems with 'n' jobs and 2 machines - Problems with 2 jobs and k machines - Problems with 2 jobs and 3 machines.								
UNIT V: 18								
Game Theory: Two persons Zero sum games - maximin and minimax j saddle points - Mixed strategies - Graphical method - Dominance prope	princi erty.	ple - G	ames	withou	It			
LECTURE T	TUTO	RIAL		TO	ΓAL			

	60	30	90
TEXT BOOK			
1. KantiSwarup, P. K. Gupta& Man Mohan, "Operations Re-	esearch", S	ultan Chand& Sons, New	
Delhi, Twelfth Revised Edition, 2005.			
Unit 1: chapter 2: 2.1, 2.2, chapter 3: 3.2, chapter 4;	4.1, 4.4.		
Unit 2: chapter 5: 5.2, 5.3, 5.7, 5.9.			
Unit 3: Chapter 10: 10.2, 10.9, 10.14, Chapter 11: 1	1.2, 11.3.		
Unit 4: Chapter 12: 12.1 – 12.6.			
Unit 5: Chapter 17: 17.1 – 17.7.			
REFERENCES			

- 1. P. K. Gupta & D. S. Hira, "Operations Research", S. Chand & Company Ltd., New Delhi, 2002.
- 2. J. K. Sharma, "Operations Research theory and its applications", 2nd Edition, Macmillan, New Delhi, 2006.
- 3. R. Panneerselvam, "Operations Research", Prentice Hall of India Pvt. Ltd., New Delhi, 2002.

Table 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO 1	3	2		1	1		1	1	1
CO 2	3	2		1			1	1	1
CO 3	3	2		1			1	1	1
CO 4	3	2		1	1		1	1	1
CO 5	3	2		1	1		1	1	1
	15	10	0	5	3	0	5	5	5

1 - Low , 2 – Medium , 3- high

M.SC (MATHEMATICS)

I SEMESTER

COUR	RSE CO	ODE	COURSE NAME	L	Т	Р	С
YMA1	101		GROUPS AND RINGS	4	0	0	4
С	Р	Α		L	Т	Р	Н
4	0	0		4	0	0	4

PREREQUISITE: Basic concepts of sets, groups and rings

COURSE OUTCOMES:

Course outcomes:	Domain	Level
CO1:Define and Explain Subgroups, Normal subgroups and Quotient Groups, Lagrange's Theorem.	Cognitive	Remembering Understanding
CO2: Define and Explain Homomorphism Theorems, Isomorphism Theorems, Automorphisms Theorems, Cayley's theorem. Permutation groups, Another Counting principle.	Cognitive	Remembering Understanding
CO3:Define and Explain Sylow's Theorems and their simple applications, Direct Products: External and Internal, Finite Abelian Groups.	Cognitive	Remembering Understanding
CO4:Define and Explain Rings, Subrings, Ideals, Factor Rings, Homomorphism and Integral Domains. Maximal and prime ideals. The field of Quotients of an integral domain.	Cognitive	Remembering Understanding
CO5:Define and Explain Euclidean Ring, A Particular Euclidean Ring, Polynomial Ring, and Polynomial over the Rational Field, Polynomial Rings over Commutative Rings.	Cognitive	Remembering Understanding
UNIT I		12
Definition & examples: Groups, Subgroups, Normal subgrou Lagrange'sTheorem.	ips and Qi	otient Groups,
UNIT II		12
Homomorphism Theorems, Isomorphism Theorems, Autom Cayley's theorem. Permutation groups, Another Counting principle	orphisms T e.	Theorems,
UNIT III		12
Sylow's Theorems and their simple applications, Direct Products: Abelian Groups.	External and	l Internal, Finite
UNIT IV		12
Rings, Subrings, Ideals, Factor Rings, Homomorphism, Integral Do ideals. The field of Quotients of an integral domain.	omains. Max	imal and prime
UNIT V		12
	1 • 1	

Euclidean Ring, A Particular Euclidean Ring, Polynomial Ring, Polynomial over the Rational Field, Polynomial Rings over Commutative Rings.

	LECTURE	TOTAL
	60	60
TEXTBOOK		
1. Herstein, I.N., "Topics in Algebra", Willey Eas	stern 1975.	
Unit I - Chapter 2 (Section 2.1 - 2.6)		
Unit II - Chapter 2 (Section 2.7 – 2.11)		
Unit III - Chapter 2 (Section 2.12 – 2.14)		

Unit IV - Chapter 3 (Section 3.1 - 3.6)

Unit V - Chapter 3 (Section 3.7 - 3.11)

REFERENCES

1. John B. Fraleigh, "A First Course in Abstract Algebra", Narosa Publication, Third Edition, 2003.

2. Cohn P. M., "Basic Algebra", Springer's Publications, Second Edition, 2005.

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2			1	1	1	1	1
CO2	3	2			1	1	1	1	1
CO3	3	2			1	1	1	1	1
CO4	3	2			1	1	1	1	1
CO5	3	2			1	1	1	1	1

COUR	RSE CO	ODE	L	Т	Р	С					
YMA1	102		ANALYSIS - I	4	0	0	4				
С	Р	Α		L	Т	Р	Н				
4	0	0	0	4							
PREREQUISITE:											
COUR	RSE OU	JTCON	MES: Basic concepts of real numbers								
Course	e outco	mes:		Doma	in	Level					
CO1:I	CO1:Define and Explain the Real and Complex Number Cognitive Remembering										
Systems. Understanding											
CO2: Define and Explain Basic Topology. Cognitive Rememberin											
Understandin											
CO3:I	Define a	and Ex	plain convergence of sequences and series	Cogni	tive	Remen	nbering				
						Unders	tanding				
CO4:I	Define a	and Ex	Cogni	tive	Remembering						
Understand											
CO5: Define and Explain the derivative of a real function, the Cognitive Remembering Continuity of Derivatives of Higher Order and											
Continuity of Derivatives, Derivatives of Higher Order, and Understanding Taylor's Theorem.											
UNIT I The Real and Complex Number Systems: 12 Ordered sets The real field. The complex field. Euclidean spaces											
Ordered sets, The real field, The complex field, Euclidean spaces.											
UNIT II Basic Topology: 12											
Finite, Countable and Uncountable sets, Metric space, Compact sets, Perfect Sets, Connected Sets.											
UNIT III Numerical Sequences and Series: 12											
Convergent sequences (in Metric Spaces), subsequences, Cauchy sequences, Upper and Lower Limits, Some Special Sequences, Series, Series of Negative terms, The root and ratio tests.											
UNIT	IV Co	ntinuit	y:				12				
Limits	of func	tions (i	n metric spaces) Continuous functions, Cor	tinuity a	and						
Compactness, Continuity and Connectedness, Discontinuities, Monotonic functions, Uniform											
Contin	uity, In	finite L	imits and Limits at Infinity.								
UNIT	V Diffe	erentia	tion:				12				
The D L'Hos	erivativ pital's F	e of a Rule, D	Real Function, Mean Value Theorems, There erivatives of Higher Order, Taylor's Theorem	ne Conti em.	nuity	of Der	ivatives,				
-			I	ECTU	RE	r	ΓΟΤΑL				
					60		60				

TEXTBOOK

- Walter Rudin, "Principles of Mathematical Analysis", (3rd Edition) McGraw-Hill, 2016. Unit I - Chapter 1 (Pages: 3-5, 8-11, 12-16) Unit II - Chapter 2 (Pages: 24 - 42) Unit III - Chapter 3 (Pages: 47-63, 65-69) Unit IV - Chapter 4 (Pages: 83-97)
 - Unit V Chapter 5 (Section 103-111)

REFERENCES

- 1. Shanti Narayan,"A Course of Mathematical Analysis", S.Chand & Co, 2005.
- 2. Apostol, T.M,"Mathematical Analysis", 2nd Edition,1996.
- 3. Malik, S.C,"Mathematical Analysis", Wiley Eastern Ltd, 2017.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2			1	1	1	1	1
CO2	3	2			1	1	1	1	1
CO3	3	2			1	1	1	1	1
CO4	3	2			1	1	1	1	1
CO5	3	2			1	1	1	1	1

TABLE 1: COs VS POs Mapping

YMA103DIFFERENTIAL EQUATIONS4004CPALTPH40044004	COUN CODE	RSE E		COURSE NAME	L	Т	Р	С
C P A 4 0 0	YMA	103		DIFFERENTIAL EQUATIONS	4	0	0	4
	С	Р	Α		L	Т	Р	Н
	4	0	0		4	0	0	4

ICITE. Differentiation and Internetic

PREREQUISITE: Differentiation and integration		
COURSE OUTCOMES:		
Course outcomes:	Domain	Level
CO1:Find The general solution of the homogeneous equations using various methods.	Cognitive	Remembering Understanding
CO2: Solve thehomogeneous linear system with constant coefficients and special functions.	Cognitive	Applying
CO3:Find the critical points and stability for linear systems by Liapounov's direct method.	Cognitive	Remembering Understanding
CO4:Solve First order linear partial differential equations using various methods.	Cognitive	Applying
CO5: Solve initial and boundary value problems.	Cognitive	Applying

UNIT I

The general solution of the homogeneous equation – The use of one known solution to find another – The method of variation of parameter – Power series solutions – Series solutions of first order equations – Second order linear equations – ordinary points – Regular singular points – Gauss hyper geometric equations – the point 0 at infinity.

UNIT II	12
Legendre polynomials – Properties of Legendre polynomials – Bessel functions – The gamma function – Properties of Bessel function – linear systems – Homogeneous linear system with constant coefficients.	
UNIT III	12
The existence and uniqueness of solutions – The method of Successive approximation –	

Picard's theorem – Types of critical points – Critical points and stability for linear systems – Stability by Liapunov's direct method.

UNIT IV

First order partial differential equations – Linear equations of the first order – Partial differential equations – Compatible systems – Charpit's method – Jacobi's method – Integral surface through a given circle.

