

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculu	Curriculum Design and Development								
Metric	1.1.3	Average	percentage	of	courses	having	focus	on	employability/		
		entreprene	entrepreneurship/ skill development offered by the Aerospace Engineering								

DEPARTMENT OF AEROSPACE ENGINEERING

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

S. No.	Programme Name
i.	Bachelor of Technology (Aerospace Engineering)

2. Syllabus of the courses as per the list.

Legend :	Words highlighted with Blue Color	-	Entrepreneurship
	Words highlighted with Red Color	-	Employability
	Words highlighted with Purple Color	-	Skill Development

1. List of courses

Name of the Course	Course Code	Year of introduction	Activities with direct bearing on Employability/ Entrepreneurship/ Skill development
	20	020-2021	
XMA101	Calculus and Linear Algebra	2010-11	Test, Quiz, Problem solving
XCP102	Programming for Problem Solving	2013-14	Assignment, Class Test, Seminar
XGS103	English	2018-19	Test, Assignment
XAC104	Applied Chemistry for Engineers	2010-11	Problem solving, Assignment, Quiz, Test
XWP105	Workshop Practices	2010-11	Record Writing, Observation, Mini project
XMA201	Calculus, Ordinary Differential Equations and Complex Variables	2014-15	Test, Quiz, Tutorial
XES202	Environmental Sciences	2018-19	Assignment, Model, Test
XBE203	Electrical and Electronics Engineering Systems	2010-11	Class Notes, Assignment, MCQ Type Test
XAP204	Applied Physics for Engineers	2010-11	Test, Problem solving, Quiz, Assignment
XEG205	Engineering Graphics and Design	2010-11	Plate Submission 1,2,3,4
XMA301	Transforms and Partial Differential Equations	2010-11	Assignment, Attendance, Class Work, Problem solving
XAS302	Material Science and Metallurgy	2010-11	Assignment, Attendance, Seminar, Case study
XAS303	Solid Mechanics and Fluid Mechanics	2010-11	Assignment, Attendance, Seminar, Case study
XEM304	Engineering Mechanics	2010-11	Assignment, Attendance, Seminar, Case study
XUM305	Entrepreneurship Development	2014-15	Business plan, Seminar, Attendance, Assignment
XAS306	Engineering Thermodynamics	2013-14	Assignment, Attendance, Seminar, Case study, Slip Test
XAS307	In-Plant Training- I	2010-11	Work Diary, Report, Presentation, Attendance, Feedback from industry
XAS401	Aerodynamics I	2010-11	Assignment, Case study, Slip Test, Attendance, Record Writing, Observation, Mini project
XAS402	Aircraft Structures I	2010-11	Assignment, Class notes, Attendance

XUM403	Human Ethics, Values, Rights and Gender Equality	2010-11	Case study
XAS404	Aircraft Propulsion	2010-11	Poster Presentation, Case study, Attendance, Record Writing, Observation, Mini project
XAS405	Elements of Satellite Technology	2014-15	Assignment, Seminar, Case Study, Attendance
XASE01	Aircraft Systems and Instruments/ Airframe Maintenance and Repair	2014-15	Assignment, Test, Seminar, Case study
XAS501	Aerodynamics-II	2010-11	Assignment, Class work, Quiz, Test, Applications
XAS502	Aircraft Structures- II	2010-11	Assignment, Seminar, Case study, Record Writing, Observation, Mini project
XAS503	Rocket and Spacecraft Propulsion	2018-19	Assignment, Seminar, Slip test, Case study
XAS504	Space Mechanics	2015-16	Assignment, Seminar, Slip Test, Case study,
XASE08	Wind Tunnel Techniques	2010-11	Assignment, Test, Seminar, Case study
X**OE*	Open Elective – I	2014-15	Assignment, Seminar, Slip test, Case study
XUM507	Essence of Indian Traditional Knowledge	2018-19	Assignment, Seminar, Slip test, Quiz, Group Discussion
XAS508	In-Plant Training – II	2010-11	Work Diary, Report, Presentation, Attendance, Feedback from industry
XASM01	Elements of Drone Technology	2018-19	*****
XAS601	Flight Technologies	2010-11	Assignment, Seminar, Case study
XAS602	Finite Element Analysis	2010-11	Assignment, Seminar, Case study, Test
XAS603	UAV Technologies	2014-15	Assignment, Seminar, Case study, Record Writing, Observation, Mini project
XAS604	Avionics	2010-11	Assignment, Seminar, Case study, Record Writing, Observation, Mini project
XASE14	Aircraft Rules and Regulations I and II	2010-11	Assignment, Seminar, Case study
X**OE*	Open Elective-II	2014-15	Model Presentation, Case Study, Assignment, Seminar

XUM607	Constitution of India	2018-19	Process Description, Creativity writing, Assignment
XASM02	CAD Modelling	2018-19	*****
XAS701	Open Elective-II	2014-15	****
XAS702	Avionics	2010-11	Assignment, Seminar, Case study, Record Writing, Observation, Mini project
XAS703	Computational Fluid Dynamics	2010-11	Assignment, Seminar, Case study, Slip test, Record Writing, Observation, Mini project
XAS704B	Theory of Vibrations	2013-14	Assignment, Seminar, Case study
XAS705C	Rockets and Missiles	2013-14	Assignment, Seminar, Case study, Slip test
XUM706	Cyber Security	2013-14	Assignment, Seminar, Literature survey
XAS707	Project Phase – I	2014-15	Review, PPT Presentation, Fabrication, Report submission
XGS708	Career Development Skills	2015-16	Assignment, Seminar, Group Discussion
XAS709	In-Plant Training – III	2010-11	Work Diary, Report, Presentation, Attendance, Feedback from industry
XAS710	Non-Destructive Testing	2017-18	*****
XAS801	Open Elective- III	2014-15	*****
XAS802A	Spacecraft Power Systems	2013-14	Work Diary, Report, Presentation, Attendance, Feedback from industry
XAS803C	Cryogenics	2013-14	Assignment, Seminar, Case study
XAS804	Project Phase II	2014-15	Review, PPT Presentation, Fabrication, Report submission

SYLLABUS OF COURSES

COUR	COURSE CODE XMA101 L							
COURSE NAME CALCULUS AND LINEAR ALGEBRA						0	4	
PREREQUISITES NIL						Р	Н	
C:P:A	= 3:0.5:0.5			4	1	0	5	
COUR	RSE OBJECTI	VES						
• Un	derstand the ap	plication of calculus and linear algebra in	n engineering	g.				
COUR	RSE OUTCOM	ES	DOMAIN		LEV	ΈL		
CO1	<i>Apply</i> orthogored form to canonic	nal transformation to reduce quadratic cal forms.	Cognitive	e		memt Apply	pering ving	
CO2		series to tests the convergence of the l series. Half range Fourier sine and	Cognitive Psychomore		Re		ving pering esponse	
CO3		vative of composite functions and ons. Euler's theorem and Jacobian.	Cognitive Psychomot				ringGui ponse	
CO4	expansion, by without cons	unctions of two variables by Taylor's finding maxima and minima with and traints using Lagrangian Method. derivatives, Gradient, Curl and	CognitiveAffe ctive		Rememberin Understandin Receiving		unding	
CO5		ntial and Integral calculus to notions of to improper integrals.	Cognitive	Applying		ing		
UNIT							2L+3T	
vectors Skew-S	s - Cayley-Ham Symmetric and	n - Eigen values and Eigen vectors -Pr ilton Theorem – Diagonalisation of Ma Orthogonal Quadratic form – canonical s adratic form to Canonical form (Orthogo	trices – Real form - Natur	Mat	trices	Sym	metric -	
UNIT II SEQUENCES AND SERIES 12L+								
Sequences: Definition and examples-Series: Types and convergence- Series of positive terms – Tests of convergence:comparison test, Integral test and D'Alembert's ratio test-Fourier series: Half range sine and cosine series- Parseval's Theorem.UNIT IIIMULTIVARIABLE CALCULUS: PARTIAL DIFFERENTIATION12L+3TLimits and continuity –Partial differentiation – Total Derivative – Partial differentiation of								
Composite Functions: Change of Variables – Differentiation of an Implicit Function - Euler's Theorem-Jacobian.								
	IV MULTI							

VECTOR CALCULUS

Taylor's theorem for function of Two variables- Maxima, Minima of functions of two variables: with and without constraints - Lagrange's Method of Undetermined Multipliers – Directional Derivatives - Gradient, Divergence and Curl.

UNIT V DIFFERENTIAL AND INTEGRAL CALCULUS

12L+3T

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

TEXT BOOKS

1. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill New Delhi, 11th Reprint, 2015. (Unit-1, Unit-3 and Unit-4).

2. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2014. (Unit-2).

3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40th Edition, 2010. (Unit-5).

REFERENCE BOOKS

1. G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.

2. Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi, 2008.

3. D. Poole, "Linear Algebra: A Modern Introduction", 2nd Edition, Brooks/Cole, 2005.

4. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

E-**REFERENCES**

1. http://nptel.ac.in/faq/110101010/Prof.IndrajitMukherjee,IIT,Bombay and Prof. Tapan P.Bagchi, IIT, Kharagpur.

LECTURE: 60 TUTORIAL: 15 PRACTICAL: 0TOTAL HOURS:75

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	2	1	1	2	2	8	2
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	2	0	0	0	1	3	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0

XMA101 - Mapping of CO with PO

PO ₈	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0
PO 10	1	1	1	1	1	5	1
PO 11	0	0	0	0	0	0	0
PO 12	2	1	1	1	2	7	2
PSO ₁	0	0	0	0	0	0	0
PSO ₂	1	1	1	1	1	5	1

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XCP102	L	Т	Р	С					
COURSE NAME	PROGRAMMINGFORPROBLEMSOLVING	3	0	2	5					
PREREQUISITES	NIL	L	Т	Р	Н					
C:P:A= 3:0.5:0.5		3	0	4	7					
COURSE OBJECT	COURSE OBJECTIVES									

• Understand the need of programming for problem solving.

		I	[
COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Define</i> programmingfundamentalsand <i>Solve</i> simplepr ogramsusingI/O statements	Cognitive Psychomotor	Remember, Understand, Apply
CO2	<i>Define</i> syntaxand <i>writesimpleprograms</i> using control structures and arrays	Cognitive Psychomotor	Remember, Understand, Apply
CO3	<i>Explain</i> and <i>writesimpleprograms</i> using functions and pointers	Cognitive Psychomotor	Understand, Apply
CO4	<i>Explain</i> and <i>writesimpleprograms</i> using structures and unions	Cognitive Psychomotor	Understand, Apply, Analyze
CO5	CO5 <i>Explain</i> and <i>writesimpleprograms</i> using files and <i>Build</i> simple projects.		Remember, Understand, Create
UNIT	I PROGRAMMING FUNDAMENTALS AN INPUT/OUTPUTSTATEMENTS	D	9L+6P

Theory

Introductiontocomponentsofacomputersystem,Program–Flowchart– Pseudocode–Software– IntroductiontoClanguage–Character set–Tokens: Identifiers,Keywords,Constants,andOperators– sampleprogramstructure-Header files – Data Types-Variables- Output statements –Input statements.

Practical

1.Program to displayasimple pictureusingdots.

2. Program for addition of two numbers

3.Program to swap two numbers

4. Program to solve anymathematical formula.

UNIT II CONTROLSTRUCTUREANDARRAYS

9L+6P

Theory

ControlStructures–ConditionalControlstatements:Branching,Looping-Unconditionalcontrolstructures:switch,break,continue,gotostatements– Arrays: One Dimensional

Array–Declaration–Initialization–Accessing Array Elements–Searching–Sorting–Two Dimensional arrays-Declaration–Initialization– Matrix Operations – MultiDimensional Arrays-Declaration–Initialization.Storageclasses:auto–extern–static.Strings:Basicoperations on strings.

Practical

- 1. Program to find greatest of 3 numbers using BranchingStatements
- 2. Program to displaydivisible numbers between n1and n2 usinglooping Statement
- 3. Program to remove duplicate element in an array.
- 4. Program to perform stringoperations.
- 5. Performingbasic sorting algorithms.

UNIT III FUNCTIONSANDPOINTERS 9L+6P

Theory

Functions:Builtin functions–User Defined Functions-Paramete rpassing methods-Passing arrayst of unctions–Recursion-Programsusingarraysand functions. Pointers-Pointer declaration-Addressoperator-Pointer expressions & pointerarithmetic-Pointers and function-Callbyvalue-Call byReference-Pointertoarrays-UseofPointersinself-referentialstructures-Notion of linked lis t(no implementation).

Practical

1. Program to find factorial of a given number using four function types.

2.Programs usingRecursion such asFindingFactorial, Fibonacci series, Ackermanfunction etc.Quick sort orMerge sort

3.Programs usingPointers.

UNIT IV STRUCTURESANDUNIONS

9L+6P

Theory

Structures and Unions -Givingvalues to members-Initializingstructure-Functions and structures- Passingstructure to elements to functions- Passing entire function to functions-Arrays of structure -Structure within a structure and Union.

Practical

1. Program to readand displaystudent mark sheet Structures with variables

2. Program to readand displaystudent marks of a class using Structures with arrays

3. Program to create linkedlist usingStructures with pointers.

UNIT V FILES

9L+6P

Theory

Filemanagementin C-File operation functions C-Defining and opening file-Closing a file-The getw and putw functions-The f printf & f scanf functions - fseek function– Files and Structures.

Practical

- 1. Program for copying contents of one file to another file.
- 2. Program usingfiles using structure with pointer

TEXT BOOKS/ REFERNCES

- 1.ByronGottfried, "Programming with C", IIIE dition, (Indian Adapted Edition), TMH publications, 2010
- 2. Yeshwant Kanethker, "Let us C", BPBPublications, 2008
- 3. Brian W. Kernighan and Dennis M. Ritchie,"The C Programming Language", Pearson EducationInc. 2005
- 4. Behrouz A.Forouzanand Richard. F. Gilberg,"A Structured ProgrammingApproach UsingC",II Edition, Brooks–Cole ThomsonLearningPublications, 2001
- 5. Johnson baugh R. and Kalin M., "ApplicationsProgrammingin ANSIC",IIIEdition, Pearson EducationIndia, 2003

6. E. Balaguruswamy, Programmingin ANSIC, Tata McGraw-Hill

LECTURE: 45 TUTORIAL: 0 PRACTICAL: 30TOTAL HOURS:75 XCP102 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	2	2	2	12	3
PO ₂	2	2	2	2	2	10	2
PO ₃	0	0	1	1	1	3	1
PO ₄	0	0	2	2	0	4	1
PO ₅	3	2	2	2	2	11	3
PO ₆	0	0	0	0	0	0	0
PO7	0	0	0	0	0	0	0
PO ₈	0	0	0	0	1	1	1
PO ₉	0	0	0	0	0	0	0
PO 10	0	0	0	0	2	2	1
PO 11	2	2	2	2	2	10	2
PO ₁₂	3	3	2	2	2	12	2

PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	1	1	1	3	1

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relati

COURSE CODE	XGS103	L	Т	Р	С
COURSE NAME	ENGLISH	2	0	1	3
PREREQUISITES	NIL	L	Т	Р	Η
C:P:A= 2.6:0.4:0		2	0	2	4
COURSE OBJECTI	VES				

• To acquire effective communication skills in English.

COUR	RSE OUTCOMES	DOMAIN	LEVEL			
CO1	Ability to recall the meaning for proper usage	Cognitive	Remembering			
CO2	CO2Apply the techniques in sentence patternsCognitiveApplying					
CO3	<i>Identify</i> the common errors in sentences	Cognitive	Remembering			
CO4	Construct the Nature and Style of sensible Writing	Cognitive	Creating			
CO5	<i>Practicing</i> the writing skills	Psychomotor	Guided response			
Grasping the techniques in learning sounds and etiquettes Adapti						
UNIT	I VOCABULARY BUILDING		9			
de	equaintance with prefixes and suffixes from foreign lang rivatives nonyms, antonyms, and standard abbreviations.					
UNIT	II BASIC WRITING SKILLS		9			
2.2 Us 2.3 Im 2.4 Cro 2.5 Or	ntence Structures e of phrases and clauses in sentences portance of proper punctuation eating coherence ganizing principles of paragraphs in documents chniques for writing precisely					
UNIT		ITING	9			
3.1 Su 3.2 No 3.3 Mi	bject-verb agreement un-pronoun agreement splaced modifiers ticles					

3.6 Redund	lancies	
3.7 Clichés		
UNIT IV	NATURE AND STYLE OF SENSIBLE WRITING	9
4.1 Descrit		,
4.2 Definir	•	
4.3 Classif		
	ng examples or evidence	
	g introduction and conclusion.	
UNIT V	WRITING PRACTICES	9
5.1 Compr	ehension	
5.2 Précis	Writing	
5.3 Essay V	Vriting	
UNIT VI	ORAL COMMUNICATION	
(This unit i	nvolves interactive practice sessions in Language Lab)	
🗆 Listenin	g Comprehension	
□ Pronunc	iation, Intonation, Stress and Rhythm	
	n Everyday Situations: Conversations and Dialogues	
	nication at Workplace	
□ Interviev		
	Presentations	
SUGESST	ED READINGS	
(i) Practica	l English Usage. Michael Swan. OUP. 1995	
(ii) Remed	ial English Grammar. F.T. Wood. Macmillan.2007	
(iii) On W	iting Well. William Zinsser. Harper Resource Book. 2001	
•	Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006	
(v) Comm	unication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011	
(vi) Exerci	ses in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Pres	SS

LECTURE: 30 TUTORIAL: 0 PRACTICAL: 15TOTAL HOURS:45

XGS103 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	2	2	1	2	0	7	2
PO ₂	0	0	0	0	0	0	0
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	0	0	0	0
PO ₆	0	0	0	0	0	0	0

PO7	2	2	1	1	0	6	2
PO ₈	0	0	0	0	0	0	0
PO9	1	1	1	1	0	4	1
PO 10	0	0	0	0	0	0	0
PO 11	0	0	0	0	0	0	0
PO 12	0	0	0	0	0	0	0
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0

techniques

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COUH	RSE CODE	XAC104	L	Т	Р	С	
COUR	OURSE NAME APPLIED CHEMISTRY FOR ENG			3	1	1	5
PRER	REQUISITES	NIL		L	Т	Р	Η
C:P:A	A= 3.5:1:0.5			3	1	2	6
COUH	RSE OBJECTI						
• Un	nderstand the app	plication of chemistry in engineering.					
COUF	RSE OUTCOM	ES	DOMAIN		LEV	EL	
CO1	energy, electro negativity. D	eriodic properties such as ionization on affinity, oxidation states and electro <i>escribe</i> the various water quality e hardness and alkalinity.	Cognitive Psychomore			memt Percep	bering tion
CO2	Explain and	<i>Measure</i> microscopic chemistry in atomic, molecular orbitals and	Cognitive Psychomotor		Understanding Set		•
CO3		k properties and processes using c and kinetic considerations.	Psychomotor M		Apply Iechai Recei	nism	
CO4	· ·	<i>ustrate</i> and Discuss the chemical are used in the synthesis of molecules.	Cognitive Psychomo Affective	tor	A F	memb Analyz Percep espon	tion
CO5	electromagneti	<i>re</i> and <i>Distinguish</i> the ranges of the c spectrum used for exciting different ergy levels in various spectroscopic	Cognitive Psychomore		1	memb Apply Iechai	-

UNIT I PERIODIC PROPERTIES AND WATER CHEMISTRY

8L+3T+6P

10L+3T+6P

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries. Water Chemistry-Water quality parameters-Definition and explanation of hardness, determination of hardness by EDTA method-Introduction to alkalinity.

UNIT II USE OF FREE ENERGY IN CHEMICAL EQUILIBRIA 12L+3T+6P

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria. Corrosion-Types, factors affecting corrosion rate and Control methods. Use of free energy considerations in metallurgy through Ellingham diagrams. Advantages of electroless plating, electroless plating of nickel and copper on Printed Circuit Board (PCB).

UNIT III **ATOMIC AND MOLECULAR STRUCTURE**

Schrodinger equation. Particle in a box solution and their applications for conjugated molecules and nanoparticles.. Molecular orbitals of diatomic molecules and plots of the multicenter orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic molecules. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

Intermolecular forces and potential energy surfaces

Ionic, dipolar and Vander waals interactions. Equations of state of real gases and critical phenomena. Potential energy surfaces of H₃, H₂F and HCN and trajectories on these surfaces.

UNIT IV SPECTROSCOPIC TECHNIQUES AND APPLICATIONS 7L+3T+6P

Principles of spectroscopy and selection rules. Electronic spectroscopy-chromophore, auxochromes, types of electronic transition and application. Fluorescence and its applications in medicine. Vibrational spectroscopy-types of vibrations, Instrumentation and applications. Rotational spectroscopy of diatomic molecules. Nuclear magnetic resonance spectroscopy-concept of chemical shift and applications-magnetic resonance imaging. Diffraction and scattering.

STEREOCHEMISTRY AND ORGANIC REACTIONS UNIT V

8L+3T+6P Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization reactions and ring opening reactions. Synthesis of a commonly used drug molecule-Aspirin and paracetamol.

TEXT BOOKS

- 1. Puri B.R. Sharma, L.R., Kalia K.K. Principles of Inorganic Chemistry, (23rd edition), New Delhi, Shoban Lal Nagin Chand & Co., 1993
- 2. Lee. J.D. Concise Inorganic Chemistry, UK, Black well science, 2006.

- 3. Trapp. C, Cady, M. Giunta. C, Atkins's Physical Chemistry, 10th Edition, Oxford publishers, 2014.
- 4. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd, 1983.
- 5. Morrison R.T. and Boyd R.N. Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., 1976.
- 6. Banwell. C.N, Fundamentals of Molecular Spectroscopy, (3th Edition), McGraw-Hill Book Company, Europe 1983.
- 7. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (4th edition), S./ Chand & Company Ltd. New Delhi, 1977.
- 8. P. S. Kalsi, Stereochemistry: Conformation and mechanism, (9th Edition), New Age International Publishers, 2017.

REFERENCES

- 1. Puri B R Sharma L R and Madan S Pathania, "Principles of Physical Chemistry", Vishal publishing Co., Edition 2004
- 2. Kuriocose, J C and Rajaram, J, "Engineering Chemistry", Volume I/II, Tata McGraw-Hill Publishing Co. Ltd. New Delhi, 2000

E-REFERENCES

- 1. http://www.mooc-list.com/course/chemistry-minor-saylororg
- 2. https://www.canvas.net/courses/exploring-chemistry
- 3. http://freevideolectures.com/Course/2263/Engineering-Chemistry-I
- 4. http://freevideolectures.com/Course/3001/Chemistry-I
- 5. http://freevideolectures.com/Course/3167/Chemistry-II
- 6. http://ocw.mit.edu/courses/chemistry/

Experiments :

- 1. Determination of chloride ion present in the water sample by Argentometric method. (CO1)
- 2. Determination of total, temporary and permanent hardness of water sample by EDTA method. (CO1)
- 3. Determination of cell constant and conductance of solutions. (CO2)
- 4. Potentiometry determination of redox potentials and emfs. (CO2)
- 5. Determination of surface tension and viscosity. (CO3)
- 6. Adsorption of acetic acid by charcoal. (CO3)
- 7. Determination of the rate constant of a reaction. (CO4)
- 8. Estimation of iron by colorimetric method. (CO4)
- 9. Synthesis of a polymer/drug. (CO5)
- 10. Saponification/acid value of oil. (CO5)

REFERENCE BOOKS

- 1. Mendham, Denney R.C., Barnes J.D and Thomas N.J.K., "Vogel's Textbook of Quantitative Chemical Analysis", 6th Edition, Pearson Education, 2004.
- 2. Garland, C. W.; Nibler, J. W.; Shoemaker, D. P. "Experiments in Physical Chemistry", 8th Ed.; McGraw-Hill: New York, 2003.

E Resources - MOOCs:

1.http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques

2. http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011

3. http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques

LECTURE: 45 TUTORIAL: 15 PRACTICAL: 30TOTAL HOURS:90

CO Vs PO	C01	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	2	3	3	3	13	3
PO ₂	0	0	0	0	0	0	0
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	0	0	0	0
PO ₆	0	0	0	0	0	0	0
PO7	2	1	2	3	2	10	2
PO ₈	3	2	3	3	2	13	3
PO ₉	3	2	3	3	3	14	3
PO 10	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0
PO 12	0	0	0	0	0	0	0
PSO ₁	0	0	0	0	0	0	0
$\frac{PSO_2}{1 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)$	0	0	0	0	0	0	0

XAC104 - Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XWP105	L	Т	Р	С
COURSE NAME	WORKSHOP PRACTICES	2	0	2	3
PREREQUISITES	NIL	L	Т	Р	Н
C:P:A= 1:3:0		2	0	4	6
COURSE OBJECTI	VES				

• To obtain skills in machining methods, casting process, moulding methods and welding etc.

COUR	RSE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Summarize</i> the machining methods and <i>Practice</i> machining operation.	Cognitive Psychomotor	UnderstandGuide d Response
CO2	<i>Defining</i> metal casting process, moulding methods and relates Casting and Smithy applications.	Cognitive Psychomotor	Remember Perception
CO3	<i>Plan</i> basic carpentry and fitting operation and <i>Practice</i> carpentry and fitting operations.	Cognitive Psychomotor	Apply Guided Response
CO4	<i>Summarize</i> metal joining operation and <i>Practice</i> welding operation.	Cognitive Psychomotor	UnderstandGuide d Response
CO5	<i>Illustrate</i> the, electrical and electronics basics and <i>Makes</i> appropriate connections.	Cognitive Psychomotor	Understand Origination

EXP.NO	TITLE	CO RELATION
1	Introduction to machining process	CO1
2	Plain turning using lathe operation	CO1
3	Introduction to CNC	CO1
4	Demonstration of plain turning using CNC	CO1
5	Study of metal casting operation	CO2
6	Demonstration of moulding process	CO2
7	Study of smithy operation	CO2
8	Study of carpentry tools	CO3
9	Half lap joint – Carpentry	CO3
10	Mortise and Tenon joint – Carpentry	CO3
11	Study of fitting tools	CO3
12	Square fitting	CO3
13	Triangular fitting	CO3
14	Study of welding tools	CO4
15	Square butt joint – welding	CO4
16	Tee joint – Welding	CO4
17	Introduction to house wiring	CO5
18	One lamp controlled by one switch	CO5

20 Staircase wiring	CO5

TEXT BOOKS

1. Workshop Technology I,II,III, by S K Hajra, Choudhary and A K Chaoudhary. Media Promoters and Publishers Pvt. Ltd., Bombay

2. Workshop Technology by Manchanda Vol. I,II,III India Publishing House, Jalandhar.

REFERENCES

1. Manual on Workshop Practice by K Venkata Reddy, KL Narayana et al; MacMillan India Ltd.

2. Basic Workshop Practice Manual by T Jeyapoovan; Vikas Publishing House (P) Ltd.,New Delhi

3. Workshop Technology by B.S. Raghuwanshi, Dhanpat Rai and Co., New Delhi.

4. Workshop Technology by HS Bawa, Tata McGraw Hill Publishers, New Delhi.

E RESOURCES

1. http://nptel.ac.in/courses/112107145/

XWP105 - Mapping of CO with PO

CO Vs PO	C01	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	2	2	2	2	2	10	2
PO ₂	1	1	1	1	1	5	1
PO ₃	2	2	2	2	2	10	2
PO ₄	2	2	2	2	2	10	2
PO5	1	1	1	1	1	5	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	1	1	1	1	1	5	1
PO ₉	1	1	1	1	1	5	1
PO 10	0	0	0	0	0	0	0
PO ₁₁	1	1	1	1	1	5	1
PO12	2	2	2	2	2	10	1
PSO ₁	0	0	0	0	0	0	0

PSO ₂	0	0	0	0	0	0	0
------------------	---	---	---	---	---	---	---

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COUR	RSE CODE	XMA201		L	Т	Р	C	
COUR	RSE NAME	CALCULUS, ORDINARY DIFFER EQUATIONS AND COMPLEX VA		3	1	0	4	
PRER	EQUISITES	NIL		L	Т	Р	Н	
C:P:A	= 3:0.5:0.5			3	1	0	4	
COUR	RSE OBJECTI	VES						
• Un	derstand the a	application of Calculus, Ordinary Di	fferential Ec	quatio	ons a	nd C	omplex	
Va	riable in engine	ering.						
COUR	SE OUTCOM	ES	DOMAIN	LEVEL				
CO1	Find double surface and Greens, Gaus	e	Rem	embei	r, Apply			
CO2	Solve first or	der differential equations of different re solvable for p, y, x and Clairaut's	Cognitive	e		App	ly	
CO3	Solve Second	Ive Second order ordinary differential equations Cognitive Ap						
CO4	Use CR equations to verify analytic functions and to find harmonic functions and harmonic conjugate. Cognitive Re						Remember, Apply Guided Response	
CO5	integrals invol state Cauchy in Taylor's ser	y residue theorem to evaluate contour lying sine and cosine function and to ntegral formula, Liouvilles theorem. les, zeros of analytic functions, laurent's series.	Cognitive Affective		Apply Receiving			
UNIT	I MULTI	VARIABLE CALCULUS (INTEGRA	,	·			9L+3T	
integra integra	ls - Change of	Double integrals (Cartesian) - change f variables (Cartesian to polar) - Trip integrals - scalar surface integrals - vec kes.	le integrals	(Cart	esian), Sca	lar line	
UNIT		ORDER ORDINARY DIFFERENTIA					9L+3T	
	- linear and B	ernoulli's equations - Euler's equation p - equations solvable for y- equations s	ns - Equatio	ns n	ot of			
UNIT	III ORDIN	ARY DIFFERENTIAL EQUATIONS	OF HIGHE	ER O	RDE	RS	9L+3T	
		Ŧ						

Second order linear differential equations with variable coefficients- method of variation of parameters - Cauchy-Euler equation- Power series solutions- Legendre polynomials- Bessel functions of the first kind and their properties.

UNIT IV COMPLEX VARIABLE – DIFFERENTIATION

9L+3T

Differentiation-Cauchy-Riemann equations- analytic functions-harmonic functions-finding harmonic conjugate- elementary analytic functions (exponential, trigonometric, logarithm) and their properties- Conformal mappings- Mobius transformations and their properties.

UNIT VCOMPLEX VARIABLE - INTEGRATION9L+3T

Contour integrals - Cauchy-Goursat theorem (without proof) - Cauchy Integral formula (without proof)-Liouville's theorem (without proof)- Taylor's series- zeros of analytic functions-singularities- Laurent's series – Residues- Cauchy Residue theorem (without proof)- Evaluation of definite integral involving sine and cosine- Evaluation of certain improper integrals using the Bromwich contour.

TEXT BOOKS

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40thth Edition, 2008.

REFERENCES

- 1.G.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9th Edition, Pearson, Reprint, 2002.
- 2. Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.
- 3.W. E. Boyce and R. C. DiPrima, "Elementary Differential Equations and Boundary Value Problems", 9thEdn. Wiley India, 2009.
- 4. S. L. Ross, "Differential Equations", 3rd Ed., Wiley India, 1984.
- 5.E. A. Coddington, "An Introduction to Ordinary Differential Equations", Prentice Hall India, 1995.
- 6. E. L. Ince, "Ordinary Differential Equations", Dover Publications, 1958.
- 7.J. W. Brown and R. V. Churchill, "Complex Variables and Applications", 7th Ed., McGraw Hill, 2004.
- 8. N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, Reprint, 2008.