UNIT V

Solution of initial and boundary value problems – Characteristics – D'Alembert's solution – Significance of characteristic curves – Laplace transforms solutions for displacement in a string – a long string under its weight – Longitudinal vibration of a elastic bar with prescribed force on one end – free vibrations of string.

12

12

14

12

LECTU	RE	TOTAL
	60	60
TEXTBOOK		
 Simmons, G.F.,"Differential Equations with Applications and TMH, New Delhi, 2003 	Historical No	tes",
 T. Amarnath, "An Elementary Course in Partial Differential Ec Delhi, 1997. 	quations", Na	rosa, New
Unit I- Chapter 3: Sections – 15,16,19, Chapter 5: Sections – 2	6 to 31	
Unit II- Chapter 8: Sections – 44 to 47, Chapter 10: Sections –	54 to 56	
Unit III- Chapter 13: Sections – 68, 69, Chapter 11: Sections –	60, 61	
Unit IV – Chapter 1: Sections – 1.4 to 1.9		

Unit V - Chapter 2: Sections – 2.1, 2.2, 2.3.1, 2.3.2, 2.3.3, 2.3.5, 2.5.1, 2.5.2

REFERENCES

1. W.T.Reid, "Ordinary Differential Equations", John Wiley, New York, 1971.

2. E.A.Coddington and E.Levinson, "Theory of ODE", Mc Graw Hill Publishing Company, New

york, 1955.

3. J.N. Sneddon, "Elements of Partial Differential Equations", Mc Graw Hill Publishing Company,

New york, 1957.

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
CO1	2	1	1	1		2			1	
CO2	2	1	1	1		2			1	
CO3	2	1	1	1		2			1	
CO4	2	1	1	1		2			1	
CO5	2	1	1	1		2			1	
COUR	OCT		т	т	р	C				
---	---	------------------------	---	----------------------	------------------------------	--------------------	---------	--	--	--
CODE	KSE L		COURSE NAME		I	P	C			
YMA1	104		DISCRETE MATHEMATICS	4	0	0	4			
С	Р	Α		L	Т	Р	Н			
4	0	0		4	0	0	4			
PRER	EQUIS	SITE:	Algebra							
COUR	RSE OU	TCO	MES:							
Cours	e outco	mes:		Doma	in	Level				
CO1:I	Define a	nd E	Cogni	tive	Rement Unders	ibering tanding				
CO2: I stateme	Define a contract of the second sec	and E culus.	Cogni	tive	Remen Under	bering standing				
CO3:8	Solve Re	ecurre	nce Relations using Generating Functions.	Cogni	tive	Applyi	ng			
CO4:I	Define a	nd E	Cogni	tive	Remembering Understanding					
CO5:	Define	and l	Cogni	tive	Remembering Understanding					
UNIT	UNIT I Mathematical Logic : 12									
Basic logical operations, conditional and biconditional statements, tautologies, contradiction, Normal forms.										
UNIT	IIThe t	heory	of inference for the statement Calculus:				12			
Rules o quantif	of infere fiers, Int	ence, (ferenc	Consistency, Automatic Theorem proving, Pre e Theory of the Predicate Calculus.	dicate C	Calcul	us,				
UNIT	IIIRec	urrer	ce Relations and Generating Functions:				12			
Polynomial expressions, telescopic form, recursion theorem, closed form expression, generating function, solution of recurrence relation using generating function.										
UNIT	IV Lat	ttices	and Boolean Algebra:				12			
Partial	ordered	l sets,	Properties of Lattices, Lattices as Algebraic S	ystems,	Bool	ean Alg	ebra.			
UNIT	VGran	ımar	and Languages:				12			
Phrase gramm	structur ar, regu	re gra ılar, co	mmars, rewriting rules, derivation sentential for ontext free and context sensitive grammar and	orms, lai languag	nguag ges.	ge gener	ated by			
	I						TOTAL			
			60			60				

TEXTBOOK

1. P. Tremblay, R. Manohar,"Discrete Mathematical Structure with Applications to Computer Science", Mc Graw- Hill International Edition, 1997.

Unit I - Chapter 1 (Section 1.1,1.2 & 1.3)

Unit II - Chapter 1 (Section 1.4, 1.5 & 1.6)

Unit IV - Chapter 4 (Section 4.1& 4.2)

Unit V – Chapter 4 (Section 4.6)

2. Alan Doerr, "Applied Discrete Structure for Computer Science", Pearson Education, 2013

Unit III – Chapter 8 (Section 8.1,8.2,8.3 &8.5)

REFERENCE

1. Kenneth H. Rosen, "Discrete Mathematics and Its Applications", Mc Graw-Hill International Edition, 2002.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	1	1		2			1
CO2	2	1	1	1		2			1
CO3	2	1	1	1		2			1
CO4	2	1	1	1		2			1
CO5	2	1	1	1		2			1

TABLE 1: COs VS POs Mapping

COURSE CODE CO	URSE NAME	L	Т	Р	С							
YMA1E1 GR	APH THEORY	3	0	0	3							
C P A		L	Т	Р	Н							
3 0 0		3	0	0	3							
PREREQUISITE:												
COURSE OUTCOME	S: Basic concepts of Graph Theory											
Course outcomes: Domain Level												
CO1:Define and Expla	Cogni	tive	Remem	bering								
Under												
CO2: Define and Expl	ain Connectivity - Blocks - Euler tours -	Cogni	tive	Remen	bering							
Hamilton Cycles.				Unders	tanding							
CO3:Define and Expla	Cogni	tive	Applyin	ng								
Graphs , Edge Chromati	c Number and Vizing's Theorem.											
CO4:Define and Expla	Cogni	tive	Remembering									
colorings.				Understanding								
CO5: Define and Expl	Cogni	tive	Remen	bering								
graphs, Euler's Formula Four- Color Conjecture			Unders	tanding								
UNIT I GRAPHS, SU	BGRAPHS AND TREES				9							
Graphs and simple graph	hs - Graph Isomorphism - The Incidence a	and Adj	acenc	y Matrio	ces -							
Subgraphs - Vertex Deg - Cut Vertices.	rees - Paths and Connection - Cycles - Tr	ees - Ci	ut Ed	ges and	Bonds							
UNIT II CONNECTIV	VITY, EULER TOURS AND HAMILT	ON CY	CLE	S	9							
Connectivity - Blocks -	Euler tours - Hamilton Cycles – Applicati	ons.										
UNIT III MATCHIN	GS, EDGE COLOURINGS				9							
Matchings - Matchings	and Coverings in Bipartite Graphs - Edge	Chrom	atic N	lumber -								
Vizing's Theorem- App	lications.											
UNIT IV INDEPEND	ENT SETS AND CLIQUES, VERTEX	COLO	URI	NGS	9							
Independent sets - Rams	sey's Theorem - Chromatic Number - Bro	oks' Th	eoren	n -								
Chromatic Polynomials	- Applications.											
UNIT V PLANAR GR	APHS				9							
Plane and planar Graphs	s - Dual graphs - Euler's Formula - The Fi	ve-Colo	our Tl	neorem								
and the Four-Colour Co	njecture- Applications.											
	LEC	CTURE		Τ	OTAL							
		45	5		45							

TEXTBOOK

1. J.A.Bondy and U.S.R. Murthy, "Graph Theory and Applications", Macmillan, London, 1976.

Unit I - Chapter 1 (Section 1.1 - 1.7); Chapter 2 (Section 2.1 - 2.3)

Unit II - Chapter 3 (Section 3.1 - 3.2); Chapter 4 (Section 4.1 - 4.2)

Unit III - Chapter 5 (Section 5.1 - 5.2); Chapter 6 (Section 6.1 - 6.2)

Unit IV - Chapter 7 (Section 7.1 – 7.2); Chapter 8 (Section 8.1 – 8.2, 8.4)

Unit V - Chapter 9 (Section 9.1 - 9.3, 9.6)

REFERENCES

1. Harary, "Graph Theory" Narosa Publishing House., 2001.

2.A.Gibbons, "Algorithmic Graph Theory, Cambridge University Press, Cambridge, 1989.

3.R.J.Wilson and J.J.Watkins, "Graphs: An Introductory Approach", John Wiley and Sons, New York, 1989.

4.V.K. Balakrishnan, Schaum's Outlines of "Theory and problems of Graph Theory", Tata McGraw Hill Education Private Limited Delhi, 2004.

5.S.A.Choudum, "A First Course in Graph Theory", MacMillan India Ltd. 1987.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	1	1	1	2	1	1	1
CO2	2	1	1	1	1	2	1	1	1
CO3	2	1	1	1	1	2	1	1	1
CO4	2	1	1	1	1	2	1	1	1
CO5	2	1	1	1	1	2	1	1	1

TABLE 1: COs VS POs Mapping

COURSE CODE			COURSE NAME	L	Т	Р	С					
YMA1	E2		CODING THEORY		3	0	0	3				
С	Р	Α			L	Т	Р	Н				
3	0	0			3	0	0	3				
PRER	PREREQUISITE:											
COUR	SE OU	UTCO	MES:									
Course	e outco	Level										
CO1: Define and Explain Error detection, Correction and Cognitive decoding						Remembering Understanding						
CO2: Define and Explain Linear codes Cogniti						Remembering Understanding						
CO3: E	Define a	and Ex	plain Linear codes Bounds in coding theory	Cognitive	Remembering Understanding							
CO 4: Define and Explain Cyclic codes: Definitions – Cognitive Remembering Generator polynomials – Generator matrix and parity check matrix – Decoding of Cyclic codes												
CO 5:	Define	Cognitive	Remembering Understanding									

UNIT-I

Error detection, Correction and decoding: Communication channels – Maximum likelihood decoding – Hamming distance – Nearest neighbourhood minimum distance decoding – Distance of a code

UNIT-II

Linear codes: Linear codes – Self orthogonal codes – Self dual codes – Bases for linear codes – Generator matrix and parity check matrix – Enconding with a linear code – Decoding of linear codes – Syndrome decoding.

UNIT-III

Bounds in coding theory: The main coding theory problem – lower bounds - Sphere covering bound – Gilbert Varshamov bound – Binary Hamming codes – q-ary Hamming codes – Golay codes – Singleton bound and MDS codes – Plotkin bound.

UNIT-IV

Cyclic codes: Definitions – Generator polynomials – Generator matrix and parity check matrix – Decoding of Cyclic codes.

UNIT-V

Special cyclic codes: BCH codes – Parameters of BCH codes – Decoding of BCH codes – Reed Solomon codes.

LECTURE	TOTAL
45	45

TEXT BOOKS:

1. San Ling and Chaoping Xing , Coding Theory: A first course, Cambridge University Press, 2004.

UNIT 1 : Sections 2.1, 2.2, 2.3, 2.4, 2.5

UNIT 2 : Sections 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8

UNIT 3 : Sections 5.1, 5.2, 5.3, 5.4, 5.5, UNIT 4 : Sections 7.1, 7.2, 7.3, 7.4 UNIT 5 : Sections 8.1, 8.2

9

9

9

9

REFERENCES:

- 1. S. Lin &D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Prentice-Hall, Inc., New Jersey, 1983.
- 2. Vera Pless, Introduction to the Theory of Error Correcting Codes, Wiley, New York, 1982.
- 3. E. R Berlekamp, Algebriac Coding Theory, Mc Graw-Hill, 1968.
- 4. H. Hill, A First Course in Coding Theory, OUP, 1986.

	COUR	RSE CO	DDE	COURSE NAME	L	Т	Р	С
YMA1E3 Mat				Mathematical Logic	3	0	0	3
	С	P	Α		L	Т	Р	Η
	3	0	0		3	0	0	3

PREREQUISITE: Discrete Mathematics

COURSE OUTCOMES:

Course outcomes: Domain	Level
CO1: Define and Explain Syntax of First-Order Logic,Cognitive Semantics of First-Order Languages, Structures of First-Order Languages .	Remembering Understanding
CO2: Define and Explain Propositional Logic and Tautology Cognitive	Remembering Understanding
CO3: Define and Explain Consistency and Completeness and Cognitive Extensions by definition of first order theories	Remembering Understanding
CO 4: Define and Explain Embeddings and Isomorphisms Cognitive Compactness theorem, Categoricity and Complete theories	Remembering Understanding
CO 5: Define and Explain Recursive functions, ArithmatizationCognitive of first order theories and Godel's first Incompleteness theorem.	Remembering Understanding
UNIT-I	9

Syntax of First-Order Logic: First Order Languages, Terms and Formulas of a First Order language, First Order Theories. Semantics of First-Order Languages: Structures of First-Order Languages, Truth in a Structure, Model of a Theory

UNIT-II

Propositional Logic: Tautologies and Theorems of propositional Logic, Tautology Theorem. Proof in First Order Logic, Meta theorems of a first order theory, e.g., theorems on constants,

equivalence theorem, deduction and variant theorems etc.,

UNIT-III

Consistency and Completeness, Lindenbaum Theorem. Henkin Extension, Completeness theorem, Extensions by definition of first order theories, Interpretation theorem.

UNIT-IV

Model Theory: Embeddings and Isomorphisms, Lowenheim-Skolem Theorem, Compactness theorem, Categoricity, Complete Theories

UNIT-V

Recursive functions, Arithmatization of first order theories, Decidable Theory, Representability, Godel's first Incompleteness theorem.

9

9

9

LECTURE	TOTAL
45	45

- 1. Shoenfield J. R. Mathematical logic, Addison-Wesley Publishing Co.
- 2. Srivastava S. M. A Course on Mathematical Logic, Universitext, Springe

REFERENCES:

1. Mendelson E. Introduction to Mathematical Logic, Chapman & Hall.

II SEMESTER

COURSE CODE			COURSE NAME	L	Т	Р	С		
YMA	201		LINEAR ALGEBRA	4	0	0	4		
С	Р	Α		L	Т	Р	Н		
4	0	0		4	0	0	4		
PREF	REQUI	SITE	: Group theory and Ring theory		<u>I</u>				
COU	RSE O	UTC	OMES:						
Cours	se outc	omes	:	Doma	in	Level			
CO1:	Define	and	ExplainElementary Basic Concepts- Linear	Cogni	tive	Remem	bering		
Indep	endence	e and	Bases.			Unders	tanding		
CO2 :	Defin	e and	Explain Dual Spaces- Inner Product Space-	Cogni	tive	Remem	bering		
Modu	les.					Unders	tanding		
CO3: charac	Solve cteristic	the A	Algebra of Linear Transformations to find ts.	Cogni	tive	Applyii	ng		
CO4:Define and Explain Canonical Forms, Triangular form, Cognitive Nilpotent Transformations, Jordan Form and Rational Canonical form.							Remembering Understanding		
CO5:	Define	and	Explain Trace and Transpose, Determinants,	Cogni	tive	Remem	bering		
Herm: Quadi	itian, U ratic fo	nitary orms.	and Normal Transformations, Real			Unders	tanding		
UNIT	I						12		
Eleme	entary I	Basic	Concepts- Linear Independence and Bases.						
UNIT	II						12		
Dual S	Spaces-	Inne	r Product Space- Modules.						
UNIT	III						12		
The A	lgebra	of Li	near Transformations- Characteristics Roots- M	atrices.					
UNIT	IV						12		
Canor Canor	nical Fo nical fo	orms: rm.	Triangular form- Nilpotent Transformations- Jo	rdan Fo	orm -	Rationa	1		
UNIT	V						12		
Trace	and Tr	anspo	se – Determinants- Hermitian, Unitary and Nor	mal Tra	nsfor	mations	;-		
Real (Quadrat	tic for	ms.						
	L			RE	Т	TOTAL			
			60				60		

TEXTBOOK

1. Herstein, I.N.,"Topics in Algebra", Willey Eastern 1975.

Unit I - Chapter 4 (Section 4.1 & 4.2)

Unit II - Chapter 4 (Section 4.4 - 4.5) Unit III - Chapter 6 (Section 6.1 - 6.3)

Unit IV - Chapter 6 (Section 6.4 - 6.7) Unit V - Chapter 6 (Section 6.8 - 6.11)

REFERENCES

1. John B. Fraleigh, "A First Course in Abstract Algebra", Narosa Publication, Third Edition, 2013.

2. P. M. Cohn, "Basic Algebra", Springer's Publications, Second Edition, 2003.

Table 1: COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2	2	1	1	1	1	1	1
CO2	3	2	2	1	1	1	1	1	1
CO3	3	2	2	1	1	1	1	1	1
CO4	3	2	2	1	1	1	1	1	1
CO5	3	2	2	1	1	1	1	1	1

COURSE CODE			COURSE NAME	L	Т	Р	С
YMA202			ANALYSIS - II	4	0	0	4
С	Р	Α		L	Т	Р	Н
4	0	0		4	0	0	4

PREREQUISITE: Basic concept	ots of convergence and	uniform convergence
------------------------------------	------------------------	---------------------

COURSE OUTCOMES:		
Course outcomes:	Domain	Level
CO1:Define and ExplainExistence, Properties of the Integral,	Cognitive	Remembering
Integration and Differentiation.		Understanding
CO2: Define and Explain Uniform convergence and Continuity	. Cognitive	Remembering
		Understanding
CO3:Define and Explain Uniform convergence and Integration	Cognitive	Remembering
and Differentiation.		Understanding
CO4:Define and Explain Set functions, Construction of	Cognitive	Remembering
Lebesgue Measures, Measurable function, Simple functions in measure.		Understanding
CO5: Define and Explain Integration Comparison with the	Cognitive	Remembering
Riemann Integral, Integration of Complex functions, Functions of class J^2 .		Understanding
UNIT I		12
Definition and Existence of the Integral, Properties of the Integral Differentiation.	, Integration a	nd
UNIT II		12
Uniform Convergence, Uniform convergence and Continuity.		
UNIT III		12
Uniform convergence and Integration, Uniform convergence and	Differentiation	1.
UNIT IV		12
Set functions, Construction of Lebesgue Measures, Measurable fu measure.	nction, Simpl	e functions in
UNIT V		12
Integration Comparison with the Riemann Integral, Integration of of class J^2 .	Complex fund	ctions, Functions
LEC	TURE	TOTAL

TEXTBOOK

1. Walter Rudin, "Principles of Mathematical Analysis", (3rd Edition), McGraw-Hill, 2016 Unit I - Chapter 6 (Pages: 120-135)

Unit II - Chapter 7 (Pages: 143-151)

Unit III - Chapter 7 (Pages: 151-154)

Unit IV - Chapter 11 (Pages: 300-314)

Unit V - Chapter 5 (Section 314-325)

REFERENCES:

- 1.Shanti Narayan, "A course of Mathematical Analysis", S. Chand & Company Ltd New Delhi, 2005.
- Apostol, T.M, "Mathematical Analysis", Narosa Book Distributors Pvt Ltd, 2nd Edition, New Delhi, 1996.
- 3. Malik, S.C, "Mathematical Analysis", Wiley Eastern Ltd. 2017.