E- REFERNCES

1. http://nptel.ac.in/faq/110101010/Prof.IndrajitMukherjee,IIT,Bombay and Prof. Tapan P.Bagchi, IIT, Kharagpur.

LECTURE: 45 TUTORIAL: 15 PRACTICAL: 0TOTAL HOURS:60

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3

XMA201 - Mapping of CO with PO

PO ₂	2	1	1	2	2	8	2
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	2	0	0	0	1	3	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0
PO10	1	1	1	1	1	5	1
PO 11	0	0	0	0	0	0	0
PO ₁₂	2	1	1	1	2	7	2
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COUR	RSE CODE	XES202		L	Т	Р	С			
COUR	RSE NAME	ENVIRONMENTAL SCIENC	CES	3	0	0	3			
PRER	EQUISITES	NIL		L	Т	Р	Н			
C:P:A	= 1.4:0.3:0.3			3	0	0	3			
COUF	RSE OBJECTI	VES								
Understand the need of environmental sciences.										
COURSE OUTCOMESDOMAINLEVEL										
CO1		significance of natural resources and opogenic impacts.	d Cognitive Rememb Understa			,				
CO2		significance of ecosystem, biodiversity to bio chemical cycles for maintaining ance.	Cognitive	e	Understand					
CO3	<i>Identify</i> the measures of disaster phenot	major pollutions and <i>recognize</i> the	Cognitive Affective			emen Recei				
CO4	-	socio-economic, policy dynamics e control measures of global issues for velopment.	Cognitive	e	Understand, Apply					
CO5	of various we	e impact of population and the concept elfare programs, and <i>apply</i> themodern wards environmental protection.					nalyze			
UNIT I INTRODUCTION TO ENVIRONMENTAL STUDIES AND 12										

ENERGY

Definition, scope and importance – Need for public awareness – Forest resources: Use, deforestation, case studies. – Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems – Mineral resources: Uses, environmental effects of mining, case studies-iron mining(Goa), bauxite mining(Odisha) – Food resources: effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies – Land resources: Land as a resource, land degradation – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

UNIT II ECOSYSTEMS AND BIODIVERSITY

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Biogeochemical cycles – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT III ENVIRONMENTAL POLLUTION

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management– Role of an individual in prevention of pollution – Pollution case studies – Disaster management: flood, earthquake, cyclone and landslide.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

Rain water harvesting – Resettlement and rehabilitation of people; its problems and concerns, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents – Consumerism and waste products – Environment Protection Act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – Population explosion– Environment and human health – HIV / AIDS– Role of Information Technology in Environment and human health.

TEXT BOOKS

1. Miller T.G. Jr., Environmental Science, Wadsworth Publishing Co, USA, 2000.

- 2. Townsend C., Harper J and Michael Begon, Essentials of Ecology, Blackwell Science, UK, 2003.
- 3. Trivedi R.K and P.K.Goel, Introduction to Air pollution, Techno Science Publications, India, 2003.
- 4. Disaster mitigation, Preparedness, Recovery and Response, SBS Publishers & Distributors Pvt. Ltd, New Delhi, 2006.

5. Introduction to International disaster management, Butterworth Heinemann, 2006.

10

10

6

7

6. Gilbert M.Masters, Introduction to Environmental Engineering and Science, Pearson Education Pvt., Ltd., Second Edition, New Delhi, 2004.

REFERNCES

- 1. Trivedi R.K., Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards, Vol. I and II, Enviro Media, India, 2009.
- 2. Cunningham, W.P.Cooper, T.H.Gorhani, Environmental Encyclopedia, Jaico Publ., House, Mumbai, 2001.
- 3. S.K.Dhameja, Environmental Engineering and Management, S.K.Kataria and Sons, New Delhi, 2012.
- 4. Sahni, Disaster Risk Reduction in South Asia, PHI Learning, New Delhi, 2003.
- 5. Sundar, Disaster Management, Sarup & Sons, New Delhi, 2007.
- 6. G.K.Ghosh, Disaster Management, A.P.H.Publishers, New Delhi, 2006.

E-REFERNCES

- 1. http://www.e-booksdirectory.com/details.php?ebook=10526
- 2. https://www.free-ebooks.net/ebook/Introduction-to-Environmental-Science
- 3. https://www.free-ebooks.net/ebook/What-is-Biodiversity
- 4. https://www.learner.org/courses/envsci/unit/unit_vis.php?unit=4
- 5. http://bookboon.com/en/pollution-prevention-and-control-ebook
- 6. http://www.e-booksdirectory.com/details.php?ebook=8557
- 7. http://www.e-booksdirectory.com/details.php?ebook=6804
- 8. http://bookboon.com/en/atmospheric-pollution-ebook
- 9. http://www.e-booksdirectory.com/details.php?ebook=3749
- 10. http://www.e-booksdirectory.com/details.php?ebook=2604
- 11. http://www.e-booksdirectory.com/details.php?ebook=2116
- 12. http://www.e-booksdirectory.com/details.php?ebook=1026
- 13. http://www.faadooengineers.com/threads/7894-Environmental-Science

LECTURE: 45 TUTORIAL: 0 PRACTICAL: 0TOTAL HOURS:45

CO Vs PO	CO1	CO2	CO3	CO with P CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	2	2	1	2	10	2
PO ₂	0	0	1	1	1	3	1
PO ₃	0	0	3	2	1	6	1
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	0	0	0	0
PO ₆	0	2	3	3	3	11	3
PO7	0	1	1	2	0	3	1
PO ₈	0	0	0	3	0	3	1
PO ₉	0	0	2	0	0	2	1
PO 10	0	1	1	0	0	2	1

XES202 - Mapping of CO with PO

PO 11	0	0	0	0	0	0	0
PO 12	1	1	1	1	1	5	1
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
	2 1 2 2 2		•				

COU	RSE CODE	XBE203		L	Т	Р	С
COU	RSE NAME	ELECTRICAL AND ELECTRO ENGINEERING SYSTEM		3	1	1	5
PREF	REQUISITES	NIL		L	Т	Р	Н
C:P:A	A= 3:1:0			3	2	2	7
COU	RSE OBJECTI	VES					
• Ur	nderstand the app	plication electrical and electronics in eng	gineering syste	ems.			
COU	RSE OUTCOM	DOMAIN		LEV	'EL		
CO1	<i>Define, Relat</i> parameters and by Using meas	Cognitive Psychomoto		Remember, Understand Mechanism, Set			
CO2	Define and E machines.	Explain of operation of DC and AC	Cognitive		Remember, Understand		
CO3	<i>Recall and Illa</i> and their applicharacteristics	Cognitive Psychomoto	Linderstand			and	
CO4	Relate and Ex gates. Construct	Cognitive Psychomoto	Linderstand			tand	
CO5	<i>Label and</i> microprocessor	<i>Outline</i> the different types of rs and their applications.	Cognitive	Remembe			

UNIT I FUNDAMENTAL OF DC AND AC CIRCUITS, MEASUREMENTS

9L+9T+12P

Fundamentals of DC- Ohm's Law – Kirchoff's Laws - Sources - Voltage and Current relations –
Star/Delta Transformation - Fundamentals of AC – Average Value, RMS Value, Form Factor -
AC power and Power Factor, Phasor Representation of sinusoidal quantities - Simple Series,
Parallel, Series Parallel Circuit - Operating Principles of Moving coil and Moving Iron
Instruments (Ammeter, Voltmeter) and Dynamometer type meters (Watt meter and Energy meter).UNIT IIELECTRICAL MACHINES9L+6TConstruction, Principle of Operation, Basic Equations, Types and Application of DC Generators,
DC motors - Basics of Single Phase Induction Motor and Three Phase Induction Motor-
Construction, Principle of Operation of Single Phase Transformer, Three phase transformers, Auto
transformer.

UNIT III SEMICONDUCTOR DEVICES

Classification of Semiconductors, Construction, Operation and Characteristics: PN Junction Diode – Zener Diode, PNP, NPN Transistors, Field Effect Transistors and Silicon Controlled Rectifier – Applications.

UNIT IV DIGITAL ELECTRONICS

Basic of Concepts of Number Systems, Logic Gates, Boolean Algebra, Adders, Subractors, multiplexer, demultiplexer, encoder, decoder, Flipflops, Up/Down counters, Shift Registers.

UNIT V MICROPROCESSORS

Architecture, 8085, 8086 - Interfacing Basics: Data transfer concepts – Simple Programming concepts.

TEXT BOOKS

- 1. Metha V.K., 2008. Principles of Electronics. Chand and Company.
- 2. Malvino, A. P., 2006. Electronics Principles. 7th ed. New Delhi: Tata McGraw-Hill.
- 3. Rajakamal, 2007. Digital System-Principle & Design. 2nd ed. Pearson education.
- 4. Morris Mano, 1999. Digital Design. Prentice Hall of India.

5. Ramesh, S. Gaonkar, 2000. Microprocessor Architecture, Programming and its Applications with the 8085. 4th ed. India: Penram International Publications.

REFERNCES

- 1. Corton, H., 2004. Electrical Technology. CBS Publishers & Distributors.
- 2. Syed, A. Nasar, 1998, Electrical Circuits. Schaum Series.
- 3. Jacob Millman and Christos, C. Halkias, 1967. Electronics Devices.New Delhi: McGraw-Hill.
- 4. Millman, J. andHalkias, C. C., 1972. Integrated Electronics: Analog and Digital Circuits and Systems. Tokyo: McGraw-Hill, Kogakusha Ltd.
- 5. Mohammed Rafiquzzaman, 1999. Microprocessors Theory and Applications: Intel and Motorola. Prentice Hall International.

E-REFERENCES

1. NTPEL, Basic Electrical Technology (Web Course), Prof. N. K. De, Prof. T. K. Bhattacharya and Prof. G. D. Roy, IIT Kharagpur.

LECTURE: 45 TUTORIAL: 35 PRACTICAL: 35 TOTAL HOURS:105

9L+3T+8P

9L+6T+10P

9L+6T

S. No.	LIST OF EXPERIMENTS :
1.	Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies.
2.	Study of Active and Passive elements – Resistors, Inductors and Capacitors, Bread Board.
3.	Verification of AC Voltage, Current and Power in Series and Parallel connection.
4.	Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter.
5.	Fluorescent lamp connection with choke.
6.	Staircase Wiring.
7.	Forward and Reverse bias characteristics of PN junction diode.
8.	Forward and Reverse bias characteristics of zener diode.
9.	Input and Output Characteristics of NPN transistor.
10.	Construction and verification of simple Logic Gates.

XBE203 - Mapping of CO with PO

CO Vs PO	C01	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	2	2	2	12	2
PO ₂	3	3	2	2	2	12	2
PO ₃	1	1	2	1	1	6	2
PO ₄	1	1	1	1	1	5	1
PO5	1	1	2	1	1	6	2
PO ₆	0	1	1	2	1	6	2
PO ₇	0	0	1	1	1	3	1
PO ₈	0	0	1	1	1	3	1
PO ₉	1	1	1	1	1	5	1

PO 10	1	1	1	1	1	5	1
PO 11	1	1	1	1	1	5	1
PO12	0	0	0	0	0	0	0
PSO ₁	0	0	0	0	0	0	0
PSO ₂	1	1	1	1	1	5	1

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XAP204	L	Т	Р	С
COURSE NAME	APPLIED PHYSICS FOR ENGINEERS	3	1	2	6
PREREQUISITES	NIL	L	Т	Р	Η
C:P:A= 2.8:0.8:0.4		3	1	4	8
COURSE OBJECTI	VES				

• Understand the application of physics in engineering.

COL		DOMAIN	LEVEL
COUF	RSE OUTCOMES	DOMAIN	
CO1	<i>Identify</i> the basics of mechanics, <i>explain</i> the principles of elasticity and <i>determine</i> its significance in engineering systems and technological advances.	Cognitive Psychomotor	Remember, Understand Mechanism
CO2	<i>Illustrate</i> the laws of electrostatics, magneto-statics and electromagnetic induction; <i>use</i> and <i>locate</i> basic applications of electromagnetic induction to technology.	Cognitive Psychomotor Affective	Remember, Analyze MechanismRespo nd
CO3	<i>Understand</i> the fundamental phenomena in optics by measurement and <i>describe</i> the working principle and application of various lasers and fibre optics.	Cognitive Psychomotor Affective	Understand, Apply Mechanism Receive
CO4	<i>Analyse</i> energy bands in solids, <i>discuss</i> and <i>use</i> physics principles of latest technology using semiconductor devices.	Cognitive Psychomotor Affective	Understand, Analyze Mechanism Receive
CO5	<i>Develop</i> Knowledge on particle duality and <i>solve</i> Schrodinger equation for simple potential.	Cognitive	Understand, Apply

UNIT I **MECHANICS OF SOLIDS**

Mechanics: Force - Newton's laws of motion - work and energy - impulse and momentum torque - law of conservation of energy and momentum - Friction.

Elasticity: Stress - Strain - Hooke's law - Stress strain diagram - Classification of elastic modulus - Moment, couple and torque - Torsion pendulum - Applications of torsion pendulum - Bending of beams - Experimental determination of Young's modulus: Uniform bending and non-uniform bending.

ELECTROMAGNETIC THEORY UNIT II

Laws of electrostatics - Electrostatic field and potential of a dipole; Dielectric Polarisation, Dielectric constant, internal field - Clausius Mossotti Equation - Laws of magnetism - Ampere's Faraday's law; Lenz's law - Maxwell's equation - Plane electromagnetic waves; their transverse nature - expression for plane, circularly and elliptically polarized light - quarter and half wave plates - production and detection of plane, circularly and elliptically polarized light.

OPTICS, LASERS AND FIBRE OPTICS UNIT III

Optics: Dispersion- Optical instrument: Spectrometer - Determination of refractive index and dispersive power of a prism- Interference of light in thin films: air wedge - Diffraction: grating.

LASER: Introduction - Population inversion - Pumping - Laser action - Nd-YAG laser - CO2 laser - Applications

Fibre Optics: Principle and propagation of light in optical fibre - Numerical aperture and acceptance angle - Types of optical fibre - Fibre optic communication system (Block diagram).

UNIT IV **SEMICONDUCTOR PHYSICS**

Semiconductors: Energy bands in solids - Energy band diagram of good conductors, insulators and semiconductors - Concept of Fermi level - Intrinsic semiconductors - Concept of holes doping - Extrinsic semiconductors - P type and N type semiconductors - Hall effect.

Diodes and Transistors: P-N junction diode - Forward bias and reverse bias - Rectification action of diode - Working of full wave rectifier using P N junction diodes - PNP and NPN transistors -Three different configurations - Advantages of common emitter configuration - working of NPN transistor as an amplifier in common emitter configuration.

UNIT V **QUANTUM PHYSICS**

Introduction to quantum physics, black body radiation, Compton effect, de Broglie hypothesis, wave - particle duality, uncertainty principle, Schrodinger wave equation (Time dependent and Time independent), particle in a box, Extension to three dimension - Degeneracy.

TEXT BOOKS

1. Gaur R. K. and Gupta S. L., "Engineering Physics", Dhanpat Rai Publications, 2009.

2. Avadhanulu M. N. "Engineering Physics" (Volume I and II), S. Chand & Company Ltd., New Delhi, 2010.

REFERENCES

1. Palanisamy P. K., "Engineering Physics", Scitech Publications (India) Pvt. Ltd, Chennai.

9L+3T+12P

9L+3T+6P

9L+3T

9L+3T+3P

9L+3T+9P

- 2. Arumugam M., "Engineering Physics" (Volume I and II), Anuradha Publishers, 2010.
- 3. Senthil Kumar G., "Engineering Physics", 2nd Enlarged Revised Edition, VRB Publishers, Chennai, 2011.
- 4. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2007.
- 5. Samir Kumar Ghosh, "A text book of Advanced Practical Physics", New Central Agency (P) Ltd, 2008.
- 6. Arora C.L., "Practical Physics", S. Chand & Company Ltd., New Delhi, 2013.
- 7. Umayal Sundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012.

E-REFERENCES

1. NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

LECTURE: 45 TUTORIAL: 15 PRACTICAL: 30TOTAL HOURS:90

S.No.	LIST OF EXPERIMENTS :
1.	Torsional Pendulum - determination of moment of inertia and rigidity modulus of the given material of the wire.
2.	Uniform Bending - Determination of the Young's Modulus of the material of the beam.
3.	Non-Uniform Bending - Determination of the Young's Modulus of the material of the beam.
4.	Meter Bridge - Determination of specific resistance of the material of the wire.
5.	Spectrometer - Determination of dispersive power of the give prism.
6.	Spectrometer - Determination of wavelength of various colours in Hg source using grating.
7.	Air wedge - Determination of thickness of a given thin wire.
8.	Laser - Determination of wavelength of given laser source and size of the given micro particle using Laser grating.
9.	Post office Box - Determination of band gap of a given semiconductor.
10.	PN Junction Diode - Determination of V-I characteristics of the given diode.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	2	0	2	2	0	6	2
PO ₃	2	1	2	2	2	9	2
PO ₄	2	0	2	2	0	6	2
PO5	1	1	1	1	0	4	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0
PO9	1	0	1	1	0	3	1
PO 10	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0
PO12	1	1	1	1	1	5	1
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0

XAP204 - Mapping of CO with PO

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE NAME ENGINEERING GRAPHICS 2 0 1 3 PREREQUISITES NIL L T P H COURSE OBJECTIVES 2 0 2 4 COURSE OBJECTIVES Value 2 0 2 4 COURSE OUTCOMES DOMAIN LEVEL Signature Apply the national and international standards, constructand practice various curves Cognitive Psychomotor Apply Guided responsa. Affective Affective Respond COURSE OUTCOMES Interpret, construct and practice orthographic projections of points, straight lines and planes. Affective Affective Respond Mechanism Construct Sketch and Practice projection of solids in various positions and true shape of sectioned solids, solids. Cognitive Value Val	COUR	RSE CODE	XEG205		L	Т	Р	C
C:P:A= 1.75:1:0.25 2 0 2 4 COURSE OBJECTIVES • Understand the application of engineering graphics in design. COURSE OUTCOMES Apply the national and international standards. construct and practice various curves Cognitive Psychomotor Apply Guided response. Affective Apply Guided response. Affective Apply C01 <i>Interpret, construct</i> and practice orthographic projections of points, straight lines and planes. Cognitive Psychomotor Affective Respond C03 <i>Construct Sketch</i> and Practice projection of solids solids. Construct Sketch and Practice the development of lateral surfaces of simple and truncated solids. Affective Psychomotor Affective Respond C04 <i>Interpret, Sketch</i> and practice isometric and perspective views of simple and truncated solids. Cognitive Psychomotor Understand Overt response Respond C05 perspective views of simple and truncated solids. Affective Psychomotor Apply C06 public Stand CONSTRUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE 6L+12 Importance of graphics in engineering applications – use of drafting instruments – BI specifications and conventions as per SP 46-2003. Filtorial representation of engineering projection – taxing of three dimensional objects. Polygons & curves used in engineerin		RSE NAME	ENGINEERING GRAPHIC	CS		0	1	3
COURSE OBJECTIVES • Understand the application of engineering graphics in design. COURSE OUTCOMES DOMAIN LEVEL Constructand practice various curves Psychomotor Apply the national and international standards, constructand practice various curves Cognitive Apply CO1 construct and practice various curves Cognitive Apply CO2 projections of points, straight lines and planes. Cognitive Mechanism CO3 in various positions and true shape of sectioned solids. Cognitive Apply CO4 Interpret, Sketch and Practice the development of intersection of solids. Cognitive Voert response CO4 Interpret, Sketch and Practice isometric and perspective views of simple and truncated solids. Cognitive Apply CO5 construct sketch and practice isometric and perspective views of simple and truncated solids. Cognitive Apply CO5 construct sketch and practice isometric and perspective views of simple and truncated solids. Cognitive Apply CO5 construct sketch and practice isometric and perspective views of simple and truncated solids. Cognitive Apply CO6 construct sketch and practice isometric and pe		-	NIL		L	Τ		H
Understand the application of engineering graphics in design. COURSE OUTCOMES Apply the national and international standards, Cognitive Apply Constructand practice various curves Interpret, construct and practice orthographic Psychomotor Mechanism Affective Apply Cognitive Interpret, construct and practice orthographic Cognitive Verseponde Cognitive Sketch and Practice projection of solids Construct Sketch and Practice the development of Interpret, Sketch and Practice isometric and Psychomotor Overt response intersection of solids. Construct sketch and practice isometric and Cognitive Apply Overt response Construct sketch and practice isometric and Cognitive Apply Overt response Affective Respond Construct sketch and practice isometric and Psychomotor Overt response Affective Respond Construct sketch and practice isometric and Cognitive Apply Overt response Affective Respond Construct sketch and practice isometric and Psychomotor Overt response Affective Respond Construct sketch and practice isometric and Psychomotor Overt response Affective Respond Construct sketch and practice isometric and Psychomotor Overt response Affective Respond Construct of graphics in engineering applications – use of drafting instruments – BI specifications and conventions as per SP 46-2003. Pictorial representation of engineering applications – use of drafting instruments – BI specifications and conventions as per SP 40-2003. Pictorial representation of engineering pictote – methods of construction – construction e dilenessional objects. Polygons & curves used in engineering practice – methods of construction – construction e dilenessiona	C:P:A	= 1.75:1:0.25			2	0	2	4
COURSE OUTCOMES DOMAIN LEVEL C01 Apply the national and international standards, constructand practice various curves Cognitive Psychomotor Apply C01 Constructand practice various curves Projective Respond C02 Interpret, construct and practice projection of solids projections of points, straight lines and planes. Cognitive Apply C03 in various positions and true shape of sectioned solids. Cognitive Apply C04 lateral surfaces of simple and truncated solids, intersection of solids. Cognitive Apply C05 perspective views of simple and truncated solids. Psychomotor Overt response Affective Respond C04 lateral surfaces of simple and truncated solids. Affective Respond Cognitive Apply C05 perspective views of simple and truncated solids. Psychomotor Overt response Affective Respond UNIT I INTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE 6L+12 Importance of graphics in engineering applications – use of drafting instruments – BI specifications and conventions as per SP 46-2003. Pictorial representation of engineering objects – representation of three dimensional	COUR	RSE OBJECTI	VES					
COULD CONTROL Apply the national and international standards, constructand practice various curves Cognitive Psychomotor Affective Apply Guided response Respond CO2 Interpret, construct and practice orthographic projections of points, straight lines and planes. Cognitive Psychomotor Mechanism Affective Respond Understand Mechanism Affective Respond CO3 Construct Sketch and Practice projection of solids solids. Cognitive Psychomotor Affective Respond Affective Respond CO4 Interpret, Sketch and Practice the development of lateral surfaces of simple and truncated solids, ersponse Affective Respond Overt response Affective Respond CO5 Construct sketch and practice isometric and practice isometric and perspective views of simple and truncated solids. Overt response Respond CO5 Construct sketch and practice isometric and Cognitive Psychomotor Affective Respond Affective Respond CO5 Dispective views of simple and truncated solids. Psychomotor Affective Respond Affective Respond CO5 Dispective views of simple and truncated solids. Cognitive Psychomotor Affective Respond Apply CO5 Dispective views of simple and truncated solids. Cognitive Psychomotor Affective Respond Apply CO5 Dispective views of simple and truncated solids. Cognitive Psychomoto	• Un	derstand the ap	plication of engineering graphics in desi	gn.				
CO1 construct and practice various curves Psychomotor Affective Guided response Respond C02 Interpret, construct and practice orthographic projections of points, straight lines and planes. Cognitive Understand Psychomotor C03 Construct Sketch and Practice projection of solids solids. Cognitive Apply C03 Construct Sketch and Practice projection of solids solids. Cognitive Apply C04 Interpret, Sketch and Practice the development of lateral surfaces of simple and truncated solids, intersection of solids. Cognitive Vunderstand C05 Construct sketch and practice isometric and perspective views of simple and truncated solids. Affective Respond C04 Intropret, obstitue views of simple and truncated solids. Affective Respond C05 Construct sketch and practice isometric and Construct sketch and practice isometric and Cognitive Overt response Respond UNIT I INTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE 6L+12 Importance of graphics in engineering applications – use of drafting instruments – BI specifications and conventions as per SP 46-2003. Bitective dimensional objects in tw dimensional media – need for multiple views – developing visualization skills through free han sketching of three dimensional objects.	COUR	RSE OUTCOM	ES	DOMAIN		LEV	ΈL	
CO2 projections of points, straight lines and planes. Psychomotor Affective Mechanism Respond C03 construct Sketch and Practice projection of solids solids. Cognitive In various positions and true shape of sectioned solids. Psychomotor Psychomotor Apply overt response Respond C04 Interpret, Sketch and Practice the development of lateral surfaces of simple and truncated solids, intersection of solids. Cognitive Psychomotor Understand C05 construct sketch and practice isometric and perspective views of simple and truncated solids. Cognitive Psychomotor Overt response Respond UNIT I INTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE 6L+12 Importance of graphics in engineering applications – use of drafting instruments – BI specifications and conventions as per SP 46-2003. Pictorial representation of engineering objects – representation of three dimensional objects in tw dimensional media – need for multiple views – developing visualization skills through free han sketching of three dimensional objects. Polygons & curves used in engineering practice – methods of construction – construction – construction – drawing of tangents to the above curves. Practice on basic tools of CAD. UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES of L+12 General principles of orthographic projection – first angle projection – layout of views projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclin	CO1			Psychomot Affective	or		ded re Respo	esponse ond
Construct Sketch and Practiceprojection of solids in various positions and true shape of sectioned solids.Cognitive Psychomotor AffectiveApply overt response RespondCO4Interpret, Sketch and Practice the development of lateral surfaces of simple and truncated solids.Cognitive PsychomotorUnderstand Overt response AffectiveCO5Construct sketch and practice isometric and perspective views of simple and truncated solids.Cognitive PsychomotorApply Overt response AffectiveCO5Construct sketch and practice perspective views of simple and truncated solids.Cognitive PsychomotorApply Overt response AffectiveUNIT IINTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE6L+12Importance of graphics in engineering applications – use of drafting instruments – BI specifications and conventions as per SP 46-2003.Gitte dimensional objects in twPolygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves construction – drawing of tangents to the above curves. Practice on basic tools of CAD.6L+12UNIT IIPROJECTION OF POINTS, LINES AND PLANE SURFACES projections of points, straight lines located in the first quadrant – determination of true lengths of projection – traces – projection – layout of views projection sof points, straight lines located in the first quadrant – determination of true lengths of projection of polygonal surface and circular lamina inclined to both the planes of projection – CAD practice on points and linesUNIT IIIPROJECTION OF SOLIDS AND SECTIONS OF SO	CO2			Psychomot	or	N	lecha	nism
CO3 in various positions and true shape of sectioned solids. Psychomotor Affective overt response Respond CO4 Interpret, Sketch and Practice the development of lateral surfaces of simple and truncated solids, intersection of solids. Overt response Affective Understand Overt response Affective CO5 Construct sketch and practice isometric and perspective views of simple and truncated solids. Cognitive Psychomotor Affective Apply CO5 INTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE 6L+12 Importance of graphics in engineering applications – use of drafting instruments – BI specifications and conventions as per SP 46-2003. Bitorial representation of engineering objects – representation of three dimensional objects in tw dimensional media – need for multiple views – developing visualization skills through free han sketching of three dimensional objects. Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves construction – drawing of tangents to the above curves. Practice on basic tools of CAD. 6L+12 General principles of orthographic projection – first angle projection – layout of views projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclinations to the planes of projection-CAD practice on points and lines UNIT II PROJECTION OF SOLIDS AND SECTIONS OF SOLIDS 6L+12 Projection of simple solids like		Construct Ske	etch and Practice projection of solids					
Interpret, Sketch and Practicethe development of lateral surfaces of simple and truncated solids, intersection of solids.Understand Overt response AffectiveCO3Construct sketch and practice isometric and perspective views of simple and truncated solids.Cognitive Psychomotor AffectiveOvert response RespondCO3INTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE6L+12Importance of graphics in engineering applications – use of drafting instruments – BI specifications and conventions as per SP 46-2003.6L+12Pictorial representation of engineering objects – representation of three dimensional objects in tw dimensional media – need for multiple views – developing visualization skills through free han sketching of three dimensional objects.6L+12Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves construction – drawing of tangents to the above curves. Practice on basic tools of CAD.6L+12UNIT IIPROJECTION OF POINTS, LINES AND PLANE SURFACES projections of points, straight lines located in the first quadrant – determination of true lengths of and circular lamina inclined to both the planes of projection – CAD practice on points and linesUNIT IIIPROJECTION OF SOLIDS AND SECTIONS OF SOLIDS6L+12Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to on6L+12	CO3	in various po		Psychomot	or		ert res	sponse
CO4 lateral surfaces of simple and truncated solids, intersection of solids. Psychomotor Affective Overt response Respond CO5 Construct sketch and practice isometric and perspective views of simple and truncated solids. Cognitive Psychomotor Apply Overt response Affective CO5 INTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE 6L+12 Importance of graphics in engineering applications – use of drafting instruments – BI specifications and conventions as per SP 46-2003. 6L+12 Pictorial representation of engineering objects – representation of three dimensional objects in tw dimensional media – need for multiple views – developing visualization skills through free han sketching of three dimensional objects. Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves construction – drawing of tangents to the above curves. Practice on basic tools of CAD. 6L+12 UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclinations to the planes of projection – traces – projection of polygonal surface and circular lamina inclined to both the planes of projection-CAD practice on points and lines UNIT II PROJECTION OF SOLIDS AND SECTIONS OF SOLIDS 6L+12 Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to on		Interpret, Ske	tch and Practice the development of	Cognitive	e			
intersection of solids.AffectiveRespondCO5Construct sketch and practice isometric and prspective views of simple and truncated solids.Cognitive PsychomotorApplyCO5PsychomotorOvert responseRespondUNIT IINTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE6L+12Importance of graphics in engineering applications – use of drafting instruments – BI specifications and conventions as per SP 46-2003.6L+12Pictorial representation of engineering objects – representation of three dimensional objects in two dimensional media – need for multiple views – developing visualization skills through free han sketching of three dimensional objects.Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves construction – drawing of tangents to the above curves. Practice on basic tools of CAD.6L+12UNIT IIPROJECTION OF POINTS, LINES AND PLANE SURFACES6L+12General principles of orthographic projection – first angle projection – layout of views projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclinations to the planes of projection – traces – projection of polygonal surface and circular lamina inclined to both the planes of projection – CAD practice on points and linesUNIT IIIPROJECTION OF SOLIDS AND SECTIONS OF SOLIDS6L+12Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to on	CO4	- ·	1	-		Ov	ert res	sponse
ConstructsketchandpracticeisometricandCognitiveApplyCO5perspective views of simple and truncated solids.PsychomotorAffectiveApplyOvert responseRespondUNIT IINTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE6L+12Importanceof graphics in engineering applications – use of drafting instruments – BI specifications and conventions as per SP 46-2003.6L+12Pictorial representation of engineering objects – representation of three dimensional objects in twdimensional media – need for multiple views – developing visualization skills through free han sketching of three dimensional objects.Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves construction – drawing of tangents to the above curves. Practice on basic tools of CAD.UNIT IIPROJECTION OF POINTS, LINES AND PLANE SURFACES projections of points, straight lines located in the first quadrant – determination of true lengths of and circular lamina inclined to both the planes of projection – CAD practice on points and linesUNIT IIIPROJECTION OF SOLIDS AND SECTIONS OF SOLIDS Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to on			-	•				-
CO5 perspective views of simple and truncated solids. Psychomotor Affective Overt response Respond UNIT I INTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE 6L+12 Importance of graphics in engineering applications – use of drafting instruments – BI specifications and conventions as per SP 46-2003. 6L+12 Pictorial representation of engineering objects – representation of three dimensional objects in tw dimensional media – need for multiple views – developing visualization skills through free han sketching of three dimensional objects. Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves construction – drawing of tangents to the above curves. Practice on basic tools of CAD. 6L+12 Qunit II PROJECTION OF POINTS, LINES AND PLANE SURFACES projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclinations to the planes of projection – traces – projection of polygonal surface and circular lamina inclined to both the planes of projection-CAD practice on points and lines 0 UNIT III PROJECTION OF SOLIDS AND SECTIONS OF SOLIDS 6L+12 Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to on 0		Construct sk	etch and practice isometric and	Cognitive	e		App	ly
UNIT I INTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE 6L+12 Importance of graphics in engineering applications – use of drafting instruments – BI specifications and conventions as per SP 46-2003. 6 Pictorial representation of engineering objects – representation of three dimensional objects in two dimensional media – need for multiple views – developing visualization skills through free han sketching of three dimensional objects. 6 Polygons & curves used in engineering practice – methods of construction – construction of ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves construction – drawing of tangents to the above curves. Practice on basic tools of CAD. 6 UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES projections of points, straight lines located in the first quadrant – determination of true lengths of and circular lamina inclined to both the planes of projection – traces – projection of polygonal surface and circular lamina inclined to both the planes of projection-CAD practice on points and lines 6 UNIT III PROJECTION OF SOLIDS AND SECTIONS OF SOLIDS 6 Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to on 6	CO5			-		Ov		•
UNIT I INTRODUCTION, FREE HAND SKETCHING OF ENGG OBJECTS AND CONSTRUCTION OF PLANE CURVE 6L+12 Importance of graphics in engineering applications – use of drafting instruments – BI specifications and conventions as per SP 46-2003. Bit of the presentation of engineering objects – representation of three dimensional objects in two dimensional media – need for multiple views – developing visualization skills through free han sketching of three dimensional objects. Polygons & curves used in engineering practice – methods of construction – construction of engineering practice – methods of construction – construction – drawing of tangents to the above curves. Practice on basic tools of CAD. UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES of L+12 General principles of orthographic projection – first angle projection – layout of views projections of points, straight lines located in the first quadrant – determination of true lengths of and circular lamina inclined to both the planes of projection-CAD practice on points and lines UNIT III PROJECTION OF SOLIDS AND SECTIONS OF SOLIDS 6L+12 Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to on 6L+12			-	Affective			Respo	ond
sketching of three dimensional objects.Polygons & curves used in engineering practice – methods of construction – construction ofellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curvesconstruction – drawing of tangents to the above curves. Practice on basic tools of CAD.UNIT IIPROJECTION OF POINTS, LINES AND PLANE SURFACES6L+12General principles of orthographic projection – first angle projection – layout of viewsprojections of points, straight lines located in the first quadrant – determination of true lengths oflines and their inclinations to the planes of projection – traces – projection of polygonal surfaceand circular lamina inclined to both the planes of projection-CAD practice on points and linesUNIT IIIPROJECTION OF SOLIDS AND SECTIONS OF SOLIDS6L+12Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to on	T T . T				~			
ellipse, parabola and hyperbola by eccentricity method – cycloidal and involute curves construction – drawing of tangents to the above curves. Practice on basic tools of CAD.UNIT IIPROJECTION OF POINTS, LINES AND PLANE SURFACES6L+12General principles of orthographic projection – first angle projection – layout of views projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclinations to the planes of projection – traces – projection of polygonal surface and circular lamina inclined to both the planes of projection-CAD practice on points and lines6L+12UNIT IIIPROJECTION OF SOLIDS AND SECTIONS OF SOLIDS6L+12Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to on	Import specifi Pictori	OBJECance of graphcations and conal representation	TS AND CONSTRUCTION OF PLA ics in engineering applications – us ventions as per SP 46-2003. n of engineering objects – representation	NE CURVE se of draftir	ng i	onal	nents object	– BI s in tw
General principles of orthographic projection – first angle projection – layout of views projections of points, straight lines located in the first quadrant – determination of true lengths of lines and their inclinations to the planes of projection – traces – projection of polygonal surface and circular lamina inclined to both the planes of projection-CAD practice on points and linesUNIT IIIPROJECTION OF SOLIDS AND SECTIONS OF SOLIDS6L+12Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to on61	Import specific Pictoric dimens sketchi	OBJECance of graphcations and conal representationsional media – and three dim	TS AND CONSTRUCTION OF PLA ics in engineering applications – us ventions as per SP 46-2003. n of engineering objects – representation need for multiple views – developing v ensional objects.	NE CURVE se of draftir n of three dim isualization s	ng i nensi skills	onal of throu	nents object ugh fr	– BI s in tw ee han
projections of points, straight lines located in the first quadrant – determination of true lengths oflines and their inclinations to the planes of projection – traces – projection of polygonal surfaceand circular lamina inclined to both the planes of projection-CAD practice on points and linesUNIT IIIPROJECTION OF SOLIDS AND SECTIONS OF SOLIDS6L+12Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to on	Import specific Pictori dimens sketchi Polygo ellipse	OBJEC ance of graph cations and con al representation sional media – : ing of three dim ons & curves u , parabola and	TS AND CONSTRUCTION OF PLA ics in engineering applications – us ventions as per SP 46-2003. In of engineering objects – representation need for multiple views – developing v ensional objects. Ised in engineering practice – methods hyperbola by eccentricity method –	NE CURVE se of draftir n of three dim isualization s s of construc- cycloidal	ng in nensi skills stion and	onal of throu – co invol	nents object ugh fr	– BI s in tw ree han
projections of points, straight lines located in the first quadrant – determination of true lengths oflines and their inclinations to the planes of projection – traces – projection of polygonal surfaceand circular lamina inclined to both the planes of projection-CAD practice on points and linesUNIT IIIPROJECTION OF SOLIDS AND SECTIONS OF SOLIDS6L+12Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to on	Import specific Pictori dimens sketchi Polygo ellipse, constru	OBJEC ance of graph cations and con al representation sional media – ing of three dim ons & curves u , parabola and action – drawing	TS AND CONSTRUCTION OF PLA ics in engineering applications – us ventions as per SP 46-2003. In of engineering objects – representation need for multiple views – developing v ensional objects. Issed in engineering practice – methods hyperbola by eccentricity method – g of tangents to the above curves. Practice	NE CURVE se of draftir n of three dim isualization s s of construc- cycloidal ce on basic to	ng in nensi skills ction and ols c	onal of throw - co invol of CA	nents object ugh fr onstruc ute c D.	– BI s in tw ee han ction c urves
Lines and their inclinations to the planes of projection – traces – projection of polygonal surfaceand circular lamina inclined to both the planes of projection-CAD practice on points and linesUNIT IIIPROJECTION OF SOLIDS AND SECTIONS OF SOLIDS6L+12Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to or	Import specific Pictori dimens sketchi Polygo ellipse constru UNIT	OBJECance of graphcations and conal representationsional media –sional media –ing of three dimons & curves u, parabola andaction – drawingIIPROJE	TS AND CONSTRUCTION OF PLA ics in engineering applications – us ventions as per SP 46-2003. In of engineering objects – representation need for multiple views – developing v ensional objects. Ised in engineering practice – methods hyperbola by eccentricity method – g of tangents to the above curves. Practice	NE CURVE se of draftir n of three dim isualization s s of construc- cycloidal ce on basic to ANE SURF	ng i nensi skills ction and ols c	onal of through the through th	nents object ugh fr onstrue ute c D.	- BI s in tw ee han ction o urves 6L+12
and circular lamina inclined to both the planes of projection-CAD practice on points and linesUNIT IIIPROJECTION OF SOLIDS AND SECTIONS OF SOLIDS6L+12Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to or	Import specific dimens sketchi Polygo ellipse, constru <u>UNIT</u> Genera	OBJECance of graphcations and conal representationsional media –sional media –ing of three dimons & curves u, parabola andaction – drawingIIPROJEal principles of	TS AND CONSTRUCTION OF PLA ics in engineering applications – us ventions as per SP 46-2003. In of engineering objects – representation need for multiple views – developing v ensional objects. Issed in engineering practice – methods hyperbola by eccentricity method – g of tangents to the above curves. Practice CTION OF POINTS, LINES AND PL f orthographic projection – first angle	NE CURVE se of draftir n of three dim isualization s s of construc- cycloidal ce on basic to ANE SURF e projection	ng i nensi skills ction and ols c ACE – 1	onal (throu invol of CA CS ayout	nents object ugh fr onstruc ute c D.	- BI s in tw ee han ction c urves 6L+12 views
Projection of simple solids like prism, pyramid, cylinder and cone when the axis is inclined to on	Import specific Pictori dimens sketchi Polygo ellipse constru <u>UNIT</u> Genera project	OBJECance of graphcations and conal representationsional media –sional media –ing of three dimons & curves u, parabola andaction – drawingIIPROJEal principles ofions of points,	TS AND CONSTRUCTION OF PLA ics in engineering applications – us ventions as per SP 46-2003. In of engineering objects – representation need for multiple views – developing v ensional objects. Ised in engineering practice – methods hyperbola by eccentricity method – g of tangents to the above curves. Practice CTION OF POINTS, LINES AND PL f orthographic projection – first angle straight lines located in the first quadratic	NE CURVE se of draftir n of three dim isualization s s of construc- cycloidal ce on basic to ANE SURF e projection nt – determin	ng in nensi skills ction and ols c <u>ACE</u> – 1	onal of through the involution of CA CS ayout n of the	nents object ugh fr onstruc ute c D.	- BI s in tw ee han ction c urves <u>6L+12</u> views ngths c
	Import specific Pictori dimens sketchi Polygo ellipse, constru <u>UNIT</u> Genera project lines at	OBJECance of graphcations and conal representationsional media –sional media –sional media –ing of three dimons & curves u, parabola andaction – drawingIIPROJECal principles ofcions of points,nd their inclina	TS AND CONSTRUCTION OF PLA ics in engineering applications – us ventions as per SP 46-2003. In of engineering objects – representation need for multiple views – developing v ensional objects. Issed in engineering practice – methods hyperbola by eccentricity method – g of tangents to the above curves. Practice CTION OF POINTS, LINES AND PL f orthographic projection – first angle straight lines located in the first quadrant tions to the planes of projection – trace	NE CURVE se of draftir n of three dim isualization s s of construc- cycloidal ce on basic to ANE SURFA e projection nt – determin s – projection	ng i nensi kills ction and ols c ACF – 1 nation n of	onal of throu invol of CA CS ayout n of th polyg	nents object ugh fr onstruc ute c D.	- BI s in tw ee han ction c urves 6L+12 views ngths c surface
	Import specific Pictori dimens sketchi Polygo ellipse, constru UNIT Genera project lines at and cir	OBJEC ance of graph cations and con al representation sional media – sional media – ing of three dim ons & curves u , parabola and action – drawing II PROJEC al principles of ions of points, nd their inclina cular lamina ind	TS AND CONSTRUCTION OF PLA ics in engineering applications – us ventions as per SP 46-2003. In of engineering objects – representation need for multiple views – developing v ensional objects. Issed in engineering practice – methods hyperbola by eccentricity method – g of tangents to the above curves. Practice CTION OF POINTS, LINES AND PL f orthographic projection – first angle straight lines located in the first quadran- tions to the planes of projection – trace clined to both the planes of projection-C	NE CURVE se of draftir n of three dim isualization s s of construc- cycloidal ce on basic to ANE SURFA e projection nt – determin s – projection AD practice of	ng i nensi kills ction and ols c ACE – 1 nation n of	onal of throu invol of CA CS ayout n of th polyg	nents object ugh fr onstructure c D.	 BI s in twee han ction courves 6L+12: of the set of the
	Import specific Pictori dimens sketchi Polygo ellipse constru <u>UNIT</u> Genera project lines at and cir <u>UNIT</u> Project	OBJECance of graphcations and conal representationsional media –sional media –sional media –ing of three dimons & curves u, parabola andaction – drawingIIPROJEal principles ofsions of points,nd their inclinarcular lamina indIIIPROJEtion of simple so	TS AND CONSTRUCTION OF PLA ics in engineering applications – us ventions as per SP 46-2003. In of engineering objects – representation need for multiple views – developing v ensional objects. Ised in engineering practice – methods hyperbola by eccentricity method – g of tangents to the above curves. Practice CTION OF POINTS, LINES AND PL f orthographic projection – first angle straight lines located in the first quadrations to the planes of projection – trace clined to both the planes of projection-C CTION OF SOLIDS AND SECTIONS obids like prism, pyramid, cylinder and c	NE CURVE se of draftin n of three dim isualization s s of construc- cycloidal ce on basic to ANE SURF. e projection nt – determin s – projection AD practice of S OF SOLID cone when the	ng i nensi kills ction and ols c \overline{ACF} – 1 nation n of $\overline{On po}$ \overline{S} e axi	onal of through the second involof CA 2S ayout n of the polygoints a s is in	nents object ugh fr onstructure c D.	- BI s in tw ee han ction of urves 6L+12 views ngths of surface hes 6L+12 d to or