Table 1: COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2			1	1	1	1	1
CO2	3	2			1	1	1	1	1
CO3	3	2			1	1	1	1	1
CO4	3	2			1	1	1	1	1
CO5	3	2			1	1	1	1	1

COUI	RSECOL	ЭE	CO	URSEN	AME						L	Т		Р	С
YMA	203		INT OF	TEGRAI VARIA	L EQUAT TIONS A	TIOI ND	NS, () TRA	CAL ANSI	CUL FOR	US MS	3	1		0	4
С	Р	A									L	Т		Р	Η
4	0	0									3	1		0	4
PRER	REQUISI	TE:	: Mu	ltivariab	le calculus	and	d vec	tor c	alculı	JS					
COUL	KSE OU	rcc	OME	5:							D	•	т.		
Cours CO1:	Define andMin transitic	and ima,	d Ex t, the ondit	plain Ca simples ions , va	alculus of at case, Na riational no	vai atur otati	riatio ral bo	ons, 1 ound	Maxi ary a	ma ind	Doma Cogni	in tive	Rer Und	v ei nemb dersta	bering anding
CO2:	Define a Properti Finite F	and les louri	Exp Conv ier tra	lain Fou volution ansform	rier sine an -Solving	nd c int	cosin tegral	e tra l equ	nsfor uatior	ms - ns -	Cogni	tive	Re Už g	emem nders	bering tandin
CO3:	Define Inverse functior	and for n – L	d Ex j rmula Linea	plain Ha – Som rity prop	ankel Tran e importa erty	nsfo ant	orm : resul	Def ts fo	finitio or Be	on – essel	Cogni	tive	Rer Unc	nemt dersta	bering anding
CO4:	Define Definiti kernels Integral	and on, –eig	d E Reg gen v	xplain ularity alues an	Linear In conditions d eigen fu	Integ 5 – incti	gral spe ions	Equ ecial – cor	ation kind nvolu	s - l of ition	Cogni	tive	Rer Und	nemb lersta	bering anding
CO5:]	Define a – some Fredhol	nd E rea mTł	E xpla esults heory	in Volte about	erra Integra the resolv	al eq vent	quatio	on – nel.	exam Class	ples sical	Cogni	tive	Ren Unc	nemt lersta	bering anding
UNIT	Ι														12
Calcul transit multip	lus of var ion condi liers – va	iatic i <mark>tion</mark> ariab	ons – ns - va ble en	Maxima ariationa d points	and Minin 1 notation - – Sturm-L	ma - — m Liou	– <mark>the</mark> nore g aville	sim gener prot	plest o al cas plems	case se –	– <mark>Nat</mark> constr	ural l aints	boun and	darya Lagra	and ange's
UNIT	II														12
Fourie Solvin cosine	er transfo g integr transforn	orm al c ns -]	- Fo quatio <mark>Four</mark> t	urier sin ons - F ier integi	te and cos inite Four ral theorem	sine rier n - F	e tran tran Parse	nsfor nsfor val's	ms - m - ident	Pro Fini ity.	perties ite Fo	Co: Co: Co:	nvol r <mark>si</mark> r	ution ne ar	nd
UNIT	III														12
Hanke – Lin Transf	l Transfo earity pr form of d	orm : oper iffer	: Def erty – rentia	inition – - Hanke l operato	Inverse fo Transfor ors – Parse	orm rm eval'	ula – of t 's Th	Son he c eorei	ne imj leriva m	porta tive	ant res s of	ults f the f	for B funct	lessel tion	function –Hankel
UNIT	IV														12
Linear values functionalterna	Integral and eigons – No ative - exa	Equ en tatic amp	uatior funct on – oles –	ns - Defin ions – o reduction an appro	nition, Reg convolution n to a syst oximate me	gula on In tem etho	arity of Integr 1 of A od.	condi al – Alget	itions the oraic	– <mark>sp</mark> inne equa	pecial er and ations	<mark>kind</mark> scal – ex	of k ar p amp	ernel roduo les–F	s – <mark>Eigen</mark> ctof two Fredholm
UNIT	V														12
Metho	d of s	succe	essiv	e appro	oximations	s:]	Iterat	tive	sche	eme	– e	xamj	ples	_	Volterra

Integralequation – examples – some results about the resolvent kernel. Classical FredholmTheory: the method of solution of Fredholm – Fredholm's first theorem .

	LECTURE	TUTORIAL	TOTAL
	45	15	60
TEXTBOOK			
[1] Ram.P.Kanwal – Linear Integral Equations	Theory and Prac	tise, Academic P	ress
1971.			
[2] F.B. Hildebrand, Methods of Applied Mathe	ematics II ed. PH	I, ND 1972.	
[3] A.R. Vasishtha, R.K. Gupta, Integral Transf	orms, Krishna P	rakashan Media F	Pvt
Ltd, India, 2002.			
UNIT – I Chapter 2: Sections 2.1 to 2.9 of [2	2]		
UNIT – II Chapter 7 of [3]			
UNIT – III Chapter 9 of [3]; UNIT – IV -Ch	apters 1 and 2 of	[1]	
UNIT – V Chapters 3 and 4 of [1]			
REFERENCES			
[1] S.J. Mikhlin, Linear Integral Equations (tra	nslated from Rus	sian), Hindustan	Book

- [1] S.J. Mikhlin, Linear Integral Equations (translated from Russian), Hindustan Book Agency, 1960.
- [2] I.N. Snedden, Mixed Boundary Value Problems in Potential Theory, North Holland, 1966.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2				1	1	2		1
CO2	2				1	1	2		1
CO3	2				1	1	2		1
CO4	2				1	1	2		1
CO5	2				1	1	2		1

Table 1: COs vs POs Mapping

COURSE CODE	COURSE NAME	L	T	Р	C				
YMA204	OPERATIONS RESEARCH	4	0	0	4				
C P A		L	Т	Р	Н				
4 0 0		4	0	0	4				
PREREQUI	PREREQUISITE: Nil								
COURSE O	UTCOMES:								
Course outco	omes:	Doma	in	Level					
CO1:Define	Cogni	tive	Remembering						
				Understanding					
CO2: Explai	CO2: Explain and solve problems inPERT and CPM			UnderstandingApplying					
CO3:Explain deterministic inventory control models and probabilistic Inventory Control Models and solve problems by using the methods:		Cognitive		Understanding Applying					
CO4:Explair	Essential Features of Queueing System,	Cogni	tive	Understanding					
Classification Queueing Mo	of Queueing Models and find solution of odels.			Rememberi	ng				
CO5: Explai	in replacement and maintenance models and	Cogni	tive	Understand	ing				
solve problem	s by using these methods.			Applying					
UNIT I DE	CISION THEORY				12				
Steps in Deci Under Uncert Decision Tree	Steps in Decision theory Approach - Types of Decision-Making Environments - Decision Making Under Uncertainty - Decision Making under Risk - Posterior Probabilities and Bayesian Analysis - Decision Tree Analysis - Decision Making with Utilities.								
UNIT IIPRC	JECT MANAGEMENT : PERT AND CPM				12				
D I DIG									

Basic Differences between PERT and CPM - Steps in PERT/CPM Techniques - PERT/CPM Network Components and Precedence Relationships - Critical Path Analysis - Probability in PERT Analysis - Project time-cost Trade Off - Updating the Project - Resource Allocation .

UNIT IIIDETERMINISTIC INVENTORY CONTROL MODELS

Meaning of Inventory Control - Functional Classification - Advantage of Carrying Inventory - Features of Inventory System - Inventory Model building - Deterministic Inventory Models with no shortage - Deterministic Inventory with Shortages

Probabilistic Inventory Control Models:

Single Period Probabilistic Models without Setup cost - Single Period Probabilities Model with Setup cost.

UNIT IV QUEUEING THEORY

Essential Features of Queueing System - Operating Characteristic of Queueing System - Probabilistic Distribution in Queueing Systems - Classification of Queueing Models - Solution of Queueing Models - Probability Distribution of Arrivals and Departures - Erlangian Service times Distribution with k-Phases.

12

UNIT VREPLACEMENT AND MAINTENANCE MODELS

Failure Mechanism of items - Replacement of Items Deteriorates with Time - Replacement of items that fail completely - other Replacement Problems.

LECTURE	TOTAL
60	60

TEXTBOOK

1. J.K.Sharma, "Operations Research Theory and Applications", Third Edition, Macmillan India Ltd., 2007,

Unit I - Chapter-11 (Section 11.1 - 11.8)

Unit II - Chapter-13 (Section 13.1 - 13.9)

Unit III - Chapter-14 (Section 14.1 - 14.8); Chapter-15 : (Section15.1 - 15.4)

Unit IV - Chapter-16 (Section 16.1 - 16.9); Appendix 16. A (PP 774-781)

Unit V - Chapter-17 (Section 17.1 - 17.5)

REFERENCES

- 1.F.S. Hillier and J.Lieberman, "Introduction to Operations Research" (8th Edition), Tata McGraw Hill Publishing Company, New Delhi, 2006.
- Beightler. C, D.Phillips, B. Wilde, "Foundations of Optimization" (2nd Edition) Prentice Hall Pvt Ltd., New York, 1979
- 3.Bazaraa, M.S; J.J.Jarvis, H.D.Sharall, "Linear Programming and Network flow", John Wiley and sons, New York, 1990.
- 4. Gross, D and C.M.Harris, "Fundamentals of Queueing Theory", (3rd Edition), Wiley and Sons, New York, 1998.
- Hamdy A. Taha, "Operations Research" (sixth edition), Prentice Hall of India Private Limited, New Delhi. 2007

Table 1: COs vs POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1		1	2		1		1
CO2	2	1		1	2		1		1
CO3	2	1		1	2		1		1
CO4	2	1		1	2		1		1
CO5	2	1		1	2		1		1

			LIST OF ELECTIVES					
COU	RSE CO	DDE	COURSE NAME		L	Т	Р	С
YMA	2E1		ALGEBRAIC NUMBER THEORY		3	0	0	3
С	P	Α			L	Т	Р	Н
3	0	0			3	0	0	3
PREI	REQUI	SITE:	Nil					
COU	RSE OU	UTCO	MES:					
Cours	se outco	mes:		Dor	nain	L	evel	
CO1:	CO1: Define and Explain Primes, Congruences, Fermat's, Euler's and Wilson's Theorems					e Re Ui	Remembering Understanding	
CO2:	Wilson's Theorems CO2: Define and Explain Techniques of numerical calculations –						Remembering	
Public	e key cry Power l	yptogra Residu	phy – Prime power Moduli – Primitive roots and es			U	nderst	anding
Course outcomes:DomainLetCO1: Define and Explain Primes, Congruences, Fermat's, Euler's and Wilson's TheoremsCognitiveRet UnCO2: Define and Explain Techniques of numerical calculations – Public key cryptography – Prime power Moduli – Primitive roots and Power ResiduesCognitiveRet UnCO3: Define and Explain Number theory from an Algebraic Viewpoint, The Legendre symbol (a/r) where r is an odd prime – Quadratic Reciprocity – The Jacobi Symbol (P/q) where q is an odd positive integer.CognitiveRet UnCO4: Define and Explain Explain Equivalence and Deduction of DinemaCognitiveRet						emem nderst	bering anding	
CO4:	Define Quadra The Mo Combin	and Ex tic For obius In natorial	aplain Equivalence and Reduction of Binary ms, Sums of three squares, Arithmetic Functions – aversion Formula – Recurrence Functions – number theory	Cog	gnitive	e Ro Ui	emem nderst	bering anding
CO5:	Define ax+by=	and Ex c – Sir	plain Diophantine Equations – The equation nultaneous Linear Diophantine Equations –	Cog	gnitive	e Re Ui	emem nderst	bering anding
Pytha	gorean [Friangl	es					

UNIT-I

Introduction – Divisibility – Primes – The Binomial Theorem – Congruences – Euler's totient - Fermat's, Euler's and Wilson's Theorems – Solutions of congruences – The Chinese Remainder theorem.