solids in simple vertical positions by cutting plane inclined to one reference plane and perpendicular to the other and above solids in inclined position with cutting planes parallel to one reference plane – true shapes of sections-CAD practice on solid models.

UNIT IVDEVELOPMENT OF SURFACES AND INTERSECTION OF
SOLIDS6L+12P

Need for development of surfaces – development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders and cones – development of lateral surfaces of the above solids with square and circular cutouts perpendicular to their axes – intersection of solids and curves of intersection –prism with cylinder, cylinder & cylinder, cone & cylinder with normal intersection of axes and with no offset-CAD practice on intersection of solids.

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS

6L+12P

Principles of isometric projection – isometric scale – isometric projections of simple solids, truncated prisms, pyramids, cylinders and cones – principles of perspective projections – projection of prisms, pyramids and cylinders by visual ray and vanishing point methods-CAD practice on isometric view.

TEXT BOOKS

1. Bhatt, N.D, "Engineering Drawing", Charotar Publishing House, 46th Edition-2003.

2. Natarajan,K.V, " A Textbook of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2006.

3. Dr. P.K. Srividhya, P. Pandiyaraj, "Engineering Graphics", PMU Publications, Vallam, 2013. **REFERENCES**

- 1. Luzadder and Duff, "Fundamentals of Engineering Drawing" Prentice Hall of India PvtLtd, XI Edition 2001.
- 2. Venugopal,K. and Prabhu Raja, V., "Engineering Graphics", New Age International(P) Ltd., 2008.
- 3. Gopalakrishnan.K.R,. "Engineering Drawing I & II", Subhas Publications, 1998.
- 4. Shah, M.B and Rana, B.C., "Engineering Drawing", Pearson Education, 2005.

E-REFERENCES

- 1. http://periyarnet/Econtent
- 2. http://nptel.ac.in/courses/112103019/

LECTURE: 30 TUTORIAL: 0 PRACTICAL: 60 TOTAL HOURS:90

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	3	3	3	3	3	15	3
PO ₃	3	3	3	3	3	15	3
PO ₄	2	1	1	1	1	6	2
PO5	3	3	3	3	3	15	3
PO ₆	2	1	1	1	1	6	2
PO ₇	3	3	3	3	3	15	3
PO ₈	1	1	1	1	1	5	1
PO ₉	1	1	1	1	1	5	1
PO 10	2	1	1	1	1	6	2
PO ₁₁	3	2	2	2	2	11	3
PO12	3	3	3	3	3	15	3
PSO ₁	0	0	0	0	0	0	0
PSO ₂	1	1	1	1	1	5	1

XEG205 - Mapping of CO with PO

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COUR	OURSE CODE XMA301						С
COUR	RSE NAME	TRANSFORMS AND PARTI		3	1	0	4
PRER	EQUISITES	DIFFERENTIAL EQUATIO CALCULUS AND LINEAR ALGEB		L	Т	Р	H
	= 3:0.5:0.5	CALCOLOS AND LINEAR ALGED		<u> </u>	1	0	4
	RSE OBJECTI	VES		5	-	U	-
-		plication of transforms and partial difference	ential equation	ons ir	n engi	neerir	ıg.
COUR	RSE OUTCOM	ES	DOMAIN		LEV	EL	
CO1	equation and equations of se	types of first order differential to solve linear partial differential econd order with constant coefficients. arbitrary constants and functions.	Cognitive Psychomot			App Imitat	
CO2	State Dirichle	t's condition. <i>Explain</i> general Fourier urve $y = f(x)$ in the interval $(0,2\pi)$ (- π , $(-\pi, \ell)$, and $(0, \pi)$.	Cognitive Psychomot		U	emen nders Imitat	tand,
CO3	<i>Solve</i> the sta arising in en dimensional V by Fourier seri	ndard Partial Differential Equations,	ne Cognitivo Apply			•	
CO4	Find the Four	ier transform and Fourier sine and forms of simple functions using	Cognitive	è	R	emen App	,
CO5	<i>Apply</i> the pro transform and	perties of Z transform to <i>Find</i> the Z inverse Z transform of sequence and to solve the difference equation using	Cognitive	2	R	emen App	,
functio	tion of partial ons – Solution of equation – Line	AL DIFFERENTIAL EQUATIONS differential equations by elimination of of standard types of first order partial ear partial differential equations of second	differential e	equat	tions	– Lag	grange's
UNIT		ER SERIES					9L+3T
Dirich	let's conditions	– General Fourier series – Odd and even es –Parseval's identity – Harmonic Anal		Half	range	e sine	
UNIT		CATIONS OF BOUNDARY VALUE H					9L+3T
Classification of second order quasi linear partial differential equations – Solutions of one dimensional wave equation – One dimensional heat equation – Steady state solution of two dimensional heat equation (Insulated edges excluded) – Fourier series solutions in Cartesian coordinates.							

UNIT IV FOURIER TRANSFORM

Fourier integral theorem (without proof) – Fourier transform pairs – Fourier Sine and Cosine transforms – properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

UNIT V TRANSFORM AND DIFFERENCE EQUATIONS

9L+3T

Z-transform – Elementary properties – Inverse Z – transform – Convolution theorem – Initial and Final value theorems - Formation of difference equations – Solution of difference equations using Z-transform.

TEXT BOOKS

- 1. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, New Delhi (2012).
- 2. Narayanan, S., ManicavachagomPillay, T.K. and Ramaniah, G., "Advanced Mathematics for Engineering Students", Volumes II and III, S.Viswanathan (Printers and Publishers) Pvt. Ltd., Chennai (2002).
- 3. Veerarajan. T., "Transforms and Partial Differential Equations", Second reprint, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2012.

REFERENCE BOOKS

- 1. Churchill, R.V. and Brown, J.W., "Fourier Series and Boundary Value Problems", Fourth Edition, McGraw Hill Book Co., Singapore (1987).
- 2. Kandasamy, P., Thilagavathy, K., and Gunavathy, K., "Engineering Mathematics Volume III", S. Chand & Company Ltd., New Delhi (1996).
- 3. Bali N.P. and Manish Goyal, "A Text Book of Engineering Mathematics" 7th Edition Lakshmi Publications (P) Limited, New Delhi (2007).
- 4. Erwin Kreyszig, "Advanced Engineering Mathematics", 8 th Edition, Wiley India, 2007.
- 5. Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012.

LECTURE: 45 TUTORIAL: 30 PRACTICAL: 0 TOTAL HOURS:60

CO Vs PO	C01	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	0	0	2	2	2	6	2
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0

XMA301 - Mapping of CO with PO

PO ₅	0	0	0	1	1	2	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0
PO10	1	1	1	1	1	5	1
PO11	0	0	1	1	1	3	1
PO12	1	1	2	1	1	6	2
PSO ₁	0	0	0	0	0	0	0
PSO ₂	1	1	1	1	1	5	1

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XAS302	L	Т	Р	С
COURSE NAME	MATERIAL SCIENCE AND METALLURGY	3	0	0	3
PREREQUISITES	NIL	L	Т	Р	Η
C:P:A= 3:0:0		3	0	0	3
COURSE OBJECTI	VFS				

COURSE OBJECTIVES

• Understand structure-properties properties relationship.

- Manipulate atomic/micro structural processes to create desired structure & processes to create desired structure & properties.
- To study about the process of powder metallurgy.

COUR	RSE OUTCOMES	DOMAIN	LEVEL
C01	<i>Recall</i> the Basic Properties of Engineering Materials.	Cognitive	Remember, Understand, Apply
CO2	<i>Classify</i> the concepts of iron and steel.	Cognitive	Remember, Understand, Apply
CO3	<i>Analyze</i> the heat treatment process and its applications.	Cognitive	Remember, Understand, Apply
CO4	<i>Analyze</i> the nonmetallic materials and its applications.	Cognitive	Remember, Understand, Apply
CO5	<i>Describe</i> the process of powder metallurgy and its applications	Cognitive	Remember, Understand, Apply

CO6	<i>List</i> t	he Properties and applications of smart materials	Cognitive	Remember,		
		T TT	- 6	Understand, Apply		
UNIT	I	PROPERTIES OF METALLIC MATERIALS	5	9		
Basic	Cryst	allography- Crystal structure – BCC, FCC a		icture – unit cell –		
crystallographic planes and directions, miller indices. Crystal imperfections, point, line, planar and						
		cts – Grain size, ASTM grain size number. Frank l				
plastic	mod	es of deformation slip & twinning, strain hard	dening, seasor	ns cracking. Fracture		
mecha	nism a	and types.				
UNIT		IRON AND STEEL		9		
		ons – Binary alloys, ternary alloys. Iron carb				
		ons. Classification of steel and cast iron - micros				
		point phenomenon, cold/hot working, recovery,	re-crystallizat	ion and grain growth,		
U		g of metals.				
UNIT		HEAT TREATMENT OF MATERIALS		11		
		nent- Definition - Full annealing, stress relie				
	0	and tempering of steel. Isothermal transform	0	U		
		d on I.T. diagram CCR Hardenability, Austemper				
		nitriding, cyaniding, carbonitriding - Flame and				
		Metals- Effect of alloying additions on steel (Mr				
		ls – HSLA. Gray, White malleable, spheroidal -G	raphite - alloy	cast-iron. Copper and		
Copper	r alloy	vs – Brass, Bronze and Cupronickel.				
UNIT	IV	NON METALLIC MATERIALS		8		
		c Materials- Polymers – types of polymer, commo	dity and engin	eering polymers –		
		ad applications of PE, PP, PS, PVC, PMMA, PET,	•	.		
-		E Polymers. Urea and Phenol formaldehydes and re				
		and applications.	1	0 0		
1						
UNIT	V	METALLURGY & SMART MATERIALS		8		
Powde	r me	tallurgy, Manufacturing Process, Compacting	, Sintering,	Vacuum processing.		
Proper	ties c	of Powder processed materials, high energy of	compaction. I	Fibre and particulate		
reinfor	ced co	omposites, Metal matrix composites, preparation p	roperties and u	ises.		
Metalli	ic glas	sses- preparation of metallic glasses- properties - a	applications of	the metallic glasses -		
Sol Ge	els – t	ball Milling – properties of nanoparticles and app	plications of n	anoparticles - Carbon		
Nanoti	ibes (CNT)-structure-properties-applications of the CN	Ts.			
		N/C				
TEXT						
v		ng Materials: Properties and selection/ Kenneth	G. Budinski,	witchael K. Budinski/		
Prentic						
2. Engi	ineeri	ng materials / R K Rajput / S Chand and company	Ltd.			
3. Defe	ormati	on and Fracture Mechanics of Engineering Materi	als/R. W. Hert	zberg/ John Wiley &		
Sons.	Sons.					

4. Powder Metallurgy: An Advanced Technique Of Processing Engineering Materials/ B. K.

DATTA/ PHI Learning Pvt. Ltd.

5. Materials Science and Engineering /Raghavan/ Prentice-Hall of India.

REFERENCE BOOKS

- 1. Koch, C. C. Nanostructured materials: processing and applications: William Andrew Pub.
- 2. James F Shackelford, S "Introduction to materials Science for Engineers", 6 th Macmillan Publishing Company, New York, 2004
- 3. William D CallisterJr, "Materials Science and Engineering An Introduction", John Wiley and Sons Inc., 6 th edition, New York, 2003
- 4. Jayakumar S, "Materials Science", RK Publishers, Coimbatore, 2004
- 5. Bolton, W., Engineering materials technology: Butterworth-Heinemann.

E – **References**

- 1. NPTEL courses, http://www.nptel.iitm.ac.in/courses.php?disciplineId=112: related web and video resources under Mechanical Engineering &Metallurgy and Material Science categories.
- 2. http://www.intechopen.com/books.

LECTURE: 45 TUTORIAL: 0 PRACTICAL: 0 TOTAL HOURS:45

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	2	3	3	2	3	2	15	3
PO ₂	2	3	2	3	2	2	14	3
PO ₃	3	1	1	1	3	1	10	2
PO ₄	3	1	1	3	3	2	13	3
PO5	1	1	1	1	1	1	6	1
PO ₆	1	0	0	0	1	0	2	1
PO ₇	0	0	0	0	0	0	0	0
PO ₈	2	1	1	1	1	1	7	2
PO ₉	3	1	2	1	3	2	11	2
PO10	3	2	3	2	3	2	14	3
PO 11	1	3	1	3	2	1	12	2
PO ₁₂	3	2	3	2	1	1	12	2

XAS302- Mapping of CO with PO

PSO ₁	2	3	3	3	2	2	15	3
PSO ₂	2	1	1	2	2	3	11	2

 $1 \text{-} 6 \rightarrow 1, 7 \text{-} 12 \rightarrow 2, 13 \text{-} 18 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XAS303	L	Τ	Р	С			
COURSE NAME	SOLID MECHANICS AND FLUID	3	1	0	4			
COURSE NAME	MECHANICS							
PREREQUISITES	ENGINEERING MECHANICS	L	Т	Р	Н			
C:P:A= 4:0:0 3 1 0 4								
COURSE OBJECTIVES								

- To give brief descriptions on the behaviour of materials due to axial, bending and torsional and combined loads.
- To understand the structure and the properties of the fluid, boundary layer theory and hydraulic machines.

COU	RSE OUTCOMES	DOMAIN	LEVEL				
CO1	Describe the concepts of stress and strain at a point and express the stress-strain relationship for homogenous, isotropic materials; explain shear force and bending moment diagrams for cantilever, simply supported beams.	Cognitive	Remember, Understand, Apply				
CO2	<i>Calculate</i> bending stress and shear stress in beams; <i>Select</i> the beam specimen, <i>Express</i> deflection equation	Cognitive	Understand, Apply				
Measurerotation of rod due to torsion;Classify principalUndCO3stresses; explain the stresses, strains associated with thin- wall spherical and cylindrical pressure vessels.CognitiveAr							
CO4	CO4 <i>Describe</i> fluid properties; <i>Express</i> the ideas of fluid statics and kinematics. Cognitive Remem						
CO5	<i>Explain</i> about boundary layer.	Cognitive	Understand				
CO6	Compare and describe the performance of centrifugal and Eve						
UNIT I BASICS OF STRESS AND STRAIN OF SOLIDS 9L+3T							
Elastic	and deformable bodies - Stress and Strain – Hooke's Law constants and their relationship –Shear force and bending mo supported.		-				

UNI	гп	STRESSES & DEFLECTIONS IN BEAMS	9L+3T
		esses in straight beams-Shear stresses in bending of beams –Deflection	
		gration method – McCauley's method	or occarito.
	, c		
UNI	ГШ	TORSION & BI AXIAL STRESSES	9L+3T
		ircular shafts - Shear stresses and twist in solid and hollow circular shafts - S	
thin c	circular	cylinder and spherical shell under internal pressure - Principal planes and Str	esses.
UNI	ΓΙ	FLUID PROPERTIES	9L+3T
		on of fluids - dimensions and units - system of units - fluid properties - Pascal'	
	-	essure - pressure measurement by manometers- Continuity, energy and mome	ntum
equat	ions - I	Bernoulli's equation - pitot tubes.	
UNI	Г Т /	BOUNDARY LAYER&HYDRAULIC MACHINES	9L+3T
		Indary layer - turbulent boundary layer - Centrifugal pumps and reciprocating	
	nechani		pump-
-	T BOC		
	T		
1.	Rajpu	It R K, Edition -VI "Strength of Materials" Publisher, S Chand, 2015.	
2.	LSS	rinath, "Advanced Mechanics of Solids" McGraw Hill Education, 2010.	
3.		al, R.K., "Fluid Mechanics and Hydraulics Machines", Laxmi Publications (P) Delhi, 2013.) Ltd.,
4.			
REF	EREN	CE BOOKS	
1.	Timo 1997.	shenko, S. P, "Elements of Strength of Materials", Tata McGraw – Hill, New	Delhi,
2.	Nash	W. A, "Theory and problems in Strength of Materials", Schaum Outline Serie	es,
		raw – Hill Book Co, New York, 1995.	
3.	Ratha	krishnan. E, Fluid Mechanics, Prentice Hall of India (II Ed.), 2007.	
E – F	Referen	ices	
1.	nptel.	ac.in/courses/112107147	
2.	https:	//nptel.ac.in/courses/112105171	
	LEC	TURE: 45 TUTORIAL: 15 PRACTICAL: 0 TOTAL HOU	J RS:60

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	2	1	1	3	2	12	2
PO ₂	2	1	3	3	2	2	13	2
PO ₃	1	2	2	2	2	2	11	2
PO ₄	0	1	2	2	2	2	9	2
PO ₅	0	1	2	2	3	1	9	2
PO ₆	0	0	1	1	1	1	4	1
PO ₇	0	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	1	1	0
PO 10	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	1	1	2	1
PO ₁₂	0	0	0	0	0	1	1	0
PSO ₁	0	0	0	2	2	2	6	1
PSO ₂	0	0	2	1	1	1	5	1

XAS303 - Mapping of CO with PO

 $1 \text{-} 6 \rightarrow 1, 7 \text{-} 12 \rightarrow 2, 13 \text{-} 18 \rightarrow 3$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	XEM304	L	Т	Р	С				
COURSE NAME	ENGINEERING MECHANICS	3	1	0	4				
PREREQUISITES	NIL	L	Т	Р	Η				
C:P:A= 3.5:0.25:0.25 3 1 0 4									
C:P:A= 3.5:0.25:0.25 3 1 0									

COURSE OBJECTIVES

Upon successful completion of the course, student will have:

- Ability to apply mathematics, science, and engineering.
- Ability to design and conduct experiments, as well as to analyze and interpretdata.
- Ability to identify, formulate, and solve engineeringproblems.
- Ability to apply modern engineering tools, techniques and resources to solve complex mechanical engineering activities with an understanding of thelimitations.
- Ability to comprehend the thermodynamics and their corresponding processes that influence the behavior and response of structural components.
- Ability to apply principles of engineering, basic science, and mathematics (including multivariate calculus and differential equations) and thermodynamics to model, analyze, design, and realize physical systems, components, orprocesses.

COU	SE OUTCOMES	DOMAIN	LEVEL						
CO1	<i>Explain</i> the principles forces, laws and theirapplications.	l Cognitive	Understanding, Apply						
CO2	<i>Classification</i> of friction, and <i>apply</i> the forces in Trusses and beams.	n Cognitive	Understanding, Apply						
CO3	<i>Explain</i> and <i>Apply</i> moment of Inertia and Virtua work	l Cognitive	Understanding, Apply						
CO4	Outline and Examine Dynamics	Cognitive	Understanding, Apply						
CO5	<i>Explain</i> free and forced vibration	Cognitive	Remember, Understanding						

UNIT I INTRODUCTION TO ENGINEERING MECHANICS

9L+3T

Force Systems Basic concepts, Particle equilibrium in 2-D & 3-D; Rigid Body equilibrium; System of Forces, Coplanar Concurrent Forces, Components in Space – Resultant- Moment of Forces and its Application; Couples and Resultant of Force System, Equilibrium of System of Forces, Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial Systems; Static indeterminacy.

UNIT II FRICTION AND BASIC STRUCTURAL ANALYSIS

9L+3T

Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack; Equilibrium in three dimensions; Method of Sections; Method of Joints; How to determine if a member is in tension or compression; Simple Trusses; Zero force members; Beams & types of beams; Frames & Machines.

UNIT IIICENTROID , CENTRE OF GRAVITY AND VIRTUAL WORK9L+3TAND ENERGY METHOD

Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.

Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom. Active force diagram, systems with friction, mechanical efficiency. Conservative forces and potential energy (elastic and gravitational), energy equation for equilibrium. Applications of energy method for equilibrium. Stability of equilibrium.

UNIT IVREVIEW OF PARTICLE DYNAMICS AND INTRODUCTION TO
KINETICS OF RIGID BODIES9L+3T

Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3-D curvilinear motion; Relative and constrained motion; Newton's 2nd law (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique). Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D'Alembert's principle and its applications in plane motion and connected bodies; Work energy principle and its application in plane motion of connected bodies; Kinetics of rigid bodyrotation.

UNIT V MECHANICAL VIBRATIONS

9L+3T

Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedom; Derivation for frequency and amplitude of free vibrations without damping and single degree of freedom system, simple problems, types of pendulum, use of simple, compound and torsion pendulums.

TEXT BOOKS

1. Hisrich, 2016, Entrepreneurship, Tata McGraw Hill, New Delhi.

2. S.S.Khanka, 2013, Entrepreneurial Development, S.Chand and Company Limited, New Delhi. **REFERENCE BOOKS**

1. Mathew Manimala, 2005, Entrepreneurship Theory at the Crossroads, Paradigms & Praxis, Biztrantra ,2nd Edition.

- 2. Prasanna Chandra, 2009, Projects Planning, Analysis, Selection, Implementation and Reviews, Tata McGraw-Hill.
- 3. P.Saravanavel, 1997, Entrepreneurial Development, Ess Pee kay Publishing House, Chennai.
- 4. Arya Kumar,2012, Entrepreneurship: Creating and Leading an Entrepreneurial Organisation, Pearson Education India.
- 5. Donald F Kuratko, T.V Rao, 2012, Entrepreneurship: A South Asian perspective, Cengage Learning India.
- 6. Dinesh Awasthi, Raman Jaggi, V.Padmanand, Suggested Reading / Reference Material for Entrepreneurship Development Programmes (EDP/WEDP/TEDP), EDI Publication, Entrepreneurship Development Institute of India, Ahmedabad.

E – **References**

- 1. Jeff Hawkins, " Characteristics of a successful entrepreneur", ALISON Online entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills
- 2. Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education, https://www.udemy.com/entrepreneurship-from-idea-to-launch/

LECTURE: 45 TUTORIAL: 15 PRACTICAL: 0TOTAL HOURS:60

		EN1304 - 1	mapping u		10		
CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	1	1	1	1	1	5	1
PO ₂	2	2	2	2	3	11	3
PO ₃	3	3	3	3	3	15	3
PO ₄	1	1	1	1	1	5	1
PO ₅	0	0	0	0	0	0	0
PO ₆	3	3	3	3	3	15	3
PO ₇	1	1	1	1	1	5	1
PO ₈	0	3	0	1	3	7	2
PO ₉	3	3	3	3	3	15	3
PO10	1	1	1	3	3	9	2
PO 11	2	2	2	3	3	12	3
PO ₁₂	2	2	2	3	3	12	3
PSO ₁	2	2	2	3	3	12	3
PSO ₂	2	2	2	3	3	12	3

XEM304 - Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XUM305	L	Т	Р	С				
COURSE NAME	ENTREPRENEURSHIP DEVELOPMENT	3	0	0	3				
PREREQUISITES	NIL	L	Т	Р	Η				
C:P:A= 3:0:0 3 0 0 3									
COURSE OBJECTIVES									

The purpose of the course is that the students acquire necessary knowledge and skills required for organizing and carrying out entrepreneurial activities.

- To develop the ability of analysing and understanding business situations in which ٠ entrepreneurs act and to master the knowledge necessary to plan entrepreneurial activities.
- The objective of the course is, further on, that the students develop the ability of analysing various aspects of entrepreneurship - especially of taking over the risk, and the specificities as well as the pattern of entrepreneurship development and, finally, to contribute to their entrepreneurial and managerial potentials.

CO1Recognise and describe the personal traits of an entrepreneur.Affective CognitiveReceiving UnderstandingCO2Determine the new venture ideas and analyse the feasibility report.CognitiveUnderstanding AnalysingCO3Develop the business plan and analyse the plan as an individual or in team.Affective CognitiveReceiving AnalysingCO4Describe various parameters to be taken into business.CognitiveUnderstanding Understanding AnalysingCO4Explain the Intellectual Property RightsExplain the technological management and Intellectual Property RightsCognitiveUnderstanding	COUR	RSE OUTCOMES	DOMAIN	LEVEL
CO2 feasibility report.AnalysingCO3Develop the business plan and analyse the plan as an individual or in team.Affective CognitiveReceiving AnalysingCO4Describe various parameters to be taken into consideration for launching and managing small business.CognitiveUnderstandingCO5Explain the technological management and CognitiveCognitiveUnderstanding	CO1			0
CO3individual or in team.CognitiveAnalysingCO4Describevarious parameters to be taken into consideration for launching and managing small business.CognitiveUnderstandingCO5Explain thetechnological management and CognitiveCognitiveUnderstanding	CO2	-	Cognitive	0
CO4 consideration for launching and managing small business. CO5 Explain the technological management and Cognitive Understanding	CO3			0
	CO4	consideration for launching and managing small	Cognitive	Understanding
	CO5		Cognitive	Understanding

UNIT I ENTREPRENEURIAL TRAITS AND FUNCTIONS

0

Definition of Entrepreneurship; competencies and traits of an entrepreneur; factors affecting Entrepreneurship Development; Role of Family and Society ; Achievement Motivation; Entrepreneurship as a career and national development.

NEW PRODUCT DEVELOPMENT AND VENTURE CREATION UNIT II 9 Ideation to Concept development; Sources and Criteria for Selection of Product; market assessment; Feasibility Report; Project Profile; processes involved in starting a new venture; legal formalities; Ownership; Case Study. 9

ENTREPRENEURIAL FINANCE UNIT III

Financial forecasting for a new venture; Finance mobilization; Business plan preparation; Sources of Financing, Angel Investors and Venture Capital; Government support in startup promotion.

UNIT IV LAUNCHING OF SMALL BUSINESS AND ITS MANGEMENT 9

Operations Planning - Market and Channel Selection - Growth Strategies - Product Launching – Incubation, Monitoring and Evaluation of Business - Preventing Sickness and Rehabilitation of Business Units.

UNIT V TECHNOLOGY MANAGEMENT, IPR PORTFOLIO FOR NEW PRODUCT VENTURE

9

Technology management; Impact of technology on society and business; Role of Government in supporting Technology Development and IPR protection; Entrepreneurship Development Training and Other Support Services.

TEXT BOOKS

- 1. Hisrich, 2016, Entrepreneurship, Tata McGraw Hill, New Delhi.
- 2. S.S.Khanka, 2013, Entrepreneurial Development, S.Chand and Company Limited, New Delhi.

REFERENCE BOOKS

- 1. Mathew Manimala, 2005, Entrepreneurship Theory at the Crossroads, Paradigms & Praxis, Biztrantra ,2nd Edition.
- 2. Prasanna Chandra, 2009, Projects Planning, Analysis, Selection, Implementation and Reviews, Tata McGraw-Hill.
- 3. P.Saravanavel, 1997, Entrepreneurial Development, Ess Pee kay Publishing House, Chennai.
- 4. Arya Kumar,2012, Entrepreneurship: Creating and Leading an Entrepreneurial Organisation, Pearson Education India.
- 5. Donald F Kuratko, T.V Rao, 2012, Entrepreneurship: A South Asian perspective, Cengage Learning India.
- 6. Dinesh Awasthi, Raman Jaggi, V.Padmanand, Suggested Reading / Reference Material for Entrepreneurship Development Programmes (EDP/WEDP/TEDP), EDI Publication, Entrepreneurship Development Institute of India, Ahmedabad.

E – **References**

- 1. Jeff Hawkins, "Characteristics of a successful entrepreneur", ALISON Online entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills
- 2. Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education, https://www.udemy.com/entrepreneurship-from-idea-to-launch

LECTURE: 45 TUTORIAL: 0 PRACTICAL: 0TOTAL HOURS:45

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	1	1	1	1	1	5	1
PO ₂	2	2	2	2	3	11	3
PO ₃	3	3	3	3	3	15	3
PO ₄	1	1	1	1	1	5	1
PO5	0	0	0	0	0	0	0
PO ₆	3	3	3	3	3	15	3
PO ₇	1	1	1	1	1	5	1
PO ₈	0	3	0	1	3	7	2
PO ₉	3	3	3	3	3	15	3
PO 10	1	1	1	3	3	9	2
PO 11	2	2	2	3	3	12	3
PO12	2	2	2	3	3	12	3
PSO ₁	2	2	2	3	3	12	3
PSO ₂	2	2	2	3	3	12	3

XUM305- Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COU	RSE CODE	XAS306		L	Т	Р	С		
COU	RSE NAME	ENGINEERING THERMODYNAMICS	5	2	1	0	3		
PREI	REQUISITES	NIL		L	Т	Р	Η		
C:P: <i>A</i>	A= 3:0:0			2	2	0	4		
COU	RSE OBJECTI	VES							
• T	o give a brief	background of application of various laws	of the	ermo	dyna	mics	and its		
ap	plication in heat	t transfer, refrigeration and air-conditioning, jet	prop	ulsio	n sys	stem.			
COU	RSE OUTCOM	IES	DO	MA	[N	LE	VEL		
CO ₁	Describe the la	Co	gnitiv	10	Remember				
COI	to a wide range		C02	ginu		Keinenibei			
	•	vork and heat interactions associated with a							
~ ~	1 1	cess path and to perform thermodynamic	~			Ameliume			
CO ₂		flow system. An ability to evaluate entropy	Cog	gnitiv	ve ve	Analyze			
		miliarity with calculations of the efficiencies							
		and other related engineering devices.							
CO ₃		fficiency and mean effective pressure of odynamic air standard cycles.	Cog	gnitiv	ve	Eva	luate		
		pure substance (an ideal gas) and its							
CO ₄		various flow and non flow process, and	Co	gnitiv	<i>v</i> e	Rem	ember		
001		ate the efficiencies.	0.07	D			••••••		
CO ₅		onstruction and working principle of different	C	~		Darr	a ma la a m		
005	types of compr	essors.	Cognitive Remember				einber		
	Compare the different refrigeration and air-conditioning Cognitive Evalue								
CO ₆	•	ble to calculate the COP /cooling load for	0	Sunn		Lva	iuute		
	various applica	tions.							

UNIT I **BASIC THERMODYNAMICS** 6L+6T Systems, Zeroth, First and Second laws - concept of entropy change in non-flow processes -SFEE equations [steady flow energy equation] - Heat engines - Refrigerators and heat pumps -Basic thermodynamic relations.

UNIT II AIR STANDARD CYCLES AND IC ENGINES

Otto, Diesel, Dual and Brayton cycles – Air standard efficiency -Mean effective pressure –Two and four stroke IC Engines – P-V & T-S diagrams.

UNIT III **GAS TURBINES**

Open and closed cycle gas turbines - Ideal and actual cycles - Brayton cycle - Cycle with reheat, inter-cooling and regeneration – Application of gas turbines in aviation – Velocity diagrams.

AIR COMPRESSORS UNIT IV

Positive displacement compressors – Construction and working principle of centrifugal, diagonal (mixed flow) and axial compressors.

6L+6T

6L+6T

6L+6T

UNI	IT VREFRIGERATION AND AIR CONDITIONING6L+6T
abso diffe refri	ciples of refrigeration, Air conditioning - Heat pumps - Vapour compression – Vapour orption types - Coefficient of performance, Properties of refrigerants - Basic functional erence between refrigeration and air conditioning – Various methods of producing gerating effects (RE).
LEO	CTURE:30 TUTORIAL: 30 TOTAL: 60 Hours
ТЕУ	XT BOOKS
1.	Nag P K, "Basic and Applied Engineering Thermodynamics". Tata McGraw Hill, New Delhi, 2012.
2.	Cengel & Boles , "Thermodynamics – An Engineering Approach" ,, 7th Ed., McGraw Hill, 2011.
REI	FERENCE BOOKS
1.	Rogers and Mayhew, "Engineering Thermodynamics – Work and Heat Transfer", Addision Wesley, New Delhi, 1999.
2.	Eastop and McConkey, "Applied Thermodynamics", Addision Wesley, New Delhi, 1999.
3.	Sankaar B K, "Thermal Engineering", Tata McGraw Hill, New Delhi, 1998.
E –	References
1.	https://nptel.ac.in/courses/112105123/

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Total /6
PO ₁	3	3	3	3	3	3	18	3
PO ₂	3	3	3	3	3	3	18	3
PO ₃	0	2	0	0	2	2	6	1
PO ₄	1	1	1	1	1	1	6	1
PO ₅	0	0	0	0	0	0	0	0
PO ₆	1	1	1	1	1	1	6	1
PO 7	2	2	2	2	2	2	12	2

XAS306 - Mapping of CO with PO

PO ₈	0	0	0	0	0	0	0	0
PO ₉	2	2	2	2	2	2	12	2
PO 10	0	0	0	0	0	0	0	0
PO11	0	0	0	0	0	0	0	0
PO ₁₂	1	1	1	1	1	1	6	1
PSO ₁	1	1	1	1	1	1	6	1
PSO ₂	0	0	0	0	0	0	0	0
Total	14	16	14	14	16	16	90	15

COUR	SE CODE		XAS401			L	Т	Р	С		
	SE NAME		AERODYNAMICS I						4		
PRER	EQUISITES	SOLID MECHA	ID MECHANICS AND FLUID CHANICS				Т	Р	Н		
C:P:A:	= 3:1:0					3	0	2	5		
COUR	SE OBJECTI	VES									
	understand the tions in the inco		r of airflow over e flow regime.	bodies v	with particul	ar er	npha	sis or	airfoil		
COUR	COURSE OUTCOMES DOM							LEVEL			
CO1 <i>Recall</i> the history of aviation and <i>Study</i> of basicaerodynamics.					Cognitive	;	-	Remer Jnders			
CO2	<i>Explain</i> vari tunnel	ous flows	and <i>Calibrate</i> the	e wind	Cognitive Psychomot	// ne			yze		
CO3	-	s and <i>Calib</i>	l stream function prate pressure distr		Cognitive Psychomot		Understand Analyze Mechanism				
CO4	<i>Explain</i> Ku	tta Transformations and <i>Calibrate</i> Tibution over various models					Understand Analyze Mechanisn		yze		
CO5		ing line the	zation over the r eory and <i>Present</i> s		Cognitive Psychomot Affective	or	N	tand yze nism ond			

CO6	<i>Display</i> the Boundary Layer Flow over models and <i>Discuss</i> Navier stokes's Equation.	Cognitive Psychomotor	Remember Understand
UNIT	I BASICS OF AERODYNAMICS		7
	of aviation - classifications of aircrafts - Component acture of the atmosphere– Forces and moments acting		hysical properties
UNIT	II TWO DIMENSIONAL INCOMPRESSIB	SLE FLOWS	10
	ntary flows - uniform flow, source, sink, vortex and		
	y distributions on bodies with and without circulation	in ideal and real f	
UNIT	III CONFORMAL MAPPING il terminologies - Classification of aerofoil - Transfo	mation from sizel	8
- Karm	an – Trefftz profiles – ideal and real flow – Magnus e		ert paradox.
UNIT		~	12
	erofoil theory and its applications- concept of vor Biot Savart law, Lifting line theory and its limitation		k line, Horse shoe
vonex,	bio Savan law, Enting line meory and its inilitation	10.	
UNIT	V VISCOUS FLOWS		8
	ots of boundary Layer- Blasius theorem- displacement	nt, Momentum thio	ckness - Flow over
a flat p			
	BOOKS		
199		Graw-Hill Book Co	o., New York,
2. Cla	ancey, L.J., "Aerodynamics", Pitman, 1986.		
REFE	RENCE BOOKS		
	ughton, E.L., and Carruthers, N.B., "Aerodynamics f nold Publishers Ltd., London, 1989.	or Engineering stu	dents", Edward
	lne Thomson, L.H., "Theoretical aerodynamics", Ma	cmillan, 1985.	
$\mathbf{E} - \mathbf{R}\mathbf{\epsilon}$	ferences		
1. htt	tps://nptel.ac.in/courses/101105059/		
List of	Experiments		
1. Flow	visualization in water flow channel.		
	visualization in smoke tunnel		
3. Stud	y of Low speed subsonic wind tunnel		
4. Plot	of rotor speed Vs velocity in a subsonic wind tunnel.		
5. Find	the Pressure distribution over circular cylinder and p	lot it.	
6. Enur C _D .	nerate and plot Pressure distribution over Symmetric	al airfoil and estim	ation of C_L and
	nerate and plot Pressure distribution over Un Symme		

8. Enumerate and plot Pressure distribution over Cambered airfoil and estimation of C_L and C_D .

9. Study of Schlieren system to visualize shock.

10. Study of Shadow graph system to visualize shock.Lecture: 45Tutorial:0Practical: 30Total: 75 Hours

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO 1	3	3	3	3	3	3	15	2
PO ₂	2	3	3	3	3	3	16	3
PO ₃	1	2	2	3	3	3	11	2
PO ₄	3	3	3	3	3	3	15	2
PO ₅	0	2	2	2	3	3	9	1
PO ₆	0	3	3	3	2	2	13	2
PO ₇	1	2	2	2	2	2	9	1
PO ₈	0	2	2	0	0	0	4	1
PO ₉	0	3	3	0	0	0	6	1
PO ₁₀	0	0	0	0	0	0	0	0
PO11	0	0	0	0	0	0	0	0
PO 12	3	3	3	3	2	2	16	3
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	2	2	2	2	1	1	10	2

XAS401 - Mapping of CO with PO

COUI	RSE CODE			X	KAS402				L	Т	Р	С		
COUI	RSE NAME		AIR	CRAFT	STRU	CTURE	IS I		3	1	0	4		
PRER	EQUISITES	SOLII	D AND	FLUID	MECH	IANICS	5		L	Τ	P	Η		
C:P:A	= 4:0:0								3	1	0	4		
COU	RSE OBJECTI	VES												
• To	study the behave	viour of	various	aircraft	structur	ral comp	oonents	under	diffe	rent	types o	of loads		
COUI	RSE OUTCOM	IES						DC	MA	IN	LF	EVEL		
CO1	<i>Recall</i> engine wing structure	-	nechanio	cs and	explain	fusela	ge and	Co	gniti	ve		nember, erstand		
CO2	<i>Draw</i> and <i>exp</i> structures.	lain stat	tically o	determir	nate and	indeter	minate	Co	gniti	ve		nember, erstand		
CO3	<i>Discuss</i> and <i>analyze</i> the behavior of elastic structures subjected to combined loads, including bending, torsion and axial loads.											erstand, nalyze		
CO4	<i>Explain</i> and find out critic Rankine's form	cal load						Co	gniti	ve		Understand, Apply		
CO5	Explain the re	al time a	applicat	ion of co	olumns.			Co	gniti	ve	Unde	erstand		
CO6	<i>List</i> the theorie the failure theo <i>Uses</i> of failure	ories to i	nvestig	ate the e	engineer			Psyc	gnitiv hom ffecti	otor	Understand Set, Receive			
UNIT	I BASICS	OF AIR	RCRAF	T STRI	UCTUR	RES						8L		
Fusela structu	ge structure: tru	iss type,	monoc	oque and	d semi-	monoco	oque – W	/ing st	ructu	ıre –	Emper	nnage		
UNIT			DET	ERMIN	NATE	AND	IND	ETEF	RMI	NAT	E 1	10L+47		
	sis of plane tr yron's Three Mo		-		joints-	Proppe	ed Cant	ilever-	Fix	ed-F	ixed b	beams		
UNIT	III ENERGY	Y METH	HODS									8L+37		
	Energy due to cocal theorem -				orsional	loads	– Castig	gliano	's th	eorer	ns- M	axwell'		
UNIT	IV COULM	NS]	11L+47		
Colum	nns with various curvature - Ecc	end cor												
UNIT	V FAILUR	E THE(ORIES									8L+37		
UNII												01151		

Shear strain energy theory – Strain energy theory – Fatigue and Creep Failure analysis.

LE	CTURE: 45	TUTORIAL: 15	TOTAL: 60
TE	XT BOOKS		
1.	Rajput R K., Sixth Edition "Strength of M	aterials" Publisher, S Ch	hand Publications, 2015.
2.	Donaldson, B.K., "Analysis of Aircraft St	ructures – An Introduction	on", McGraw- Hill, 1993.
3.	Megson T.M.G, "Aircraft Structures for E	ngineering Students", E	dward Arnold, 1995.
RE	FERENCE BOOKS		
1.	Bruhn.E.F. "Analysis and design of flig	ht vehicle structures" T	ri set of offset company,
	USA, 1973.		
2.	Timoshenko S., "Strength of Materials", V	ol. I and II, Princeton D.	Von Nostrand Co, 1990.
E –	References		
	1		
1.	https://nptel.ac.in/courses/101104069/21		

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	2	3	3	2	16	3
PO ₂	2	1	1	2	2	3	11	2
PO ₃	2	1	1	2	2	3	11	2
PO ₄	2	1	1	3	3	3	13	3
PO ₅	3	0	0	3	3	3	12	2
PO ₆	0	0	0	0	0	3	3	1
PO ₇	0	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0	0
PO9	0	0	0	0	0	2	2	1
PO 10	0	0	0	0	0	0	0	0
PO 11	0	0	0	1	1	2	4	1

XAS402 - Mapping of CO with PO

PO ₁₂	0	0	0	0	0	1	1	0
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	1	1	0

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relatio

COURSE CODE	XUM403	L	Τ	Р	С
COURSE NAME	HUMAN ETHICS,VALUES,RIGHTS AND GENDER EQUALITY	1	0	0	1
PREREQUISITES	NIL	L	Т	Р	Н
C:P:A= 1:0:0		1	0	0	1
COURSE OBJECTI	VES				

• Students will ultimately be assessed on their ability to demonstrate a commitment to professionalism, rights, ethical behavior, service, and, as appropriate, leadership.

- Students will ultimately be assessed on their knowledge of the legal system and legal doctrine. Students will graduate with a broad knowledge of foundational and other core areas human rights, specialized knowledge in areas of interest, and experience with advanced study.
- Students will ultimately be assessed on the development of legal analysis, legal communication, and legal research.

		DOMAIN	LEVEL
CO1 <i>Relate</i> and <i>Interpret</i> relationships	the human ethics and human	Cognitive	Remember, Understanding
CO2 <i>Explain</i> and <i>Apply</i> gen against women	der issues, equality and violence	Cognitive	Understanding, Applying
CO3 Classify and Develop t challenges	he identify of women issues and	Cognitive Affective	Analyzing Receiving
CO4 Classifyand Dissection violations.	uman rights and report on	Cognitive	Understanding, Analyze
	to family values, universal inst corruption by common man	Cognitive Affective	Remember, Respond

UNIT I HUMAN ETHICS AND VALUES

Human Ethics and values - Understanding of oneself and others- motives and needs- Social service, Social Justice, Dignity and worth, Harmony in human relationship: Family and Society, Integrity and Competence, Caring and Sharing, Honesty and Courage, WHO's holistic development - Valuing Time, Co-operation, Commitment, Sympathy and Empathy, Self respect, Self-Confidence, character building and Personality.

7

UNIT II GENDER EQUALITY

Gender Equality - Gender Vs Sex, Concepts, definition, Gender equity, equality, and empowerment. Status of Women in India Social, Economical, Education, Health, Employment, HDI, GDI, GEM. Contributions of Dr.B.R. Ambethkar, Thanthai Periyar and Phule to Women Empowerment.

UNIT III WOMEN ISSUES AND CHALLENGES

Women Issues and Challenges- Female Infanticide, Female feticide, Violence against women, Domestic violence, Sexual Harassment, Trafficking, Access to education, Marriage. Remedial Measures – Acts related to women: Political Right, Property Rights, and Rights to Education, Medical Termination of Pregnancy Act, and Dowry Prohibition Act.

UNIT IV HUMAN RIGHTS

Human Rights Movement in India – The preamble to the Constitution of India, Human Rights and Duties, Universal Declaration of Human Rights (UDHR), Civil, Political, Economical, Social and Cultural Rights, Rights against torture, Discrimination and forced Labour, Rights and protection of children and elderly. National Human Rights Commission and other statutory Commissions, Creation of Human Rights Literacy and Awareness. - Intellectual Property Rights (IPR). National Policy on occupational safety, occupational health and working environment.

UNIT V GOOD GOVERNANCE AND ADDRESSING SOCIAL ISSUES

Good Governance - Democracy, People's Participation, Transparency in governance and audit, Corruption, Impact of corruption on society, whom to make corruption complaints, fight against corruption and related issues, Fairness in criminal justice administration, Government system of Redressal. Creation of People friendly environment and universal brotherhood.

REFERENCES

- 1. Aftab A, (Ed.), Human Rights in India: Issues and Challenges, (New Delhi: Raj Publications, 2012).
- 2. Bajwa, G.S. and Bajwa, D.K. Human Rights in India: Implementation and Violations (New Delhi: D.K. Publications, 1996).
- 3. Chatrath, K. J. S., (ed.), Education for Human Rights and Democracy (Shimala: Indian Institute of Advanced Studies, 1998).
- 4. Jagadeesan. P. Marriage and Social legislations in Tamil Nadu, Chennai: Elachiapen Publications, 1990).
- 5. Kaushal, Rachna, Women and Human Rights in India (New Delhi: Kaveri Books, 2000)
- 6. Mani. V. S., Human Rights in India: An Overview (New Delhi: Institute for the World Congress on Human Rights, 1998).
- 7. Singh, B. P. Sehgal, (ed) Human Rights in India: Problems and Perspectives (New Delhi: Deep and Deep, 1999).
- 8. Veeramani, K. (ed) Periyar on Women Right, (Chennai: Emerald Publishers, 1996)
- 9. Veeramani, K. (ed) Periyar Feminism, (Periyar Maniammai University, Vallam, Thanjavur: 2010).

9

9

9

9

10.Planning Commission report on Occupational Health and Safety http://planningcommission.nic.in/aboutus/committee/wrkgrp12/wg_occup_safety.pCentral Vigilance Commission (Gov. of India) website: http://cvc.nic.in/welcome.html.

11. Weblink of Transparency International: https://www.transparency.org/

12. Weblink Status report: https://www.hrw.org/world-report/2015/country-chapters/india

LECTURE: 15 TUTORIAL: 0 SELF STUDY: 30TOTAL HOURS:45

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁							
PO ₂					2	2	1
PO ₃							
PO ₄							
PO ₅							
PO ₆							
PO ₇							
PO ₈	2	3	2	3	3	13	3
PO ₉		1			2	3	1
PO10				2	2	4	1
PO ₁₁							
PO12					2	2	1
PSO ₁							
PSO_2							

XUM403- Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COUI	RSE CODE	XAS404		L	Т	Р	С
COU	RSE NAME	AIRCRAFT PROPULSION		3	1	2	5
PRER	REQUISITES	ENGINEERING THERMODYNAMICS		L	Т	Р	Н
C:P:A	- 4:1:0			3	1	2	6
COUI	RSE OBJECTI	VES					
•	To understand	the principles of operation and design of aircra	ft engi	nes.			
•	To study about	the theories behind the engine system					
•	•	the Air breathing engine sections.					
	5						
COUI	RSE OUTCOM	ES	DO	MA]	IN	LE	VEL
CO1	<i>measures</i> valv	concepts of piston engine and Jet engine and ye timing, frictional power of diesel engine g of petrol engine.	Cogn Psych				ember nanism
CO2	<i>Express</i> the pe	rformance of Inlets and diffusers	Cogn	itive		Unde	erstand
CO3	••	ombustion chamber and <i>measures</i> flash point, and forced convection over a flat plate.	Cogn Psych			Unde Over respo	-
CO4	Assess the per- of aircraft's jet	formance characteristics of turbo machineries engine	Cogn	itive		Evalı	ıate
CO5	<i>Describe</i> the n	ozzle performance of jet engine	Cogn: Psych				ember eption
CO6	Discuss about	the needs of aircraft propulsion.	Aff	ectiv	/e	Resp	onding

UNIT I	INTRODUCTION TO AIRCRAFT PROPULSION	9L+ 3T
Classificati	on of power plants based on methods of aircraft propulsion - Factors affect	ting thrust
and power-	- Reciprocating engine - types of reciprocating engine - turbojet engine -	turboprop
engine -tur	bofan engine - turboshaft engine - ramjet engine- scramjet engine - pulseje	t engine -
thrust equa	tion of jet engine.	

UNIT II INLETS AND DIFFUSERS

Subsonic and supersonic inlets –Modes of inlet operation - internal and external compression intakes - intake characteristic curves - mixed compression intakes - stability of intake operation.

UNIT III COMBUSTION CHAMBER

Classification of Combustion chambers - combustion mechanism - factors affecting combustion chamber performance and design – Flame tube cooling – Flame stabilization - fuel injection.

UNIT IV TURBOMACHINERY

Axial compressor - velocity triangle - stalling - surging - stage losses - centrifugal compressor - Axial flow turbine - radial flow turbine - mixed flow turbine - fans and blowers - efficiencies - turbine blade cooling techniques - lubrication systems in turbo machinery.

9L+ 3T

9L+ 3T

9L+ 3T

UNIT V NOZZLE

9L+ 3T

Over expanded, under and optimum expansion in nozzles - fixed geometry nozzle - variable geometry nozzle - attachment of jet pipe - afterburner - types of thrust reverser - types of thrust vectoring - nozzle cooling.

LECTURE: 45TUTORIAL: 15PRACTICAL :TOTAL: 90TEXT BOOKS

- **1.** Hill, P.G. and Peterson, C.R. "Mechanics and Thermodynamics of Propulsion" Addison Wesley Longman INC, 1999.
- 2. Oates, G.C., "Aero thermodynamics of Aircraft Engine Components", AIAAEducation Series, New York, 1985
- **3.** Mathur, M.L. and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers & Distributors, Delhi, 1999.

REFERENCE BOOKS

1. Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H. "Gas Turbine Theory",Longman, 1989.

2. "Rolls Royce Jet Engine" – Third Edition – 1983.