UNIT-II

Techniques of numerical calculations – Public key cryptography – Prime power Moduli – Primitive roots and Power Residues –Congruences of degree two.

UNIT-III

Number theory from an Algebraic Viewpoint – Groups, rings and fields – Quadratic Residues- The Legendre symbol (a/r) where r is an odd prime – Quadratic Reciprocity – The Jacobi Symbol (P/q) where q is an odd positive integer.

UNIT-IV

Binary Quadratic Forms – Equivalence and Reduction of Binary Quadratic Forms – Sums of three squares – Positive Definite Binary Quadratic forms – Greatest integer Function – Arithmetic Functions – The Mobius Inversion Formula – Recurrence Functions – Combinatorial number theory .

UNIT-V

 $\label{eq:constraint} \begin{array}{l} \text{Diophantine Equations} - \text{The equation } ax + by = c - \text{Simultaneous Linear Diophantine Equations} - Pythagorean Triangles - Assorted examples. \end{array}$

9

9

9

9

LECTURE	TOTAL
45	45

1. Ivan Niven, Herbert S, Zuckerman and Hugh L, Montgomery, An Introduction to the Theory of Numbers, Fifth edn., John Wiley & Sons Inc, 2004.

UNIT I Chapter 1 and Chapter 2 : Sections 2.1 to 2.3

UNIT II Chapter 2 : Sections 2.4 to 2.9

UNIT III Chapter 2 : Sections 2.10, 2.11 and Chapter 3: Sections 3.1 to 3.3

UNIT IV Chapter 3 : Sections 3.4 to 3.7 and Chapter 4

UNIT V Chapter 5: Sections 5.1 to 5.4.

REFERENCES:

- 1. Elementary Number Theory, David M. Burton W.M.C. Brown Publishers, Dubuque, Lawa, 1989
- 2. Number Theory, George Andrews, Courier Dover Publications, 1994.
- 3. Fundamentals of Number Theory, William J. Leveque Addison-Wesley Publishing Company, Phillipines, 1977.

COURSE CODE	L	Т	Р	С		
YMA2E2	DATA STRUCTURE AND ALGO	RITHMS	3	0	0	3
C P A			L	Т	Р	Н
3 0 0			3	0	0	3
PREREQUISITE	Discrete Mathematics					
COURSE OUTCO	DMES:					
Course outcomes:		Domain		Leve	el	
CO1: Understand a	and apply linear data structures	Cognitive		Und App	erstand lying	ling
CO2: Understand a	and apply nonlinear data structures	Cognitive		Unde App	erstand lying	ling
CO3: Understand a	Cognitive		Understanding Applying			
CO 4: Understand	and apply graph algorithms	Cognitive	Understanding Applying			
CO 5: Design diffe	erent algorithm techniques.	Cognitive	Understanding Applying			
UNIT-I						9
ADT – List ADT –	Stack ADT – Queue ADT.					
UNIT-II						9
Trees – Binary Tree Trees- B+ Tree	es – Binary Search Trees – AVL Trees	– Splay Trees – T	Free '	Trave	rsal – I	3
UNIT-III						9
Insertion sort – She	ell sort – Heap sort – Merge sort – Quic	ck sort – Bucket s	ort –	Exter	nal Soi	ting.
UNIT-IV						9
Topological sort – – Applications of D	Shortest path algorithms – Network Flo Depth First search – NP completeness.	ow problems – M	inimı	ım Sp	anning	g Tree
UNIT-V						9
Greedy Algorithms	- Divide and Conquer – Dynamic Pro	ogramming - Rand	omiz	zed Al	gorith	ns –

Backtracking algorithms.

LECTURE	TOTAL
45	45

TEXT BOOKS /REFERENCE BOOKS

- 1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Second Edition, Pearson Education Reprint 2011.
- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein, "Introduction to Algorithms", Second Edition, Mcgraw Hill, 2002
- 3. ReemaThareja, "Data Structures Using C", Oxford University Press, 2011
- 4. Algorithms, Data Structures, and Problem Solving with C++", Illustrated Edition by Mark Allen Weiss, Addison-Wesley Publishing Company
- 5. "How to Solve it by Computer", 2nd Impression by R. G. Dromey, Pearson Education

COU	RSE	COL	ЭE	COURSE NAME	L	Т	Р	С
YMA	2E3			FUZZY SETS AND FUZZY LOGIC	3	0	0	3
С		Р	Α		L	Т	Р	Н
3		0	0		3	0	0	3
PREI	REQ	UISIT	Γ Ε:]	Discrete Mathematics				
COU	RSE	OUT	COI	MES:				
Cour	se ou	tcom	es:		Domai	n	Level	
CO1:	Defi noti	ne an on of	d Ex fuzz	xplain basic definitions of Crisp sets, the y sets and basic concepts of fuzzy sets.	Cogniti	ive	Remem Unders	bering tanding
CO2:	Defi	ne an	d Ex	xplain operation on Fuzzy Sets.	Cogniti	ive	Remem Underst	bering tanding
CO3:	Defi	ine an	d Ex	xplain Fuzzy Relations	Cogniti	ive	Remem Underst	bering tanding
CO4 :	Defi	ine an	d Ex	xplain Classical Logic.	Cogniti	ive	Remem	bering
							Unders	tanding
CO5:	Defi cont	i ne an radict	d E xtions	x plain Fuzzy logic, fuzzy tautologies - - equivalence and logical proofs.	Cogniti	ive	Remem Underst	bering tanding
UNII	ΙΊ	Cris	sp Se	ets and Fuzzy Sets				9
Crisp	sets	basic	defir	itions - the notion of fuzzy sets - basic concept	s of fuzz	zy se	ets.	
UNII	II T	Oper	ratio	n on Fuzzy Sets				9
Fuzzy aggre	com gatio	ipleme n opei	ent - ratio	fuzzy union - fuzzy intersection - combination ns.	and gen	ieral		
UNIT	TII T	Fu	zzy Ì	Relations				9
Crisp relatio - orde	and f ons crings	fuzzy	relat	ions - binary relation - equivalence and similar	ity relati	ions	- tolerar	nce
UNII	T IV	Cla	ssica	al Logic				9
Tauto	logie	s - co	ntrac	lictions - equivalence - exclusive OR and exclu	sive NC)R -	logical p	proofs.
UNII	ΓV	Fuz	zy L	ogic				9
Fuzzy logica	/ logi al pro	c - apj ofs.	prox	imate reasoning - fuzzy tautologies - contradict	ions - eo	quiva	alence a	nd

	LECTURE	TOTAL
	45	45
TEXTBOOKS		

- 1. George J. Klir & Tina A. Folger, "Fuzzy Sets, Uncertainty, and Information", Prentice Hall of India Pvt. Ltd., New Delhi, 1988
- Timothy J. Ross, "Fuzzy Logic with Engineering Applications", 3rd edition, McGraw-Hill. Inc, 2010.

REFERENCES

1. Zimmermann. H.J, "Fuzzy Set Theory and Its Applications", 4th edition, Springer, Netherlands, 2015.

2. Bart Kosko, "Neural Networks and Fuzzy Systems", Prentice-Hall International, 1992.

	000.01	0.0						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	2	1	1	1			
CO2	1	2	1	1	1			
CO3	1	2	1	1	1			
CO4	1	2	1	1	1			
CO5	1	2	1	1	1			