- List of Experiments
- 1. Valve Timing Diagram for single cylinder four stroke Diesel engine
- 2. Port Timing Diagram for single cylinder two stroke Petrol engine.
- 3. Retardation Test to find Frictional Power of a single cylinder Diesel Engine.
- 4. Studyofanaircraftpistonengine.
- 5. Studyofanaircraftjetengine
- 6. Determination of Flash Point and Fire Point (open Cup).
- 7. Determination of Flash Point (Closed Cup).
- 8. Study of forced convection and free convection heattransfer over a flat plate.
- 9. Study of free jet.
- 10. Study of wall jet.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	1	1	1	1	1	1	6	1
PO ₃	1	2	2	1	2	1	9	1
PO ₄	1	1	1	1	1	1	6	1
PO ₅	1	3	3	1	0	0	8	1
PO ₆	1	1	1	1	1	1	6	1
PO ₇	1	2	2	2	2	2	11	2
PO ₈	0	0	0	0	0	0	0	0
PO9	2	2	2	3	3	2	14	2
PO 10	0	0	0	0	0	0	0	0
PO11	0	1	1	1	1	1	5	1
PO ₁₂	1	1	1	1	1	1	6	1
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0	0

XAS404 - Mapping of CO with PO

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

	RSE CODE	XASE01		L	Т	Р	С
COU	RSE NAME`	AIRCRAFT SYSTEMS AND INSTRUME	ENTS	3	0	0	3
PREF	REQUISITES	NIL		L	Т	Р	Η
	A= 3:0:0			3	0	0	3
	RSE OBJECT						
		hydraulic and pneumatic systems component	its and o	pera	te, t	ypes	of
ins	struments and it	s operation including navigational instruments					
COU	RSE OUTCON	IES	DOMA	IN	LI	EVE	L
CO1	<i>Explain</i> the systems.	components and concepts of various aircraft	Cogniti	ve	Unc	lersta	and
CO2	Compare the l	basic and modern control systems.	Cogniti	ve	Unc	lersta	and
CO3	• •	ctions of fuel system and <i>Examine</i> the auxiliary plant systems.	Cogniti	ve	Und Aı	ersta nalyz	,
CO4	<i>Outline</i> the pressurization	needs of Air-conditioning systems and cabin system.	Cogniti	ve	Unc	lersta	and
CO5	<i>Differentiate</i> Instruments.	the use of flight instruments and Navigation	Cogniti	ve	Aı	nalyz	æ
001	Increatthe need				Analyze		
CO6	<i>Inspect</i> the nee	ds of engine instruments and their operations.	Cogniti	ve	A	nalyz	ze
CO6 UNIT		AFT SYSTEMS	Cogniti	ve	Aı	nalyz 9	ze
UNIT Hydra operat system	TI AIRCR aulic systems – tion – pneumati	AFT SYSTEMS pasic principle – components – hydraulic system c systems – working principles – typical pneum s, landing gear systems – classification – show	ms contro atic powe	ollers er sys	– m stem	9 Iodes – br	s of ake
UNIT Hydra operat system	AIRCRA aulic systems – tion – pneumati n – component table mechanism	AFT SYSTEMS pasic principle – components – hydraulic system c systems – working principles – typical pneum s, landing gear systems – classification – show	ms contro atic powe	ollers er sys	– m stem	9 Iodes – br	s of ake
UNIT Hydra operat system retract UNIT Conve	IAIRCRAaulic systems –tion – pneumatin – componenttable mechanismIIAIRPLAentional Systemns – engine cor	AFT SYSTEMS pasic principle – components – hydraulic system c systems – working principles – typical pneum s, landing gear systems – classification – show n.	ms contro atic powe ck absorb	ollers er sys ers - po	stem – Ex wer a	9 odes – br tens 8 actua	of ake on,
UNIT Hydra operat system retract UNIT Conve	AIRCRA aulic systems – tion – pneumati n – component table mechanism CII AIRPLA entional System ns – engine cor systems – auto p	AFT SYSTEMS pasic principle – components – hydraulic system c systems – working principles – typical pneum s, landing gear systems – classification – shoo n. NE CONTROL SYSTEMS IS – power assisted and fully powered flight of trol systems – push pull rod system – operating	ms contro atic powe ck absorb	ollers er sys ers - po	stem – Ex wer a	9 odes – br tens 8 actua	of ake on,
UNIT Hydra operat system retract UNIT Conve system wire s UNIT Fuel,	I AIRCRA aulic systems – tion – pneumati n – component table mechanism C II AIRPLA entional System ns – engine cor systems – auto p C III ENGINE L Ubricating, stat	AFT SYSTEMS pasic principle – components – hydraulic system c systems – working principles – typical pneum s, landing gear systems – classification – sho n. NE CONTROL SYSTEMS is – power assisted and fully powered flight of trol systems – push pull rod system – operating ilot system, active control technology.	ms contro atic powe ck absorb	er systems er systems - poves – o	- m stem - Ex wer a digita	9 nodes – br tensi 8 actua al fly 8	s of ake on, ited by
UNIT Hydra operat system retract UNIT Conve system wire s UNIT Fuel,	I AIRCRA aulic systems – tion – pneumati n – component table mechanism TII AIRPLA entional System ns – engine cor systems – auto p TII ENGINE lubricating, standard ns -types of value	AFT SYSTEMS pasic principle – components – hydraulic system c systems – working principles – typical pneum s, landing gear systems – classification – shoo n. NE CONTROL SYSTEMS is – power assisted and fully powered flight of trol systems – push pull rod system – operating ilot system, active control technology. E SYSTEMS rting and ignition systems in piston and jet e	ms contro atic powe ck absorb controls – principle engines- 1	er systems er systems - poves – o	- m stem - Ex wer a digita	9 nodes – br tensi 8 actua al fly 8	s of ake on, ited by
UNIT Hydra operat system retract UNIT Conve system wire s UNIT Fuel, system UNIT Basic cycle	I AIRCRA aulic systems – tion – pneumati n – component table mechanism TII AIRPLA entional System ns – engine consystems – auto p TII ENGINE lubricating, stams - types of value TIV AIRCON air cycle system	AFT SYSTEMS Dasic principle – components – hydraulic system c systems – working principles – typical pneum s, landing gear systems – classification – shoo n. NE CONTROL SYSTEMS is – power assisted and fully powered flight of trol systems – push pull rod system – operating ilot system, active control technology. SYSTEMS rting and ignition systems in piston and jet e ves used in gas turbine engines. NDITIONING AND PRESSURIZING SYSTE is – vapour cycle systems, boot-strap air cycle sy pration air cycle systems – oxygen systems– fire p	ms contro atic powe ck absorb controls – principle engines- r M stem – ev	ollers er sy ers - po es – o multi apor	- m stem - Ex wer a digita	9 nodes – br tens: 8 actua actua 11 fly 8 ine 1 9 yapo	ited

Flight instruments and navigation instruments – accelerometers, air speed indicators – mach meters – altimeters – gyroscopic instruments– principles and operation – study of various types of engine instruments – digital tachometers – temperature gauges – pressure gauge – operation and principles.

LE	CTURE: 45	TUTORIAL: 0	PRACTICAL: 0	TOTAL: 45
TE	XT BOOKS			
1.	-	L.K.Sudha. "Aircraft nternational Publishing I	Instrumentation and systems" House Pvt.Ltd.	ISBN-13: 978-
2.	Mekinley, J.L. and	R.D. Bent, "Aircraft Pow	ver Plants", McGraw Hill 1993.	
3.	Pallet, E.H.J, "Airc	raft Instruments & Princi	ples", Pitman & Co 1993.	
RE	FERENCE BOOK	S		
1.	Roy Lanagton, Chu	ick Clark etc., "Aircraft I	Fuel Systems" Publication Wile	у.
2.	Mckinley, J.L. and	Bent R.D. "Aircraft Mai	ntenance & Repair", McGraw H	lill, 1993.
3.		1	Mechanics" US dept. of Transp Store, New Delhi, 1995.	ortation, Federal,
E –	- References			
1.	"Instrument Landin	ng Systems (ILS)" Autho	r: Michael Feramez.	
2.	Nolan, Chap-2, Na	vigation Systems- Enrout	te	
3.	Jan Rohac "Aircrat	t and Spacecraft Instrum	entation" Lecture Notes- EFIS,	EICAS, ECAM.
4.	nptel.ac.in/			

CO Vs PO			CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3	
PO ₁	3	2	2	2	2	1	12	3
PO ₂	2	2	3	2	2	2	13	3
PO ₃	1	2	3	3	1	1	11	3
PO ₄	0	1	2	3	1	1	8	2
PO ₅	0	1	2	1	0	1	5	1

XASE01 -Mapping of CO with PO

PO ₆	1	2	3	2	2	2	12	3
PO ₇	0	1	3	2	2	1	9	2
PO ₈	1	2	1	1	1	1	7	2
PO ₉	1	2	2	1	1	1	8	2
PO ₁₀	0	0	1	1	1	0	3	1
PO ₁₁	1	0	0	0	0	0	1	1
PO ₁₂	2	2	3	2	2	2	13	3
PSO ₁	0	1	2	1	2	1	7	2
PSO ₂	1	0	3	0	0	1	5	1

$1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	XAS406	L	Τ	Р	C
COURSE NAME	ELEMENTS OF SATELLITE TECHNOLOGY	3	0	0	3
PREREQUISITES	NIL	L	Т	Р	Η
C:P:A= 3:0:0		3	0	0	3
COURSE OBJECTI	VES				

• To develop a basic knowledge about the solar system.

• To learn the different cases of satellite orbit transfer, different satellite injection errors.

COUR	RSE OUTCOMES	DOMAIN	LEVEL
CO1	Describe the basic satellite network systems.	Cognitive	Remember
CO2	<i>Estimate</i> the orbital maneuver with help of orbit equation and satellite trajectories.	Cognitive	Understand
CO3	<i>Explain</i> the structural configuration and need of thermal control in satellite.	Cognitive	Apply
CO4	<i>Differentiate</i> the different control methods and systems of satellite.	Cognitive	Analyze
CO5	<i>Judge</i> the power system and bus electronics requirements for the satellite operation.	Cognitive	Evaluate
CO6	<i>Explain</i> the telemetry and telecommand systems.	Cognitive	Apply

UNIT I	INTRODUCTION TO SATELLITE SYSTEMS	9
	tellite applications and missions - Satellite types - Orbit types - Space enviro	onment –
Launch veh	icles – Satellite sub systems and their functions.	
UNIT II	ORBITAL MECHANICS	9
	al of flight dynamics – Time and coordinate systems – Orbit determinate - Orbital equation – GPS systems and application for satellite/orbit determine ectories.	
UNIT III	SATELLITE STRUCTURES & THERMAL CONTROL	9
Satellite me	chanical and structural configuration – Structural materials and fabrication –	The need
	control: externally induced thermal environment - Internally induced	
	t - Heat transfer mechanism – Thermal control systems: active and passive meth	
UNIT IV	SPACECRAFT CONTROL	9
	uirements: attitude control - type of control maneuvers - Stabilization schem	es: spin
	, gravity gradient methods, 3 axis stabilization – Commonly used control system	
	ystems, momentum exchange systems.	
-	POWER SYSTEM AND BUS ELECTRONICSIs: Silicon and Ga-As cells – Space battery systems – battery types, characteris	9 stics and
Solar pane efficiency p Telemetry		nication
Solar pane efficiency p Telemetry	Is: Silicon and Ga-As cells – Space battery systems – battery types, characteris arameters – Power electronics. and telecommand systems: Tm & TC functions - generally employed commu	nication
Solar pane efficiency p Telemetry bands (UHF TEXT BOO 1. Rilay,	 Is: Silicon and Ga-As cells – Space battery systems – battery types, characteris arameters – Power electronics. and telecommand systems: Tm & TC functions - generally employed commu F/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu DKS FF , Space Systems Engineering, McGraw Hill, 1982. 	nication
Solar pane efficiency p Telemetry bands (UHF TEXT BOO 1. Rilay,	 Is: Silicon and Ga-As cells – Space battery systems – battery types, characteris arameters – Power electronics. and telecommand systems: Tm & TC functions - generally employed commu S/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu OKS 	nication
Solar pane efficiency p Telemetry bands (UHF TEXT BOO 1. Rilay, 2. Vertre 3. Introd	 Silicon and Ga-As cells – Space battery systems – battery types, characteris arameters – Power electronics. and telecommand systems: Tm & TC functions - generally employed commu //VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu DKS FF , Space Systems Engineering, McGraw Hill, 1982. egt.M.,Principles of Astronautics, Elsvier Publishing Company, 1985. uction Space Flight, Francis J. Hale Prentice Hall, 1994. 	inication iter.
Solar pane efficiency p Telemetry bands (UHF TEXT BOO 1. Rilay, 2. Vertre 3. Introd	 Is: Silicon and Ga-As cells – Space battery systems – battery types, characteris arameters – Power electronics. and telecommand systems: Tm & TC functions - generally employed commu Z/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu DKS FF, Space Systems Engineering, McGraw Hill, 1982. egt.M.,Principles of Astronautics, Elsvier Publishing Company, 1985. 	inication iter.
Solar pane efficiency p Telemetry bands (UHF TEXT BOO 1. Rilay, 2. Vertre 3. Introd 4. Space	 Silicon and Ga-As cells – Space battery systems – battery types, characteris arameters – Power electronics. and telecommand systems: Tm & TC functions - generally employed commu //VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu DKS FF , Space Systems Engineering, McGraw Hill, 1982. egt.M.,Principles of Astronautics, Elsvier Publishing Company, 1985. uction Space Flight, Francis J. Hale Prentice Hall, 1994. 	inication iter.
Solar pane efficiency p Telemetry bands (UHF TEXT BOO 1. Rilay, 2. Vertre 3. Introd 4. Space REFEREN	 Silicon and Ga-As cells – Space battery systems – battery types, characteris arameters – Power electronics. and telecommand systems: Tm & TC functions - generally employed commu Z/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu DKS FF , Space Systems Engineering, McGraw Hill, 1982. egt.M.,Principles of Astronautics, Elsvier Publishing Company, 1985. uction Space Flight, Francis J. Hale Prentice Hall, 1994. Vehicle Design, Michael D. Griffin and James R. French, AIAAEducation Series 	inication iter.
Solar pane efficiency p Telemetry bands (UHF TEXT BOO 1. Rilay, 2. Vertre 3. Introd 4. Space REFEREN 1. Space	 Silicon and Ga-As cells – Space battery systems – battery types, characteris arameters – Power electronics. and telecommand systems: Tm & TC functions - generally employed commu S/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu DKS FF , Space Systems Engineering, McGraw Hill, 1982. egt.M.,Principles of Astronautics, Elsvier Publishing Company, 1985. uction Space Flight, Francis J. Hale Prentice Hall, 1994. Vehicle Design, Michael D. Griffin and James R. French, AIAAEducation Serie 	inication iter.
Solar pane efficiency p Telemetry bands (UHF TEXT BOO 1. Rilay, 2. Vertre 3. Introd 4. Space REFEREN 1. Space 2. Lewis	 Silicon and Ga-As cells – Space battery systems – battery types, characteris arameters – Power electronics. and telecommand systems: Tm & TC functions - generally employed commu G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu DKS FF , Space Systems Engineering, McGraw Hill, 1982. Degt.M.,Principles of Astronautics, Elsvier Publishing Company, 1985. uction Space Flight, Francis J. Hale Prentice Hall, 1994. Vehicle Design, Michael D. Griffin and James R. French, AIAAEducation Serie CE BOOKS craft Thermal Control, Hand Book, Aerospace Press, 2002. 	es, 1991.
Solar pane efficiency p Telemetry bands (UHF TEXT BOO 1. Rilay, 2. Vertre 3. Introd 4. Space REFEREN 1. Space 2. Lewis 3. Richa 1995.	 Is: Silicon and Ga-As cells – Space battery systems – battery types, characteris arameters – Power electronics. and telecommand systems: Tm & TC functions - generally employed commu G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed G/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed G/VHF, S, Space Systems Induced G/VHF, Space Graft, McGrawHill, 1992. CE BOOKS Craft Thermal Control, Hand Book, Aerospace Press, 2002. H. Abraham ,Structural Design of Missiles & Space Craft, McGrawHill, 1992. rd.F, Filipowsky Eugen I Muehllorf , Space Communications Systems, Princt 	es, 1991.
Solar pane efficiency pTelemetry bands (UHFTEXT BOO1. Rilay,2. Vertree3. Introd4. SpaceREFEREN1. Space2. Lewis3. Richa1995.4. Hugh	 Silicon and Ga-As cells – Space battery systems – battery types, characteris arameters – Power electronics. and telecommand systems: Tm & TC functions - generally employed commu Z/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu FF , Space Systems Engineering, McGraw Hill, 1982. Sgt.M.,Principles of Astronautics, Elsvier Publishing Company, 1985. uction Space Flight, Francis J. Hale Prentice Hall, 1994. Vehicle Design, Michael D. Griffin and James R. French, AIAAEducation Serie CE BOOKS craft Thermal Control, Hand Book, Aerospace Press, 2002. H. Abraham ,Structural Design of Missiles & Space Craft, McGrawHill, 1992. rd.F, Filipowsky Eugen I Muehllorf , Space Communications Systems, Princt es, P.C. Space Craft Altitude Dynamics, Wilsey, 1986. art, Heat Transfer, McGraw Hill, Martin J. Communication Satellite Systems, 2005. 	es, 1991.
Solar pane efficiency pTelemetry bands (UHFTEXT BOO1.Rilay, 2.2.Vertree3.Introd4.SpaceREFEREN1.Space2.Lewis3.Richa 1995.4.Hughe5.Gebm	 Silicon and Ga-As cells – Space battery systems – battery types, characteris arameters – Power electronics. and telecommand systems: Tm & TC functions - generally employed commu VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard compu VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computed verse, S, Space Systems Engineering, McGraw Hill, 1982. GE BOOKS CE BOOKS Craft Thermal Control, Hand Book, Aerospace Press, 2002. H. Abraham ,Structural Design of Missiles & Space Craft, McGrawHill, 1992. rd.F, Filipowsky Eugen I Muehllorf , Space Communications Systems, Princt es, P.C. Space Craft Altitude Dynamics, Wilsey, 1986. art, Heat Transfer, McGraw Hill, Martin J. Communication Satellite Systems, 978. 	es, 1991.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Total /5
PO ₁	3	3	3	3	3	3	15	3
PO ₂	3	2	2	3	2	2	12	2
PO ₃	2	3	3	3	2	1	13	3
PO ₄	2	2	2	2	2	2	10	2
PO5	0	0	0	0	0	0	0	0
PO ₆	1	1	1	2	2	2	7	1
PO7	2	2	2	2	2	2	10	2
PO ₈	0	0	0	0	0	0	0	0
PO9	2	2	2	2	2	2	10	2
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	1	1	1	1	1	1	5	1
PO12	2	2	2	2	2	2	10	2
PSO ₁	2	2	2	2	2	2	10	2
PSO ₂	3	3	3	3	3	2	15	3

XAS406 - Mapping of CO with PO

COUR	SE CODE	XAS501		L	Т	P	C	
COUR	SE NAME	AERODYNAMICS II		3	1	0	4	
PRERI	EQUISITES	AERODYNAMICS I		L	Т	Р	Η	
C:P:A=	= 4:0:0			3	1	0	4	
COUR	SE OBJECTI	VES						
•	To introduce th	ne concepts of compressibility, to make the	student	unde	rstan	d thet	heory	
	behind the form	nation of shocks and expansion fans in Supe	ersonic flo	ows.				
•	Tointroduce th	e methodology of measurements in Superso	nic flows	•				
COUR	SE OUTCOM	ES	DOMA	IN		LEVE	EL	
CO1		basic concepts of Aerodynamics and pressible flow for various conditions	Cognit	ive	U	emen nderst Analy	and	
CO2	<i>Generalize</i> th	e concepts of Normal shock	Cognit	ive	-	nderst Analy		
CO3	Analyze abou various shape	it oblique shock and flow past through s	Cognit	ive	U	nderst Analy	and	
CO4	Analyze diff	Ferential equations of motions for steady flows at Linearized condition	Cognit	ive	U	Understand Analysis		
CO5		ous designs of Aero foils and <i>Explain</i> its	Cognit	ive	Remember Understand			
CO6	•	ious types of wind tunnels and <i>Discuss</i> visualization methods	Cognit	ive		Remember Understand		
UNIT I	ONE DIN	IENSIONAL COMPRESSILBLE FLOW	/			9	L+5]	
state fl	ow equations -	 continuity and state equations –velocity Flow through converging, diverging pas Mach waves and Mach angles. 					•	
UNIT I		L, OBLIQUE SHOCKS AND EXPANSIO		FS		OT .	+6T	
Prandtl corresp Fanno I	equation and F onding equatio Flow – Flow pa	ankine–Hugonoit relation - Normal shock- ns –shock polar – Flow past wedges and cor st convex corners.	Oblique s acave cor	hock ners	–Ray	leigh	and	
UNIT I		ENETIAL EQUATIONS OF MOTIC COMPRESSIBLE FLOWS	ON FOI	R A		9L+4	Т	
-	-	ential theory – solutions for subsonic flows- as for subsonic flows, Linearized two dimen						
UNIT I	V AIRFOII	IN HIGH SPEED FLOWS				9L		
		cal Mach numbers – Lift and drag divergen	ce - Char	acter	istics			
wings -		kness ,camber and aspect ratio of wings -						

UNIT V HIGH SPEED WIND TUNNELS

9L

Blow down, In-draft and induction tunnel layouts and their design features - Transonic, supersonic and hyper sonic tunnels and their peculiarities – Helium and gun tunnels - Shock tubes - Optical methods of flow visualization.

LECTURE: 45TUTORIAL: 15TOTAL: 60

TEXT BOOKS

- 1. John.D.Anderson, "Modern Compressible Flows". Tata McGraw Hill, New Delhi, 1999.
- **2.** Rathakrishnan, E., "Gas Dynamics", Prentice Hall of India, 2003.

REFERENCE BOOKS

 McCornick.W., "Aerodynamics, Aeronautics and Flight Mechanics", John Wiley, 1979
 Zcrow and J.D.Anderson, "Elements of Gas dynamics" Tata McGraw Hill, New Delhi, 1999.

E-REFERENCES

- 1. http://nptel.ac.in/courses/101105059/
- 2. http://nptel.ac.in/courses/101106040/

COURSE CODE	XAS502	L	Т	Р	С
COURSE NAME	AIRCRAFT STRUCTURES II	3	1	1	5
PREREQUISITES	AIRCRAFT STRUCTURES I	L	Т	Р	Η
C:P:A= 4:1:0		3	1	2	6
COURSE OBJECTI	VES				

- To understand the behaviour of various aircraft structural components under different types of loads.
- To study the concepts of shear flow.
- To understand buckling stress of thin walled sections.

COUR	RSE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Express</i> the flexure formula and <i>apply</i> it to symmetrical and unsymmetrical sections of beams.	Cognitive	Understand, Apply
CO2	<i>Describe</i> stresses in beams and <i>compute</i> shear flow in open sections.	Cognitive	Remember, Understand, Apply
CO3	<i>Discuss</i> shear flow in closed sections and <i>distinguish</i> single cell and multi-cell structures.	Cognitive	Understand, Analyze
CO4	<i>Explain</i> bucking of plates; <i>calculate</i> crippling stresses by Needham's and Gerard's methods.	Cognitive	Understand, Apply

Elementary theory of bending – Introduction to semi-monocoque structures - Stresses in beams of symmetrical and unsymmetrical sections -Box beams – General formula for bending stresses principal axes method – Neutral axis method. UNIT II SHEAR FLOW IN OPEN SECTIONS 9L+3T Shear stresses in beams – Shear flow in stiffened panels - Shear flow in thin walled open tubes – Shear centre – Shear flow in open sections with stiffeners. 10L+4T UNIT III SHEAR FLOW IN CLOSED SECTIONS 10L+4T Shear stresses in beams – Shear centre - Shear flow in thin walled closed tubes - Bred-Batho theory – Torsional shear flow in multi cell tubes - Flexural shear flow in multi cell stiffened structures. 10L+4T UNIT IV BUCKLING OF PLATES 8L+2T Rectangular sheets under compression - Local buckling stress of thin walled sections - Crippling stresses by Needham'sand Gerard's methods - Thin walled column strength-Sheet stiffener panels - Effective width, inter rivet and sheet wrinkling failures. 9L+4T UNIT V STRESS ANALYSIS IN WING AND FUSELAGE 9L+4T Procedure–Shear and bending moment distribution for semi cantilever and other types of wings and fuselage, thin webbed beam with parallel and non-parallel flanges – Shear resistant web beams - Tension field web beams (Wagner's). 10L+4T TEXT BOOKS 1 E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., 1980. 1980. 2. Megson T.M.G, "Aircraft Structures for Engineering St		E								
COG Choose the spectmen and measure the deflection; explain structural repair works. Psychomotor Guided response UNIT I BENDING OF BEAMS 9L+2T Elementary theory of bending – Introduction to semi-monocoque structures - Stresses in beams of symmetrical acetions -Box beams – General formula for bending stresses principal axes method – Neutral axis method. 9L+3T UNIT II SHEAR FLOW IN OPEN SECTIONS 9L+3T Shear stresses in beams – Shear flow in stiffened panels - Shear flow in thin walled open tubes – Shear centre – Shear flow in open sections with stiffeners. 10L+4T Shear stresses in beams – Shear centre - Shear flow in thin walled closed tubes - Bredt-Batho there flange box beams – Shear centre - Shear flow in thin walled closed tubes - Bredt-Batho theory – Torsional shear flow in multi cell tubes - Flexural shear flow in multi cell stiffened structures. 8L+2T UNIT IV BUCKLING OF PLATES 8L+2T Rectangular sheets under compression - Local buckling stress of thin walled sections - Crippling stresses by Needham'sand Gerard's methods - Thin walled column strength-Sheet stiffener panels - Effective width, inter rivet and sheet wrinkling failures. 9L+4T UNIT V STRESS ANALYSIS IN WING AND FUSELAGE 9L+4T Procedure–Shear and bending moment distribution for semi cantilever and other types of wings and fuselage, thin webbed beam with parallel and non-parallel flanges – Shear resistant web beams - Tension field web beams (Wagner's).	CO5	-	•	Cognitive	Apply, Analyze					
UNIT IBENDING OF BEAMS9L+2TElementary theory of bending – Introduction to semi-monocoque structures - Stresses in beams of symmetrical and unsymmetrical sections -Box beams – General formula for bending stresses principal axes method – Neutral axis method.9L+2TUNIT IISHEAR FLOW IN OPEN SECTIONS9L+3TShear stresses in beams – Shear flow in stiffened panels - Shear flow in thin walled open tubes – Shear centre – Shear flow in open sections with stiffeners.9L+4TUNIT IIISHEAR FLOW IN CLOSED SECTIONS10L+4TShear dentre – Shear flow in closed sections with stiffeners- Angle of twist - Shear flow in two flange and three flange box beams – Shear centre - Shear flow in thin walled closed tubes - Bredt-Batho theory – Torsional shear flow in multi cell tubes - Flexural shear flow in multi cell stiffened structures.8L+2TUNIT IVBUCKLING OF PLATES8L+2TRectangular sheets under compression - Local buckling stress of thin walled sections - Crippling stresses by Needham's and Gerard's methods - Thin walled column strength-Sheet stiffener panels - Effective width, inter rivet and sheet wrinkling failures.9L+4TUNIT VSTRESS ANALYSIS IN WING AND FUSELAGE9L+4TProcedure-Shear and bending moment distribution for semi cantilever and other types of wings and fuselage, thin webbed beam with parallel and non-parallel flanges – Shear resistant web beams - Tension field web beams (Wagner's).9L+4TTEXT BOOKS1E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., 1980.1980.2.Megson T.M.G, "Aircraft Structures for Engineering Students", Edward Arnold, 1995.1993.REFER	CO6			Psychomotor	Guided					
 beams of symmetrical and unsymmetrical sections -Box beams – General formula for bending stresses principal axes method – Neutral axis method. UNIT II SHEAR FLOW IN OPEN SECTIONS 9L+3T Shear stresses in beams – Shear flow in stiffened panels - Shear flow in thin walled open tubes – Shear centre – Shear flow in open sections with stiffeners. UNIT III SHEAR FLOW IN CLOSED SECTIONS 10L+4T Shear flow in closed sections with stiffeners – Angle of twist - Shear flow in two flange and three flange box beams – Shear centre - Shear flow in thin walled closed tubes - Bredt-Batho theory – Torsional shear flow in multi cell tubes - Flexural shear flow in multi cell stiffened structures. UNIT IV BUCKLING OF PLATES 8L+2T Rectangular sheets under compression - Local buckling stress of thin walled sections - Crippling stresses by Needham'sand Gerard's methods - Thin walled column strength-Sheet stiffener panels - Effective width, inter rivet and sheet wrinkling failures. UNIT V STRESS ANALYSIS IN WING AND FUSELAGE 9L+4T Procedure–Shear and bending moment distribution for semi cantilever and other types of wings and fuselage, thin webbed beam with parallel and non-parallel flanges – Shear resistant web beams - Tension field web beams (Wagner's). TEXT BOOKS I. E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., 1980. Megson T.M.G, "Aircraft Structures for Engineering Students", Edward Arnold, 1995. REFERENCE BOOKS Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990. 	UNIT	Ι	BENDING OF BEAMS		9L+2T					
Shear stresses in beams – Shear flow in stiffened panels - Shear flow in thin walled open tubes – Shear centre – Shear flow in open sections with stiffeners. 10L+4T WNIT III SHEAR FLOW IN CLOSED SECTIONS 10L+4T Shear flow in closed sections with stiffeners– Angle of twist - Shear flow in two flange and three flange box beams – Shear centre - Shear flow in thin walled closed tubes - Bredt-Batho theory – Torsional shear flow in multi cell tubes - Flexural shear flow in multi cell stiffened structures. 8L+2T WNIT IV BUCKLING OF PLATES 8L+2T Rectangular sheets under compression - Local buckling stress of thin walled sections - Crippling stresses by Needham'sand Gerard's methods - Thin walled column strength-Sheet stiffener panels - Effective width, inter rivet and sheet wrinkling failures. 9L+4T Procedure–Shear and bending moment distribution for semi cantilever and other types of wings and fuselage, thin webbed beam with parallel and non-parallel flanges – Shear resistant web beams - Tension field web beams (Wagner's). 9L+4T TEXT BOOKS 1 E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., 1980. 1993. 2. Megson T.M.G, "Aircraft Structures for Engineering Students", Edward Arnold, 1995. REFERENCE BOOKS 1. Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993. 1993. 2. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990.<	beams	of symm	etrical and unsymmetrical sections -Box beau	-						
tubes – Shear centre – Shear flow in open sections with stiffeners. UNIT III SHEAR FLOW IN CLOSED SECTIONS 10L+4T Shear flow in closed sections with stiffeners – Angle of twist - Shear flow in two flange and three flange box beams – Shear centre - Shear flow in thin walled closed tubes - Bredt-Batho theory – Torsional shear flow in multi cell tubes - Flexural shear flow in multi cell stiffened structures. 8L+2T WINT IV BUCKLING OF PLATES 8L+2T Rectangular sheets under compression - Local buckling stress of thin walled sections - Crippling stresses by Needham'sand Gerard's methods - Thin walled column strength-Sheet stiffener panels - Effective width, inter rivet and sheet wrinkling failures. UNIT V STRESS ANALYSIS IN WING AND FUSELAGE 9L+4T Procedure–Shear and bending moment distribution for semi cantilever and other types of wings and fuselage, thin webbed beam with parallel and non-parallel flanges – Shear resistant web beams - Tension field web beams (Wagner's). TEXT BOOKS IEFERENCE BOOKS 1. E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., 1980. 1993. 2. Megson T.M.G, "Aircraft Structures for Engineering Students", Edward Arnold, 1995. REFERENCE BOOKS 1. Peery, D.J. and Azar, J.J., Aircraft Struc	UNIT	II	SHEAR FLOW IN OPEN SECTIONS		9L+3T					
Shear flow in closed sections with stiffeners– Angle of twist - Shear flow in two flange and three flange box beams – Shear centre - Shear flow in thin walled closed tubes - Bredt-Batho theory – Torsional shear flow in multi cell tubes - Flexural shear flow in multi cell stiffened structures. UNIT IV BUCKLING OF PLATES 8L+2T Rectangular sheets under compression - Local buckling stress of thin walled sections - Crippling stresses by Needham'sand Gerard's methods - Thin walled column strength-Sheet stiffener panels - Effective width, inter rivet and sheet wrinkling failures. 9L+4T Procedure–Shear and bending moment distribution for semi cantilever and other types of wings and fuselage, thin webbed beam with parallel and non-parallel flanges – Shear resistant web beams - Tension field web beams (Wagner's). 9L+4T TEXT BOOKS I E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., 1980. 1980. 2. Megson T.M.G, "Aircraft Structures for Engineering Students", Edward Arnold, 1995. REFERENCE BOOKS 1. Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993. 1990. 2. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990. 1000000000000000000000000000000000000					thin walled open					
 three flange box beams – Shear centre - Shear flow in thin walled closed tubes - Bredt-Batho theory – Torsional shear flow in multi cell tubes - Flexural shear flow in multi cell stiffened structures. UNIT IV BUCKLING OF PLATES 8L+2T Rectangular sheets under compression - Local buckling stress of thin walled sections - Crippling stresses by Needham'sand Gerard's methods - Thin walled column strength-Sheet stiffener panels - Effective width, inter rivet and sheet wrinkling failures. UNIT V STRESS ANALYSIS IN WING AND FUSELAGE 9L+4T Procedure–Shear and bending moment distribution for semi cantilever and other types of wings and fuselage, thin webbed beam with parallel and non-parallel flanges – Shear resistant web beams - Tension field web beams (Wagner's). TEXT BOOKS E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., 1980. Megson T.M.G, "Aircraft Structures for Engineering Students", Edward Arnold, 1995. REFERENCE BOOKS Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990. 	UNIT	III	SHEAR FLOW IN CLOSED SECTIONS	5	10L+4T					
Rectangular sheets under compression - Local buckling stress of thin walled sections - Crippling stresses by Needham'sand Gerard's methods - Thin walled column strength-Sheet stiffener panels - Effective width, inter rivet and sheet wrinkling failures. UNIT V STRESS ANALYSIS IN WING AND FUSELAGE 9L+4T Procedure–Shear and bending moment distribution for semi cantilever and other types of wings and fuselage, thin webbed beam with parallel and non-parallel flanges – Shear resistant web beams - Tension field web beams (Wagner's). 9L+4T TEXT BOOKS 1. E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., 1980. 2. Megson T.M.G, "Aircraft Structures for Engineering Students", Edward Arnold, 1995. REFERENCE BOOKS 1. 1. Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993. 2. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990.	three f theory	lange boz – Torsio	x beams – Shear centre - Shear flow in thin y	walled closed tu	bes - Bredt-Batho					
Crippling stresses by Needham'sand Gerard's methods - Thin walled column strength-Sheet stiffener panels - Effective width, inter rivet and sheet wrinkling failures. UNIT V STRESS ANALYSIS IN WING AND FUSELAGE 9L+4T Procedure-Shear and bending moment distribution for semi cantilever and other types of wings and fuselage, thin webbed beam with parallel and non-parallel flanges – Shear resistant web beams - Tension field web beams (Wagner's). TEXT BOOKS TEXT BOOKS 1. E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., 1980. 1980. REFERENCE BOOKS 1. Peery, D.J. and Azar, J.J., Aircraft Structures for Engineering Students", Edward Arnold, 1995. Reference BOOKS 1. Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993. 2. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990.	UNIT	IV	BUCKLING OF PLATES		8L+2T					
 Procedure–Shear and bending moment distribution for semi cantilever and other types of wings and fuselage, thin webbed beam with parallel and non-parallel flanges – Shear resistant web beams - Tension field web beams (Wagner's). TEXT BOOKS E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., 1980. Megson T.M.G, "Aircraft Structures for Engineering Students", Edward Arnold, 1995. REFERENCE BOOKS Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990. 	Crippli	ing stress	es by Needham'sand Gerard's methods - Th	in walled colum						
 wings and fuselage, thin webbed beam with parallel and non-parallel flanges – Shear resistant web beams - Tension field web beams (Wagner's). TEXT BOOKS E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., 1980. Megson T.M.G, "Aircraft Structures for Engineering Students", Edward Arnold, 1995. REFERENCE BOOKS Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990. 	UNIT	V	STRESS ANALYSIS IN WING AND FU	SELAGE	9L+4T					
 E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., 1980. Megson T.M.G, "Aircraft Structures for Engineering Students", Edward Arnold, 1995. REFERENCE BOOKS Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990. 	wings resista	and fuse nt web be	elage, thin webbed beam with parallel an eams - Tension field web beams (Wagner's).							
1980. 2. Megson T.M.G, "Aircraft Structures for Engineering Students", Edward Arnold, 1995. REFERENCE BOOKS 1. Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993. 2. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990.				uctures" Trista	te Offset Co					
 REFERENCE BOOKS 1. Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993. 2. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990. 				uoturos , 1115tu	le onser co.,					
 Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990. 	2. N	Megson T	M.G, "Aircraft Structures for Engineering S.	tudents", Edwar	d Arnold, 1995.					
 Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1993. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990. 	REFE	RENCE	BOOKS							
Edition, McGraw-Hill, Singapore, 1990.	1. F	Peery, D.		ion, McGraw-H	ill, New York,					
3. Rivello R.M. Theory and Analysis of Flight structures McGraw-Hill N.Y. 1993		2. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd								
in a server of the server of t	3. F	Rivello, R	.M., Theory and Analysis of Flight structures	s, McGraw-Hill,	N.Y., 1993.					

Laborato	·y
Ex. No.	List of Experiments
1	Determination of Young's modulus of Steel or Aluminum.
2	Deflection of Beams with various end conditions.
3	Verification of Maxwell's Reciprocal theorem.
4	Column – Testing.
5	Determination of Membrane stresses in thin cylinder under internal pressure.
6	Exercise on Riveted joints & repair work.
7	Exercise on composites & repair work.
8	Repair of Sandwich panels.
9	Patch repair welding using TIG.
10	Patch repair welding using MIG.
LECTUR	E: 45 TUTORIAL: 15 PRACTICAL:30 TOTAL: 90

XAS502 - Mapping of CO with PO

	1	111000		ning of CC	<i>y</i> with I	<u> </u>		
CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	2	3	0	11	2
PO ₂	1	2	3	2	3	3	14	2
PO ₃	0	2	2	2	3	3	12	2
PO ₄	0	0	0	2	2	2	6	1
PO ₅	2	2	2	3	3	3	15	3
PO ₆	0	0	0	3	2	2	7	1
PO ₇	0	0	0	2	2	2	6	1
PO ₈	0	0	0	0	0	0	0	0
PO ₉	0	0	0	2	2	3	7	1

PO 10	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	2	2	0
PO ₁₂	0	0	0	2	2	0	4	1
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	2	2	4	1

COURSE CODE	XAS503	L	Т	Р	С						
COURSE NAME	ROCKET AND SPACECRAFT PROPULSION	3	1	0	4						
PREREQUISITES	AIRCRAFT PROPULSION	L	Т	Р	Η						
C:P:A= 4:0:0		3	1	0	4						
COURSE OBJJECT	COURSE OBJJECTIVES										

• To understand the principles of operation and design of rocket and spacecraft propulsion.

• To study about the Non Air breathing Engines.

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	Describe the basic principle of operation of ramjet and scramjet	Cognitive	Remember
CO2	<i>Illustrate</i> solid, liquid and hybrid technology in space	Cognitive	Remember, Understand
CO3	<i>Explain</i> the operation of nuclear rocket and its types in space	Cognitive	Understand, Apply
CO4	<i>Classify</i> various electric propulsion techniques in space	Cognitive	Understand
CO5	<i>Illustrate</i> the applications of propulsion concepts in space	Cognitive	Understand
CO6	<i>Explain</i> the need of rocket and spacecraft propulsion	Cognitive	Apply
UNIT I	RAMJET AND SCRAMJET		9

Ramjet and scramjet: basic principle - geometry - diffuser - combustor - nozzle - performance and control - testing difficulties - thrust to weight ratio - combustion mechanism - propellant usage - advantages and disadvantages.

UNIT II CHEMICAL ROCKETS

9

Solid rocket - different perforation - liquid rocket engine - pressure feed system - pump feed system - propellant tanks - hybrid rockets - performance analysis - fuel oxidizer combination - combustion instability - thrust vector control - nozzle selection.

UNIT III NUCLEAR ROCKET

Nuclear power in space - Nuclear pulse propulsion - Nuclear thermal rocket - direct nuclear rocket - nuclear electric rocket - solid core - liquid core - gas core - test firing - current research - limitations.

UNIT IV ELECTRIC ROCKET

Ideal flight performance - electrothermal thrusters - non thermal electric thrusters - optimum flight performance - mission applications - electric space power supplies and power conditioning systems.

UNIT V APPLICATION

Rocket propulsion - rocket boosters - military operations - missiles - spaceships - reentry vehicle - satellite propulsion - application in research - future concepts.

LECTURE:45TUTORIAL:15TOTAL: 60

TEXT BOOKS

1. George P.Sutton, Oscar Biblarz, "Rocket Propulsion Elements", seventh edition, Wiley India pvt.Ltd , 2014

2. T.W.Lee, "Aerospace Propulsion", Wiley India pvt.Ltd , 2013.

REFERENCE BOOKS

1. C.D.Brown, "spacecraft propulsion", AIAA Education series, washington, DC,1996

2. R.G.Jahn, "Physics of electric propulsion", McGraw-Hill book company, New York, 1968

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	3	3	3	3	2	2	16	3
PO ₃	2	3	3	3	2	2	15	3
PO ₄	3	3	3	3	2	2	16	3
PO ₅	0	0	0	0	0	0	0	0
PO ₆	2	3	3	3	2	2	14	3
PO 7	1	1	1	1	1	2	5	1
PO ₈	0	0	0	0	0	0	0	0

XAS503 - Mapping of CO with PO

9

9

9

PO ₉	1	1	1	1	1	1	6	1
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	1	0	0
PO ₁₂	2	2	2	2	3	3	13	3
PSO ₁	2	2	2	2	2	2	12	2
PSO ₂	2	3	3	3	2	2	15	3

COURSE CODE		XAS504			Т	P	С		
COURSE NAME		SPACE MECHANICS		3	0	0	3		
PREREQUISITE		ELEMENTS OF SATELLITE			Т	Р	Η		
S		TECHNOLOGY							
C:P:A= 3:0:0				3	0	0	3		
COURSE OBJECTIVES									
• To study the basic concepts of orbital Mechanics with particular emphasis on									
interplanetary trajectories.									
S. No.		COURSE OUTCOMES	DOMAIN		IN	LEVEL			
	<i>Recall</i> about basis of Solar system and <i>Describe</i> about its					Remember			
CO1		ference frames and systems			ve	Understand			
CO2	-	eir characteristics		Cognitive		Understand			
001						Analysis			
CO3	<i>Illustrate</i> at limitations	bout Satellite Injections and <i>Criticize</i> its	Cogni		ve	Understand Analysis			
		bout Satellite Injections and <i>Criticize</i> its	Cognitive			Understand			
CO4	limitations	out satemic injections and crucice its			ve	Analysis			
COF	Describe about Interplanetary Trajectories and Explain		C.	amitiva		Understand			
CO5	its concepts		Co	gnitive		Analysis			
	Define various phases of Missile trajectory and Discuss					Remember			
CO6	v	Environment	Cogr		ve	Understand			
UNIT I BASIC CONCEPTS 8									
The Solar System–References Frames and Coordinate Systems–The Celestial Sphere–The									
Ecliptic-Motion of Vernal Equinox -Sidereal Time -Solar Time - Standard Time -The									
Earth's Atmosphere.									

UNIT II THE GENERAL N-BODY PROBLEM The many body Problem–Lagrange–The Circular Restricted Three Bod

The many body Problem–Lagrange–The Circular Restricted Three Body Problem–Libration Points-Relative Motion in the N-body Problem–Two–Body Problem– Satellite Orbits – Relations Between Position and Time – Orbital Elements.

UNIT III SATELLITE INJECTION AND SATELLITE ORBIT 14 PERTURBATIONS

General Aspects of satellite Injections – Satellite Orbit Transfer –Various Cases – Orbit Deviations due to Injection Errors - Special and General Perturbations–Cowell's Method – Encke's Method – Method of vibrations of Orbital Elements – General Perturbations Approach.

UNIT IV INTERPLANETARY TRAJECTORIES

Two Dimensional Interplanetary Trajectories –Fast Interplanetary Trajectories – Three Dimensional Interplanetary Trajectories – Launch of Interplanetary Spacecraft –Trajectory about the Target Planet.

UNIT V BALLISTIC MISSILE TRAJECTORIES AND MATERIALS

7

7

9

The Boost Phase–The Ballistic Phase–Trajectory Geometry-Optimal Flights–Time of Flight–Re–entry Phase–The Position of the Impact Point–Influence Coefficients. Space Environment–Peculiarities–Effect of Space Environment on the Selection of Spacecraft Material.

LECTURE: 45	TUTORIAL: 0	TOTAL: 45

TEXT BOOKS

1. Cornelisse, J.W., "RocketPropulsionandSpaceDynamic", W.H.Freeman&Co., 1984.

REFERENCE BOOKS

- 1. Sutton, G.P., "Rocket Propulsion Elements", John Wiley, 1993.
- 2. Van de Kamp, P., "Elements of Astro mechanics", Pitman, 1979.
- 3. ParkerE.R., "MaterialsforMissilesandSpacecraft", McGraw-HillBookCo.Inc.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	1	3	3	3	3	3	16	3
PO ₃	1	3	3	3	3	3	16	3
PO ₄	3	3	3	3	3	3	18	3
PO ₅	0	0	0	0	0	0	0	0
PO ₆	0	0	2	2	3	3	10	2
PO7	3	0	0	0	1	1	2	1
PO ₈	0	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0	0
PO ₁₀	0	0	0	0	0	0	0	0
PO 11	1	1	1	1	1	1	6	1
PO ₁₂	2	2	2	2	2	2	12	3
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	2	2	2	2	2	2	12	3
Total	16	17	19	19	21	21	113	21

XAS504 - Mapping of CO with PO

COURS	SE CODE	XASE08		L	Т	Р	С		
	SE NAME	WIND TUNNEL TECHNIQ	UES	3	1	0	4		
PRERF	EQUISITES	AERODYNAMICS II		L	Т	Р	Η		
C:P:A=	= 4:0:0			3	1	0	4		
COUR	SE OBJECT	IVES							
• To	understand cla	assification of wind tunnel.							
• To a	acquire know	ledge about calibration and measurement	nts in wind tu	nnel	s.				
COURS	SE OUTCON		DOMAIN		LE	EVE	L		
CO1		basis of Buckingham pi Theorem about various methods of model	Cognitive		Rem Und				
CO2	<i>Illustrate</i> valayouts	Cognitive		Und A	ersta pply				
CO3	<i>Explain</i> ab Supersonic V	Cognitive		Und A	ersta pply				
CO4	Demonstrate tunnels	Cognitive		Und A	ersta pply				
CO5	<i>Explain</i> vari tunnels	Cognitive		Understand Apply					
CO6	<i>Recall</i> about about vari- visualization	1	Cognitive			Remember Understand			
UNIT I		CIPLES OF MODEL TESTING					L+3T		
	gham pi Theo namic similari	rem – Non dimensional numbers – Sca ties.	lle effect – G	eom	etric 1	Kine	ematic		
UNIT I	I WINI) TUNNELS				9	L+3T		
Classifi	cation – speci	al problems of testing in subsonic, trans uts – sizing and design parameters.	sonic, superso	onic	and h				
UNIT I	II CALI	BRATION OF WIND TUNNELS				9	L+3T		
		Horizontal buoyancy – Flow angularitie tation – Calibration of supersonic tunne		nce n	neasu	rem	ents –		
UNIT I		TUNNEL MEASUREMENTS					L+3T		
compon	Steady and Unsteady Pressure and velocity measurements – Force measurements – Three component and six component balances – Internal balances – Principles of Hotwire Anemometer (CTA & CCA).								
UNIT V	/ FLOV	V VISUALIZAITON				8	L+3T		
Smoke		l techniques – Dye injection special to	echniques –	Opti	cal m				
110 10 113	aunzunom.								

LECTURE: 45	TUTORIAL: 15	TOTAL: 60
TEXT BOOKS		
1. Rae, W.H. and Pope, A., Low Speed Wind T	unnel Testing, John Wile	y Publication, 1984.
2. R.C. Pankhurst and D.W. Holder, "Wind-	tunnel Technique"Pitma	n Publishing; New
impression edition 1968.		
L		
REFERENCE BOOKS		
1.Pope, A., and Goin, L., High Speed Wind Tun	nel Testing, John Wiley,	1985.

2.Bradsaw, "Experimental Fluid Mechanics", Pergamon Press; 2nd edition, 1970.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	3	3	3	3	3	3	18	3
PO ₃	0	3	3	3	3	3	15	3
PO ₄	0	3	3	3	3	3	15	3
PO ₅	0	0	0	0	0	0	0	0
PO ₆	0	0	2	2	2	2	8	2
PO ₇	0	0	0	0	0	0	0	0
PO ₈	1	2	2	1	1	2	9	2
PO9	0	0	0	0	0	0	0	0
PO 10	0	0	0	0	0	0	0	0
PO 11	0	0	0	0	0	0	0	0
PO ₁₂	3	2	2	3	3	2	15	3
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	2	2	2	2	2	2	12	2

XASE08 - Mapping of CO with PO

COU	RSE C	CODE	XUM507	7		L	Т	Р	С	
COU	RSE N	AME	ESSENCE OF INDIAN		JAL	1	0	1	0	
0			KNOWLEI	DGE			_		-	
C 1	<u>Р</u> 0.5	A 0.5				L 1	T 0	C 1	<u>Р</u> 2	
-		ISITE:				I	U	1	4	
		UTCON	IES:							
			Course Outcomes		Domain			Lev	vel	
After	the con	npletion	of the course, students will be a	ble to						
CO 1; Syster		e and <i>Int</i>	erpret the Indian Traditional K	nowledge	Cognitiv	ρ	Rem Unde		er, nding	
CO 2; Explain and Apply Yogic-science and wisdom capsules Cognitive Understandin Applying									0	
CO 3; Classify and Develop of Yoga and holistic health careCognitiveAnalyzsystemAffectiveReceive									-	
CO 4; Classify and Dissect human rights and report on Cognitive Under Analyz								lerstanding,		
CO 5	; List a	nd respo	nd to family values, universal b	rotherhood,	Cognitiv Affective		Rem (Resj		,	
UNIT	`-I		E AND INTERPRET THE I LEDGE SYSTEMS	NDIAN TRA	DITION	AL		6+	3 hrs	
Sustai nature		y is at the	e core of Indian Traditional Kno	owledge Syste	ems conne	ectir	ng so	ciety	/ and	
UNIT	II –II	EXPLA CAPSU	INAND APPLY YOGIC-SCII LES	ENCE AND	WISDON	1		6 +	3 hrs	
			ogic-science and wisdom caps h rapid technological advancem					imp	oortant	
		CLASS	<i>FY</i> AND <i>DEVELOP</i> OF YOU H CARE SYSTEM					6 +	3 hrs	
Indiar health		ective of	modern scientific world-view a	and basic prine	ciples of `	Yog	a and	d ho	listic	
UNIT		ON	IFY AND DISSECT HUMAN						3 hrs	
			in basics of Indian Traditional							
UNIT	<u>-</u> V		ND RESPOND TO FAMILY IERHOOD,	VALUES, U	NIVERS	AL		6+	3 hrs	
Studie	es.		Indian Knowledge System • Yo			car				
	LECT		TUTORIAL	PRACTI	CAL		T	OTA	L	
	45	5		15				60		

TEXT BOOKS:

- 1. V. Sivaramakrishna (Ed.), Cultural Heritage of India-Course Material, Bharatiya Vidya Bhavan, Mumbai, 5th Edition, 2014.
- 2. Swami Jitatmanand, Modern Physics and Vedant, Bharatiya Vidya Bhavan
- 3. Fritzof Capra, Tao of Physics
- 4. Fritzof Capra, The wave of Life
- 5. V N Jha (Eng. Trans,), Tarkasangraha of Annam Bhatta, InernationalChinmay Foundation, Velliarnad, Amaku,am
- 6. Yoga Sutra of Patanjali, Ramakrishna Mission, Kolkatta

REFERENCES:

- 1. GN Jha(Eng. Trans.) Ed. R N Jha, Yoga-darshanam with Vyasa Bhashya, VidyanidhiPrakasham, Delhi, 2016
- 2. RN Jha. Science of Consciousness Psychotherapy and Yoga Practices, VidyanidhiPrakasham, Delhi, 2016 9. P R Sharma (English translation), ShodashangHridayam

EREFERENCES: https://nptel.ac.in/courses/109106059/14

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2									2	2		2
CO 2	3	3	2	2	1		2				2	2	3	2
CO 3	3	3	2	2	1		2				2	2	3	2
CO 4	3	3	2	3	1	1	2				2	2	2	2
CO 5	3	3	3	3	1	1	2	1	1		2	3	3	3
	15	14	9	10	4	2	8	1	1		10	11	11	11

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

	RSE CODE	XASM01		L	Т	Р	C
COU	RSE NAME	ELEMENTS OF DRONE TECHNOLO) GY	2	0	1	0
	REQUISITES	NIL		L	Т	Р	H
	A= 0:0:0			2	0	0	2
COU	RSE OBJECT						
٠	Ability to des	ign UAV system					
٠	Ability to dev	velop drone using sub systems such as m	otor, sense	or, pr	opell	er, E	ESC
	composites, R	C controller, battery and microprocessor.					
COU	RSE OUTCON	1ES	DOMAI	N	LI	EVE	L
	Outline the h	istory of Unmanned Aerial Vehicle and					
CO1		various UAV design configurations with	Cognitiv	ve	Und	ersta	ind
	applications.						
CO2		arious design configurations of UAV and	Cognitiv	ve	Und	ersta	ind
		eir design standards.	U	_			
CO3	drone system.	ppes of power plants and payloads used in	Cognitiv	ve .	Und	ersta	ınd
	~	l classify the failure modes of UAV		_			
CO4	components.	classify the failure modes of OAV	Cognitiv	ve	Analyz		e
CO5		deployment of UAV in different aspects.	Cognitiv	ve l	Und	ersta	und
UNIT	· · · · · · · · · · · · · · · · · · ·	DUCTION				1	6
applic		and development, UAS architecture, auton	iomous coi	nfigu	ratior		6
		odynamics, airframe configurations, contr	ol and st	ability	v de		-
0	- ·	rd and regulatory aspects.			,,		10
UNIT	'III PAYLO	DADS AND POWERPLANTS				(6
-		pensable, communications, navigation, g	uidance sy	stem	. lau	nch	an
UNIT	'IV DEVEI	OPMENT OF UAV SYSTEMS				(6
		ng, system in-flight testing, future prospe	ects and c	halle	nges,	sup	poi
Syster						-	-
•	-	f trouble shooting, testing and calibration.					
•	ment, analysis c	of trouble shooting, testing and calibration. YMENT OF UAV					6
equip	ment, analysis o		d Paramili	tary o	conse	11	
equip UNIT Naval	ment, analysis of V DEPLO roles, Army rol	OYMENT OF UAV		•	conse	rvati	on
equip UNIT Naval LEC TEX	ment, analysis of V DEPLO roles, Army rol FURE:30 F BOOKS	YMENT OF UAV les, Air force roles, Civilian, commercial an TUTORIAL:0 PRACTICAL:0)]	COTA	rvati	on
equip UNIT Naval LECT TEXT	ment, analysis of V DEPLO roles, Army rol FURE:30 F BOOKS	EXAMPLENT OF UAV les, Air force roles, Civilian, commercial an)]	COTA	rvati	on

REFERENCE BOOKS

- 1. Roskam, Jan, Airplane Flight Dynamics and Automatic Flight Control, Part I, Design, Analysis, and Research Corporation, Lawrence, KS, 1994.
- 2. Bruhn, E. F., Analysis and Design of Flight Vehicle Structures, Tri-State Offset Company, Cincinnati, OH, 1965.
- P.C.Jain (ed.), Handbook for New Entrepreneurs, EDII, Oxford University Press, New Delhi, 1999. Rae, William H. Jr., and Pope, Alan, Low-Speed Wind Tunnel Testing, Wiley-Interscience, NY, 1984.
- 4. Raymer, Daniel P., Aircraft Design: A Conceptual Approach, Fourth Edition, American Institute of Aeronautics and Astronautics, Inc., Reston, VA, 2006.
- 5. Austin, Reg. Unmanned Aircraft Systems UAVS Design, Development and Deployment, John Wiley and Sons, Ltd., Blacksburg, VA, 2010.
- 6. Dr. Armand J. Chaput, "Design of Unmanned Air Vehicle Systems", Lockheed Martin Aeronautics Company, 2001

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Total /5
PO ₁	1	1	1	1	1	5	1
PO ₂	1	2	2	3	1	9	2
PO ₃	2	2	2	2	2	10	2
PO ₄	2	3	3	3	1	12	2
PO ₅	0	2	2	1	0	5	1
PO ₆	0	0	0	0	0	0	0
PO ₇	2	3	2	1	0	8	2
PO ₈	1	1	1	1	0	4	1
PO ₉	1	1	1	1	1	10	5
PO 10	1	1	2	1	0	5	1

XASM02 -- Mapping of CO with PO

PO ₁₁	0	1	1	1	0	3	1
PO ₁₂	1	2	2	2	1	0	2
PSO ₁	0	1	2	1	0	4	1
PSO ₂	1	3	3	2	1	10	2

COURSE CODE	XAS601	L	Т	Р	С					
COURSE NAME	FLIGHT DYNAMICS	3	1	0	4					
PREREQUISITES	AERODYNAMICS I	L	Т	Р	Η					
C:P:A= 4:0:0		3	1	0	4					
COURSE OBJECTIVES										

• To study the performance of airplanes under various operating conditions and the static and dynamic response of aircraft for both voluntary and involuntary changes in flight conditions.

		DOMAL					
COUR	RSE OUTCOMES	DOMAI N	LEVEL				
CO1	Recall the forces and moments and apply to investigate the flight performance of aircraft in different situations.	Cognitive	Remember, Apply				
CO2	Express and Calculate the range, endurance and performance of an aeroplane, for simple accelerating cases such as take-off, landing and turning.	Cognitive	Understand, Apply				
CO3	Explain and calculate the influence of forces and moments on the static and dynamic stability of aircraft including longitudinal and lateral motions for stick fixed condition and select the aerofoil.	Cognitive	Understand, Apply				
CO4	Explain and calculations to predict aircraft stability for stick free condition and proceed the stability analysis.	Cognitive	Understand, Apply				
CO5	Distinguish and compute the conditions of aircraft lateral and directional static stability.	Cognitive	Understand, Apply				
CO6	Explain and Examine the dynamics and control of flight vehicles.	Cognitive	Understand, Apply				
UNIT	I CRUISING FLIGHT PERFORMANCE		9L+3T				
Forces and moments acting on a flight vehicle - Equation of motion of a rigid flight vehicle - Different types of drag - Drag polar of vehicles from low speed to high speeds - Variation of thrust, power with velocity and altitudes for air breathing engines. Performance of airplane in level flight - Power available and power required curves. Maximum speed in level flight - Conditions for minimum drag and power required.							

UNIT II MANOEUVERING FLIGHT PERFORMANCE

Range and endurance - Climbing and gliding flight (Maximum rate of climb and steepest angle of climb, minimum rate of sink and shallowest angle of glide) -Turning performance (Turning rate turn radius). Bank angle and load factor – limitations on turn - V-n diagram and load factor.

UNIT III STATIC LONGITUDINAL STABILITY

Degree of freedom of rigid bodies in space - Static and dynamic stability - Purpose of controls in airplanes–Static, Longitudinal stability - Stick fixed stability - Basic equilibrium equation - Stability criterion - Influence of CG location - Power effects - Stick fixed neutral point - Stick free stability-Hinge moment coefficient - Stick free neutral points - Symmetric maneuvers - Stick force gradients - Stick force per 'g' - Aerodynamic balancing.

LATERAL AND DIRECTIONAL STABILITY UNIT IV

9L+3T

9L+3T

9L+3T

Dihedral effect - Lateral control - Coupling between rolling and yawing moments - Adverse vaw effects - Aileron reversal - Static directional stability - Weather cocking effect -Rudder requirements - One engine inoperative condition - Rudder lock.

UNIT V **DYNAMIC STABILITY**

9L+3T Introduction to dynamic longitudinal stability: - Modes of stability, effect of freeing the stick - Brief description of lateral and directional dynamic stability - Spiral, divergence, Dutch roll, autorotation and spin.

TEXT BOOKS

- 1. Perkins, C.D., and Hage, R.E., "Airplane Performance stability and Control", Son:,Inc, NY. 1988.
- 2. R.C. "Flight Stability and Automatic Control", McGraw-Hill Book Co., 2004.
- 3. Mc Cornick. W., "Aerodynamics, Aeronautics and Flight Mechanics", John Wiley, NY, 1979.

REFERENCES

- 1. Etkin, B., "Dynamics of Flight Stability and Control", Edn. 2, John Wiley, NY, 1982.
- 2. Babister, A.W., "Aircraft Dynamic Stability and Response", Pergamon Press, Oxford, 1980.
- 3. Dommasch, D.O., Sherby, S.S., and Connolly, T.F., "Aeroplane Aero dynamics", Third Edition, Issac Pitman, London, 1981.