PO9

Table 1: COs vs POs Mapping

COURSE CODE		С	OUF	RSE	TITL	Έ						L		Т	P		С		
YMA301		F	IELI	D TH	EOR	Y						4		0	0		4		
C P	Α	1										L		Т	Р		Н		
4 0	0											4		0	0		4		
PREREQU	ISIT	ΓE:	Alge	ebra											•				
COURSE C)UT	CC	ME	S:															
Course outo	come	es:										Dom	ain	l	Level				
CO1:Define Algebraic E	:Define and ExplainExt braic Extension - Transce : Define and Explain Re- brem – Splitting field - M :Define and Explain Ele – Normal extension- Fu		ension enden	n field ce of	ds – F e.	Finite	e Exte	ension	l —	Cogr	nitiv	ve	Remembering Understanding						
CO2: Defin Theorem –	e an Split	d E ttin	E xpla g fiel	i n Ro d - M	oots o Iore al	f Poly bout r	ynom roots.	nials	- Ren	nainde	er	Cogr	nitiv	ve	Reme Under	mb rsta	ering Inding		
CO3:Define field – Norr	e and nal e	d E exte	xpla i ensior	in Ele n- Fu	ement ndame	s of G ental 7	Galois Theo	s The orem.	eory-	Fixed		Cogr	nitiv	ve	Reme Under	mb rsta	bering anding		
CO4:Define group – Gal	eld – Normal extension- Fu 204:Define and Explain So roup – Galois group over th 205: Define and Explain F				lvabil e ratic	ity by onal.	/ radi	cals	– Sol	vable	Cogr	nitiv	ve	Remembering Understanding					
CO5: Defin on finite c	O4:Define and Explain S oup – Galois group over the O5: Define and Explain F finite division rings – A					elds - rem o	- Wed	ddert oben	ourn's ius.	theor	em	Cogr	nitiv	ve	Remembering Understanding				
UNIT I																	12		
Extension fi	elds	– F	Finite	Exte	nsion	– Alg	gebra	ic Ex	xtensi	on - T	Trans	cende	nce	of	e.				
UNIT II																	12		
Roots of Pol	ynor	mia	uls F	Rema	inder '	Theor	rem –	- Spl	itting	field	- Mo	re abc	ut 1	:001	s.				
UNIT III																	12		
Elements of	f Gal	lois	The	ory-]	Fixed	field -	– Noi	rmal	exter	nsion-	Fune	damen	tal	The	eorem.				
UNIT IV																	12		
Solvability b	oy ra	ndic	als –	Solv	able g	roup -	– Ga	lois g	group	over	the r	ationa	1.						
UNIT V																	12		
Finite fields	- We	edd	lerbu	rn's t	heorer	n on f	finite	e divi	sion 1	rings -	- A 7	Theore	m c	of I	Froben	ius	•		
										LEC	CTUI	RE				T(DTAL		
										60							60		
TEXTBOO	K																		
1. N. Herste	ein,"	Top	oics i	n Alg	gebra"	, Will	ley E	laster	m, 19	75.									

REFERENCES

1. John B. Fraleigh,"A First Course in Abstract Algebra", Narosa Publication, Third Edition, 2013

2. P. M. Cohn,"Basic Algebra", Springers Publications, Second Edition, 2003.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2			1	1	1	1	1
CO2	3	2			1	1	1	1	1
CO3	3	2			1	1	1	1	1
CO4	3	2			1	1	1	1	1
CO5	3	2			1	1	1	1	1

TABLE 1: COs VS POs Mapping

COURSE CODE			COURSE TITLE	L	Т	Р	С			
YMA.	302		TOPOLOGY	4	0	0	4			
С	Р	Α		L	Т	Р	Н			
4	0	0		4	0	0	4			
PRER	PREREQUISITE:									

COURSE OUTCOMES:

Course outcomes:	Domain	Level
CO1:Define and ExplainTopological Spaces	Cognitive	Remembering
		Understanding
CO2: Define and Explain Continuous Functions	Cognitive	Remembering
		Understanding
CO3:Define and Explain Connectedness	Cognitive	Remembering
		Understanding
CO4:Define and Explain Compactness	Cognitive	Remembering
		Understanding
CO5: Define and Explain Countability and Separation Axiom	Cognitive	Remembering
		Understanding
UNIT I Topological Spaces		12

Topological spaces - Basis for a topology - The order topology - The product topology on $X \times Y$ - The subspace topology.

UNIT IIContinuous Functions

Closed sets and limit points-Continuous functions - the product topology - The metric topology. - The metric topology (continued) - Uniform limit theorem.

UNIT IIIConnectedness

Connected spaces - connected subspaces of the Real line - Components and local

12

connectedness.

UNIT IV Compactness

Compact spaces - compact subspaces of the Real line - Limit Point Compactness - Local Compactness.

UNIT VCountability and Separation Axiom

The Countability Axioms - The separation Axioms - Normal spaces - The Urysohn Lemma - The Urysohn metrization Theorem - The Tietz extension theorem.

LECTURE	TOTAL
60	60

ТЕХТВООК

1. James R. Munkres, "Topology", (2nd Edition) PHI Learning Pvt. Ltd., (Third Indian Reprint) New Delhi, 2014

Unit I - Chapter 2: Sections 12 to 17

Unit II - Chapter 2: Sections 18 to 21 (Omit Section 22)

Unit III - Chapter 3: Sections 23 to 25

Unit IV - Chapter 3: Sections 26 to 29

Unit V - Chapter 4: Sections 30 to 35

REFERENCES

- 1. J. Dugundji, "Topology", Prentice Hall of India, New Delhi, 1975.
- 2. George F.Sinmons, "Introduction to Topology and Modern Analysis", McGraw Hill Book Co., 1963.
- 3. J.L. Kelly, "General Topology", Van Nostrand, Reinhold Co., New York.1995
- 4. L.Steen and J.Subhash, "Counter Examples in Topology", Holt, Rinehart and Winston, New York, 1970.
- 5. S.Willard, "General Topology", Addison Wesley, Mas.1970.

PO1 PO2 PO3 PO4 PO5 PO7 PO8 PO6 PO9 CO1 3 2 1 1 1 1 1 **CO2** 3 2 1 1 1 1 1 **CO3** 3 2 1 1 1 1 1 **CO4** 3 2 1 1 1 1 1 **CO5** 3 2 1 1 1 1 1

TABLE 1: COs VS POs Mapping

12

COU	RSEC	ODE	C	CO	UR	SENA	ME						L	Τ	P	С
YMA	303		A	AU'	TO	MAT	A TH	EOF	RY				<mark>3</mark>	1	<mark>0</mark>	<mark>4</mark>
С	Р	Α											L	Τ	Р	H
4	0	0											3	1	0	4
PRER	EQUIS	ITE: A	Ar	nal	ysis							_				
COUR	SE OU	TCO	M	IES	:											
Course	e outcor	mes:										Γ	Doma	in 1	Level	
CO1:	Define	and E	Exj	xpla	ain S	String	s,Alph	habet	ts an	d Lang	guages	C	Cognit	ive	Rememl Understa	bering anding
CO2:	Define Proper	and E ties of	Exj f R	xpla Reg	a in I ular	Regul sets.	ar exp	oressi	ions	and		C	Cognit	ive	Remen Unders g	bering standin
CO3:	Define	and E	Exj	xpla	ain (Conte	xt Free	e gra	mm	ars		C	Cognit	ive]	Rememl Understa	pering anding
CO4 :	Define of Con	and Entert fr	Ex] ree	xpla e la	a in l Ingu	Pushd ages	own A	Autoi	mata	ı & pro	operties	s (Cognit	ive]	Rememl Understa	pering anding
CO5:	Define hierarc	and E hy.	Exj	xpla	ain 7	Furniı	ng Mao	chin	e and	d Chor	nski	C	Cognit	ive]	Rememl Understa	pering anding
UNIT 1	[12
Strings	,Alphab	oets an	nd	La	ngu	ages (Sectio	on 1.	1 of	the Te	xt)					
Finite A	Automa	ta (Ch	nap	pter	s 2,	Secti	ons 2.	1 to	2.4)							
UNIT]	II															12
Regula	r expres	ssions	an	nd l	Prop	perties	s of Re	egula	ar set	ts.(Sec	tions 2	.5 to	o 2.8 a	and 3.	.1 to 3.4)
UNIT I	III															12
Contex	t Free g	ramm	ar	rs (S	Sect	ion 4.	1 to 4.	.5)								
UNIT I	IV															12
Pushdo Theore	wn Aut m 5.3, 5	omata 5.4 (wi	a & 'ith	& p hou	rope t pro	erties oof), (of Cor (Sectio	ntext on is	free 5.1	e langu to 5.3 ;	ages and 6.1	l to	6.3)			
UNIT	V															12
Turning	g Machi	ine and	d (Ch	oms	ki hie	rarchy	y, (Se	ectio	ons 7.1	to 7.3	and	9.2 to	9.4)		
]	LECT 45	URE		TUT 1	ORIA .5	AL	TOTAL 60
TEXT	BOOK															
J.E. Ho	pocroft	and J.	.D). U	Лma	an, Int	roduct	tion	to A	utoma	ta The	ory l	Langu	ages	and	

Computation, Narosa, 1999

REFERENCES

- 1. G.ERevesz,Introduction to Formal Languages 2. P.Linz,Introduction to Forma Languages and Automata,Narosa2000
 - 3. G.Lallment, Semigroups and Applications

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1		1	2		1		1
CO2	2	1		1	2		1		1
CO3	2	1		1	2		1		1
CO4	2	1		1	2		1		1
CO5	2	1		1	2		1		1

COURSE CODE			COURSE NAME										L		Т		Р		С			
YMA304		I	Μ	AT	HE	MA	ATI(CAL	L ST	TA T	TIS T	ΓIC	S		ľ	4		0		0		4
C P	Α														Ī	L		Т		Р		H
4 0	0														-	4		0		0		4
											L											
PREREQU	ISIT	ГЕ	E:																			
COURSE ()UT(C	CO	ME	S:																	
Course outcomes: Domain Level																						
CO1:Define and Explain Estimation Theory.												Cog	nit	tive	R U	lemen Jnders	ibei tan	ring ding				
CO2: Expl distributions Analysis of	CO2: Explain and solve Tests based on r distributions for testing of means, variance Analysis of $r \times c$ tables – Goodness of fit									orn and	nal, d pr	t an opoi	d f tions	8 —		Cog	nit	tive	U	Unders App	tan lyin	ding Ig
CO3:Expla	orre	latio	on A	nd F	Reg	ress	sion.				Cog	nit	tive	U A	Jnders Applyi	tan ng	ding					
CO4:Explain and solve Design of Experiments													Cog	nit	tive	U A	nderstanding					
CO5: Expl charts, p, c a	ain a and n	an np	nd p cl	sol nart	ve S s.	Stati	istica	al Qı	ualit	ty C	Cont	trol l	byX	, R		Cog	nit	tive	U A	Jnders Applyi	tan ng	ding
UNIT I Es	stima	ati	tio	n T	heo	ry															U	12
Estimators: estimation –	Un b Met	bia etho	iase hoc	<mark>edn</mark> e l of	ess, mo	Con mer	<mark>nsist</mark> nts.	ency	y, Ef	ffic	ienc	cy ar	nd Su	ıffic	ienc	y – N	Лa	ximı	ım	likeli	hoc	od
UNIT IITes	sting	g C	Of	Hy	pot	hes	is															12
Tests based proportions	on n – An	nor nal	orm aly	a <mark>l,</mark> sis o	t an of r	$\frac{d f}{x c}$	<mark>distr</mark> tabl	<mark>ibut</mark> i es –	ions Goo	s <mark>fo</mark> odn	r tes iess	sting of f	<mark>of n</mark> it.	near	is, v	arian	ce	and				
UNIT IIIC	orre	ela	ati	on .	And	l R	egre	ssio	n													12
Multiple and of residuals Multiple con terms of low	d Par – (rrelat ver or	rtia <mark>Co</mark> tio	tial Coe ion der	con ffic wit	rela <mark>ient</mark> th to -effi	ition of otal icie	n – M mu and nt.	Meth ltipl part	iod o e co tial c	of 1 orre corr	east elati relat	t squ on tion	ares – Co – Re	– P peffi egre	lane licien ssio	of R t of n and	Reg pa I P	gress artial artia	ior l c l c	n – Pro correla orrela	ope tion tior	rties n - ns in
UNIT IV D	Desig	gn	n of	f Ex	cpei	cim	ents															12
Analysis of – Randomiz	varia <mark>ed bl</mark>	ano oloc	nce ock	e – (a de)ne sigr	wa n – J	y an Latir	d tw 1 squ	'o wa Jare	ay des	clas sign	ssific	cation	ns –	Cor	nplet	ely	y ran	do	mized	l de	sign
UNIT V Sta	atisti	ica	cal	Qu	alit	y C	ontr	col														12
Analysis of variance: Control charts for measurements (X and R charts) – control charts for attributes (p, c and np charts) – Tolerance limits – Acceptance sampling, Introduction to SPSS.																						
												Ι	LEC	ΓUI	RE					T	O	ΓAL

TEXTBOOK

1. Gupta. S.C., and Kapoor. V.K., "Fundamentals of Mathematical Statistics", Sultan Chand and sons, Thirteenth Edition, 2014.

REFERENCES

- 1. J.E. Freund, "Mathematical Statistical", 5th Edition, Prentice Hall of India, 2001.
- 2. Jay L. Devore, "Probability and Statistics for Engineering and the Sciences", 5th Edition, Thomas and Duxbury, Singapore, 2002.

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	1	1		2			1
CO2	2	1	1	1		2			1
CO3	2	1	1	1		2			1
CO4	2	1	1	1		2			1
CO5	2	1	1	1		2			1

LIST OF ELECTIVES

COUN CODE	RSE E		COURSE NAME	L	Т	Р	С
YMA3E1			DATA ANALYSIS USING SPSS	3	0	0	3
C	P	Α		L	Т	Р	Н
3 0 0		0		3	0	0	3
PRER	PREREQUISITE: Probability and Statistics						

COURSE OUTCOMES:

Course outcomes:	Domain	Level
CO1:Define and Explain Starting SPSS, SPSS Main Menus, Working with the Data Editor, Importing and Exporting data, Plotting of Charts using Bar and Pie diagram.	Cognitive	Remembering Understanding
CO2: Define and Explain measures of central tendencies and measures of dispersion using SPSS	Cognitive	Remembering Understanding
CO3:Define and Explain Type I and Type II error, Basics of one sample t-test, independent sample t-test and paired t-test using SPSS	Cognitive	Remembering Understanding
CO4:Define and Explain One way ANOVA, two way ANOVA and Chi-square test using SPSS	Cognitive	Remembering Understanding
CO5: Define and Explain correlation and regression using SPSS	Cognitive	Remembering Understanding
UNIT I		9

Introduction to SPSS - Starting SPSS - SPSS Main Menus - Working with the Data Editor -SPSS Viewer - Importing and Exporting data. Plotting of Charts: Simple Bar diagram, Multiple Bar Diagram and Pie Diagram.

UNIT II

Descriptive Statistics and Frequencies using SPSS. Measures of central tendencies: Arithmetic mean, Median, Mode, Geometric mean and Harmonic Mean. Measures of Dispersion: Range, inter quartile range, Mean Deviation and Standard deviation. Measures of Skewness and Kurtosis

UNIT III

Testing of Hypothesis: Type I error and Type II Errors – Concept of p values – Basic Concepts of One Sample t-test, Independent Samples t-test, Paired samples t-test using SPSS with interpretation.

UNIT IV

Analysis of Variance: Basic concepts of ANOVA – One Way and Two Way ANOVA using SPSS with interpretation. Chi-square Test for Independence of attributes using SPSS. 9

UNIT V

Correlation: Karl Pearson's coefficient of Correlation – Spearman's Rank correlation – Simple linear Regression using SPSS with interpretation.

LECTURE	TOTAL
45	45

9

9

TEXTBOOK

1. Ajai J Gaur and Sanjaya S. Gaur (2008): Statistical Methods for Practice and Research A guide to data analysis using SPSS, First Edition, Sage Publications.

REFERENCES:

- 1. Andy Field.(2011); Discovering Statistics Using SPSS, Sage Publications.
- 2. Hinton P R, Brownlow C, McMurray, I. and Cozens, B. (2004) SPSS Explained, Routledge

COU	RSE F		COURSE TITLE	L	Т	Р	С	
VMA	е 252		NUMERICAL METHODS	2	0	0	2	
YMA	JEZ		NUMERICAL METHODS	3	U	U	3	
С	Р	A		L	Т	Р	Н	
3	0	0	0	3				
PREI	REQU	ISIT	E: algebra					
COU	RSE C	UT	COMES:					
Cours	se outo	ome	s:	Doma	in	Level		
CO1: Raphs	Find the son Me	he so ethoo	lution by using Bisection method-Newton- l-Curve fitting straight line and parabola.	Cogni	tive	Remem	bering	
CO2:	Solve	e Sim	ultaneous Linear Equations.	Cogni	tive	Remembering Understanding		
CO3:Find the value of $y = f(x)$ using interpolation formula. Cogn						Cognitive Rememberin Understandi		
CO4: value	Find the of int	he fii egra	est and second derivative of $f(x)$ and to find the ls using numerical methods.	Cogni	tive	Remembering Understanding		
CO5: metho	Solve ods.	e ordi	nary differential equations by using various	Cogni	tive	Remem Unders	bering tanding	
UNIT	. I						9	
Solut Raph	ion of son me	Nur thod	nerical Algebraic Equations & Curve fitting -Curve fitting straight line and parabola.	Bisectio	on m	ethod-N	lewton-	
UNIT	II						9	
Soluti factor	on of ization	Sirr - <mark>Gau</mark>	ultaneous Linear Equations-Gauss-Elimination uss Jacobi and Gauss-Seidel methods	metho	od-Me	ethod o	f	
UNIT	III						9	
Interp formu	olation la-Lag	i - (rang	Gregory-Newton forward and backward interports formula.	olation	form	ulae Ste	erling's	
UNIT	IV						9	
Nume Simps	erical	Diffe ne-th	prentiation and Integration, Numerical different ind rule – Simpson's three-eighth rule.	ntiation	, Tra	pezoida	l rule-	

UNIT V		9
Numerical Solution of Ordinary Differential Runge-Kutta method-Milne's predictor corrector	Equations, Euler's method.	method – fourth order
	LECTURE	TOTAL
	45	45
TEXTBOOK		

1. Sastry.S.S, "Introductory Methods of Numerical Analysis", Prentice Hall of India, 2000.

REFERENCES

- 1. Gerald, Curtis and Wheatley, Patrick.O,"Applied Numerical Analysis", (Fifth Edition) Addison-Wesley, 1989.
- 2. Kandasamy.P, Thilakavathy.K, Gunavathy.K-Numerical Methods, S.Chand & Co. Ltd, New Delhi, Reprint 2001.

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	1	1		2			1
CO2	2	1	1	1		2			1
CO3	2	1	1	1		2			1
CO4	2	1	1	1		2			1
CO5	2	1	1	1		2			1

COUR	SE CO	DDE	COURSE NAME		L	Т	P	С				
YMA3	E3		COMMUTATIVE ALGEBRA		3	0	0	3				
С	Р	Α			L	Т	Р	Н				
3	0	0			3	0	0	3				
PRER	PREREQUISITE: Nil											
COUR	COURSE OUTCOMES:											
Course	Course outcomes: Domain Level											
CO1:	Define roperti	e and E ies.	xplain special algebraic structures and their	Cognitive	R U	emen nders	iberi tand	ng ing				
CO2:]	Define	and Ex	xplain proficient in the theory of Modules	Cognitive	R U	emen nders	ıberi tand	ng ing				
CO3:	Define rings.	e and E	xplain the methods of decomposition of	Cognitive	R U	emen nders	iberi tand	ng ing				
CO 4:	Defin decom	e and E positic	Explain Chain conditions – Primary on in Noetherian rings.	Cognitive	R U	emen nders	nembering derstanding					
CO 5:	Defin rings -	e and H - Dede	Explain Artin rings – Discrete valuation kind domains – Fractional ideals	Cognitive	Re U	emen nders	iberi tand	ng ing				
UNIT-	I							9				
Rings a homon	and ring horphis	g homo m – ex	omorphism's – ideals – Extension and Contra act sequences.	action, module	es an	d mo	dule					
UNIT-	II							9				
Tensor contrac	producted ide	ct of m als in 1	odules – Tensor product of algebra – Local cings of fractions.	properties – e	xtenc	led ar	nd					
UNIT-	III							9				
Primary Decomposition – Integral dependence – The going-up theorem – The going down theorem – Valuation rings.												
UNIT-	IV							9				
Chain o	conditi	ons – F	Primary decomposition in Noetherian rings.									
UNIT-	V							9				
Artin ri	ings – l	Discret	e valuation rings – Dedekind domains – Fra	ctional ideals.	•							

LECTURE	TOTAL
45	45

TEXT BOOKS:

1. Atiyah, M., MacDonald, I.G., Introduction to Commutative Algebra, AddisonWesley, Massachusetts 1969.

UNIT 1 : Chapter 1, Chapter 2 (up to page 23) UNIT 3 : Chapters 4, 5. UNIT 4 : Chapters 6, 7.