LECTURE: 45 TUTORIAL: 15 PRACTICAL:0 TOTAL: 60

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Total /5
PO ₁	3	3	3	3	1	3	13	2
PO ₂	3	3	3	3	3	3	18	3
PO ₃	3	3	3	3	3	3	18	3
PO ₄	2	3	2	2	1	2	12	2
PO ₅	3	0	3	3	3	3	15	3
PO ₆	1	2	2	2	1	1	9	1
PO ₇	1	1	1	1	1	3	8	1
PO ₈	1	1	1	1	1	1	6	1
PO ₉	1	2	2	2	2	1	10	2
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	1	1	1	1	1	1	6	1
PO ₁₂	2	2	2	2	3	2	13	2
PSO ₁	0	0	1	1	1	1	4	1
PSO ₂	3	3	3	3	3	3	18	3

XAS601 -Mapping of CO with PO

COUH	RSE CODE	XAS602		L	Τ	Р	С
COUF	RSE NAME	FINITE ELEMENT ANALYSI	S	3	1	0	4
PRER	EQUISITES	AIRCRAFT STRUCTURES II		L	Τ	Р	Η
C:P:A	3	1	0	4			
COU	RSE OBJECT	IVES					
•	To recognise	the significance and importance of fini	te elemen	t me	thod	s to	the
	professional d	esign engineer.					
•	To provide a t	heoretical understanding on the fundamenta	als of finite	e elen	nent	meth	ods
	for small displ	acement linear elastic analysis (statics).					
•	To provide an	introduction of non-linear finite element.					
•	To provide ex	xperience on how to develop good mode	ls and ho	w to	inte	rpret	the
	numerical resu					1	
COUF	RSE OUTCOM	1ES	DOMA	IN	L	EVE	L
CO1	U	e significance and importance of finite ods to the professional design engineer.	Cognitiv	ve	Rei	mem	ber
CO2		indamentals of finite element methods for ement linear elastic analysis (statics).	Cognitiv	ve	Une	dersta	and
CO3		train relationship and <i>express</i> it for ements with <i>examples</i> .	Cognitiv	ve		lersta Apply	
CO4	<i>Analyze</i> the finite element	stresses and displacement in non-linear	Cognitiv	ve	A	nalyz	ze
CO5	Annly the knowledge to develop good models and to						
CO6	<i>Explain</i> the particular	rocedure of FEA in aviation.	Cognitiv	ve	A	Apply	7

UNIT I INTRODUCTION

Various finite element methods – Raleigh Ritz's, Galerkin method- Governing equation and convergence criteria.

UNIT II DISCRETE ELEMENTS

Bar elements, uniform section, mechanical and thermal loading, varying section, truss analysis. Beam element - problems for various loadings and boundary conditions - Use of local and natural coordinates.

UNIT III CONTINUUM ELEMENTS Plane stress, Plane strain and axisymmetric problems, constant and linear strain, triangular elements, stiffness matrix, axisymmetric load vector.

UNIT IV ISOPARAMETRIC ELEMENTS

Definitions, Shape function for 4, 8 and 9 nodal quadrilateral elements, Stiffness matrix and consistent load vector, Gaussian integration.

UNIT V FIELD PROBLEM

Heat transfer problems, Steady state fin problems, Derivation of element matrices for two

8L+3T

10L+3T

9L+3T

10L+4T

8L+2T

dimensional problems, Torsion problems.

LECTURE: 45

TUTORIAL: 15

TOTAL: 60

TEXT BOOKS

- **1.** Tirupathi.R. Chandrapatha and Ashok D. Belegundu Introduction to FiniteElements in Engineering Printice Hall India, Third Edition, 2003.
- 2. Rao. S.S., Finite Element Methods in Engineering, Butterworth and Heinemann, 2001.

REFERENCE BOOKS

- **1.** Reddy J.N. An Introduction to Finite Element Method McGraw Hill 2000.
- 2. Krishnamurthy, C.S., Finite Element Analysis, Tata McGraw Hill, 2000.
- **3.** Bathe, K.J. and Wilson, E.L., Numerical Methods in Finite Elements Analysis, Prentice Hall of India, 1

Scaled to CO Vs PO **CO1 CO2 CO3 CO4 CO5 CO6** Total 0,1,2 and 3 **PO**₁ PO₂ PO₃ **PO**₄ PO₅ PO₆ **PO**7 **PO**₈ PO₉ **PO**₁₀ **PO**₁₁ **PO**₁₂

XAS602 - Mapping of CO with PO

PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	2	1	3	1

COUR	SE CODE	XAS603		L	Т	P	С		
COUR	SE NAME	UAV TECHNOLOGI	ES	3	0	1	4		
PRER	EQUISITES	XAS502 AERODYNAMICS II		L	Т	P	Η		
	= 3:1:0			3	0	2	5		
COUR	SE OBJECTI	VES							
•	To learn about	different aspects of UAV systems.							
•	• To learn about Design modeling and control.								
•	To gain knowle	edge in improving reliability of UAV	systems.						
•	To know about	Deployment of UAV systems.	-						
				•					
COURSE OUTCOMES DOMAI					LEV	'EL			
	Describe the o	lesign considerations of Unmanned		R	leme	mbe	r,		
CO1	Aerial Vehicle	Cognitive							
COI		the UAV system and <i>Discuss</i> the	Psychomotor	Set, Guided					
	applications of		Response						
~ ~ ~	<i>Explain</i> the	Cognitive	Understand			d			
CO2	O2 Communication systems used in UAV also psychometer						ion		
		ata link system used in UAV	5	Understand,					
		various design configurations of , and Hybrid models. And <i>Analyze</i>		U					
CO3	,	cells u in UAV.	Cognitive	Analyze					
0.05	userui or solai	Psychomotor	Set, Guided, Response,			· ·			
					Me		,		
004	<i>Examine</i> and	l <i>classify</i> the failure modes of	C aran iti		App				
CO4		nd control systems in UAV.	Cognitive		Ana	•			
		Navigation systems in UAV and	Cognitive		leme				
CO5	Distinguish of	various Navigation systems.	Psychomotor	U	Inder	stan	d		
			1 Sychomotor		, Per	-			
		concepts and characteristics of			nder				
	-	Measure the goals and operational	Cognitive		Eval				
CO6	issues of vario	us UAV systems.	Psychomotor	.	Guio				
			<u> </u>		Response,				
					Me	ch			

UNIT I INTRODUCTION, BASICS, TYPES AND ROLES

UAV attributes, manned vs unmanned, design considerations, acquisition & life cycle costs, UAS architecture, UAS components including the air vehicle, payload, data link and ground control station, categories and classifications, civil applications.

9

9

9

9

UNIT II SENSORS AND ITS COMMUNICATIONS AND DATA LINKS

EO, IR, multispectral, Hyper spectral, LIDAR, SAR, small UAV sensors, atmospheric and weather effects, sensor data rates, future sensor trends, current state of data links, future needs of data links, line of sight fundamentals, beyond line of sight fundamentals, UAS communications failure.

UNIT IIICONCEPTUAL DESIGN AND SOLAR/FUEL CELL PROPULSION9

UAS design process, airframe design considerations, launch & recovery methods, propulsion considerations, communications, control & stability, ground control system, support equipment, transportation, solar cells & solar energy, solar aircraft challenges, solar wing design, past solar designs, energy storage methods & density, fuel cell basics & UAS integration.

UNIT IV IMPROVING RELIABILITY AND UAV NAVIGATION SYSTEM

Fault Tolerant Control Architecture, Fault Detection & Identification, Reconfigurable Flight Controllers, Non-Adaptive Controllers, Adaptive Controllers, UAV Navigation, Satellite Navigation, Inertial Navigation, Sensor Fusion for Navigation, Image Navigation (Skysys).

UNIT V SWARMING, FUTURE UAS CHARACTERISTICS AND ROLES

Swarming Characteristics, Swarming Concepts, Emergent Behavior Characteristics Swarming Algorithms, Swarm Communications. Goals & Operational Issues, Space, Hypersonic, Submarine Launched, UCAS, Pseudo Satellites.

TEXT BOOKS

1. <u>Thomas Gleason</u>, "Introduction to UAV Systems", 4th Edition <u>Paul Fahlstrom</u>.

2. <u>Dr.Jerry Le Mieux</u>, Introduction to Unmanned Systems Air, Ground, Sea & Space.

REFERENCES

- 1. Roskam, Jan, Airplane Flight Dynamics and Automatic Flight Control, Part I, Design, Analysis, and Research Corporation, Lawrence, KS, 1994.
- 2. Bruhn, E. F., Analysis and Design of Flight Vehicle Structures, Tri-State Offset Company, Cincinnati, OH, 1965.
- 3. Raymer, Daniel P., Aircraft Design: A Conceptual Approach, Fourth Edition, American Institute of Aeronautics and Astronautics, Inc., Reston, VA, 2006.
- 4. Austin, Reg. Unmanned Aircraft Systems UAVS Design, Development and Deployment, John Wiley and Sons, Ltd., Blacksburg, VA, 2010.

LECTURE: 45 PRACTICAL: 30 TOTAL: 75

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Total /5
PO ₁	3	2	2	2	2	1	12	2
PO ₂	2	2	3	2	2	2	13	2
PO ₃	1	2	3	3	2	1	12	2
PO ₄	0	1	2	3	1	1	8	1
PO5	0	1	2	2	0	1	6	1
PO ₆	1	2	3	2	2	2	12	2
PO ₇	0	1	3	2	2	1	9	2
PO ₈	1	2	1	1	1	1	7	1
PO9	1	2	2	2	1	1	9	2
PO 10	0	0	1	1	1	0	3	1
PO ₁₁	1	0	0	0	0	0	1	0
PO ₁₂	2	2	3	2	2	2	13	2
PSO ₁	0	1	2	2	2	1	8	1
PSO ₂	1	0	3	0	0	1	5	1

XAS603 - Mapping of CO with PO

COURSE CODE	XAS604	L	Т	P	С
COURSE NAME	AVIONICS	3	0	1	4
PREREQUISITES	CONTROL SYSTEMS	L	Т	P	Н
C:P:A= 3:1:0		3	0	2	5

COURSE OBJECTIVES

- To introduce various digital electronic principles and working operations of digital circuit.
- To gain knowledge in integration of digital electronics with cockpit equipments. •
- To understand the various principles in Displays, I/O devices and power.
- To study the validation and certification procedures.

COU	RSE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Know</i> the basics of Avionics in Civil and Military Aircraft systems	Cognitive	Understand
CO2	<i>Describe</i> the Data buses MIL–STD 1553 B – ARINC 429 -ARINC 629 and to understand the avionics architecture.	Cognitive Psychomotor	Remember Understand Perception
CO3	<i>Classify</i> the various displays, I/O devices and power systems and comparing the Military and Civil Requirements.	Cognitive Psychomotor	Understand Analyze Set
CO4	<i>Explain</i> about RADAR and its operation procedures	Cognitive	Understand
CO5	<i>Identify</i> the future avionics architecture	Cognitive	Remember
CO6	Understand the FAR rules and its requirements	Cognitive	Understand
UNIT	I INTRODUCTION TO AVIONICS		9

civil and Military Aircraft systems - Avionics sub-systems and design defining avionics System/subsystem requirements - importance of 'ilities', Avionics system architectures.

UNIT II DIGITAL AVIONICS ARCHITECTURE

Avionics system architecture- Features and applications of Data buses MIL-STD 1553 B -ARINC 429 - ARINC 629 - SAFEbus /FlexRay - Time triggered communication protocol/controller Area network - AFDX - CSDB.

UNIT III | DISPLAYS, I/O DEVICES AND POWER

Trends in display technology, Alphanumeric displays, character displays etc., Civil and Military aircraft cockpits, MFDs, MFK, HUD, HDD, HMD, DVI, HOTAS, Synthetic and enhanced vision, situation awareness, Panoramic/big picture display, virtual cockpit-Civil and Military Electrical Power requirement standards, comparing the Military and Civil Requirements and Tips for Power System Design.

UNIT IV AERIALS AND PROPAGATION

Antenna theory - various types of antenna for medium wave short wave - VHF frequencies -

9

9

propagation at microwave frequencies - atmospheric attenuation - effects of precipitation reflection - the voltage and current distribution along antenna of various length characteristics of ground planes -Refraction and Diffraction phenomenon - clutter signals.

UNIT V SYSTEM ASSESSMENT, VALIDATION AND CERTIFICATION

Fault tolerant systems - Hardware and Software, Evaluating system design and Future architecture - Hardware assessment- FARs guide certification requirements-Fault Tree analysis - Failure mode and effects analysis - Criticality, damaging modes and effects analysis - Software development process models - Software Assessment and Validation -Civil and Military standards - Certification of Civil Avionics.

9

TEXT BOOKS

- 1. R.P.G. Collinson, "Introduction to Avionics", Chapman & Hall Publications, 1996.
- 2. Myron Kayton and Walter R fried, Avionics Navigation Systems, John Wiley and Sons.
- 3. RF Hnasforde, Heywood and Company London: Radio Aids to Civil Aviation.

REFERENCES

- 1. Middleton, D.H., Ed., "Avionics Systems, Longman Scientific and Technical", Longman Group UK Ltd., England, 1919.
- 2. Spitzer, C.R., "Digital Avionic Systems", Prentice Hall, Englewood Cliffs, N.J., USA., 1917
- 3. Brain Kendal, "Manual of Avionics", The English Book House, 3rd Edition, New Delhi, 1993.

LIS	Γ OF EXPERIMENTS							
1.	Study of basic gates.							
2.	Study of installing and configuring of AFDX card in transmitting and receiving mode.							
3.	Study of Determination of gain for the given antenna.							
4.	Adder / Subtractor							
5.	Multiplexer / Demultiplexer							
6.	Encoder / Decoder							
7.	Interface programming with 4 digit 7 segment display and switches and LEDs							
8.	Study of MIL-STD 1553B Data bus							
9.	Digital to analog converter.							
LEC	CTURE: 45 PRACTICAL: 30 TUTORIAL: 0 TOTAL: 75							

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Total /5
PO ₁	3	3	3	3	3	3	18	3
PO ₂	1	1	1	1	1	1	6	1
PO ₃	1	2	2	1	2	1	9	2
PO ₄	1	1	1	1	1	1	6	1
PO ₅	1	3	3	1	0	0	8	2
PO ₆	1	1	1	1	1	1	6	1
PO ₇	1	2	2	2	2	2	11	2
PO ₈	0	0	0	0	0	0	0	0
PO9	2	2	2	3	3	2	14	3
PO 10	0	0	0	0	0	0	0	0
PO ₁₁	0	1	1	1	1	1	5	1
PO ₁₂	1	1	1	1	1	1	6	1
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0	0

XAS604 - Mapping of CO with PO

COURSE	CODE	XASE14		L	Т	Р	С	
COURSE	NAME	AIRCRAFT RULES AND REGULA						
		CAR I AND II						
•	EREQUISITES NIL L T P						Η	
C:P:A= 3:	:0:0			3 0 0				
COURSE	OBJECTI	VES						
• The objective of this subject is to study various C.A.R series rules and regulations.								
COURSE OUTCOMES DOMA						LEVEL		
CO1	Explain	Cogniti	ve	Understand				
CO2	CO2 <i>Describe</i> about investigation and defect analysis, <i>explain</i> the maintenance process. Cognitive							
CO3	issue /	eries F <i>explain</i> about Procedure for revalidation of Type Certificate of and its engines / propeller	Cogniti	ve	Ur	nders	tand	
CO4	Understand the mandatory modifications and						tand	
CO5	CO5 <i>Explain</i> the registration markings, weight balance control and aircraft logbooks. Cognitive						Understand	
CO6	Explain	the use of CAR I and II.	Cogniti	ve	Ur	nders	tand	
UNIT I	CAR SEI	RIES 'A'					9	

UNIT I CAR SERIES 'A'

Responsibilities of operators / owners - Procedure of CAR issue, amendments etc -Objectives and targets of airworthiness directorate - Airworthiness regulations and safety oversight of engineering activities of operators - CAR SERIES 'B' - Issue approval of cockpit check list - MEL -CDL: Deficiency list (MEL & CDL); Preparation and use of cockpit check list and emergency list.

UNIT II | CAR SERIES 'C' AND 'D'

CAR SERIES 'C' - Defect recording - reporting - investigation - rectification and analysis -Flight report - Reporting and rectification of defects observed on aircraft - Analytical study of in-fight readings & recordings - Maintenance control by reliability Method.

CAR SERIES 'D'- Aircraft Maintenance Programmes - Reliability Programme (Engines); Aircraft maintenance programme & their approval - On condition maintenance of reciprocating engines - TBO - Revision programme - Maintenance of fuel and oil - Light aircraft engines; Fixing routine maintenance periods and component TBOs - Initial & revisions.

UNIT III | CAR SERIES 'F'

AIR WORTHINESS AND CONTINUED AIR WORTHINESS: Procedure relating to registration of aircraft - Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller - Issue / revalidation of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness.

8

		VIE License - its classification and experience requirements - Complete Serie	s 'L'.						
C	AR SERIE	ES 'M' Mandatory Modifications / Inspections.							
		1	1						
U	NIT V	CAR SERIES 'X'	9						
C	AR SERI	ES 'X' – Registration Markings of aircraft - Weight and balance control of	of an						
ai	rcraft - Pr	rovision of first aid kits & Physician's kit in an aircraft; Use furnishing mate	erials						
in	in an aircraft - Concessions; Aircraft log books - Document to be carried on board on Indian								
re	registered aircraft - Procedure for issue of taxi permit - Procedure for issue of type approval								
of	aircraft co	components and equipment including instruments.							
L	ECTURE	E:45 TUTORIAL:0 TOTAL: 45							
T	EXT BOO	OKS							
1	Civil A	Aviation Requirements with latest Amendment (section 2 Airworthine	ess)",						
	Publishe	ed by DGCA. The English Book Store, 17-1 Connaught Circus, New Delhi.							
2	Lloyd I	Dingle,"Aircraft Engineering Principles", A Butterworth-Heinemann Title;	; 1st						
	edition e	edition,2004.							
R	EFEREN	NCE BOOKS							
1	Aircraft	Manual (India) ", Volume - Latest Edition, The English Book Store, 1	17-1,						
	Connaug	ght Circus, New Delhi.							
2	Aeronau	utical Information Circulars (relating to Airworthiness) ", from DGCA.							
3	"Advisor	bry Circulars ", from DGCA.							

XASE14 -Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	0	0	0	0	0	0	0	0
PO ₃	1	1	1	1	1	1	6	1
PO ₄	1	2	2	1	1	1	8	1
PO ₅	0	0	0	0	0	0	0	0
PO ₆	0	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0	0
PO9	1	1	1	1	1	1	6	1
PO 10	0	0	0	0	0	0	0	0
PO 11	0	0	0	0	0	0	0	0
PO12	1	2	2	2	1	1	9	2
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0	0

UNIT IV CAR SERIES 'L and M'

Issue of AME License - its classification and experience requirements - Complete Series 'L'

COURS	SECODE	XCI607			L	Т	Р	С
	SE NAME	CONSTITUTIONOFIN	DIA		3	0	0	3
PRERE	QUISITE:	NIL			L	Т	Р	Н
C:P:A		3:0:0			3	0	0	3
COURS	SEOUTCON	1ES		Domain	L	evel		
CO1	Understand	<i>Ithe</i> ConstitutionalHistory		Cognitive	e U	Inder	rstan	ding
CO2	Understand	<i>IthePowersandFunctions</i>		Cognitive	e U	Inder	rstan	ding
CO3	Understand	<i>theLegislature</i>		Affective	R	eme	mbe	ring
CO4	Understand	<i>ItheJudiciary</i>		Affective	R	eme	mbe	ring
CO5	Understand	<i>ItheCentreStaterelations</i>		Cognitive	e U	Inder	rstan	ding
UNITI								08
Fundam		y-TheConstitutionalRights- DirectiveprinciplesofStatel		mentalR	ight	8-		
UNITII								09
		ThePresidentofIndia(powe ers-PrimeMinister-Powersa		Vice-Pre	side	ntofl	India	l-
UNITII	I							10
Structur	eandFunction ntCommittes	ructureandFunctionsofLokS nsofRajyaSabha-Legislativ ofLokSabha-Speakerofthel	eProcedureinInd	ia-				09
		- Powers of the Supreme - AdvisoryJurisdiction- Ju		Jurisdi	ctio	n-		
UNITV	•	·						09
Centre S Chief theHigh	Mini	s- Political Parties- Role of ster-LegislativeAssembly-S	StateJudiciary-Po	owersand	func Fun	ctior	nof	
LE	CTURE	TUTORIAL		CTICAL		T	OT A	AL
	4 5	0	0				45	
	ENCES							
1	. W.H.Morr			1074				
		ntandpoliticsofIndia,NewD	elh1,B.I.Publ1sh	ers,1974.				
	2. M.V.Pylee		ary Asia Dublishi	• ~II ~··· ~	107	7		
		lGovernmentinIndia,Bomb						
		-TheGovernmentandpolitic -SelectConstitutionsS,Char			ion,	1993	•	
	-	an-SelectModernGovernm			olhi	100	5	
	•	DemocracticConstitutionof			CIII	,177	5.	
		ri- ConstitutionofIndia, Inc						
	· copulation of							

Table1:Mapping ofCOswithPOs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2			1					
CO2	2			1					
CO3	2			1					1
CO4	2			1				1	1
CO5	2	2		1				1	1
Total	10	2		5				2	3
Scaledto	2	1		1				1	1
0,1,2,3									

1-5→1,6-10→2,11-15→3

0-NoRelation, 1- LowRelation, 2- MediumRelation, 3- HighRelation

COUR	RSE CODE	XASM02		L	Т	P	С						
COUF	RSE NAME	CAD MODELING		1	0	1	0						
PRER	EQUISITES	NIL		L	Т	Р	Н						
C:P:A	= 0:0:0			2	0	0	2						
COUF	RSE OBJECTI	VES											
•	• To make students to obtain skills in design software and designing various components												
	of aircraft and spacecraft.												
	or unorart and spaceorart.												
COUF	RSE OUTCOM	ES	DOMAIN		LE	VEL							
CO1	<i>Summarize</i> sk	etcher tools.	Cognitive		Und	erstand							
CO2	Sketch part de	sign.	Cognitive		A	pply							
CO3	Manipulate as	sembly design.	Cognitive		A	pply							
CO4	Interpret draft	ing.	Cognitive		Und	erstan	ł						
CO5	Demonstrate v	vireframe and surface design.	Cognitive	Apply									
CO6	<i>Design</i> an airc	raft model.	Cognitive	** *									

UNIT I	SKETCHER	6
Introduction to	CATIA – toolbars operation.	
UNIT II	PART DESIGN	6
3D introduction features.	n – sketch based features – reference plane – apply material – transformati	on
UNIT III	ASSEMBLY DESIGN	6
Assembly desig	gn – constraints, move, space analysis – product structure tools.	

Drafting details – text/graphics properties – generative dimensions.

UNIT V WIREFRAME AND SURFACE DESIGN

Extrude, fill, join, trim, intersection – corner, disassemble, boundary – fillet, sweep.

SOFTWARES USED

1. CATIA – Licensed Software

LECTURE: 30	TUTORIAL: 0	PRACTICAL:0	TOTAL: 30

XASM01 - Mapping of CO with PO													
CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Total /5					
PO ₁	1	1	1	1	1	1	6	1					
PO ₂	1	1	1	1	1	1	6	1					
PO ₃	3	3	3	3	3	3	18	3					
PO ₄	0	0	0	0	0	0	0	0					
PO5	3	3	3	3	3	3	18	3					
PO ₆	0	0	0	0	0	0	0	0					
PO ₇	0	0	0	0	0	0	0	0					
PO ₈	0	0	0	0	0	0	0	0					
PO9	0	0	0	0	0	0	0	0					
PO ₁₀	0	0	0	0	0	0	0	0					
PO 11	1	1	1	1	1	1	6	1					
PO 12	1	1	1	1	1	1	6	1					
PSO ₁	1	1	1	1	1	1	6	1					
PSO ₂	0	0	0	0	0	0	0	0					

XASM01 - Mapping of CO with PO

Subject	Name	AVIONICS									
Subject	Code	XAS 702									
Prerequ	isite	NIL									
	L –T -	- P - C	C:P:A	L	–T –P –H						
	3-0-	- 1- 4	3:0.9:0.1		3-0-2-5						
Course	Outcon	ne:			Dom C or P						
CO1		be, understand, c and developmen	onstruct and report A t	Avionics system	Understand	member, ind, Apply) chanism) espond)					
CO2	Describe, understand, react and perform the Digital Avionics Architecture C (Remember, Understand) P (Set) A (Respond)										
CO3		e, select, comp ys, i/o devices and	C (Remo Understand, P (Guided I	C (Remember, Understand, Evaluate) P (Guided Response) A (Receiving)							
CO4		e, explain the cs systems.	Aerials and Propa	agation in the	C (Remember, Understand) P (Mechanism) A (Respond)						
CO5	-		ruct and report th ation in the avionics		C (Analyze P (Mech A (Res	anism)					
COURS	SE CON	ITENT									
UNIT-I	IN	TRODUCTION	TO AVIONICS			15 hrs					
Econom	ic Deci	ision Making -	nagement - Project o Time value of mor 4, DBOT Projects.	-							
UNIT –	II DI	GITAL AVION	ICS ARCHITECT	URE		15 hrs					
breakdov	wn stru	cture – planning	nent of construction techniques - bar ch aluation and review	arts - preparatio							
UNIT-I	II DI	SPLAYS, I/O D	EVICES AND POV	VER		15 hrs					
Equipme	ent: Cla	ssification of co	es of inventory, EO nstruction equipment ost of labour- labour	t- planning and		•					

UNIT -IV	AERIALS AND PROPAGATIO			15 hrs
	ce-Tender document-EMD-SD-Prebi Site meeting-Payment of bills-Brea		0 0	
UNIT V	SYSTEM ASSESSMENT, CERTIFICATION	VALIDATION	AND	15 hrs
Quality circ Personal pro	to construction quality - Inspection le - Quality management system Contective equipments - Health and safe gement system- Safety manual.	Construction safety – a	accidents an	d injuries -
TEXT BOO	DKS			
2. Myr Sons	G. Collinson, "Introduction to Avioni on Kayton and Walter R fried, Avi s. Inasforde, Heywood and Company L	ionics Navigation Sys	stems, John	Wiley and
REFEREN				011.
Long 2. Spitz 1917 3. Brai	dleton, D.H., Ed., "Avionics Syst gman Group UK Ltd.,England, 1919. zer, C.R., "Digital Avionic Systems", 7 n Kendal, "Manual of Avionics", T ni, 1993.	Prentice Hall, Englew	vood Cliffs,	N.J., USA.
PRACTIC	ALS			15hr
 Stud Stud Add 	y of basic gates. y of installing and configuring of AF y of Determination of gain for the giv er / Subtractor tiplexer / Demultiplexer		g and receiv	ving mode.
 Enco Inter Stud 	oder / Decoder face programming with 4 digit 7 segr y of MIL-STD 1553B Data bus tal to analog converter	nent display and swite	hes and LEI)

Mapping of COs with Pos

	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
C01	3	3	0	2	1	1	2	0	0	0	0	1	0	0
CO2	2	2	0	2	2	1	1	0	0	0	0	1	0	0
CO3	3	3	0	3	2	2	2	0	0	0	0	1	2	2
CO4	1	2	0	1	1	0	0	0	0	0	0	1	0	0
CO5	2	2	0	2	3	2	1	0	0	0	0	1	0	0
	11	12	0	10	9	6	6	0	0	0	0	5	2	2

Subject	Name	COMPUT	ATIONAL FLUID DYN	AMICS							
Subject	Code	XAS 703									
I	∠ − T − P	-С	C:P:A	L –T –P	-H						
3	8-1-1	- 5	3:1:0	3- 2-2-	7						
Course	Outcon	ne:			Domain						
CO1	Descri CFD	bethe basic	definitions and explain	governing equations of	C or P or A C(Remember,U nderstand)						
CO2	Explai	Explain and manipulate the approach of finite difference method C(Apply) P(Guided)									
CO3	Illustra	iteand meas	ure the basic techniques of	finite volume method	C(Analyze) P(Mechanism)						
CO4	Formu	lateand mea	surethe basic techniques o	f finite element method	C(Apply,Overt) P(response)						
CO5	Explai	n about the	turbulence models and me	sh generation.	C(Understand)						
CO6	Apprai	sethe applic	ations of CFD in various f	ïelds	C(Evaluate)						
COURS	E CON	TENT									
UNIT I	GO	VERNING	EQUATIONS AND BO	UNDARY CONDITION	IS 15 hrs						
Moment – Time-	Basics of computational fluid dynamics – Governing equations of fluid dynamics – Continuity, Momentum and Energy equations – Chemical species transport – Physical boundary conditions – Time-averaged equations for Turbulent Flow – Turbulent–Kinetic Energy Equations – Mathematical behavior of PDEs on CFD – Elliptic, Parabolic and Hyperbolic equations.										

JNIT II FINITE DIFFERENCE AND FINITE VOLUME METHODS FOR DIFFUSION	15 hrs
Derivation of finite difference equations – Simple Methods – General Methods for econd order accuracy – Finite volume formulation for steady state One, Two ar limensional diffusion problems –Parabolic equations – Explicit and Implicit schemes – problems on elliptic and parabolic equations – Use of Finite Difference and Finite nethods.	nd Three- - Example
JNIT III FINITE VOLUME METHOD FOR CONVECTION DIFFUSION	15 hrs
Steady one-dimensional convection and diffusion – Central, upwind differencing properties of discretization schemes – Conservativeness, Boundedness, Transpo Hybrid, Power-law, QUICK Schemes.	
JNIT IV FLOW FIELD ANALYSIS	15 hrs
Finite volume methods -Representation of the pressure gradient term and continuity e Staggered grid – Momentum equations – Pressure and Velocity corrections – Correction equation, SIMPLE algorithm and its variants – PISO Algorithms.	-
JNIT V TURBULENCE MODELS AND MESH GENERATION	1 hrs
Necessity – Basics of valuation – Capitalized value – Depreciation – Escalation – property – Calculation of Standard rent – Report preparation.	Value of
PRACTICAL	30 hrs
1. Steady flow over Aerofoil.	
2. Transient flow over blunt body.	
3. Turbulent flow and Heat transfer in a mixed Elbow.	
4. Simulation of air flow in Nozzle.	
5. Fluid in a spinning bowl.	
6. Chemical mixing and Gaseous combustion.	
7. Natural convection in a square box.	
8. Interaction of air through Rotor and stator in axial compressor.	
9. Turbine blade cooling techniques.	
L- 45 hrs T - 30hrs P -30hrs Total	– 105Hrs
TEXT BOOKS	
 H.K. Versteeg and W. Malalsekera "An Introduction to Computational Fluid I The Finite Volume Method", Longman Scientific & Technical, second 2009.M.Chakraborty,"Estimating,Costing, Specification and Valuation Engineering",Kolkata,1997. 	
2. John D. Anderson Jr.,"Computational Fluid Dynamics ", Mcgraw-Hill Series, 20	010

- 3. Ghoshdastidar, P.S., "Computer Simulation of flow and heat transfer", Tata McGraw Hill Publishing Company Ltd., 1998.
- 4. C.A.J. Fletcher, "Computational Techniques for Fluid Dynamics 1" Springer Verlag, 1995.
- 5. C.A.J. Fletcher, "Computational Techniques for Fluid Dynamics 2", Springer Verlag, 1995.

REFERENCES

- 1. Gautam Biswas, Somenath Mukherjee,, "Computational Fluid Dynamics" Alpha Science International, 2014.
- 2. T. J. Chung, "Computational Fluid Dynamics", Cambridge University Press, 2002.
- 3. C. Hirch, "Numerical Computation of Internal and External Flows" Volume-2, John Wiley and Sons, 1994.