UNIT 2 : Chapter 2 (pages 24 – 31), Chapter 3. UNIT 5 : Chapters 8, 9.

REFERENCES:

1. H.Matsumura, Commutative ring theory, Cambridge University Press, 1986.

2. N.S. Gopalakrishnan, Commutative Algebra, Oxonian Press Pvt. Ltd, New Delhi, 1988. R.Y.Sharp, Steps in Commutative Algebra, Cambridge University Press, 1990.

COL	URSE DDE	C	COURSE NAME	L	Т	Р	С		
YM	[A401		COMPLEX ANALYSIS	4	0	0	4		
C	Р	Α		L	Т	Р	Н		
4	0	0		4	0	0	4		
PREREQUISITE:									
COUR	SE O	UT	COMES:						
Course	e outc	come	25:	Doma	in	Level			
CO1:D	Define	and	Explain Line Integrals- Rectifiable arc – Line	Cogni	tive	Remen	bering		
integra Cauchy	ls as f y's Th	funct leore	ions of arc- Cauchy's Theorem for rectangle- em for disc			Unders	tanding		
CO2: derivat Zeros a Princip	Defin ives – and Po ole.	e an Re bles -	Cogni	tive	Remen Unders	bering tanding			
CO3:E	Define	and	Explain The General Statement of Cauchy's	Cognitive Remem			bering		
Theore	m – P	Proof	of Cauchy's Theorem – Locally Exact			Unders	tanding		
Differe	entials	-M	Iultiply Connected Regions.						
CO4:D Argum Mean - Theore	Define ent - valu em – T	e and Prine e pr The F	I Explain The Residue Theorem – The ciple – Evaluation of Definite Integrals – The operty – Poisson's formula- Schwarz's Reflection Principle.	Cogni	tive	Remen Unders	ibering tanding		
CO5: I Series Formul	Defin – The la –	e an e Lai Had	d Explain Weierstrass's Theorem – The Taylor urent Series – Partial Fractions- Jensen's amard's Theorem	Cogni	tive	Remen Unders	ibering tanding		
UNIT	Ι						12		
Line Ir rectang	ntegra g <mark>le- C</mark> a	ls- F auch	Rectifiable arc – Line integrals as functions of y's Theorem for disc.	arc- Ca	uchy	's Theor	rem for		
UNIT	II						12		
The Inc – Tayl Princip	dex of lor's ple.	f a po theo	oint - Integral Formula – Higher derivatives – Re rem – Zeros and Poles – The Local Mappir	movabl 1g – T	e sin he N	gularitie Iaximun	s n		
UNIT	III						12		
Chains Theore Region	and $(m - I)$ is.	Cycle Proo	es – Simple Connectivity – Homology – The Ger f of Cauchy's Theorem – Locally Exact Differen	neral St ntials –	atemo Mult	ent of Ca iply Co	auchy's nnected		
UNIT	IV						12		
The D	aciduc	Th	acrom The Argument Principle Evaluation	of Dof	nita	Intogral	The		

The Residue Theorem – The Argument Principle – Evaluation of Definite Integrals – The Mean – value property – Poisson's formula- Schwarz's Theorem – The Reflection Principle.

UNIT V

Weierstrass's Theorem – The Taylor Series – The Laurent Series – Partial Fractions- Jensen's Formula – Hadamard's Theorem.

LECTURE	TOTAL
60	60

TEXTBOOK

1.Lars V.Ahlfors, "Complex Analysis", 3rd Edition McGraw Hill Education (India) Private Ltd.2013.

Chapter 4 - Section 1.1 to 1.5, Section 2.1 to 2.3, Section 3.1 to 3.4, Section 4.1 to 4.7, Section 5.1

to 5.3 , Section 6.1 to 6.5.

Chapter 5 - Section 1.1 to 1.3, Section 2.1, Section 3.1 & 3.2.

REFERENCES:

1. S. Poonusamy, "Complex Analysis", Alpha Science International Ltd; 2nd Revised edition,2005.

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	1	1		2			1
CO2	2	1	1	1		2			1
CO3	2	1	1	1		2			1
CO4	2	1	1	1		2			1
CO5	2	1	1	1		2			1

COURSE CODE			COURSE NAME	L	Т	Р	С
YMA402			FUNCTIONAL ANALYSIS	4	0	0	4
C	Р	Α		L	Т	Р	Н
4	0	0		4	0	0	4

PREREQUISITE: COURSE OUTCOMES:

Course outcomes:	Domain	Level				
CO1:Define and Explain Normed Spaces – Continued of Linear Maps – Hahn – Banach Theorems	Cognitive	Remembering				
CO2. Define and Earlier Densel, Success Hufferer	o :.:	Diderstanding				
Boundedness Principle – Closed Graph and Open Mapping Theorems.	Cognitive	Understanding				
CO3:Define and Explain Bounded Inverse Theorem – Spectrum of a Bounded Operator.	Cognitive	Remembering Understanding				
CO4:Define and Explain Inner Product Spaces – Orthonormal Sets – Projection and Riesz Representation Theorems.	Cognitive	Remembering Understanding				
CO5: Define and Explain Bounded Operators and adjoint, Normal, Unitary and Self-adjoint Operators.	Cognitive	Remembering Understanding				
UNIT I		12				
Normed Spaces – Continued of Linear Maps – Hahn – Banach Theorems.						

UNIT II	12
Banach Spaces – Uniform Boundedness Principle – Closed Graph and Open Mapping Theorems.	

UNIT III	12
Bounded Inverse Theorem – Spectrum of a Bounded Operator.	
UNIT IV	12
Inner Product Spaces – Orthonormal Sets – Projection and Riesz Representation Theorem	ems.
UNIT V	12
Bounded Operators and adjoint, Normal, Unitary and Self-adjoint Operators.	
LECTURE T	OTAL
60	60
TEXTBOOK

1.Balmohan V Limaye, "Functional Analysis", 3rd Edition, New Age International (P) Limited publishers, New Delhi, 2017.

REFERENCES

- 1. G.F. Simmons, "Introduction to Topology and Modern Analysis", McGraw Hill International Book Company, New York, 1963.
- 2. W. Rudin, "Functional Analysis", Tata McGraw-Hill Publishing Company, New Delhi, 1973.
- 3. E. Kreyszig, "Introductory Functional Analysis with Applications", John Wiley & Sons, New York, 1978.
- 4. H. C. Goffman and G.Fedrick, "First Course in Functional Analysis", Prentice Hall of India, New Delhi, 1987.

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	1	1	1		2			1
CO2	2	1	1	1		2			1
CO3	2	1	1	1		2			1
CO4	2	1	1	1		2			1
CO5	2	1	1	1		2			1

COURSE CODE COURSE NAME	Т	Р	C		
YMA403 MATHEMATICAL MODELING 3	1	0	4		
C P A 3 0 1	L	Т	Р	Н	
PREREOUISITE: Probability and Statistics	3	1	0	4	
COURSE OUTCOMES:					
Course outcomes:	Dom	ain	Level		
CO1:Define and explain Mathematical Modelling through Ordinary Differential Equations of First order	Cognitive Rememberi Affective Understand Receiving			nbering standing	
CO2:Define and explain Mathematical Modelling through Systems of Ordinary Differential Equations of First Order	Cognitive Remen Affective Unders Receiv		nbering standing		
CO3:Define and explain Mathematical Modelling through Ordinary Differential Equations of Second Order	Cogn	itive	Remen	nbering	
CO4:Define and explain Mathematical Modelling through Difference Equations	Cogn	itive	Remembering Understanding		
CO5: Define and explainMathematical Modelling through Graphs	Cogn	itive	Remen Unders	nbering	
UNIT I: Mathematical Modelling through Ordinary Differential Equarks	uations	sof Fi	rst	9+3	
Linear Growth and Decay Models – Non-Linear Growth and Decay Mo	dels –C	ompai	rtment I	Models	
UNIT II:Mathematical Modelling through Systems of OrdinaryDiff	erentia	l Equ	ations	9+3	
Population Dynamics – Epidemics – Compartment Models – Economics Battles and International Trade – Dynamics	s –Medi	cine, .	Arms R	ace,	
UNIT III:Mathematical Modelling through Ordinary Differential I	Equatio	nsof S	Second	9+3	
Planetary Motions – Circular Motion and Motion of Satellites – Mathem	naticalN	Iodell	ing thro	ugh	
UNIT IV : Mathematical Modelling through Difference Equations			•	9+3	
Simple Models – Basic Theory of Linear Difference Equations with Con Economics and Finance – Population Dynamics and Genetics – Probabil	ity Theo	ory.	ents –		
UNIT V: Mathematical Modelling through Graphs Solutions that can be Modelled through Graphs – Mathematical Modelli Graphs, Signed Graphs, Weighted Digraphs and UnorientedGraphs.	ng inTe	erms o	f Direct	9+3 ed	
LECTURE TUTORIAL 45 15			TO K	TAL 0	
			0	v	
TEXTBOOKS 1.J.N. Kapur, Mathematical Modelling, Wiley Eastern Limited, New De	elhi, 198	38.			

1. J. N. Kapur, Mathematical Models in Biology and Medicine, Affiliated East –West Press Pvt Limited, New Delhi, 19

TABLE 1: COs VS POs Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	3	2			1	1	1	1	1
CO2	3	2			1	1	1	1	1
CO3	3	2			1	1	1	1	1
CO4	3	2			1	1	1	1	1
CO5	3	2			1	1	1	1	1