Mapping of COs with Pos

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
C01	3	2	0	2	0	0	1	0	0	0	0	0	0	0
CO2	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO3	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO4	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO5	2	2	0	2	0	0	1	0	0	0	0	0	0	0
CO6	1	2	0	3	0	2	2	2	2	0	2	2	0	0
	15	12	9	13	9	8	10	2	8	0	8	8	3	0

		L	Т	P	С									
VAC704D	THEODY OF VIDDATIONS	3	0	0	3									
XAS704B	THEORY OF VIBRATIONS	L	Т	Р	Η									
		3	0	0	3									
Unit I														
	FREEDOM SYSTEMS													
Free and	forced vibrations; Damping-classification and damped syst	tems	. Vil	oratio	on									
measurem	ents. Vibration isolation - Free, forced, damped and undamped	moti	ons, 1	Use	of									
influence	coefficients, matrix methods and Lagrange's equation, Pheno	meno	on of	bea	at,									
Dynamic a	bsorbers-applications.													
Unit II	EXPERIMENTAL METHODS IN VIBRATION ANALYSIS			9										
Vibration	instruments, vibration exciters, transducers and measurement de	vices	, ana	lyzeı	ſS,									
vibration t	ests- free and forced vibration tests.													
Unit III	VIBRATION OF CONTINUOUS SYSTEMS			9										
Transverse	e, flexural, torsional vibration of beams, timoshenko beam, Han	nilto	n pri	ncipl	e,									
vibration of	f plates, collocation method, myklested – prohl method.													
Unit IV	TRANSIENT VIBRATIONS			10										
Duhamel's	s integral, method of step input, phase plane method, met	hod	of 1	apla	ce									
transforma	tion, drop test spectra by laplace transformations.													
Unit V	NON LINEAR VIBRATIONS			8										
Non-linea	vibrations and superposition principle, examples of non-linear vi	brati	ons, r	netho	od									
of dealing	with non-linear vibrations, phase plane trajectories, method of d	irect	integ	ratio	n,									
perturbation	on method, iteration method, Fourier series.		_											
	LECTURE: 45 TUTORIAL: 0	r	ΓΟΤΑ	L:	45									

TEXT BOOKS

- 1. Theory of vibration with applications:
- 2. Theory and practice of mechanical vibrations:

REFERENCE BOOKS

- 1. Mechanical vibration :- S. S. Rao (Addison Wesley)
- 2. Vibration and noise for Engineers :-KewalPujara (DhanpatRai and Co.)
- 3. Mechanical vibrations :- G. K. Grover and Nigam (Nemchand and sons)
- 4. An introduction to mechanical vibrations :-*Steidel (John Wiley)*
- 5. Elements of vibration analysis :-Meirovitch (TMH)

XAS705C

ROCKETSAND MISSILES

UNIT I ROCKETS SYSTEM

Ignition System in rockets–Types of Igniters–Igniter Design Considerations– Design Consideration of liquid Rocket Combustion Chamber, Injector Propellant Feed Lines, Valves, Propellant Tanks Outlet and Helium Pressurized and Turbine feed Systems – Propellant Slash and Propellant Hammer – Elimination of Geysering Effect in Missiles – Combustion System of Solid Rockets.

UNIT II AERODYNAMICS OF ROCKETS AND MISSILES

Airframe Components of Rockets and Missiles– Forces Acting on a Missile While Passing Through Atmosphere – Classification of Missiles – Methods of Describing Aerodynamic Forces and Moments – Lateral Aerodynamic Moment – Lateral Damping Moment and Longitudinal Moment of a Rocket – lift and Drag Forces– Drag Estimation–Body Upwash and Downwash in Missiles – Rocket Dispersion –Numerical Problems.

UNIT III ROCKETMOTION

One Dimensional and Two Dimensional rocket Motions in Free Space and Homogeneous Gravitational Fields – Description of Vertical, Inclined and Gravity Turn Trajectories – Determination of range and Altitude Simple Approximations to Burnout Velocity.

UNIT IV STAGING AND CONTROL OFROCKET VEHICLES

Rocket Vector Control–Methods – Thrust determination– SITVC– Multistaging of rockets– Vehicle Optimization – Stage Separation Dynamics – Separation Techniques.

UNIT V MATERIALS FOR ROCKETS ANDMISSILES

Selection of Materials – Special Requirements of Materials to Perform under Adverse Conditions.

Total: 45 Periods

TEXT BOOKS

1. Sutton, G.P., et al., "Rocket Propulsion Elements", John Wiley & Sons Inc., 1993.

REFERENCES

- 1. Mathur, M., and Sharma, R.P., "Gas Turbines and Jet and Rocket Propulsion", Standard Publishers, 1998.
- 2. Cornelisse, J.W., "RocketPropulsionandSpaceDynamics", J.W., Freeman&Co.Ltd., 1982.
- 3. Parket, E.R., "Materials for Missiles and Spacecraft", McGraw-HillBookCo.Inc., 1982.

10

13

10

7

a 1. ·	Subject Name CYBER SECURITY									
Subject	Code	XUM 706								
	L –T -	-Р-С	C:P:A	L·	-T -P -H					
	0-0-	- 0- 0	3:0:0	3-	0-0-3					
Course	Outcon	ne:	I		Don	nain				
					C or P or A					
CO1	Able Regula		ne Cyber Security Policy,	Laws and	C (Reme	mber)				
CO2										
CO3	Able t	ire	C (Under	rstand)						
CO4	on Security	C (Under	rstand)							
CO5	Able t		C (Under	rstand)						
COURS	SE CON	ITENT			1					
UNIT I	IN	FRODUCTION				9 hrs				
	Versus									
Counter UNIT I	Measur	res – Challenges	Security Evolution – Production	ivity – Intern		uration - nmerce – 9 hrs				
UNIT II Cyber S Framew – Securi Project–	Measur CY ecurity orks – I ity Polic - Cyber	res – Challenges BER SECURIT Metrics – Secur E Commerce Sys cy Objectives – C Security Manage	Security Evolution – Product	DANCE Inting Vulner tems – Person – Tone at the Cyber Security	et – E con rabilities – nal Mobile e Top – Po y Docume	9 hrs Security Devices olicy as a				
UNIT II Cyber S Framew – Securi Project–	Measur CY ecurity orks – I ity Polic Cyber alog Ap	res – Challenges BER SECURIT Metrics – Secur E Commerce Sys cy Objectives – C Security Manage proach – Catalog	Security Evolution – Production Y OBJECTIVES AND GUI ity Management Goals – Count ity Management – Matagement – Matagement ity Management – Matagement ity Mata	DANCE Inting Vulner tems – Person – Tone at the Cyber Security	et – E con rabilities – nal Mobile e Top – Po y Docume	9 hrs Security Devices Dicy as a				
UNIT II Cyber S Framewa – Securi Project– The Cata UNIT II Cyber G Tradema Appropr	Measur I CY ecurity orks – H ity Polic Cyber alog Ap II CY Governat arks – H riate Use	res – Challenges BER SECURIT Metrics – Secur E Commerce Sys cy Objectives – C Security Manage proach – Catalog BER SECURIT nce Issues – Net Email and Messa e – Cyber Crime	Security Evolution – Production Y OBJECTIVES AND GUI ity Management Goals – Count ity Manag	DANCE Inting Vulner tems – Person – Tone at the Cyber Security icy Taxonom and Number Valvertising ber Conflict I	et – E con abilities – nal Mobile e Top – Po y Docume y. rs – Copyr - Imperso	9 hrs Security Devices blicy as a ntation – 9hrs right and pnation –				
UNIT II Cyber S Framewa – Securi Project– The Cata UNIT II Cyber G Tradema Appropr	Measur I CY ecurity orks – H ity Polic Cyber alog Ap II CY Governat arks – H tiate Uso Theft –	res – Challenges BER SECURIT Metrics – Secur E Commerce Sys cy Objectives – C Security Manage proach – Catalog BER SECURIT nce Issues – Net Email and Messa e – Cyber Crime	Security Evolution – Production Y OBJECTIVES AND GUI ity Management Goals – Councile tems – Industrial Control Systems Guidance for Decision Makers ement – Arriving at Goals – Concerning at Goals – Cyber Security Politic Y POLICY CATALOG T Neutrality – Internet Names aging - Cyber User Issues - N – Geo location – Privacy - Cyber V ge – Cyber Sabotage – Cyber V	DANCE Inting Vulner tems – Person – Tone at the Cyber Security icy Taxonom and Number Valvertising ber Conflict I	et – E con abilities – nal Mobile e Top – Po y Docume y. rs – Copyr - Imperso	9 hrs Security Devices blicy as a ntation – 9hrs right and pnation –				
UNIT II Cyber S Framewy – Securi Project– The Cata UNIT II Cyber G Tradema Appropr property UNIT I	Measur I CY ecurity orks – H ity Polic Cyber alog Ap II CY Governat arks – H riate Use Theft – V SE tion Sec	res – Challenges BER SECURIT Metrics – Secur E Commerce Sys by Objectives – C Security Manage proach – Catalog BER SECURIT nce Issues – Net Email and Messa e – Cyber Crime - Cyber Espionag CURITY SYST curity Overview:	Security Evolution – Production Y OBJECTIVES AND GUI ity Management Goals – Councile tems – Industrial Control Systems Guidance for Decision Makers ement – Arriving at Goals – Concerning at Goals – Cyber Security Politic Y POLICY CATALOG T Neutrality – Internet Names aging - Cyber User Issues - N – Geo location – Privacy - Cyber V ge – Cyber Sabotage – Cyber V	DANCE Inting Vulner tems – Person – Tone at the Cyber Security icy Taxonomy and Number Valvertising ber Conflict I Welfare	et – E con rabilities – nal Mobile e Top – Po y Docume y. rs – Copyr - Imperso Issues – In	9 hrs Security Devices Dicy as a ntation – 9hrs right and Dnation – tellectual 9hrs				
UNIT II Cyber S Framewy – Securi Project– The Cata UNIT II Cyber G Tradema Appropr property UNIT I	Measur I CY ecurity orks – H ity Polic Cyber alog Ap II CY Governat arks – H riate Use Theft – V SE tion Security - E-	res – Challenges BER SECURIT Metrics – Secur E Commerce Sys by Objectives – C Security Manage proach – Catalog BER SECURIT nce Issues – Net Email and Messa e – Cyber Crime - Cyber Espionag CURITY SYST curity Overview:	Security Evolution – Production Y OBJECTIVES AND GUI ity Management Goals – Count ity Management Goals – Count ity Management Goals – Count Guidance for Decision Makers Bernent – Arriving at Goals – Count g Format – Cyber Security Politic Y POLICY CATALOG t Neutrality – Internet Names aging - Cyber User Issues - M – Geo location – Privacy - Cyber V ge – Cyber Sabotage – Cyber V EMS Background and Current Scen	DANCE Inting Vulner tems – Person – Tone at the Cyber Security icy Taxonomy and Number Valvertising ber Conflict I Welfare	et – E con rabilities – nal Mobile e Top – Po y Docume y. rs – Copyr - Imperso Issues – In	9 hrs Security Devices blicy as a ntation – 9hrs right and bnation – tellectual 9hrs				

Network connections - Malicious Code - Programming Bugs - Cyber crime and Cyber terrorism - Information Warfare and Surveillance

L- 45 hrs Total – 45 hrs

TEXT BOOKS

- Nina Godbole, "Information Systems Security: Security Management, Metrics, Frameworks and Best Practices, w/cd", Wiley Publications, 2008, ISBN 10: 8126516925, ISBN 13 :9788126516926
- Thomas J. Mowbray, "Cybersecurity: Managing Systems, Conducting Testing and Investigating Intrusions", Wiley Publications, 2013, Kindle Edition, ISBN 10: 812654919X, ISBN 13 :9788126549191
- 3. D.S. Yadav, "Foundations of Information Technology", New Age International publishers, 3rd Edition, 2006, ISBN-10: 8122417620, ISBN-13: 978-8122417623

REFERENCES

- 1. Mike Shema, "Anti-Hacker Tool Kit", McGraw Hill Education, 4th edition, 2014,
- Nina Godbole, SunitBelapure, "Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Wileypublications, 2013, ISBN 10: 8126521791, ISBN 13:9788126521791.
- Corey Schou, Daniel Shoemaker, "Information Assurance for the Enterprise: A Roadmap to Information Security (McGraw-Hill Information Assurance & Security)", Tata McGraw Hill, 2013, ISBN-10: 0072255242, ISBN-13: 978-0072255249.
- VivekSood, "Cyber Laws Simplified", McGraw Hill Education (INDIA) Private Limited in 2001, ISBN-10: 0070435065, ISBN-13: 978-0070435063.Steven M.Furnell, "Computer Insecurity", Springer Publisher, 2005 Edition.

E-REFERENCES

- 1. https://www.cryptool.org/en/
- 2. https://www.metasploit.com/
- 3. http://sectools.org/tool/hydra/
- 4. http://www.hping.org/
- 5. http://www.winpcap.org/windump/install/
- 6. http://www.tcpdump.org/
- 7. https://www.wireshark.org/
- 8. https://ettercap.github.io/ettercap/
- 9. https://www.concise-courses.com/hacking-tools/top-ten/
- 10. https://www.cirt.net/Nikto2
- 11. http://sqlmap.org/

Mapping of COs with Gas

	P01	P02	PO3	P04	P05	P06	PO7	PO8	P09	P010	P011	P012	PSO 1	PSO2
CO1	3	2	0	2	0	0	1	0	0	0	0	0	0	0
CO2	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO3	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO4	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO5	2	2	0	2	0	0	1	0	0	0	0	0	0	0
CO6	1	2	0	3	0	2	2	2	2	0	2	2	0	0
	15	12	9	13	9	8	10	2	8	0	8	8	3	0

Subjec	t Name	PROJECT	PHASE-I			
Subjec	t Code	XAS 707				
	L –T –P	-C	C:P:A	L –T –	P-H	
	0- 0 – 2	2-2	1.5:0.5:0.5	0-0-2-4		
Course	Domain					
					C or P or A	
CO1	Identif	y the engine	ering problem relevant to	the domain interest.	C(Analyze)	
CO2	Interpr	et and infer l	orthiness.	C(Analyze &		
				Apply)		
CO3	Analys proble		y an appropriate techniqu	ae for solve the	C(Analyze, Apply)	
CO4		m experiment t and interpre	tation /Simulation/Progra et data.	mming/Fabrication,	P&C (CoR, Create, Apply)	
CO5	Record	d and report t	d report the technical findings as a document. C (Reme Understa			
CO6	Devote a team	display as a leader in	A & C (Value, Organization, Create)			
CO7	Respo	nding of proj	ect findings among the te	chnocrats.	A(Responding)	

Mapping of COs with Pos

	P01	P02	P03	PO4	P05	P06	P07	PO8	P09	P010	P011	P012	PSO 1	PSO2
CO1	3	2	0	2	0	0	1	0	0	0	0	0	0	0
CO2	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO3	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO4	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO5	2	2	0	2	0	0	1	0	0	0	0	0	0	0
CO6	1	2	0	1	0	2	2	2	2	0	2	2	0	0
	15	12	9	11	9	8	10	2	8	0	8	8	3	0

Subject	Name	e	CAREER	AREER DEVELOPMENT SKILLS							
Subject	Code		XGS 708								
	L –T	с –Р –С		C:P:A	L –T –P	–H					
	2-0	- 0 - 2		1.8:0.6:0	2-0-0-2						
Course	Outco	me			Domain	/Level					
					C or P	or A					
CO1		nguish us form		esume and Curriculum Vitae and in	ts C (Analyze)					
CO2	Defin	ne thedi	fferent type	es of interviews	C(Rememb	er)					
CO3	Perfo	orm in th	ne forum w	here the skills will be exhibited	P (Guidee I	Response)					
COURS	SE CO	NTEN'	Г								
UNIT I	[R	RESUM	E & CV V	VRITING		10 hrs					
				d CV; characteristics of resume and in resume and CV; forms and funct							
UNIT I	II	NTERV	/IEW SKI	ILLS		10 hrs					
	n inter	view, i	nterview n	bes of questions asked; body langunistakes, telephonic interview, free							
UNIT I	II V	VORKS	SHOPS			10hrs					
Mock in	terviev	ws – Gr	oup Discus	ssions –Panel Interview – Informal I	nterview	1					

L-20 hrs Workshop - 10 hrs Total = 30 hrs

TEXT BOOKS

- 1. Paul McGee, How To Write a CV That Really Works: A Concise, Clear and Comprehensive Guide to Writing an Effective CV, Hachette UK, 2014
- 2. Mary Ellen Guffey, Dana Loewy Essentials of Business Communication, Cengage Learning, 2012
- 3. D.S. Paul. Interview Skills: Goodwill Publishing House: New Delhi. 2017
- 4. Barun Mitra. Personality Development and Soft Skills. Oxford University Press, 2012
- 5. Michael Spiropoulos, Interview Skills that win the job: Simple techniques for answering all the tough questions, Allen &Unwin, 2005
- 6. William L. Fleisher, Effective Interviewing and Interrogation Techniques, Nathan J. Gordon, Academic Press, 2010.

E-REFERENCES

- 1. http://www.utsa.edu/careercenter/PDFs/Interviewing/Types%20of%20Interviews.pdf
- 2. http://www.amu.apus.edu/career-services/interviewing/types.htm
- 3. http://www.careerthinker.com/interviewing/types-of-interview/

	ping or	000		05	1	1		1			r –			
	P01	P02	P03	P04	P05	P06	PO7	P08	P09	P010	P011	P012	PSO 1	PSO2
C01	3	2	0	2	0	0	1	0	0	0	0	0	0	0
CO2	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO3	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO4	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO5	2	2	0	2	0	0	1	0	0	0	0	0	0	0
CO6	1	2	0	3	0	2	2	2	2	0	2	2	0	0
	15	12	9	13	9	8	10	2	8	0	8	8	3	0

Mapping of COs with Pos

	Name		RAFT POWER SYSTE						
Subject (Code	XAS802A							
Prerequi	isite	NIL							
L	-T -P	-С	C :P:A	L –T –	-P –H				
3	8- 0-0	-3	3:0:0	3-0-	0-3				
Course (Dutcon	ne:			Dom	ain			
					C or P	or A			
CO1	Desc	cribe the space	cecraft environment & de	esign consideration	C (Rem	ember)			
CO2	Estin	nate the pow	ver generation for spacec	raft	C (Unde	rstand)			
CO3									
CO4	Outl	ine the conc	epts of power converters		C (Ana	alyze)			
CO5		ess the powe ecraft.	r control, conditioning a	nd distribution of the	C (Eva	luate)			
COURS	E CON	ITENT							
UNIT-I		ACECRAF DNSIDERA	T ENVIRONMENT & TION	DESIGN		9hrs			
Orbit def	CC Tinition	DNSIDERA /Mission Re		O, GTO & HEO, Luna		PO with			
Orbit def	CC inition Dowe	ONSIDERA /Mission Re r Generation	TION equirements of LEO, GE	O, GTO & HEO, Luna		PO with <mark>s</mark> .			
Orbit defirespect to UNIT –I Study of	CC inition Powe I PC Solar	ONSIDERA /Mission Re r Generation OWER GEN Spectrum - S	TION equirements of LEO, GE – Power System Element ERATION olar cells - Solar Panel	O, GTO & HEO, Luna nts - Solar aspect angle design - Solar Panel F	e Variation	PO with s. 9hrs			
Orbit defirespect to UNIT –I Study of	COinitionPoweIPOSolarting - H	DNSIDERA /Mission Regression r Generation DWER GEN Spectrum - Seffects of Sol	TION equirements of LEO, GE – Power System Element ERATION	O, GTO & HEO, Luna hts - Solar aspect angle design - Solar Panel F UV, Particles)	e Variation	PO with s. 9hrs			
Orbit definespect to UNIT –I Study of Panel test UNIT-II Types of Nickel m – Perform	COinitionPoweIPOSolarting - IIEbatteribatteritetal hynance	ONSIDERA /Mission Regression r Generation OWER GEN Spectrum - Seffects of Social NERGY STORE es - Primary dride - Lithi characteristic	TION equirements of LEO, GE – Power System Element ERATION olar cells - Solar Panel lar cells and panels (IR, 1990)	O, GTO & HEO, Luna hts - Solar aspect angle design - Solar Panel F UV, Particles) GY - Nickel Cadmium - N er - Silver Zinc– Elect tion of batteries in la	e Variation Realization Nickel-Hyc trical circu	PO with s. 9hrs – Solar 10hrs Irogen – it model cles and			
Orbit definespect to UNIT –I Study of Panel test UNIT-II Types of Nickel m – Perform	COinitiono PoweIPOSolarting - EIEi batterii batterii batterii batterii batterii batterii batterii batterii batterii batteri	ONSIDERA /Mission Regression r Generation OWER GEN Spectrum - Seffects of Soc OFFECTS of Soc VERGY STO es – Primary dride - Lithi characteristic Cell – Polyr	TION equirements of LEO, GE – Power System Element IERATION olar cells - Solar Panel ar cells and panels (IR, I ORAGE TECHNOLOG & Secondary batteries um-ion –Lithium Polym cs of batteries - Applica	O, GTO & HEO, Luna hts - Solar aspect angle design - Solar Panel F UV, Particles) GY - Nickel Cadmium - N er - Silver Zinc– Elect tion of batteries in la	e Variation Realization Nickel-Hyc trical circu	PO with s. 9hrs – Solar 10hrs lrogen – it model cles and Cell.			
Orbit definespect to UNIT –I Study of Panel test UNIT-II Types of Nickel m – Perform satellites UNIT –I DC – DC converter	COinitionPoweIPoweISolarting - IIEbatterinetal hynance- FuelVPC convrs: Fly	ONSIDERA /Mission Regression r Generation OWER GEN Spectrum - Seffects of Social Seffects of Social VERGY STOR es - Primary dride - Lithic cell - Polyr OWER CO rerters - Bas back conv	TION equirements of LEO, GE – Power System Element IERATION olar cells - Solar Panel ar cells and panels (IR, I ORAGE TECHNOLOG & Secondary batteries um-ion –Lithium Polym cs of batteries - Applica ner Electrolyte membrar	O, GTO & HEO, Luna hts - Solar aspect angle design - Solar Panel F UV, Particles) GY - Nickel Cadmium - N er - Silver Zinc– Elect httion of batteries in la he Fuel Cell – Regener Boost, Buck- boost c oupled forward conv	e Variation Realization Nickel-Hyd trical circu unch vehic ative Fuel onverter – erter – P	PO with s. 9hrs – Solar 10hrs lrogen – it model cles and Cell. 9hrs Derived			
Orbit defi respect to UNIT –I Study of Panel test UNIT-II Types of Nickel m – Perform satellites UNIT –I DC – DC converter converter	COinitiono PoweIPOweISolarting - FIEbatteri<	ONSIDERA /Mission Regression r Generation OWER GEN Spectrum - S Effects of So VERGY STO es – Primary dride - Lithi characteristic Cell – Polyr OWER CO reters – Bas back conv Xs convertor	TION quirements of LEO, GE – Power System Element IERATION olar cells - Solar Panel lar cells and panels (IR, I ORAGE TECHNOLOO v & Secondary batteries um-ion –Lithium Polym cs of batteries - Applica ner Electrolyte membrar NVERTERS sic Convertors - Buck, erter – Transformer co	O, GTO & HEO, Luna hts - Solar aspect angle design - Solar Panel F UV, Particles) GY - Nickel Cadmium - N er - Silver Zinc– Elect ation of batteries in la he Fuel Cell – Regener Boost, Buck- boost c oupled forward conv Voltage and current reg	e Variation Realization Nickel-Hyc trical circu- unch vehic ative Fuel onverter – erter – P gulators.	PO with s. 9hrs – Solar 10hrs lrogen – it model cles and Cell. 9hrs Derived			
Orbit defi respect to UNIT –I Study of Panel test UNIT-II Types of Nickel m – Perform satellites UNIT –I DC – DC converter UNIT – Solar Arm	COinitionPoweIPoweISolarting - IIEbatterinetal hynance- FuelVPC convertingr - CUHVPcarayrayReg- Therm	DNSIDERA /Mission Regression r Generation DWER GEN Spectrum - S Seffects of So DERGY STO es - Primary dride - Lithi characteristic Cell - Polyr OWER CO rerters - Bas back conv Xs convertor- DWER CON gulators - B	TION equirements of LEO, GE – Power System Element ERATION olar cells - Solar Panel ar cells and panels (IR, I DRAGE TECHNOLOG v & Secondary batteries um-ion –Lithium Polym cs of batteries - Applica ner Electrolyte membrar NVERTERS sic Convertors - Buck, erter – Transformer co – Resonant converter – V	O, GTO & HEO, Luna hts - Solar aspect angle design - Solar Panel F UV, Particles) GY - Nickel Cadmium - N er - Silver Zinc– Elect ation of batteries in la he Fuel Cell – Regener Boost, Buck- boost c oupled forward conv /oltage and current reg NG AND DISTRIBU s – Protection Scheme	e Variation Realization Nickel-Hyc trical circu- trical circu- trical circu- tricul circul tricul circul circul tricul circul circul circul circul tricul circul circul circul tricul circul circul circul tricul circul circul circul circul tricul circul circul circul circul tricul circul ci	PO with s. 9hrs – Solar 10hrs lrogen – it model cles and Cell. 9hrs Derived ush-Pull 8hrs pution –			

TEXT BOOKS

- 1. P R K Chetty, 'Spacecraft Power Systems', 1978.
- 2. Patel, Mukund R, "Spacecraft system Power Systems" CRC Press Raton, 2005
- 3. Hyder, A Ket.al, "Space power Technologies" imperial college Press London, 2000.

Mapping of CO's with PO's:

	P01	P02	P03	P04	P05	P06	P07	PO8	P09	P010	P011	P012	PSO 1	PSO2
CO1	3	3	2	3	0	1	2	0	1	0	0	2	0	2
CO2	3	3	3	3	0	1	2	0	1	0	0	2	0	2
CO3	3	3	3	3	0	1	2	0	1	0	0	2	0	2
CO4	3	3	3	3	0	2	2	0	1	0	0	2	0	2
CO5	3	2	2	2	0	2	2	0	1	0	0	3	0	3
	15	14	13	14	0	7	10	0	5	0	0	11	0	11

Subject	Name	CRYO	GENICS						
Subject	Code	XAS803	С						
Prerequ	isite	NIL							
I	∠ –T –P –0	L –T –	-P –H						
	3- 0-0-3	3-0-	0-3						
Course	Outcome	:			Domain C or P or A				
CO1	Describe	e the vario	ous cryogenic propellant	s used for spacecrafts	C(Remember)				
CO2	Estimate	e the prod	uction of low temperatur	re for cryogenics	C (Understand)				
CO3	General	ize the eff	iciency of cryogenic sys	tems	C(Apply)				
CO4	Outline	utline the cycles of cryogenic plants C (Analyze)							
CO5	Illustrate technolo		rious applications of	cryogenics in space	C (Understand)				

UNIT-I	INTRODUCTION TO CRYOGENICS	8hrs
	Background - Introduction to cryogenic propellants - Liquid hydroge id nitrogen and liquid oxygen and their properties.	en, liquid
UNIT –II	PRODUCTION OF LOW TEMPERATURE	10hrs
	ind the production of low temperature - Expansion engine heat excluses solution of the second	
UNIT-III	EFFICIENCY OF CRYOGENIC SYSTEMS	9hrs
• •	ses and efficiency of cycles - specific amount of cooling - The fraction coefficient of performance - Thermodynamic efficiency – The energy	-
UNIT –IV	CYCLES OF CRYOGENIC PLANTS	9hrs
	on of cryogenic cycles - The structure of cycles - Throttle expansion cycles - Thermodynamic analysis - Numerical problems.	cycles ·
UNIT – V	APPLICATION	9hrs
Cryogenic li Effect of cr problems - 2	iquids in missile launching and space simulation Storage of cryogenic ryogenic liquids on properties of aerospace materials – Cryogenic Zero gravity problems associated with cryogenic propellants - Phenor e - Elimination of Geysering effect in missiles.	liquids loading nenon of
Cryogenic li Effect of cr problems - 2 tank collapse	iquids in missile launching and space simulation Storage of cryogenic ryogenic liquids on properties of aerospace materials – Cryogenic Zero gravity problems associated with cryogenic propellants - Phenor e - Elimination of Geysering effect in missiles. L-45hrs T-0 hrsTot	liquids - loading nenon of
Cryogenic li Effect of cr problems - Z tank collapse TEXT BOC 1. Hase	iquids in missile launching and space simulation Storage of cryogenic ryogenic liquids on properties of aerospace materials – Cryogenic Zero gravity problems associated with cryogenic propellants - Phenor e - Elimination of Geysering effect in missiles. L-45hrs T-0 hrsTot	liquids loading nenon o
Cryogenic li Effect of cr problems - Z tank collapse TEXT BOC 1. Hase	iquids in missile launching and space simulation Storage of cryogenic ryogenic liquids on properties of aerospace materials – Cryogenic Zero gravity problems associated with cryogenic propellants - Phenor e - Elimination of Geysering effect in missiles. L-45hrs T-0 hrsTot OKS Idom, G., Cryogenic Fundamentals, Academic Press, 1971 on, R. F., Cryogenic Systems, Oxford University, 1985.	liquids loading nenon o
Cryogenic li Effect of cr problems - Z tank collapse TEXT BOC 1. Hase 2. Barro REFEREN	iquids in missile launching and space simulation Storage of cryogenic ryogenic liquids on properties of aerospace materials – Cryogenic Zero gravity problems associated with cryogenic propellants - Phenor e - Elimination of Geysering effect in missiles. L-45hrs T-0 hrsTot OKS Idom, G., Cryogenic Fundamentals, Academic Press, 1971 on, R. F., Cryogenic Systems, Oxford University, 1985.	liquids loading nenon o

Mapping of CO's with PO's:

	P01	P02	P03	P04	P05	P06	PO7	P08	P09	P010	P011	P012	PSO 1	PSO2
CO1	3	2	0	1	0	1	1	0	1	0	2	1	0	2
CO2	3	3	3	1	0	1	1	0	1	0	2	1	0	3
CO3	3	3	3	1	0	1	1	0	1	0	2	1	0	3
CO4	3	3	1	1	0	1	1	0	1	0	2	1	0	3
CO5	3	2	3	1	0	1	1	0	1	0	3	1	0	2
	15	14	13	14	0	5	5	0	5	0	11	11	0	13

		VIII PROJECT PHASE-II XAS 804											
										-C	C:P:A	–Р–Н	
										0- 0-12-12			6:3:3
		Course	Domain C or P or A										
CO1		Identify the Engineering Problem relevant to the domain C(Analyze) interest.											
CO2	Interpret and Infer Literature survey for its worthiness. C(Analyze, Apply)												
CO3	•	Analyse and identify an appropriate technique for solve the problem.C(Analyze, Apply)											
CO4		-	neering Problem relevant to the domainC(Analyze)r Literature survey for its worthiness.C(Analyze, Apply)tify an appropriate technique for solve the entation ramming/Fabrication, Collect and interpretC(Analyze, 										
CO5	Record	l and Report th	experimentation ion/Programming/Fabrication, Collect and interpret P&C(CoR, Create, Apply) nd Report the technical findings as a document. C(Remember, Understand) oneself as a responsible member and display as a leader A & C(Value,										
CO6		e oneself as a r am to manage	-	ible member and display as a leader A & C(Value,									
CO7	Respon	Responding of project findings among the technocrats.											

	CO1	CO2	CO3	CO4	CO5	CO6	CO7	Total
PO1	3	2	1	2	1	_	1	10
PO2	3	2	1	2	1	-	1	10
PO3	-	-	1	3	1	-	-	5
PO4	-	1	2	3	1	2	2	11
PO5	-	-	2	3	1	-	-	6
PO6	1	-	1	1	-	3	3	10
PO7	1		1	1	-	1		4
PO8	1	-	1	1	-	3	-	6
PO9	-	-	-	-	2	3	1	6
PO10	-	-	-	-	3	3	3	9
PO11	-				2	2	2	6
PO12	1				3	3	1	8

Mapping of COs with GAs